WorldWideScience

Sample records for performance measures bone

  1. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  2. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    Science.gov (United States)

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  3. Non-invasive clinical measurements of bone mineral

    International Nuclear Information System (INIS)

    Mazess, R.B.

    1982-01-01

    Non-invasive methods are now available for measurement of both compact and trabecular bone on both the appendicular and axial skeleton. Radiogrammetry and photodensitometry both are subject to large errors in areas of heavy tissue cover but precise measurements can be made on the hand bones. Single-photon absorptiometry with 125 I provides a more accurate and precise measure of appendicular compact bone, which is particularly useful for screening of metabolic bone disease and for monitoring renal osteodystrophy. Dual-photon absorptiometry with 153 Gd provides a measurement of the femoral neck and of the lumbar spine and hence is the most diagnostically sensitive measurement method. It is also the most sensitive for monitoring bone changes

  4. Estimation of Penetrated Bone Layers During Craniotomy via Bioimpedance Measurement.

    Science.gov (United States)

    Teichmann, Daniel; Rohe, Lucas; Niesche, Annegret; Mueller, Meiko; Radermacher, Klaus; Leonhardt, Steffen

    2017-04-01

    Craniotomy is the removal of a bone flap from the skull and is a first step in many neurosurgical interventions. During craniotomy, an efficient cut of the bone without injuring adjoining soft tissues is very critical. The aim of this study is to investigate the feasibility of estimating the currently penetrated cranial bone layer by means of bioimpedance measurement. A finite-element model was developed and a simulation study conducted. Simulations were performed at different positions along an elliptical cutting path and at three different operation areas. Finally, the validity of the simulation was demonstrated by an ex vivo experiment based on use of a bovine shoulder blade bone and a commercially available impedance meter. The curve of the absolute impedance and phase exhibits characteristic changes at the transition from one bone layer to the next, which can be used to determine the bone layer last penetrated by the cutting tool. The bipolar electrode configuration is superior to the monopolar measurement. A horizontal electrode arrangement at the tip of the cutting tool produces the best results. This study successfully demonstrates the feasibility to detect the transition between cranial bone layers during craniotomy by bioimpedance measurements using electrodes located on the cutting tool. Based on the results of this study, bioimpedance measurement seems to be a promising option for intra operative ad hoc information about the bone layer currently penetrated and could contribute to patient safety during neurosurgery.

  5. Measurement of torsion angles of long finger bones using computed tomography

    International Nuclear Information System (INIS)

    Berthold, L.D.; Ishaque, N.; Mauermann, F.; Klose, K.J.; Boehringer, G.

    2001-01-01

    Objective: Rotational dislocation at the fracture site is a complication of long finger bone fractures of the metacarpals and phalanges. To evaluate such deformities, we performed CT of the articular surfaces of these bones to demonstrate the torsion angles. Design: We evaluated 10 pairs of cadaver hands. These were placed flat, with the bones of interest perpendicular to the gantry to acquire axial images. The torsion of the long bone axes was defined as the angle between a tangent positioned parallel to the proximal articular surface and a tangent parallel to the distal articular surface of individual bones. Results: The maximum difference between repeated measurements was 4 . Intraobserver differences measured between right and left hands are less than 3 . Conclusion: Side differences in torsion angles exceeding 3 are strongly suspicious of a malrotation after fracture. These measurements might help to plan derotational osteotomy and assess the results of therapy. (orig.)

  6. Bone mineral content measurement by bone mineral analyzer

    International Nuclear Information System (INIS)

    Yamamoto, Itsuo; Dokoh, Shigeharu; Fukunaga, Masao; Torizuka, Kanji; Kosaka, Tadako.

    1976-01-01

    With a bone mineral analyzer (Studsvik Bone Scanner 7102), bone mineral content (BMC) was validated using various concentrations of standard CaCO 3 . Seventy-five normal subjects, nineteen patients with rheumathoid arthritis (RA) and twenty-two patients with abnormal thyroid function were investigated by this method. Some inherent problems concerning the present measurements were also discussed. Reproducibility of BMC in sixteen normal subjects during a four months interval was +-4% on the mid-shaft of the radius and +-5% on the distal head of the radius, respectively. Although correlation of the single energy method and the dual energy method with the bone scanner was high (r=0.970), the single energy method was probably underestimated due to the fat layer. BMC in normal subjects was highest in 30th and 40th decades for both males and females, and gradually decreased with aging. Males had higher BMC and BMC/bone width than did females. All of the stage 1 group of RA patients, according to roentgenographic staging, revealed normal BMC, but most of stage 2 and 3 groups had abnormally low BMC, suggesting that progression of the disease may be an important factor in BMC values. The BMC of hyperthyroid patients was low, whereas that of euthyroid patients was normal. Serial measurements of BMC in a hyperparathyroid patient and a hyperthyroid patient revealed distinct recurrence of BMC after treatment. (Evans, J.)

  7. Quantitation of bone mineral by dual photon absorptiometry (DPA): Evaluation of instrument performance

    International Nuclear Information System (INIS)

    Dunn, W.L.; O'Duffy, A.; Wahner, H.W.

    1984-01-01

    Quantitation of bone mineral is used with increasing frequency for clinical studies. This paper details the principle of DPA and present an evaluation of the technique. DPA measurements were performed with a scanning dual photon system constructed at this institution and modeled after the device developed at the University of Wisconsin. The components are a rectilinear scanner frame, 1.5 Ci Gd-153 source, NaI(TL) detector and a PDP 11/03 computer. Dual discriminator windows are set on the 44 and 100 keV photon energies of Gd-153. Instrument linearity, accuracy and reproducibility were evaluated with ashed bone standards and simulated tissue covering. In these experiments computed and actual bone mineral have a correlation coefficient of 1.0 and a SEE of approximately 1.0% (Linear regression analysis). Precision and accuracy of a standard were studied over a period of two years. Mean error between actual and measured bone mineral was 0.28%. In vivo precision in six subjects averaged 2.3% (CV) for lumbar spine measurements. The effect of soft tissue compositional change was studied with ashed bone standards and human cadaver spine specimens. Intraosseous fat changes of 50% produced an average bone mineral measurement error of 1.4%. A 20% change in fat thickness produced a 2.5% error. In situ and in vitro scans of 9 cadaver spines were performed to study the effect of extraosseous fat. The mean percent difference between the two measurements was 0.7% (SEE=3.2%)

  8. Bone mineral density and computer tomographic measurements in correlation with failure strength of equine metacarpal bones

    Directory of Open Access Journals (Sweden)

    Péter Tóth

    2014-01-01

    Full Text Available Information regarding bone mineral density and fracture characteristics of the equine metacarpus are lacking. The aim of this study was to characterize the relationship between mechanical properties of the equine metacarpal bone and its biomechanical and morphometric properties. Third metacarpal bones were extracted from horses euthanized unrelated to musculoskeletal conditions. In total, bone specimens from 26 front limbs of 13 horses (7.8 ± 5.8 years old including Lipizzaner (n = 5, Hungarian Warmblood (n = 2, Holsteiner (n = 2, Thoroughbred (n = 1, Hungarian Sporthorse (n = 1, Friesian (n = 1, and Shagya Arabian (n = 1 were collected. The horses included 7 mares, 4 stallions and 2 geldings. Assessment of the bone mineral density of the whole bone across four specific regions of interest was performed using dual-energy X-ray absorptiometry. The bones were scanned using a computer tomographic scanner to measure cross-sectional morphometric properties such as bone mineral density and cross-sectional dimensions including cortical area and cortical width. Mechanical properties (breaking force, bending strength, elastic modulus were determined by a 3-point bending test. Significant positive linear correlations were found between the breaking force and bone mineral density of the entire third metacarpal bones (P P P in vivo investigations.

