WorldWideScience

Sample records for performing dispersion calculations

  1. Dispersion relations in loop calculations

    International Nuclear Information System (INIS)

    Kniehl, B.A.

    1996-01-01

    These lecture notes give a pedagogical introduction to the use of dispersion relations in loop calculations. We first derive dispersion relations which allow us to recover the real part of a physical amplitude from the knowledge of its absorptive part along the branch cut. In perturbative calculations, the latter may be constructed by means of Cutkosky's rule, which is briefly discussed. For illustration, we apply this procedure at one loop to the photon vacuum-polarization function induced by leptons as well as to the γf anti-f vertex form factor generated by the exchange of a massive vector boson between the two fermion legs. We also show how the hadronic contribution to the photon vacuum polarization may be extracted from the total cross section of hadron production in e + e - annihilation measured as a function of energy. Finally, we outline the application of dispersive techniques at the two-loop level, considering as an example the bosonic decay width of a high-mass Higgs boson. (author)

  2. Dispersion parameters: impact on calculated reactor accident consequences

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, D.C.

    1979-01-01

    Much attention has been given in recent years to the modeling of the atmospheric dispersion of pollutants released from a point source. Numerous recommendations have been made concerning the choice of appropriate dispersion parameters. A series of calculations has been performed to determine the impact of these recommendations on the calculated consequences of large reactor accidents. Results are presented and compared in this paper.

  3. Ability Dispersion and Team Performance

    DEFF Research Database (Denmark)

    Hoogendoorn, Sander; Parker, Simon C.; Van Praag, Mirjam

    What is the effect of dispersed levels of cognitive ability of members of a (business) team on their team's performance? This paper reports the results of a field experiment in which 573 students in 49 teams start up and manage real companies under identical circumstances. We ensured exogenous va...

  4. Ability Dispersion and Team Performance

    DEFF Research Database (Denmark)

    Hoogendoorn, Sander; Parker, Simon C.; Van Praag, Mirjam

    What is the effect of dispersed levels of cognitive ability of members of a (business) team on their team's performance? This paper reports the results of a field experiment in which 573 students in 49 (student) teams start up and manage real companies under identical circumstances for one year. We...... ensured exogenous variation in otherwise random team composition by assigning students to teams based on their measured cognitive abilities. Each team performs a variety of tasks, often involving complex decision making. The key result of the experiment is that the performance of business teams first...... increases and then decreases with ability dispersion. We seek to understand this finding by developing a model in which team members of different ability levels form sub- teams with other team members with similar ability levels to specialize in different productive tasks. Diversity spreads production over...

  5. Performance assessment calculational exercises

    International Nuclear Information System (INIS)

    Barnard, R.W.; Dockery, H.A.

    1990-01-01

    The Performance Assessment Calculational Exercises (PACE) are an ongoing effort coordinated by Yucca Mountain Project Office. The objectives of fiscal year 1990 work, termed PACE-90, as outlined in the Department of Energy Performance Assessment (PA) Implementation Plan were to develop PA capabilities among Yucca Mountain Project (YMP) participants by calculating performance of a Yucca Mountain (YM) repository under ''expected'' and also ''disturbed'' conditions, to identify critical elements and processes necessary to assess the performance of YM, and to perform sensitivity studies on key parameters. It was expected that the PACE problems would aid in development of conceptual models and eventual evaluation of site data. The PACE-90 participants calculated transport of a selected set of radionuclides through a portion of Yucca Mountain for a period of 100,000 years. Results include analyses of fluid-flow profiles, development of a source term for radionuclide release, and simulations of contaminant transport in the fluid-flow field. Later work included development of a problem definition for perturbations to the originally modeled conditions and for some parametric sensitivity studies. 3 refs

  6. Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel

    International Nuclear Information System (INIS)

    Cai Wei; Zhao Yunmei; Gong Xin; Ding Shurong; Huo Yongzhong

    2015-01-01

    The dispersion nuclear fuel was regarded as a kind of special particle composites. Assuming that the fuel particles are periodically distributed in the dispersion nuclear fuel meat, the finite element model to calculate its equivalent irradiation swelling was developed with the method of computational micro-mechanics. Considering irradiation swelling in the fuel particles and the irradiation hardening effect in the metal matrix, the stress update algorithms were established respectively for the fuel particles and metal matrix. The corresponding user subroutines were programmed, and the finite element simulation of equivalent irradiation swelling for the fuel meat was performed in Abaqus. The effects of the particle size and volume fraction on the equivalent irradiation swelling were investigated, and the fitting formula of equivalent irradiation swelling was obtained. The results indicate that the main factors to influence equivalent irradiation swelling of the fuel meat are the irradiation swelling and volume fraction of fuel particles. (authors)

  7. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  8. Ensemble atmospheric dispersion calculations for decision support systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.; Galkowski, A.; Zelazny, R.

    2003-01-01

    This document describes two approaches to long-range atmospheric dispersion of pollutants based on the ensemble concept. In the first part of the report some experiences related to the exercises undertaken under the ENSEMBLE project of the European Union are presented. The second part is devoted to the implementation of mesoscale numerical prediction models RAMS and atmospheric dispersion model HYPACT on Beowulf cluster and theirs usage for ensemble forecasting and long range atmospheric ensemble dispersion calculations based on available meteorological data from NCEO, NOAA (USA). (author)

  9. Comparative calculations and validation studies with atmospheric dispersion models

    International Nuclear Information System (INIS)

    Paesler-Sauer, J.

    1986-11-01

    This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP) [de

  10. Pay Dispersion and Performance in Teams

    DEFF Research Database (Denmark)

    Bucciol, Alessandro; Foss, Nicolai J; Piovesan, Marco

    2014-01-01

    Extant research offers conflicting predictions about the effect of pay dispersion on team performance. We collected a unique dataset from the Italian soccer league to study the effect of intra-firm pay dispersion on team performance, under different definitions of what constitutes a "team". This ...

  11. Pay Dispersion and Performance in Teams

    Science.gov (United States)

    Bucciol, Alessandro; Foss, Nicolai J.; Piovesan, Marco

    2014-01-01

    Extant research offers conflicting predictions about the effect of pay dispersion on team performance. We collected a unique dataset from the Italian soccer league to study the effect of intra-firm pay dispersion on team performance, under different definitions of what constitutes a “team”. This peculiarity of our dataset can explain the conflicting evidence. Indeed, we also find positive, null, and negative effects of pay dispersion on team performance, using the same data but different definitions of team. Our results show that when the team is considered to consist of only the members who directly contribute to the outcome, high pay dispersion has a detrimental impact on team performance. Enlarging the definition of the team causes this effect to disappear or even change direction. Finally, we find that the detrimental effect of pay dispersion is due to worse individual performance, rather than a reduction of team cooperation. PMID:25397615

  12. Methods for calculating population dose from atmospheric dispersion of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L; Jow, H N; Lee, I S [Pittsburgh Univ., PA (USA)

    1978-06-01

    Curves are computed from which population dose (man-rem) due to dispersal of radioactivity from a point source can be calculated in the gaussian plume model by simple multiplication, and methods of using them and their limitations are considered. Illustrative examples are presented.

  13. Reactor core performance calculating device

    International Nuclear Information System (INIS)

    Tominaga, Kenji; Bando, Masaru; Sano, Hiroki; Maruyama, Hiromi.

    1995-01-01

    The device of the present invention can calculate a power distribution efficiently at high speed by a plurality of calculation means while taking an amount of the reactor state into consideration. Namely, an input device takes data from a measuring device for the amount of the reactor core state such as a large number of neutron detectors disposed in the reactor core for monitoring the reactor state during operation. An input data distribution device comprises a state recognition section and a data distribution section. The state recognition section recognizes the kind and amount of the inputted data and information of the calculation means. The data distribution section analyzes the characteristic of the inputted data, divides them into a several groups, allocates them to each of the calculation means for the purpose of calculating the reactor core performance efficiently at high speed based on the information from the state recognition section. A plurality of the calculation means calculate power distribution of each of regions based on the allocated inputted data, to determine the power distribution of the entire reactor core. As a result, the reactor core can be evaluated at high accuracy and at high speed irrespective of the whole reactor core or partial region. (I.S.)

  14. Atmospheric dispersion calculations in a low mountain area

    International Nuclear Information System (INIS)

    Schmid, S.

    1987-01-01

    The applicability of the Gaussian model for assessing the short-range environmental exposure from an emission source in a topographically inhomogeneous terrain is tested. An atmospheric dispersion model of general applicability is used, which is based on results of hydrodynamic flow models. Approaches for turbulence and radiation parameterization are tested by means of a vertically one-dimensional flow model. In order to introduce the effects of the topography in the boundary-layer simulations, the three-dimensional mesoscale model (Ulrich) is applied. The two models are verified by way of episode simulation using wind profile measurements. The differences in the models' results are to show the topographic influence. The calculated flow fields serve as input to a randomwalk model applied for calculating ground-level concentration fields in the vicinity of an emission source. The Gaussian model underestimates the pollution under stable conditions. Convectivity conditions may change the effective source hight through vertical effects caused by orography which, depending on the direction of free flow, leads to an increase or decrease of pollutant concentration at ground level. Applying the more complex dispersion model, the concentration maxima under stable conditions are closer to the source by a factor five, and under unstable conditions about one and a half times more remote. (orig./HP) [de

  15. In-town dispersion calculations with RIMPUFF and UDM

    DEFF Research Database (Denmark)

    Astrup, P.; Thykier-Nielsen, Søren; Mikkelsen, Torben

    2005-01-01

    and in depositions obtained with a code designed for dispersion of a release from a nuclear power plant, typically situated at a distance from densely inhabited areas, and a code specifically designed forpredicting dispersion from sources inside urban areas. The codes applied are the RIMPUFF code, RIsø Mesoscale...

  16. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    International Nuclear Information System (INIS)

    Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10 -7 –10 -3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder

  17. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Science.gov (United States)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  18. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Energy Technology Data Exchange (ETDEWEB)

    Artem’ev, V. A., E-mail: niitm@inbox.ru [Research Institute of Materials Technology (Russian Federation); Nezvanov, A. Yu. [Moscow State Industrial University (Russian Federation); Nesvizhevsky, V. V. [Institut Max von Laue—Paul Langevin (France)

    2016-01-15

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  19. Real-time dispersion calculation using the Lagrange model LASAT

    International Nuclear Information System (INIS)

    Janicke, L.

    1987-01-01

    The LASAT (Lagrange Simulation of Aerosol Transport) dispersion model demonstrates pollutant transport in the atmosphere by simulating the paths of representative random samples of pollutant particles on the computer as natural as possible. The author demonstrates the generated particle paths and refers to literature for details of the model algorithm. (DG) [de

  20. In-town dispersion calculations with RIMPUFF and UDM

    International Nuclear Information System (INIS)

    Astrup, P.; Thykier-Nielsen, S.; Mikkelsen, Torben

    2005-11-01

    Input to ERMIN, deposition of radioactive matter inside inhabited areas from releases both within and outside such areas, shall in a decision support system be produced by dispersion codes, followed by data-assimilation. The present work focuses on the differences in near surface concentrations and in depositions obtained with a code designed for dispersion of a release from a nuclear power plant, typically situated at a distance from densely inhabited areas, and a code specifically designed for predicting dispersion from sources inside urban areas. The codes applied are the RIMPUFF code, RIsoe Mesoscale PUFF model from Risoe National Laboratory, Denmark, and the UDM code, Urban Dispersion Model, from 'dstl', Defence Science and Technology Laboratory, Porton Down, United Kingdom. For an above-town release only small differences are seen between the codes, but for a in-town ground release, e.g. a dirty bomb, the UDM code predicts much larger concentrations in an area close to the release point and, if wind shifts occur, gives a rather different plume all over. (au)

  1. DISECA - A Matlab code for dispersive waveform calculations

    Czech Academy of Sciences Publication Activity Database

    Gaždová, Renata; Vilhelm, J.

    2011-01-01

    Roč. 38, č. 4 (2011), s. 526-531 ISSN 0266-352X R&D Projects: GA AV ČR IAA300460705 Institutional research plan: CEZ:AV0Z30460519 Keywords : velocity dispersion * synthetic waveform * seismic method Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.987, year: 2011 http://www.sciencedirect.com/science/article/pii/S0266352X11000425

  2. Review of specific effects in atmospheric dispersion calculations

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Cooper, P.J.; Holloway, N.J.; Kaiser, G.D.; Nixon, W.

    1984-01-01

    This report consists of a series of 7 individual review chapters -written between 1980 and 1983- together with a summary document linking and overviewing the work. The topics covered are as follows: ''atmospheric dispersion in urban environments''; ''topographical effects in nuclear safety studies''; coastal effects and transport over water''; ''time-varying meteorology in consequence assessment''; ''building effects in nuclear safety studies''; effect of variations in mixing height on atmospheric dispersion''; ''the effect of turning of the wind with height on lateral dispersion''. Although the reviews are, on the whole, general in approach, emphasis has been given where appropriate to the impact of various phenomena on the assessment of reactor accident consequences. In general the work focuses on the 0-100 km range of distance downwind of the source. The reviews fulfil several functions: they serve as introductions to the subject areas; they outline theoretical and experimental developments; they act as reference documents providing a copious source of references for more detailed investigation of particular points; they raise unresolved technical issues and attempt to indicate principal uncertainties; they point to areas requiring further development

  3. Mechanical Calculations on U-Mo Dispersion fuel plates with MAIA

    International Nuclear Information System (INIS)

    Marelle, V.; Huet, F.; Lemoine, P.

    2005-01-01

    CEA has developed a 2D thermo-mechanical code, called MAIA, for modelling the behaviour of U-Mo dispersion fuel. MAIA uses a finite element method for the resolution of the thermal and mechanical problems. Physical models, issued of the DOE-ANL code PLATE, evaluate the fission products swelling and the volume fraction of the interaction between U-Mo and Al. They allow establishing strains in the meat imposed as loading for the mechanical calculation. MAIA has been validated on the irradiations IRIS 1 and RERTR-3 and a rather good agreement is obtained with post irradiation examinations. MAIA is used to calculate the last irradiation of the French UMo group, IRIS 2. MAIA predicts a maximum temperature of 112 deg. C and meat swelling of 16%. Mechanical calculations are finally performed to evaluate the sensitivity to some mechanical hypotheses such as constitutive laws and the way the meat swelling is applied. (author)

  4. Review of specific effects in atmospheric dispersion calculations

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Cooper, P.J.; Holloway, N.J.; Kaiser, G.D.; Nixon, W.

    1985-01-01

    This work consists of a series of ten individual review Chapters - written between 1980 and 1983 - together with a summary document linking and overviewing the work. The topics covered are as follows: 'Plume Rise in Nuclear Safety Studies'; 'Dry Deposition'; 'Wet Deposition'; 'Atmospheric Dispersion in Urban Environments'; 'Topographical Effects in Nuclear Safety Studies'; 'Coastal Effects and Transport over Water'; 'Time-Varying Meteorology in Consequence Assessment'; 'Building Effects in Nuclear Safety Studies'; 'Effect of Turning of the Wind with Height on Lateral Dispersion'. Although the reviews are, on the whole, general in approach, emphasis has been given where appropriate to the impact of various phenomena on th assessment of reactor accident consequences. In general the work focusses on the 0-100 km range of distance downwind of the source. The reviews fulfil several functions: they serve as introductions to the subject areas; they outline theoretical and experimental developments; they act as reference documents providing a copious source of references for more detailed investigation of particular points; they raise unresolved technical issues and attempt to indicate principal uncertainties; they point to areas requiring further development. (author)

  5. The Dispersion of Employees' Wage Increase and Firm Performance

    DEFF Research Database (Denmark)

    Grund, Christian; Westergård-Nielsen, Niels Chr.

    2008-01-01

    than the dispersion of wage levels. It is reasonable to expect greater dispersion of wage increases to be associated with higher monetary incentives, but also with increased perceptions of unfairness. The authors' analysis of linked employer-employee data from Denmark for the years 1992-97 shows......Previous studies examining intra-firm wage dispersion and firm performance have focused on wage levels. The authors of this study argue that for purposes of comparing wage dispersion's positive incentive effects with its adverse morale effects, the dispersion of wage increases is more revealing...

  6. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  7. Calculations of the mean regional dispersion of a radioactive gas emitted from a continuous source

    International Nuclear Information System (INIS)

    Persson, C.

    1974-10-01

    The mean dispersion of a radioactive gas over distances of the order of 1000 kilometers is estimated with the aid of a statistical treatment of computed geostrophic trajectories and simplified vertical diffusion calculations based on the eddy diffusivity theory. (author)

  8. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    This paper reported on dispersion effect and dispersing techniques of nanometer WS2 particles in the green lubricant concocted by us. And it also researched on auto-reconditioning performance of nanometer WS2 particles to the abrasive surfaces of steel ball from four-ball tribology test and piston ring from engine ...

  9. Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations

    Science.gov (United States)

    Fischer, Michael; Angel, Ross J.

    2017-05-01

    Density-functional theory (DFT) calculations incorporating a pairwise dispersion correction were employed to optimize the structures of various neutral-framework compounds with zeolite topologies. The calculations used the PBE functional for solids (PBEsol) in combination with two different dispersion correction schemes, the D2 correction devised by Grimme and the TS correction of Tkatchenko and Scheffler. In the first part of the study, a benchmarking of the DFT-optimized structures against experimental crystal structure data was carried out, considering a total of 14 structures (8 all-silica zeolites, 4 aluminophosphate zeotypes, and 2 dense phases). Both PBEsol-D2 and PBEsol-TS showed an excellent performance, improving significantly over the best-performing approach identified in a previous study (PBE-TS). The temperature dependence of lattice parameters and bond lengths was assessed for those zeotypes where the available experimental data permitted such an analysis. In most instances, the agreement between DFT and experiment improved when the experimental data were corrected for the effects of thermal motion and when low-temperature structure data rather than room-temperature structure data were used as a reference. In the second part, a benchmarking against experimental enthalpies of transition (with respect to α-quartz) was carried out for 16 all-silica zeolites. Excellent agreement was obtained with the PBEsol-D2 functional, with the overall error being in the same range as the experimental uncertainty. Altogether, PBEsol-D2 can be recommended as a computationally efficient DFT approach that simultaneously delivers accurate structures and energetics of neutral-framework zeotypes.

  10. Integral method for the calculation of Hawking radiation in dispersive media. I. Symmetric asymptotics

    Science.gov (United States)

    Robertson, Scott; Leonhardt, Ulf

    2014-11-01

    Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω2(k ) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.

  11. Channel Capacity Calculation at Large SNR and Small Dispersion within Path-Integral Approach

    Science.gov (United States)

    Reznichenko, A. V.; Terekhov, I. S.

    2018-04-01

    We consider the optical fiber channel modelled by the nonlinear Shrödinger equation with additive white Gaussian noise. Using Feynman path-integral approach for the model with small dispersion we find the first nonzero corrections to the conditional probability density function and the channel capacity estimations at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity in small dimensionless dispersion parameter is quadratic and positive therefore increasing the earlier calculated capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region. Also for small dispersion case we find the analytical expressions for simple correlators of the output signals in our noisy channel.

  12. The Dispersion of Employees' Wage Increases and Firm Performance

    DEFF Research Database (Denmark)

    Grund, Christian; Westergård-Nielsen, Niels Chr.

    does not induce any monetary incentives. Evidence from unique Danish linked employer employee data shows that large dispersion of wage growth within firms is generally connected with low firm performance. The results are mainly driven by white collar rather than blue collar workers.......In this contribution, we examine the interrelation between intra-firm wage increases and firm performance. Previous studies have focused on the dispersion of wages in order to examine for the empirical dominance of positive monetary incentives effects compared to adverse effects due to fairness...... considerations. We argue that the dispersion of wage increases rather than wage levels is a crucial measure for monetary incentives in firms. The larger the dispersion of wage increases the higher the amount of monetary incentives in firms. In contrast, huge wage inequality without any promotion possibilities...

  13. Calculation of the dispersion-dipole coefficients for interactions between H, He, and H2

    International Nuclear Information System (INIS)

    Bishop, D.M.; Pipin, J.

    1993-01-01

    Collisions between atoms and molecules create an induced dipole moment which, at long range separations, stems, in part, from the van der Waals interactions between the colliding species. This contribution is known as the dispersion dipole moment and is of the order R -7 , where R is the separation between particles. Although there have been several approximate calculations of the dispersion-dipole coefficients which govern this contribution, and are the counterparts to the van der Waals dispersion-energy coefficients, there have been few ab initio calculations. In this article we present highly accurate results, based on explicitly electron-correlated wave functions, for the dispersion-dipole coefficients pertaining to interactions between pairs chosen from H, He, and H 2 . We also obtain values with some of the currently used approximate formulas. A comparison shows that these values differ, in general, by a significant amount (∼20--∼40 %) from the accurate ones. We also tabulate values of the dipole--dipole-quadrupole polarizability tensor (B) for imaginary frequency (iω) for a range of frequencies appropriate to a 64-point Gauss--Legendre quadrature for H, He, and H 2 . These values were used in certain numerical integrations we made to verify our original results which had been obtained by analytic integration---they may, however, be useful in other contexts. For H--H 2 and H 2 --H 2 , these are the only ab initio calculations of the dispersion-dipole coefficients of which we are aware

  14. Dispersion-corrected first-principles calculation of terahertz vibration, and evidence for weak hydrogen bond formation

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2013-03-01

    A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).

  15. Performance Evaluation of Metallic Dispersion Fuel for Advanced Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Man; Kim, Chang Kyu; Chae, Hee Taek; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, New York (United States)

    2007-07-01

    Uranium alloys with a high uranium density has been developed for high power research reactor fuel using low-enriched uranium (LEU). U-Mo alloys have been developed as candidate fuel material because of excellent irradiation behavior. Irradiation behavior of U-Mo/Al dispersion fuel has been investigated to develop high performance research reactor fuel as RERTR international research program. While plate-type and rod-type dispersion fuel elements are used for research reactors, HANARO uses rod-type dispersion fuel elements. PLATE code is developed by Argonne National Laboratory for the performance evaluation of plate-type dispersion fuel, but there is no counterpart for rod-type dispersion fuel. Especially, thermal conductivity of fuel meat decreases during the irradiation mainly because of interaction layer formation at the interface between the U-Mo fuel particle and Al matrix. The thermal conductivity of the interaction layer is not as high as the Al matrix. The growth of interaction layer is interactively affected by the temperature of fuel because it is associated with a diffusion reaction which is a thermally activated process. It is difficult to estimate the temperature profile during irradiation test due to the interdependency of fuel temperature and thermal conductivity changed by interaction layer growth. In this study, fuel performance of rod-type U-Mo/Al dispersion fuels during irradiation tests were estimated by considering the effect of interaction layer growth on the thermal conductivity of fuel meat.

  16. Performance Evaluation of Metallic Dispersion Fuel for Advanced Research Reactors

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Kim, Chang Kyu; Chae, Hee Taek; Song, Kee Chan; Kim, Yeon Soo

    2007-01-01

    Uranium alloys with a high uranium density has been developed for high power research reactor fuel using low-enriched uranium (LEU). U-Mo alloys have been developed as candidate fuel material because of excellent irradiation behavior. Irradiation behavior of U-Mo/Al dispersion fuel has been investigated to develop high performance research reactor fuel as RERTR international research program. While plate-type and rod-type dispersion fuel elements are used for research reactors, HANARO uses rod-type dispersion fuel elements. PLATE code is developed by Argonne National Laboratory for the performance evaluation of plate-type dispersion fuel, but there is no counterpart for rod-type dispersion fuel. Especially, thermal conductivity of fuel meat decreases during the irradiation mainly because of interaction layer formation at the interface between the U-Mo fuel particle and Al matrix. The thermal conductivity of the interaction layer is not as high as the Al matrix. The growth of interaction layer is interactively affected by the temperature of fuel because it is associated with a diffusion reaction which is a thermally activated process. It is difficult to estimate the temperature profile during irradiation test due to the interdependency of fuel temperature and thermal conductivity changed by interaction layer growth. In this study, fuel performance of rod-type U-Mo/Al dispersion fuels during irradiation tests were estimated by considering the effect of interaction layer growth on the thermal conductivity of fuel meat

  17. A Pearson VII distribution function for fast calculation of dechanneling and angular dispersion of beams

    International Nuclear Information System (INIS)

    Shao Lin; Peng Luohan

    2009-01-01

    Although multiple scattering theories have been well developed, numerical calculation is complicated and only tabulated values have been available, which has caused inconvenience in practical use. We have found that a Pearson VII distribution function can be used to fit Lugujjo and Mayer's probability curves in describing the dechanneling phenomenon in backscattering analysis, over a wide range of disorder levels. Differentiation of the obtained function gives another function to calculate angular dispersion of the beam in the frameworks by Sigmund and Winterbon. The present work provides an easy calculation of both dechanneling probability and angular dispersion for any arbitrary combination of beam and target having a reduced thickness ≥0.6, which can be implemented in modeling of channeling spectra. Furthermore, we used a Monte Carlo simulation program to calculate the deflection probability and compared them with previously tabulated data. A good agreement was reached.

  18. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  19. Technical manual for calculating cooling pond performance

    International Nuclear Information System (INIS)

    Krstulovich, S.F.

    1988-01-01

    This manual is produced in response to a growing number of requests for a technical aid to explain methods for simulating cooling pond performance. As such, it is a compilation of reports, charts and graphs developed through the years for use in analyzing situations. Section II contains a report summarizing the factors affecting cooling pond performance and lists statistical parameters used in developing performance simulations. Section III contains the graphs of simulated cooling pond performance on an hourly basis for various combinations of criteria (wind, solar, depth, air temperature and humidity) developed from the report in Section II. Section IV contains correspondence describing how to develop further data from the graphs in Section III, as well as mathematical models for the system of performance calculation. Section V contains the formulas used to simulate cooling pond performances in a cascade arrangement, such as the Fermilab Main Ring ponds. Section VI contains the calculations currently in use to evaluate the Main Ring pond performance based on current flows and Watts loadings. Section VII contains the overall site drawing of the Main Ring cooling ponds with thermal analysis and physical data

  20. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  1. Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics.

    Science.gov (United States)

    Robertson, Scott

    2014-11-01

    Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.

  2. Calculation of Longitudinal Dispersion Coefficient and Modeling the Pollution Transmission in Rivers (Case studies: Severn and Narew Rivers

    Directory of Open Access Journals (Sweden)

    A. Parsaie

    2017-01-01

    empirical formulas and artificial intelligent techniques have been proposed. In this study LDC is calculated for the Severn River and Narew River and some selected empirical formulas have been assessed to calculate the LDC. Dispersion Routing Method: As mentioned previously, calculating the LDC is more important, so firstly, the longitudinal dispersion was calculated from the concentration profile by Dispersion Routing Method (DRM. Using the DRM included the four stage.1-considering of initial value for LDC .2-calculating the concentration profile at the downstream station by using the upstream concentration profile and LDC.3- Performing a comparison between the calculated profile and measured profile.4- if the calculating profile is not a suitable cover, the measured profile of the process will be repeated until the calculated profile shows a good covering on the measured profile. Numerical Method: The ADE includes two different parts advection and dispersion. The pure advection term is related to transmission modeling without any dispersing and the dispersion term is related to the dispersion without any transmission. To discrete the ADE the finite volume method was used. According to physical properties of these two terms and the recommendation of researchers a suitable scheme should be considered for numerical solution of ADE terms. Among the finite volume schemes, the quickest scheme was selected to discrete the advection term, because of this scheme has suitable ability to model the pure advection term. The quickest scheme is an explicit scheme and the stability condition should be considered. To discrete the dispersion term, the central implicit scheme was selected. This scheme is unconditionally stable. Results and Discussion: The results of longitudinal dispersion coefficient for the Severn River and Narew River were calculated using the DRM method and empirical formulas. The results of LDC calculation showed that the minimum and maximum values for the Severn River

  3. Application of CFD dispersion calculation in risk based inspection for release of H2S

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Vinod, Gopika; Singh, R.K.; Rao, V.V.S.S.; Vaze, K.K.

    2011-01-01

    In atmospheric dispersion both deterministic and probabilistic approached have been used for addressing design and regulatory concerns. In context of deterministic calculations the amount of pollutants dispersion in the atmosphere is an important area wherein different approaches are followed in development of good analytical model. The analysis based on Computational Fluid Dynamics (CFD) codes offer an opportunity of model development based on first principles of physics and hence such models have an edge over the existing models. In context of probabilistic methods applying risk based inspection (wherein consequence of failure from each component needs to be assessed) are becoming popular. Consequence evaluation in a process plant is a crucial task. Often the number of components considered for life management will be too huge. Also consequence evaluation of all the components proved to be laborious task. The present paper is the results of joint collaborative work from deterministic and probabilistic modelling group working in the field of atmospheric dispersion. Even though API 581 has simplified qualitative approach, regulators find the some of the factors, in particular, quantity factor, not suitable for process plants. Often dispersion calculations for heavy gas are done with very simple model which can not take care of density based atmospheric dispersion. This necessitates a new approach with a CFD based technical basis is proposed, so that the range of quantity considered along with factors used can be justified. The present paper is aimed at bringing out some of the distinct merits and demerits of the CFD based models. A brief account of the applications of such CFD codes reported in literature is also presented in the paper. This paper describes the approach devised and demonstrated for the said issue with emphasis of CFD calculations. (author)

  4. Calculation of phonon dispersion in carbon nanotubes using a continuum-atomistic finite element approach

    Directory of Open Access Journals (Sweden)

    Michael J. Leamy

    2011-12-01

    Full Text Available Dispersion calculations are presented for cylindrical carbon nanotubes using a manifold-based continuum-atomistic finite element formulation combined with Bloch analysis. The formulated finite elements allow any (n,m chiral nanotube, or mixed tubes formed by periodically-repeating heterojunctions, to be examined quickly and accurately using only three input parameters (radius, chiral angle, and unit cell length and a trivial structured mesh, thus avoiding the tedious geometry generation and energy minimization tasks associated with ab initio and lattice dynamics-based techniques. A critical assessment of the technique is pursued to determine the validity range of the resulting dispersion calculations, and to identify any dispersion anomalies. Two small anomalies in the dispersion curves are documented, which can be easily identified and therefore rectified. They include difficulty in achieving a zero energy point for the acoustic twisting phonon, and a branch veering in nanotubes with nonzero chiral angle. The twisting mode quickly restores its correct group velocity as wavenumber increases, while the branch veering is associated with a rapid exchange of eigenvectors at the veering point, which also lessens its impact. By taking into account the two noted anomalies, accurate predictions of acoustic and low-frequency optical branches can be achieved out to the midpoint of the first Brillouin zone.

  5. Some results of a numerical calculation of plasma dispersion curves including collisions; Quelques resultats de calcul de courbes de dispersion avec collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lepechinsky, D; Parlange, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Dispersion curves including the effect of collisions have been calculated with a 7090 IBM computer for several types of laboratory hydrogen plasmas; Te = Ti = 1 eV; Te = 1 eV, Ti = 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti 10 eV, with neutral gas pressures of 10{sup -1}, 10{sup -3} and 10{sup -4} mmHg and electron densities of 10{sup 10}, 10{sup 13} and eventually 10{sup 15} el/cc. The corresponding collision frequencies with neutrals and between electrons and ions have been derived using appropriate relationships The dispersion equations used correspond to the macroscopic treatment. The real and imaginary parts of the wave number K are presented as a function of real values of the frequency {omega}, for electrostatic and electromagnetic waves and for e.m. waves propagating parallel to a permanent magnetic field of 500 gauss and 12.5 Kgauss. (authors) [French] Des courbes de dispersion tenant compte de l'effet des collisions ont ete calculees a l'aide d'un ordinateur IBM 7090 pour differents types de plasmas d'hydrogene se presentant au laboratoire; les temperatures electroniques et ioniques envisagees ont ete les suivantes: Te = Ti = 1 Ev; Te = 1 eV, Ti 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti = 10 eV; les pressions de neutres - de 10{sup -1}, 10{sup -3} et 10{sup -4} mmHg; les densites electroniques - de 10{sup 10}, 10{sup 13} et eventuellement de 10{sup 15} el/cc. Les frequences de collision avec les neutres et entre electrons et ions ont ete evaluees en fonction de ces donnees. Les equations, de dispersion utilisees correspondant au traitement macroscopique. On presente les valeurs des parties reelle et imaginaire du nombre d'ondes K en fonction de valeurs reelles de la frequence {omega} pour les ondes electrostatiques et electromagnetiques et pour les ondes e.m. se propageant parallelement a un champ magnetique permanent de 500 gauss et de 12,5 kgauss. (auteurs)

  6. Calculation of the Green functions by the coupling constant dispersion relations

    International Nuclear Information System (INIS)

    Bogomalny, E.B.

    1977-01-01

    The discontinuities of the Green functions on the cut in the complex plane of the coupling constant are calculated by the steepest descent method. The saddle points are given by the solutions of the classical field equations at those values of the coupling constant for which the classical theory has no ground state. The Green functions at the physical values of the coupling constant are determined by dispersion relations. (Auth.)

  7. Application of the annular dispersed flow model to two-phase critical flow calculation

    International Nuclear Information System (INIS)

    Ivandaev, A.I.; Nigmatulin, B.I.

    1977-01-01

    The application of the annular dispersed flow model with an effective monodisperse core to the calculation of vapour-liquid mixture maximum rates through long pipes is discussed. An effect of the main dominant parameters such as evaporation intensity, diameter of drops picked out from the film surface and initial drop diameter at the pipe inlet on the outlet critical condition formation process has been investigated. The corresponding model constants have been determined. The calculated and experimental values of critical rates and pressure profiles along the channel have been found to be in a satisfactory agreement in the studied range of parameters. The observed non-conformity of the calculated and experimental values of critical pressures and vapour contents can be due to inadequate accuracy of the experimental techniques

  8. Radiological impact from spanish coal power plants.2.- Dispersion model for deconcentration calculations

    International Nuclear Information System (INIS)

    Alvarez, M.C.; Garzon, L.

    1990-01-01

    In this paper a practical dispersion model is presented, which permits to calculate, in Spain, the concentration of natural radionuclides released to the atmosphere from coal power plants. To apply the model it is necessary to know the following data: emission rates, dry deposition velocity, scavenging coefficient, mixing layer height, together with climatological frequency data relating to wind speed and wind direction (to determinate trajectories from a given source) in the areas examined. Meteorological data can be obtained from meteorological stations across Spain. (Author)

  9. A model for the calculation of dispersion, advection and deposition of polluants in the atmosphere

    International Nuclear Information System (INIS)

    Doron, E.

    1981-08-01

    A numerical model for the prediction of atmospheric pollutants concentrations as a function of time and location is described. The model includes effects of dispersion, advection and deposition of the pollutant. Topographic influences are included through the introduction of a terrain following vertical coordinate. The wind field, needed for the calculation of the advection, is obtained from a time series of objective analysis of actual wind measurements. A unique feature of the model is the use of the logarithm of the concentration as the predicted variable. For a concentration distribution close to Gaussian, the distribution of this variable is close to parabolic. Thus, a polynomial of low order can be fitted to the distribution and then used for the calculation of derivatives of the advection and diffusion terms with great accuracy. The fitting method used was the cubic splines method. Initial experiments with the method included tests of the interpolation methods, which were found to be very accurate, and a few dispersion and advection experiments designed for an initial check of the influence of vertical wind shear, topography and changes of wind speed and direction with time. The results of these experiments show that the model has a marked advantage over the Gaussian model but its use requires more advanced computing facilities. (author)

  10. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  11. Atmospheric Dispersion Models for the Calculation of Environmental Impact: A Comparative Study

    International Nuclear Information System (INIS)

    Caputo, Marcelo; Gimenez, Marcelo; Felicelli, Sergio; Schlamp, Miguel

    2000-01-01

    In this paper some new comparisons are presented between the codes AERMOD, HPDM and HYSPLIT.The first two are Gaussian stationary plume codes and they were developed to calculate environmental impact produced by chemical contaminants.HYSPLIT is a hybrid code because it uses a Lagrangian reference system to describe the transport of a puff center of mass and uses an Eulerian system to describe the dispersion within the puff.The meteorological and topographic data used in the present work were obtained from runs of the prognostic code RAMS, provided by NOAA. The emission was fixed in 0.3 g/s , 284 K and 0 m/s .The surface rough was fixed in 0.1m and flat terrain was considered.In order to analyze separate effects and to go deeper in the comparison, the meteorological data was split into two, depending on the atmospheric stability class (F to B), and the wind direction was fixed to neglect its contribution to the contaminant dispersion.The main contribution of this work is to provide recommendations about the validity range of each code depending on the model used.In the case of Gaussian models the validity range is fixed by the distance in which the atmospheric condition can be consider homogeneous.In the other hand the validity range of HYSPLIT's model is determined by the spatial extension of the meteorological data.The results obtained with the three codes are comparable if the emission is in equilibrium with the environment.This means that the gases were emitted at the same temperature of the medium with zero velocity.There was an important difference between the dispersion parameters used by the Gaussian codes

  12. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode

    Directory of Open Access Journals (Sweden)

    P. Seibert

    2004-01-01

    Full Text Available The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.. The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.

  13. Fuel Performance Modeling of U-Mo Dispersion Fuel: The thermal conductivity of the interaction layers of the irradiated U-Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mistarhi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    U-Mo/Al dispersion fuel performed well at a low burn-up. However, higher burn-up and higher fission rate irradiation testing showed enhanced fuel meat swelling which was caused by high interaction layer growth and pore formation. The performance of the dispersion type fuel in the irradiation and un-irradiation environment is very important. During the fabrication of the dispersion type fuel an Interaction Layer (IL) is formed due to the inter-diffusion between the U-Mo fuel particles and the Al matrix which is an intermetallic compound (U,Mo)Alx. During irradiation, the IL becomes amorphous causing a further decrease in the thermal conductivity and an increase in the centerline temperature of the fuel meat. Several analytical models and numerical methods were developed to study the performance of the unirradiated U-Mo/Al dispersion fuel. Two analytical models were developed to study the performance of the irradiated U-Mo/Al dispersion fuel. In these models, the thermal conductivity of the IL was assumed to be constant. The properties of the irradiated U-Mo dispersion fuel have been investigated recently by Huber et al. The objective of this study is to develop a correlation for IL thermal conductivity during irradiation as a function of the temperature and fission density from the experimentally measured thermal conductivity of the irradiated U-Mo/Al dispersion fuel. The thermal conductivity of IL during irradiation was calculated from the experimentally measured data and a correlation was developed from the thermal conductivity of IL as a function of T and fission density.

  14. Implementation of a model of atmospheric dispersion and dose calculation in the release of radioactive effluents in the Nuclear Centre

    International Nuclear Information System (INIS)

    Cruz L, C. A.

    2015-01-01

    In the present thesis, the software DERA (Dispersion of Radioactive Effluents into the Atmosphere) was developed in order to calculate the equivalent dose, external and internal, associated with the release of radioactive effluents into the atmosphere from a nuclear facility. The software describes such emissions in normal operation, and not considering the exceptional situations such as accidents. Several tools were integrated for describing the dispersion of radioactive effluents using site meteorological information (average speed and wind direction and the stability profile). Starting with the calculation of the concentration of the effluent as a function of position, DERA estimates equivalent doses using a set of EPA s and ICRP s coefficients. The software contains a module that integrates a database with these coefficients for a set of 825 different radioisotopes and uses the Gaussian method to calculate the effluents dispersion. This work analyzes how adequate is the Gaussian model to describe emissions type -puff-. Chapter 4 concludes, on the basis of a comparison of the recommended correlations of emissions type -puff-, that under certain conditions (in particular with intermittent emissions) it is possible to perform an adequate description using the Gaussian model. The dispersion coefficients (σ y and σ z ), that using the Gaussian model, were obtained from different correlations given in the literature. Also in Chapter 5 is presented the construction of a particular correlation using Lagrange polynomials, which takes information from the Pasquill-Gifford-Turner curves (PGT). This work also contains a state of the art about the coefficients that relate the concentration with the equivalent dose. This topic is discussed in Chapter 6, including a brief description of the biological-compartmental models developed by the ICRP. The software s development was performed using the programming language Python 2.7, for the Windows operating system (the XP

  15. Progress in irradiation performance of experimental uranium - Molybdenum dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.

    2002-01-01

    High-density dispersion fuel experiment, RERTR-4, was removed from the Advanced Test Reactor (ATR) after reaching a peak U-235 burnup of ∼80% and is presently undergoing postirradiation examination at the ANL alpha-gamma hot cells. This test consists of 32 mini fuel plates of which 27 were fabricated with nominally 6 and 8 g cm -3 atomized and machined uranium alloy powders containing 7 wt% and 10 wt% molybdenum. In addition, two miniplates containing solid U-10 wt% Mo foils and three containing 6 g cm -3 U 3 Si 2 are part of the test. The results of the postirradiation examination and analysis of RERTR-4 in conjunction with data from previous tests performed to lower burnup will be presented. (author)

  16. Models for Automated Tube Performance Calculations

    International Nuclear Information System (INIS)

    Brunkhorst, C.

    2002-01-01

    High power radio-frequency systems, as typically used in fusion research devices, utilize vacuum tubes. Evaluation of vacuum tube performance involves data taken from tube operating curves. The acquisition of data from such graphical sources is a tedious process. A simple modeling method is presented that will provide values of tube currents for a given set of element voltages. These models may be used as subroutines in iterative solutions of amplifier operating conditions for a specific loading impedance

  17. Comparison of Dorris-Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography.

    Science.gov (United States)

    Shi, Baoli; Wang, Yue; Jia, Lina

    2011-02-11

    Inverse gas chromatography (IGC) is an important technique for the characterization of surface properties of solid materials. A standard method of surface characterization is that the surface dispersive free energy of the solid stationary phase is firstly determined by using a series of linear alkane liquids as molecular probes, and then the acid-base parameters are calculated from the dispersive parameters. However, for the calculation of surface dispersive free energy, generally, two different methods are used, which are Dorris-Gray method and Schultz method. In this paper, the results calculated from Dorris-Gray method and Schultz method are compared through calculating their ratio with their basic equations and parameters. It can be concluded that the dispersive parameters calculated with Dorris-Gray method will always be larger than the data calculated with Schultz method. When the measuring temperature increases, the ratio increases large. Compared with the parameters in solvents handbook, it seems that the traditional surface free energy parameters of n-alkanes listed in the papers using Schultz method are not enough accurate, which can be proved with a published IGC experimental result. © 2010 Elsevier B.V. All rights reserved.

  18. ERUPTION TO DOSE: COUPLING A TEPHRA DISPERSAL MODEL WITHIN A PERFORMANCE ASSESSMENT FRAMEWORK

    International Nuclear Information System (INIS)

    G. N. Keating, J. Pelletier

    2005-01-01

    The tephra dispersal model used by the Yucca Mountain Project (YMP) to evaluate the potential consequences of a volcanic eruption through the waste repository must incorporate simplifications in order to function within a large Monte-Carlo style performance assessment framework. That is, the explicit physics of the conduit, vent, and eruption column processes are abstracted to a 2-D, steady-state advection-dispersion model (ASHPLUME) that can be run quickly over thousands of realizations of the overall system model. Given the continuous development of tephra dispersal modeling techniques in the last few years, we evaluated the adequacy of this simplified model for its intended purpose within the YMP total system performance assessment (TSPA) model. We evaluated uncertainties inherent in model simplifications including (1) instantaneous, steady-state vs. unsteady eruption, which affects column height, (2) constant wind conditions, and (3) power-law distribution of the tephra blanket; comparisons were made to other models and published ash distributions. Spatial statistics are useful for evaluating differences in these model output vs. results using more complex wind, column height, and tephra deposition patterns. However, in order to assess the adequacy of the model for its intended use in TSPA, we evaluated the propagation of these uncertainties through FAR, the YMP ash redistribution model, which utilizes ASHPLUME tephra deposition results to calculate the concentration of nuclear waste-contaminated tephra at a dose-receptor population as a result of sedimentary transport and mixing processes on the landscape. Questions we sought to answer include: (1) what conditions of unsteadiness, wind variability, or departure from simplified tephra distribution result in significant effects on waste concentration (related to dose calculated for the receptor population)? (2) What criteria can be established for the adequacy of a tephra dispersal model within the TSPA

  19. Calculation of particulate dispersion in a design-basis tornadic storm from Westinghouse PFDL, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1978-07-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Westinghouse Plutonium Fuel Development Laboratory (PFDL) at Cheswick, Pennsylvania. Plutonium particles less than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 20-45 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm

  20. Quantifying environmental performance using an environmental footprint calculator

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B.; Loney, A.C.; Chan, V. [Conestoga-Rovers & Associates, Waterloo, Ontario (Canada)

    2009-07-01

    This paper provides a case study using relevant key performance indicators (KPIs) to evaluate the environmental performance of a business. Using recognized calculation and reporting frameworks, Conestoga-Rovers & Associates (CRA) designed the Environmental Footprint Calculator to quantify the environmental performance of a Canadian construction materials company. CRA designed the Environmental Footprint calculator for our client to track and report their environmental performance in accordance with their targets, based on requirements of relevant guidance documents. The objective was to design a tool that effectively manages, calculates, and reports environmental performance to various stakeholders in a user-friendly format. (author)

  1. Quantifying environmental performance using an environmental footprint calculator

    International Nuclear Information System (INIS)

    Smith, D.B.; Loney, A.C.; Chan, V.

    2009-01-01

    This paper provides a case study using relevant key performance indicators (KPIs) to evaluate the environmental performance of a business. Using recognized calculation and reporting frameworks, Conestoga-Rovers & Associates (CRA) designed the Environmental Footprint Calculator to quantify the environmental performance of a Canadian construction materials company. CRA designed the Environmental Footprint calculator for our client to track and report their environmental performance in accordance with their targets, based on requirements of relevant guidance documents. The objective was to design a tool that effectively manages, calculates, and reports environmental performance to various stakeholders in a user-friendly format. (author)

  2. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope

    Science.gov (United States)

    Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng

    2018-01-01

    Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.