  9. Bone assessment via thermal photoacoustic measurements

    Science.gov (United States)

    Feng, Ting; Kozloff, Kenneth M.; Hsiao, Yi-Sing; Tian, Chao; Perosky, Joseph; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    The feasibility of an innovative biomedical diagnostic technique, thermal photoacoustic (TPA) measurement, for nonionizing and non-invasive assessment of bone health is investigated. Unlike conventional photoacoustic PA methods which are mostly focused on the measurement of absolute signal intensity, TPA targets the change in PA signal intensity as a function of the sample temperature, i.e. the temperature dependent Grueneisen parameter which is closely relevant to the chemical and molecular properties in the sample. Based on the differentiation measurement, the results from TPA technique is less susceptible to the variations associated with sample and system, and could be quantified with improved accurately. Due to the fact that the PA signal intensity from organic components such as blood changes faster than that from non-organic mineral under the same modulation of temperature, TPA measurement is able to objectively evaluate bone mineral density (BMD) and its loss as a result of osteoporosis. In an experiment on well established rat models of bone loss and preservation, PA measurements of rat tibia bones were conducted over a temperature range from 370 C to 440 C. The slope of PA signal intensity verses temperature was quantified for each specimen. The comparison among three groups of specimens with different BMD shows that bones with lower BMD have higher slopes, demonstrating the potential of the proposed TPA technique in future clinical management of osteoporosis.

  10. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  11. Establishing a method to measure bone structure using spectral CT

    Science.gov (United States)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  12. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    International Nuclear Information System (INIS)

    Riis, B.J.; Christiansen, C.

    1988-01-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement

  13. Bone mineral measurements and the pathogenesis of osteoporosis

    International Nuclear Information System (INIS)

    Aloia, J.F.; Vaswani, A.N.; Ellis, K.J.; Cohn, S.H.

    1986-01-01

    Low bone mass (osteopenia) is a major factor in the development of osteoporotic fractures in women after the menopause. The pathogenesis of postmenopausal osteoporosis has been pursued by dual lines of investigation: (1) development of a model to describe involutional bone loss, (2) identification of those factors which result in some healthy women having a greater risk for osteoporosis than others. Bone mineral measurements have been made using in vivo neutron activation analysis and whole body counting for the measurement of total body calcium (TBCa), single photon absorptiometry for the measurement of bone mineral content of the distal radius and dual photon absorptiometry for measurement of the bone density of the spine. TBCa is higher in men than women and is lost at a slow linear rate in men. Blacks have a skeletal mass about 8-9% higher than Caucasians. Women have a similar loss of TBCa to men prior to menopause, but then have an accelerated rate of loss after menopause. The change in bone density of the radius and spine with increasing age is also best described by a 2 phase regression in women, with appreciable loss after age 50

  14. Bone metabolic activity in hyperostosis cranialis interna measured with 18F-fluoride PET

    International Nuclear Information System (INIS)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J.; Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn; Nieman, Fred H.M.

    2011-01-01

    18 F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent 18 F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average 18 F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. 18 F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. 18 F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that 18 F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  15. Measurement of bone blood flow in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.; Adler, G.; Venci, R.; Lanphier, E.H.; DeLuca, P.M. Jr.

    1984-01-01

    Bone blood flow in sheep tibia has been estimated via the measurement of the perfusion limited clearance of 41 Ar from the bone mineral matrix following fast neutron activation of 44 Ca. Tibia blood flows were estimated for the intact sheep, and after the installation of an intramedullary pressure tap to elevate bone marrow pressure by saline infusion. The results indicate that normal blood flow in the tibia is in the range of 1.1 to 3.7 ml/100ml-min in the intact animal and at normal marrow pressure. With an elevated intramedullary pressure of approximately 100 mmHg, the bone blood flow measured varied around 0.5 to 1.1 ml/100ml-min. 12 refs., 5 figs., 1 tab

  16. Measurement of fluoride in bone

    International Nuclear Information System (INIS)

    Mernagh, J.R.; Harrision, J.E.; Hancock, R.; McNeill, K.G.

    1977-01-01

    The fluorine concentration in bone biopsy samples was measured by neutron activation analysis. The fluorine content was expressed in terms of the calcium content. Samples were irradiated in a reactor to induce the 19 F(n,γ) 20 F and 48 Ca(n,γ) 49 Ca reactions and after rapid transport from the reactor the resulting activities were measured with a Ge(Li) detector. Reproducibility was better than 10% for the F/Ca ratio. The detection limit for F is 50 μg. This nondestructive technique will be used to assess the effect of fluoride therapy on bone metabolism of patients with idiopathic osteoporosis. (author)

  17. Measurement of humerus and radius bone mineral content in the term and preterm infant

    International Nuclear Information System (INIS)

    Vyhmeister, N.R.; Linkhart, T.A.

    1988-01-01

    We compared two anatomic sites for single-photon absorptiometric measurement of bone mineral content (BMC) in term and preterm infants. The distal one third of the radius and the midportion of the humerus were evaluated for measurements of BMC with an unmodified, commercially available bone densitometer. We assessed reproducibility of BMC and bone width (BW) measurements and defined normal at-birth ranges of BMC, BW, and BMC/BW ratio for infants with gestational ages of 24 to 42 weeks. Humerus BMC correlated with gestational age, birth weight, and BW of patients and did not differ from humerus BMC values determined over the same range of gestational ages at another center. Representative serial measurements of two very low birth weight (VLBW) infants are presented to demonstrate the feasibility of using humerus BMC in longitudinal studies to assess changes in bone mineralization. We conclude that bone densitometer measurements of mid-humerus BMC can be successfully performed and are preferable to similar measurements of the radius for VLBW infants. Normal humerus BMC values were defined for use in diagnosis and evaluation of the efficacy of treatment in VLBW infants who are at high risk of developing osteopenia of prematurity

  18. Measurement of lumbar spine bone mineral content using dual photon absorptiometry. Usefulness in metabolic bone diseases

    International Nuclear Information System (INIS)

    Delmas, P.D.; Duboeuf, F.; Braillon, P.; Meunier, P.J.