  3. Dispersion calculation method based on S-transform and coordinate rotation for Love channel waves with two components

    Science.gov (United States)

    Feng, Lei; Zhang, Yugui

    2017-08-01

    Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time-frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.

  4. System performance of new types of dispersion compensating fibres

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Tokle, Torger; Knudsen, Stig Nissen

    2001-01-01

    Summary form only given. The management of dispersion and non-linearities is of prime importance in WDM systems. Dispersion compensating fibres (DCF) are extremely attractive when used in conjunction with standard single mode fibres (SMF). New types of DCFs compensating for the dispersion of SMF...... in a 1:1 length ratio have been recently presented and intermediate types of DCF (compensating for SMF in a 1:2 or 1:3 length ratio) have also been designed and fabricated. The properties of the various types of available DCFs with dispersion of -17, -40, -54 and -100 ps/(nm.km), corresponding to SMF......-linear coefficient are significantly reduced. As all these new fibres are designed to be cabled (therefore the DCF is part of the span length), and as it has also been shown that conventional DCF can be cabled successfully, their use in real systems needs to be compared...

  5. The impact of oil dispersant solvent on performance

    International Nuclear Information System (INIS)

    Fiocco, R.J.; Lessard, R.R.; Canevari, G.P.; Becker, K.W.; Daling, P.S.

    1995-01-01

    Modern oil spill dispersant formulations are concentrated blends of surface active agents (surfactants) in a solvent carrier system. The surfactants are effective for lowering the interfacial tension of the oil slick and promoting and stabilizing oil-in-water dispersions. The solvent system has 2 key functions: (1) reduce viscosity of the surfactant blend to allow efficient dispersant application, and (2) promote mixing and diffusion of the surfactant blend into the oil film. A more detailed description than previously given in the literature is proposed to explain the mechanism of chemical dispersion and illustrate how the surfactant is delivered by the solvent to the oil-water interface. Laboratory data are presented which demonstrate the variability in dispersing effectiveness due to different solvent composition, particularly for viscous and emulsified test oils with viscosities up to 20,500 mPa·s. Other advantages of improved solvent components can include reduced evaporative losses during spraying, lower marine toxicity and reduced protective equipment requirements. Through this improved understanding of the role of the solvent, dispersants which are more effective over a wider range of oil types are being developed

  6. Intraindividual variability across cognitive domains: investigation of dispersion levels and performance profiles in older adults.

    Science.gov (United States)

    Hilborn, Jennifer V; Strauss, Esther; Hultsch, David F; Hunter, Michael A

    2009-05-01

    A growing body of research suggests that substantial variability exists among cognitive abilities within individuals. This within-person variability across cognitive domains is termed dispersion. The present study investigated the relationship between aging and dispersion of cognitive functions both quantitatively (overall levels of dispersion) and qualitatively (patterns of dispersion) in a sample of 304 nondemented, older adults aged 64 to 92 years (M = 74.02). Quantitatively, higher levels of dispersion were observed in the old-old adults (aged 75-92 years) and those identified as having experienced cognitive decline, suggesting that dispersion level may serve as a marker of cognitive integrity. Qualitatively, three distinct dispersion profiles were identified through clustering methods, and these were found to be related to demographic, health, and performance characteristics of the individuals, suggesting that patterns of dispersion may be meaningful indicators of individual differences.

  7. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....

  8. Calculation of driling and blasting parameters in blasting performance

    OpenAIRE

    Dambov, Risto; Karanakova Stefanovska, Radmila; Dambov, Ilija

    2015-01-01

    In all mining technology drilling and blasting parameters and works are one of the main production processes at each mine. The parameters of drilling and blasting and explosives consumption per ton of blasting mass are define economic indicators of any blasting no matter for what purpose and where mining is performed. The calculation of rock blasting should always have in mind that the methodology of calculation of all drilling and blasting parameters in blasting performance are performed for...

  9. Chemical oil-spill dispersants: evaluation of three laboratory procedures for estimating performance

    International Nuclear Information System (INIS)

    Clayton, J.R.; Marsden, P.

    1992-09-01

    The report presents data from studies designed to evaluate characteristics of selected bench-scale test methods for estimating performance of chemical agents for dispersing oil from surface slicks into an underlying water column. In order to mitigate the effect of surface slicks with chemical dispersant agents, however, an on-scene coordinator must have information and an understanding of performance characteristics for available dispersant agents. Performance of candidate dispersant agents can be estimated on the basis of laboratory testing procedures that are designed to evaluate performance of different agents. Data presented in the report assist in the evaluation of candidate test methods for estimating performance of candidate dispersant agents. Three test methods were selected for evaluating performance: the currently accepted Revised Standard EPA test, Environmental Canada's Swirling Flask test, and the IFP-Dilution test

  10. Guidelines for calculation of atmospheric dispersion and radiological consequences of design basis reactor accidents - Severe accident calculation guidelines, EPR

    International Nuclear Information System (INIS)

    Martens, R.; Schmitz, B.M.; Horn, M.

    1999-01-01

    The activities carried out within the (reduced) project period (1. Sept. until 31. Dec. 1998) for coordinated harmonization between France and Germany, of guidelines for calculation of the radiological consequences of a severe reactor accident, are summarized. (orig./CB) [de

  11. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    International Nuclear Information System (INIS)

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  12. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides

    Science.gov (United States)

    Hakoda, Christopher; Rose, Joseph; Shokouhi, Parisa; Lissenden, Clifford

    2018-04-01

    Dispersion curves are essential to any guided-wave-related project. The Semi-Analytical Finite Element (SAFE) method has become the conventional way to compute dispersion curves for homogeneous waveguides. However, only recently has a general SAFE formulation for commercial and open-source software become available, meaning that until now SAFE analyses have been variable and more time consuming than desirable. Likewise, the Floquet boundary conditions enable analysis of waveguides with periodicity and have been an integral part of the development of metamaterials. In fact, we have found the use of Floquet boundary conditions to be an extremely powerful tool for homogeneous waveguides, too. The nuances of using periodic boundary conditions for homogeneous waveguides that do not exhibit periodicity are discussed. Comparisons between this method and SAFE are made for selected homogeneous waveguide applications. The COMSOL Multiphysics software is used for the results shown, but any standard finite element software that can implement Floquet periodicity (user-defined or built-in) should suffice. Finally, we identify a number of complex waveguides for which dispersion curves can be found with relative ease by using the periodicity inherent to the Floquet boundary conditions.

  13. Harmonization of French and German calculation procedures for atmospheric dispersion following accidental releases from nuclear power plants

    International Nuclear Information System (INIS)

    Crabol, B.; Romeo, E.; Nester, K.

    1992-01-01

    In case of an accident in a nuclear power plant near the French-German border different schemes for dispersion calculations in both countries will currently be applied. An intercomparison of these schemes initiated from the German-French Commission for the safety of nuclear installations (DFK) revealed in some meteorological situations large differences in the resulting concentrations for radionuclides. An ad hoc working group was installed by the DFK with the mandate to analyse the reasons for the different model results and also to consider new theoretical concepts. The working group has agreed to apply a Gaussian puff model for emergency response calculations. The results of the model based on turbulence parameterization via similarity approach or spectral theory - have been compared with tracer experiments for different emission heights and atmospheric stability regimes. As a reference the old modelling approaches have been included in the study. The simulations with the similarity approach and the spectral theory show a slightly better agreement to the measured concentration data than the schemes used in the past. Instead of diffusion categories both new approaches allow a continuous characterization of the atmospheric dispersion conditions. Because the spectral approach incorporates the sampling time of the meteorological data as an adjustable parameter thereby offering the possibility to adjust the dispersion model to different emission scenarios this turbulence parameterization scheme will be foreseen as the basis for a joint French-German puff model

  14. Comparison of numerical models for calculating dispersion from accidental releases of pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W [Savannah River Lab., Aiken, SC; Cooper, R E; Baker, A J

    1982-01-01

    A modular, data-based system approach has been developed to facilitate computational simulation of multi-dimensional pollutant dispersion in atmospheric, steam, estuary, and groundwater applications. This system is used to assess effects of accidental releases of pollutants to the environment. Model sophistication ranges from simple statistical to complex three-dimensional numerical methods. The system used specifies desired degree of model sophistication from a terminal. The model used depends on the particular type of problem being solved, and on a basis of merit related to computer cost. The results of prediction for several model problems are presented.

  15. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2010-01-01

    The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect

  16. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  17. Performance evaluation of large U-Mo particle dispersed fuel irradiated in HANARO

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Man; Oh, Seok Jin; Jang, Se Jung; Yu, Byung Ok; Lee, Choong Seong; Seo, Chul Gyo; Chae, Hee Taek; Kim, Chang Kyu

    2008-01-01

    U-Mo/Al dispersion fuel is being developed as advanced fuel for research reactors. Irradiation behavior of U-Mo/Al dispersion fuel has been studied to evaluate its fuel performance. One of the performance limiting factors is a chemical interaction between the U-Mo particle and the Al matrix because the thermal conductivity of fuel meat is decreased with the interaction layer growth. In order to overcome the interaction problem, large-sized U-Mo particles were fabricated by controlling the centrifugal atomization conditions. The fuel performance behavior of U-Mo/Al dispersion fuel was estimated by using empirical models formulated based on the microstructural analyses of the post-irradiation examination (PIE) on U-Mo/Al dispersion fuel irradiated in HANARO reactor. Temperature histories of U-Mo/Al dispersion fuel during irradiation tests were estimated by considering the effect of an interaction layer growth on the thermal conductivity of the fuel meat. When the fuel performances of the dispersion fuel rods containing U-Mo particles with various sizes were compared, fuel temperature was decreased as the average U-Mo particle size was increases. It was found that the dispersion of a larger U-Mo particle was effective for mitigating the thermal degradation which is associated with an interaction layer growth. (author)

  18. On Phonons in Simple Metals II. Calculated Dispersion Curves In Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R [AB Atomenergi, Nykoeping (Sweden); Westin, A [Dept. of Theore tical Physics, Univ. of Uppsala, Uppsala (Sweden)

    1969-07-15

    The real part of the dynamical matrix, derived earlier in a weak local potential ion-electron interaction model of the metal, is investigated in the case of aluminium. It is shown that the free electron, or Lindhard, dielectric function leads to a picture of the metal which is inconsistent with the dHvA observations of the Fermi surface. By adjusting one parameter, however, the experimental phonon frequencies are reproduced satisfactorily. Even some simple structure in the derivative d{omega}/dq can be reproduced in this way. Although corrections to the Lindhard dielectric matrix give no essential contributions to the dynamical matrix, the first order corrections, which are the most important, can explain the observed Fermi surface. Much of the observed structure in the phonon dispersion curves seems also to be due to these non-diagonal terms in the dielectric matrix.

  19. Views on the calculation of flow and dispersion processes in fractured rock

    International Nuclear Information System (INIS)

    Joensson, Lennart

    1990-03-01

    In the report some basic aspects on model types, physical processes, determination of parameters are discussed in relation to a description of flow and dispersion processes in fractured rocks. As far as model types concern it is shown that Darcy's law and the dispersion equation are not especially applicable. These equations can only describe an average situation of flow and spreading while in reality very large deviations could exist between an average situation and the flow and concentration distribution for a certain fracture geometry. The reason for this is primarily the relation between the length scales for the repository and the near field and the fracture system respectively and the poor connectivity between fractures or expressed in another way - the geosphere can not be treated as a continuous medium. The statistical properties of the fractures and the fracture geometry cause large uncertainties in at least two respects: * boundary conditions as to groundwater flow at the repository and thus the mass flow of radioactive material * distribution of flows and concentrations in planes in the geosphere on different distances from the repository. A realistic evaluation of transport and spreading of radioactive material by the groundwater in the geosphere thus requires that the possible variation or uncertainty of the water conducting characteristics of the fracture system is considered. A possible approach is then to describe flow in the geosphere on the basic of the flow in single fractures which are hydraulically connected to each other so that a flow in a fracture system is obtained. The discussion on physical processes which might influence the flow description in single fractures is concentrated to three aspects - factors driving the flow besides the ordinary hydraulic gradient, the viscous properties of water in a very small space (such as a fracture), the influence on the flow of heat release from the repository. (42 figs., 28 refs.)

  20. Performance calculations on the ANFO explosive RX-HD

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P.C.; Larson, D.B.; Tarver, C.M.

    1994-12-31

    This report presents the calculation methods utilized in asessing the detonation performance of the ammonium nitrate-fuel oil (ANFO) utilized in the non-proliferation experiment (NPE) underground explosion at te Nevada Test Site. The composition of the ANFO is discussed.

  1. QT and JT dispersion and cardiac performance in children with neonatal Bartter syndrome: a pilot study.

    Science.gov (United States)

    Hacihamdioglu, Duygu Ovunc; Fidanci, Kursat; Kilic, Ayhan; Gok, Faysal; Topaloglu, Rezan

    2013-10-01

    QT dispersion and JT dispersion are simple noninvasive arrhythmogenic markers that can be used to assess the homogeneity of cardiac repolarization. The aim of this study was to assess QT and JT dispersion and their relation with left ventricular systolic and diastolic functions in children with Bartter syndrome (BS). Nine neonatal patients with BS (median age 9.7 years) and 20 controls (median age 8 years) were investigated at rest. Both study and control subjects underwent electrocardiography (ECG) in which the interval between two R waves and QT intervals, corrected QT, QT dispersion, corrected QT dispersion, JT, corrected JT, JT dispersion and corrected JT dispersion were measured with 12-lead ECG. Two-dimensional, Doppler echocardiographic examinations were performed. Patients and controls did not differ for gender and for serum levels of potassium, magnesium, and calcium (p > 0.05). Both study and control subjects had normal echocardiographic examination and baseline myocardial performance indexes. The QT dispersion and JT dispersion were significantly prolonged in patients with BS compared to those of the controls {37.5 ms [interquartile range (IQR) 32.5-40] vs. 25.5 ms (IQR 20-30), respectively, p = 0.014 and 37.5 ms (IQR 27.5-40) vs. 22.5 ms (IQR 20-30), respectively, p = 0.003}. Elevated QT and JT dispersion during asymptomatic and normokalemic periods may be risk factors for the development of cardiac complications and arrhythmias in children with BS. In these patients the need for systematic cardiac screening and management protocol is extremely important for effective prevention.

  2. Atmospheric dispersion calculation for posturated accident of nuclear facilities and the computer code: PANDA

    International Nuclear Information System (INIS)

    Kitahara, Yoshihisa; Kishimoto, Yoichiro; Narita, Osamu; Shinohara, Kunihiko

    1979-01-01

    Several Calculation methods for relative concentration (X/Q) and relative cloud-gamma dose (D/Q) of the radioactive materials released from nuclear facilities by posturated accident are presented. The procedure has been formulated as a Computer program PANDA and the usage is explained. (author)

  3. Coupled 3D neutronic and thermohydraulic calculations for a compact fuel element with disperse UMo fuel at FRM II

    International Nuclear Information System (INIS)

    Breitkreutz, H.; Roehrmoser, A.; Petry, W.

    2010-01-01

    The newly developed X 2 program system is intended to be used for high-detail 3D calculations on compact research reactor cores. Using this system, the efforts to calculate scenarios for a new fuel element for FRM II using disperse UMo (8wt% Mo, 50% enrichment) are continued. By now, a radial symmetric core model with averaged built-in components for the D 2 O tank is used. Two different scenarios are compared: The minimum fuel density of 7.5 g U/cm 3 and 8.0 g U/cm 3 with 60 days cycle length. In addition, two 'flux loss compensating' scenarios based on 8.0 g U/cm 3 with 10% higher power/longer reactor cycles are regarded. (author)

  4. Calculation of nucleon densities in calcium, nickel, and molybdenum isotopes on the basis of the dispersive optical model

    Science.gov (United States)

    Bespalova, O. V.; Klimochkina, A. A.

    2017-09-01

    The radial distributions of proton and neutron densities in the even-even isotopes 40-70Ca and 48-78Ni and the analogous distributions of neutron densities in the even-even isotopes 92-138Mo were calculated on the basis of the mean-fieldmodel involving a dispersive optical potential. The respective root-mean-square radii and neutron-skin thicknesses were determined for the nuclei under study. In N > 40 calcium isotopes, the calculated neutron root-mean-square radius exhibits a fast growth with increasing N, and this is consistent with the prediction of the neutron-halo structure in calcium isotopes near the neutron drip line.

  5. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  6. Cation-exchanged SAPO-34 for adsorption-based hydrocarbon separations: predictions from dispersion-corrected DFT calculations.

    Science.gov (United States)

    Fischer, Michael; Bell, Robert G

    2014-10-21

    The influence of the nature of the cation on the interaction of the silicoaluminophosphate SAPO-34 with small hydrocarbons (ethane, ethylene, acetylene, propane, propylene) is investigated using periodic density-functional theory calculations including a semi-empirical dispersion correction (DFT-D). Initial calculations are used to evaluate which of the guest-accessible cation sites in the chabazite-type structure is energetically preferred for a set of ten cations, which comprises four alkali metals (Li(+), Na(+), K(+), Rb(+)), three alkaline earth metals (Mg(2+), Ca(2+), Sr(2+)), and three transition metals (Cu(+), Ag(+), Fe(2+)). All eight cations that are likely to be found at the SII site (centre of a six-ring) are then included in the following investigation, which studies the interaction with the hydrocarbon guest molecules. In addition to the interaction energies, some trends and peculiarities regarding the adsorption geometries are analysed, and electron density difference plots obtained from the calculations are used to gain insights into the dominant interaction types. In addition to dispersion interactions, electrostatic and polarisation effects dominate for the main group cations, whereas significant orbital interactions are observed for unsaturated hydrocarbons interacting with transition metal (TM) cations. The differences between the interaction energies obtained for pairs of hydrocarbons of interest (such as ethylene-ethane and propylene-propane) deliver some qualitative insights: if this energy difference is large, it can be expected that the material will exhibit a high selectivity in the adsorption-based separation of alkene-alkane mixtures, which constitutes a problem of considerable industrial relevance. While the calculations show that TM-exchanged SAPO-34 materials are likely to exhibit a very high preference for alkenes over alkanes, the strong interaction may render an application in industrial processes impractical due to the large amount

  7. The influence of the dispersion corrections on the performance of DFT method in modeling HNgY noble gas molecules and their complexes

    Science.gov (United States)

    Cukras, Janusz; Sadlej, Joanna

    2018-01-01

    The letter reports a comparative assessment of the usefulness of the two different Grimme's corrections for evaluating dispersion interaction (DFT-D3 and DFT-D3BJ) for the representative molecules of the family of noble-gas hydrides HXeY and their complexes with the HZ molecules, where Y and Z are F/Cl/OH/SH. with special regard to the dispersion term calculated by means of the symmetry-adapted perturbation theory (at the SAPT0 level). The results indicate that despite differences in the total interactions energy (DFT + corrections) versus SAPT0 results, the sequence of contributions of the individual dispersion terms is still maintained. Both dispersion corrections perform similarly and they improve the results suggesting that it is worthwhile to include them in calculations.

  8. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  9. Reference moderator calculated performance for the LANSCE upgrade project

    International Nuclear Information System (INIS)

    Ferguson, P.D.; Russell, G.J.; Pitcher, E.J.

    1995-01-01

    The authors have calculated the performance of five moderators of interest to the LANSCE upgrade project. Coupled and decoupled light water and liquid hydrogen moderators in flux-trap geometry surrounded by a neutronically infinite heavy-water cooled beryllium reflector have been studied. Time and energy spectra, as well as semi-empirical fits to the data, are presented. The data has been made available to aid the instrument design and moderator selection process

  10. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Huadong Yang

    2014-01-01

    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  11. Volume Fraction Dependent Thermal Performance of UAlx-Al Dispersion Target

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Eui Hyun; Tahk, Young Wook; Kim, Hyun Jung; Oh, Jae Yong; Yim, Jeong Sik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Unlike U-Al alloys, properties of UAl{sub x}-Al dispersion target can be highly sensitive to volume fraction of UAlx in a target meat due to the interface resistance between target particles and matrix. The interface resistance effects on properties of the target meat including thermal conductivity, thermal expansion coefficient, specific heat, elastic modulus and so on. Thermal performances of a dispersion target meat were theoretically evaluated under normal operation condition of KJRR (Kijang Research Reactor) during short effective full power days (EFPD) of 7 days, based on reported measured thermal conductivities of UAl{sub x}-Al dispersion fuels. Effective thermal conductivity determines maximum temperature of dispersion target plate. And for that volume fraction of UAlx in target meat has to be determined considering manufacturing of target plate without degradation of physical and mechanical characteristics.

  12. Validation of a marine dispersion model for the calculation of doses to the European population

    International Nuclear Information System (INIS)

    Cabianca, T.; Bexon, A.P.

    1999-01-01

    The validation described in this paper focused on three radionuclides: Cs- 137 , Tc- 99 and Pu-2 39 . Historical discharges of these three radionuclides from the main European nuclear installations, Sellafield Cap de la Hague and Dounreay from the beginning of the operations up to 1995 were included in this study. Input into the North European water system as a result of fallout from nuclear weapons tests and the Chernobyl accident were also incorporated. Radionuclide concentrations predicted by the model in seawater, sediments and seafood up to 1995 were compared with measurements taken by different organisations in the waters of the European Continental Shelf and in the Arctic Ocean. Radionuclide concentrations calculated in various compartments were compared with average measurements taken in the same areas. The validation generally showed good agreement between the model predictions and the observations. Better results were obtained closer to the release point but no systematic over or under prediction by the model was found. A best fit analysis of the transfer rates was also carried out for all three radionuclides and the results of this exercise compared with the values currently used in the model

  13. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation.

    Science.gov (United States)

    Wang, Lichun; Cardenas, M Bayani

    2015-08-01

    The quantitative study of transport through fractured media has continued for many decades, but has often been constrained by observational and computational challenges. Here, we developed an efficient quasi-3D random walk particle tracking (RWPT) algorithm to simulate solute transport through natural fractures based on a 2D flow field generated from the modified local cubic law (MLCL). As a reference, we also modeled the actual breakthrough curves (BTCs) through direct simulations with the 3D advection-diffusion equation (ADE) and Navier-Stokes equations. The RWPT algorithm along with the MLCL accurately reproduced the actual BTCs calculated with the 3D ADE. The BTCs exhibited non-Fickian behavior, including early arrival and long tails. Using the spatial information of particle trajectories, we further analyzed the dynamic dispersion process through moment analysis. From this, asymptotic time scales were determined for solute dispersion to distinguish non-Fickian from Fickian regimes. This analysis illustrates the advantage and benefit of using an efficient combination of flow modeling and RWPT. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Radionuclide dispersion calculation in environmental radiation monitoring system of the PAKS NPP

    International Nuclear Information System (INIS)

    Deme, S.; Janosy, J. S.; Lang, E.; Szabo, I. C.

    2003-01-01

    The new Environmental Radiation Monitoring System of the Paks NPP in Hungary consists of three radiation release measurement posts (placed into the two ventilation stacks of the four units and into the ventilation stack of the spent fuel intermediate storage building), 9 radiation monitoring stations and 11 gamma-radiation measurement posts placed more or less evenly around the plant. The basic goal of the Environmental Radiation Monitoring System is to provide complex and reliable information about the releases in all operating modes to facilitate the adequate estimation of the situation and to promote the decision making. Thanks to the astonishing development in the digital technology and to the state-of-the-art, up-to-date measurement techniques, a new level of confidence can be reached. Unpredictable radioactive leakage of the containment can be detected and the radiological situation of a relatively large area can be calculated and predicted. A very reliable system can be constructed withstanding earthquake and protected against single failure. Based on reliable and detailed measurement data, advanced simulation methodology and well-designed graphical user interface, an easy-to-use operator advisory system can be created to help the decision making in the very first and most difficult period of a nuclear accident. It is very important that the same system is used with the same features during the normal operation of the nuclear power plant, too; this means that the operators are able to get the necessary 'hands-on' training in order to be able to use the system during extreme stress and very unusual situations, too. Shaping the system in close cooperation with plant engineers and operators is indispensable in order to achieve the aforementioned goals. (authors)

  15. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Paul R., E-mail: prhorn@berkeley.edu; Mao, Yuezhi; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720 (United States)

    2016-03-21

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na{sup +}, water-Cl{sup −}, and the naphthalene dimer.

  16. A method to test the performance of an energy-dispersive X-ray spectrometer (EDS).

    Science.gov (United States)

    Hodoroaba, Vasile-Dan; Procop, Mathias

    2014-10-01

    A test material for routine performance evaluation of energy-dispersive X-ray spectrometers (EDS) is presented. It consists of a synthetic, thick coating of C, Al, Mn, Cu, and Zr, in an elemental composition that provides interference-free characteristic X-ray lines of similar intensities at 10 kV scanning electron microscope voltage. The EDS energy resolution at the C-K, Mn-Lα, Cu-Lα, Al-K, Zr-Lα, and Mn-Kα lines, the calibration state of the energy scale, and the Mn-Lα/Mn-Kα intensity ratio as a measure for the low-energy detection efficiency are calculated by a dedicated software package from the 10 kV spectrum. Measurements at various input count rates and processor shaping times enable an estimation of the operation conditions for which the X-ray spectrum is not yet corrupted by pile-up events. Representative examples of EDS systems characterized with the test material and the related software are presented and discussed.

  17. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    International Nuclear Information System (INIS)

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; Buluc, Aydin; Shao, Meiyue

    2017-01-01

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using the compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.

  18. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  19. A system for real-time environmental assessment using an operational meteorological data base for dispersion calculations

    International Nuclear Information System (INIS)

    Appelgren, A.; Hallberg, B.; Nordlinder, S.; Salomonsson, S.

    1990-01-01

    A method for assessing the meteorological conditions on a local scale, about 20 km, around a specific site was developed, and applied to the area around the Forsmark nuclear power plant, situated on the coast about 100 km north of Stockholm. Meteorological data were collected, for an one-year period, from sensors in a tower and from a Sodar system at Forsmark. In addition, two Sodar systems were placed at several locations around the power plant, out to a distance of approximately 20 km. By statistical compiling, an operational data base was established, consisting of classes of wind speed, wind direction and atmospheric stability. The data from the remote sites were related to those from Forsmark. This gave the possibility to determine the variation of the meteorological conditions in time and space, using data from a single location only. The main objective of the Forsmark project was to identify and indicate situations in which the conditions for dispersion were difficult to model accurately when using measurements taken from a conventional tower, without knowledge of the influence of local mesoscale disturbances. Such could be e.g. sea breeze, large horizontal or vertical wind shear, terrain-induced flow patterns etc. The use of an operational data base, as described above, in connection with real-time dispersion models, such as AIRPAC/EMMA, will improve the performance of such models, as well as consequence analyses, in case of accidental releases from nuclear power plants or other industrial plants

  20. Methods and principles of pigment dispersing to maximize ink opacity and performance

    International Nuclear Information System (INIS)

    Schaeffer, W.R.

    1999-01-01

    Four classes of oligomers were evaluated for their pigment dispersing capabilities. These include and aliphatic urethanes, epoxy acrylates, polyesters and a novel class of acrylated resins. This will show that surface tension and chemical structure are major factors influencing pigment and final ink performance properties

  1. Physics methods for calculating light water reactor increased performances

    International Nuclear Information System (INIS)

    Vandenberg, C.; Charlier, A.

    1988-01-01

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained

  2. Preparation of highly dispersed palladium–phosphorus nanoparticles and its electrocatalytic performance for formic acid electrooxidation

    International Nuclear Information System (INIS)

    Sun Hanjun; Xu Jiangfeng; Fu Gengtao; Mao Xinbiao; Zhang, Lu; Chen Yu; Zhou Yiming; Lu Tianhong; Tang Yawen

    2012-01-01

    Highly dispersed and ultrafine palladium–phosphorus (Pd–P) nanoparticles (NPs) are prepared with a novel phosphorus reduction method. The structural and electronic properties of Pd–P NPs are characterized using Fourier transform infrared (FT-IR), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The electrooxidation of formic acid on Pd–P NPs are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The physical characterizations indicate the doped P element can enhance the content of Pd 0 species in Pd NPs, decrease the particle size and improve the dispersion of Pd–P NPs. The electrochemical measurements show the Pd–P NPs have a better catalytic performance for formic acid electrooxidation than Pd NPs.

  3. Calculation of particulate dispersion in a design-basis tornadic storm from the General Electric Vallecitos Nuclear Center, Vallecitos, California

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1979-11-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the General Electric Vallecitos Nuclear Center at Vallecitos, California. Plutonium particles less than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 20 to 45 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm

  4. Calculation of particulate dispersion in a design-basis tornadic storm from the Exxon Nuclear Company, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D.W.

    1978-07-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Exxon Nuclear Company at Richland, Washington. Plutonium particles less than 20 ..mu..m in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 20 to 45 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm.

  5. Calculation of particulate dispersion in a design-basis tornadic storm from the Exxon Nuclear Company, Richland, Washington

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1978-07-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Exxon Nuclear Company at Richland, Washington. Plutonium particles less than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 20 to 45 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm

  6. Calculation of particulate dispersion in a design-basis tornadic storm from the General Electric Vallecitos Nuclear Center, Vallecitos, California

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D.W.

    1979-11-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the General Electric Vallecitos Nuclear Center at Vallecitos, California. Plutonium particles less than 20 ..mu..m in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 20 to 45 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm.

  7. Design of broadband dispersion flattened fiber for DWDM system: Performance analysis using various modulation formats

    Science.gov (United States)

    Goel, Aditya; Pandey, Gaurav

    2018-05-01

    In this paper, unique design of an optimal broadband optical dispersion flattened fiber (DFF) is proposed, which is capable of supporting the data rate of the order of Tb/s. The analysis of the single mode fiber for the design of the proposed DFF has been carried out by employing the quadratic Finite Element Method (FEM) with generalized refractive index (R. I.) profile. The minimization of the dispersion with respect to various profile parameters within the specified wavelength band is the essential optimization criteria. Computations show that a DFF can be designed where the overall dispersion can be restricted within ± 1 ps/km-nm over the entire spectral span ranging from 1290 to 1540 nm (250 nm) exhibiting a very small maximum value of dispersion slope (± 0.02 ps / (nm2-km)) in particular. The detailed performance analysis of the proposed DFF with different modulation techniques has been carried out in order to critically evaluate the performance of the DFF with respect to various significant parameters. The results suggest an excellent design of broadband optical waveguide capable of supporting high-speed data rate (40 Tb/s) through the single DFF, ideally suitable for the long haul dense wavelength division multiplexing (DWDM) optical transmission systems.

  8. Performance Analysis of Ad Hoc Dispersed Spectrum Cognitive Radio Networks over Fading Channels

    Directory of Open Access Journals (Sweden)

    Mohammad Muneer

    2011-01-01

    Full Text Available Cognitive radio systems can utilize dispersed spectrum, and thus such approach is known as dispersed spectrum cognitive radio systems. In this paper, we first provide the performance analysis of such systems over fading channels. We derive the average symbol error probability of dispersed spectrum cognitive radio systems for two cases, where the channel for each frequency diversity band experiences independent and dependent Nakagami- fading. In addition, the derivation is extended to include the effects of modulation type and order by considering M-ary phase-shift keying ( -PSK and M-ary quadrature amplitude modulation -QAM schemes. We then consider the deployment of such cognitive radio systems in an ad hoc fashion. We consider an ad hoc dispersed spectrum cognitive radio network, where the nodes are assumed to be distributed in three dimension (3D. We derive the effective transport capacity considering a cubic grid distribution. Numerical results are presented to verify the theoretical analysis and show the performance of such networks.

  9. Elastic-resilience-induced dispersion of carbon nanotubes: a novel way of fabricating high performance elastomer

    International Nuclear Information System (INIS)

    Wu, Siwu; Lin, Tengfei; Guo, Baochun

    2013-01-01

    State-of-the-art processes cannot achieve rubber/multi-walled carbon nanotube (MWCNT) composites with satisfactory performance by using pristine MWCNTs and conventional processing equipment. In this work, high performance rubber/MWCNT composites featuring a combination of good mechanical properties, electrical and thermal conductivities and damping capacity over a wide temperature range are fabricated based on a well-developed master batch process. It is demonstrated that the MWCNTs are dispersed homogeneously due to the disentanglement induced by well-wetting and shearing, and the elastic-resilience-induced dispersion of the MWCNTs by rubber chains via the novel processing method. To further enhance the efficacy of elastic-resilience-induced dispersion for MWCNTs, a slightly pre-crosslinked network is constructed in the master batch. Consequently, we obtain rubber/MWCNT composites with unprecedented performance by amplifying the reinforcing effect of relatively low MWCNT loading. This work provides a novel insight into the fabrication of high performance functional elastomeric composites with pristine CNTs by taking advantage of the unique elastic resilience of rubber chains as the driving force for the disentanglement of CNTs. (paper)

  10. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density LEU fuels that are being developed by the RERTR program. High-density LEU dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits

  11. Relative neutronic performance of proposed high-density dispersion fuels in water-moderated and D2O-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.; Snelgrove, J.L.

    1996-01-01

    This paper provides an overview of the neutronic performance of an idealized research reactor using several high density Leu fuels that are being developed by the Rarita program. High-density Leu dispersion fuels are needed for new and existing high-performance research reactors and to extend the lifetime of fuel elements in other research reactors. This paper discusses the anticipated neutronic behavior of proposed advanced fuels containing dispersions of U 3 Si 2 , UN, U 2 Mo and several uranium alloys with Mo, or Zr and Nb. These advanced fuels are ranked based on the results of equilibrium depletion calculations for a simplified reactor model having a small H 2 O-cooled core and a D 2 O reflector. Plans have been developed to fabricate and irradiate several uranium alloy dispersion fuels in order to test their stability and compatibility with the matrix material and to establish practical loading limits. (author)

  12. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.

    Science.gov (United States)

    Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês

    2017-01-01

    Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus ® ) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus ® at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus ® , when protected from moisture.

  13. INFLUENCE OF POLYMERIC-DISPERSED REINFORCEMENT ADDITIVES ON THE PERFORMANCE CHARACTERISTICS OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    Chernov Sergey Anatolevych

    2017-07-01

    Full Text Available The technique and results of the studies of the influence of a polymeric-dispersed reinforcement additive on the performance characteristics of road hot asphalt concrete, namely, its resistance to fatigue failures, rutting and development of residual deformation are described. It is shown that the proposed method of modification of asphalt-concrete mixtures ensures an increase in the durability of layers of pavement road surface.

  14. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    Science.gov (United States)

    Moonen, P.; Gromke, C.; Dorer, V.

    2013-08-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are considered. The model performance is assessed in several steps, ranging from a qualitative comparison to measured concentrations, over statistical data analysis by means of scatter plots and box plots, up to the calculation of objective validation metrics. The extensive validation effort highlights and quantifies notable features and shortcomings of the model, which would otherwise remain unnoticed. The model performance is found to be spatially non-uniform. Closer agreement with measurement data is achieved near the canyon ends than for the central part of the canyon, and typical model acceptance criteria are satisfied more easily for the leeward than for the windward canyon wall. This demonstrates the need for rigorous model evaluation. Only quality-assured models can be used with confidence to support assessment, planning and implementation of pollutant mitigation strategies.

  15. CVFEM for Multiphase Flow with Disperse and Interface Tracking, and Algorithms Performances

    Directory of Open Access Journals (Sweden)

    M. Milanez

    2015-12-01

    Full Text Available A Control-Volume Finite-Element Method (CVFEM is newly formulated within Eulerian and spatial averaging frameworks for effective simulation of disperse transport, deposit distribution and interface tracking. Their algorithms are implemented alongside an existing continuous phase algorithm. Flow terms are newly implemented for a control volume (CV fixed in a space, and the CVs' equations are assembled based on a finite element method (FEM. Upon impacting stationary and moving boundaries, the disperse phase changes its phase and the solver triggers identification of CVs with excess deposit and their neighboring CVs for its accommodation in front of an interface. The solver then updates boundary conditions on the moving interface as well as domain conditions on the accumulating deposit. Corroboration of the algorithms' performances is conducted on illustrative simulations with novel and existing Eulerian and Lagrangian solutions, such as (- other, i. e. external methods with analytical and physical experimental formulations, and (- characteristics internal to CVFEM.

  16. Structure and stability of acrolein and allyl alcohol networks on Ag(111) from density functional theory based calculations with dispersion corrections

    Science.gov (United States)

    Ferullo, Ricardo M.; Branda, Maria Marta; Illas, Francesc

    2013-11-01

    The interaction of acrolein and allyl alcohol with the Ag(111) surface has been studied by means of periodic density functional theory based calculations including explicitly dispersion terms. Different coverage values have been explored going from isolated adsorbed molecules to isolated dimers, interacting dimers or ordered overlayers. The inclusion of the dispersion terms largely affects the calculated values of the adsorption energy and also the distance between adsorbed molecule and the metallic surface but much less the adsorbate-adsorbate interactions. Owing to the large dipole moment of acrolein, the present calculations predict that at high coverage this molecule forms a stable extensive two-dimensional network on the surface, caused by the alignment of the adsorbate dipoles. For the case of allyl alcohol, dimers and complex networks exhibit similar stability.

  17. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.

    Science.gov (United States)

    Pawar, Amol A; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A; Tabaei, Seyed R; Cho, Nam-Joon; Magdassi, Shlomo

    2016-04-01

    In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)-visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode-based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.

  18. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR

    Directory of Open Access Journals (Sweden)

    Francesco Tres

    2015-09-01

    Full Text Available We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide. A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  19. On the calculation of the structure of charge-stabilized colloidal dispersions using density-dependent potentials

    International Nuclear Information System (INIS)

    Castañeda-Priego, R; Lobaskin, V; Mixteco-Sánchez, J C; Rojas-Ochoa, L F; Linse, P

    2012-01-01

    The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions. (paper)

  20. System Performance of Concatenated STBC and Block Turbo Codes in Dispersive Fading Channels

    Directory of Open Access Journals (Sweden)

    Kam Tai Chan

    2005-05-01

    Full Text Available A new scheme of concatenating the block turbo code (BTC with the space-time block code (STBC for an OFDM system in dispersive fading channels is investigated in this paper. The good error correcting capability of BTC and the large diversity gain characteristics of STBC can be achieved simultaneously. The resulting receiver outperforms the iterative convolutional Turbo receiver with maximum- a-posteriori-probability expectation maximization (MAP-EM algorithm. Because of its ability to perform the encoding and decoding processes in parallel, the proposed system is easy to implement in real time.

  1. Numerical calculation of the dispersion of heat and material in rivers by means of a depth-averaged model

    International Nuclear Information System (INIS)

    Pavlovic, R.N.

    1981-01-01

    Nowadays, our rivers are polluted to an ever increasing degree by industrial and domestic discharges of waste heat and sewage. An important task of environmental protection is to predict the consequences of such pollutions in order to be able to plan and perform protective measures. For the solution of this problem a reliable mathematical model is very helpful. In the present paper a depth-averaged model is developed consisting of a two-dimensional elliptical model component for the direct near-field of a discharge and a two-dimensional parabolic separate model for the calculation of longer river distances further downstream. This model is exhaustively tested by application to a number of laboratory flows and real discharges to rivers. (orig./RW) [de

  2. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis

    Science.gov (United States)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.

    1973-01-01

    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  3. Performance of quantum Monte Carlo for calculating molecular bond lengths

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au [CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052 (Australia)

    2016-03-28

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.

  4. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Science.gov (United States)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  5. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.

  6. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  7. Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors

    International Nuclear Information System (INIS)

    Fang, Linxia; Zhang, Baoliang; Li, Wei; Zhang, Jizhong; Huang, Kejing; Zhang, Qiuyu

    2014-01-01

    We report a facile strategy to synthesize ZnO-graphene nanocomposites as an advanced electrode material for high-performance supercapacitors. The ZnO-graphene nanocomposites have been fabricated via a facile, low-temperature in situ wet chemistry process. During this process, high dispersed ZnO nanoparticles are embedded in graphene nanosheets, leading to sandwich-structured ZnO-graphene nanocomposites. Thus, intimate interfacial contact between ZnO nanoparticles and graphene nanosheets are achieved, which facilitates electrochemical activity and enhance electrochemical properties due to fast electron transfer. The as-prepared ZnO-graphene nanocomposites exhibit a maximum specific capacitance of 786 F g −1 and excellent cycle life with capacity retention of about 92% after 500 cycles. This facile design and rational synthesis offers an effective strategy to enhance the electrochemical performance of supercapacitors and shows promising potential for large-scale application in energy storage

  8. Operational mesoscale atmospheric dispersion prediction using high performance parallel computing cluster for emergency response

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Venkatesan, R.; Muralidharan, N.V.; Das, Someshwar; Dass, Hari; Eswara Kumar, P.

    2005-08-01

    An operational atmospheric dispersion prediction system is implemented on a cluster super computer for 'Online Emergency Response' for Kalpakkam nuclear site. The numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART. The system provides 48 hour forecast of the local weather and radioactive plume dispersion due to hypothetical air borne releases in a range of 100 km around the site. The parallel code was implemented on different cluster configurations like distributed and shared memory systems. Results of MM5 run time performance for 1-day prediction are reported on all the machines available for testing. A reduction of 5 times in runtime is achieved using 9 dual Xeon nodes (18 physical/36 logical processors) compared to a single node sequential run. Based on the above run time results a cluster computer facility with 9-node Dual Xeon is commissioned at IGCAR for model operation. The run time of a triple nested domain MM5 is about 4 h for 24 h forecast. The system has been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF, New Delhi. An alternative source is found to be NCEP, USA. These two sources provide the input data to the operational models at different spatial and temporal resolutions and using different assimilation methods. A comparative study on the results of forecast is presented using these two data sources for present operational use. Slight improvement is noticed in rainfall, winds, geopotential heights and the vertical atmospheric structure while using NCEP data probably because of its high spatial and temporal resolution. (author)

  9. Role of dispersion corrected hybrid GGA class in accurately calculating the bond dissociation energy of carbon halogen bond: A benchmark study

    Science.gov (United States)

    Kosar, Naveen; Mahmood, Tariq; Ayub, Khurshid

    2017-12-01

    Benchmark study has been carried out to find a cost effective and accurate method for bond dissociation energy (BDE) of carbon halogen (Csbnd X) bond. BDE of C-X bond plays a vital role in chemical reactions, particularly for kinetic barrier and thermochemistry etc. The compounds (1-16, Fig. 1) with Csbnd X bond used for current benchmark study are important reactants in organic, inorganic and bioorganic chemistry. Experimental data of Csbnd X bond dissociation energy is compared with theoretical results. The statistical analysis tools such as root mean square deviation (RMSD), standard deviation (SD), Pearson's correlation (R) and mean absolute error (MAE) are used for comparison. Overall, thirty-one density functionals from eight different classes of density functional theory (DFT) along with Pople and Dunning basis sets are evaluated. Among different classes of DFT, the dispersion corrected range separated hybrid GGA class along with 6-31G(d), 6-311G(d), aug-cc-pVDZ and aug-cc-pVTZ basis sets performed best for bond dissociation energy calculation of C-X bond. ωB97XD show the best performance with less deviations (RMSD, SD), mean absolute error (MAE) and a significant Pearson's correlation (R) when compared to experimental data. ωB97XD along with Pople basis set 6-311g(d) has RMSD, SD, R and MAE of 3.14 kcal mol-1, 3.05 kcal mol-1, 0.97 and -1.07 kcal mol-1, respectively.

  10. ARDISC (Argonne Dispersion Code): computer programs to calculate the distribution of trace element migration in partially equilibrating media

    International Nuclear Information System (INIS)

    Strickert, R.; Friedman, A.M.; Fried, S.

    1979-04-01

    A computer program (ARDISC, the Argonne Dispersion Code) is described which simulates the migration of nuclides in porous media and includes first order kinetic effects on the retention constants. The code allows for different absorption and desorption rates and solves the coupled migration equations by arithmetic reiterations. Input data needed are the absorption and desorption rates, equilibrium surface absorption coefficients, flow rates and volumes, and media porosities

  11. An empirical method for calculating thermodynamic parameters for U(6) phases, applications to performance assessment calculations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Chen, F.; Clark, S.B.

    2002-01-01

    Uranyl minerals form by oxidation and alteration of uraninite, UO 2+x , and the UO 2 in used nuclear fuels. The thermodynamic database for these phases is extremely limited. However, the Gibbs free energies and enthalpies for uranyl phases may be estimated based on a method that sums polyhedral contributions. The molar contributions of the structural components to Δ f G m 0 and Δ f H m 0 are derived by multiple regression using the thermodynamic data of phases for which the crystal structures are known. In comparison with experimentally determined values, the average residuals associated with the predicted Δ f G m 0 and Δ f H m 0 for the uranyl phases used in the model are 0.08 and 0.10%, respectively. There is also good agreement between the predicted mineral stability relations and field occurrences, thus providing confidence in this method for the estimation of Δ f G m 0 and Δ f H m 0 of the U(VI) phases. This approach provides a means of generating estimated thermodynamic data for performance assessment calcination and a basic for making bounding calcination of phase stabilities and solubilities. (author)

  12. High performance graphene- and MWCTNs-based PS/PPO composites obtained via organic solvent dispersion

    NARCIS (Netherlands)

    Ghislandi, M.G.; Tkalya, E.; Schillinger, S.; Koning, C.E.; With, de G.