    1988-01-01

    Measurement of bone density using an accurate, non-invasive method is a crucial step in the clinical investigation of metabolic bone diseases, especially osteoporosis. Among the recently available techniques, measurement of lumbar spine bone mineral content (BMC) using dual photon absorptiometry appears as the primary method because it is simple, inexpensive, and involves low levels of radiation exposure. In this study, we measured the BMC in 168 normal adults and 95 patients. Results confirmed the good reproducibility and sensitivity of this technique for quantifying bone loss in males and females with osteoporosis. Significant bone loss was found in most females with primary hyperparathyroidism. Dual photon absorptiometry can also be used for quantifying increases in bone mass in Paget disease of bone and diffuse osteosclerosis. Osteomalacia is responsible for a dramatic fall in BMC reflecting lack of mineralization of a significant portion of the bone matrix, a characteristic feature in this disease. Furthermore, in addition to being useful for diagnostic purposes and for evaluation of the vertebral fracture risk, lumbar spine absorptiometry can be used for monitoring the effectiveness of bone-specific treatments [fr

  19. Measurement of lumbar spine bone mineral content using dual photon absorptiometry. Usefulness in metabolic bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, P.D.; Duboeuf, F.; Braillon, P.; Meunier, P.J.

    1988-06-02

    Measurement of bone density using an accurate, non-invasive method is a crucial step in the clinical investigation of metabolic bone diseases, especially osteoporosis. Among the recently available techniques, measurement of lumbar spine bone mineral content (BMC) using dual photon absorptiometry appears as the primary method because it is simple, inexpensive, and involves low levels of radiation exposure. In this study, we measured the BMC in 168 normal adults and 95 patients. Results confirmed the good reproducibility and sensitivity of this technique for quantifying bone loss in males and females with osteoporosis. Significant bone loss was found in most females with primary hyperparathyroidism. Dual photon absorptiometry can also be used for quantifying increases in bone mass in Paget disease of bone and diffuse osteosclerosis. Osteomalacia is responsible for a dramatic fall in BMC reflecting lack of mineralization of a significant portion of the bone matrix, a characteristic feature in this disease. Furthermore, in addition to being useful for diagnostic purposes and for evaluation of the vertebral fracture risk, lumbar spine absorptiometry can be used for monitoring the effectiveness of bone-specific treatments.

  20. Bone composition measured by x-ray scattering

    International Nuclear Information System (INIS)

    Newton, M.; Hukins, D.W.L.

    1992-01-01

    Ten composite samples consisting of cortical bone and adipose tissue, in known proportions, were made. The intensity of monochromatic x-rays (energy 8 keV) scattered by these samples was determined as a function of the modulus of the scattering vector, K. The ratio of the heights of peaks at K values of around 134 and 22 nm -1 provided a measure of the ratio of adipose tissue to bone mineral in these samples. This method was then used to determine the ratio of adipose tissue to mineral in samples of trabecular bone from 16 vertebral bodies. The results were correlated with measurements of the bone composition determined by ashing (r = 0.66) and histomorphometry (r = 0.66). Furthermore, the ashing and histomorphometry results were correlated with each other (r = 0.68). The feasibility of using higher energy x-rays (35-80 keV) for obtaining the same information from bone within the body is briefly discussed. (author)

  1. Factors affecting the precision of bone mineral measurements

    International Nuclear Information System (INIS)

    Cormack, J.; Evil, C.A.

    1990-01-01

    This paper discusses some statistical aspects of absorptiometric bone mineral measurements. In particular, the contribution of photon counting statistics to overall precision is estimated, and methods available for carrying out statistical comparisons of bone loss and determining their precision are reviewed. The use of replicate measurements as a means of improving measurement precision is also discussed. 11 refs

  2. Preoperative measurement of canine primary bone tumors, using radiography and bone scintigraphy

    International Nuclear Information System (INIS)

    Lamb, C.R.; Berg, J.; Bengston, A.E.

    1990-01-01

    Specimens of 20 canine primary bone tumors (18 osteosarcoma, 2 fibrosarcoma) were examined to compare the maximal axial length of gross tumor with the length of the lesion seen on preoperative radiographs and 99mTc methylene diphosphonate bone scintigraphic images. Radiographs defined the length of the tumor to within +/- 10% of the gross measurement for 6 (30%), underestimated it for 12 (60%), and overestimated it for 2 (10%) specimens. Bone scintigraphy defined tumor length within +/- 10% for 8 (40%), underestimated it for 1 (5%), and overestimated it for the remaining 11 (55%) specimens. Use of radiographic evaluation alone could result in underestimation of the diaphyseal extent of a primary bone tumor, with risk of incomplete resection. Bone scan images tend to overestimate tumor length and, therefore, may provide safer resection guidelines

  3. In vivo measurement of mechanical properties of human long bone by using sonic sound

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M. Jayed, E-mail: zed.hossain06@gmail.com; Rahman, M. Moshiur, E-mail: razib-121@yahoo.com; Alam, Morshed [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.

  4. Bone metabolic activity in hyperostosis cranialis interna measured with {sup 18}F-fluoride PET

    Energy Technology Data Exchange (ETDEWEB)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J. [Maastricht University Medical Center, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht (Netherlands); Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Nieman, Fred H.M. [Maastricht University Medical Center, Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht (Netherlands)

    2011-05-15

    {sup 18}F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent {sup 18}F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average {sup 18}F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. {sup 18}F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. {sup 18}F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that {sup 18}F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  5. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women.

    Science.gov (United States)

    Shen, W; Chen, J; Punyanitya, M; Shapses, S; Heshka, S; Heymsfield, S B

    2007-05-01

    Recent studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Previous research using regional magnetic resonance spectroscopy methods to measure BMAT has reported inconsistent findings on the relationship between BMAT and dual-energy absorptiometry (DXA)-measured bone mineral density (BMD). In the present study, total body and pelvic BMAT were evaluated in 56 healthy women (age 18-88 yrs, mean +/- SD, 47.4 +/- 17.6 yrs; BMI, 24.3 +/- 4.2 kg/m(2)) with T1-weighted whole-body magnetic resonance imaging (MRI). BMD was measured using the whole-body DXA mode (GE Lunar DPX, software version 4.7). A strong negative correlation was observed between pelvic BMAT and BMD (total-body BMD, R = -0.743, P BMAT and BMD (total-body BMD, R = -0.443, P BMAT and BMD remained strong after adjusting for age, weight, total body fat, and menopausal status (partial correlation: total-body BMD, R = -0.553, P BMAT was also highly correlated with age (pelvic BMAT, R = 0.715, P BMAT, R = 0.519, P BMAT is thus strongly inversely correlated with DXA-measured BMD independent of other predictor variables. These observations, in the context of DXA technical concerns, support the growing evidence linking BMAT with low bone density.