    2013-01-01

    The concept of liquid-phase dispersion was applied for the preparation of well-dispersed suspensions of MWCNTs and graphene in chloroform, using long-time ultra-sonication without the use of surfactants. The dispersions with pre-defined filler concentration (0.5 mg/ml) were monitored via UV–Vis

  13. Synthesis and membrane performance characterization of self-emulsified waterborne nitrocellulose dispersion modified with castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiuxia; Zhao, Qingxiao, E-mail: 934481965@qq.com; Zhang, Dan; Dong, Wei

    2015-11-30

    Graphical abstract: - Highlights: • Waterborne nitrocellulose dispersion modified with castor oil (CWNC) was synthesized successfully. • It is a kind of environment-friendly coatings, in which volatile organic content (VOC) is near zero. • Castor oil used as an internal crosslinking agent for WNC improved the properties of the coating. • When the mass fraction of castor oil to total reactants is 7%, emulsion and the coating are of the best comprehensive performance. - Abstract: Waterborne nitrocellulose dispersion modified with castor oil (CWNC) was designed and successfully synthesized by self emulsification and reaction among isophorone diisocyanate (IPDI) trimer, dimethylol propionic acid (DMPA), nitrocellulose (NC) and castor oil (C.O.). The CWNC was characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA), etc. The particle size of CWNC increased with the increase of mass fraction of castor oil to total reactants, ω (C.O.). The morphology of particles is an approximate core–shell structure indicated by TEM. FTIR confirmed that the reactions (i.e. IPDI trimer and castor oil, IPDI trimer and NC) occurred, the NCO groups of IPDI trimer were consumed totally and the backbone of NC was retained. The water contact angle measurements confirmed that introduced castor oil increased hydrophobicity of the film, thereby increasing the contact angle. TGA revealed that the CWNC film had better thermal resistance.

  14. Synthesis and membrane performance characterization of self-emulsified waterborne nitrocellulose dispersion modified with castor oil

    International Nuclear Information System (INIS)

    Su, Xiuxia; Zhao, Qingxiao; Zhang, Dan; Dong, Wei

    2015-01-01

    Graphical abstract: - Highlights: • Waterborne nitrocellulose dispersion modified with castor oil (CWNC) was synthesized successfully. • It is a kind of environment-friendly coatings, in which volatile organic content (VOC) is near zero. • Castor oil used as an internal crosslinking agent for WNC improved the properties of the coating. • When the mass fraction of castor oil to total reactants is 7%, emulsion and the coating are of the best comprehensive performance. - Abstract: Waterborne nitrocellulose dispersion modified with castor oil (CWNC) was designed and successfully synthesized by self emulsification and reaction among isophorone diisocyanate (IPDI) trimer, dimethylol propionic acid (DMPA), nitrocellulose (NC) and castor oil (C.O.). The CWNC was characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA), etc. The particle size of CWNC increased with the increase of mass fraction of castor oil to total reactants, ω (C.O.). The morphology of particles is an approximate core–shell structure indicated by TEM. FTIR confirmed that the reactions (i.e. IPDI trimer and castor oil, IPDI trimer and NC) occurred, the NCO groups of IPDI trimer were consumed totally and the backbone of NC was retained. The water contact angle measurements confirmed that introduced castor oil increased hydrophobicity of the film, thereby increasing the contact angle. TGA revealed that the CWNC film had better thermal resistance.

  15. Performativity and the Politics of Equipping for Calculation

    DEFF Research Database (Denmark)

    Henriksen, Lasse Folke

    2013-01-01

    This article argues that the concept of performativity deepens our understanding of contemporary, expertise-driven processes of global economic governance. Tracing the World Bank's role in constructing a global market for microfinance, the paper suggests that the World Bank was instrumental...... in translating selected parts of economic models into practice, thereby changing microfinance practices globally. Socio-technical networks centered on the World Bank were created to equip actors to become part of a global market, which incorporated not only donors but also commercial investors. The paper makes...

  16. Mixing time effects on the dispersion performance of adhesive mixtures for inhalation.

    Directory of Open Access Journals (Sweden)

    Floris Grasmeijer

    Full Text Available This paper deals with the effects of mixing time on the homogeneity and dispersion performance of adhesive mixtures for inhalation. Interactions between these effects and the carrier size fraction, the type of drug and the inhalation flow rate were studied. Furthermore, it was examined whether or not changes in the dispersion performance as a result of prolonged mixing can be explained with a balance of three processes that occur during mixing, knowing drug redistribution over the lactose carrier; (de- agglomeration of the drug (and fine lactose particles; and compression of the drug particles onto the carrier surface. For this purpose, mixtures containing salmeterol xinafoate or fluticasone propionate were mixed for different periods of time with a fine or coarse crystalline lactose carrier in a Turbula mixer. Drug detachment experiments were performed using a classifier based inhaler at different flow rates. Scanning electron microscopy and laser diffraction techniques were used to measure drug distribution and agglomeration, whereas changes in the apparent solubility were measured as a means to monitor the degree of mechanical stress imparted on the drug particles. No clear trend between mixing time and content uniformity was observed. Quantitative and qualitative interactions between the effect of mixing time on drug detachment and the type of drug, the carrier size fraction and the flow rate were measured, which could be explained with the three processes mentioned. Generally, prolonged mixing caused drug detachment to decrease, with the strongest decline occurring in the first 120 minutes of mixing. For the most cohesive drug (salmeterol and the coarse carrier, agglomerate formation seemed to dominate the overall effect of mixing time at a low inhalation flow rate, causing drug detachment to increase with prolonged mixing. The optimal mixing time will thus depend on the formulation purpose and the choice for other, interacting variables.

  17. Mixing Time Effects on the Dispersion Performance of Adhesive Mixtures for Inhalation

    Science.gov (United States)

    Grasmeijer, Floris; Hagedoorn, Paul; Frijlink, Henderik W.; de Boer, H. Anne

    2013-01-01

    This paper deals with the effects of mixing time on the homogeneity and dispersion performance of adhesive mixtures for inhalation. Interactions between these effects and the carrier size fraction, the type of drug and the inhalation flow rate were studied. Furthermore, it was examined whether or not changes in the dispersion performance as a result of prolonged mixing can be explained with a balance of three processes that occur during mixing, knowing drug redistribution over the lactose carrier; (de-) agglomeration of the drug (and fine lactose) particles; and compression of the drug particles onto the carrier surface. For this purpose, mixtures containing salmeterol xinafoate or fluticasone propionate were mixed for different periods of time with a fine or coarse crystalline lactose carrier in a Turbula mixer. Drug detachment experiments were performed using a classifier based inhaler at different flow rates. Scanning electron microscopy and laser diffraction techniques were used to measure drug distribution and agglomeration, whereas changes in the apparent solubility were measured as a means to monitor the degree of mechanical stress imparted on the drug particles. No clear trend between mixing time and content uniformity was observed. Quantitative and qualitative interactions between the effect of mixing time on drug detachment and the type of drug, the carrier size fraction and the flow rate were measured, which could be explained with the three processes mentioned. Generally, prolonged mixing caused drug detachment to decrease, with the strongest decline occurring in the first 120 minutes of mixing. For the most cohesive drug (salmeterol) and the coarse carrier, agglomerate formation seemed to dominate the overall effect of mixing time at a low inhalation flow rate, causing drug detachment to increase with prolonged mixing. The optimal mixing time will thus depend on the formulation purpose and the choice for other, interacting variables. PMID:23844256

  18. Trends in high-performance computing for engineering calculations.

    Science.gov (United States)

    Giles, M B; Reguly, I

    2014-08-13

    High-performance computing has evolved remarkably over the past 20 years, and that progress is likely to continue. However, in recent years, this progress has been achieved through greatly increased hardware complexity with the rise of multicore and manycore processors, and this is affecting the ability of application developers to achieve the full potential of these systems. This article outlines the key developments on the hardware side, both in the recent past and in the near future, with a focus on two key issues: energy efficiency and the cost of moving data. It then discusses the much slower evolution of system software, and the implications of all of this for application developers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Performance of various mathematical methods for calculation of radioimmunoassay results

    International Nuclear Information System (INIS)

    Sandel, P.; Vogt, W.

    1977-01-01

    Interpolation and regression methods are available for computer aided determination of radioimmunological end results. We compared the performance of eight algorithms (weighted and unweighted linear logit-log regression, quadratic logit-log regression, Rodbards logistic model in the weighted and unweighted form, smoothing spline interpolation with a large and small smoothing factor and polygonal interpolation) on the basis of three radioimmunoassays with different reference curve characteristics (digoxin, estriol, human chorionic somatomammotropin = HCS). Great store was set by the accuracy of the approximation at the intermediate points on the curve, ie. those points that lie midway between two standard concentrations. These concentrations were obtained by weighing and inserted as unknown samples. In the case of digoxin and estriol the polygonal interpolation provided the best results while the weighted logit-log regression proved superior in the case of HCS. (orig.) [de

  20. Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y S; Hofman, G L [Nuclear Engineering Division

    2011-06-01

    The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

  1. Wireless Performance of a Fully Passive Neurorecording Microsystem Embedded in Dispersive Human Head Phantom

    Science.gov (United States)

    Schwerdt, Helen N.; Chae, Junseok; Miranda, Felix A.

    2012-01-01

    This paper reports the wireless performance of a biocompatible fully passive microsystem implanted in phantom media simulating the dispersive dielectric properties of the human head, for potential application in recording cortical neuropotentials. Fully passive wireless operation is achieved by means of backscattering electromagnetic (EM) waves carrying 3rd order harmonic mixing products (2f(sub 0) plus or minus f(sub m)=4.4-4.9 GHZ) containing targeted neuropotential signals (fm approximately equal to 1-1000 Hz). The microsystem is enclosed in 4 micrometer thick parylene-C for biocompatibility and has a footprint of 4 millimeters x 12 millimeters x 500 micrometers. Preliminary testing of the microsystem implanted in the lossy biological simulating media results in signal-to-noise ratio's (SNR) near 22 (SNR approximately equal to 38 in free space) for millivolt level neuropotentials, demonstrating the potential for fully passive wireless microsystems in implantable medical applications.

  2. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mingjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Jia; Liu, Shuan [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhang, Guangan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji, E-mail: qjxue@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-03-01

    Highlights: • Hexagonal boron nitride nanosheets were well dispersed by using water-soluble carboxylated aniline trimer as dispersant. • The best corrosion performance of waterborne epoxy coatings was achieved with the addition of 1 wt% h-BN. • The decrease of the pores and defects of coating matrix inhibits the diffusion and water absorption of corrosive medium in the coating. - Abstract: Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT{sup −}) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT{sup −}, as proved by Raman and UV–vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 10{sup 6} Ω cm{sup 2}) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  3. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  4. Analysis of drugs of abuse in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Fernández, P; Regenjo, M; Bermejo, A M; Fernández, A M; Lorenzo, R A; Carro, A M

    2015-04-01

    Opioids and cocaine are widely used at present, both for recreational purposes and as drugs of abuse. This raises the need to develop new analytical methods specifically designed for the simultaneous detection of several drugs of abuse in biological samples. In this work, dispersive liquid-liquid microextraction (DLLME) was assessed as a new sample treatment for the simultaneous extraction of morphine (MOR), 6-acetylmorphine (6AM), cocaine (COC), benzoylecgonine (BZE) and methadone (MET) from human plasma. Preliminary assays were done before developing an experimental design based on a Uniform Network Doehlert which allowed the optimum extraction conditions to be identified, namely: a volume of extractant solvent (chloroform) and dispersant solvent (acetonitrile) of 220 µl and 3.2 ml, respectively; 0.2 g of NaCl as a salting-out additive; pH 10.6 and ultrasound stirring for 3.5 min. The resulting extracts were analyzed by high-performance liquid chromatography with photodiode array detection (HPLC-PDA), using an XBridge® RP18 column (250 × 4.6 mm i.d., 5 µm particle size). Calibration graphs were linear over the concentration range 0.1-10 µg ml⁻¹, and detection limits ranged from 13.9 to 28.5 ng ml⁻¹. Precision calculated at three different concentration levels in plasma was included in the range 0.1-6.8% RSD. Recoveries of the five drugs were all higher than 84% on average. Finally the proposed method was successfully applied to 22 plasma samples from heroin, cocaine and/or methadone users, and the most frequently detected drug was benzoylecgonine, followed by methadone, cocaine and morphine. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Extension and validation of ARTM (atmospheric radionuclide transportation model) for the application as dispersion calculation model in AVV (general administrative provision) and SBG (incident calculation bases); Erweiterung und Validierung von ARTM fuer den Einsatz als Ausbreitungsmodell in AVV und SBG

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Reinhard; Bruecher, Wenzel; Richter, Cornelia; Sentuc, Florence; Sogalla, Martin; Thielen, Harald

    2012-02-15

    In the medium-term time scale the Gaussian plume model used so far for atmospheric dispersion calculations in the General Administrative Provision (AVV) relating to Section 47 of the Radiation Protection Ordinance (StrISchV) as well as in the Incident Calculation Bases (SGB) relating to Section 49 StrISchV is to be replaced by a Lagrangian particle model. Meanwhile the Atmospheric Radionuclide Transportation Model (ARTM) is available, which allows the simulation of the atmospheric dispersion of operational releases from nuclear installations. ARTM is based on the program package AUSTAL2000 which is designed for the simulation of atmospheric dispersion of nonradioactive operational releases from industrial plants and was adapted to the application of airborne radioactive releases. In the context of the research project 3608S05005 possibilities for an upgrade of ARTM were investigated and implemented as far as possible to the program system. The work program comprises the validation and evaluation of ARTM, the implementation of technical-scientific extensions of the model system and the continuation of experience exchange between developers and users. In particular, the suitability of the model approach for simulations of radiological consequences according to the German SBG and the representation of the influence of buildings typical for nuclear power stations have been validated and further evaluated. Moreover, post-processing modules for calculation of dose-relevant decay products and for dose calculations have been developed and implemented. In order to continue the experience feedback and exchange, a web page has been established and maintained. Questions by users and other feedback have been dealt with and a common workshop has been held. The continued development and validation of ARTM has strengthened the basis for applications of this model system in line with the German regulations AVV and SBG. Further activity in this field can contribute to maintain and

  6. Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    Science.gov (United States)

    Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.

    1994-01-01

    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.

  7. A four-layer model for calculating the dispersion and chemical conversion of pollutants in the atmosphere

    International Nuclear Information System (INIS)

    Nguyen, T.H.

    1989-01-01

    A four-layer model for the calculation of the propagation and chemical change of emitted pollutants in the ground level troposphere is presented. The following influences on the spreading of pollutants are considered: the height of the mixing layer, the orography, the horizontal and vertical advection, the horizontal and vertical diffusion, the diurnal variation of insolation, the source strength of the emissions of NO x , HC, SO 2 and CO. The knowledge of the wind field is an essential precondition for spreading calculations in the ground level troposphere. For the calculation of the wind field, a wind model is developed with the help of the variation calculation. The propagation and the chemical change of pollutants in the atmosphere in the Upper Rhine Graben are calculated for various atmospheric conditions and emission data. The influences of the wind power orography, the parametrization of the turbulent diffusion and the emission volume on the concentration of the photooxidants are studied in detail. (orig./KW) With 82 figs., 9 tabs [de

  8. Expected performance properties of the ASDEX upgrade toroidal field magnet derived from calculations and materials investigations

    International Nuclear Information System (INIS)

    Streibl, B.; Mukherjee, S.

    1989-11-01

    This is a summary of the TF-magnet calculation results for the 1984 phase-II proposal including supplements (also considering disturbances) of the performance of ASDEX Upgrade. Calculation results are as reliable as the assumptions incorporated, so that investigations of materials and design components were always used to complete the calculations. (orig.) [de

  9. Assessing the performance of dispersionless and dispersion-accounting methods: helium interaction with cluster models of the TiO2(110) surface.

    Science.gov (United States)

    de Lara-Castells, María Pilar; Stoll, Hermann; Mitrushchenkov, Alexander O

    2014-08-21

    As a prototypical dispersion-dominated physisorption problem, we analyze here the performance of dispersionless and dispersion-accounting methodologies on the helium interaction with cluster models of the TiO2(110) surface. A special focus has been given to the dispersionless density functional dlDF and the dlDF+Das construction for the total interaction energy (K. Pernal, R. Podeswa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 2009, 109, 263201), where Das is an effective interatomic pairwise functional form for the dispersion. Likewise, the performance of symmetry-adapted perturbation theory (SAPT) method is evaluated, where the interacting monomers are described by density functional theory (DFT) with the dlDF, PBE, and PBE0 functionals. Our benchmarks include CCSD(T)-F12b calculations and comparative analysis on the nuclear bound states supported by the He-cluster potentials. Moreover, intra- and intermonomer correlation contributions to the physisorption interaction are analyzed through the method of increments (H. Stoll, J. Chem. Phys. 1992, 97, 8449) at the CCSD(T) level of theory. This method is further applied in conjunction with a partitioning of the Hartree-Fock interaction energy to estimate individual interaction energy components, comparing them with those obtained using the different SAPT(DFT) approaches. The cluster size evolution of dispersionless and dispersion-accounting energy components is then discussed, revealing the reduced role of the dispersionless interaction and intramonomer correlation when the extended nature of the surface is better accounted for. On the contrary, both post-Hartree-Fock and SAPT(DFT) results clearly demonstrate the high-transferability character of the effective pairwise dispersion interaction whatever the cluster model is. Our contribution also illustrates how the method of increments can be used as a valuable tool not only to achieve the accuracy of CCSD(T) calculations using large cluster models but also to

  10. Antiwear performance of ionic liquid+graphene dispersions with anomalous viscosity-temperature behavior

    OpenAIRE

    Pamies Porras, Ramón Francisco; Arias Pardilla, Joaquín; Espinosa Rodríguez, Tulia; Carrión Vilches, Francisco José; Bermúdez Olivares, María Dolores; Sanes Molina, José; Avilés González, María Dolores

    2018-01-01

    New dispersions of few-layers graphene (G) in 1-ethyl-3-methylimidazolium ([EMIM]) ionic liquids (ILs) with dicyanamide ([DCA]) or bis(trifluoromethylsulfonyl)imide ([TFSI]) anions have been obtained by mechanical mixing and sonication. IL+0.5 wt% G dispersions show constant viscosity values from 357K (for IL = [EMIM][DCA]) or from 385K (for IL = [EMIM][TFSI]) to 393K. IL + G dispersions with G > 0.5 wt% show linear viscosity increases with increasing temperature, from 306K (for [EMIM][DCA]+1...

  11. Ability of aphasic individuals to perform numerical processing and calculation tasks

    Directory of Open Access Journals (Sweden)

    Gabriela De Luccia

    2014-03-01

    Full Text Available Objective To compare performance on EC301 battery calculation task between aphasic subjects and normal controls of the same sex, age, and education. Method Thirty-two aphasic patients who had suffered a single left hemisphere stroke were evaluated. Forty-four healthy volunteers were also selected. All subjects underwent a comprehensive arithmetic battery to assess their numerical and calculation skills. Performances on numerical processing and calculation tasks were then analyzed. Results Aphasic individuals showed changes in their ability to perform numerical processing and calculation tasks that were not observed in the healthy population. Conclusion Compared with healthy subjects of the same age and education level, individuals with aphasia had difficulty performing various tasks that involved numerical processing and calculation.

  12. Nuclear steam power plant cycle performance calculations supported by power plant monitoring and results computer

    International Nuclear Information System (INIS)

    Bettes, R.S.

    1984-01-01

    The paper discusses the real time performance calculations for the turbine cycle and reactor and steam generators of a nuclear power plant. Program accepts plant measurements and calculates performance and efficiency of each part of the cycle: reactor and steam generators, turbines, feedwater heaters, condenser, circulating water system, feed pump turbines, cooling towers. Presently, the calculations involve: 500 inputs, 2400 separate calculations, 500 steam properties subroutine calls, 200 support function accesses, 1500 output valves. The program operates in a real time system at regular intervals

  13. Calculation of particulate dispersion in a design-basis tornadic storm from the Battelle Memorial Institute, Columbus, Ohio

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1980-10-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Battelle Memorial Institute at Columbus, Ohio. Plutonium particles less than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind value is based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume

  14. Calculation of particulate dispersion in a design-basis tornadic storm from the Babcock and Wilcox Plant, Leechburg, Pennsylvania

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1978-03-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Babcock and Wilcox Plutonium Fabrication Facility at Leechburg, Pennsylvania. Plutonium particles lss than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume

  15. Calculation of particulate dispersion in a design-basis tornadic storm from the Battelle Memorial Institute, Columbus, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D.W.

    1980-10-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Battelle Memorial Institute at Columbus, Ohio. Plutonium particles less than 20 ..mu..m in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind value is based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume.

  16. Calculation of particulate dispersion in a design-basis tornadic storm from the Babcock and Wilcox Plant, Leechburg, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D.W.

    1978-03-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Babcock and Wilcox Plutonium Fabrication Facility at Leechburg, Pennsylvania. Plutonium particles lss than 20 ..mu..m in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume.

  17. Radionuclide composition in nuclear fuel waste. Calculations performed by ORIGEN2

    International Nuclear Information System (INIS)

    Lyckman, C.

    1996-01-01

    The report accounts for results from calculations on the content of radionuclides in nuclear fuel waste. It also accounts for the results from calculations on the neutron flow from spent fuel, which is very important during transports. The calculations have been performed using the ORIGEN2 software. The results have been compared to other results from earlier versions of ORIGEN and some differences have been discovered. This is due to the updating of the software. 7 refs, 10 figs, 15 tabs

  18. Calculations of the self-amplified spontaneous emission performance of a free-electron laser

    International Nuclear Information System (INIS)

    Dejus, R. J.

    1999-01-01

    The linear integral equation based computer code (RON: Roger Oleg Nikolai), which was recently developed at Argonne National Laboratory, was used to calculate the self-amplified spontaneous emission (SASE) performance of the free-electron laser (FEL) being built at Argonne. Signal growth calculations under different conditions are used for estimating tolerances of actual design parameters. The radiation characteristics are discussed, and calculations using an ideal undulator magnetic field and a real measured magnetic field will be compared and discussed

  19. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  20. Experimental study of a model and parameters calculating annual mean atmospheric dispersion factor for a nuclear power plant to be build in coastal site

    International Nuclear Information System (INIS)

    Hu Erbang; Chen Jiayi; Zhang Maoshuan; Gao Zhanrong; Yao Rentai; Jia Peirong; Qiao Qingdang

    1999-01-01

    The author tries to develop a new model calculating annual mean atmospheric dispersion factor for a nuclear power plant to be build in coastal site based on field experiments. This model considers not only the difference between shore ward and off-shore but also the comprehensive effect of following factors: mixed layer and thermal internal boundary layer, mixing release and variation of diffusion parameters due to the distance from coast and so on. The various parameters needed in the model are obtained from the field atmospheric experiments done on the NPP site during 1995∼1996. There dimension joint frequency is got from wind and temperature measurements at 4 heights of a tower of 100 m; diffusion parameters shore ward and off-shore from turbulent measurement and wind tunnel simulation test; the parameters relative to sea and land breeze and thermal internal boundary layer are obtained from tests with low altitude radiosonde and lost balloon at 3 sites during two periods of Summer and Winter. Finally a comparison of the results given by this model and commonly used model provided by relative guides is done. The comparison shows that about 1 times under estimation is found for the maximum of annual mean atmospheric dispersion factor in common model because the effect from thermal internal boundary layer and other factors are neglected

  1. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    International Nuclear Information System (INIS)

    Sears, D.F.; Wood, J.C.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.

    1985-01-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released 85 Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary 85 Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  2. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D F; Wood, J C; Berthiaume, L C; Herbert, L N; Schaefer, J D

    1985-07-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released {sup 85}Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary {sup 85}Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  3. A model for calculating expected performance of the Apollo unified S-band (USB) communication system

    Science.gov (United States)

    Schroeder, N. W.

    1971-01-01

    A model for calculating the expected performance of the Apollo unified S-band (USB) communication system is presented. The general organization of the Apollo USB is described. The mathematical model is reviewed and the computer program for implementation of the calculations is included.

  4. The application of an eddy diffusivity model to the dispersion of radionuclides in the atmosphere and the calculation of cloud gamma exposure

    International Nuclear Information System (INIS)

    Maul, P.R.

    1981-05-01

    A model which has been applied successfully to the study of the mesoscale transport of sulphur compounds can be adapted for radionuclides released from nuclear power stations. Although more complicated than the conventional Gaussian plume models it has several important advantages including the better representation of dry deposition and the variation of dispersion parameters with height above the surface. Building entrainment can be included in a straightforward manner and an approximate method can be used to incorporate isotope-dependent deposition velocities. A new method of calculating cloud gamma exposure is described which is particularly suited to eddy diffusivity models. This model will be used as an alternative to Gaussian plume methods in the BNL safety code NECTAR. (author)

  5. Influence of vertical dispersion and crossing angle on the performance of the LHC

    CERN Document Server

    Leunissen, L H A

    1999-01-01

    Misalignments, magnetic field deviations and the beam crossing angle induce closed orbit deviations and residual dispersions at the interaction points (IPs) of the LHC. At IP1 and IP5, the horizontal and vertical dispersion functions are approximately ±2 cm while at IP2 and IP8 they can reach values up to 50 cm. A numerical study of the excitation of synchro-betatron resonances by crossing angles and dispersions shows that the beam size changes by less than 5% and has corresponding effects on the luminosity. Since the effects of bunch length are important in this context we have used the numerical code BBC for the study. When the betatron tunes are close to a synchro-betatron resonance excited by the crossing angle the amplitude of particle oscillations increases. The superposition of vertical dispersion modifies the strength of the resonance. For example, sidebands of the resonance 13Qx = 4 yield an increase of the amplitude of the betatron oscillation by less than 10 % at an initial amplitude of 5s. Includ...

  6. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li, E-mail: chenli1981@lut.cn; Li, Na; Zhang, Mingxia; Li, Pinnan; Lin, Zhengping

    2017-05-15

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed to analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.

  7. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    International Nuclear Information System (INIS)

    Chen, Li; Li, Na; Zhang, Mingxia; Li, Pinnan; Lin, Zhengping

    2017-01-01

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed to analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.

  8. Measuring dispersal as distance-dependent recruitment rates: testing the performance of DDRR on simulated data.

    NARCIS (Netherlands)

    Van Noordwijk, A.J.

    2011-01-01

    Dispersal is an important process in ecology, but its measurement is difficult. In particular, natal dispersal— the net movement between site of birth and site of first reproduction—is important, since it determines population structure. Using simulated data, I study the claim that measuring

  9. Optimizing Glassy Polymer Network Morphology for Nano-particle Dispersion, Stabilization and Performance

    Science.gov (United States)

    2016-10-03

    viscosity and stabilization of MWCNTs within rheological regimes which inhibit re-agglomeration to aid in post processing stabilization of dispersion state...polypropylene- clay nanocomposites subjected to laser pulse heating Bartolucci, Stephen, Supan, Karen, Wiggins, Jeffrey, LaBeaud, Lawrence, Warrender...addition, concurrent chain extension reactions advance prepolymer molecular weights to desired viscosities in less than 2 minutes of mean residence

  10. Study of high-performance canonical molecular orbitals calculation for proteins

    Science.gov (United States)

    Hirano, Toshiyuki; Sato, Fumitoshi

    2017-11-01

    The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.

  11. Implementation of a model of atmospheric dispersion and dose calculation in the release of radioactive effluents in the Nuclear Centre; Implementacion de un modelo de dispersion atmosferica y calculo de dosis en la liberacion de efluentes radiactivos en el Centro Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cruz L, C. A.

    2015-07-01

    In the present thesis, the software DERA (Dispersion of Radioactive Effluents into the Atmosphere) was developed in order to calculate the equivalent dose, external and internal, associated with the release of radioactive effluents into the atmosphere from a nuclear facility. The software describes such emissions in normal operation, and not considering the exceptional situations such as accidents. Several tools were integrated for describing the dispersion of radioactive effluents using site meteorological information (average speed and wind direction and the stability profile). Starting with the calculation of the concentration of the effluent as a function of position, DERA estimates equivalent doses using a set of EPA s and ICRP s coefficients. The software contains a module that integrates a database with these coefficients for a set of 825 different radioisotopes and uses the Gaussian method to calculate the effluents dispersion. This work analyzes how adequate is the Gaussian model to describe emissions type -puff-. Chapter 4 concludes, on the basis of a comparison of the recommended correlations of emissions type -puff-, that under certain conditions (in particular with intermittent emissions) it is possible to perform an adequate description using the Gaussian model. The dispersion coefficients (σ{sub y} and σ{sub z}), that using the Gaussian model, were obtained from different correlations given in the literature. Also in Chapter 5 is presented the construction of a particular correlation using Lagrange polynomials, which takes information from the Pasquill-Gifford-Turner curves (PGT). This work also contains a state of the art about the coefficients that relate the concentration with the equivalent dose. This topic is discussed in Chapter 6, including a brief description of the biological-compartmental models developed by the ICRP. The software s development was performed using the programming language Python 2.7, for the Windows operating system (the

  12. Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moyan; Chen, Ge, E-mail: chenge@bjut.edu.cn

    2016-12-01

    Highlights: • A novel TiO{sub 2}/carbon (TiO{sub 2}/C) composite has been synthesized by a layer-by-layer deposition method combined with electrostatic interaction. • As anode materials for Li-ion batteries, the TiO{sub 2}/C composites exhibit excellent rate capability and cycling stability. • The enhanced electrochemical performance may be attributed to the well-dispersed carbon conductive framework. - Abstract: Novel TiO{sub 2}/carbon (TiO{sub 2}/C) composites have been synthesized by a layer-by-layer deposition method, with electrostatic interaction. The addition of carbon conductive agents enhances the electrochemical performance of TiO{sub 2}. Carbon for these has been sourced 0D nitrogen-doped carbon, 1D carbon nanotubes and 2D graphene. The as-obtained TiO{sub 2}/C composites show carbon nanotubes and titanium dioxide coaxial nanocables anchored on the graphene. The nitrogen-doped carbon is uniformly dispersed on the nanocables. As anode materials for Li-ion batteries, the TiO{sub 2}/C composites exhibit excellent rate capability and cycling stability. A capacity of 150 mAh/g is retained at a current density of 4 A/g. The enhanced electrochemical performance may be attributed to the well-dispersed carbon conductive framework, which facilitates charge transfer during the lithium insertion/extraction process.

  13. Improved diode performance of Ag nanoparticle dispersed Er doped In2O3 film

    Science.gov (United States)

    Ghosh, Anupam; Dwivedi, Shyam Murli Manohar Dhar; Chakrabartty, Shubhro; Mondal, Aniruddha

    2018-04-01

    Ag nanoparticle(NP) dispersedEr doped In2O3 film was prepared by sol-gel method followed by thermal evaporation cum glancing angle deposition technique. The Schottky contact based devicecontaining Ag NPs shows ideality factor of ˜180 at 10 K and ˜5 at 300 K, which is lesser as compared to the device that does not contain Ag NPs. The lower ideality factor value all over the temperature range makes the diode more reliable.

  14. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    Science.gov (United States)

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Simple method of calculating the transient thermal performance of composite material and its applicable condition

    Institute of Scientific and Technical Information of China (English)

    张寅平; 梁新刚; 江忆; 狄洪发; 宁志军

    2000-01-01

    Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.

  16. Evaluation of radiation shielding performance in sea transport of radioactive material by using simple calculation method

    International Nuclear Information System (INIS)

    Odano, N.; Ohnishi, S.; Sawamura, H.; Tanaka, Y.; Nishimura, K.

    2004-01-01

    A modified code system based on the point kernel method was developed to use in evaluation of shielding performance for maritime transport of radioactive material. For evaluation of shielding performance accurately in the case of accident, it is required to preciously model the structure of transport casks and shipping vessel, and source term. To achieve accurate modelling of the geometry and source term condition, we aimed to develop the code system by using equivalent information regarding structure and source term used in the Monte Carlo calculation code, MCNP. Therefore, adding an option to use point kernel method to the existing Monte Carlo code, MCNP4C, the code system was developed. To verify the developed code system, dose rate distribution in an exclusive shipping vessel to transport the low level radioactive wastes were calculated by the developed code and the calculated results were compared with measurements and Monte Carlo calculations. It was confirmed that the developed simple calculation method can obtain calculation results very quickly with enough accuracy comparing with the Monte Carlo calculation code MCNP4C

  17. New Mechanisms to Explain the Effects of Added Lactose Fines on the Dispersion Performance of Adhesive Mixtures for Inhalation

    Science.gov (United States)

    Grasmeijer, Floris; Lexmond, Anne J.; van den Noort, Maarten; Hagedoorn, Paul; Hickey, Anthony J.; Frijlink, Henderik W.; de Boer, Anne H.

    2014-01-01

    Fine excipient particles or ‘fines’ have been shown to improve the dispersion performance of carrier-based formulations for dry powder inhalation. Mechanistic formulation studies have focussed mainly on explaining this positive effect. Previous studies have shown that higher drug contents may cause a decrease in dispersion performance, and there is no reason why this should not be true for fines with a similar shape, size and cohesiveness as drug particles. Therefore, the effects on drug detachment of ‘fine lactose fines’ (FLF, X50 = 1.95 µm) with a similar size and shape as micronised budesonide were studied and compared to those of ‘coarse lactose fines’ (CLF, X50 = 3.94 µm). Furthermore, interactions with the inhalation flow rate, the drug content and the mixing order were taken into account. The observed effects of FLF are comparable to drug content effects in that the detached drug fraction was decreased at low drug content and low flow rates but increased at higher flow rates. At high drug content the effects of added FLF were negligible. In contrast, CLF resulted in higher detached drug fractions at all flow rates and drug contents. The results from this study suggest that the effects of fines may be explained by two new mechanisms in addition to those previously proposed. Firstly, fines below a certain size may increase the effectiveness of press-on forces or cause the formation of strongly coherent fine particle networks on the carrier surface containing the drug particles. Secondly, when coarse enough, fines may prevent the formation of, or disrupt such fine particle networks, possibly through a lowering of their tensile strength. It is recommended that future mechanistic studies are based on the recognition that added fines may have any effect on dispersion performance, which is determined by the formulation and dispersion conditions. PMID:24489969

  18. Identification of calculation hierarchy and information flow for postclosure performance assessment

    International Nuclear Information System (INIS)

    Avci, H.I.; Cunnane, J.C.; Brandstetter, A.

    1990-01-01

    A management tool consisting of calculation hierarchy and information flow diagrams is being prepared to address the resolution of major postclosure performance issues for a geologic high-level radioactive waste repository in the U.S.A. The diagrams will indicate the types of calculations and data needed to assess the postclosure performance of the repository. Separate diagrams will be generated for different scenario classes and conceptual models. The methodology used in developing these diagrams and their contents are illustrated for a single scenario and conceptual model. 5 refs., 5 figs

  19. Range performance calculations using the NVEOL-Georgia Tech Research Institute 0.1- to 100-GHz radar performance model

    Science.gov (United States)

    Rodak, S. P.; Thomas, N. I.

    1983-05-01

    A computer model that can be used to calculate radar range performance at any frequency in the 0.1-to 100-GHz electromagnetic spectrum is described. These different numerical examples are used to demonstrate how to use the radar range performance model. Input/output documentation are included for each case that was run on the MERADCOM CDC 6600 computer at Fort Belvoir, Virginia.

  20. Calculation of particulate dispersion in a design-basis tornadic storm from the Atomics International Nuclear Material Development Facility, Santa Susana, California

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D.W.

    1980-07-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Atomics International Nuclear Material Development Facility at Santa Susana, California. Plutonium particles less than 20 ..mu..m in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 50 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm.

  1. Calculation of particulate dispersion in a design-basis tornadic storm from the Atomics International Nuclear Material Development Facility, Santa Susana, California

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1980-07-01

    A three-dimensional numerical model is used to calculate ground-level air concentration and deposition (due to precipitation scavenging) after a hypothetical tornado strike at the Atomics International Nuclear Material Development Facility at Santa Susana, California. Plutonium particles less than 20 μm in diameter are assumed to be lifted into the tornadic storm cell by the vortex. The rotational characteristics of the tornadic storm are embedded within the larger mesoscale flow of the storm system. The design-basis translational wind values are based on probabilities associated with existing records of tornado strikes in the vicinity of the plant site. Turbulence exchange coefficients are based on empirical values deduced from experimental data in severe storms and from theoretical assumptions obtained from the literature. The method of moments is used to incorporate subgrid-scale resolution of the concentration within a grid cell volume. This method is a quasi-Lagrangian scheme which minimizes numerical error associated with advection. In all case studies, the effects of updrafts and downdrafts, coupled with scavenging of the particulates by precipitation, account for most of the material being deposited within 50 km downwind of the plant site. Ground-level isopleths in the x-y plane show that most of the material is deposited behind and slightly to the left of the centerline trajectory of the storm. Approximately 5% of the material is dispersed into the stratosphere and anvil section of the storm

  2. Performance prediction and flow field calculation for airfoil fan with impeller inlet clearance

    International Nuclear Information System (INIS)

    Kang, Shin Hyoung; Cao, Renjing; Zhang, Yangjun

    2000-01-01

    The performance prediction of an airfoil fan using a commercial code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub

  3. H-Index of Astrophysicists at Raman Research Institute: Performance of Different Calculators

    Science.gov (United States)

    Meera, B. M.; Manjunath, M.

    2012-08-01

    H-index, a single number proposed by J. E. Hirsch in 2005 has gained popularity as an index number to measure the research performance of individuals, institutions, universities, etc. There are many calculators to derive the h-in dex number, such as Google Scholar, Web of Science, Scopus, etc. However, h-index can be calculated manually, provided we have access to a complete list of publications of a scientist and the number of citations received by them. It is observed that h-index for a given scientist at a ny given point of time differs from one calculator to the other. Here is an attempt to calculate the H-index of scientists of the Astronomy and Astrophysics Group at Raman Research Institute using Google Scholar Free calculator, Web of Science Paid calculator and The SAO/NASA As trophysics Data System manual calculation and comparison of the results. Application of this h- index phenomenon to the research output of RRI scientists in a group is done while keeping in mi nd Hirsch's systematic in vestigation to predict the position of a scientist using h-index in physics. It is believed that the higher the academic age of a scientist, the higher will be the h-index. An attempt is made to find whether this assumption is true with respect to the sample studied by including the superannuated scientists from Astronomy and Astrophysics Group at Raman Research Institute under the purview of this study.

  4. Performance evaluation for compressible flow calculations on five parallel computers of different architectures

    International Nuclear Information System (INIS)

    Kimura, Toshiya.

    1997-03-01

    A two-dimensional explicit Euler solver has been implemented for five MIMD parallel computers of different machine architectures in Center for Promotion of Computational Science and Engineering of Japan Atomic Energy Research Institute. These parallel computers are Fujitsu VPP300, NEC SX-4, CRAY T94, IBM SP2, and Hitachi SR2201. The code was parallelized by several parallelization methods, and a typical compressible flow problem has been calculated for different grid sizes changing the number of processors. Their effective performances for parallel calculations, such as calculation speed, speed-up ratio and parallel efficiency, have been investigated and evaluated. The communication time among processors has been also measured and evaluated. As a result, the differences on the performance and the characteristics between vector-parallel and scalar-parallel computers can be pointed, and it will present the basic data for efficient use of parallel computers and for large scale CFD simulations on parallel computers. (author)

  5. Calculation study of the WWER-440 fuel performance for extended burnup

    International Nuclear Information System (INIS)

    Kujal, J.; Pazdera, F.; Barta, O.

    1984-01-01

    The results of preliminary calculational study of extended burnup cycling schemes impact on WWER-440 fuel performance are presented. Two high burnup schemes were proposed with three and four cycles, resp. Comparison was made with three cycle reference case. The thermal mechanical analysis was performed with PIN and RELA codes. The values of rod internal pressure, fuel centerline temperatures and fuel-cladding gap are expressed as function of power history. (author)

  6. On calculating phase shifts and performing fits to scattering cross sections or transport properties

    International Nuclear Information System (INIS)

    Hepburn, J.W.; Roy, R.J. Le

    1978-01-01

    Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)

  7. Mathematics Anxiety and Mathematics Self-Efficacy in Relation to Medication Calculation Performance in Nurses

    Science.gov (United States)

    Melius, Joyce

    2012-01-01

    The purpose of this study is to identify and analyze the relationships that exist between mathematics anxiety and nurse self-efficacy for mathematics, and the medication calculation performance of acute care nurses. This research used a quantitative correlational research design and involved a sample of 84 acute care nurses, LVNs and RNs, from a…

  8. The Association of Precollege Use of Calculators with Student Performance in College Calculus

    Science.gov (United States)

    Mao, Yi; White, Tyreke; Sadler, Philip M.; Sonnert, Gerhard

    2017-01-01

    This study investigates how the use of calculators during high school mathematics courses is associated with student performance in introductory college calculus courses in the USA. Data were drawn from a nationally representative sample of 7087 students enrolled in college calculus at 134 colleges and universities. They included information about…

  9. Documenting Student Performance: An Alternative to the Traditional Calculation of Grade Point Averages

    Science.gov (United States)

    Volwerk, Johannes J.; Tindal, Gerald

    2012-01-01

    Traditionally, students in secondary and postsecondary education have grade point averages (GPA) calculated, and a cumulative GPA computed to summarize overall performance at their institutions. GPAs are used for acknowledgement and awards, as partial evidence for admission to other institutions (colleges and universities), and for awarding…

  10. Analysis of chlorpheniramine in human urine samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Mehdi Maham

    2014-09-01

    Full Text Available A simple and environmentally friendly microextraction technique was used for determination of chlorpheniramine (CPM, an antihistamine drug, in human urine samples using dispersive liquid-liquid microextraction (DLLME followed by high performance liquid chromatography with diode array detection (HPLC-DAD. In this extraction technique, an appropriate mixture of acetonitrile (disperser solvent and carbon tetrachloride (extraction solvent was rapidly injected into the urine sample containing the target analyte. Tiny droplets of extractant were formed and dispersed into the sample solution and then sedimented at the bottom of the conical test tube by centrifugation. Under optimal conditions, the calibration curve was linear in the range of 0.055-5.5 µg mL-1, with a detection limit of 16.5 ng mL-1. This proposed method was successfully applied to the analysis of real urine samples. Low consumption of toxic organic solvents, simplicity of operation, low cost and acceptable figures of merit are the main advantages of the proposed technique.

  11. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    Science.gov (United States)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  12. Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes

    KAUST Repository

    Chen, Ye

    2015-12-08

    Polyetherimide (PEI) is a widely applied as engineering plastic in the electronics, aerospace, and automotive industries but the disadvantages of extremely low conductivity, atmospheric moisture absorption, and poor fluidity at high temperature limits its application. Herein, commercial multi-walled carbon nanotubes (MWCNTs) were modified with a long alkyl chain molecule, octadecylamine (ODA), to produce a uniform dispersion in commercial PEI matrices. Both covalent and noncovalent modification of MWCNTs with ODA, were prepared and compared. Modified MWCNTs were incorporated in PEI matrices to fabricate nanocomposite membranes by a simple casting method. Investigating mechanical properties, thermal stability, and conductivity of the polyetherimide (PEI)/MWCNT composites showed a unique combination of properties, such as high electrical conductivity, high mechanical properties, and high thermal stability at a low content of 1.0 wt % loading of ODA modified MWCNTs. Moreover, electrical resistivity decreased around 10 orders of magnitude with only 0.5 wt % of modified MWCNTs.

  13. Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes

    KAUST Repository

    Chen, Ye; Tao, Jing; Ezzeddine, Alaa; Mahfouz, Remi; Al-Shahrani, Abdullah; Alabedi, Gasan; Khashab, Niveen M.

    2015-01-01

    Polyetherimide (PEI) is a widely applied as engineering plastic in the electronics, aerospace, and automotive industries but the disadvantages of extremely low conductivity, atmospheric moisture absorption, and poor fluidity at high temperature limits its application. Herein, commercial multi-walled carbon nanotubes (MWCNTs) were modified with a long alkyl chain molecule, octadecylamine (ODA), to produce a uniform dispersion in commercial PEI matrices. Both covalent and noncovalent modification of MWCNTs with ODA, were prepared and compared. Modified MWCNTs were incorporated in PEI matrices to fabricate nanocomposite membranes by a simple casting method. Investigating mechanical properties, thermal stability, and conductivity of the polyetherimide (PEI)/MWCNT composites showed a unique combination of properties, such as high electrical conductivity, high mechanical properties, and high thermal stability at a low content of 1.0 wt % loading of ODA modified MWCNTs. Moreover, electrical resistivity decreased around 10 orders of magnitude with only 0.5 wt % of modified MWCNTs.

  14. Irradiation performance of oxide dispersion strengthened copper alloys to 150 dpa at 415 degree C

    International Nuclear Information System (INIS)

    Edwards, D.J.; Kumar, A.S.; Anderson, K.R.; Stubbins, J.F.; Garner, F.A.; Hamilton, M.L.

    1991-11-01

    Results have been obtained on the post-irradiation properties of various oxide dispersion strengthened copper alloys irradiated from 34 to 150 dpa at 415 degrees C in the Fast Flux Test Facility. The GlidCop alloys strengthened by Al 2 O 3 continue to outperform other alloys with respect to swelling resistance, and retention of both electrical conductivity and yield strength. Several castable ODS alloys and a Cr 2 O 3 -strengthened alloy show increasingly poor resistance to radiation, especially in their swelling behavior. A HfO 2 -strengthened alloy retains most of its strength and its electrical conductivity reaches a constant level after 50 dpa, but it exhibits a higher residual radioactivity

  15. Synthesis and membrane performance characterization of self-emulsified waterborne nitrocellulose dispersion modified with castor oil

    Science.gov (United States)

    Su, Xiuxia; Zhao, Qingxiao; Zhang, Dan; Dong, Wei

    2015-11-01

    Waterborne nitrocellulose dispersion modified with castor oil (CWNC) was designed and successfully synthesized by self emulsification and reaction among isophorone diisocyanate (IPDI) trimer, dimethylol propionic acid (DMPA), nitrocellulose (NC) and castor oil (C.O.). The CWNC was characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA), etc. The particle size of CWNC increased with the increase of mass fraction of castor oil to total reactants, ω (C.O.). The morphology of particles is an approximate core-shell structure indicated by TEM. FTIR confirmed that the reactions (i.e. IPDI trimer and castor oil, IPDI trimer and NC) occurred, the NCO groups of IPDI trimer were consumed totally and the backbone of NC was retained. The water contact angle measurements confirmed that introduced castor oil increased hydrophobicity of the film, thereby increasing the contact angle. TGA revealed that the CWNC film had better thermal resistance.