  6. Intra- and inter-observer agreement and reliability of bone mineral density measurements around acetabular cup

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Overgaard, Soren; Torfing, Trine

    2017-01-01

    in measuring bone density (BMD) in complex anatomic structures which might be overcome using dual-energy computed tomography (DECT).PurposeTo test inter- and intra-observer agreement and reliability of in-house segmentation software measuring BMD adjacent to acetabular cup and to compare measurements performed...... with single-energy CT (SECT) and DECT in cemented and cementless cups.Material and Methods: Twenty-four acetabular cups inserted in porcine hip specimens were scanned with SECT and DECT. Bone density was measured in a three-dimensional volume adjacent to the cup. Double measurements were performed.......Results: BMD derived from SECT was approximately four times higher than that of DECT. In both scan modes, intraclass correlation coefficient (ICC) was >0.90 with no differences between repeated measurements, except for uncemented cups where a statistically significant difference of 11 mg/cm3 was found...

  7. Scintigraphic findings of bone and bone-marrow and determination of bone mineral density using photon absorptiometry in osteopetrosis

    International Nuclear Information System (INIS)

    Otsuka, Nobuaki; Fukunaga, Masao; Morita, Koichi

    1988-01-01

    On a 15-year-old girl with osteopetrosis, bone and bonemarrow scintigraphy were performed. Also, bone mineral density (BMD) with quantitative CT (QCT), single photon absorptiometry (SPA) and dual photon absorptiometry (DPA) were measured. On bone scintigraphy the diffusely increased skeletal uptake and relatively diminished renal uptake were noted. On the other hand, on bone marrow scintigraphy poor accumulation in central marrow and peripheral expansion were shown. BMD value by QCT and DPA (mainly trabecular bone) was markedly high, while BMD by SPA (mainly cortical bone) was within normal range. Thus, it was shown that bone and bone-marrow scintigraphy combined with BMD measurement by photon absorptiometry were useful and essential in evaluating the pathophysiology of osteosclerosis. (author)

  8. Studies of coherent/Compton scattering method for bone mineral content measurement

    International Nuclear Information System (INIS)

    Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.

    1980-01-01

    A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)

  9. Trapezium Bone Density-A Comparison of Measurements by DXA and CT.

    Science.gov (United States)

    Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken

    2018-01-18

    Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.

  10. Trapezium Bone Density—A Comparison of Measurements by DXA and CT

    Directory of Open Access Journals (Sweden)

    Sebastian Breddam Mosegaard

    2018-01-01

    Full Text Available Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1 determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA scans by a circumference method and a new inner-ellipse method; and (2 to compare those to measurements of bone density obtained by computerized tomography (CT-scans in Hounsfield units (HU. We included 71 hands from 59 patients with a mean age of 59 years (43–77. All patients had Eaton–Glickel stage II–IV trapeziometacarpal (TM joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94 between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49 for the circumference method, and (r = 0.55 for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.

  11. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  12. Bone mineral content in early-postmenopausal and postmenopausal osteoporotic women: comparison of measurement methods

    International Nuclear Information System (INIS)

    Reinbold, W.D.; Genant, H.K.; Reiser, U.J.; Harris, S.T.; Ettinger, B.

    1986-01-01

    To investigate associations among methods for noninvasive measurement of skeletal bone mass, we studied 40 healthy early postmenopausal women and 68 older postmenopausal women with osteoporosis. Methods included single- and dual-energy quantitative computed tomography (QCT) and dual-photon absorptiometry (DPA) of the lumbar spine, single-photon absorptiometry (SPA) of the distal third of the radius, and combined cortical thickness (CCT) of the second metacarpal shaft. Lateral thoracolumbar radiography was performed, and a spinal fracture index was calculated. There was good correlation between QCT and DPA methods in early postmenopausal women and modest correlation in postmenopausal osteoporotic women. Correlations between spinal measurements (QCT or DPA) and appendicular cortical measurements (SPA or CCT) were modest in healthy women and poor in osteoporotic women. Measurements resulting from one method are not predictive of those by another method for the individual patient. The strongest correlation with severity of vertebral fracture is provided by QCT; the weakest, by SPA. There was a high correlation between single- and dual-energy QCT results, indicating that errors due to vertebral fat are not substantial in these postmenopausal women. Single-energy QCT may be adequate and perhaps preferable for assessing postmenopausal women. The measurement of spinal trabecular bone density by QCT discriminates between osteoporotic women and younger healthy women with more sensitivity than measurements of spinal integral bone by DPA or of appendicular cortical bone by SPA or CCT

  13. Bone aluminum measurements in patients with end-stage renal disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Long-term use of aluminum-based phosphate binders and trace aluminum contamination of dialysate solution have led to increased body burden of this metal in patients with end-stage renal disease. Aluminum accumulates in bone and has been associated with the development of a renal osteodystrophy, called aluminum-induced osteomalacia. At present, bone biopsy is the method of diagnosis of this condition. When examined by quantitative histomorphometry, the aluminum accumulation was reported to correlate with the severity of the osteomalacia. This project was therefore undertaken to investigate the possibility of developing a non-invasive technique using neutron activation analysis for the direct in vivo assessment of bone aluminum levels. A bilateral exposure of the patient's hand is performed at the patient port of the Brookhaven Medical Research Reactor. The induced activity is then counted for 5 min using four 4'' x 4'' x 16'' NaI(T1) detectors arranged in a quasi-4! geometry. In addition to Al, Ca is also detected and serves as each individual's internal standard for the volume of bone mass irradiated. The Al/Ca ratio provides an index of the amount of elevated aluminum per unit bone mass. When this ratio is multiplied by the total body calcium value, an estimate of total skeletal aluminum is obtained. These measurements will be presented for a pilot study of ten asymptomatic renal patients

  14. Automated radiogrammetry is a feasible method for measuring bone quality and bone maturation in severely disabled children

    NARCIS (Netherlands)

    Mergler, Sandra; de Man, Stella A.; Boot, Annemieke M; Bindels-de Heus, Karen G. C. B.; Huijbers, Wim A. R.; van Rijn, Rick R.; Penning, Corine; Evenhuis, Heleen M.

    Children with severe neurological impairment and intellectual disability are prone to low bone quality and fractures. We studied the feasibility of automated radiogrammetry in assessing bone quality in this specific group of children. We measured outcome of bone quality and, because these children

  15. Radiographic measurement of bone mineral: reviewing dual energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Sim, L.H.; van Doorn, T.

    1995-01-01

    Radiographic methods of bone mineral measurement have been reviewed, with particular emphasis on the methods of Dual Energy X-ray Absorptiometry (DEXA). Features of the three major brands of DEXA equipment available in Australasia have been summarised. Radiation hazard is considered to be small, with patient effective doses of the order of a few microSieverts. In vivo measurement precision of the order of 1% is achievable for PA scans of the lumbar spine. Lateral scans can achieve measurement precision of the order of 4%. Recent technological developments using X-ray fan beams and multi element detector arrays on C-arm devices have resulted in faster scan times, higher resolution images, and an ability to perform PA and lateral scanning without the need to reposition the patient. Accuracy of DEXA is dependent upon specific instrumentation and data reduction algorithms, but results generally correlate well with ashed bone measurements. Major sources of inaccuracy include inhomogeneous distributions of fat, and machine specific factors such as edge detection algorithms. Lack of absolute inter unit comparability may cause difficulties in clinical practice. 88 refs., 5 figs

  16. [Shushu (ancient Chinese numerology) in Lingshu: Gudu (Miraculous Pivot: Bone-Length Measurement)].