  16. First vapor explosion calculations performed with MC3D thermal-hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Berthoud, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Reacteurs Nucleaires

    1998-01-01

    This paper presents the first calculations performed with the `explosion` module of the multiphase computer code MC3D, which is devoted to the fine fragmentation and explosion phase of a fuel coolant interaction. A complete description of the physical laws included in this module is given. The fragmentation models, taking into account two fragmentation mechanisms, a thermal one and an hydrodynamic one, are also developed here. Results to some calculations to test the numerical behavior of MC3D and to test the explosion models in 1D or 2D are also presented. (author)

  17. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2010-03-15

    The Savannah River Site disposes of low-activity radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data become available.

  18. The lifecontingencies Package: Performing Financial and Actuarial Mathematics Calculations in R

    Directory of Open Access Journals (Sweden)

    Giorgio Alfredo Spedicato

    2013-11-01

    Full Text Available It is possible to model life contingency insurances with the lifecontingencies R package, which is capable of performing financial and actuarial mathematics calculations. Its functions permit one to determine both the expected value and the stochastic distribution of insured benefits. Therefore, life insurance coverage can be priced and portfolios risk-based capital requirements can be assessed. This paper briefly summarizes the theory regarding life contingencies that is based on financial mathematics and demographic con- cepts. Then, with the aid of applied examples, it shows how the lifecontingencies package can be a useful tool for executing routine, deterministic, or stochastic calculations for life-contingencies actuarial mathematics.

  19. Calculation of the Inelastic Scattering of Neutrons from Polyethylene and Water; Calcul de la diffusion inelastique des neutrons par le polyethylene et l'eau; Raschet neuprugogo rasseyaniya nejtronov poliehtilenom i vodoj; Calculo de la dispersion inelastica de neutrones por polietileno y agua

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, D T; Federighi, F D [Knolls Atomic Power Laboratory, General Electric Company, Schenectady, NY (United States)

    1963-01-15

    A model for the calculation of the scattering of thermal neutrons from chemical system was proposed by Nelkin. This model considered the actual dynamics of the scattering system as composed of a set of oscillatory motions, each describable by a Hamiltonian which commuted with each of the others. It was then possible to express the differential scattering cross-section in closed form. This model has been used to calculate the scattering of neutrons by water. Some care must be taken in performing the numerical integration over angle and energy. The scattering model has been extended to the calculation of neutron scattering from polyethylene C{sub n}H{sub 2n}. Analogous levels of polyethylene can be noted at 0.089 eV, 0.182 eV, 0.354 eV, and 0.533 eV. The differential and total cross-sections have been calculated for the scattering and the latter has been seen to be in reasonable agreement with experiment at room temperature. Scattering kernels have been calculated for a number of temperatures and where possible the results have been compared with experiment. In addition, neutron flux spectra and diffusion lengths have been calculated using the equations of reactor physics. Comparison of these Results with experimental data indicates that such integral measurements are indicative of at least the gross features of the scattering system and should be analysed in conduction with the detailed differential cross-section results. (author) [French] Nelkin a propose un modele pour calculer la diffusion de neutrons thermiques dans des systemes chimiques. Dans ce mod and le on considere que la dynamique reelle du systeme de diffusion se compose d'un ensemble de mouvements oscillatoires, chaque mouvement pouvant 6tre decrit par un hamiltonien commutant avec chacun des autres. Il est alors possible d'exprimer la section efficace differentielle de diffusion sous une forme fermee. Les auteurs ont employe ce modele pour calculer la diffusion des neutrons par l'eau. Il faut prendre

  20. Nuclear performance calculations for the ELMO Bumpy Torus Reactor (EBTR) reference design

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.

    1977-12-01

    The nuclear performance of the ELMO Bumpy Torus Reactor reference design has been calculated using the one-dimensional discrete ordinates code ANISN and the latest available ENDF/B-IV transport cross-section data and nuclear response functions. The calculated results include estimates of the spatial and integral heating rate with emphasis on the recovery of fusion neutron energy in the blanket assembly and minimization of the energy deposition rates in the cryogenic magnet coil assemblies. The tritium breeding ratio in the natural lithium-laden blanket was calculated to be 1.29 tritium nuclei per incident neutron. The radiation damage in the reactor structural material and in the magnet assembly is also given

  1. Irradiation performance of uranium-molybdenum alloy dispersion fuels; Desempenho sob irradiacao de elementos combustiveis do tipo U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Cirila Tacconi de

    2005-07-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm{sup 3} were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm{sup 3} showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  2. Technical summary of the Performance Assessment Calculational Exercises for 1990 (PACE-90)

    International Nuclear Information System (INIS)

    Barnard, R.W.; Dockery, H.A.

    1991-06-01

    A Performance Assessment Calculational Exercise for 1990 (PACE-90) was coordinated by the Yucca Mountain Site Characterization Project Office for a total-system performance-assessment problem. The primary objectives of the exercise were to develop performance-assessment computational capabilities of the Yucca Mountain Project participates and to aid in identifying critical elements and processes associated with the calculation. The problem defined for PACE-90 was simulation of a ''nominal case'' groundwater flow and transport of a selected group of radionuclides through a portion of Yucca Mountain. Both 1-D and 2-D calculations were run for a modeling period of 100,000 years. The nuclides used, 99 Tc, 135 Cs, 129 I, and 237 Np, were representative of ''classes'' of long-lived nuclides expected to be present in the waste inventory. Movement of the radionuclides was simulated through a detailed hydrostratigraphy developed from Yucca Mountain data specifically for this exercise. The results showed that, for the specified conditions with the conceptual models used in the problem, no radioactive contamination reached the water table, 230 m below the repository. However, due to the unavailability of sufficient site-specific data, the results of this exercise cannot be considered a comprehensive total-system- performance assessment of the Yucca Mountain site as a high-level- waste repository. 46 refs., 94 figs., 19 tabs

  3. An Assessment of SKB's Performance Assessment Calculations in the Interim Main Report for the Safety Assessment SR-Can

    International Nuclear Information System (INIS)

    Maul, Philip; Robinson, Peter

    2005-03-01

    SKB have published their Interim Main Report of the safety assessment SR-Can, which is intended to establish the framework for what will be submitted in 2006 in support of a licence application for construction of the spent fuel encapsulation plant. This follows on from the SR-Can Planning Document published in 2003. The purpose of the Interim Report is stated to be to demonstrate the methodology that will be used for safety assessment. The present report evaluates the information provided in the Interim SR-Can Report that is relevant to the Performance Assessment (PA) calculations that SKB intend to undertake, using independent calculations to facilitate this process. SKB consider that the primary safety function is to isolate completely the fuel within the canisters over the entire assessment period. Should a canister be damaged, the secondary safety function is to ensure that any release is retarded and dispersed sufficiently to ensure that concentrations levels in the accessible environment cannot cause unacceptable consequences. In this report PA calculations are considered to include both a high-level representation of the evolution of the system (relevant to the primary safety function), and any subsequent radionuclide transport (relevant to the secondary safety function). The main conclusions drawn are: 1. The effects of climate evolution on engineered barriers have not been analysed in detail in the Interim Report, and this limits the usefulness of the preliminary calculations that have been undertaken. 2. A key aspect of SKB's approach is the use of an integrated near-field evolution model. The information provided on this model demonstrates its capability efficiently to reproduce calculations from individual process models, but insufficient information is given at the present time to justify statements about interactions between processes. In particular it is assumed that relatively short term thermal and resaturation processes do not affect the

  4. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  5. Dispersion factors - tables and diagrams for the Karlsruhe site

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Baer, M.; Honcu, S.

    1984-02-01

    Dispersion experiments were performed at the Nuclear Research Center for the Karlsruhe site. The evaluation of these experiments allowed to determine the parameters of lateral or vertical atmospheric dispersions. This report is a compilation of tables and diagrams showing the dispersion factors calculated with the help of the dispersion parameters. These dispersion factors are valid for the Karlsruhe site. They have been normalized to 1 m/s wind speed and to 1 g/s (or 1 Bq/s) source strength. (orig.) [de

  6. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.

    2006-04-06

    strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to

  7. Neutronic calculations for JET. Performed with the FURNACE2 program. (Final report JET contract JEO/9004)

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1996-10-01

    Neutron-transport calculations with the FURNACE(2) program system, in support of the Neutron Diagnostic Group at JET, have been performed since 1980, i.e. since the construction phase of JET. FURNACE(2) is a ray-tracing/multiple-reflection transport program system for toroidal geometries, that orginally was developed for blanket neutronics studies and which then was improved and extended for application to the neutron-diagnostics at JET. (orig./WL)

  8. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    International Nuclear Information System (INIS)

    Lim, Doo Hyun; Hatanaka, Koichiro; Ishii, Eiichi

    2010-01-01

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  9. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Doo Hyun [NE Union Hill Road, Suite 200, WA 98052 (United States); Hatanaka, Koichiro; Ishii, Eiichi [Japan Atomic Energy Agency, Hokkaido (Japan)

    2010-10-15

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  10. Performance of a three-axes crystal spectrometer at IEA-Sao Paulo, Brazil: measurements of dispersion relations in copper

    International Nuclear Information System (INIS)

    Fuhrmann, C.; Fulfaro, R.; Vinhas, L.A.

    1978-01-01

    With the purpose to check the performance of IEA Triple Axis Spectrometer of which construction was recently finished, dispersion relation curves for copper at room temperature have been messured. The frequencies of phonons propagating along the three major simmetry directions [xi00] [xixi0] and [xixixi] have been determined. The measurements were carried out operating the Triple Axis Spectrometer in the 'Q constant' mode at neutron energy loss. An excellent agreement could be observed between the results obtained in the present experiment and the accurate data for copper presented in the litterature. In such way, we can conclude that the IEA Triple Axis Spectrometer is in good operational conditions and able to perform original experiments. In this report an outline of the theory of the spectrometer operation and details on the experimental procedures for the case of a Triple Axis Spectrometer operating in the 'Q constant' mode are also presented [pt

  11. SITE-94. Adaptation of mechanistic sorption models for performance assessment calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.

    1996-10-01

    Sorption is considered in most predictive models of radionuclide transport in geologic systems. Most models simulate the effects of sorption in terms of empirical parameters, which however can be criticized because the data are only strictly valid under the experimental conditions at which they were measured. An alternative is to adopt a more mechanistic modeling framework based on recent advances in understanding the electrical properties of oxide mineral-water interfaces. It has recently been proposed that these 'surface-complexation' models may be directly applicable to natural systems. A possible approach for adapting mechanistic sorption models for use in performance assessments, using this 'surface-film' concept, is described in this report. Surface-acidity parameters in the Generalized Two-Layer surface complexation model are combined with surface-complexation constants for Np(V) sorption ob hydrous ferric oxide to derive an analytical model enabling direct calculation of corresponding intrinsic distribution coefficients as a function of pH, and Ca 2+ , Cl - , and HCO 3 - concentrations. The surface film concept is then used to calculate whole-rock distribution coefficients for Np(V) sorption by altered granitic rocks coexisting with a hypothetical, oxidized Aespoe groundwater. The calculated results suggest that the distribution coefficients for Np adsorption on these rocks could range from 10 to 100 ml/g. Independent estimates of K d for Np sorption in similar systems, based on an extensive review of experimental data, are consistent, though slightly conservative, with respect to the calculated values. 31 refs

  12. Use of condensed videos in a flipped classroom for pharmaceutical calculations: Student perceptions and academic performance.

    Science.gov (United States)

    Gloudeman, Mark W; Shah-Manek, Bijal; Wong, Terri H; Vo, Christina; Ip, Eric J

    2018-02-01

    The flipped teaching method was implemented through a series of multiple condensed videos for pharmaceutical calculations with student perceptions and academic performance assessed post-intervention. Student perceptions from the intervention group were assessed via an online survey. Pharmaceutical exam scores of the intervention group were compared to the control group. The intervention group spent a greater amount of class time on active learning. The majority of students (68.2%) thought that the flipped teaching method was more effective to learn pharmaceutical calculations than the traditional method. The mean exam scores of the intervention group were not significantly different than the control group (80.5 ± 15.8% vs 77.8 ± 16.8%; p = 0.253). Previous studies on the flipped teaching method have shown mixed results in regards to student perceptions and exam scores, where either student satisfaction increased or exam scores improved, but rarely both. The flipped teaching method was rated favorably by a majority of students. The flipped teaching method resulted in similar outcomes in pharmaceutical calculations exam scores, and it appears to be an acceptable and effective option to deliver pharmaceutical calculations in a Doctor of Pharmacy program. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Assessing the stability of free-energy perturbation calculations by performing variations in the method

    Science.gov (United States)

    Manzoni, Francesco; Ryde, Ulf

    2018-03-01

    We have calculated relative binding affinities for eight tetrafluorophenyl-triazole-thiogalactoside inhibitors of galectin-3 with the alchemical free-energy perturbation approach. We obtain a mean absolute deviation from experimental estimates of only 2-3 kJ/mol and a correlation coefficient (R 2) of 0.5-0.8 for seven relative affinities spanning a range of up to 11 kJ/mol. We also studied the effect of using different methods to calculate the charges of the inhibitor and different sizes of the perturbed group (the atoms that are described by soft-core potentials and are allowed to have differing coordinates). However, the various approaches gave rather similar results and it is not possible to point out one approach as consistently and significantly better than the others. Instead, we suggest that such small and reasonable variations in the computational method can be used to check how stable the calculated results are and to obtain a more accurate estimate of the uncertainty than if performing only one calculation with a single computational setup.

  14. Yearly thermal performances of solar heating plants in Denmark – Measured and calculated

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Perers, Bengt

    2018-01-01

    The thermal performance of solar collector fields depends mainly on the mean solar collector fluid temperature of the collector field and on the solar radiation. For Danish solar collector fields for district heating the measured yearly thermal performances per collector area varied in the period...... 2012–2016 between 313 kWh/m2 and 577 kWh/m2, with averages between 411 kWh/m2 and 463 kWh/m2. The percentage difference between the highest and lowest measured yearly thermal performance is about 84%. Calculated yearly thermal performances of typically designed large solar collector fields at six...... different locations in Denmark with measured weather data for the years 2002–2010 vary between 405 kWh/m2 collector and 566 kWh/m2 collector, if a mean solar collector fluid temperature of 60 °C is assumed. This corresponds to a percentage difference between the highest and lowest calculated yearly thermal...

  15. CHEMICAL OIL SPILL DISPERSANTS: UPDATE STATE-OF-THE- ART ON MECHANISM OF ACTION AND LABORATORY TESTING FOR PERFORMANCE

    Science.gov (United States)

    Chemical dispersants are formulations designed to facilitate dispersion of an oil slick into small droplets that disperse to non-problematic concentrations in an underlying water column. This project had two primary objectives: (1) update information on mechanisms of action of ...

  16. Constructing a Multiple Covalent Interface and Isolating a Dispersed Structure in Silica/Rubber Nanocomposites with Excellent Dynamic Performance.

    Science.gov (United States)

    Zheng, Junchi; Han, Dongli; Zhao, Suhe; Ye, Xin; Wang, Yiqing; Wu, Youping; Dong, Dong; Liu, Jun; Wu, Xiaohui; Zhang, Liqun

    2018-06-13

    Realizing and manipulating a fine dispersion of silica nanoparticles (NPs) in the polymer matrix is always a great challenge. In this work, we first successfully synthesized N, N'-bis[3-(triethoxysilyl)propyl-isopropanol]-propane-1,3-diamine (TSPD), which was a new interface modifier, aiming to promote the dispersion of silica NPs. Through Fourier transform infrared spectroscopy, nuclear magnetic resonance analysis, and mass spectroscopy, we verified that TSPD contains together six ethoxy groups at its two ends. Then, we used this TSPD to modify the pure silica NPs, and this modified silica was abbreviated as D-MS, which is realized by the thermal gravimetric analysis examination, scanning electron microscopy analysis, and dynamic light scattering results. It was clearly observed that D-MS NPs are connected to one another but are not conglutinated tightly, exhibiting a novel predispersed structure with around 1-2 nm certain extent of interparticle distance. Next, we fabricated the following four elastomer nanocomposites such as pure silica/natural rubber (NR) composite (PS-NR), D-MS/NR composite (DMS-NR), bis-(γ-triethoxysilylpropyl)-tetrasulfide (TESPT)-modified silica/NR composite (TS-NR), and TESPT-modified D-MS/NR composite (T&DMS-NR) and found that the Payne effect is the smallest for T&DMS-NR via the combination use of the D-MS and the traditional coupling agent TESPT, which is attributed to its best dispersion state evidenced by the transmission electron microscopy results. Moreover, by measuring a series of other important mechanical performances such as the stress-strain curve, the dynamic strain dependence of the loss factor, and the heat build-up, we concluded that the T&DMS-NR system greatly exceeds those of the three other rubber composites. In general, this new approach provides a good opportunity to prepare a silica/rubber composite with excellent properties in mechanical strength and dynamic behavior by tailoring the fine dispersion of NPs.

  17. Sequestration Coating Performance Requirements for Mitigation of Contamination from a Radiological Dispersion Device

    International Nuclear Information System (INIS)

    Drake, J.

    2009-01-01

    Immediate action would be necessary to minimize the effects of a radiological 'dirty bomb' detonation in a major city. After a dirty bomb has been detonated, vehicular and pedestrian traffic, as well as weather effects, would increase the spread of loose contamination, making control and recovery more difficult and costly. While contaminant migration and chemical binding into surface materials can be relatively rapid, the immediate treatment of surfaces with large quantities of an appropriate compound could alleviate much of the difficulty in decontamination. The EPA's National Homeland Security Research Center (NHSRC), in collaboration with ASTM International, is currently developing performance standards for materials which could be applied to exterior surfaces contaminated by an RDD to mitigate the spread and migration of radioactive contamination. These performance standards are being promulgated via an ASTM Standard Specification to be published by ASTM International. Test methods will be developed to determine if candidate coatings meet the performance requirements stipulated in the ASTM performance standard. These test methods will be adapted from existing standard methods, or will be devised through laboratory research. The final set of test methods will be codified in an ASTM or other standard test method. The principal market for products described in the ASTM performance standard would be federal, state and local government emergency responders and response planners, decontamination service providers and those whose interests include protection and recovery of real estate potentially at risk from radiological terrorism. (authors)

  18. High performance shape annealing matrix (HPSAM) methodology for core protection calculators

    International Nuclear Information System (INIS)

    Cha, K. H.; Kim, Y. H.; Lee, K. H.

    1999-01-01

    In CPC(Core Protection Calculator) of CE-type nuclear power plants, the core axial power distribution is calculated to evaluate the safety-related parameters. The accuracy of the CPC axial power distribution highly depends on the quality of the so called shape annealing matrix(SAM). Currently, SAM is determined by using data measured during startup test and used throughout the entire cycle. An issue concerned with SAM is that it is fairly sensitive to measurements and thus the fidelity of SAM is not guaranteed for all cycles. In this paper, a novel method to determine a high-performance SAM (HPSAM) is proposed, where both measured and simulated data are used in determining SAM

  19. Comparison of calculations with neutron dosimetry measurements performed at the Oak Ridge Poolside Facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Williams, M.L.

    1981-01-01

    The Oak Ridge Poolside Facility (PSF), like the Pool Critical Assembly (PCA), is used for benchmark dosimetry measurements which can serve to validate the transport methods used in calculating the high-energy neutron fluences (> 0.1 MeV) in LWR pressure vessels required to estimate the neutron damage to the pressure vessels in the form of embrittlement. The PSF consists of an arrangement of two water gaps of 4 and 12 cm thickness separated by a simulated thermal shield and followed by a simulated pressure vessel wall and then a void box to represent a reactor cavity. The PSF is driven by the 30 MW ORR reactor, whereas the geometrically similar core of the PCA has a maximum power of only 10 KW. This paper reports the results of some calculated activities and compares them with published PSF measurements performed by HEDL and other laboratories on the so-called Westinghouse surveillance capsule perturbation experiment.

  20. Comparison of calculations with neutron dosimetry measurements performed at the Oak Ridge Poolside Facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Williams, M.L.

    1981-01-01

    The Oak Ridge Poolside Facility (PSF), like the Pool Critical Assembly (PCA), is used for benchmark dosimetry measurements which can serve to validate the transport methods used in calculating the high-energy neutron fluences (> 0.1 MeV) in LWR pressure vessels required to estimate the neutron damage to the pressure vessels in the form of embrittlement. The PSF consists of an arrangement of two water gaps of 4 and 12 cm thickness separated by a simulated thermal shield and followed by a simulated pressure vessel wall and then a void box to represent a reactor cavity. The PSF is driven by the 30 MW ORR reactor, whereas the geometrically similar core of the PCA has a maximum power of only 10 KW. This paper reports the results of some calculated activities and compares them with published PSF measurements performed by HEDL and other laboratories on the so-called Westinghouse surveillance capsule perturbation experiment

  1. DEM analysis of the effect of particle-wall impact on the dispersion performance in carrier-based dry powder inhalers.

    Science.gov (United States)

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2015-06-20

    The impact between particles or agglomerates and a device wall is considered as an important mechanism controlling the dispersion of active pharmaceutical ingredient (API) particles in dry powder inhalers (DPIs). In order to characterise the influencing factors and better understand the impact induced dispersion process for carrier-based DPIs, the impact behaviour between an agglomerate and a wall is systematically investigated using the discrete element method. In this study, a carrier-based agglomerate is initially formed and then allowed to impact with a target wall. The effects of impact velocity, impact angle and work of adhesion on the dispersion performance are analysed. It is shown that API particles in the near-wall regions are more likely to be dispersed due to the deceleration of the carrier particle resulted from the impact with the wall. It is also revealed that the dispersion ratio increases with increasing impact velocity and impact angle, indicating that the normal component of the impact velocity plays a dominant role on the dispersion. Furthermore, the impact induced dispersion performance for carrier-based DPI formulations can be well approximated using a cumulative Weibull distribution function that is governed by the ratio of overall impact energy and adhesion energy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Input/Output of ab-initio nuclear structure calculations for improved performance and portability

    International Nuclear Information System (INIS)

    Laghave, Nikhil

    2010-01-01

    Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.

  3. Effects of varying the longitudinal dispersion and no drip cask rate failures upon Yucca Mountain site performance

    International Nuclear Information System (INIS)

    Winterle, Bret

    2001-01-01

    Proposed changes in the regulatory time limits used for viability assessments of the proposed national high-level radioactive waste repository in Yucca Mountain, Nevada from 10,000 years to 100,000 or even 1,000,000 years call into question both the modelling techniques used to represent the repository's long-term performance, and our ability to extrapolate technological, climatological and geological phenomenon. Using a high-powered risk-assessment software program called Goldsim that a simplified total system performance assessment (STSPA) was designed for, the effects of varying the performance parameters of two barrier systems, one natural and one man-made, upon the total system performance were observed. The conclusion reached by varying these two parameters is that for a regulatory guideline of 10,000 years, there is no noticeable effect on the total system performance, but at 300,000 years, it appears that the effect of reducing the longitudinal dispersion rate (a natural barrier) by one order of magnitude produced an astronomically high receptor dose, indicating that as predicted, our abilities to model situations beyond our ability to accurately extrapolate current scientific research is futile. (author)

  4. Effects of varying the longitudinal dispersion and no drip cask rate failures upon Yucca Mountain site performance

    Energy Technology Data Exchange (ETDEWEB)

    Winterle, Bret

    2001-07-01

    Proposed changes in the regulatory time limits used for viability assessments of the proposed national high-level radioactive waste repository in Yucca Mountain, Nevada from 10,000 years to 100,000 or even 1,000,000 years call into question both the modelling techniques used to represent the repository's long-term performance, and our ability to extrapolate technological, climatological and geological phenomenon. Using a high-powered risk-assessment software program called Goldsim that a simplified total system performance assessment (STSPA) was designed for, the effects of varying the performance parameters of two barrier systems, one natural and one man-made, upon the total system performance were observed. The conclusion reached by varying these two parameters is that for a regulatory guideline of 10,000 years, there is no noticeable effect on the total system performance, but at 300,000 years, it appears that the effect of reducing the longitudinal dispersion rate (a natural barrier) by one order of magnitude produced an astronomically high receptor dose, indicating that as predicted, our abilities to model situations beyond our ability to accurately extrapolate current scientific research is futile. (author)

  5. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ryu, H.J.; Park, J.M.; Yang, J.H. [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-08-15

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the {gamma}-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  6. Neutron metrology file NMF-90. An integrated database for performing neutron spectrum adjustment calculations

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1996-01-01

    The Neutron Metrology File NMF-90 is an integrated database for performing neutron spectrum adjustment (unfolding) calculations. It contains 4 different adjustment codes, the dosimetry reaction cross-section library IRDF-90/NMF-G with covariances files, 6 input data sets for reactor benchmark neutron fields and a number of utility codes for processing and plotting the input and output data. The package consists of 9 PC HD diskettes and manuals for the codes. It is distributed by the Nuclear Data Section of the IAEA on request free of charge. About 10 MB of diskspace is needed to install and run a typical reactor neutron dosimetry unfolding problem. (author). 8 refs

  7. Simultaneous calculation and assessment of facade performances; Gelijktijdig berekenen en beoordelen van gevelprestaties

    Energy Technology Data Exchange (ETDEWEB)

    Berk, A.B.M.; Rutten, P.G.S.; Loomans, M.G.L.C.; Aarts, M.P.J.; Loonen, R.C.G.M. [Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands)

    2013-01-15

    What is the added value of simultaneous calculation of performance indicators in terms of visual comfort, thermal comfort and related use of energy with regard to design of a building facade? This and other related questions are answered on the basis of research aimed at an area with office functions [Dutch] Wat is de meerwaarde van het 'gelijktijdig' in een model berekenen van prestatieindicatoren in termen van visueel comfort, thermisch comfort en bijbehorend energiegebruik in relatie tot het gevelontwerp? In dit artikel worden deze en andere daaraan verwante vragen beantwoord op basis van onderzoek dat gericht is op een ruimte met kantoorfunctie.

  8. Performance Improvement of the Core Protection Calculator System (CPCS) by Introducing Optimal Function Sets

    International Nuclear Information System (INIS)

    Won, Byung Hee; Kim, Kyung O; Kim, Jong Kyung; Kim, Soon Young

    2012-01-01

    The Core Protection Calculator System (CPCS) is an automated device which is adopted to inspect the safety parameters such as Departure from Nuclear Boiling Ratio (DNBR) and Local Power Density (LPD) during normal operation. One function of the CPCS is to predict the axial power distributions using function sets in cubic spline method. Another function of that is to impose penalty when the estimated distribution by the spline method disagrees with embedded data in CPCS (i.e., over 8%). In conventional CPCS, restricted function sets are used to synthesize axial power shape, whereby it occasionally can draw a disagreement between synthesized data and the embedded data. For this reason, the study on improvement for power distributions synthesis in CPCS has been conducted in many countries. In this study, many function sets (more than 18,000 types) differing from the conventional ones were evaluated in each power shape. Matlab code was used for calculating/arranging the numerous cases of function sets. Their synthesis performance was also evaluated through error between conventional data and consequences calculated by new function sets

  9. Validity limits of fuel rod performance calculations from radiochemical data at operating LWRs

    International Nuclear Information System (INIS)

    Zaenker, H.; Nebel, D.

    1986-01-01

    There are various calculational models for the assessment of the fuel rod performance on the basis of the activities of gaseous and volatile fission products in the reactor coolant. The most important condition for the applicability of the calculational models is that a steady state release of the fission products into the reactor coolant takes place. It is well known that the models are not applicable during or shortly after reactor transients. The fact that 'unsteady states' caused by the fuel defection processes themselves can also occur in rare cases at steady reactor operation has not been taken into account so far. A test of validity is suggested with the aid of which the applicability of the calculational models can be checked in any concrete case, and the misleading of the reactor operators by gross misinterpretation of the radiochemical data can be avoided. The criteria of applicability are the fission product total activity, the slope tan α in the relationship lg (R/sub i//B/sub i/) proportional to lg lambda/sub i/ for the gaseous and volatile fission products, and the activity of the nonvolatile isotope 239 Np. (author)

  10. Calculation method for the seasonal performance of heat pump compact units and validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Dott, R.; Afjei, Th. [University of Applied Sciences Northwestern Switzerland, Institute of Energy in Buildings, Muttenz (Switzerland); Huber, H.; Helfenfinger, D.; Keller, P.; Furter, R. [University of Applied Sciences Lucerne (HTA), Test center HLKS, Horw (Switzerland)

    2007-02-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at compact heat pump units that have been developed for the heating of low energy consumption houses built to MINERGIE or MINERGIE-P standards. These units, which combine the functions of space heating, domestic hot water preparation and ventilation in one unit are described. A testing procedure developed at the University of Applied Science in Lucerne, Switzerland, using a test rig for the measurement of the seasonal performance factor (SPF) is described. A calculation method based on temperature classes for the calculation of the SPF of combined heat pump systems for space heating and domestic hot water preparation that was developed by the Institute of Energy in Buildings at the University of Applied Sciences Northwestern Switzerland is examined. Two pilot plants allowing detailed field monitoring of two compact units are described. One pilot plant installed in a single-family house built to MINERGIE standard in Gelterkinden, Switzerland, provided data on a compact unit. These results of measurements made on this and a further installation in a MINERGIE-P ultra-low energy consumption house in Zeiningen, Switzerland, are presented and discussed. Calculation methods, including exergy considerations are reviewed and their validation is discussed.

  11. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Ilke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Univ. of Alabama, Tuscaloosa, AL (United States); Gates, Bruce C. [Univ. of California, Davis, CA (United States); Katz, Alexander [Univ. of California, Berkeley, CA (United States)

    2015-09-30

    ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.

  12. Toolkit for high performance Monte Carlo radiation transport and activation calculations for shielding applications in ITER

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Grosse, D.; Leichtle, D.; Majerle, M.

    2011-01-01

    The Monte Carlo (MC) method is the most suitable computational technique of radiation transport for shielding applications in fusion neutronics. This paper is intended for sharing the results of long term experience of the fusion neutronics group at Karlsruhe Institute of Technology (KIT) in radiation shielding calculations with the MCNP5 code for the ITER fusion reactor with emphasizing on the use of several ITER project-driven computer programs developed at KIT. Two of them, McCad and R2S, seem to be the most useful in radiation shielding analyses. The McCad computer graphical tool allows to perform automatic conversion of the MCNP models from the underlying CAD (CATIA) data files, while the R2S activation interface couples the MCNP radiation transport with the FISPACT activation allowing to estimate nuclear responses such as dose rate and nuclear heating after the ITER reactor shutdown. The cell-based R2S scheme was applied in shutdown photon dose analysis for the designing of the In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit in ITER. Newly developed at KIT mesh-based R2S feature was successfully tested on the shutdown dose rate calculations for the upper port in the Neutral Beam (NB) cell of ITER. The merits of McCad graphical program were broadly acknowledged by the neutronic analysts and its continuous improvement at KIT has introduced its stable and more convenient run with its Graphical User Interface. Detailed 3D ITER neutronic modeling with the MCNP Monte Carlo method requires a lot of computation resources, inevitably leading to parallel calculations on clusters. Performance assessments of the MCNP5 parallel runs on the JUROPA/HPC-FF supercomputer cluster permitted to find the optimal number of processors for ITER-type runs. (author)

  13. Errors in the calculation of new salary positions and performance premiums – 2017 MERIT exercise

    CERN Multimedia

    Staff Association

    2017-01-01

    Following the receipt of the letters dated May 12th announcing the qualification of their performance (MERIT 2017), and the notification of their salary slips for the month of May, several colleagues have come to us to enquire about the calculation of salary increases and performance premiums. After verification, the Staff Association has informed the Management, in a meeting of the Standing Concertation Committee on June 1st, about errors owing to rounding in the applied formulas. James Purvis, Head of HR department, has published in the CERN Bulletin dated July 18th an article, under the heading “Better precision (rounding)”, that gives a short explanation of these rounding effects. But we want to further bring you more precise explanations. Advancement On the salary slips for the month of May, the calculations of the advancement and new salary positions were done, by the services of administrative computing in the FAP department, on the basis of the salary, rounded to the nearest franc...

  14. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2016-12-01

    Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.

  15. Scale-Dependent Solute Dispersion in Variably Saturated Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Z. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bott, Yi-Ju [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-29

    This work was performed to support performance assessment (PA) calculations for the Integrated Disposal Facility (IDF) at the Hanford Site. PA calculations require defensible estimates of physical, hydraulic, and transport parameters to simulate subsurface water flow and contaminant transport in both the near- and far-field environments. Dispersivity is one of the required transport parameters.

  16. Performance of Nb protective diffusion coating on U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hyeon; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Sunghwan; Nam, Ji Min; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To achieve this aim, it is necessary to increase the volume fraction of fuel particles inside the meat. However, the technical limit is reached at approximately 55 vol.% of fuel particles in the aluminum matrix. As a solution, an uranium compound with an higher uranium density than existing U3Si2 fuel has to be selected. Also alloying the uranium must stabilize γ-phase of uranium at room temperature because adequate properties of the γ -phase of uranium showed a good irradiation behavior in the past. Hence, U-Mo alloys were selected as the best candidates. The formation of interaction phase is a critical problem to apply U-Mo alloys to the high performance research reactor. Different means have been proposed to reduce the interaction between U-Mo fuel and Al matrix. There are three means. : 1. Addition of a diffusion limiting element to the matrix 2. Insertion of a diffusion barrier at the interface between the U-Mo and the Al 3. Alloying of the U-Mo with a third element Here we present the effect of Nb coating as diffusion barrier on formation of interaction layers between UMo powders and Al matrix. We present the effect of Nb coating on formation of interaction layers between U-Mo powders and Al matrix. Centrifugally atomized U-7 wt.% Mo powders were used, and Nb was coated on the surface of U-7 wt.% Mo by sputtering. Subsequently, the Nb-coated U-7 wt.% Mo powders were mixed with pure Al powders, and were made into compacts. The compacts were annealed at 550 .deg. C for 1, 3, 5 hours, respectively, and the result showed that the Nb coating on U-7 wt.% Mo effectively suppressed the growth of interaction layers between U-7 wt.% Mo and Al matrix.

  17. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Jouyban, Abolghasem; Sorouraddin, Mohammad Hossein; Farajzadeh, Mir Ali; Somi, Mohammad Hossein; Fazeli-Bakhtiyari, Rana

    2015-03-01

    A fast and sensitive high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection was developed and validated for the simultaneous quantitation of five antiarrhythmic drugs (metoprolol, propranolol, carvedilol, diltiazem, and verapamil) in human plasma samples. It involves dispersive liquid-liquid microextraction (DLLME) of the desired drugs from 660 µL plasma and separation using isocratic elution with UV detection at 200 nm. The complete separation of all analytes was achieved within 7 min. Acetonitrile (as disperser solvent) resulting from the protein precipitation procedure was mixed with 100 µL dichloromethane (as an extraction solvent) and rapidly injected into 5 mL aqueous solution (pH 11.5) containing 1% (w/v), NaCl. After centrifugation, the sedimented phase containing enriched analytes was collected and evaporated to dryness. The residue was re-dissolved in 50 µL de-ionized water (acidified to pH 3) and injected into the HPLC system for analysis. Under the optimal conditions, the enrichment factors and extraction recoveries ranged between 4.4-10.8 and 33-82%, respectively. The suggested method was linear (r(2) ≥0.997) over a dynamic range of 0.02-0.80 µg mL(-1) in plasma. The intra- and inter-days relative standard deviation (RSD%) and relative error (RE%) values of the method were below 20%, which shows good precision and accuracy. Finally, this method was applied to the analysis of real plasma samples obtained from the patients treated with these drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements; Calculos neutronicos, termo-hidraulicos e de seguranca de um dispositivo para Irradiacao de miniplacas (DIM) de elementos combustiveis tipo dispersao

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges

    2010-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U{sub 3}O{sub 8}-Al and U{sub 3}Si{sub 2}- Al dispersion fuels, LEU type (19.75 % {sup 235}U) with uranium densities of, respectively, 3.2 gU/cm{sup 3} and 4.8 gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  19. Neutronic, thermal-hydraulics and accident analysis calculations for an irradiation device to be used in the qualification process of dispersion fuels in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges; Silva, Antonio Teixeira e; Umbehaun, Pedro Ernesto; Silva, Jose Eduardo Rosa da; Conti, Thadeu das Neves; Yamaguchi, Mitsuo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: douglasborgesdomingos@yahoo.com.br

    2009-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of an irradiation device placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U{sub 3}O{sub 8}-Al e U{sub 3}Si{sub 2}-Al dispersion fuels, LEU type (19.9% of {sup 235}U), with uranium densities of, respectively, 3.0 gU/cm{sup 3} and 4.8gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor, now in the conception phase. For the neutronic calculation, the computer code CITATION was utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation of the fuel miniplates will happen without any adverse consequence in the IEA-R1 reactor. (author)

  20. Methods of calculating the post-closure performance of high-level waste repositories

    International Nuclear Information System (INIS)

    Ross, B.

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs

  1. Methods of calculating the post-closure performance of high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. (ed.)

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  2. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  3. Exploration of Important Issues for the Safety of SFR 1 using Performance Assessment Calculations

    International Nuclear Information System (INIS)

    Maul, P.R.; Robinson, P.C.

    2002-06-01

    SKB has produced a revised safety case for the SFR 1 disposal facility for low and intermediate level radioactive wastes at Forsmark: project SAFE. This assessment includes a Performance Assessment (PA) for the long term post-closure safety of the facility. SKI has a responsibility to scrutinise SKB's safety case that is shared with SSI. Quintessa has undertaken a review of SKB's case for the long term safety of SFR 1 to assist SKI's evaluation of SAFE, and this is given in SKI-R--02-61, henceforth referred to as the Quintessa Review. The current report describes the independent PA calculations that provided an input to that review. Since 1999 SKI has been developing a PA capability for SFR 1 using the AMBER software. Two key features of the approach taken have been: To represent the whole system in a single model; and To allow the time-dependency of all key features, events and processes to be represented. These capabilities allow a better understanding of the key features of the system to be obtained for different future evolutions (scenarios). This report presents a summary of the work undertaken to provide SKI with a PA capability for SFR 1 and the calculations undertaken with it. Calculations have been undertaken for radionuclides transported in groundwater and gas, but not for direct intrusion by humans into the wastes. It should be emphasised that the purpose of the Performance Assessment calculations described in this report is not to provide an alternative assessment of potential radiological impacts to that produced by SKB. The aim is to use the models that have been developed to investigate the important features of the system and to help SKI scrutinise the case put to them by SKB. The PA calculations that have been undertaken are by no means comprehensive, and various issues could be investigated further if required. The key issues that have been identified can be summarised as follows: 1. The SFR 1 system has a number of different timescales that can

  4. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    NARCIS (Netherlands)

    Moonen, P.; Gromke, C.B.; Dorer, V.

    2013-01-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are

  5. Calculation of the yearly energy performance of heating systems based on the European Building Energy Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; de Carli, Michele

    2011-01-01

    According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting syst......–20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler. Keywords: Heating systems; CEN standards; Energy performance; Calculation methods......According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting...... systems. This energy declaration must refer to the primary energy or CO2 emissions. The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant...

  6. Synthesis and dyeing performance of bisazo disperse dyes based on 3-[4-(4-amino-2-chlorophenoxyanilino]phenol

    Directory of Open Access Journals (Sweden)

    Rajesh H. Parab

    2016-09-01

    Full Text Available The present communication aims to develop bisazo disperse dyes based on 3-[4-(4-amino-2-chlorophenoxyanilino]phenol (DAP both as a coupling component as well as a diazonium salt. Coupling reaction of DAP was carried out with a diazonium salt of 4-aminoacetanilide to yield a monoazo disperse dye, and then it was further used as a diazonium salt and coupled with a different aromatic phenol to synthesize bisazo disperse dyes. All the disperse dyes were characterized by elemental analysis, IR, NMR and UV–Visible spectral studies with a view to determine their chemical structure. The dyeing ability of these bisazo disperse dyes has been evaluated in terms of their dyeing behavior and fastness properties on different fabrics.

  7. Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-02-01

    Full Text Available As one of the most widely used units in water cooling systems, the closed wet cooling towers (CWCTs have two typical counter-flow constructions, in which the spray water flows from the top to the bottom, and the moist air and cooling water flow in the opposite direction vertically (parallel or horizontally (cross, respectively. This study aims to present a simplified calculation method for conveniently and accurately analyzing the thermal performance of the two types of counter-flow CWCTs, viz. the parallel counter-flow CWCT (PCFCWCT and the cross counter-flow CWCT (CCFCWCT. A simplified cooling capacity model that just includes two characteristic parameters is developed. The Levenberg–Marquardt method is employed to determine the model parameters by curve fitting of experimental data. Based on the proposed model, the predicted outlet temperatures of the process water are compared with the measurements of a PCFCWCT and a CCFCWCT, respectively, reported in the literature. The results indicate that the predicted values agree well with the experimental data in previous studies. The maximum absolute errors in predicting the process water outlet temperatures are 0.20 and 0.24 °C for the PCFCWCT and CCFCWCT, respectively. These results indicate that the simplified method is reliable for performance prediction of counter-flow CWCTs. Although the flow patterns of the two towers are different, the variation trends of thermal performance are similar to each other under various operating conditions. The inlet air wet-bulb temperature, inlet cooling water temperature, air flow rate, and cooling water flow rate are crucial for determining the cooling capacity of a counter-flow CWCT, while the cooling tower effectiveness is mainly determined by the flow rates of air and cooling water. Compared with the CCFCWCT, the PCFCWCT is much more applicable in a large-scale cooling water system, and the superiority would be amplified when the scale of water

  8. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    Science.gov (United States)

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic fluid with high dispersion and heating performance using nano-sized Fe{sub 3}O{sub 4} platelets

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Mikio, E-mail: kishimoto.mikio.gb@u.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Miyamoto, Ryoichi; Oda, Tatsuya [Department of Surgery, Division of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Yanagihara, Hideto [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Ohkohchi, Nobuhiro [Department of Surgery, Division of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Kita, Eiji [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-01-15

    Magnetic fluid with high dispersion and heating performance was developed using 30 to 50 nm platelet Fe{sub 3}O{sub 4} particles. This fluid was prepared by mechanical dispersion in ethyl alcohol with a silane coupling agent, bonding with polyethylene glycol (PEG), and removal of aggregates formed by precipitation. The peak diameter of the resulting Fe{sub 3}O{sub 4} particles, measured by dynamic light scattering, was approximately 150 nm. The fluid exhibited a 300 W/g specific loss power (measured at 114 kHz by a 50.9 kA/m magnetic field). Distribution of the Fe{sub 3}O{sub 4} particles in tissues was observed by intravenously administrating the fluid in mice. The Fe{sub 3}O{sub 4} particles passed through the lungs, and were uniformly distributed throughout the liver and spleen. High dispersion and high heating performance were simultaneously achieved in the magnetic fluid using platelet Fe{sub 3}O{sub 4} particles surface modified with PEG. - Highlights: • Magnetic fluid with high dispersion and heating performance using Fe{sub 3}O{sub 4} particles. • Fluid prepared by mechanical dispersion, bonding with polyethylene glycol. • TEM observation and measurements of particle size distribution and specific loss power of fluid. • Observation of distribution of particles in mice tissues intravenously administrated fluid.

  10. Studying performation: the arrangement of speech, calculation and writing acts within dispositifs : Carbon accounting for strategizing in a large corporation

    OpenAIRE

    Le Breton , Morgane; Aggeri , Franck

    2016-01-01

    International audience; This paper aims at proposing an analytical framework for performation process that is performation through speech, calculation and writing acts connected within a “dispositif”. This analytical framework is put into practice in the case study of a French large corporation which has built a low-carbon strategy based on carbon accounting tools. We have found that low-carbon strategy is performed through carbon accounting tools since speech, calculation and writing acts ar...

  11. MHD stability of JET high performance discharges. Comparison of MHD calculations with experimental observations

    International Nuclear Information System (INIS)

    Huysmans, G.

    1998-03-01

    One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption

  12. Geometrical and wave-optical effects on the performance of a bent-crystal dispersive X-ray spectrometer

    International Nuclear Information System (INIS)

    Sutter, J.P.; Amboage, M.; Hayama, S.; Diaz-Moreno, S.

    2010-01-01

    The X-ray focusing properties of a bent single crystal diffracting in Bragg geometry are discussed. First, it is assumed that a polychromatic point source is focused to a point image. The elliptical arc that the crystal must trace and the aberrations caused by bending the crystal cylindrically are derived from the ray paths. For a source of finite size, the magnification is found to vary over the crystal's length, so that rays of different wavelength produce images of different size. More realistic treatments of penetration and diffraction are performed with spherical monochromatic incident waves, using Takagi-Taupin calculations to create the diffracted wave and the Fresnel integral to trace the diffracted wave's evolution. Such 'wave-optical' calculations on a symmetric Si (1 1 1) crystal with 7 keV X-rays predict beam sizes different from those found in ray traces. Optimal sample and detector placement therefore requires wave effects to be considered.

  13. Selection method and device for reactor core performance calculation input indication

    International Nuclear Information System (INIS)

    Yuto, Yoshihiro.

    1994-01-01

    The position of a reactor core component on a reactor core map, which is previously designated and optionally changeable, is displayed by different colors on a CRT screen by using data of a data file incorporating results of a calculation for reactor core performance, such as incore thermal limit values. That is, an operator specifies the kind of the incore component to be sampled on a menu screen, to display the position of the incore component which satisfies a predetermined condition on the CRT screen by different colors in the form of a reactor core map. The position for the reactor core component displayed on the CRT screen by different colors is selected and designated on the screen by a touch panel, a mouse or a light pen, thereby automatically outputting detailed data of evaluation for the reactor core performance of the reactor core component at the indicated position. Retrieval of coordinates of fuel assemblies to be data sampled and input of the coordinates and demand for data sampling can be conducted at once by one menu screen. (N.H.)

  14. The Preparation and Performances of Self-Dispersed Nanomicron Emulsified Wax Solid Lubricant Ewax for Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2014-01-01

    Full Text Available An oil-in-water nanomicron wax emulsion with oil phase content 45 wt% was prepared by using the emulsifying method of surfactant-in-oil. The optimum prepared condition is 85°C, 20 min, and 5 wt% complex emulsifiers. Then the abovementioned nanomicron emulsifying wax was immersed into a special water-soluble polymer in a certain percentage by the semidry technology. At last, a solidified self-dispersed nanomicron emulsified wax named as Ewax, a kind of solid lubricant for water based drilling fluid, was obtained after dried in the special soluble polymer containing emulsifying wax in low temperature. It is shown that the adhesion coefficient reduced rate (ΔKf is 73.5% and the extreme pressure (E-P friction coefficient reduced rate (Δf is 77.6% when the produced Ewax sample was added to fresh water based drilling fluid at dosage 1.0 wt%. In comparison with other normal similar liquid products, Ewax not only has better performances of lubrication, filtration loss control property, heat resistance, and tolerance to salt and is environmentally friendly, but also can solve the problems of freezing in the winter and poor storage stability of liquid wax emulsion in oilfield applications.

  15. Radionuclide composition in nuclear fuel waste. Calculations performed by ORIGEN2; Radionuklidinnehaall i utbraent kaernbraensle. Beraekningar med ORIGEN2

    Energy Technology Data Exchange (ETDEWEB)

    Lyckman, C

    1996-01-01

    The report accounts for results from calculations on the content of radionuclides in nuclear fuel waste. It also accounts for the results from calculations on the neutron flow from spent fuel, which is very important during transports. The calculations have been performed using the ORIGEN2 software. The results have been compared to other results from earlier versions of ORIGEN and some differences have been discovered. This is due to the updating of the software. 7 refs, 10 figs, 15 tabs.

  16. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    Science.gov (United States)

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Neutronic performance calculations with alternative fluids in a hybrid reactor by using the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Guenay, Mehtap [Malatya Univ. (Turkey). Physics Department

    2015-03-15

    In this study, salt-heavy metal mixtures consisting of 93-85% Li{sub 20}Sn{sub 80} + 5% SFG-PuO{sub 2} and 2-10% UO{sub 2}, 93-85% Li{sub 20}Sn{sub 80} + 5% SFG-PuO{sub 2} and 2-10% NpO{sub 2}, and 93-85% Li{sub 20}Sn{sub 80} + 5% SFG-PuO{sub 2} and 2-10% UCO were used as fluids. The fluids were used in the liquid first wall, blanket, and shield zones of a fusion-fission hybrid reactor system. A beryllium (Be) zone with a width of 3 cm was used for neutron multiplicity between the liquid first wall and the blanket. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. The contributions of each isotope in the fluids to the nuclear parameters, such as tritium breeding ratio (TBR), energy multiplication factor (M), and heat deposition rate, of the fusion-fission hybrid reactor were calculated in the liquid first wall, blanket, and shield zones. Three-dimensional analyses were performed using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  18. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    Science.gov (United States)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  19. Calculation of the Non-Inductive Current Profile in High-Performance NSTX Plasmas

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M.G.; Bell, R.E.; Le Blanc, B.P.; Kugel, H.; Sabbagh, S.A.; Yuh, H.

    2011-01-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX [M. Ono, et al., Nuclear Fusion 40, 557 (2000)]; these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β, or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven, and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfven eigenmode avalanches or coupled m/n=1/1+2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast ion diffusivity of ∼0.5-1 m 2 /sec is found in 'MHD-free' discharges, based on the neutron emission, time rate of change of the neutron signal when a neutral beam is stepped, and reconstructed on-axis current density.

  20. Neutronic performance calculations with alternative fluids in a hybrid reactor by using the Monte Carlo method

    International Nuclear Information System (INIS)

    Guenay, Mehtap

    2015-01-01

    In this study, salt-heavy metal mixtures consisting of 93-85% Li 20 Sn 80 + 5% SFG-PuO 2 and 2-10% UO 2 , 93-85% Li 20 Sn 80 + 5% SFG-PuO 2 and 2-10% NpO 2 , and 93-85% Li 20 Sn 80 + 5% SFG-PuO 2 and 2-10% UCO were used as fluids. The fluids were used in the liquid first wall, blanket, and shield zones of a fusion-fission hybrid reactor system. A beryllium (Be) zone with a width of 3 cm was used for neutron multiplicity between the liquid first wall and the blanket. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. The contributions of each isotope in the fluids to the nuclear parameters, such as tritium breeding ratio (TBR), energy multiplication factor (M), and heat deposition rate, of the fusion-fission hybrid reactor were calculated in the liquid first wall, blanket, and shield zones. Three-dimensional analyses were performed using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  1. Commentary on "Performance of a glucose meter with a built-in automated bolus calculator versus manual bolus calculation in insulin-using subjects".

    Science.gov (United States)

    Rossetti, Paolo; Vehí, Josep; Revert, Ana; Calm, Remei; Bondia, Jorge

    2012-03-01

    Since the early 2000s, there has been an exponentially increasing development of new diabetes-applied technology, such as continuous glucose monitoring, bolus calculators, and "smart" pumps, with the expectation of partially overcoming clinical inertia and low patient compliance. However, its long-term efficacy in glucose control has not been unequivocally proven. In this issue of Journal of Diabetes Science and Technology, Sussman and colleagues evaluated a tool for the calculation of the prandial insulin dose. A total of 205 insulin-treated patients were asked to compute a bolus dose in two simulated conditions either manually or with the bolus calculator built into the FreeStyle InsuLinx meter, revealing the high frequency of wrong calculations when performed manually. Although the clinical impact of this study is limited, it highlights the potential implications of low diabetesrelated numeracy in poor glycemic control. Educational programs aiming to increase patients' empowerment and caregivers' knowledge are needed in order to get full benefit of the technology. © 2012 Diabetes Technology Society.

  2. Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor Influence des transferts thermiques sur le calcul des performances des compresseurs de suralimentation

    Directory of Open Access Journals (Sweden)

    Chesse P.

    2011-09-01

    Full Text Available Usually, turbochargers used within internal combustion engine simulation software are modelled in an adiabatic manner. However, during our experimental tests we found that this is not necessarily the case. The direct use of the manufacturer’s map is not possible anymore. A simple method which considers the heat transfers is proposed. It is based on experimental tests made on hot air supplied turbocharger test bench. The difference with the adiabatic model is considerable mainly for low compressor power. This corresponds to internal combustion engine low loads. En général, les turbocompresseurs pris en compte dans les logiciels de simulation moteur sont modélisés de façon adiabatique. Cependant, les tests expérimentaux effectués au laboratoire montrent que ce n’est pas toujours le cas. L’utilisation directe des champs de fonctionnement fournis par les constructeurs de turbomachines n’est alors plus possible. Une évaluation quantitative de ces transferts, basée sur des tests réalisés sur un banc d’essais turbo à air chaud, est présentée. Puis ils sont pris en compte afin de calculer les caractéristiques réelles de fonctionnement d’un compresseur. La différence avec le modèle adiabatique apparaît très importante pour les faibles puissances compresseur. Ceci correspond aux faibles charges moteur.

  3. Calculational model used in the analysis of nuclear performance of the Light Water Breeder Reactor (LWBR) (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.B. (ed.)

    1978-08-01

    The calculational model used in the analysis of LWBR nuclear performance is described. The model was used to analyze the as-built core and predict core nuclear performance prior to core operation. The qualification of the nuclear model using experiments and calculational standards is described. Features of the model include: an automated system of processing manufacturing data; an extensively analyzed nuclear data library; an accurate resonance integral calculation; space-energy corrections to infinite medium cross sections; an explicit three-dimensional diffusion-depletion calculation; a transport calculation for high energy neutrons; explicit accounting for fuel and moderator temperature feedback, clad diameter shrinkage, and fuel pellet growth; and an extensive testing program against experiments and a highly developed analytical standard.

  4. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nurse Staffing Calculation in the Emergency Department - Performance-Oriented Calculation Based on the Manchester Triage System at the University Hospital Bonn.

    Directory of Open Access Journals (Sweden)

    Ingo Gräff

    Full Text Available To date, there are no valid statistics regarding the number of full time staff necessary for nursing care in emergency departments in Europe.Staff requirement calculations were performed using state-of-the art procedures which take both fluctuating patient volume and individual staff shortfall rates into consideration. In a longitudinal observational study, the average nursing staff engagement time per patient was assessed for 503 patients. For this purpose, a full-time staffing calculation was estimated based on the five priority levels of the Manchester Triage System (MTS, taking into account specific workload fluctuations (50th-95th percentiles.Patients classified to the MTS category red (n = 35 required the most engagement time with an average of 97.93 min per patient. On weighted average, for orange MTS category patients (n = 118, nursing staff were required for 85.07 min, for patients in the yellow MTS category (n = 181, 40.95 min, while the two MTS categories with the least acute patients, green (n = 129 and blue (n = 40 required 23.18 min and 14.99 min engagement time per patient, respectively. Individual staff shortfall due to sick days and vacation time was 20.87% of the total working hours. When extrapolating this to 21,899 (2010 emergency patients, 67-123 emergency patients (50-95% percentile per month can be seen by one nurse. The calculated full time staffing requirement depending on the percentiles was 14.8 to 27.1.Performance-oriented staff planning offers an objective instrument for calculation of the full-time nursing staff required in emergency departments.

  6. A program for performing exact quantum dynamics calculations using cylindrical polar coordinates: A nanotube application

    Science.gov (United States)

    Skouteris, Dimitris; Gervasi, Osvaldo; Laganà, Antonio

    2009-03-01

    A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here. The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrödinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube. Program summaryProgram title: CYLWAVE Catalogue identifier: AECL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3673 No. of bytes in distributed program, including test data, etc.: 35 237 Distribution format: tar.gz Programming language: Fortran 77 Computer: RISC workstations Operating system: UNIX RAM: 120 MBytes Classification: 16.7, 16.10 External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file). Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential. Solution method: Time dependent wavepacket propagation. Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete.

  7. Study of the dissolution velocity of dispersed solid particles. Development of a calculation method for analyzing the kinetic curves. Extension to the study of composed kinetics

    International Nuclear Information System (INIS)

    Jorda, Michel.

    1976-01-01

    The dissolution of a solid in an aqueous phase is studied, the solid consisting of dispersed particles. A continuous colorimetric analysis method is developed to study the dissolution process and a two-parameter optimization method is established to investigate the kinetic curves obtained. This method is based on the differential equation dx/dt=K(1-x)sup(n). (n being the decrease in the dissolution velocity when the dissolved part increases and K a velocity parameter). The dissolution of SO 4 Cu and MnO 4 K in water and UO 3 in SO 4 H 2 is discussed. It is shown that the dissolution velocity of UO 3 is proportional to the concentration of the H + ions in the solution as far as this one is not higher than 0.25N. The study of the temperature dependence of the UO 3 dissolution reaction shows that a transition phase takes place from 25 to 65 0 C between a phase in which the dissolution is controlled by the diffusion of the H + ions and the chemical reaction at the interface and a phase in which the kinetics is only controlled by the diffusion [fr

  8. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  9. Detailed performance calculations: Wayne State University and Ford Motor Company, appendix C

    Science.gov (United States)

    1984-12-01

    The laser-generated OH through ozone dissociation is defined in equations. Using these equations, the ozone interference levels corresponding to various humidity and ozone concentrations can be calculated readily.

  10. Risks of transport of radioactive materials on the road; some exploring calculations performed with the INTERTRAN-model

    International Nuclear Information System (INIS)

    1987-04-01

    Under the auspices of the IAEA a computercode, named INTERTRAN, has been developed in order to calculate the risks of the transport of radioactive materials. This code has to be tested nearer. For the Dutch situation a number of calculations has been performed of more or less realistic cases in which four transport streams have been investigated. Two transport routes are chosen. The risks thus obtained are compared quantitatively with the risks of LPG-transports. 4 refs.; 9 figs

  11. Importance of the Electron Correlation and Dispersion Corrections in Calculations Involving Enamines, Hemiaminals, and Aminals. Comparison of B3LYP, M06-2X, MP2, and CCSD Results with Experimental Data.

    Science.gov (United States)

    Castro-Alvarez, Alejandro; Carneros, Héctor; Sánchez, Dani; Vilarrasa, Jaume

    2015-12-18

    While B3LYP, M06-2X, and MP2 calculations predict the ΔG° values for exchange equilibria between enamines and ketones with similar acceptable accuracy, the M06-2X/6-311+G(d,p) and MP2/6-311+G(d,p) methods are required for enamine formation reactions (for example, for enamine 5a, arising from 3-methylbutanal and pyrrolidine). Stronger disagreement was observed when calculated energies of hemiaminals (N,O-acetals) and aminals (N,N-acetals) were compared with experimental equilibrium constants, which are reported here for the first time. Although it is known that the B3LYP method does not provide a good description of the London dispersion forces, while M06-2X and MP2 may overestimate them, it is shown here how large the gaps are and that at least single-point calculations at the CCSD(T)/6-31+G(d) level should be used for these reaction intermediates; CCSD(T)/6-31+G(d) and CCSD(T)/6-311+G(d,p) calculations afford ΔG° values in some cases quite close to MP2/6-311+G(d,p) while in others closer to M06-2X/6-311+G(d,p). The effect of solvents is similarly predicted by the SMD, CPCM, and IEFPCM approaches (with energy differences below 1 kcal/mol).

  12. Evaluation of the performance of mini-WIMS in design calculations for SGHWR's

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1980-07-01

    In order to use the WIMS code for SGHWR design calculations it is desirable to reduce the computing time to a minimum. To this end, a study has been made of the effects of using condensed data libraries with few groups in the main transport routine and with coarse mesh representations. The results of initial lattice calculations are given in considerable detail for a set of SGHW experimental cores. The effects of condensation on attainable burnup and irradiated fuel composition for natural and enriched power reactor lattices have also been studied. Comparisons between detailed and condensed WIMS calculations are the main theme of the report but METHUSELAH and experimental results are included whenever possible. (author)

  13. The performance of ENDF/B-V.2 nuclear data for fast reactor calculations

    International Nuclear Information System (INIS)

    Atkinson, C.A.; Collins, P.J.

    1987-01-01

    Calculations with ENDF/B-V.2 data have been made for twenty-five fast-spectrum integral assemblies covering a wide range of sizes and compositions. Analysis was done by transport codes with refined cross section processing methods and detailed reactor modelling. The predictions of fission rate distributions and control rod worths were emphasized for the more prototypic benchmark cores. The results show considerable improvements in agreement with experiment compared with analysis using ENDF/B-IV data, but it is apparent that significant errors remain for fast reactor design calculations

  14. Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection

    International Nuclear Information System (INIS)

    Tsai, Wen-Hsien; Chuang, Hung-Yi; Chen, Ho-Hsien; Huang, Joh-Jong; Chen, Hwi-Chang; Cheng, Shou-Hsun; Huang, Tzou-Chi

    2009-01-01

    Dispersive liquid-liquid microextraction (DLLME) and dispersive micro-solid-phase extraction (DMSPE) are two simple and low-cost sample preparation methods for liquid samples. In this work, these two methods were applied to solid tissue sample for the determination of seven quinolones by high-performance liquid chromatography with diode-array detection (HPLC-DAD). After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, small amounts of the extract were used for the DLLME and DMSPE methods. In the DLLME approach, the target analytes in the extraction solvent were rapidly extracted into a small volume of dichloromethane for drying and the residue was reconstituted for HPLC-DAD analysis. In the DMSPE approach, the target analytes in the extraction solvent were trapped by dispersive silica-based PSA (primary and secondary amine) sorbents and desorbed into a small amount of desorption solution for HPLC-DAD analysis. Under the optimal conditions, relative recoveries were determined for swine muscle spiked 50-200 μg kg -1 and quantification was achieved by matrix-matched calibration. The calibration curves of seven quinolones showed linearity with a correlation coefficient value above 0.998 for both approaches. Relative recoveries ranged from 93.0 to 104.7% and from 95.5 to 111.0% for DLLME and DMSPE, respectively. Limits of detection (LODs) ranged from 5.6 to 23.8 μg kg -1 and from 7.5 to 26.3 μg kg -1 for DLLME and DMSPE, respectively.

  15. Hydrodynamic disperser

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.

    1980-01-15

    A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.

  16. Performance of SOPPA-based methods in the calculation of vertical excitation energies and oscillator strengths

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Pitzner-Frydendahl, Henrik Frank; Buse, Mogens

    2015-01-01

    methods, the original SOPPA method as well as SOPPA(CCSD) and RPA(D) in the calculation of vertical electronic excitation energies and oscillator strengths is investigated for a large benchmark set of 28 medium-size molecules with 139 singlet and 71 triplet excited states. The results are compared...

  17. Facile hydrothermal method for synthesizing nitrogen-doped graphene nanoplatelets using aqueous ammonia: dispersion, stability in solvents and thermophysical performances

    Science.gov (United States)

    Shafiah Shazali, Siti; Amiri, Ahmad; Zubir, Mohd. Nashrul Mohd; Rozali, Shaifulazuar; Zakuan Zabri, Mohd; Sabri, Mohd Faizul Mohd

    2018-03-01

    A simple and green approach has been developed to synthesize nitrogen-doped graphene nanoplatelets (N-doped GNPs) for mass production with a very high stability in different solvents e.g. water, ethylene glycol, methanol, ethanol, and 1-hexanol. The strategy is based on mild oxidation of GNPs using hydrogen peroxide and doping with nitrogen using hydrothermal process. The modification of N-doped GNPs was demonstrated by FTIR, TGA, XPS, Raman spectroscopy and high resolution-transmission electron microscope (HRTEM). Further study was carried out by using N-doped GNPs as an additive to prepare different colloidal dispersions. Water-based N-doped GNPs, methanol-based N-doped GNPs, ethanol-based N-doped GNPs, ethylene-glycol based N-doped GNPs and 1-hexanol-based N-doped GNPs dispersions at 0.01 wt.% shown great colloidal stabilities, indicating 17%, 29%, 33%, 18%, and 43% sedimentations after a 15-days period, respectively. The thermophysical properties e.g., viscosity and thermal conductivity of water-based N-doped GNP nanofluids were also evaluated for different weight concentrations of 0.100, 0.075, 0.050, and 0.025 wt.%. Through this, it is found that the obtained dispersions have great potential to be used as working fluids for industrial thermal systems.

  18. Validation of OpenFoam for heavy gas dispersion applications

    NARCIS (Netherlands)

    Mack, A.; Spruijt, M.P.N.

    2013-01-01

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a windtunnel test case, numerical data was validated with experiments. For a full scale numerical experiment,a code to code comparison was performed with numerical results obtained from Fluent. The validationwas

  19. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction

    Science.gov (United States)

    Takaku, Yoshikazu; Ohnuma, Ikuo; Kainuma, Ryosuke; Yamada, Yasushi; Yagi, Yuji; Nishibe, Yuji; Ishida, Kiyohito

    2006-11-01

    Bismuth and its alloys are candidates for Pb-free high-temperature solders that can be substituted for conventional Pb-rich Pb-Sn solders (melting point (mp) = 573 583 K). However, inferior properties such as brittleness and weak bonding strength should be improved for practical use. To that end, BiCu-X (X=Sb, Sn, and Zn) Pb-free high-temperature solders are proposed. Miscibility gaps in liquid BiCu-X alloys were surveyed using the thermodynamic database ADAMIS (alloy database for micro-solders), and compositions of the BiCu-X solders were designed on the basis of calculation. In-situ composite solders that consist of a Bi-base matrix with fine intermetallic compound (IMC) particles were produced by gas-atomizing and melt-spinning methods. The interfacial reaction between in-situ composite solders and Cu or Ni substrates was investigated. The IMCs at the interface formed a thin, uniform layer, which is an appropriate morphology for a reliable solder joint.

  20. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Science.gov (United States)

    Çabuk, Hasan; Köktürk, Mustafa

    2013-01-01

    A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535

  1. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Hasan Çabuk

    2013-01-01

    Full Text Available A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries.

  2. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang

    2013-01-01

    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  3. Use of moving heat conductor mesh to perform reflood calculations with RELAP4/MOD6

    International Nuclear Information System (INIS)

    Fischer, S.R.; Ellis, L.V.; Chen, Y.S.

    1979-01-01

    RELAP4 is a computer code which can be used for the transient thermal hydraulic analysis of light water reactors and related systems. RELAP4/MOD6 includes many new analytical models which were developed primarily for the analysis of the reflood phase of a PWR loss-of-coolant accident (LOCA) transient. The key feature forming the basis for the MOD6 reflood calculation is a unique moving finite differenced heat conductor. The development and application of the moving heat conductor mesh for use in reflood analysis are described

  4. Results from synthesis of calculation cases illustrating overall system performance in the safety assessment in H12 report

    International Nuclear Information System (INIS)

    Makino, Hitoshi; Sawada, Atsushi; Wakasugi, Keiichiro; Kato, Tomoko; Uchida, Masahiro; Miyahara, Kaname

    2002-02-01

    JNC (Japan Nuclear Cycle Development Institute) had proceeded R and D activities to provide a scientific and technical basis for geological disposal of HLW in Japan. The second progress report (H12) documented the progress of R and D and the Japanese version was submitted to the AEC (the Atomic Energy Commission) in November 1999. This report summarizes the calculation results for nuclide migration in 'Synthesis of Calculation Cases Illustrating Overall System Performance', which are performed to examine the safety of the geological disposal concept in Japan in the Safety Assessment in H12 Report. In addition, a set of calculation result for nuclide migration through each pathway in one-dimensional multiple pathway model (a set of 48 segments) are summarized for the Reference Case in H12 Report, and calculated dose conversion factors are also summarized against the combinations of potential Geosphere-Biosphere Interfaces (GBI) and potential exposure groups. Digital data of the calculation results are summarized in Appendix CD-ROM as Microsoft EXCEL files. (author)

  5. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  6. The modeler's influence on calculated solubilities for performance assessments at the Aespoe hard-rock laboratory

    International Nuclear Information System (INIS)

    Emren, A.T.; Arthur, R.; Glynn, P.D.; McMurry, J.

    1999-01-01

    Four researchers were asked to provide independent modeled estimates of the solubility of a radionuclide solid phase, specifically Pu(OH) 4 , under five specified sets of conditions. The objectives of the study were to assess the variability in the results obtained and to determine the primary causes for this variability. In the exercise, modelers were supplied with the composition, pH and redox properties of the water and with a description of the mineralogy of the surrounding fracture system. A standard thermodynamic data base was provided to all modelers. Each modeler was encouraged to use other data bases in addition to the standard data base and to try different approaches to solving the problem. In all, about fifty approaches were used, some of which included a large number of solubility calculations. For each of the five test cases, the calculated solubilities from different approaches covered several orders of magnitude. The variability resulting from the use of different thermodynamic data bases was in most cases, far smaller than that resulting from the use of different approaches to solving the problem

  7. Structure and performance of cationic assembly dispersed in amphoteric surfactants solution as a shampoo for hair damaged by coloring.

    Science.gov (United States)

    Nagahara, Yasuo; Nishida, Yuichi; Isoda, Masanori; Yamagata, Yoshifumi; Nishikawa, Naoki; Takada, Koji

    2007-01-01

    In recent years, hair coloring gains popularity as a trend of consumer's hair care. This coloring frequently damages hair. In response to this, a new shampoo-base was developed for repairing hair damaged by coloring. The new shampoo-base was prepared by dispersing cationic assembly in a solution of amphoteric surfactants. The mixture of behenyl trimethyl ammonium chloride (C22TAC) and behenyl alcohol (C22OH) was applied as the cationic assembly, which are dispersed in amido propyl betaine laurate (LPB) solution. LPB, which behaves as an amphoteric surfactant, was used as the wash-base. It was verified from the results on the measurements of DSC, calorimeter polarization, cryo-SEM and X-ray diffraction that the cationic assembly has a crystalline structure in the LPB solution. The new shampoo-base was highly efficient to change the color-damaged hair from hydrophilic to hydrophobic. The friction level of the hair washed with the new shampoo-base recovered to the same state as that of healthy hair. The exfoliation of cuticle was reduced after washing with the new shampoo-base.

  8. Mars Exploration Rovers Landing Dispersion Analysis

    Science.gov (United States)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  9. Calculation method for the seasonal performance of heat pump compact units and validation. Appendix

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Dott, R.; Afjei, Th. [University of Applied Sciences Northwestern Switzerland, Institute of Energy in Buildings, Muttenz (Switzerland); Huber, H.; Helfenfinger, D.; Keller, P.; Furter, R. [University of Applied Sciences Lucerne (HTA), Test center HLKS, Horw (Switzerland)

    2007-02-15

    This appendix to a comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of tests made on compact heat pump units that have been developed for the heating of low energy consumption houses built to MINERGIE or MINERGIE-P standards. The tests on these units, which combine the functions of space heating, domestic hot water preparation and ventilation in one unit are presented and discussed. Test conditions are described; these cover ventilation, acoustic, hygiene and safety aspects. Detailed results from the two test objects - buildings built to MINERGIE and MINERGIE-P low energy consumption standards - are presented and discussed. The calculation methods used are examined and discussed.

  10. Structural investigation of biogenic ferrihydrite nanoparticles dispersion

    International Nuclear Information System (INIS)

    Balasoiu, M.; Ishchenko, L.A.; Stolyar, S.V.; Iskhakov, R.S.; Rajkher, Yu.L.; Kuklin, A.I.; Solov'ev, D.V.; Arzumanyan, G.M.; Kurkin, T.S.; Aranghel, D.

    2010-01-01

    Structural properties of biogenic ferrihydrite nanoparticles produced by bacteria Klebsiella oxytoca are investigated. Investigations of morphology and size of particles dispersed in water by means of high-resolution transmission electron microscopy and small angle X-ray scattering measurements were performed. By model calculations followed by fitting procedure the structural parameters of a cylinder of radius R = (4.87 ± 0.02) nm and height L = (2.12 ± 0.04) nm are obtained

  11. Calculated thermal performance of solar collectors based on measured weather data from 2001-2010

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Andersen, Elsa

    2015-01-01

    This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period ...... with an increase in global radiation. This means that besides increasing the thermal performance with increasing the solar radiation, the utilization of the solar radiation also becomes better.......This paper presents an investigation of the differences in modeled thermal performance of solar collectors when meteorological reference years are used as input and when mulit-year weather data is used as input. The investigation has shown that using the Danish reference year based on the period...

  12. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  13. Application of air pollution dispersion modeling for source-contribution assessment and model performance evaluation at integrated industrial estate-Pantnagar

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, T., E-mail: tirthankaronline@gmail.com [Department of Environmental Science, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 (India); Barman, S.C., E-mail: scbarman@yahoo.com [Department of Environmental Monitoring, Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh (India); Srivastava, R.K., E-mail: rajeevsrivastava08@gmail.com [Department of Environmental Science, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 (India)

    2011-04-15

    Source-contribution assessment of ambient NO{sub 2} concentration was performed at Pantnagar, India through simulation of two urban mathematical dispersive models namely Gaussian Finite Line Source Model (GFLSM) and Industrial Source Complex Model (ISCST-3) and model performances were evaluated. Principal approaches were development of comprehensive emission inventory, monitoring of traffic density and regional air quality and conclusively simulation of urban dispersive models. Initially, 18 industries were found responsible for emission of 39.11 kg/h of NO{sub 2} through 43 elevated stacks. Further, vehicular emission potential in terms of NO{sub 2} was computed as 7.1 kg/h. Air quality monitoring delineates an annual average NO{sub 2} concentration of 32.6 {mu}g/m{sup 3}. Finally, GFLSM and ISCST-3 were simulated in conjunction with developed emission inventories and existing meteorological conditions. Models simulation indicated that contribution of NO{sub 2} from industrial and vehicular source was in a range of 45-70% and 9-39%, respectively. Further, statistical analysis revealed satisfactory model performance with an aggregate accuracy of 61.9%. - Research highlights: > Application of dispersion modeling for source-contribution assessment of ambient NO{sub 2}. > Inventorization revealed emission from industry and vehicles was 39.11 and 7.1 kg/h. > GFLSM revealed that vehicular pollution contributes a range of 9.0-38.6%. > Source-contribution of 45-70% was found for industrial emission through ISCST-3. > Aggregate performance of both models shows good agreement with an accuracy of 61.9%. - Development of industrial and vehicular inventory in terms of ambient NO{sub 2} for model simulation at Pantnagar, India and model validation revealed satisfactory outcome.

  14. DEXTER: A one-dimensional code for calculating thermionic performance of long converters

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.

  15. Dexter - A one-dimensional code for calculating thermionic performance of long converters.

    Science.gov (United States)

    Sawyer, C. D.

    1971-01-01

    This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.

  16. Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection.

    Science.gov (United States)

    Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu

    2015-06-01

    A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preconcentration and determination of ceftazidime in real samples using dispersive liquid-liquid microextraction and high-performance liquid chromatography with the aid of experimental design.

    Science.gov (United States)

    Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin

    2016-11-01

    A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Well-Dispersed Co/CoO/C Nanospheres with Tunable Morphology as High-Performance Anodes for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Bingqing Xu

    2016-11-01

    Full Text Available Well-dispersed Co/CoO/C nanospheres have been designed and constructed through a facile electrospinning method with a strategy controlling the morphology of nanocomposites via adjusting the pre-oxidized and heat treatments. Scanning electron microscopy results reveal that the as-synthesized sample pre-oxidized at 275 °C shows better spherical morphology with a diameter of around 300 nm without conspicuous agglomeration. X-ray diffraction analysis confirms the coexistence of cobalt and cobalt monoxide in the sample. Furthermore, the electrochemical tests reveal that the sample pre-oxidized at 275 °C displays excellent cycling stability with only 0.016% loss per cycle even after 400 cycles at 1000 mA·g−1 and enhanced high-rate capability with a specific discharge capacity of 354 mA·g−1 at 2000 mA·g−1. Besides, the sample pre-oxidized at 275 °C shows a specific capacity of 755 mA·g−1 at 100 mA·g−1 after 95 cycles. The improved electrochemical performance has been ascribed to the well dispersion of nanospheres, the improved electronic conductivity, and the structural integrity contribution from the carbon and cobalt coexisting nanocomposite. The strategy for preparing well-dispersed nanospheres by adjusting pre-oxidized and annealing processes could have insight for other oxide nanosphere synthesis.

  19. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J. (Enviros Spain S.L., Barcelona (ES))

    2006-12-15

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  20. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    International Nuclear Information System (INIS)

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J.

    2006-12-01

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  1. Influence of Steam Reforming Catalyst Geometry on the Performance of Tubular Reformer – Simulation Calculations

    Directory of Open Access Journals (Sweden)

    Franczyk Ewelina

    2015-06-01

    Full Text Available A proper selection of steam reforming catalyst geometry has a direct effect on the efficiency and economy of hydrogen production from natural gas and is a very important technological and engineering issue in terms of process optimisation. This paper determines the influence of widely used seven-hole grain diameter (ranging from 11 to 21 mm, h/d (height/diameter ratio of catalyst grain and Sh/St (hole surface/total cylinder surface in cross-section ratio (ranging from 0.13 to 0.37 on the gas load of catalyst bed, gas flow resistance, maximum wall temperature and the risk of catalyst coking. Calculations were based on the one-dimensional pseudo-homogeneous model of a steam reforming tubular reactor, with catalyst parameters derived from our investigations. The process analysis shows that it is advantageous, along the whole reformer tube length, to apply catalyst forms of h/d = 1 ratio, relatively large dimensions, possibly high bed porosity and Sh/St ≈ 0.30-0.37 ratio. It enables a considerable process intensification and the processing of more natural gas at the same flow resistance, despite lower bed activity, without catalyst coking risk. Alternatively, plant pressure drop can be reduced maintaining the same gas load, which translates directly into diminishing the operating costs as a result of lowering power consumption for gas compression.

  2. Performance Calculation of Floating Wind Turbine Tension Leg Platform in the South China Sea

    Directory of Open Access Journals (Sweden)

    Hai Feng Wang

    2015-10-01

    Full Text Available The harvesting of wind energy is expected to increase greatly in the future because of its stability, abundance, and renewability in large coastal states such as China. The floating support structure will likely become the major structural form for wind turbines in the future due to its cost advantages when the water depth reaches 50 m. The 5MW wind turbine model from National Renewable Energy Lab (NREL and the modified tension leg platform model proposed by Harbin Institute of Technology (HIT were applied to certain sea conditions in the South China Sea in order to consider the effects of external load coupling actions. In this study, the internal force, mooring system force, as well as the acceleration, displacement and velocity of the floating structure of the modified HIT Tension Leg Platform (HIT-TLP were calculated. During this process, the physical parameters of its tension leg structure at a specific frequency domain were obtained to find the technical reserves for its practical application in the future.

  3. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    OpenAIRE

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions being driven only by the ram pressure ratio by producing drag. In-depth analysis is done to study the performance characteristics at this state.

  4. A strategy for the derivation and use of sorption coefficients in performance assessment calculations for the Yucca Mountain site

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-01-01

    The chemical interactions of dissolved radionuclides with mineral surfaces along flowpaths from the proposed repository to the accessible environment around Yucca Mountain constitute one of the potential barriers to radionuclide migration at the site. Our limited understanding of these interactions suggests their details will be complex and will involve control by numerous chemical and physical parameters. It appears unlikely that we will understand all the details of these reactions or obtain all the site data required to evaluate each of them in the time available for site characterization. Yet, performance assessment calculations will require some form of coupling of chemical interaction models will hydrologic flow models for the site. Clearly, strategies will be needed to bound the problem without compromising the reliability of the performance assessment calculations required for site suitability analysis. The main purpose of this paper is to describe such a strategy. 39 refs., 7 figs., 5 tabs

  5. Spurious dispersion effects at FLASH

    International Nuclear Information System (INIS)

    Prat, Eduard

    2009-07-01

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  6. Spurious dispersion effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Eduard

    2009-07-15

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  7. Performance of Carbon Nanotube/Polysulfone (CNT/Psf Composite Membranes during Oil–Water Mixture Separation: Effect of CNT Dispersion Method

    Directory of Open Access Journals (Sweden)

    Michael Olawale Daramola

    2017-03-01

    Full Text Available Effect of the dispersion method employed during the synthesis of carbon nanotube (CNT/polysulfone-infused composite membranes on the quality and separation performance of the membranes during oil–water mixture separation is demonstrated. Carbon nanotube/polysulfone composite membranes containing 5% CNT and pure polysulfone membrane (with 0% CNT were synthesized using phase inversion. Three CNT dispersion methods referred to as Method 1 (M1, Method 2 (M2, and Method 3 (M3 were used to disperse the CNTs. Morphology and surface property of the synthesized membranes were checked with scanning electron microscopy (SEM and Fourier-transform infrared (FTIR spectroscopy, respectively. Separation performance of the membranes was evaluated by applying the membrane to the separation of oil–water emulsion using a cross-flow filtration setup. The functional groups obtained from the FTIR spectra for the membranes and the CNTs included carboxylic acid groups (O–H and carbonyl group (C=O which are responsible for the hydrophilic properties of the membranes. The contact angles for the membranes obtained from Method 1, Method 2, and Method 3 were 76.6° ± 5.0°, 77.9° ± 1.3°, and 77.3° ± 4.5°, respectively, and 88.1° ± 2.1° was obtained for the pure polysulfone membrane. The oil rejection (OR for the synthesized composite membranes from Method 1, Method 2, and Method 3 were 48.71%, 65.86%, and 99.88%, respectively, indicating that Method 3 resulted in membrane of the best quality and separation performance.

  8. 3-D heat transfer computer calculations of the performance of the IAEA's air-bath calorimeters

    International Nuclear Information System (INIS)

    Elias, E.; Kaizermann, S.; Perry, R.B.; Fiarman, S.

    1989-01-01

    A three dimensional (3-D) heat transfer computer code was developed to study and optimize the design parameters and to better understand the performance characteristics of the IAEA's air-bath calorimeters. The computer model accounts for heat conduction and radiation in the complex materials of the calorimeter and for heat convection and radiation at its outer surface. The temperature servo controller is modelled as an integral part of the heat balance equations in the system. The model predictions will be validated against test data using the ANL bulk calorimeter. 11 refs., 6 figs

  9. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  10. Rapid determination of some psychotropic drugs in complex matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography.

    Science.gov (United States)

    Asghari, Alireza; Fahimi, Ebrahim; Bazregar, Mohammad; Rajabi, Maryam; Boutorabi, Leila

    2017-05-01

    Simple and rapid determinations of some psychotropic drugs in some pharmaceutical wastewater and human plasma samples were successfully accomplished via the tandem dispersive liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection (TDLLME-HPLC-UV). TDLLME of the three psychotropic drugs clozapine, chlorpromazine, and thioridazine was easily performed through two consecutive dispersive liquid-liquid microextractions. By performing this convenient method, proper sample preconcentrations and clean-ups were achieved in just about 7min. In order to achieve the best extraction efficiency, the effective parameters involved were optimized. The optimal experimental conditions consisted of 100μL of CCl 4 (as the extraction organic solvent), and the pH values of 13 and 2 for the donor and acceptor phases, respectively. Under these optimum experimental conditions, the proposed TDLLME-HPLC-UV technique provided a good linearity in the range of 5-3000ngmL -1 for the three psychotropic drugs with the correlation of determinations (R 2 s) higher than 0.996. The limits of quantification (LOQs) and limits of detection (LODs) obtained were 5.0ngmL -1 and 1.0-1.5ngmL -1 , respectively. Also the proper enrichment factors (EFs) of 96, 99, and 88 for clozapine, chlorpromazine, and thioridazine, respectively, and good extraction repeatabilities (relative standard deviations below 9.3%, n=5) were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SU-E-T-531: Performance Evaluation of Multithreaded Geant4 for Proton Therapy Dose Calculations in a High Performance Computing Facility

    International Nuclear Information System (INIS)

    Shin, J; Coss, D; McMurry, J; Farr, J; Faddegon, B

    2014-01-01

    Purpose: To evaluate the efficiency of multithreaded Geant4 (Geant4-MT, version 10.0) for proton Monte Carlo dose calculations using a high performance computing facility. Methods: Geant4-MT was used to calculate 3D dose distributions in 1×1×1 mm3 voxels in a water phantom and patient's head with a 150 MeV proton beam covering approximately 5×5 cm2 in the water phantom. Three timestamps were measured on the fly to separately analyze the required time for initialization (which cannot be parallelized), processing time of individual threads, and completion time. Scalability of averaged processing time per thread was calculated as a function of thread number (1, 100, 150, and 200) for both 1M and 50 M histories. The total memory usage was recorded. Results: Simulations with 50 M histories were fastest with 100 threads, taking approximately 1.3 hours and 6 hours for the water phantom and the CT data, respectively with better than 1.0 % statistical uncertainty. The calculations show 1/N scalability in the event loops for both cases. The gains from parallel calculations started to decrease with 150 threads. The memory usage increases linearly with number of threads. No critical failures were observed during the simulations. Conclusion: Multithreading in Geant4-MT decreased simulation time in proton dose distribution calculations by a factor of 64 and 54 at a near optimal 100 threads for water phantom and patient's data respectively. Further simulations will be done to determine the efficiency at the optimal thread number. Considering the trend of computer architecture development, utilizing Geant4-MT for radiotherapy simulations is an excellent cost-effective alternative for a distributed batch queuing system. However, because the scalability depends highly on simulation details, i.e., the ratio of the processing time of one event versus waiting time to access for the shared event queue, a performance evaluation as described is recommended

  12. Improved cache performance in Monte Carlo transport calculations using energy banding

    Science.gov (United States)

    Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.

    2014-04-01

    We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.

  13. Performance study of a cluster calculation; parallelization and application under geant4

    International Nuclear Information System (INIS)

    Trabelsi, Abir

    2007-01-01

    This work concretizes the final studies project for engineering computer sciences, it is archived within the national center of nuclear sciences and technology. The project consists in studying the performance of a set of machines in order to determine the best architecture to assemble them in a cluster. As well as the parallelism and the parallel implementation of GEANT4, as a tool of simulation. The realisation of this project consists on : 1) programming with C++ and executing the two benchmarks P MV and PMM on each station; 2) Interpreting this result in order to show the best architecture of the cluster; 3) parallelism with TOP-C the two benchmarks; 4) Executing the two Top-C versions on the cluster; 5) Generalizing this results; 6)parallelism et executing the parallel version of GEANT4. (Author). 14 refs

  14. Performance of a glucose meter with a built-in automated bolus calculator versus manual bolus calculation in insulin-using subjects.

    Science.gov (United States)

    Sussman, Allen; Taylor, Elizabeth J; Patel, Mona; Ward, Jeanne; Alva, Shridhara; Lawrence, Andrew; Ng, Ronald

    2012-03-01

    Patients consider multiple parameters in adjusting prandial insulin doses for optimal glycemic control. Difficulties in calculations can lead to incorrect doses or induce patients to administer fixed doses, rely on empirical estimates, or skip boluses. A multicenter study was conducted with 205 diabetes subjects who were on multiple daily injections of rapid/ short-acting insulin. Using the formula provided, the subjects manually calculated two prandial insulin doses based on one high and one normal glucose test result, respectively. They also determined the two doses using the FreeStyle InsuLinx Blood Glucose Monitoring System, which has a built-in, automated bolus calculator. After dose determinations, the subjects completed opinion surveys. Of the 409 insulin doses manually calculated by the subjects, 256 (63%) were incorrect. Only 23 (6%) of the same 409 dose determinations were incorrect using the meter, and these errors were due to either confirmed or potential deviations from the study instructions by the subjects when determining dose with meter. In the survey, 83% of the subjects expressed more confidence in the meter-calculated doses than the manually calculated doses. Furthermore, 87% of the subjects preferred to use the meter than manual calculation to determine prandial insulin doses. Insulin-using patients made errors in more than half of the manually calculated insulin doses. Use of the automated bolus calculator in the FreeStyle InsuLinx meter minimized errors in dose determination. The patients also expressed confidence and preference for using the meter. This may increase adherence and help optimize the use of mealtime insulin. © 2012 Diabetes Technology Society.

  15. Impact of different libraries on the performance calculation of a modul-type pebble bed HTR

    International Nuclear Information System (INIS)

    Ohlig, U.; Brockmann, H.; Haas, K.A.; Teuchert, E.

    1991-01-01

    A new multigroup library for the GAM-THERMOS spectrum codes has been compiled from the sources ENDF/B-V and JEF-1. The progress in comparison to the 20 years old standard library has been studied for one specific reactor design of the Modular High Temperature Reactor. The study covers various aspects of the performance of the reactor both for the initial core and for the equilibrium cycle. For the multiplication factor k eff the different amounts to Δ k eff = 0.0164 in the startup reactor, which is mainly due to changes in the cross sections of 235 U. At the turn to the equilibrium cycle the difference reduces to Δ k eff = 0.0017 as due to various opposite tendencies in the data of the many involved nuclides. The change in the mass balance of the fissile materials is about 5%. The impact on the temperature coefficients is in the order of 4%, and the influence on other safety related properties of the reactor is lower than about 1 or 2 percent, confirming the confidence in formerly received results. (author). 10 refs, 3 figs, 6 tabs

  16. Performance Calculations for a Boundary-Layer-Ingesting Fan Stage from Sparse Measurements

    Science.gov (United States)

    Hirt, Stefanie M.; Wolter, John D.; Arend, David J.; Hearn, Tristan A.; Hardin, Larry W.; Gazzaniga, John A.

    2018-01-01

    A test of the Boundary Layer Ingesting-Inlet / Distortion-Tolerant Fan was completed in NASA Glenn's 8-Foot by 6-Foot supersonic wind tunnel. Inlet and fan performance were measured by surveys using a set of rotating rake arrays upstream and downstream of the fan stage. Surveys were conducted along the 100 percent speed line and a constant exit corrected flow line passing through the aerodynamic design point. These surveys represented only a small fraction of the data collected during the test. For other operating points, data was recorded as snapshots without rotating the rakes which resulted in a sparser set of recorded data. This paper will discuss analysis of these additional, lower measurement density data points to expand our coverage of the fan map. Several techniques will be used to supplement the snapshot data at test conditions where survey data also exists. The supplemented snapshot data will be compared with survey results to assess the quality of the approach. Effective methods will be used to analyze the data set for which only snapshots exist.

  17. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  18. CNTs/Al5083 Composites of High-performance Uniform and Dispersion Fabricated by High-energy Ball-milling

    Directory of Open Access Journals (Sweden)

    GUO Li

    2017-11-01

    Full Text Available Carbon nanotubes (CNTs, mass fraction of 0%-2% reinforced Al5083 composites were fabricated by horizontal high-energy ball milling. The effects of ball milling time and CNTs contents on the properties of composite materials were studied. The micro morphology of CNTs/Al5083 composites was characterized by scanning electron microscopy(SEM and transmission electron microscopy(TEM, the tensile strength and microhardness of the composites were tested. The results indicate that after high-energy ball milling for 1.5h, the carbon nanotubes are dispersed homogeneously in the Al5083 matrix, and good interfacial bonding strength between CNTs and Al5083 is obtained at the addition of 1.5%CNTs. Under these conditions, the tensile strength and microhardness of CNTs/Al5083 composites are 188.8MPa and 136HV, respectively. Compared to Al5083 matrix without CNTs reinforcement, tensile strength and microhardness of CNTs/Al5083 composites are increased by 32.2% and 36%, respectively.

  19. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    Science.gov (United States)

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  20. Calculation of the performance of the INS iron-free π√2 spectrometer as a spectrograph

    International Nuclear Information System (INIS)

    Fujioka, M.; Hirasawa, M.; Kawakami, H.