    Science.gov (United States)

    Zhuo, Lian-Shi

    2010-10-01

    Lingshu: Gudu (Miraculous Pivot: Bone-Length Measurement) is compared with literatures concerning the Shushu (ancient Chinese numerology) of the Qin Dynasty (221 B. C. - 206 B. C. ) and the Han Dynasty (206 B. C.-220 A. D.) in this article. And it is discovered that "the number of heaven and earth" in Yijing (The Book of Change) was implied in the bone-length measurement. The theory of Shushu is hidden in the sized of head, neck, chest, abdomen, back and 4 extremities according to the measurement. The meaning of establishment of bone-length measurement, which is found to have universality, laid in setting down the measurement of meridians. And it is the origin of the proportional measurement of locating acupoints. Checked with the theory of Shushu, errors in the description of bone-length measurement could also be found in Lingshu: Gudu (Miraculous Pivot: Bone-Length Measurement) of the present edition, which is helpful for the modern study on the measurement.

  17. Outcomes of bone density measurements in coeliac disease.

    Science.gov (United States)

    Bolland, Mark J; Grey, Andrew; Rowbotham, David S

    2016-01-29

    Some guidelines recommend that patients with newly diagnosed coeliac disease undergo bone density scanning. We assessed the bone density results in a cohort of patients with coeliac disease. We searched bone density reports over two 5-year periods in all patients from Auckland District Health Board (2008-12) and in patients under 65 years from Counties Manukau District Health Board (2009-13) for the term 'coeliac.' Reports for 137 adults listed coeliac disease as an indication for bone densitometry. The average age was 47 years, body mass index (BMI) 25 kg/m(2), and 77% were female. The median time between coeliac disease diagnosis and bone densitometry was 261 days. The average bone density Z-score was slightly lower than expected (Z-score -0.3 to 0.4) at the lumbar spine, total hip and femoral neck, but 88-93% of Z-scores at each site lay within the normal range. Low bone density was strongly related to BMI: the proportions with Z-score 30 kg/m(2) were 28%, 15%, 6% and 0% respectively. Average bone density was normal, suggesting that bone density measurement is not indicated routinely in coeliac disease, but could be considered on a case-by-case basis for individuals with strong risk factors for fracture.

  18. Three-dimensional measurement of temporal bone by using personal computer

    International Nuclear Information System (INIS)

    Kimura, Hiroki; Murata, Kiyotaka; Isono, Michio; Azuma, Hiroji; Itou, Akihiko

    1996-01-01

    Measurement of anatomical indices in human temporal bone has been reported only sporadically using high resolution CT. We developed a method for measuring such indices by computer assisted processing of images obtained by high resolusion CT. Intensive measurement of distances between all anatomical points in the entire temporal bone structure became possible with this method. (author)

  19. Intraoperative bone and bone marrow sampling: a simple method for accurate measurement of uptake of radiopharmaceuticals in bone and bone marrow

    International Nuclear Information System (INIS)

    Oyen, W.J.G.; Buijs, W.C.A.M.; Kampen, A. van; Koenders, E.B.; Claessens, R.A.M.J.; Corstens, F.H.M.

    1993-01-01

    Accurate estimation of bone marrow uptake of radiopharmaceuticals is of crucial importance for accurate whole body dosimetry. In this study, a method for obtaining normal bone marrow and bone during routine surgery without inconvenience to volunteers is suggested and compared to an indirect method. In five volunteers (group 1), 4 MBq 111 In-labelled human polyclonal IgG ( 111 In-IgG) was administered 48h before placement of a total hip prosthesis. After resection of the femoral head and neck, bone marrow was aspirated from the medullary space with a biopsy needle. In five patients, suspected of having infectious disease (group 2), bone marrow uptake was calculated according to a well-accepted method using regions of interest over the lumbar spine, 48h after injection of 75 MBq 111 In-IgG. Bone marrow uptake in group 1 (4.5 ±1.3%D kg -1 ) was significantly lower than that in group 2 (8.5 ± 2.1%D kg -1 ) (P<0.01). Blood and plasma activity did not differ significantly for both groups. This method provides a system for directly and accurately measuring uptake and retention in normal bone marrow and bone of all radiopharmaceuticals at various time points. It is a safe and simple procedure without any discomfort to the patient. Since small amounts of activity are sufficient, the radiation dose to the patient is low. (author)

  20. Depth measurements of drilled holes in bone by laser triangulation for the field of oral implantology

    Science.gov (United States)

    Quest, D.; Gayer, C.; Hering, P.

    2012-01-01

    Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.

  1. Bone regeneration performance of surface-treated porous titanium.

    Science.gov (United States)

    Amin Yavari, Saber; van der Stok, Johan; Chai, Yoke Chin; Wauthle, Ruben; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Mulier, Michiel; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir Abbas

    2014-08-01

    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone

  2. Intraoperative mechanical measurement of bone quality with the DensiProbe.

    Science.gov (United States)

    Hoppe, Sven; Uhlmann, Michael; Schwyn, Robert; Suhm, Norbert; Benneker, Lorin M

    2015-01-01

    Reduced bone stock can result in fractures that mostly occur in the spine, distal radius, and proximal femur. In case of operative treatment, osteoporosis is associated with an increased failure rate. To estimate implant anchorage, mechanical methods seem to be promising to measure bone strength intraoperatively. It has been shown that the mechanical peak torque correlates with the local bone mineral density and screw failure load in hip, hindfoot, humerus, and spine in vitro. One device to measure mechanical peak torque is the DensiProbe (AO Research Institute, Davos, Switzerland). The device has shown its effectiveness in mechanical peak torque measurement in mechanical testing setups for the use in hip, hindfoot, and spine. In all studies, the correlation of mechanical torque measurement and local bone mineral density and screw failure load could be shown. It allows the surgeon to judge local bone strength intraoperatively directly at the region of interest and gives valuable information if additional augmentation is needed. We summarize methods of this new technique, its advantages and limitations, and give an overview of actual and possible future applications. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  3. Measurements of simulated periodontal bone defects in inverted digital image and film-based radiograph: an in vitro study

    International Nuclear Information System (INIS)

    Molon, Rafael Scaf; Morais Camillo, Juliana Aparecida Najarro Dearo; Ferreira, Mauricio Goncalves; Loffredo, Leonor Castro Monteiro; Scaf, Gulnara; Sakakura, Celso Eduardo

    2012-01-01

    This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm (IC 95% :6.04-6.54) and 6.79 mm (IC 95% :6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64 mm(IC 95% :6.40-6.89) and 6.79 mm(IC 95% :6.45-7.11), respectively. The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss.

  4. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  5. Automated radiogrammetry is a feasible method for measuring bone quality and bone maturation in severely disabled children

    International Nuclear Information System (INIS)

    Mergler, Sandra; Man, Stella A. de; Boot, Annemieke M.; Heus, Karen G.C.B.B.; Huijbers, Wim A.R.; Rijn, Rick R. van; Penning, Corine; Evenhuis, Heleen M.