    1983-02-01

    The performance of the INS iron-free π√2 beta-ray spectrometer of the current-loop type is calculated with a view of using it as a spectrograph, i.e., in a multichannel mode with a position-sensitive proportional counter. For the momentum resolution of R = 0.01 and 0.1 % the usable momentum range as a spectrograph ( + epsilon + 0 ) and the line shapes on the focal plane are calculated. The transmission of the baffle is 0.025 and 0.13 % of 4π and the expected gain of data-collection efficiency over the single-channel mode is 140 and 40 for R = 0.01 and 0.1%, respectively. An effective tilting of the focal plane due to the entrance baffle is discussed as well as the problems with arrangement and testing of the position detector. (author)

  1. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan; Yu, Hao; Peng, Feng, E-mail: cefpeng@scut.edu.cn

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent is explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.

  2. Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei

    2017-07-01

    A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Binary Solvents Dispersive Liquid-Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography.

    Science.gov (United States)

    Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri

    2014-02-03

    Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.

  4. Binary Solvents Dispersive Liquid—Liquid Microextraction (BS-DLLME) Method for Determination of Tramadol in Urine Using High-Performance Liquid Chromatography

    Science.gov (United States)

    2014-01-01

    Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475

  5. Performance of exchange-correlation functionals in density functional theory calculations for liquid metal: A benchmark test for sodium

    Science.gov (United States)

    Han, Jeong-Hwan; Oda, Takuji

    2018-04-01

    The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.

  6. Computer simulation analysis on the machinability of alumina dispersion enforced copper alloy for high performance compact heat exchanger

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi

    2001-01-01

    Feasibility study on a HTGR-GT (High Temperature Gas cooled Reactor-Gas Turbine) system is examining the application of the high strength / high thermal conductivity alumina dispersed copper (AL-25) in the ultra-fine rectangle plate fin of the recuperator for the system. However, it is very difficult to manufacture a ultra-fine fin by large-scale plastic deformation from the hard and brittle Al-25 foil. Therefor, in present study, to establish the fine fin manufacturing technology of the AL-25 foil, it did the processing simulation of the fine fin first by the large-scale elasto-plastic finite element analysis (FEM) and it estimated a forming limit. Next, it experimentally made the manufacturing equipment where it is possible to do new processing using these analytical results, and it implemented a manufacturing experiment on the AL-25 foil. With these results, the following conclusion was obtained. (1) It did the processing simulation to manufacture a fine rectangle fin (fin height x pitch x thickness, 3 mm x 4 mm x 0.156 mm) from AL-25 foil (Thickness=0.156 mm) by the large-scale elasto-plastic FEM using the double action processing method. As a result, the manufacturing of a fine rectangle fin found a possible thing in the following condition by the double action processing method. It made that 0.8 mm and 0.25 mm were a best value respectively in the R part and the clearance between dies by making double action processing examination equipment experimentally and implementing a manufacturing examination using this equipment. (2) It succeeded in the manufacturing of the fine fin that the height x pitch x thickness is 3 mm x 4 mm x (0.156 mm±0.001 mm) after implementing a fine rectangle fin manufacturing examination from the AL-25 foil. (3) The change of the process of the deformation and the thickness by the processing of the AL-25 foil which was estimated by the large-scale elasto-plastic FEM showed the result of the processing experiment and good agreement

  7. Theoretical investigation on the inclusion of TCDD with β-cyclodextrin by performing QM calculations and MD simulations

    International Nuclear Information System (INIS)

    Pan, Wenxiao; Zhang, Dongju; Zhan, Jinhua

    2011-01-01

    Highlights: → We study the inclusion mechanism of TCDD with β-CD by theoretical methods. → Clearly, the formation of inclusion complex is an energetically driven process. → The inclusion complex can be detected by IR and Raman techniques. → The results imply that β-CD may be used as a host molecule to enrich TCDD molecules. - Abstract: The rapid enrichment and detection of trace polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are currently challenging issues in the field of environmental science. In this paper, by performing quantum chemistry (QM) calculations and molecular dynamics (MD) simulations, we studied the inclusion complexation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a representative PCDD molecule, with β-cyclodextrin (β-CD), one of the widely used compounds in supramolecular chemistry. The calculated results reveal that the stable inclusion complex can be formed in both the gas phase and solvent, which proposes that β-CD may serve as a potential substrate enriching TCDD. The calculated vibrational spectra indicate that the infrared (IR) and Raman spectroscopy may be suitable for the detection of β-CD-modified TCDD. The present theoretical results may be informative to environmental scientists who are devoting themselves to developing effective methods for detection and treatment of POPs.

  8. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    Science.gov (United States)

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  9. Dispersive Liquid-Liquid Microextraction Combined with Ultrahigh Performance Liquid Chromatography/Tandem Mass Spectrometry for Determination of Organophosphate Esters in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Haiying Luo

    2014-01-01

    Full Text Available A new technique was established to identify eight organophosphate esters (OPEs in this work. It utilised dispersive liquid-liquid microextraction in combination with ultrahigh performance liquid chromatography/tandem mass spectrometry. The type and volume of extraction solvents, dispersion agent, and amount of NaCl were optimized. The target analytes were detected in the range of 1.0–200 µg/L with correlation coefficients ranging from 0.9982 to 0.9998, and the detection limits of the analytes were ranged from 0.02 to 0.07 µg/L (S/N=3. The feasibility of this method was demonstrated by identifying OPEs in aqueous samples that exhibited spiked recoveries, which ranged between 48.7% and 58.3% for triethyl phosphate (TEP as well as between 85.9% and 113% for the other OPEs. The precision was ranged from 3.2% to 9.3% (n=6, and the interprecision was ranged from 2.6% to 12.3% (n=5. Only 2 of the 12 selected samples were tested to be positive for OPEs, and the total concentrations of OPEs in them were 1.1 and 1.6 µg/L, respectively. This method was confirmed to be simple, fast, and accurate for identifying OPEs in aqueous samples.

  10. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High performance W-AIN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Chu Zhang [The University of Sydney (Australia). School of Physics; Shen, Y.G. [City University of Hong Kong (Hong Kong). Department of Manufacturing Engineering and Engineering Management

    2004-01-25

    High solar performance W-AIN cermet solar coatings were designed using a numerical computer model and deposited experimentally. In the numerical calculations aluminium oxynitride (AlON) was used as ceramic component. The dielectric functions and then complex refractive index of W-AlON cermet materials were calculated using the Sheng's approximation. The layer thickness and W metal volume fraction were optimised to achieve maximum photo-thermal conversion efficiency for W-AlON cermet solar coatings on an Al reflector with a surface AlON ceramic anti-reflection layer. Optimisation calculations show that the W-AlON cermet solar coatings with two and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimised calculated AlON/W-AlON/Al solar coating film with two cermet layers has a high solar absorptance of 0.953 and a low hemispherical emittance of 0.051 at 80{sup o}C for a concentration factor of 2. The AlN/W-AlN/Al solar selective coatings with two cermet layers were deposited using two metal target direct current magnetron sputtering technology. During the deposition of W-AlN cermet layer, both Al and W targets were run simultaneously in a gas mixture of argon and nitrogen. By substrate rotation a multi-sub-layer system consisting of alternating AlN ceramic and W metallic sub-layers was deposited that can be considered as a macro-homogeneous W-AlN cermet layer. A solar absorptance of 0.955 and nearly normal emittance of 0.056 at 80{sup o}C have been achieved for deposited W-AlN cermet solar coatings. (author)

  12. High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi-Chu [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Shen, Y.G. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong (Hong Kong)

    2004-01-25

    High solar performance W-AlN cermet solar coatings were designed using a numerical computer model and deposited experimentally. In the numerical calculations aluminium oxynitride (AlON) was used as ceramic component. The dielectric function and then complex refractive index of W-AlON cermet materials were calculated using the Sheng's approximation. The layer thickness and W metal volume fraction were optimised to achieve maximum photo-thermal conversion efficiency for W-AlON cermet solar coatings on an Al reflector with a surface AlON ceramic anti-reflection layer. Optimisation calculations show that the W-AlON cermet solar coatings with two and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimised calculated AlON/W-AlON/Al solar coating film with two cermet layers has a high solar absorptance of 0.953 and a low hemispherical emittance of 0.051 at 80C for a concentration factor of 2. The AlN/W-AlN/Al solar selective coatings with two cermet layers were deposited using two metal target direct current magnetron sputtering technology. During the deposition of W-AlN cermet layer, both Al and W targets were run simultaneously in a gas mixture of argon and nitrogen. By substrate rotation a multi-sub-layer system consisting of alternating AlN ceramic and W metallic sub-layers was deposited that can be considered as a macro-homogeneous W-AlN cermet layer. A solar absorptance of 0.955 and nearly normal emittance of 0.056 at 80C have been achieved for deposited W-AlN cermet solar coatings.

  13. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Goornavar, Virupaxi [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States); Jeffers, Robert [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Luna Innovations, Inc., 706 Forest St., Suite A, Charlottesville, VA 22902 (United States); Biradar, Santoshkumar [RICE University, 6100 Main St, Houston, TX 77251 (United States); Ramesh, Govindarajan T., E-mail: gtramesh@nsu.edu [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States)

    2014-07-01

    In this work we report the improved performance an electrochemical glucose sensor based on a glassy carbon electrode (GCE) that has been modified with highly purified single wall carbon nanotubes (SWCNTs) dispersed in polyethyleneimine (PEI), polyethylene glycol (PEG) and polypyrrole (PPy). The single wall carbon nanotubes were purified by both thermal and chemical oxidation to achieve maximum purity of ∼ 98% with no damage to the tubes. The SWCNTs were then dispersed by sonication in three different organic polymers (1.0 mg/ml SWCNT in 1.0 mg/ml of organic polymer). The stable suspension was coated onto the GCE and electrochemical characterization was performed by Cyclic Voltammetry (CV) and Amperometry. The electroactive enzyme glucose oxidase (GOx) was immobilized on the surface of the GCE/(organic polymer–SWCNT) electrode. The amperometric detection of glucose was carried out at 0.7 V versus Ag/AgCl. The GCE/(SWCNT–PEI, PEG, PPY) gave a detection limit of 0.2633 μM, 0.434 μM, and 0.9617 μM, and sensitivities of 0.2411 ± 0.0033 μA mM{sup −1}, r{sup 2} = 0.9984, 0.08164 ± 0.001129 μA mM{sup −1}, r{sup 2} = 0.9975, 0.04189 ± 0.00087 μA mM{sup −1}, and r{sup 2} = 0.9944 respectively and a response time of less than 5 s. The use of purified SWCNTs has several advantages, including fast electron transfer rate and stability in the immobilized enzyme. The significant enhancement of the SWCNT modified electrode as a glucose sensor can be attributed to the superior conductivity and large surface area of the well dispersed purified SWCNTs. - Highlights: • Purification method employed here use cheap and green oxidants. • The method does not disrupt the electronic structure of nanotubes. • This method removes nearly < 2% metallic impurities. • Increases the sensitivity and performance of glassy carbon electrode • This system can detect as low as 0.066 μM of H{sub 2}O{sub 2} and 0.2633 μM of glucose.

  14. Calculations of the SNL experiments Sup1 and Sup2 with CONTAIN 2

    International Nuclear Information System (INIS)

    Jacobs, G.; Noebel, R.; Wendlandt, T.

    2000-01-01

    Post-test calculations using the CONTAIN code were performed for the SNL melt dispersal/DCH tests SUP-1 und SUP-2, resulting in a workable input model for future applications to high-temperature melt dispersal experiments as well as for prototypes with tight annular reactor cavity geometries. (orig.) [de

  15. Accident consequence assessments with different atmospheric dispersion models

    International Nuclear Information System (INIS)

    Panitz, H.J.

    1989-11-01

    An essential aim of the improvements of the new program system UFOMOD for Accident Consequence Assessments (ACAs) was to substitute the straight-line Gaussian plume model conventionally used in ACA models by more realistic atmospheric dispersion models. To identify improved models which can be applied in ACA codes and to quantify the implications of different dispersion models on the results of an ACA, probabilistic comparative calculations with different atmospheric dispersion models have been performed. The study showed that there are trajectory models available which can be applied in ACAs and that they provide more realistic results of ACAs than straight-line Gaussian models. This led to a completely novel concept of atmospheric dispersion modelling in which two different distance ranges of validity are distinguished: the near range of some ten kilometres distance and the adjacent far range which are assigned to respective trajectory models. (orig.) [de

  16. Application of dispersive liquid-liquid microextraction for the preconcentration of eight parabens in real samples and their determination by high-performance liquid chromatography.

    Science.gov (United States)

    Shen, Xiong; Liang, Jian; Zheng, Luxia; Lv, Qianzhou; Wang, Hong

    2017-11-01

    A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid-liquid microextraction based on the solidification of floating organic drops and determined by high-performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket-Burman design and Box-Behnken design. The optimized values were: 58 μL of 1-decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high-performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0-1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2-0.4 and 0.1-0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    2000-01-01

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  18. Latitudinal and longitudinal dispersion of energetic auroral protons

    Directory of Open Access Journals (Sweden)

    D. A. Lorentzen

    Full Text Available Using a collision by collision model from Lorentzen et al., the latitudinal and longitudinal dispersion of single auroral protons are calculated. The proton energies varies from 1 to 50 keV, and are released into the atmosphere at 700 km altitude. The dipole magnetic field has a dip-angle of 8 degrees. Results show that the main dispersion region is at high altitudes (300-350 km and occurs during the first few charge exchange collisions. As the proton travels further down the atmosphere the mean free path becomes smaller, and as a result the spreading effect will not be as pronounced. This means that the first few charge exchange collisions fully determines the width of both the latitudinal and longitudinal dispersion. The volume emission rate was calculated for energies between 1 and 50 keV, and it was found that dayside auroral hydrogen emissions rates were approximately 10 times weaker than nightside emission rates. Simulations were also performed to obtain the dependence of the particle dispersion as a function of initial pitch-angle. It was found that the dispersion varies greatly with initial pitch-angle, and the results are summarized in two tables; a main and an extreme dispersion region.

    Key words. Ionosphere (auroral ionosphere; · particle precipitation · Space plasma physics · (transport processes

  19. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system

    Directory of Open Access Journals (Sweden)

    Valan Arasu Amirtham

    2013-01-01

    Full Text Available Latent heat energy storage systems using paraffin wax could have lower heat transfer rates during melting/freezing processes due to its inherent low thermal conductivity. The thermal conductivity of paraffin wax can be enhanced by employing high conductivity materials such as alumina (Al2O3. A numerical analysis has been carried out to study the performance enhancement of paraffin wax with nanoalumina (Al2O3 particles in comparison with simple paraffin wax in a concentric double pipe heat exchanger. Numerical analysis indicates that the charge-discharge rates of thermal energy can be greatly enhanced using paraffin wax with alumina as compared with a simple paraffin wax as PCM.

  20. Cost optimal building performance requirements. Calculation methodology for reporting on national energy performance requirements on the basis of cost optimality within the framework of the EPBD

    Energy Technology Data Exchange (ETDEWEB)

    Boermans, T.; Bettgenhaeuser, K.; Hermelink, A.; Schimschar, S. [Ecofys, Utrecht (Netherlands)

    2011-05-15

    On the European level, the principles for the requirements for the energy performance of buildings are set by the Energy Performance of Buildings Directive (EPBD). Dating from December 2002, the EPBD has set a common framework from which the individual Member States in the EU developed or adapted their individual national regulations. The EPBD in 2008 and 2009 underwent a recast procedure, with final political agreement having been reached in November 2009. The new Directive was then formally adopted on May 19, 2010. Among other clarifications and new provisions, the EPBD recast introduces a benchmarking mechanism for national energy performance requirements for the purpose of determining cost-optimal levels to be used by Member States for comparing and setting these requirements. The previous EPBD set out a general framework to assess the energy performance of buildings and required Member States to define maximum values for energy delivered to meet the energy demand associated with the standardised use of the building. However it did not contain requirements or guidance related to the ambition level of such requirements. As a consequence, building regulations in the various Member States have been developed by the use of different approaches (influenced by different building traditions, political processes and individual market conditions) and resulted in different ambition levels where in many cases cost optimality principles could justify higher ambitions. The EPBD recast now requests that Member States shall ensure that minimum energy performance requirements for buildings are set 'with a view to achieving cost-optimal levels'. The cost optimum level shall be calculated in accordance with a comparative methodology. The objective of this report is to contribute to the ongoing discussion in Europe around the details of such a methodology by describing possible details on how to calculate cost optimal levels and pointing towards important factors and

  1. High-performance whole core Pin-by-Pin calculation based on EFEN-SP_3 method

    International Nuclear Information System (INIS)

    Yang Wen; Zheng Youqi; Wu Hongchun; Cao Liangzhi; Li Yunzhao

    2014-01-01

    The EFEN code for high-performance PWR whole core pin-by-pin calculation based on the EFEN-SP_3 method can be achieved by employing spatial parallelization based on MPI. To take advantage of the advanced computing and storage power, the entire problem spatial domain can be appropriately decomposed into sub-domains and the assigned to parallel CPUs to balance the computing load and minimize communication cost. Meanwhile, Red-Black Gauss-Seidel nodal sweeping scheme is employed to avoid the within-group iteration deterioration due to spatial parallelization. Numerical results based on whole core pin-by-pin problems designed according to commercial PWRs demonstrate the following conclusions: The EFEN code can provide results with acceptable accuracy; Communication period impacts neither the accuracy nor the parallel efficiency; Domain decomposition methods with smaller surface to volume ratio leads to greater parallel efficiency; A PWR whole core pin-by-pin calculation with a spatial mesh 289 × 289 × 218 and 4 energy groups could be completed about 900 s by using 125 CPUs, and its parallel efficiency is maintained at about 90%. (authors)

  2. Analysis of pumping performances in one-stage turbomolecular pump by 3D direct simulation Monte Carlo calculation

    International Nuclear Information System (INIS)

    Sheng Wang; Hisashi Ninokata

    2005-01-01

    The turbomolecular pump (TMP) has been applied in many fields for producing high and ultrahigh vacuum. It works mainly in conditions of free molecular and transitional flow where the mathematical model is the Boltzmann equation. In this paper, direct simulation Monte Carlo (DSMC) method is applied to simulate the one-stage TMP with a 3D analysis in a rotating reference frame. Considering the Coriolis and centrifugal accelerations, the equations about the molecular velocities and position are deduced. The VSS model and NTC collision schemes are used to calculate the intermolecular collisions. The diffuse reflection is employed on the molecular reflection from the surfaces of boundary. The transmission probabilities of gas flow in two opposite flow direction, the relationship between the mass flow rate and the pressure difference, the pumping performances including the maximum compression ratio on different outlet pressures in free molecular flow and transitional flow and the maximum pumping efficiency on different blade angles are calculated. The transmission probabilities are applied to analyze the relationship between the outlet pressure and the maximum pressure ratio. The numerical results show good quantitative agreement with the existing experiment data. (authors)

  3. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent LER Calculations

    Science.gov (United States)

    Fasnacht, Z.; Qin, W.; Haffner, D. P.; Loyola, D. G.; Joiner, J.; Krotkov, N. A.; Vasilkov, A. P.; Spurr, R. J. D.

    2017-12-01

    In order to estimate surface reflectance used in trace gas retrieval algorithms, radiative transfer models (RTM) such as the Vector Linearized Discrete Ordinate Radiative Transfer Model (VLIDORT) can be used to simulate the top of the atmosphere (TOA) radiances with advanced models of surface properties. With large volumes of satellite data, these model simulations can become computationally expensive. Look up table interpolation can improve the computational cost of the calculations, but the non-linear nature of the radiances requires a dense node structure if interpolation errors are to be minimized. In order to reduce our computational effort and improve the performance of look-up tables, neural networks can be trained to predict these radiances. We investigate the impact of using look-up table interpolation versus a neural network trained using the smart sampling technique, and show that neural networks can speed up calculations and reduce errors while using significantly less memory and RTM calls. In future work we will implement a neural network in operational processing to meet growing demands for reflectance modeling in support of high spatial resolution satellite missions.

  4. Self-Shielding Treatment to Perform Cell Calculation for Seed Furl In Th/U Pwr Using Dragon Code

    Directory of Open Access Journals (Sweden)

    Ahmed Amin El Said Abd El Hameed

    2015-08-01

    Full Text Available Time and precision of the results are the most important factors in any code used for nuclear calculations. Despite of the high accuracy of Monte Carlo codes, MCNP and Serpent, in many cases their relatively long computational time leads to difficulties in using any of them as the main calculation code. Usually, Monte Carlo codes are used only to benchmark the results. The deterministic codes, which are usually used in nuclear reactor’s calculations, have limited precision, due to the approximations in the methods used to solve the multi-group transport equation. Self- Shielding treatment, an algorithm that produces an average cross-section defined over the complete energy domain of the neutrons in a nuclear reactor, is responsible for the biggest error in any deterministic codes. There are mainly two resonance self-shielding models commonly applied: models based on equivalence and dilution and models based on subgroup approach. The fundamental problem with any self-shielding method is that it treats any isotope as there are no other isotopes with resonance present in the reactor. The most practical way to solve this problem is to use multi-energy groups (50-200 that are chosen in a way that allows us to use all major resonances without self-shielding. In this paper, we perform cell calculations, for a fresh seed fuel pin which is used in thorium/uranium reactors, by solving 172 energy group transport equation using the deterministic DRAGON code, for the two types of self-shielding models (equivalence and dilution models and subgroup models Using WIMS-D5 and DRAGON data libraries. The results are then tested by comparing it with the stochastic MCNP5 code.  We also tested the sensitivity of the results to a specific change in self-shielding method implemented, for example the effect of applying Livolant-Jeanpierre Normalization scheme and Rimman Integration improvement on the equivalence and dilution method, and the effect of using Ribbon

  5. Combination of saponification and dispersive liquid-liquid microextraction for the determination of tocopherols and tocotrienols in cereals by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Shammugasamy, Balakrishnan; Ramakrishnan, Yogeshini; Ghazali, Hasanah M; Muhammad, Kharidah

    2013-07-26

    A simple sample preparation technique coupled with reversed-phase high-performance liquid chromatography was developed for the determination of tocopherols and tocotrienols in cereals. The sample preparation procedure involved a small-scale hydrolysis of 0.5g cereal sample by saponification, followed by the extraction and concentration of tocopherols and tocotrienols from saponified extract using dispersive liquid-liquid microextraction (DLLME). Parameters affecting the DLLME performance were optimized to achieve the highest extraction efficiency and the performance of the developed DLLME method was evaluated. Good linearity was observed over the range assayed (0.031-4.0μg/mL) with regression coefficients greater than 0.9989 for all tocopherols and tocotrienols. Limits of detection and enrichment factors ranged from 0.01 to 0.11μg/mL and 50 to 73, respectively. Intra- and inter-day precision were lower than 8.9% and the recoveries were around 85.5-116.6% for all tocopherols and tocotrienols. The developed DLLME method was successfully applied to cereals: rice, barley, oat, wheat, corn and millet. This new sample preparation approach represents an inexpensive, rapid, simple and precise sample cleanup and concentration method for the determination of tocopherols and tocotrienols in cereals. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion

    Science.gov (United States)

    Ochi, Masayuki; Usui, Hidetomo; Kuroki, Kazuhiko

    2017-12-01

    Thermoelectric power generation has been recognized as one of the most important technologies, and high-performance thermoelectric materials have long been pursued. However, because of the large number of candidate materials, this quest is extremely challenging, and it has become clear that a firm theoretical concept from the viewpoint of band-structure engineering is needed. We theoretically demonstrate that pnictogen dichalcogenide layered compounds, which originally attracted attention as a family of superconductors and have recently been investigated as thermoelectric materials, can exhibit very high thermoelectric performance with elemental substitution. Specifically, we clarify a promising guiding principle for material design and find that LaOAsSe2, a material that has yet to be synthesized, has a power factor that is 6 times as large as that of the known compound LaOBiS2 and can exhibit a very large Z T under some plausible assumptions. This large enhancement of the thermoelectric performance originates from the quasi-one-dimensional gapped Dirac-like band dispersion, which is realized by the square-lattice network. We offer one ideal limit of the band structure for thermoelectric materials. Because our target materials have high controllability of constituent elements and feasibility of carrier doping, experimental studies along this line are eagerly awaited.

  7. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    International Nuclear Information System (INIS)

    Na, Y; Kapp, D; Kim, Y; Xing, L; Suh, T

    2014-01-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  8. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y; Kapp, D; Kim, Y; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Suh, T [Catholic UniversityMedical College, Seoul, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  9. Dispersion strengthening

    International Nuclear Information System (INIS)

    Scattergood, R.O.; Das, E.S.P.

    1976-01-01

    Using digital computer-based methods, models for dispersion strengthening can now be developed which take into account many of the important effects that have been neglected in the past. In particular, the self interaction of a dislocation can be treated, and a computer simulation method was developed to determine the flow stress of a random distribution of circular, impenetrable obstacles, taking into account all such interactions. The flow stress values depended on the obstacle sizes and spacings, over and above the usual 1/L dependence where L is the average obstacle spacing. From an analysis of the results, it was found that the main effects of the self interactions can be captured in a line tension analogue in which the obstacles appear to be penetrable

  10. Superparamagnetic graphene oxide-based dispersive-solid phase extraction for preconcentration and determination of tamsulosin hydrochloride in human plasma by high performance liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    Pashaei, Yaser; Ghorbani-Bidkorbeh, Fatemeh; Shekarchi, Maryam

    2017-05-26

    In the present study, superparamagnetic graphene oxide-Fe 3 O 4 nanocomposites were successfully prepared by a modified impregnation method (MGO mi ) and their application as a sorbent in the magnetic-dispersive solid phase extraction (M-dSPE) mode to the preconcentration and determination of tamsulosin hydrochloride (TMS) in human plasma was investigated by coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV). The structure, morphology and magnetic properties of the prepared nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). Some factors affecting the extraction efficiency, including the pH value, amount of sorbent, extraction time, elution solvent and its volume, and desorption time were studied and optimized. Magnetic nanocomposites plasma extraction of TMS following HPLC analyses showed a linear calibration curve in the range of 0.5-50.0ngmL -1 with an acceptable correlation coefficient (R 2 =0.9988). The method was sensitive, with a low limit of detection (0.17ngmL -1 ) and quantification (0.48ngmL -1 ). Inter- and intra-day precision expressed as relative standard deviation (n=3) and the preconcentration factor, were found to be 5.6-7.2%, 2.9-4.2% and 10, respectively. Good recoveries (98.1-101.4%) with low relative standard deviations (4.2-5.0%) indicated that the matrices under consideration do not significantly affect the extraction process. Due to its high precision and accuracy, the developed method may be a HPLC-UV alternative with M-dSPE for bioequivalence analysis of TMS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection to determination of opium alkaloids in human plasma.

    Science.gov (United States)

    Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba; Pirsaheb, Meghdad

    2013-11-01

    A novel, simple, rapid and sensitive dispersive liquid-liquid microextraction method based on the solidification of floating organic drop (DLLME-SFO) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine opium alkaloids in human plasma. During the extraction procedure, plasma protein was precipitated by using a mixture of zinc sulfate solution and acetonitrile. Some effective parameters on extraction were studied and optimized. Under the optimum conditions (extraction solvent: 30.0 μl 1-undecanol; disperser solvent: 470 μl acetone; pH: 9; salt addition: 1%(w/v) NaCl and extraction time: 0.5 min), calibration curves are linear in the range of 1.5-1000 μgl(-1) and limit of detections (LODs) are in the range of 0.5-5 μgl(-1). The relative standard deviations (RSDs) for 100 μgl(-1) of morphine and codeine, 10.0 μgl(-1) of papaverine and 20.0 μgl(-1) of noscapine in diluted human plasma are in the range of 4.3-7.4% (n=5). Finally, the method was successfully applied in the determination of opium alkaloids in the actual human plasma samples. The relative recoveries of plasma samples spiked with alkaloids are 88-110.5%. The obtained results show that DLLME-SFO combined with HPLC-UV is a fast and simple method for the determination of opium alkaloids in human plasma. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. [Determination of four phenolic endocrine disruptors in environmental water samples by high performance liquid chromatography-fluorescence detection using dispersive liquid-liquid microextraction coupled with derivatization].

    Science.gov (United States)

    Wang, Xiaoyan; Qi, Weimei; Zhao, Xian'en; Lü, Tao; Wang, Xiya; Zheng, Longfang; Yan, Yehao; You, Jinmao

    2014-06-01

    To achieve accurate, fast and sensitive detection of phenolic endocrine disruptors in small volume of environmental water samples, a method of dispersive liquid-liquid microextraction (DLLME) coupled with fluorescent derivatization was developed for the determination of bisphenol A, nonylphenol, octylphenol and 4-tert-octylphenol in environmental water samples by high performance liquid chromatography-fluorescence detection (HPLC-FLD). The DLLME and derivatization conditions were investigated, and the optimized DLLME conditions for small volume of environmental water samples (pH 4.0) at room temperature were as follows: 70 microL chloroform as extraction solvent, 400 microL acetonitrile as dispersing solvent, vortex mixing for 3 min, and then high-speed centrifugation for 2 min. Using 2-[2-(7H-dibenzo [a, g] carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC-Cl) as precolumn derivatization reagent, the stable derivatives of the four phenolic endocrine disruptors were obtained in pH 10.5 Na2CO3-NaHCO3 buffer/acetonitrile at 50 degrees C for 3 min, and then separated within 10 min by HPLC-FLD. The limits of detection (LODs) were in the range of 0.9-1.6 ng/L, and the limits of quantification (LOQs) were in the range of 3.8-7.1 ng/L. This method had perfect linearity, precision and recovery results, and showed obvious advantages and practicality comparing to the previously reported methods. It is a convenient and validated method for the routine analysis of phenolic endocrine disruptors in waste water of paper mill, lake water, domestic wastewater, tap water, etc.

  13. Rapid determination of some beta-blockers in complicated matrices by tandem dispersive liquid-liquid microextraction followed by high performance liquid chromatography.

    Science.gov (United States)

    Hemmati, Maryam; Asghari, Alireza; Bazregar, Mohammad; Rajabi, Maryam

    2016-11-01

    In this research work, an efficient tandem dispersive liquid-liquid microextraction (TDLLME) procedure coupled with high performance liquid chromatography-ultraviolet detection (HPLC-UV) was successfully applied for the determination of beta-blockers in human plasma and pharmaceutical wastewater samples. High clean-up and preconcentration factor are easily and rapidly feasible via this novel, cheap, and safe microextraction method, leading to high quality experimental data. It consists of two sequential dispersive liquid-liquid microextraction methods, accomplished via air/ultrasonic agitation and air agitation, respectively. In order to enrich the optimal values for the mentioned procedures, the Box-Behnken design (BBD) combined with the desirability function (DF) was used. The optimum values were found to be 11.0 % (w/v) of the salt amount, an initial pH value of 12.0, 103 μL of organic extractant phase, and 45 μL of aqueous extractant phase with pH value of 2.0, resulted in reasonable recovery percentages with a logical desirability. Under optimal experimental conditions, good linear ranges (3-2000 ng mL -1 for metoprolol and 2.5-2500 ng mL -1 for propranolol with the correlation of determinations (R 2 s) higher than 0.99) and low limits of detection (0.8 and 1.0 ng mL -1 for propranolol and metoprolol, respectively) were obtainable. Also, TDLLME-HPLC-UV provided good proper repeatabilities (relative standard deviations (RSDs) below 5.7 %, n = 3) and high enrichment factors (EFs) of 75-100. Graphical abstract TDLLME of beta-blockers from complicated matrices.

  14. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, free volume and glass transition.

    Science.gov (United States)

    Li, Jinjiang; Zhao, Junshu; Tao, Li; Wang, Jennifer; Waknis, Vrushali; Pan, Duohai; Hubert, Mario; Raghavan, Krishnaswamy; Patel, Jatin

    2015-02-01

    To investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition. Two drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions. The chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution. Both the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.

  15. [Features of dual--postural and calculation--task performance in patients with consequences of traumatic brain injury].

    Science.gov (United States)

    Zharikova, A V; Zhavoronkova, L A; Maksakova, O A; Kuptsova, S V

    2012-01-01

    Dual tasks with voluntary postural control and calculation have been done by 14 patients (25.7 +/- 4.7 yo.) after traumatic brain injury and 40 healthy volunteers (29.8 +/- 2.5 y.o.). Complex clinical (MMSE, FIM, MPAI-3 and Berg scales) and stabilographic evaluation has been performed. According to clinical evaluation 8 patients were included into group 1 with less severe functional deficit and 6 patients formed group 2 with more severe deficit. Parameters of motor and especially cognitive sub-tasks in patients were lower than in healthy subjects in both separate and dual tasks. In group 2 these parameters were lower than in group 1. Certain types of dual task where the quality of sub-tasks, especially of the motor-one increased in healthy subjects and patients of the first group were revealed. The complex of stabilographic parameters which could be used for estimation of quality of sub-tasks performance has been revealed. Dual tasks could be an additional method of evaluation of patients' adaptive possibilities and certain type of dual task could become a promising approach to recovery at late period of rehabilitation.

  16. Effect of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of amorphous solid dispersions.

    Science.gov (United States)

    Sun, Weiwei; Pan, Baoliang

    2017-06-15

    This study investigates the effects of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of micro-environment pH modifying solid dispersions (pH M -SD) for the poorly water-soluble model drug Toltrazuril (TOL). Various pH M -SDs were prepared using Ca(OH) 2 as a pH-modifier in hydrophilic polymers, including polyethylene glycol 6000 (PEG6000), polyvinylpyrrolidone k30 (PVPk30) and hydroxypropyl methylcellulose (HPMC). Based on the results of physicochemical characterizations and in-vitro dissolution testing, the representative ternary (Ca(OH) 2 :TOL:PEG6000/HPMC/PVPk30=1:8:24, w/w/w) and binary (TOL:PVPk30=1:3, w/w) solid dispersions were selected and optimized to perform in-vivo pharmacokinetic study. The micro-environment pH modification improved the in-vitro water-solubility and in-vivo bioavailability of parent drug TOL. Furthermore, the addition of alkalizers not only enhanced the release and absorption of prototype drug, but also promoted the generation of active metabolites, including toltrazuril sulfoxide (TOLSO) and toltrazuril sulfone (TOLSO 2 ). The in-vitro dissolution profiles and in-vivo absorption, distribution and metabolism behaviors of the pH M -SDs varied with polymer type. Moreover, in-vivo bioavailability of three active pharmaceutical ingredients increased with an increase in in-vitro dissolution rates of the drug from the pH M -SDs prepared with various polymers. Therefore, a non-sink in-vitro dissolution method can be used to predict the in-vivo performance of pH M -SDs formulated with various polymers with trend consistency. In-vitro and in-vivo screening procedures revealed that the pH M -SD composed of Ca(OH) 2 , TOL and PVPk30 at a weight ratio of 1:8:24, of which the safety was adequately proved via histopathological examination, may be a promising candidate for providing better clinical outcomes. Copyright © 2017. Published by Elsevier B.V.

  17. Design and construction of a triple-axis crystal neutron spectrometer and performance testing by means of measurements of dispersion relations in copper

    International Nuclear Information System (INIS)

    Fuhrmann, C.

    1979-01-01

    The Triple-Axis Crystal Neutron Spectrometer is the best instrument for the study of lattice dynamics, when the neutron inelastic scattering technique is used. Design, construction and operation of a triple-axis crystal neutron spectrometer, whose construction was recently finished at IEA are described. The design principles employed are directed to mechanical simplicity, facility of construction and flexibility in operation, with no adapted components to industrial applications were used in the construction. The operational characteristics of the spectrometer, such as the neutron wavelenght of the incoming beam and the resolution have been determined. With the purpose to check the performance of IEA Triple-Axis Crystal Neutron Spectrometer, dispersion relation curves for copper, at room temperature, have been measured. The frequency of phonons propagating along three major symmetry directions have been determined. The measurements were carried out operating the Triple-Axis Spectrometer in the 'sup(→)Q-constant' mode. An excelent agreement could be observed between the results obtained in the present experiment and the data for copper presented in the literature. This comparison indicates that the IEA Triple-Axis Crystal Neutron Spectrometer is in good operational conditions and is able to perform original experiments. Details on the experimental procedures for the case of a Triple-Axis Spectrometer operating in 'sup(→)Q-constant' mode are also presented. (Author) [pt

  18. Determination of Triazine Herbicides in Drinking Water by Dispersive Micro Solid Phase Extraction with Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometric Detection.

    Science.gov (United States)

    Chen, Dawei; Zhang, Yiping; Miao, Hong; Zhao, Yunfeng; Wu, Yongning

    2015-11-11

    A novel dispersive micro solid phase extraction (DMSPE) method based on a polymer cation exchange material (PCX) was applied to the simultaneous determination of the 30 triazine herbicides in drinking water with ultrahigh-performance liquid chromatography-high-resolution mass spectrometric detection. Drinking water samples were acidified with formic acid, and then triazines were adsorbed by the PCX sorbent. Subsequently, the analytes were eluted with ammonium hydroxide/acetonitrile. The chromatographic separation was performed on an HSS T3 column using water (4 mM ammonium formate and 0.1% formic acid) and acetonitrile (0.1% formic acid) as the mobile phase. The method achieved LODs of 0.2-30.0 ng/L for the 30 triazines, with recoveries in the range of 70.5-112.1%, and the precision of the method was better than 12.7%. These results indicated that the proposed method had the advantages of convenience and high efficiency when applied to the analysis of the 30 triazines in drinking water.

  19. An algorithm for calculating exam quality as a basis for performance-based allocation of funds at medical schools.

    Science.gov (United States)

    Kirschstein, Timo; Wolters, Alexander; Lenz, Jan-Hendrik; Fröhlich, Susanne; Hakenberg, Oliver; Kundt, Günther; Darmüntzel, Martin; Hecker, Michael; Altiner, Attila; Müller-Hilke, Brigitte

    2016-01-01

    The amendment of the Medical Licensing Act (ÄAppO) in Germany in 2002 led to the introduction of graded assessments in the clinical part of medical studies. This, in turn, lent new weight to the importance of written tests, even though the minimum requirements for exam quality are sometimes difficult to reach. Introducing exam quality as a criterion for the award of performance-based allocation of funds is expected to steer the attention of faculty members towards more quality and perpetuate higher standards. However, at present there is a lack of suitable algorithms for calculating exam quality. In the spring of 2014, the students' dean commissioned the "core group" for curricular improvement at the University Medical Center in Rostock to revise the criteria for the allocation of performance-based funds for teaching. In a first approach, we developed an algorithm that was based on the results of the most common type of exam in medical education, multiple choice tests. It included item difficulty and discrimination, reliability as well as the distribution of grades achieved. This algorithm quantitatively describes exam quality of multiple choice exams. However, it can also be applied to exams involving short assay questions and the OSCE. It thus allows for the quantitation of exam quality in the various subjects and - in analogy to impact factors and third party grants - a ranking among faculty. Our algorithm can be applied to all test formats in which item difficulty, the discriminatory power of the individual items, reliability of the exam and the distribution of grades are measured. Even though the content validity of an exam is not considered here, we believe that our algorithm is suitable as a general basis for performance-based allocation of funds.

  20. An algorithm for calculating exam quality as a basis for performance-based allocation of funds at medical schools

    Directory of Open Access Journals (Sweden)

    Kirschstein, Timo

    2016-05-01

    Full Text Available Objective: The amendment of the Medical Licensing Act (ÄAppO in Germany in 2002 led to the introduction of graded assessments in the clinical part of medical studies. This, in turn, lent new weight to the importance of written tests, even though the minimum requirements for exam quality are sometimes difficult to reach. Introducing exam quality as a criterion for the award of performance-based allocation of funds is expected to steer the attention of faculty members towards more quality and perpetuate higher standards. However, at present there is a lack of suitable algorithms for calculating exam quality.Methods: In the spring of 2014, the students‘ dean commissioned the „core group“ for curricular improvement at the University Medical Center in Rostock to revise the criteria for the allocation of performance-based funds for teaching. In a first approach, we developed an algorithm that was based on the results of the most common type of exam in medical education, multiple choice tests. It included item difficulty and discrimination, reliability as well as the distribution of grades achieved. Results: This algorithm quantitatively describes exam quality of multiple choice exams. However, it can also be applied to exams involving short assay questions and the OSCE. It thus allows for the quantitation of exam quality in the various subjects and – in analogy to impact factors and third party grants – a ranking among faculty. Conclusion: Our algorithm can be applied to all test formats in which item difficulty, the discriminatory power of the individual items, reliability of the exam and the distribution of grades are measured. Even though the content validity of an exam is not considered here, we believe that our algorithm is suitable as a general basis for performance-based allocation of funds.

  1. Calculation Package for the Analysis of Performance of Cells 1-6, with Underdrain, of the Environmental Management Waste Management Facility Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales D.

    2010-03-30

    This calculation package presents the results of an assessment of the performance of the 6 cell design of the Environmental Management Waste Management Facility (EMWMF). The calculations show that the new cell 6 design at the EMWMF meets the current WAC requirement. QA/QC steps were taken to verify the input/output data for the risk model and data transfer from modeling output files to tables and calculation.

  2. Hydrodynamic dispersion

    International Nuclear Information System (INIS)

    Pryce, M.H.L.

    1985-01-01

    A dominant mechanism contributing to hydrodynamic dispersion in fluid flow through rocks is variation of travel speeds within the channels carrying the fluid, whether these be interstices between grains, in granular rocks, or cracks in fractured crystalline rocks. The complex interconnections of the channels ensure a mixing of those parts of the fluid which travel more slowly and those which travel faster. On a macroscopic scale this can be treated statistically in terms of the distribution of times taken by a particle of fluid to move from one surface of constant hydraulic potential to another, lower, potential. The distributions in the individual channels are such that very long travel times make a very important contribution. Indeed, while the mean travel time is related to distance by a well-defined transport speed, the mean square is effectively infinite. This results in an asymmetrical plume which differs markedly from a gaussian shape. The distribution of microscopic travel times is related to the distribution of apertures in the interstices, or in the microcracks, which in turn are affected in a complex way by the stresses acting on the rock matrix

  3. Ultrasound assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography designated for bioavailability studies of felodipine combinations in rat plasma.

    Science.gov (United States)

    Ahmed, Sameh; Atia, Noha N; Bakr Ali, Marwa Fathy

    2017-03-01

    Felodipine (FLD), a calcium channel antagonist, is commonly prescribed for the treatment of hypertension either with Metoprolol (MET) or Ramipril (RAM) in two different drug combinations. FLD has high plasma protein binding ability affecting its extraction recoveries from plasma samples. Hence, a specific ultrasound assisted dispersive liquid-liquid microextraction (UA-DLLME) method coupled with HPLC using photodiode array detector was developed and validated for the simultaneous determination of FLD, MET and RAM in rat plasma after oral administration of these combinations. The factors affecting UA-DLLME were carefully optimized. In this study, UA-DLLME method could provide simple and efficient plasma extraction procedures with superior recovery results. Under optimum condition, all target drugs were separated within 13min. The validation procedures was carried out in agreement with US-FDA guidelines and shown to be suitable for anticipated purposes. Linear calibration ranges were obtained in the range 0.05-2.0μgmL -1 for FLD and MET and 0.1-2.0μgmL -1 for RAM with detection limits of 0.013-0.031μgmL -1 for all the studied drug combinations. The%RSD for inter-day and intra-day precisions was in range of 0.63-3.85% and the accuracy results were in the range of 92.13-100.5%. The validated UA-DLLME-HPLC method was successfully applied for the bioavailability studies of FLD, MET and RAM. The pharmacokinetic parameters were calculated for all the investigated drugs in rats after single-dose administrations of two different drug combinations. Although FLD was bioequivalent in the two formulations, a small increase in plasma levels of MET and RAM was found in the presence of FLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An evaporation-assisted dispersive liquid-liquid microextraction technique as a simple tool for high performance liquid chromatography tandem-mass spectrometry determination of insecticides in wine.

    Science.gov (United States)

    Timofeeva, Irina; Kanashina, Daria; Moskvin, Leonid; Bulatov, Andrey

    2017-08-25

    A sample pre-treatment technique based on evaporation-assisted dispersive liquid-liquid microextraction (EVA-DLLME), followed by HPLC-MS/MS has been developed for the determination of organophosphate insecticides (malathion, diazinon, phosalone) in wine samples. The procedure includes the addition of mixture of organic solvents (with density higher than water), consisting of the extraction (low density) and volatile (high density) solvents, to aqueous sample followed by heating of the mixture obtained, what promotes the volatile solvent evaporation and moving extraction solvent droplets from down to top of the aqueous sample and, as a consequence, microextraction of target analytes. To initiate the evaporation process an initiator is required. It was established that hexanol (extraction solvent) and dichloromethane (volatile solvent) mixture (1:1, v/v) provides effective microextraction of the insecticides from wine samples with recovery from 92 to 103%. The conditions of insecticides' microextraction such as selection of extraction solvent, ratio of hexanol/dichloromethane and hexanol/sample, type and concentration of initiator, and effect of ethanol as one of the main components of wine have been studied. Under optimal experimental conditions the linear detection ranges were found to be 10 -7 -10 -3 gL -1 for malathion, 10 -9 -10 -4 gL -1 for diazinon, and 10 -6 -10 -2 gL -1 for phosalone. The LODs, calculated from a blank test, based on 3σ, found to be 3×10 -8 gL -1 for malathion, 3×10 -10 gL -1 for diazinon and 3×10 -7 gL -1 for phosalone. The advantages of EVA-DLLME are the rapidity, simplicity, high sample throughput and low cost. As an outcome, the analytical results agreed fairly well with the results obtained by a reference GC-MS method. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. UV curable aqueous dispersions for wood coatings

    International Nuclear Information System (INIS)

    Peeters, S.; Bleus, J.P.; Wang, Z.J.; Arceneaux, J. A.; Hall, J.

    1999-01-01

    In this paper the characterisation of aqueous dispersions of UV curable resins is described. Two types of dispersions were used: dispersions that are tacky after water evaporation and tack - free before cure dispersions. The physical and rheological properties of these products have been determined and the performance of these dispersions in various formulations, especially for wood applications has been studied. With these dispersions, it is possible to produce coatings having a good cure speed, good surface hardness and good solvent -, chemical - and water resistance

  6. Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    International Nuclear Information System (INIS)

    Chvosta, Petr; Holubec, Viktor; Ryabov, Artem; Einax, Mario; Maass, Philipp

    2010-01-01

    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven at a constant rate. The time evolutions of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the work performed during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility

  7. Taylor dispersion of nanoparticles

    Science.gov (United States)

    Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2017-08-01

    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.

  8. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xiaoyu; Han Yi; Liu Xinli [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Duan Taicheng, E-mail: tcduan@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Chen Hangting, E-mail: htchen@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China)

    2011-01-15

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg{sup +}) and mercury (Hg{sup 2+}) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg{sup +} and Hg{sup 2+} were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL{sup -1} for MeHg{sup +} and 0.0014 ng mL{sup -1} for Hg{sup 2+}, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL{sup -1} MeHg{sup +} and Hg{sup 2+} were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  9. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    International Nuclear Information System (INIS)

    Silva, A.L.M.; Figueroa, R.; Jaramillo, A.; Carvalho, M.L.; Veloso, J.F.C.A.

    2013-01-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm 2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues. - Highlights: • Demonstration of an EDXRF imaging system based on a 2D-MHSP detector for biological analysis • Evaluation of the drift of the dental amalgam constituents, throughout the teeth • Observation of Hg diffusion, due to hydroxyapatite crystal defects that compose the teeth tissues

  10. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.L.M. [I3N, Physics Dept, University of Aveiro, 3810-193 Aveiro (Portugal); Figueroa, R.; Jaramillo, A. [Physics Department, Universidad de La Frontera, Temuco (Chile); Carvalho, M.L. [Atomic Physics Centre, University of Lisbon, 1649-03 Lisboa (Portugal); Veloso, J.F.C.A., E-mail: joao.veloso@ua.pt [I3N, Physics Dept, University of Aveiro, 3810-193 Aveiro (Portugal)

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm{sup 2} presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues. - Highlights: • Demonstration of an EDXRF imaging system based on a 2D-MHSP detector for biological analysis • Evaluation of the drift of the dental amalgam constituents, throughout the teeth • Observation of Hg diffusion, due to hydroxyapatite crystal defects that compose the teeth tissues.

  11. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    Science.gov (United States)

    Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.

  12. Determination of Bisphenol A and Bisphenol AF in Vinegar samples by two-component mixed ionic liquid dispersive liquid-phase microextraction coupled with high performance liquid chromatography

    International Nuclear Information System (INIS)

    Tai, Z.; Liu, M.; Hu, X.; Yang, Y.

    2014-01-01

    This paper describes a sensitive and simple method for the determination of bisphenol A (BPA) and bisphenol AF (BPAF) in vinegar samples using two-component mixed ionic liquid dispersive liquid-phase microextraction coupled with high performance liquid chromatography. In this work, BPA and BPAF were selected as the model analytes, and two-component mixed ionic liquid included 1-butyl-3-methylimidazolium hexafluorophosphate ((C4Mim)PF6) and 1-hexyl-3-methyl-imidazolium hexafluorophosphate ((C6Mim)PF6) was used as the extraction solvent for the first time here. Parameters that affect the extraction efficiency were investigated. Under the optimum conditions, good linear relationships were discovered in the range of 1.0-100 micro g/L for BPA and 2.0-150 micro g/L for BPAF, respectively. Detection limits of proposed method based on the signal-to-noise ratio (S/N=3) were in the range of 0.15-0.38 micro g/L. The efficiencies of proposed method have also been demonstrated with spiked real vinegar samples. The result show this method/ procedure to be a more efficient approach for the determination of BPA and BPAF in real vinegar, presenting average recovery rate of 89.3-112 % and precision values of 0.9-13.5% (RSDs, n = 6). In comparison with traditional solid phase extraction procedures this method results in lower solvent consumption, low pollution levels, and faster sample preparation. (author)

  13. Simultaneous determination of six synthetic phenolic antioxidants in edible oils using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with diode array detection.

    Science.gov (United States)

    Xu, Shuangjiao; Liu, Liangliang; Wang, Yanqin; Zhou, Dayun; Kuang, Meng; Fang, Dan; Yang, Weihua; Wei, Shoujun; Xiao, Aiping; Ma, Lei

    2016-08-01

    A simple, rapid, organic-solvent- and sample-saving pretreatment technique, called dispersive liquid-liquid microextraction, was developed for the determination of six synthetic phenolic antioxidants from edible oils before high-performance liquid chromatography with diode array detection. The entire procedure was composed of a two-step microextraction and a centrifugal process and could be finished in about 5 min, only consuming only 25 mg of sample and 1 mL of the organic solvent for each extraction. The influences of several important parameters on the microextraction efficiency were thoroughly investigated. Recovery assays for oil samples were spiked at three concentration levels, 50, 100 and 200 mg/kg, and provided recoveries in the 86.3-102.5% range with a relative standard deviation below 3.5%. The intra-day and inter-day precisions for the analysis were less than 3.8%. The proposed method was successfully applied for the determination of synthetic phenolic antioxidants in different oil samples, and satisfactory results were obtained. Thus, the developed method represents a viable alternative for the quality control of synthetic phenolic antioxidant concentrations in edible oils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sensitive determination of melamine in milk and powdered infant formula samples by high-performance liquid chromatography using dabsyl chloride derivatization followed by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Faraji, M; Adeli, M

    2017-04-15

    A new and sensitive pre-column derivatization with dabsyl chloride followed by dispersive liquid-liquid microextraction was developed for the analysis of melamine (MEL) in raw milk and powdered infant formula samples by high performance liquid chromatography (HPLC) with visible detection. Derivatization with dabsyl chloride leads to improving sensitivity and hydrophobicity of MEL. Under optimum conditions of derivatization and microextraction steps, the method yielded a linear calibration curve ranging from 1.0 to 500μgL -1 with a determination coefficient (R 2 ) of 0.9995. Limit of detection and limit of quantification were 0.1 and 0.3μgL -1 , respectively. The relative standard deviation (RSD%) for intra-day (repeatability) and inter-day (reproducibility) at 25 and 100μgL -1 levels of MEL was less than 7.0% (n=6). Finally, the proposed method was successfully applied for the preconcentration and determination of MEL in different raw milk and powdered infant formula, and satisfactory results were obtained (relative recovery ⩾94%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Facile and sensitive determination of N-nitrosamines in food samples by high-performance liquid chromatography via combining fluorescent labeling with dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Lu, Shuaimin; Wu, Di; Li, Guoliang; Lv, Zhengxian; Gong, Peiwei; Xia, Lian; Sun, Zhiwei; Chen, Guang; Chen, Xuefeng; You, Jinmao; Wu, Yongning

    2017-11-01

    The intake of N-nitrosamines (NAs) from foodstuffs is considered to be an important influence factor for several cancers. But the rapid and sensitive screening of NAs remains a challenge in the field of food safety. Inspired by that, a sensitive and rapid method was demonstrated for determination of five NAs (Nitrosopyrrolidine, Nitrosodimethylamine, Nitrosodiethylamine, Nitrosodipropylamine and Nitrosodibutylamine) using dispersive liquid-liquid microextraction (DLLME) followed by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The NAs were firstly denitrosated and labeled by 2-(11H-benzo[a]carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) and finally enriched by DLLME. Furthermore, the main DLLME conditions were optimized systematically. Under the optimal conditions, satisfactory limits of detection (LODs) were obtained with a range of 0.01-0.07ngg -1 , which were significantly lower than the reported methods. The developed method showed many merits including rapidity, simplicity, high sensitivity and excellent selectivity, which shows a broad prospect in food safety analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jia Xiaoyu; Han Yi; Liu Xinli; Duan Taicheng; Chen Hangting

    2011-01-01

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg + ) and mercury (Hg 2+ ) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg + and Hg 2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL -1 for MeHg + and 0.0014 ng mL -1 for Hg 2+ , respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL -1 MeHg + and Hg 2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  17. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  18. OPAL shield design performance assessment. Comparison of measured dose rates against the corresponding design calculated values. A designer perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brizuela, Martin; Albornoz, Felipe [INVAP SE, Av. Cmte. Piedrabuena, Bariloche (Argentina)

    2012-03-15

    A comparison of OPAL shielding calculations against measurements carried out during Commissioning, is presented for relevant structures such as the reactor block, primary shutters, neutron guide bunker, etc. All the results obtained agree very well with the measured values and contribute to establish the confidence on the calculation tools (MCNP4, DORT, etc.) and methodology used for shielding design. (author)

  19. Numerical methods of estimating the dispersion of radionuclides in atmosphere

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Ghitulescu, Alina; Popescu, Gheorghe; Piciorea, Iuliana

    2007-01-01

    Full text: The paper presents the method of dispersion calculation, witch can be applied for the DLE calculation. This is necessary to ensure a secure performance of the Experimental Pilot Plant for Tritium and Deuterium Separation (using the technology for detritiation based upon isotope catalytic exchange between tritiated heavy water and deuterium followed by cryogenic distillation of the hydrogen isotopes). For the calculation of the dispersion of radioactivity effluents in the atmosphere, at a given distance between source and receiver, the Gaussian mathematical model was used. This model is currently applied for estimating the long-term results of dispersion in case of continuous or intermittent emissions as basic information for long-term radioprotection measures for areas of the order of kilometres from the source. We have considered intermittent or continuous emissions of intensity lower than 1% per day relative to the annual emission. It is supposed that the radioactive material released into environment presents a gaussian dispersion both in horizontal and vertical plan. The local dispersion parameters could be determined directly with turbulence measurements or indirectly by determination of atmospheric stability. Weather parameters for characterizing the atmospheric dispersion include: - direction of wind relative to the source; - the speed of the wind at the height of emission; - parameters of dispersion to different distances, depending on the atmospheric turbulence which characterizes the mixing of radioactive materials in the atmosphere; - atmospheric stability range; - the height of mixture stratum; - the type and intensity of precipitations. The choice of the most adequate version of Gaussian model depends on the relation among the height where effluent emission is in progress, H (m), and the height at which the buildings influence the air motion, HB (m). There were defined three zones of distinct dispersion. This zones can have variable lengths

  20. Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area.

    NARCIS (Netherlands)

    Beelen, R.M.J.; Voogt, M.; Duyzer, J.; Zandveld, P.; Hoek, G.

    2010-01-01

    The performance of a Land Use Regression (LUR) model and a dispersion model (URBIS - URBis Information System) was compared in a Dutch urban area. For the Rijnmond area, i.e. Rotterdam and surroundings, nitrogen dioxide (NO2) concentrations for 2001 were estimated for nearly 70 000 centroids of a

  1. A track length estimator method for dose calculations in low-energy X-ray irradiations. Implementation, properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, F.; Delaire, F.; Letang, J.M.; Sarrut, D.; Smekens, F.; Freud, N. [Lyon-1 Univ. - CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Centre Leon Berard (France); Mittone, A.; Coan, P. [LMU Munich (Germany). Dept. of Physics; LMU Munich (Germany). Faculty of Medicine; Bravin, A.; Ferrero, C. [European Synchrotron Radiation Facility, Grenoble (France); Gasilov, S. [LMU Munich (Germany). Dept. of Physics

    2015-05-01

    The track length estimator (TLE) method, an 'on-the-fly' fluence tally in Monte Carlo (MC) simulations, recently implemented in GATE 6.2, is known as a powerful tool to accelerate dose calculations in the domain of low-energy X-ray irradiations using the kerma approximation. Overall efficiency gains of the TLE with respect to analogous MC were reported in the literature for regions of interest in various applications (photon beam radiation therapy, X-ray imaging). The behaviour of the TLE method in terms of statistical properties, dose deposition patterns, and computational efficiency compared to analogous MC simulations was investigated. The statistical properties of the dose deposition were first assessed. Derivations of the variance reduction factor of TLE versus analogous MC were carried out, starting from the expression of the dose estimate variance in the TLE and analogous MC schemes. Two test cases were chosen to benchmark the TLE performance in comparison with analogous MC: (i) a small animal irradiation under stereotactic synchrotron radiation therapy conditions and (ii) the irradiation of a human pelvis during a cone beam computed tomography acquisition. Dose distribution patterns and efficiency gain maps were analysed. The efficiency gain exhibits strong variations within a given irradiation case, depending on the geometrical (voxel size, ballistics) and physical (material and beam properties) parameters on the voxel scale. Typical values lie between 10 and 103, with lower levels in dense regions (bone) outside the irradiated channels (scattered dose only), and higher levels in soft tissues directly exposed to the beams.

  2. On Dispersion in Visual Photoreceptors

    NARCIS (Netherlands)

    Stavenga, D.G.; Barneveld, H.H. van

    1975-01-01

    An idealized visual pigment absorbance spectrum is used together with a Kramers-Kronig dispersion relation to calculate the contribution of the visual pigment to the refractive index of the fly photoreceptor. It appears that an absorption coefficient of 0.010 µm-1 results in a refractive index

  3. Seed dispersal in fens

    NARCIS (Netherlands)

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  4. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario....

  5. Highly dispersed Co0.5Zn0.5Fe2O4/polypyrrole nanocomposites for cost-effective, high-performance defluoridation using a magnetically controllable microdevice

    International Nuclear Information System (INIS)

    Wang, Gang; Shi, Guoying; Mu, Qinghui; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang

    2012-01-01

    Highlights: ► Highly dispersed CZFO/PPy nanocomposites are synthesized in microfluidic reactor. ► The as-synthesized nanocomposites behave as a high performance adsorbent. ► The magnetic microdevice has advantages over traditional methods for defluoridation. - Abstract: Highly dispersed Co 0.5 Zn 0.5 Fe 2 O 4 /polypyrrole (CZFO/PPy) nanocomposites with enhanced electromagnetic properties and large surface area were rapidly and controllably prepared using microfluidic reactors. A novel magnetically controllable microdevice using the new adsorbent in a highly dispersed form was assembled and used for fluoride adsorption. Compared with traditional adsorption methods, the device displayed high adsorption efficiency and capacity. The adsorbents were regenerated with no significant loss in defluoridation ability, which indicates that the device is a realistic and highly efficient alternative way of removing fluoride pollution at low cost.

  6. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  7. Simultaneous determination of seven synthetic colorants in wine by dispersive micro-solid-phase extraction coupled with reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Zhang, Yun; Zhou, Hua; Wang, Yougang; Wu, Xianglun; Zhao, Yonggang

    2015-02-01

    A novel and effective dispersive micro-solid-phase extraction (d-µ-SPE) using ethanediamine-functionalized magnetic Fe3O4 polymer (EDA-MP) as an efficient adsorbent in wine sample was developed. Based on this, a simple and time-saving analytical method for the simultaneous determination of seven synthetic colorants (i.e., tartrazine, amaranth, carmine, sunset yellow, allura red, brilliant blue and erythrosine) in wine by reversed-phase high-performance liquid chromatography with an ultraviolet detector was established. The experimental parameters, including the chromatographic retention behavior of studied synthetic colorants, the effect of the usage amount of cross-linking monomer, the effect of the usage amount of EDA-MP on the recovery and the recyclability of the adsorbents, were studied in detail. The results showed that the EDA-MP could be reused efficiently at least six times. Under optimized conditions, the recoveries for all analytes were in the range of 88.6-105.2%, with the intraday relative standard deviations (RSDs) ranging from 2.1 to 8.2% and the interday RSDs ranging from 3.4 to 8.7%, and all the analytes had good linearities in the tested ranges with correlation coefficients (r(2)) >0.9995. The limits of quantification for seven synthetic colorants were between 0.12 and 0.45 mg L(-1). The developed method was successfully applied to wine samples, and it was confirmed that the EDA-MP particles were highly effective d-µ-SPE materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Atmospheric dispersion of radionuclides released by a nuclear plant

    International Nuclear Information System (INIS)

    Barboza, A.A.

    1989-01-01

    A numerical model has been developed to simulate the atmospheric dispersion of radionuclides released by a nuclear plant operating under normal conditions. The model, based on gaussian plume representation, accouts for and evaluates several factors which affect the concentraction of effluents in the atmosphere, such as: ressuspension, deposition, radioactive decay, energy and type of the radiation emitted, among others. The concentraction of effluents in the atmosphere is calculated for a uniform mesh of points around the plant, allowing the equivalent doses to be then evaluated. Simulations of the atmosphere dispersion of radioactive plumes of Cs 137 and Ar 41 have been performed assuming a constant rate of release, as expected from the normal operation of a nuclear plant. Finally, this work analyzes the equivalent doses at ground level due to the dispersion of Cs 137 and Ar 41 , accumulated over one year and determines the isodose curves for a hypothetical site. (author) [pt

  9. Atmospheric dispersion of radioactive materials

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1988-01-01

    The report describes currently available techniques for predicting the dispersion of accidentally released radioactive materials and techniques for visualization using computer graphics. A simulation study is also made on the dispersion of radioactive materials released from the Chernobyl plant. The simplest models include the Gauss plume model and the puff model, which cannot serve to analyze the effects of the topography, vertical wind shear, temperature inversion layer, etc. Numerical analysis methods using advection and dispersion equations are widely adopted for detailed evaluation of dispersion in an emergency. An objective analysis model or a hydrodynamical model is often used to calculate the air currents which are required to determine the advection. A small system based on the puff model is widely adopted in Europe, where the topography is considered to have only simple effects. A more sophisticated large-sized system is required in nuclear facilities located in an area with more complex topographic features. An emergency system for dispersion calculation should be equipped with a graphic display to serve for quick understanding of the radioactivity distribution. (Nogami, K.)

  10. Extragalactic dispersion measures of fast radio bursts

    International Nuclear Information System (INIS)

    Xu, Jun; Han, J. L.

    2015-01-01

    Fast radio bursts show large dispersion measures, much larger than the Galactic dispersion measure foreground. Therefore, they evidently have an extragalactic origin. We investigate possible contributions to the dispersion measure from host galaxies. We simulate the spatial distribution of fast radio bursts and calculate the dispersion measures along the sightlines from fast radio bursts to the edge of host galaxies by using the scaled NE2001 model for thermal electron density distributions. We find that contributions to the dispersion measure of fast radio bursts from the host galaxy follow a skew Gaussian distribution. The peak and the width at half maximum of the dispersion measure distribution increase with the inclination angle of a spiral galaxy, to large values when the inclination angle is over 70°. The largest dispersion measure produced by an edge-on spiral galaxy can reach a few thousand pc cm −3 , while the dispersion measures from dwarf galaxies and elliptical galaxies have a maximum of only a few tens of pc cm −3 . Notice, however, that additional dispersion measures of tens to hundreds of pc cm −3 can be produced by high density clumps in host galaxies. Simulations that include dispersion measure contributions from the Large Magellanic Cloud and the Andromeda Galaxy are shown as examples to demonstrate how to extract the dispersion measure from the intergalactic medium. (paper)

  11. Thermal behavior analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  12. Thermal behavior analysis of U-Mo/Al dispersion fuel

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu

    2004-01-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  13. Methods to produce calibration mixtures for anesthetic gas monitors and how to perform volumetric calculations on anesthetic gases.

    Science.gov (United States)

    Christensen, P L; Nielsen, J; Kann, T

    1992-10-01

    A simple procedure for making calibration mixtures of oxygen and the anesthetic gases isoflurane, enflurane, and halothane is described. One to ten grams of the anesthetic substance is evaporated in a closed, 11,361-cc glass bottle filled with oxygen gas at atmospheric pressure. The carefully mixed gas is used to calibrate anesthetic gas monitors. By comparison of calculated and measured volumetric results it is shown that at atmospheric conditions the volumetric behavior of anesthetic gas mixtures can be described with reasonable accuracy using the ideal gas law. A procedure is described for calculating the deviation from ideal gas behavior in cases in which this is needed.

  14. The Effects of the Use of Microsoft Math Tool (Graphical Calculator) Instruction on Students' Performance in Linear Functions

    Science.gov (United States)

    Kissi, Philip Siaw; Opoku, Gyabaah; Boateng, Sampson Kwadwo

    2016-01-01

    The aim of the study was to investigate the effect of Microsoft Math Tool (graphical calculator) on students' achievement in the linear function. The study employed Quasi-experimental research design (Pre-test Post-test two group designs). A total of ninety-eight (98) students were selected for the study from two different Senior High Schools…

  15. Synthesis of highly dispersed Pd nanoparticles supported on multi-walled carbon nanotubes and their excellent catalytic performance for oxidation of benzyl alcohol

    NARCIS (Netherlands)

    Shinde, V.M.; Skupien, E.; Makkee, M.

    2015-01-01

    Narrow sized and highly homogeneous dispersed Pd nanoparticles have been synthesized on nitric acid-functionalized multi-walled carbon nanotubes (CNTs) without a capping agent. The TEM images show that the extremely small Pd nanoparticles with an average size of about 1.5 nm were homogeneously

  16. Review of specific effects in atmospheric dispersion calculations. The impact of source-term characteristics -and the processes that modify them post release- on dry and wet deposition rates

    International Nuclear Information System (INIS)

    Cooper, P.J.; Underwood, B.Y.; Brearley, I.

    1985-01-01

    In the first half of the work the source-term characteristics potentially influencing behaviour were identified and examined. It was concluded that a number of source characteristics, in addition to those conventionally provided for consequence assessment, could significantly influence deposition behaviour. Linking with this, a review was undertaken of past reactor-accident risk assessment and more recent source-term studies to pick out information, if any, on the parameters of interest. The second half of the study resulted in a list of processes capable of transforming the released material vis-a-vis deposition characteristics, including processes occurring in the near field associated with the initial release transient and also those occurring over a longer time span as the plume travels downwind. Scoping calculations were performed for some of the processes in the context of idealized accident scenarios, leading to the conclusions that in some circumstances post-release mechanisms could have an important impact on the deposition behaviour of released material. Statistical theory was used to describe the behaviour of a plume both before and after detachment, and the limitations of the theory were discussed. A review of the lateral wind velocity spectra was undertaken so that simplified spectra could be constructed and used to predict the plume behaviour as a function of travel time, stability category and release duration. It was found that commonly used methods of allowing for release duration overpredicted the dependence, in general, upon release duration. For example the adoption of a stability-independent meandering term would lead to the underprediction of threshold effects such as early death and land/crop interdiction. In addition, theory indicated that the 'Y' curves for different stability categories would converge gradually with increasing travel time

  17. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  18. Temperature-assisted On-column Solute Focusing: A General Method to Reduce Pre-column Dispersion in Capillary High Performance Liquid Chromatography

    Science.gov (United States)

    Groskreutz, Stephen R.; Weber, Stephen G.

    2014-01-01

    Solvent-based on-column focusing is a powerful and well known approach for reducingthe impact of pre-column dispersion in liquid chromatography. Here we describe an orthogonal temperature-based approach to focusing called temperature-assisted on-column solute focusing (TASF). TASF is founded on the same principles as the more commonly used solvent-based method wherein transient conditions are created thatlead to high solute retention at the column inlet. Combining the low thermal mass of capillary columns and the temperature dependence of solute retentionTASF is used effectivelyto compress injection bands at the head of the column through the transient reduction in column temperature to 5 °C for a defined 7 mm segment of a 6 cm long 150 μm I.D. column. Following the 30 second focusing time, the column temperature is increased rapidly to the separation temperature of 60 °C releasing the focused band of analytes. We developed a model tosimulate TASF separations based on solute retention enthalpies, focusing temperature, focusing time, and column parameters. This model guides the systematic study of the influence of sample injection volume on column performance.All samples have solvent compositions matching the mobile phase. Over the 45 to 1050 nL injection volume range evaluated, TASF reducesthe peak width for all soluteswith k’ greater than or equal to 2.5, relative to controls. Peak widths resulting from injection volumes up to 1.3 times the column fluid volume with TASF are less than 5% larger than peak widths from a 45 nL injection without TASF (0.07 times the column liquid volume). The TASF approach reduced concentration detection limits by a factor of 12.5 relative to a small volume injection for low concentration samples. TASF is orthogonal to the solvent focusing method. Thus, it canbe used where on-column focusing is required, but where implementation of solvent-based focusing is difficult. PMID:24973805

  19. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid-liquid microextraction method for determining personal care products.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Pino, Verónica; Ayala, Juan H; Afonso, Ana M

    2017-05-01

    The IL-based surfactant octylguanidinium chloride (C 8 Gu-Cl) was designed and synthetized with the purpose of obtaining a less harmful surfactant: containing guanidinium as core cation and a relatively short alkyl chain. Its interfacial and aggregation behavior was evaluated through conductivity and fluorescence measurements, presenting a critical micelle concentration value of 42.5 and 44.6mmolL -1 , respectively. Cytotoxicity studies were carried out with C 8 Gu-Cl and other IL-based and conventional surfactants, specifically the analogue 1-octyl-3-methylimidazolium chloride (C 8 MIm-Cl), and other imidazolium- (C 16 MIm-Br) and pyridinium- (C 16 Py-Cl) based surfactants, together with the conventional cationic CTAB and the conventional anionic SDS. From these studies, C 8 Gu-Cl was the only one to achieve the classification of low cytotoxicity. An in situ dispersive liquid-liquid microextraction (DLLME) method based on transforming the water-soluble C 8 Gu-Cl IL-based surfactant into a water-insoluble IL microdroplet via a simple metathesis reaction was then selected as the extraction/preconcentration method for a group of 6 personal care products (PCPs) present in cosmetic samples. The method was carried out in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The method was properly optimized, requiring the use of only 30μL of C 8 Gu-Cl for 10mL of aqueous sample with a NaCl content of 8% (w/v) to adjust the ionic strength and pH value of 5. The metathesis reaction required the addition of the anion exchange reagent (bis[(trifluoromethyl)sulfonyl]imide - 1:1 molar ratio), followed by vortex and centrifugation, and dilution of the final microdroplet up to 60μL with acetonitrile before the injection in the HPLC-DAD system. The optimum in situ DLLME-HPLC-DAD method takes ∼10min for the extraction step and ∼22min for the chromatographic separation, with analytical features of low detection limits: down to 0.4

  20. Phonon dispersion and thermal conductivity of nanocrystal superlattices using three-dimensional atomistic models

    International Nuclear Information System (INIS)

    Zanjani, Mehdi B.; Lukes, Jennifer R.

    2014-01-01

    A computational study of thermal conductivity and phonon dispersion of gold nanocrystal superlattices is presented. Phonon dispersion curves, reported here for the first time from combined molecular dynamics and lattice dynamics calculations, show multiple phononic band gaps and consist of many more dispersion branches than simple atomic crystals. Fully atomistic three dimensional molecular dynamics calculations of thermal conductivity using the Green Kubo method are also performed for the first time on these materials. Thermal conductivity is observed to increase for increasing nanocrystal core size and decrease for increasing surface ligand density. Our calculations predict values in the range 0.1–1 W/m K that are consistent with reported experimental results

  1. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  2. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

    International Nuclear Information System (INIS)

    Pan, Zhao; Thomson, Scott; Whitehead, Jared; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)

  3. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587

  4. Dispersal Timing: Emigration of Insects Living in Patchy Environments.

    Directory of Open Access Journals (Sweden)

    Milica Lakovic

    Full Text Available Dispersal is a life-history trait affecting dynamics and persistence of populations; it evolves under various known selective pressures. Theoretical studies on dispersal typically assume 'natal dispersal', where individuals emigrate right after birth. But emigration may also occur during a later moment within a reproductive season ('breeding dispersal'. For example, some female butterflies first deposit eggs in their natal patch before migrating to other site(s to continue egg-laying there. How breeding compared to natal dispersal influences the evolution of dispersal has not been explored. To close this gap we used an individual-based simulation approach to analyze (i the evolution of timing of breeding dispersal in annual organisms, (ii its influence on dispersal (compared to natal dispersal. Furthermore, we tested (iii its performance in direct evolutionary contest with individuals following a natal dispersal strategy. Our results show that evolution should typically result in lower dispersal under breeding dispersal, especially when costs of dispersal are low and population size is small. By distributing offspring evenly across two patches, breeding dispersal allows reducing direct sibling competition in the next generation whereas natal dispersal can only reduce trans-generational kin competition by producing highly dispersive offspring in each generation. The added benefit of breeding dispersal is most prominent in patches with small population sizes. Finally, the evolutionary contests show that a breeding dispersal strategy would universally out-compete natal dispersal.

  5. Development of a Performance Calculation Program for Solar Domestic Hot Water Systems with Improved Prediction of Thermal Stratification

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Li, Zhe

    2016-01-01

    The transient fluid flow and heat transfer in a hot water tank during cooling caused by standby heat loss were investigated by computational fluid dynamics (CFD) calculations and by thermal measurements in previous investigation. It is elucidated how thermal stratification in the tank is influenced...... by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions....

  6. Radioactive cloud dose calculations

    International Nuclear Information System (INIS)

    Healy, J.W.

    1984-01-01

    Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available

  7. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Science.gov (United States)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-04-01

    The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  8. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent Surface Lambertian-Equivalent Reflectivity Calculations

    Science.gov (United States)

    Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert

    2017-01-01

    Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.

  9. Using Standard-Sole Cost Method for Performance Gestion Accounting and Calculation Cost in the Machine Building Industry

    Directory of Open Access Journals (Sweden)

    Cleopatra Sendroiu

    2006-07-01

    Full Text Available The main purpose of improving and varying cost calculation methods in the machine building industry is to make them more operational and efficient in supplying the information necessary to the management in taking its decisions. The present cost calculation methods used in the machine building plants - global method and the method per orders - by which a historical cost is determined a posteriori used in deducting and post factum justification of manufacturing expenses does not offer the management the possibility to fully satisfy its need for information. We are talking about a change of conception in applying certain systems, methods and work techniques, according to the needs of efficient administration of production and the plant seen as a whole. The standard-cost method best answers to the needs of the effective management of the value side of the manufacturing process and raising economic efficiency. We consider that, in the machine building industry, these objectives can be achieved by using the standard - sole cost alternative of the standard-cost method.

  10. Using Standard-Sole Cost Method for Performance Gestion Accounting and Calculation Cost in the Machine Building Industry

    Directory of Open Access Journals (Sweden)

    Aureliana Geta Roman

    2006-09-01

    Full Text Available The main purpose of improving and varying cost calculation methods in the machine building industry is to make them more operational and efficient in supplying the information necessary to the management in taking its decisions. The present cost calculation methods used in the machine building plants – global method and the method per orders – by which a historical cost is determined a posteriori used in deducting and post factum justification of manufacturing expenses does not offer the management the possibility to fully satisfy its need for information. We are talking about a change of conception in applying certain systems, methods and work techniques, according to the needs of efficient administration of production and the plant seen as a whole. The standard-cost method best answers to the needs of the effective management of the value side of the manufacturing process and raising economic efficiency. We consider that, in the machine building industry, these objectives can be achieved by using the standard - sole cost alternative of the standard-cost method.

  11. User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants

    Energy Technology Data Exchange (ETDEWEB)

    Dellin, T.A.; Fish, M.J.; Yang, C.L.

    1981-08-01

    DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

  12. Dispersion of radioactive materials in air and water

    International Nuclear Information System (INIS)

    Tolksdorf, P.; Meurin, G.

    1976-01-01

    A review of current analytical methods for treating the dispersion of radioactive material in air and water is given. It is shown that suitable calculational models, based on experiments, exist for the dispersion in air. By contrast, the analysis of the dispersion of radioactive material in water still depends on the evaluation of experiments with site-specific models. (orig.) [de

  13. Faraday anomalous dispersion optical filters

    Science.gov (United States)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  14. High density dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1996-01-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing

  15. Performance of a fine-grained parallel model for multi-group nodal-transport calculations in three-dimensional pin-by-pin reactor geometry

    International Nuclear Information System (INIS)

    Masahiro, Tatsumi; Akio, Yamamoto

    2003-01-01

    A production code SCOPE2 was developed based on the fine-grained parallel algorithm by the red/black iterative method targeting parallel computing environments such as a PC-cluster. It can perform a depletion calculation in a few hours using a PC-cluster with the model based on a 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry for in-core fuel management of commercial PWRs. The present algorithm guarantees the identical convergence process as that in serial execution, which is very important from the viewpoint of quality management. The fine-mesh geometry is constructed by hierarchical decomposition with introduction of intermediate management layer as a block that is a quarter piece of a fuel assembly in radial direction. A combination of a mesh division scheme forcing even meshes on each edge and a latency-hidden communication algorithm provided simplicity and efficiency to message passing to enhance parallel performance. Inter-processor communication and parallel I/O access were realized using the MPI functions. Parallel performance was measured for depletion calculations by the 9-group nodal-SP3 transport method in 3-dimensional pin-by-pin geometry with 340 x 340 x 26 meshes for full core geometry and 170 x 170 x 26 for quarter core geometry. A PC cluster that consists of 24 Pentium-4 processors connected by the Fast Ethernet was used for the performance measurement. Calculations in full core geometry gave better speedups compared to those in quarter core geometry because of larger granularity. Fine-mesh sweep and feedback calculation parts gave almost perfect scalability since granularity is large enough, while 1-group coarse-mesh diffusion acceleration gave only around 80%. The speedup and parallel efficiency for total computation time were 22.6 and 94%, respectively, for the calculation in full core geometry with 24 processors. (authors)

  16. Automatic 2D scintillation camera and computed tomography whole-body image registration to perform dosimetric calculations

    International Nuclear Information System (INIS)

    Cismondi, F.; Mosconi, S.L.

    2008-01-01

    Full text: In this work a software tool that has been developed to allow automatic registrations of 2D Scintillation Camera (SC) and Computed Tomography (CT) images is presented. This tool, used with a dosimetric software with Integrated Activity or Residence Time as input data, allows the user to assess physicians about effects of radiodiagnostic or radiotherapeutic practices that involves nuclear medicine 'open sources'. Images are registered locally and globally, maximizing Mutual Information coefficient between regions been registered. In the regional case whole-body images are segmented into five regions: head, thorax, pelvis, left and right legs. Each region has its own registration parameters, which are optimized through Powell-Brent minimization method that 'maximizes' Mutual Information coefficient. This software tool allows the user to draw ROIs, input isotope characteristics and finally calculate Integrated Activity or Residence Time in one or many specific organ. These last values can be introduced in many dosimetric software to finally obtain Absorbed Dose values. (author)

  17. Comparison Of Seismic Performance Of Erciş Cultural Center Building With Observed And Calculated By Turkish Earthquake Code-2007

    Directory of Open Access Journals (Sweden)

    Recep Ali Dedecan

    2013-08-01

    Full Text Available The goal of this paper is to review the validity of seismic assessment procedure given in the Turkish Earthquake Code by comparing the assessment results with real structures from Eastern Turkey, where the 2011 Van earthquake occurred. To test the analysis methods for a typically suitable structure, the cultural center building at Erciş with 3 stories, is selected. In order to compare the results of the three different analysis techniques, for an identical earthquake, the ground motion used in analysis was characterized by equivalent elastic earthquake spectra, which were developed from available time history at the nearest construction site. It was found that the damage predictions by using the by Turkish Earthquake Code procedures point out the different level of damages. But, it is concluded that nonlinear time history analysis calculated the best estimation of the damage observed in the site.

  18. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  19. Performance Tuning of Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Hongzhan; Austin, Brian M.; De Jong, Wibe A.; Oliker, Leonid; Wright, Nicholas J.; Apra, Edoardo

    2014-10-01

    Attaining performance in the evaluation of two-electron repulsion integrals and constructing the Fock matrix is of considerable importance to the computational chemistry community. Due to its numerical complexity improving the performance behavior across a variety of leading supercomputing platforms is an increasing challenge due to the significant diversity in high-performance computing architectures. In this paper, we present our successful tuning methodology for these important numerical methods on the Cray XE6, the Cray XC30, the IBM BG/Q, as well as the Intel Xeon Phi. Our optimization schemes leverage key architectural features including vectorization and simultaneous multithreading, and results in speedups of up to 2.5x compared with the original implementation.

  20. Dispersing powders in liquids

    CERN Document Server

    Nelson, RD

    1988-01-01

    This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica

  1. Enhancing the calculation accuracy of performance characteristics of power-generating units by correcting general measurands based on matching energy balances

    Science.gov (United States)

    Shchinnikov, P. A.; Safronov, A. V.

    2014-12-01

    General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.

  2. Searing sentiment or cold calculation? the effects of leader emotional displays on team performance depend on follower epistemic motivation

    NARCIS (Netherlands)

    van Kleef, G.A.; Homan, A.C.; Beersma, B.; van Knippenberg, D.; van Knippenberg, B.; Damen, F.

    2009-01-01

    We examined how leader emotional displays affect team performance. We developed and tested the idea that effects of leader displays of anger versus happiness depend on followers' epistemic motivation, which is the desire to develop a thorough understanding of a situation. Experimental data on

  3. Empirical Validation of Simple Calculation Method for Assessment of Energy Performance in Double-Skin Façade Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Thomas, Sara Jessica; Larsen, Olena Kalyanova

    2009-01-01

    When designing new buildings a Double-Skin Facades (DSF) concept is recurrently discussed as an energy saving solution. There is a strong demand for a tool, which could estimate the energy performance of a DSF building in an early design stage, in order to assess whether it fulfills the Energy Pe...

  4. Calculation of the yearly energy performance of heating systems based on the European Building Directive and related CEN Standards

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; Langkilde, Gunnar

    2009-01-01

    In 2003 the European Commission (EC) issued a directive, 2002/91/EC [1]. The objective of this directive is to promote the improvement of the energy performance of buildings within the community, taking into account outdoor climatic and local conditions, as well as indoor climate requirements and...

  5. Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts

    International Nuclear Information System (INIS)

    Webb, S.; Itamura, M.

    2004-01-01

    Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt

  6. Modelling airborne dispersion for disaster management

    Science.gov (United States)

    Musliman, I. A.; Yohnny, L.

    2017-05-01

    Industrial disasters, like any other disasters, can happen anytime, anywhere and in any form. Airborne industrial disaster is a kind of catastrophic event involving the release of particles such as chemicals and industrial wastes into environment in gaseous form, for instance gas leakages. Unlike solid and liquid materials, gases are often colourless and odourless, the particles are too tiny to be visible to the naked eyes; hence it is difficult to identify the presence of the gases and to tell the dispersion and location of the substance. This study is to develop an application prototype to perform simulation modelling on the gas particles to determine the dispersion of the gas particles and to identify the coverage of the affected area. The prototype adopted Lagrangian Particle Dispersion (LPD) model to calculate the position of the gas particles under the influence of wind and turbulent velocity components, which are the induced wind due to the rotation of the Earth, and Convex Hull algorithm to identify the convex points of the gas cloud to form the polygon of the coverage area. The application performs intersection and overlay analysis over a set of landuse data at Pasir Gudang, Johor industrial and residential area. Results from the analysis would be useful to tell the percentage and extent of the affected area, and are useful for the disaster management to evacuate people from the affected area. The developed application can significantly increase efficiency of emergency handling during a crisis. For example, by using a simulation model, the emergency handling can predict what is going to happen next, so people can be well informed and preparations works can be done earlier and better. Subsequently, this application helps a lot in the decision making process.

  7. Modelling airborne dispersion for disaster management

    International Nuclear Information System (INIS)

    Musliman, I A; Yohnny, L

    2017-01-01

    Industrial disasters, like any other disasters, can happen anytime, anywhere and in any form. Airborne industrial disaster is a kind of catastrophic event involving the release of particles such as chemicals and industrial wastes into environment in gaseous form, for instance gas leakages. Unlike solid and liquid materials, gases are often colourless and odourless, the particles are too tiny to be visible to the naked eyes; hence it is difficult to identify the presence of the gases and to tell the dispersion and location of the substance. This study is to develop an application prototype to perform simulation modelling on the gas particles to determine the dispersion of the gas particles and to identify the coverage of the affected area. The prototype adopted Lagrangian Particle Dispersion (LPD) model to calculate the position of the gas particles under the influence of wind and turbulent velocity components, which are the induced wind due to the rotation of the Earth, and Convex Hull algorithm to identify the convex points of the gas cloud to form the polygon of the coverage area. The application performs intersection and overlay analysis over a set of landuse data at Pasir Gudang, Johor industrial and residential area. Results from the analysis would be useful to tell the percentage and extent of the affected area, and are useful for the disaster management to evacuate people from the affected area. The developed application can significantly increase efficiency of emergency handling during a crisis. For example, by using a simulation model, the emergency handling can predict what is going to happen next, so people can be well informed and preparations works can be done earlier and better. Subsequently, this application helps a lot in the decision making process. (paper)

  8. Dispersion and current measurements

    International Nuclear Information System (INIS)

    Boelskifte, S.

    1986-04-01

    A model for the simulation of particle movements in water should incorporate the mutual distance dependent correlation. As long as reliable data are given accessible a model can be created of the dispersion in a given area from a statistical description of turbulence. Current measurements have been performed in an area north of the Swedish nuclear power plant Barsebaeck, and statistical time series analysis have made it possible to estimate multivariate autoregressive moving-average (ARMA) models for these data using the Box-Jenkins method. The correlation structure for the area has been investigated in detail. Transport and dispersion models for the marine environment are used in estimating doses to the population from the aquatic food chain. Some of these models are described with special emphasis on the time and length scales they cover. Furthermore, to illustrate the background of the simulation model, short introductuions are given to health physics, time series analysis, and turbulence theory. Analysis of the simulation model shows the relative importance of the different parameters. The model can be expanded to conditional simulation, where the current measurements are used directly to simulate the movement of one of the particles. Results from the model are also compared to results from a sampling of bioindicators (Fucus vesiculosus) along the Danish coast. The reliability of bioindicators in this kind of experiment is discussed. (author)

  9. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    International Nuclear Information System (INIS)

    Beck, S.M.

    1975-04-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600-MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 +- 0.95 eV for nominal 600-MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV

  10. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    International Nuclear Information System (INIS)

    Beck, S.M.

    1975-04-01

    A mobile self-contained Faraday cup system for beam current measurements of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 +- 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV. (auth)

  11. Shielding performances analysis for the IFMIF test facility based on high-fidelity Monte Carlo neutronic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Keitaro, E-mail: kondo.keitaro@jaea.go.jp; Arbeiter, Frederik; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Tian, Kuo

    2015-10-15

    Highlights: • A detailed geometry model with pipe penetrations and gaps was prepared for the IFMIF test cell. • The neutron streaming effect due to gaps and pipes with shielding plugs was investigated. • The present analysis revealed that the streaming effect can be mitigated by some counter measures. • Occupational workers can access to the room above the test cell during operation. - Abstract: The IFMIF Test Cell (TC) design was developed and optimized in the EVEDA phase, and finally the reference TC design was proposed. The present study is devoted to further investigations of open issues on the reference TC design. In order to examine the neutron streaming effect caused by pipe penetrations and gaps around removable shielding plugs, a new geometry model for neutronic analyses has been prepared directly from engineering CAD data by utilizing the McCad conversion software. All removable shielding plugs are separately described in the model and a detailed description of pipes was incorporated into the model. The calculation result suggests that the streaming effect is mitigated if the pipe penetration is designed appropriately, while the gaps around the shielding plugs above the TC have large impact on the radiation dose in the access cell. The concept of the reference TC design has been basically validated from the neutronics point of view, although the streaming effect should be compensated by the shielding capability of the test cell cover plate so that occupational workers can access to the access cell during operation.

  12. Shielding performances analysis for the IFMIF test facility based on high-fidelity Monte Carlo neutronic calculations

    International Nuclear Information System (INIS)

    Kondo, Keitaro; Arbeiter, Frederik; Fischer, Ulrich; Lu, Lei; Qiu, Yuefeng; Tian, Kuo

    2015-01-01

    Highlights: • A detailed geometry model with pipe penetrations and gaps was prepared for the IFMIF test cell. • The neutron streaming effect due to gaps and pipes with shielding plugs was investigated. • The present analysis revealed that the streaming effect can be mitigated by some counter measures. • Occupational workers can access to the room above the test cell during operation. - Abstract: The IFMIF Test Cell (TC) design was developed and optimized in the EVEDA phase, and finally the reference TC design was proposed. The present study is devoted to further investigations of open issues on the reference TC design. In order to examine the neutron streaming effect caused by pipe penetrations and gaps around removable shielding plugs, a new geometry model for neutronic analyses has been prepared directly from engineering CAD data by utilizing the McCad conversion software. All removable shielding plugs are separately described in the model and a detailed description of pipes was incorporated into the model. The calculation result suggests that the streaming effect is mitigated if the pipe penetration is designed appropriately, while the gaps around the shielding plugs above the TC have large impact on the radiation dose in the access cell. The concept of the reference TC design has been basically validated from the neutronics point of view, although the streaming effect should be compensated by the shielding capability of the test cell cover plate so that occupational workers can access to the access cell during operation.

  13. Seed Dispersal Anachronisms: Rethinking the Fruits Extinct Megafauna Ate

    OpenAIRE

    Guimarães, Paulo R.; Galetti, Mauro; Jordano, Pedro

    2008-01-01

    Background: Some neotropical, fleshy-fruited plants have fruits structurally similar to paleotropical fruits dispersed by megafauna (mammals .103 kg), yet these dispersers were extinct in South America 10–15 Kyr BP. Anachronic dispersal systems are best explained by interactions with extinct animals and show impaired dispersal resulting in altered seed dispersal dynamics. Methodology/Principal Findings: We introduce an operational definition of megafaunal fruits and perform a comparativ...

  14. Theory of dispersive microlenses

    Science.gov (United States)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  15. [Comparative analysis of application of highly intensive laser irradiation and electrocoagulation during laparoscopic cholecystectomy performed for destructive forms of an acute calculous cholecystitis].

    Science.gov (United States)

    Nichitayio, M Yu; Bazyak, A M; Klochan, V V; Grusha, P K; Goman, A V

    2015-02-01

    Comparative analysis of results of the laser diode (the wave length 940 nm) and elec- trocoagulation application while performing laparoscopic cholecystectomy was con- ducted. For an acute calculous cholecystitis 52 patients were operated, in whom instead of electrocoagulation the laser was applied, provide for reduction of thermal impact on tissues, the complications absence, reduction of the patients stationary treatment duration postoperatively from (5.2 ± 1.2) to (4.9 ± 0.6) days.