    2016-01-01

    Children with severe neurological impairment and intellectual disability are prone to low bone quality and fractures. We studied the feasibility of automated radiogrammetry in assessing bone quality in this specific group of children. We measured outcome of bone quality and, because these children tend to have altered skeletal maturation, we also studied bone age. We used hand radiographs obtained in 95 children (mean age 11.4 years) presenting at outpatient paediatric clinics. We used BoneXpert software to determine bone quality, expressed as paediatric bone index and bone age. Regarding feasibility, we successfully obtained a paediatric bone index in 60 children (63.2%). The results on bone quality showed a mean paediatric bone index standard deviation score of -1.85, significantly lower than that of healthy peers (P < 0.0001). Almost 50% of the children had severely diminished bone quality. In 64% of the children bone age diverged more than 1 year from chronological age. This mostly concerned delayed bone maturation. Automated radiogrammetry is feasible for evaluating bone quality in children who have disabilities but not severe contractures. Bone quality in these children is severely diminished. Because bone maturation frequently deviated from chronological age, we recommend comparison to bone-age-related reference values. (orig.)

  6. Automated radiogrammetry is a feasible method for measuring bone quality and bone maturation in severely disabled children

    Energy Technology Data Exchange (ETDEWEB)

    Mergler, Sandra [Erasmus MC, Department of General Practice and Intellectual Disability Medicine, University Medical Centre, Rotterdam (Netherlands); Care and Service Centre for People with Intellectual Disabilities, Medical Department ASVZ, Sliedrecht (Netherlands); Man, Stella A. de [Amphia Hospital, Department of Paediatrics, Breda (Netherlands); Boot, Annemieke M. [University of Groningen, Department of Paediatric Endocrinology, University Medical Centre Groningen, Groningen (Netherlands); Heus, Karen G.C.B.B. [Erasmus MC, Department of General Paediatrics, Sophia Children' s Hospital, University Medical Centre, Rotterdam (Netherlands); Huijbers, Wim A.R. [Beatrix Hospital, Department of Paediatrics, Gorinchem (Netherlands); Rijn, Rick R. van [Emma Children' s Hospital/Academic Medical Centre, Department of Radiology, Amsterdam (Netherlands); Penning, Corine; Evenhuis, Heleen M. [Erasmus MC, Department of General Practice and Intellectual Disability Medicine, University Medical Centre, Rotterdam (Netherlands)

    2016-06-15

    Children with severe neurological impairment and intellectual disability are prone to low bone quality and fractures. We studied the feasibility of automated radiogrammetry in assessing bone quality in this specific group of children. We measured outcome of bone quality and, because these children tend to have altered skeletal maturation, we also studied bone age. We used hand radiographs obtained in 95 children (mean age 11.4 years) presenting at outpatient paediatric clinics. We used BoneXpert software to determine bone quality, expressed as paediatric bone index and bone age. Regarding feasibility, we successfully obtained a paediatric bone index in 60 children (63.2%). The results on bone quality showed a mean paediatric bone index standard deviation score of -1.85, significantly lower than that of healthy peers (P < 0.0001). Almost 50% of the children had severely diminished bone quality. In 64% of the children bone age diverged more than 1 year from chronological age. This mostly concerned delayed bone maturation. Automated radiogrammetry is feasible for evaluating bone quality in children who have disabilities but not severe contractures. Bone quality in these children is severely diminished. Because bone maturation frequently deviated from chronological age, we recommend comparison to bone-age-related reference values. (orig.)

  7. Retrospective Analysis of Indication of Bone Scintigraphy Performed in Our Clinic

    Directory of Open Access Journals (Sweden)

    Fusun Aydogan

    2014-03-01

    Full Text Available Aim: Bone scintigraphy is one of the commonly used radionuclide imaging and it is successfully used in the diagnosis and follow-up of many diseases. The aim of this study is to determine the indications and filming protocols of bone scintigraphy which was performed in our clinic. Material and Method: Two hundred and fifty two patients (132 male, 120 female who was performed bone scintigprapy in our clinic between December 2011 and June 2013 included the study. Mean age was 50.1±20.2 years. Scintigraphic protocols were made in two ways as late static whole body imaging and three-phase bone scintigraphy according to the type of the diseases. Indications of scintigraphies and scintigraphic protocols were detected. Results: Bone scintigraphy was performed for diagnosis and monitoring of metastatic bone disease to 102 patients (40,5 %, for orthopedic applications to 57 patients (22,6 %, for diagnosis and monitoring of primary bone tumors to 29 patients (11,5 %, for diagnosis of osteomyelitis to 17 patients (6,7 %, for differential diagnosis of infection and loosening of the prosthesis to 12 patients (4,8 %, investigate the viability of the graft in 14 patients (4,6 %, for rheumatologic diseases to 9 patients (3,6 %, for investigate the pathological vertebral fractures and osteoporosis to 4 patients (1,6 %, for diagnosis the metabolic bone disease to 2 patients (0,8 %, for diagnosis of otitis externa to 5 patients (1,98 % and for for suspicion of malignancy to 1 patient (0,4 %. Late static whole body imaging protocol was applied to 136 patients (54 % and three-phase imaging protocol was applied to 116 patients (46 %. Discussion: The most common use of bone scintigraphy is the diagnosis and follow-up of metastatic bone disease. It is followed by reasons such as orthopedic applications, monitoring and diagnosis of primary bone tumors and diagnosis of osteomyelitis.

  8. Rodent bone densitometer on the International Space Station: Instrument design and performance

    Science.gov (United States)

    Vellinger, John C.; Barton, Kenneth; Faget, Paul; Todd, Paul; Boland, Eugene

    2016-07-01

    The study of bone loss dynamics, mechanisms and countermeasures has been a publicly stated purpose of biomedical research aboard the International Space Station. Rodent research has always played a major role in terrestrial laboratories studying bone loss. The "gold standard" for assessing bone loss in human patients has been dual-energy x-ray absorptiometry (DEXA). DEXA is also widely applied to the study of bone loss in laboratory animals, so this technology has been added to the ISS inventory of analytical tools in the form of the ISS Bone Densitometer (BD) designed, constructed, tested and integrated by Techshot, Inc. (Greenville, Indiana, USA). The BD is a re-packaged COTS device known as PIXImus (GE-Lunar, USA), which was installed on ISS in November 2014 after launching on SpaceX-4. To facilitate operations in microgravity and to meet spaceflight facility and safety requirements the commercial x-ray source, control electronics and imaging system were modified and packaged by Techshot into a drawer that fits into a single EXPRESS Locker replacement. A space-rated "Exam Box" is also supplied for containment of the anesthetized subject during transfer into the BD and during exposure. The commercial software package controls four paired-energy exposures, 80 and 35 kV, and applies DEXA algorithms to the fluorescence images and displays bone mineral density (BMD), bone mineral content, lean mass, fat mass, total mass and per cent fat. The BD is therefore also a means for measuring mass and body composition making it a versatile tool for many types of rodent studies on orbit. The BD has been operated multiple times on orbit, and its performance has not differed significantly from its performance on the ground. It has been shown to measure body mass with a precision of +/- 0.1 g and on-orbit accuracy of -0.3 g. It is expected to detect BMD losses of approximately 2%. The image data are stored in a manner that allows post-test data analysis especially including the