  16. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon followed by high performance liquid chromatography for determination of Sudan dyes in different species.

    Science.gov (United States)

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2018-04-01

    In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2  ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analysis of site-specific dispersion conditions

    International Nuclear Information System (INIS)

    Paesler-Sauer, J.

    1989-03-01

    This report presents an analysis of atmospheric dispersion conditions in the environs of nuclear power stations in the Federal Republic of Germany. The analysis is based on meteorological data measured on the power station sites (KFUe = nuclear reactor remote control records) and by neighbouring stations operated by the German Weather Service. The data are series of hourly mean values of wind and temperature gradient or stability class over the period of one or more years. The aim of the data analysis is to find types of dispersion conditions characterized by the flow field and stratification, and to assess the feasibility of calculating these quantities in the case of an emergency. Influences of terrain structures in the environs of the site are considered. The annual frequencies of types of dispersion situations are assessed, the capability to recognize the dispersion situation from meteorological data measured on the site and the applicability of dispersion models are discussed. (orig.) [de

  18. Effect of different levels of rapidly degradable carbohydrates calculated by a simple rumen model on performance of lactating dairy cows.

    Science.gov (United States)

    Doorenbos, J; Martín-Tereso, J; Dijkstra, J; van Laar, H

    2017-07-01

    Aggregating rumen degradation characteristics of different carbohydrate components into the term modeled rapidly degradable carbohydrates (mRDC) can simplify diet formulation by accounting for differences in rate and extent of carbohydrate degradation within and between feedstuffs. This study sought to evaluate responses of lactating dairy cows to diets formulated with increasing levels of mRDC, keeping the supply of other nutrients as constant as possible. The mRDC content of feedstuffs was calculated based on a simple rumen model including soluble, washable, and nonwashable but potentially degradable fractions, as well as the fractional degradation and passage rates, of sugar, starch, neutral detergent fiber, and other carbohydrates. The mRDC term effectively represents the total amount of carbohydrates degraded in the rumen within 2 h after ingestion. Fifty-two lactating Holstein cows (of which 4 were rumen fistulated) were assigned to 4 treatments in a 4 × 4 Latin square design. Treatments were fed as a total mixed ration consisting of 25.4% corn silage, 23.1% grass silage, 11.6% grass hay, and 39.9% concentrate on a dry matter basis. Differences in mRDC were created by exchanging nonforage neutral detergent fiber-rich ingredients (mainly sugar beet pulp) with starch-rich ingredients (mainly wheat) and by exchanging corn (slowly degradable starch) with wheat (rapidly degradable starch) in the concentrate, resulting in 4 treatments that varied in dietary mRDC level of 167, 181, 194, or 208 g/kg of dry matter. Level of mRDC did not affect dry matter intake. Fat- and protein-corrected milk production and milk fat and lactose yield were greatest at 181 mRDC and decreased with further increases in mRDC. Milk protein yield and concentration increased with increasing mRDC level. Mean rumen pH and diurnal variation in ruminal pH did not differ between treatments. Total daily meal time and number of visits per meal were smaller at 181 and 194 mRDC. Despite milk

  19. Performance Analysis of Fission and Surface Source Iteration Method for Domain Decomposed Monte Carlo Whole-Core Calculation

    International Nuclear Information System (INIS)

    Jo, Yu Gwon; Oh, Yoo Min; Park, Hyang Kyu; Park, Kang Soon; Cho, Nam Zin

    2016-01-01

    In this paper, two issues in the FSS iteration method, i.e., the waiting time for surface source data and the variance biases in local tallies are investigated for the domain decomposed, 3-D continuous-energy whole-core calculation. The fission sources are provided as usual, while the surface sources are provided by banking MC particles crossing local domain boundaries. The surface sources serve as boundary conditions for nonoverlapping local problems, so that each local problem can be solved independently. In this paper, two issues in the FSS iteration are investigated. One is quantifying the waiting time of processors to receive surface source data. By using nonblocking communication, 'time penalty' to wait for the arrival of the surface source data is reduced. The other important issue is underestimation of the sample variance of the tally because of additional inter-iteration correlations in surface sources. From the numerical results on a 3-D whole-core test problem, it is observed that the time penalty is negligible in the FSS iteration method and that the real variances of both pin powers and assembly powers are estimated by the HB method. For those purposes, three cases; Case 1 (1 local domain), Case 2 (4 local domains), Case 3 (16 local domains) are tested. For both Cases 2 and 3, the time penalties for waiting are negligible compared to the source-tracking times. However, for finer divisions of local domains, the loss of parallel efficiency caused by the different number of sources for local domains in symmetric locations becomes larger due to the stochastic errors in source distributions. For all test cases, the HB method very well estimates the real variances of local tallies. However, it is also noted that the real variances of local tallies estimated by the HB method show slightly smaller than the real variances obtained from 30 independent batch runs and the deviations become larger for finer divisions of local domains. The batch size used for the HB

  20. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  1. The role of monomer fraction data in association theories—Can we improve the performance for phase equilibrium calculations?

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Bøgh, David; Karakatsani, Eirini

    2014-01-01

    with different ethanol content as inhibitor. There are some differences in the performance of CPA with the two sets but on average the results are similar. This may indicate that monomer fraction data are not very useful in this case or that ethanol monomer fraction data are not accurate and both possibilities...... accurate and how useful are such data today and how successful is their use in the context of association models? In this work we attempt to answer these questions in the case of the CPA model and for ethanol. CPA has been already successfully used to describe thermodynamic properties of many ethanol...... containing mixtures, using an ethanol parameter set that was adjusted to experimental vapor pressure and liquid density data. We present in this work a new parameter set for ethanol which is estimated using experimental vapor pressure, liquid density data as well as the experimental monomer fractions...

  2. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  3. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin

    2017-11-01

    An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Calculating green house gas emissions for buildings: analysis of the performance of several carbon counting tools in different climates

    Directory of Open Access Journals (Sweden)

    La Roche, P.

    2010-03-01

    Full Text Available The first step to reduce greenhouse gas emissions from buildings is to be able to count them. If this counting is integrated in the design process the impact of architectural design strategies can be evaluated more easily and a building with reduced emissions can be developed. Fifty greenhouse gas calculators and energy modeling software were compared in the main areas in which buildings are responsible for carbon emissions: operation, water, construction, waste and transportation to and from the building. These tools had to be free and easy to use so that they could be used by everybody in the initial phases of the architectural design process, while providing sufficient precision to provide useful input to the designer. The effect of modifying the envelope insulation, the quality of the windows, the efficiency of the heating and cooling systems, and integrating direct gain and night ventilation, on operation emissions was evaluated with two energy modeling tools: HEED and Design Builder. Results demonstrated that implementing appropriate design strategies significantly reduced emissions from operation in all climates. An easy to implement protocol that combines several tools for GHG counting in buildings is provided at the end.

    El primer paso para reducir las emisiones de gases invernadero generadas por las edificaciones es el poder calcularlas adecuadamente. Si esta actividad se integra al proceso de diseño arquitectónico; entonces el impacto de las estrategias de diseño se puede evaluar más fácilmente; resultando un edificio con menores emisiones. Cincuenta herramientas de cálculo de emisiones y programas de modelaje se compararon en las áreas en las cuales los edificios son responsables de las emisiones de gases invernadero: operación; agua; construcción; basura; y transporte desde y hasta el edificio. Las herramientas comparadas debían ser fáciles de utilizar; pero con suficiente precisión para proveer información de

  6. Resonance self-shielding calculation with regularized random ladders

    Energy Technology Data Exchange (ETDEWEB)

    Ribon, P.

    1986-01-01

    The straightforward method for calculation of resonance self-shielding is to generate one or several resonance ladders, and to process them as resolved resonances. The main drawback of Monte Carlo methods used to generate the ladders, is the difficulty of reducing the dispersion of data and results. Several methods are examined, and it is shown how one (a regularized sampling method) improves the accuracy. Analytical methods to compute the effective cross-section have recently appeared: they are basically exempt from dispersion, but are inevitably approximate. The accuracy of the most sophisticated one is checked. There is a neutron energy range which is improperly considered as statistical. An examination is presented of what happens when it is treated as statistical, and how it is possible to improve the accuracy of calculations in this range. To illustrate the results calculations have been performed in a simple case: nucleus /sup 238/U, at 300 K, between 4250 and 4750 eV.

  7. The resonance self-shielding calculation with regularized random ladders

    International Nuclear Information System (INIS)

    Ribon, P.

    1986-01-01

    The straightforward method for calculation of resonance self-shielding is to generate one or several resonance ladders, and to process them as resolved resonances. The main drawback of Monte Carlo methods used to generate the ladders, is the difficulty of reducing the dispersion of data and results. Several methods are examined, and it is shown how one (a regularized sampling method) improves the accuracy. Analytical methods to compute the effective cross-section have recently appeared: they are basically exempt from dispersion, but are inevitably approximate. The accuracy of the most sophisticated one is checked. There is a neutron energy range which is improperly considered as statistical. An examination is presented of what happens when it is treated as statistical, and how it is possible to improve the accuracy of calculations in this range. To illustrate the results calculations have been performed in a simple case: nucleus 238 U, at 300 K, between 4250 and 4750 eV. (author)

  8. Phonon dispersion relations for caesium thiocyanate

    International Nuclear Information System (INIS)

    Irving, M.A.; Smith, T.F.; Elcombe, M.M.

    1984-01-01

    Room temperature phonon dispersion relations for frequencies below 2 THz have been measured, along the three orthorhombic axes and selected diagonal directions by neutron inelastic scattering, for caesium thiocyanate. These curves, which represent 13 acoustic modes and 11 optic modes of vibration, do not agree with the dispersion behaviour calculated from the rigid-ion model developed by Ti and Ra to describe their Raman scattering observations

  9. Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi

    2014-10-15

    The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Anomalous dispersion enhanced Cerenkov phase-matching

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Cahill, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.

  11. Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI Removal

    Directory of Open Access Journals (Sweden)

    Chaoxia Zhao

    2017-01-01

    Full Text Available Well-dispersed nanoscale zero-valent iron (NZVI supported inside the pores of macroporous silica foams (MOSF composites (Mx-NZVI has been prepared as the Cr(VI adsorbent by simply impregnating the MOSF matrix with ferric chloride, followed by the chemical reduction with NaHB4 in aqueous solution at ambient atmosphere. Through the support of MOSF, the reactivity and stability of NZVI are greatly improved. Transmission electron microscopy (TEM results show that NZVI particles are spatially well-dispersed with a typical core-shell structure and supported inside MOSF matrix. The N2 adsorption-desorption isotherms demonstrate that the Mx-NZVI composites can maintain the macroporous structure of MOSF and exhibit a considerable high surface area (503 m2·g−1. X-ray photoelectron spectroscopy (XPS and powder X-ray diffraction (XRD measurements confirm the core-shell structure of iron nanoparticles composed of a metallic Fe0 core and an Fe(II/Fe(III species shell. Batch experiments reveal that the removal efficiency of Cr(VI can reach 100% when the solution contains 15.0 mg·L−1 of Cr(VI at room temperature. In addition, the solution pH and the composites dosage can affect the removal efficiency of Cr(VI. The Langmuir isotherm is applicable to describe the removal process. The kinetic studies demonstrate that the removal of Cr(VI is consistent with pseudo-second-order kinetic model.

  12. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    Science.gov (United States)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  13. Performance of Density Functional Theory Procedures for the Calculation of Proton-Exchange Barriers: Unusual Behavior of M06-Type Functionals.

    Science.gov (United States)

    Chan, Bun; Gilbert, Andrew T B; Gill, Peter M W; Radom, Leo

    2014-09-09

    We have examined the performance of a variety of density functional theory procedures for the calculation of complexation energies and proton-exchange barriers, with a focus on the Minnesota-class of functionals that are generally highly robust and generally show good accuracy. A curious observation is that M05-type and M06-type methods show an atypical decrease in calculated barriers with increasing proportion of Hartree-Fock exchange. To obtain a clearer picture of the performance of the underlying components of M05-type and M06-type functionals, we have investigated the combination of MPW-type and PBE-type exchange and B95-type and PBE-type correlation procedures. We find that, for the extensive E3 test set, the general performance of the various hybrid-DFT procedures improves in the following order: PBE1-B95 → PBE1-PBE → MPW1-PBE → PW6-B95. As M05-type and M06-type procedures are related to PBE1-B95, it would be of interest to formulate and examine the general performance of an alternative Minnesota DFT method related to PW6-B95.

  14. Faraday anomalous dispersion optical tuners

    Science.gov (United States)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  15. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1995-10-01

    This document provides an overview of the process used to assess the performance of the Waste Isolation Pilot Plant (WIPP), a proposed repository for transuranic wastes that is located in southeastern New Mexico. The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency's Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive flasks (40 CFR 191). Much has been written about the individual building blocks that comprise the foundation of PA theory and practice, and that WIPP literature is well cited herein. However, the present approach is to provide an accurate, well documented overview of the process, from the perspective of the mechanical steps used to perform the actual PA calculations. Specifically, the preliminary stochastic simulations that comprise the WIPP PAs of 1990, 1991. and 1992 are summarized

  16. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.

    1995-10-01

    This document provides an overview of the process used to assess the performance of the Waste Isolation Pilot Plant (WIPP), a proposed repository for transuranic wastes that is located in southeastern New Mexico. The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive flasks (40 CFR 191). Much has been written about the individual building blocks that comprise the foundation of PA theory and practice, and that WIPP literature is well cited herein. However, the present approach is to provide an accurate, well documented overview of the process, from the perspective of the mechanical steps used to perform the actual PA calculations. Specifically, the preliminary stochastic simulations that comprise the WIPP PAs of 1990, 1991. and 1992 are summarized.

  17. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  18. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    Science.gov (United States)

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Freeze-drying synthesis of three-dimensional porous LiFePO{sub 4} modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xiaofeng; Zhou, Yingke, E-mail: zhouyk888@hotmail.com; Song, Yijie

    2017-04-01

    Highlights: • Three-dimensional porous LiFePO{sub 4}/N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO{sub 4} electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO{sub 4}/N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO{sub 4} modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO{sub 4} to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  20. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-01-01

    Highlights: • Three-dimensional porous LiFePO 4 /N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO 4 electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO 4 /N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO 4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO 4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  1. Calculations of Financial Incentives for Providers in a Pay-for-Performance Program: Manual Review Versus Data From Structured Fields in Electronic Health Records.

    Science.gov (United States)

    Urech, Tracy H; Woodard, LeChauncy D; Virani, Salim S; Dudley, R Adams; Lutschg, Meghan Z; Petersen, Laura A

    2015-10-01

    Hospital report cards and financial incentives linked to performance require clinical data that are reliable, appropriate, timely, and cost-effective to process. Pay-for-performance plans are transitioning to automated electronic health record (EHR) data as an efficient method to generate data needed for these programs. To determine how well data from automated processing of structured fields in the electronic health record (AP-EHR) reflect data from manual chart review and the impact of these data on performance rewards. Cross-sectional analysis of performance measures used in a cluster randomized trial assessing the impact of financial incentives on guideline-recommended care for hypertension. A total of 2840 patients with hypertension assigned to participating physicians at 12 Veterans Affairs hospital-based outpatient clinics. Fifty-two physicians and 33 primary care personnel received incentive payments. Overall, positive and negative agreement indices and Cohen's kappa were calculated for assessments of guideline-recommended antihypertensive medication use, blood pressure (BP) control, and appropriate response to uncontrolled BP. Pearson's correlation coefficient was used to assess how similar participants' calculated earnings were between the data sources. By manual chart review data, 72.3% of patients were considered to have received guideline-recommended antihypertensive medications compared with 65.0% by AP-EHR review (κ=0.51). Manual review indicated 69.5% of patients had controlled BP compared with 66.8% by AP-EHR review (κ=0.87). Compared with 52.2% of patients per the manual review, 39.8% received an appropriate response by AP-EHR review (κ=0.28). Participants' incentive payments calculated using the 2 methods were highly correlated (r≥0.98). Using the AP-EHR data to calculate earnings, participants' payment changes ranged from a decrease of $91.00 (-30.3%) to an increase of $18.20 (+7.4%) for medication use (interquartile range, -14.4% to 0

  2. Dispersive analysis of the pion transition form factor

    Science.gov (United States)

    Hoferichter, M.; Kubis, B.; Leupold, S.; Niecknig, F.; Schneider, S. P.

    2014-11-01

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the cross section, generalizing previous studies on decays and scattering, and verify our result by comparing to data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below , and extract the slope of the form factor at vanishing momentum transfer . We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  3. Dispersion in thermal plasma including arbitrary degeneracy and quantum recoil

    International Nuclear Information System (INIS)

    Mushtaq, A.; Melrose, D.B.

    2012-01-01

    The longitudinal response function for a thermal electron gas was calculated including two quantum effects exactly, degeneracy and the quantum recoil. The Fermi-Dirac distribution was expanded in powers of a parameter that is small in the non-degenerate limit and the response function was evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum was performed in terms of poly logarithms in the long-wavelength and quasi-static limits, giving results that apply for arbitrary degeneracy. The results were applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the non-degenerate and completely degenerate limits], and generalizing them to arbitrary degeneracy. The occupation number for the completely degenerate limit is shown. The importance of the results regarding to semiconductor plasmas were highlighted. (orig./A.B.)

  4. Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: a PET study

    International Nuclear Information System (INIS)

    Wu, Tung-Hsin; Chen, Chia-Lin; Huang, Yung-Hui; Liu, Ren-Shyan; Hsieh, Jen-Chuen; Lee, Jason J.S.

    2009-01-01

    The aim of this study was to examine the neural bases for the exceptional mental calculation ability possessed by Chinese abacus experts through PET imaging. We compared the different regional cerebral blood flow (rCBF) patterns using 15 O-water PET in 10 abacus experts and 12 non-experts while they were performing each of the following three tasks: covert reading, simple addition, and complex contiguous addition. All data collected were analyzed using SPM2 and MNI templates. For non-experts during the tasks of simple addition, the observed activation of brain regions were associated with coordination of language (inferior frontal network) and visuospatial processing (left parietal/frontal network). Similar activation patterns but with a larger visuospatial processing involvement were observed during complex contiguous addition tasks, suggesting the recruitment of more visuospatial memory for solving the complex problems. For abacus experts, however, the brain activation patterns showed slight differences when they were performing simple and complex addition tasks, both of which involve visuospatial processing (bilateral parietal/frontal network). These findings supported the notion that the experts were completing all the calculation process on a virtual mental abacus and relying on this same computational strategy in both simple and complex tasks, which required almost no increasing brain workload for solving the latter. In conclusion, after intensive training and practice, the neural pathways in an abacus expert have been connected more effectively for performing the number encoding and retrieval that are required in abacus tasks, resulting in exceptional mental computational ability. (orig.)

  5. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Interim Revision, March 1976

    Science.gov (United States)

    Gordon, S.; Mcbride, B. J.

    1976-01-01

    A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states (T,P), (H,P), (S,P), (T,V), (U,V), or (S,V), (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species.

  6. High performance preconcentration of inorganic Se species by dispersive micro-solid phase extraction with a nanosilica-ionic liquid hybrid material

    Science.gov (United States)

    Llaver, Mauricio; Coronado, Eduardo A.; Wuilloud, Rodolfo G.

    2017-12-01

    A highly sensitive and efficient dispersive micro-solid phase extraction (D-μ-SPE) method was developed for inorganic Se speciation analysis. A novel ionic liquid (IL)-nanomaterial hybrid consisting of 1-dodecyl-3-methylimidazolium bromide-functionalized nanosilica was used for the efficient retention of Se(IV) complexed with ammonium pyrrolidine dithiocarbamate, followed by elution with an ethyl acetate/Triton X-114 mixture and determination by electrothermal atomic absorption spectroscopy. The Se(VI) species was selectively determined by difference between total inorganic Se and Se(IV) after pre-reduction. The IL-nanomaterial hybrid was characterized by Fourier transform infrared spectroscopy and transmission electronic microscopy. Likewise, Se(IV) sorption capacity of the retention material and maximum amount of IL loaded on its surface were determined. Several factors concerning the functionalization, extraction and elution steps were optimized, yielding a 100% extraction efficiency for Se(IV) under optimal conditions. A limit of detection of 1.1 ng L- 1, a relative standard deviation of 5.7% and a 110-fold enhancement factor were obtained. The D-μ-SPE method was successfully applied to several water samples from different origins and compositions, including rain, tap, underground, river and sea.

  7. Predictive performance of the 'Minto' remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass.

    Science.gov (United States)

    La Colla, Luca; Albertin, Andrea; La Colla, Giorgio; Porta, Andrea; Aldegheri, Giorgio; Di Candia, Domenico; Gigli, Fausto

    2010-01-01

    In a previous article, we showed that the pharmacokinetic set of remifentanil used for target-controlled infusion (TCI) might be biased in obese patients because it incorporates flawed equations for the calculation of lean body mass (LBM), which is a covariate of several pharmacokinetic parameters in this set. The objectives of this study were to determine the predictive performance of the original pharmacokinetic set, which incorporates the James equation for LBM calculation, and to determine the predictive performance of the pharmacokinetic set when a new method to calculate LBM was used (the Janmahasatian equations). This was an observational study with intraoperative observations and no follow-up. Fifteen morbidly obese inpatients scheduled for bariatric surgery were included in the study. The intervention included manually controlled continuous infusion of remifentanil during the surgery and analysis of arterial blood samples to determine the arterial remifentanil concentration, to be compared with concentrations predicted by either the unadjusted or the adjusted pharmacokinetic set. The statistical analysis included parametric and non-parametric tests on continuous variables and determination of the median performance error (MDPE), median absolute performance error (MDAPE), divergence and wobble. The median values (interquartile ranges) of the MDPE, MDAPE, divergence and wobble for the James equations during maintenance were -53.4% (-58.7% to -49.2%), 53.4% (49.0-58.7%), 3.3% (2.9-4.7%) and 1.4% h(-1) (1.1-2.5% h(-1)), respectively. The respective values for the Janmahasatian equations were -18.9% (-24.2% to -10.4%), 20.5% (13.3-24.8%), 2.6% (-0.7% to 4.5%) and 1.9% h(-1) (1.4-3.0% h(-1)). The performance (in terms of the MDPE and MDAPE) of the corrected pharmacokinetic set was better than that of the uncorrected one. The predictive performance of the original pharmacokinetic set is not clinically acceptable. Use of a corrected LBM value in morbidly obese

  8. Dispersion modeling by kinematic simulation: Cloud dispersion model

    International Nuclear Information System (INIS)

    Fung, J C H; Perkins, R J

    2008-01-01

    A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.

  9. TH-A-19A-04: Latent Uncertainties and Performance of a GPU-Implemented Pre-Calculated Track Monte Carlo Method

    International Nuclear Information System (INIS)

    Renaud, M; Seuntjens, J; Roberge, D

    2014-01-01

    Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implemented on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy

  10. Evaluation and application of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger patties.

    Science.gov (United States)

    Aeenehvand, Saeed; Toudehrousta, Zahra; Kamankesh, Marzieh; Mashayekh, Morteza; Tavakoli, Hamid Reza; Mohammadi, Abdorreza

    2016-01-01

    This study developed an analytical method based on microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of three polar heterocyclic aromatic amines from hamburger patties. Effective parameters controlling the performance of the microextraction process, such as the type and volume of extraction and disperser solvents, microwave time, nature of alkaline aqueous solution, pH and salt amount, were optimized. The calibration graphs were linear in the range of 1-200 ng g(-1), with a coefficient of determination (R(2)) better than 0.9993. The relative standard deviations (RSD) for seven analyses were between 3.2% and 6.5%. The recoveries of those compounds in hamburger patties were from 90% to 105%. Detection limits were between 0.06 and 0.21 ng g(-1). A comparison of the proposed method with the existing literature demonstrates that it is a simple, rapid, highly selective and sensitive, and it gives good enrichment factors and detection limits for determining HAAs in real hamburger patties samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Dispersal of forest insects

    Science.gov (United States)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  12. Improved new generation dispersants

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The use of dispersants to combat oil spills has attracted controversy over the years, and there has been a number of accusations of the chemicals involved doing more harm than good. A new study by the International Petroleum Industry Environmental Conservation Association discusses the positive and the negatives of dispersant use to be considered when drawing up spill contingency plans. (author)

  13. Seed dispersal in fens

    Science.gov (United States)

    Middleton, B.; Van Diggelen, R.; Jensen, K.

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.

  14. Layered van der Waals crystals with hyperbolic light dispersion

    DEFF Research Database (Denmark)

    Gjerding, Morten Niklas; Petersen, R.; Pedersen, T.G.

    2017-01-01

    Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first......-principles calculations, we extend the number of known naturally hyperbolic materials to the broad class of layered transition metal dichalcogenides (TMDs). The diverse electronic properties of the transition metal dichalcogenides result in a large variation of the hyperbolic frequency regimes ranging from the near...... materials with hyperbolic dispersion among the family of layered transition metal dichalcogenides....

  15. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    Science.gov (United States)

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  16. User Performance Evaluation of Four Blood Glucose Monitoring Systems Applying ISO 15197:2013 Accuracy Criteria and Calculation of Insulin Dosing Errors.

    Science.gov (United States)

    Freckmann, Guido; Jendrike, Nina; Baumstark, Annette; Pleus, Stefan; Liebing, Christina; Haug, Cornelia

    2018-04-01

    The international standard ISO 15197:2013 requires a user performance evaluation to assess if intended users are able to obtain accurate blood glucose measurement results with a self-monitoring of blood glucose (SMBG) system. In this study, user performance was evaluated for four SMBG systems on the basis of ISO 15197:2013, and possibly related insulin dosing errors were calculated. Additionally, accuracy was assessed in the hands of study personnel. Accu-Chek ® Performa Connect (A), Contour ® plus ONE (B), FreeStyle Optium Neo (C), and OneTouch Select ® Plus (D) were evaluated with one test strip lot. After familiarization with the systems, subjects collected a capillary blood sample and performed an SMBG measurement. Study personnel observed the subjects' measurement technique. Then, study personnel performed SMBG measurements and comparison measurements. Number and percentage of SMBG measurements within ± 15 mg/dl and ± 15% of the comparison measurements at glucose concentrations performed by lay-users. The study was registered at ClinicalTrials.gov (NCT02916576). Ascensia Diabetes Care Deutschland GmbH.

  17. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    Science.gov (United States)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  18. High-performance thermal sensitive W-doped VO{sub 2}(B) thin film and its identification by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Dongyun; Xiong, Ping; Chen, Lanli [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Shi, Siqi, E-mail: sqshi@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Ishaq, Ahmad [National Center for Physics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Luo, Hongjie [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Gao, Yanfeng, E-mail: yfgao@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China)

    2017-03-01

    Graphical abstract: VO{sub 2}(B) thin films with high TCR and suitable resistance were first achieved by W doping. The mechanism for performance improvement was studied by first-principles calculations. The two-dimensional octahedral structure of VO{sub 2}(B) favors the strain control with W-doping for achieving a large TCR, which overcomes the contradiction between the high conductivity and large TCR generated by dopants in VO{sub 2}(M). - Highlights: • High performance W-doped VO{sub 2}(B) thin films were first achieved by co-sputtering. • Mechanism for performance improvement was studied by first-principles calculations. • The two-dimensional octahedral structure of VO{sub 2} (B) favors the strain control. • Achieved VO{sub 2} films possess high thermal sensitivity (TCR: −3.9%/K & R{sub 0}: 32.7 kΩ). - Abstract: VO{sub 2}(B) is currently a preferred phase structure for the application as bolometer material, which, however, suffers from low temperature-coefficient-of-resistance (TCR) values and large resistances. Here we present the combined experimental and first-principles calculations study on both doped and undoped VO{sub 2}(B) thin films enabling us to attain high TCR (−3.9%/k) and suitable square-resistance (32.7 kΩ) by controlled W doping employing the widely used magnetron sputtering technique. The TCR value is 50% larger than reported ones at the similar resistance. The underlying microscopic mechanism for the performance improvement was studied and results indicated that the introduction of extra electrons and the variation in the band structure resulting from the incorporation of W{sup 6+} ions in the VO{sub 2}(B) crystal lattice contribute to the enhancement of the electronic conductivity. Moreover, the special two-dimensional octahedral structure of monoclinic (C2/m) B-phase VO{sub 2} favors the strain control with W-doping for achieving a large TCR, which overcomes the analogous predicament between the high conductivity and large TCR

  19. On application of analytical transformation system using a computer for Feynman intearal calculation

    International Nuclear Information System (INIS)

    Gerdt, V.P.

    1978-01-01

    Various systems of analytic transformations for the calculation of Feynman integrals using computers are discussed. The hyperspheric technique Which is used to calculate Feynman integrals enables to perform angular integration for a set of diagrams, thus reducing the multiplicity of integral. All calculations based on this method are made with the ASHMEDAL program. Feynman integrals are calculated in Euclidean space using integration by parts and some differential identities. Analytic calculation of Feynman integral is performed by the MACSYMA system. Dispersion method of integral calculation is implemented in the SCHOONSCHIP system, calculations based on features of Nielsen function are made using efficient SINAC and RSIN programs. A tube of basic Feynman integral parameters calculated using the above techniques is given

  20. Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene.

    Science.gov (United States)

    Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan

    2010-09-28

    Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.

  1. Effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex multi-doped composite coating produced through electrodeposition on oil and gas storage tap

    Directory of Open Access Journals (Sweden)

    P.A.L. Anawe

    2018-06-01

    Full Text Available The effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex zinc multi-doped composite coating produced through electrodeposition is studied. The degradation behaviour in term of wear and chemical corrosion activities were considered as a major factor in service. The wear mass loss was carried out with the help of reciprocating tester. The electrochemical corrosion characteristics were investigated using linear polarization technique in 3.5% simulated sodium chloride media. The outcome of the analysis shows that the developed coating was seen to provide a sound anti wear characteristics in its multidoped state. The corrosion resistance properties were observed to be massive compared to the binary based sample. It is expected that this characteristic will impact on the performance life span of storage tap in oil and gas. Keywords: Zn-SnO2-SiO2, Nanocomposite, Electrodeposition, Coatings and corrosion resistance

  2. Effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex multi-doped composite coating produced through electrodeposition on oil and gas storage tap

    Science.gov (United States)

    Anawe, P. A. L.; Fayomi, O. S. I.; Ayoola, A. A.; Popoola, A. P. I.

    2018-06-01

    The effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex zinc multi-doped composite coating produced through electrodeposition is studied. The degradation behaviour in term of wear and chemical corrosion activities were considered as a major factor in service. The wear mass loss was carried out with the help of reciprocating tester. The electrochemical corrosion characteristics were investigated using linear polarization technique in 3.5% simulated sodium chloride media. The outcome of the analysis shows that the developed coating was seen to provide a sound anti wear characteristics in its multidoped state. The corrosion resistance properties were observed to be massive compared to the binary based sample. It is expected that this characteristic will impact on the performance life span of storage tap in oil and gas.

  3. Dispersion cancellation in a triple Laue interferometer

    International Nuclear Information System (INIS)

    Lemmel, Hartmut

    2014-01-01

    The concept of dispersion cancellation has been established in light optics to improve the resolution of interferometric measurements on dispersive media. Odd order dispersion cancellation allows to measure phase shifts without defocusing the interferometer due to wave packet displacements, while even order dispersion cancellation allows to measure time lags without losing resolution due to wave packet spreading. We report that either type of dispersion cancellation can be realized very easily in a triple Laue interferometer. Such interferometers are Mach–Zehnder interferometers based on Bragg diffraction, and are commonly used for neutrons and x-rays. Although the first x-ray interferometer was built nearly five decades ago, the feature of dispersion cancellation hasn't been recognized so far because the concept was hardly known in the neutron and x-ray community. However, it explains right away the surprising decoupling of phase shift and spatial displacement that we have discovered recently in neutron interferometry (Lemmel and Wagh 2010 Phys. Rev. A 82 033626). Furthermore, this article might inspire the light optics community to consider whether a triple Laue interferometer for laser light would be useful and feasible. We explain how dispersion cancellation works in neutron interferometry, and we describe the setup rigorously by solving the Schrödinger equation and by calculating the path integral. We point out, that the latter has to be evaluated with special care since in our setup the beam trajectory moves with respect to the crystal lattice of the interferometer. (paper)

  4. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples.

    Science.gov (United States)

    Liang, Ning; Huang, Peiting; Hou, Xiaohong; Li, Zhen; Tao, Lei; Zhao, Longshan

    2016-02-01

    A novel method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was developed for ultra-preconcentration of 10 antibiotics in different environmental water samples prior to ultra-high performance liquid chromatography-tandem mass spectrometry detection. The optimized results were obtained as follows: after being adjusted to pH 4.0, the water sample was firstly passed through PEP-2 column at 10 mL min(-1), and then methanol was used to elute the target analytes for the following steps. Dichloromethane was selected as extraction solvent, and methanol/acetonitrile (1:1, v/v) as dispersive solvent. Under optimal conditions, the calibration curves were linear in the range of 1-1000 ng mL(-1) (sulfamethoxazole, cefuroxime axetil), 5-1000 ng mL(-1) (tinidazole), 10-1000 ng mL(-1) (chloramphenicol), 2-1000 ng mL(-1) (levofloxacin oxytetracycline, doxycycline, tetracycline, and ciprofloxacin) and 1-400 ng mL(-1) (sulfadiazine) with a good precision. The LOD and LOQ of the method were at very low levels, below 1.67 and 5.57 ng mL(-1), respectively. The relative recoveries of the target analytes were in the range from 64.16% to 99.80% with relative standard deviations between 0.7 and 8.4%. The matrix effect of this method showed a great decrease compared with solid-phase extraction and a significant value of enrichment factor (EF) compared with dispersive liquid-liquid microextraction. The developed method was successfully applied to the extraction and analysis of antibiotics in different water samples with satisfactory results.

  5. Dispersive liquid-phase microextraction with solidification of floating organic droplet coupled with high-performance liquid chromatography for the determination of Sudan dyes in foodstuffs and water samples.

    Science.gov (United States)

    Chen, Bo; Huang, Yuming

    2014-06-25

    Dispersive liquid-phase microextraction with solidification of floating organic drop (SFO-DLPME) is one of the most interesting sample preparation techniques developed in recent years. In this paper, a new, rapid, and efficient SFO-DLPME coupled with high-performance liquid chromatography (HPLC) was established for the extraction and sensitive detection of banned Sudan dyes, namely, Sudan I, Sudan II, Sudan III, and Sudan IV, in foodstuff and water samples. Various factors, such as the type and volume of extractants and dispersants, pH and volume of sample solution, extraction time and temperature, ion strength, and humic acid concentration, were investigated and optimized to achieve optimal extraction of Sudan dyes in one single step. After optimization of extraction conditions using 1-dodecanol as an extractant and ethanol as a dispersant, the developed procedure was applied for extraction of the target Sudan dyes from 2 g of food samples and 10 mL of the spiked water samples. Under the optimized conditions, all Sudan dyes could be easily extracted by the proposed SFO-DLPME method. Limits of detection of the four Sudan dyes obtained were 0.10-0.20 ng g(-1) and 0.03 μg L(-1) when 2 g of foodstuff samples and 10 mL of water samples were adopted, respectively. The inter- and intraday reproducibilities were below 4.8% for analysis of Sudan dyes in foodstuffs. The method was satisfactorily used for the detection of Sudan dyes, and the recoveries of the target for the spiked foodstuff and water samples ranged from 92.6 to 106.6% and from 91.1 to 108.6%, respectively. These results indicated that the proposed method is simple, rapid, sensitive, and suitable for the pre-concentration and detection of the target dyes in foodstuff samples.

  6. Dispersal and metapopulation stability

    Directory of Open Access Journals (Sweden)

    Shaopeng Wang

    2015-10-01

    Full Text Available Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability.

  7. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  8. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Guan, Jin; Zhang, Chi; Wang, Yang; Guo, Yiguang; Huang, Peiting; Zhao, Longshan

    2016-11-01

    A new analytical method was developed for simultaneous determination of 12 pharmaceuticals using ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) followed by ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). Six nonsteroidal anti-inflammatory drugs (NSAIDs, ketoprofen, mefenamic acid, tolfenamic acid, naproxen, sulindac, and piroxicam) and six antibiotics (tinidazole, cefuroxime axetil, ciprofloxacin, sulfamethoxazole, sulfadiazine, and chloramphenicol) were extracted by ultrasound-assisted DLLME using dichloromethane (800 μL) and methanol/acetonitrile (1:1, v/v, 1200 μL) as the extraction and dispersive solvents, respectively. The factors affecting the extraction efficiency, such as the type and volume of extraction and dispersive solvent, vortex and ultrasonic time, sample pH, and ionic strength, were optimized. The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution by using a small volume of dispersive solvent, which increased the extraction efficiency and reduced the equilibrium time. Under the optimal conditions, the calibration curves showed good linearity in the range of 0.04-20 ng mL -1 (ciprofloxacin and sulfadiazine), 0.2-100 ng mL -1 (ketoprofen, tinidazole, cefuroxime axetil, naproxen, sulfamethoxazole, and sulindac), and 1-200 ng mL -1 (mefenamic acid, tolfenamic acid, piroxicam, and chloramphenicol). The LODs and LOQs of the method were in the range of 0.006-0.091 and 0.018-0.281 ng mL -1 , respectively. The relative recoveries of the target analytes were in the range from 76.77 to 99.97 % with RSDs between 1.6 and 8.8 %. The developed method was successfully applied to the extraction and analysis of 12 pharmaceuticals in five kinds of water samples (drinking water, running water, river water, influent and effluent wastewater) with satisfactory results. Graphical Abstract Twelve pharmaceuticals in water samples analyted by UHPLC

  9. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao

    2017-06-01

    In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. High-Performance Li-Ion Capacitor Based on an Activated Carbon Cathode and Well-Dispersed Ultrafine TiO2 Nanoparticles Embedded in Mesoporous Carbon Nanofibers Anode.

    Science.gov (United States)

    Yang, Cheng; Lan, Jin-Le; Liu, Wen-Xiao; Liu, Yuan; Yu, Yun-Hua; Yang, Xiao-Ping

    2017-06-07

    A novel Li-ion capacitor based on an activated carbon cathode and a well-dispersed ultrafine TiO 2 nanoparticles embedded in mesoporous carbon nanofibers (TiO 2 @PCNFs) anode was reported. A series of TiO 2 @PCNFs anode materials were prepared via a scalable electrospinning method followed by carbonization and a postetching method. The size of TiO 2 nanoparticles and the mesoporous structure of the TiO 2 @PCNFs were tuned by varying amounts of tetraethyl orthosilicate (TEOS) to increase the energy density and power density of the LIC significantly. Such a subtle designed LIC displayed a high energy density of 67.4 Wh kg -1 at a power density of 75 W kg -1 . Meanwhile, even when the power density was increased to 5 kW kg -1 , the energy density can still maintain 27.5 Wh kg -1 . Moreover, the LIC displayed a high capacitance retention of 80.5% after 10000 cycles at 10 A g -1 . The outstanding electrochemical performance can be contributed to the synergistic effect of the well-dispersed ultrafine TiO 2 nanoparticles, the abundant mesoporous structure, and the conductive carbon networks.

  11. Survey of literature on dispersion ratio and collection ratio of radioisotopes in animal study using radioisotopes

    International Nuclear Information System (INIS)

    Tozuka, Zenzaburo; Doi, Masahiro; Miyazawa, Eiji; Kawakami, Takeo

    1998-01-01

    A survey of literature in the title was performed to know the actual status of the dispersion from excretion and expiration studies of radioisotopes since, at present, the probable dispersion ratio is assumed to be 100% in calculation for legally permitted use of radioisotopes which conceivably being far from the real status and being incompatible with the guideline for pharmacokinetic studies requiring the recovery of >95% of dosed radioactivity in balance study. There are two interpretations for the dispersion; it is the expiration ratio and it is the fraction unrecovered. Survey was done on 11 Japanese and foreign journals in 1985-1996 publishing most of pharmacokinetic studies and on 650 compounds in 358 facilities with 1,975 experiments in total. In those experiments, the total recovery of radioactivity was 95% in average, unrecovered fraction, 5% and expiration ratio, 2%. As for unclide, 14 C, 3 H, 125 I and 35 S were surveyed since they occupied 99.4% of the experiments and their dispersion was <5%. Rats were used in 70% of the experiments and the dispersion in all animal experiments was about 5%. Administration route was regardless of the dispersion. (K.H.)

  12. Determination of continuous complex refractive index dispersion of biotissue based on internal reflection

    Science.gov (United States)

    Deng, Zhichao; Wang, Jin; Ye, Qing; Sun, Tengqian; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2016-01-01

    The complex refractive index dispersion (CRID), which contains the information on the refractive index dispersion and extinction coefficient spectra, is an important optical parameter of biotissue. However, it is hard to perform the CRID measurement on biotissues due to their high scattering property. Continuous CRID measurement based on internal reflection (CCRIDM-IR) is introduced. By using a lab-made apparatus, internal reflectance spectra of biotissue samples at multiple incident angles were detected, from which the continuous CRIDs were calculated based on the Fresnel formula. Results showed that in 400- to 750-nm range, hemoglobin solution has complicated dispersion and extinction coefficient spectra, while other biotissues have normal dispersion properties, and their extinction coefficients do not vary much with different wavelengths. The normal dispersion can be accurately described by several coefficients of dispersion equations (Cauchy equation, Cornu equation, and Conrady equation). To our knowledge, this is the first time that the continuous CRID of scattering biotissue over a continuous spectral region is measured, and we hereby have proven that CCRIDM-IR is a good method for continuous CRID research of biotissue.

  13. A Deformation Model of TRU Metal Dispersion Fuel Rod for HYPER

    International Nuclear Information System (INIS)

    Lee, Byoung Oon; Hwang, Woan; Park, Won S.

    2002-01-01

    Deformation analysis in fuel rod design is essential to assure adequate fuel performance and integrity under irradiation conditions. An in-reactor performance computer code for a dispersion fuel rod is being developed in the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRU-Zr)-Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appeared that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel. Some experimental tests including in-pile and out-pile experiments are needed for verifying the predictive capability of the DIMAC code. An in-reactor performance analysis computer code for blanket fuel is being developed at the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRUZr)- Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appears that the deformation by swelling within fuel meat is very large for both fuels, and the major deformation mechanism at cladding is creep. The swelling strain is almost constant within the fuel meat, and is assumed to be zero in the cladding made of HT9. It is estimated that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel, and the dispersion fuel performance may be limited by swelling. But the predicted volume change of the (TRU-Zr)-Zr dispersion fuel models is about 6.1% at 30 at.% burnup. The value of cladding

  14. Enhanced photocatalytic performance of KNbO3(100)/reduced graphene oxide nanocomposites investigated using first-principles calculations: RGO reductivity effect

    Science.gov (United States)

    Zhang, Pan; Shen, Yanqing; Wu, Wenjing; Li, Jun; Zhou, Zhongxiang

    2018-03-01

    Although a number of various reduced graphene oxide (RGO)-based nanomaterials with enhanced photocatalytic performance have recently been characterized, the effect of RGO reductivity on their performance is still not clear. Herein, KNbO3(100) surface modification with three RGO sheets of different reductivity is investigated using first-principles calculations, revealing that increasing RGO reductivity enhances the photocatalytic performance of KNbO3(100)/RGO nanocomposites. In contrast to CeO2/RGO nanocomposites, the O atoms of RGO inhibit the photoactivity of KNbO3/RGO nanocomposites by restraining the effect of inducing a red shift of the corresponding photocatalytic absorption spectra by C 2p states. Increased RGO reductivity extends its absorption edge to the visible light region of the optical absorption and also promotes charge transfer from the KNbO3(100) surface to RGO sheets, in contrast to the behavior observed for g-C3N4/RGO composites. Overall, this work provides a reasonable explanation of controversial experimental results obtained previously, paving the way to the development of highly efficient RGO-based photocatalysts and promoting further photocatalytic applications of KNbO3/RGO nanocomposites.

  15. Dispersions in Semi-Classical Dynamics

    International Nuclear Information System (INIS)

    Zielinska-Pfabe, M.; Gregoire, C.

    1987-01-01

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation

  16. Theoretical Magnon Dispersion Curves for Gd

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Harmon, B. N.; Freeman, A. J.

    1975-01-01

    The magnon dispersion curve of Gd metal has been determined from first principles by use of augmented-plane-wave energy bands and wave functions. The exchange matrix elements I(k⃗, k⃗′) between the 4f electrons and the conduction electrons from the first six energy bands were calculated under...

  17. A costal dispersion model

    International Nuclear Information System (INIS)

    Rahm, L.; Nyberg, L.; Gidhagen, L.

    1990-01-01

    A dispersion model to be used off costal waters has been developed. The model has been applied to describe the migration of radionuclides in the Baltic sea. A summary of the results is presented here. (K.A.E)

  18. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing; Feng, Zongcai; Schuster, Gerard T.

    2016-01-01

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained

  19. Application of RELAP5/MOD3.3 to Calculate Thermal Hydraulic Behavior of the Pressurizer Safety Valve Performance Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyun; Kim, Young Ae; Oh, Seung Jong; Park, Jong Woon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2007-10-15

    The increase of the acceptance tolerance of Pressurizer Safety Valve (PSV) test is vital for the safe operation of nuclear power plants because the frequent tests may make the valves decrepit and become a cause of leak. Recently, Korea Hydro and Nuclear Power Company (KHNP) is building a PSV performance test facility to provide the technical background data for the relaxation of the acceptance tolerance of PSV including the valve pop-up characteristics and the loop seal dynamics (if the plant has the loop seal in the upstream of PSV). The discharge piping and supports must be designed to withstand severe transient hydrodynamic loads when the safety valve actuates. The evaluation of hydrodynamic loads is a two-step process: first the thermal hydraulic behavior in the piping must be defined, and then the hydrodynamic loads are calculated from the thermal hydraulic parameters such as pressure and mass flow. The hydrodynamic loads are used as input to the structural analysis.

  20. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...