  9. Intercomparison of techniques for the non-invasive measurement of bone mass

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques

  10. Measurements of simulated periodontal bone defects in inverted digital image and film-based radiograph: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Molon, Rafael Scaf; Morais Camillo, Juliana Aparecida Najarro Dearo; Ferreira, Mauricio Goncalves; Loffredo, Leonor Castro Monteiro; Scaf, Gulnara [Araraquara Dental School, Universidade Estadual Paulista, Sao Paulo (Brazil); Sakakura, Celso Eduardo [Barretos Dental School, Barretos Educational Fundation, Sao Paulo (Brazil)

    2012-09-15

    This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm (IC{sub 95%}:6.04-6.54) and 6.79 mm (IC{sub 95%}:6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64 mm(IC{sub 95%}:6.40-6.89) and 6.79 mm(IC{sub 95%}:6.45-7.11), respectively. The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss.

  11. International conference on bone mineral measurement, October 12--13, 1973, Chicago, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-12-31

    From international conference on bone mineral measurement; Chicago, Illinois, USA (12 Oct 1973). Abstracts of papers presented at the international conference on bone mineral measurement are presented. The papers were grouped into two sessions: a physical session including papers on measuring techniques, errors, interpretation and correlations, dual photon techniques, and data handling and exchange; a biomedical session including papers on bone disease, osteoporosis, normative data, non-disease influences, renal, and activity and inactivity. (ERB)

  12. Instrument for bone mineral measurement using a microprocessor as the control and arithmetic element

    International Nuclear Information System (INIS)

    Alberi, J.L.; Hardy, W.H. II.

    1975-11-01

    A self-contained instrument for the determination of bone mineral content by photon absorptometry is described. A high-resolution detection system allows measurements to be made at up to 16 photon energies. Control and arithmetic functions are performed by a microprocessor. Analysis capability and limitations are discussed

  13. A Norwegian nationwide quality assurance project in nuclear medicine: total performance in bone scintigraphy measured with a new transmission phantom.

    Science.gov (United States)

    Skretting, A; Strandmyr, E; Lindegaard, M W

    1990-01-01

    A prototype version of a recently developed transmission phantom for simulation of radionuclide bone studies was used in a Norwegian nationwide quality assurance project. The design of the phantom made it possible to perform a receiver operation characteristic (ROC) examination with respect to the detection of radionuclide accumulation in the ribs. The participants were also asked to report accumulation in the spinal column. Images obtained by means of a uniform source and a four-quadrant bar pattern were used to judge resolution and homogeneity with the collimator used in the bone studies. The overall performance of the laboratories was satisfactory, but considerable variations were found. There was a marked correlation between the physician's performance and the resolution and homogeneity of the camera. Reports from stationary imaging were generally better than those that were based on whole-body scans.

  14. A Norwegian nationwide quality assurance project in nuclear medicine: Total performance in bone scintigraphy measured with a new transmission phantom

    International Nuclear Information System (INIS)

    Skretting, A.; Strandmyr, E.; Lindegaard, M.W.

    1990-01-01

    A prototype version of a recently developed transmission phantom for simulation of radionuclide bone studies was used in a Norwegian nationwide quality assurance project. The design of the phantom made it possible to perform a receiver operation characteristic (ROC) examination with respect to the detection of radionuclide accumulation in the ribs. The participants were also asked to report accumulation in the spinal column. Images obtained by means of a uniform source and a four-quadrant bar pattern were used to judge resolution and homogeneity with the collimator used in the bone studies. The overall performance of the laboratories was satisfactory, but considerable variations were found. There was a marked correlation between the physician's performance and the resolution and homogeneity of the camera. Reports from stationary imaging were generally better than those that were based on whole-body scans. (orig.)

  15. Measurement of MC5 antibody distribution in blood and bone marrow

    International Nuclear Information System (INIS)

    Johnson, T.K.; Gonzales, R.; Kasliwal, R.; Lear, J.; Feyerabend, A.; Ceriani, R.; Bunn, P.

    1990-01-01

    PURPOSE: Bone marrow is most often the dose-limiting organ in radioimmunotherapy. Controversy exists over optimal methods of estimating dose exposure to bone marrow. The purpose of this paper is to compare bone marrow activity from serial blood samples versus bone marrow biopsy specimens as measures of dose exposure to bone marrow. Peripheral blood samples and bone marrow biopsy specimens were obtained at 48 and 168 hours after infusion from 12 female patients infused with iodine-131-labeled MC5 antibody. The percentage of bone marrow in each biopsy specimen was assumed to be equivalent to the percentage of active bone marrow estimated to be in the pelvis. Activity present in the bone marrow as calculated with use of the estimated bone marrow mass for an adult female and then compared with the peripheral blood activity

  16. Does bone measurement on the radius indicate skeletal status. Concise communication

    International Nuclear Information System (INIS)

    Mazess, R.B.; Peppler, W.W.; Chesney, R.W.; Lange, T.A.; Lindgren, U.; Smith, E. Jr.

    1984-01-01

    Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of the lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state

  17. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults.

    Science.gov (United States)

    Shen, W; Chen, J; Gantz, M; Punyanitya, M; Heymsfield, S B; Gallagher, D; Albu, J; Engelson, E; Kotler, D; Pi-Sunyer, X; Gilsanz, V

    2012-09-01

    Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM; age 18.0-39.9 years) and an older group with potential bone loss (PoBL; age 40.0-88.0 years). Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole-body magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. An inverse correlation was observed between pelvic BMAT and pelvic, total and spine BMD in the younger PBM group (r=-0.419 to -0.461, PBMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434-0.928). Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes.

  18. Determination of bone mineral density at distal radius measured by single photon absorptiometry

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Yanagimoto, Shinichi; Hitomi, Go; Murakami, Akihiko; Suemori, Shinji; Yokobayashi, Tsuneo; Ishii, Koshi; Hiji, Hiroo

    1988-01-01

    We have discussed the index of the bone mineral density (BMD) at the distal radius measured by single photon absorptiometry. Initially, the shape at the distal radius was evaluated using an X-ray photogram of the forearm and a calculation formula of the cross-sectional area at the distal radius was performed using an X-CT photogram of the forearm. A new index for the bone mineral density (modified BMD, mBMD), bone mineral content/cross-sectional area, at the distal radius was obtained for 154 young normal subjects (20 ∼ 44 yrs.). No significant differences in the mBMD values between young normal males and females, except for the group 20 ∼ 24 year-old group, were observed. Furthermore, a significantly decreased in the mBMD values with aging was observed in females between the ages of 20 ∼ 24 and 40 ∼ 44. However, no significant changes in the mBMD values were recognized in the men. Thus, it was shown that the new BMD index, mBMD, was useful for evaluating the changes of the bone mass. (author)

  19. Agreement and precision of periprosthetic bone density measurements in micro-CT, single and dual energy CT.

    Science.gov (United States)

    Mussmann, Bo; Overgaard, Søren; Torfing, Trine; Traise, Peter; Gerke, Oke; Andersen, Poul Erik

    2017-07-01

    The objective of this study was to test the precision and agreement between bone mineral density measurements performed in micro CT, single and dual energy computed tomography, to determine how the keV level influences density measurements and to assess the usefulness of quantitative dual energy computed tomography as a research tool for longitudinal studies aiming to measure bone loss adjacent to total hip replacements. Samples from 10 fresh-frozen porcine femoral heads were placed in a Perspex phantom and computed tomography was performed with two acquisition modes. Bone mineral density was calculated and compared with measurements derived from micro CT. Repeated scans and dual measurements were performed in order to measure between- and within-scan precision. Mean density difference between micro CT and single energy computed tomography was 72 mg HA/cm 3 . For dual energy CT, the mean difference at 100 keV was 128 mg HA/cm 3 while the mean difference at 110-140 keV ranged from -84 to -67 mg HA/cm 3 compared with micro CT. Rescanning the samples resulted in a non-significant overall between-scan difference of 13 mg HA/cm 3 . Bland-Altman limits of agreement were wide and intraclass correlation coefficients ranged from 0.29 to 0.72, while 95% confidence intervals covered almost the full possible range. Repeating the density measurements for within-scan precision resulted in ICCs >0.99 and narrow limits of agreement. Single and dual energy quantitative CT showed excellent within-scan precision, but poor between-scan precision. No significant density differences were found in dual energy quantitative CT at keV-levels above 110 keV. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1470-1477, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Measurement of bone mineral using multiple-energy x-ray absorptiometry

    International Nuclear Information System (INIS)

    Swanpalmer, Janos; Kullenberg, Ragnar; Hansson, Tommy

    1998-01-01

    Our laboratory has previously reported a method of determining the amount of bone mineral using triple-energy absorptiometry with a continuous x-ray spectrum. In the present study, the experimental properties of the technique were examined. The accuracy, the influence of fat content and body thickness and the in vitro and in vivo precision were analysed. The results found in this investigation showed that despite the complexity of the technique, the amount of bone mineral can be accurately determined. The in vivo precision was determined to be 3.4%, expressed as the coefficient of variation (CV), for different skeletal parts. The in vitro precision was found to be 2.1% (CV). Neither the fat content nor the body thickness had any effect on the measured bone mineral values. Excellent linearity and a close correlation were found between the true and the measured bone mineral values. (author)

  1. Bone Loss During Spaceflight: Available Models and Counter-Measures

    Science.gov (United States)

    Morris, Jonathan; Bach, David; Geller, David

    2015-01-01

    There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground

  2. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass

    International Nuclear Information System (INIS)

    Berthold, L.D.; Alzen, G.; Haras, G.; Mann, M.

    2006-01-01

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  3. Measurements of the static friction coefficient between bone and muscle tissues.

    Science.gov (United States)

    Shacham, Sharon; Castel, David; Gefen, Amit

    2010-08-01

    This study aimed at measuring the static coefficient of friction (mu) between bone and skeletal muscle tissues in order to support finite element (FE) modeling in orthopaedic and rehabilitation research, where such contact conditions need to be defined. A custom-made friction meter (FM) that employs the load cell and motion-controlled loading arm of a materials testing machine was designed for this study. The FM was used to measure mu between fresh ulna bones and extensor muscles surrounding the ulna, which were harvested from five young adult pigs. Mean bone-muscle mu were between 0.36 and 0.29, decreased with the increase in loads applied on the bone (p<0.05) and plateaued at a mean approximately 0.3 for loads exceeding 4 N. Hence, for FE modeling of bone-muscle contacts through which loads with magnitudes of kgs to 10s-of-kgs are transferred, assuming mu of approximately 0.3 appears to be appropriate.

  4. Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study.

    Science.gov (United States)

    Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V

    2009-04-01

    We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, window settings with magnification. For uric acid calculi the measurement error was observed only in standard soft tissue window settings. In vivo 4.0x

  5. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    International Nuclear Information System (INIS)

    Hoffmeister, Brent K; Holt, Andrew P; Kaste, Sue C

    2011-01-01

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  6. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Brent K; Holt, Andrew P [Department of Physics, Rhodes College, Memphis, TN (United States); Kaste, Sue C, E-mail: hoffmeister@rhodes.edu [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN (United States)

    2011-10-07

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  7. Three-dimensional quantification of structures in trabecular bone using measures of complexity

    DEFF Research Database (Denmark)

    Marwan, Norbert; Kurths, Jürgen; Thomsen, Jesper Skovhus

    2009-01-01

    The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensiona......The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three......-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures...... evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (µCT) from human proximal tibiae and lumbar vertebrae at different stages...

  8. Radiolabeled microsphere measurements of alveolar bone blood flow in dogs

    International Nuclear Information System (INIS)

    Kaplan, M.L.; Jeffcoat, M.K.; Goldhaber, P.

    1978-01-01

    Radiolabeled microspheres were injected into the left cardiac ventricle in healthy adult dogs to quantify blood in maxillary and mandibular alveolar bone. Heart rate, arterial blood pressure and pulse contour were monitored throughout each experiment. Blood flow in maxillary alveolar bone was more than 30 % greater (p<.001) than in mandibular alveolar bone. Alveolar bone blood flow (mean +- S.D.) measured as ml/min per gram was 0.12 +- .02 in the maxilla compared to 0.09 +- .02 in the mandible. The cardiovascular parameters monitored were constant immediately prior to the injection of microspheres and remained unchanged during and following injection. It is possible that radiolabeled microspheres can be used to quantify the circulatory changes in alveolar bone during the development of destructive periodontal disease in dogs. (author)

  9. Measurement of absolute bone blood flow by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, C.; Cockshott, W.P.; Garnett, E.S.; Belbeck, L.W.

    1986-03-01

    A method of measuring bone blood flow has been developed using /sup 18/F sodium fluoride and positron emission tomography. The blood flow levels are in line with those obtained experimentally from microsphere embolisation. This investigative method could be applied to elucidate a number of clinical questions involving bone perfusion.

  10. Coherent scattering and matrix correction in bone-lead measurements

    International Nuclear Information System (INIS)

    Todd, A.C.

    2000-01-01

    The technique of K-shell x-ray fluorescence of lead in bone has been used in many studies of the health effects of lead. This paper addresses one aspect of the technique, namely the coherent conversion factor (CCF) which converts between the matrix of the calibration standards and those of human bone. The CCF is conventionally considered a constant but is a function of scattering angle, energy and the elemental composition of the matrices. The aims of this study were to quantify the effect on the CCF of several assumptions which may not have been tested adequately and to compare the CCFs for plaster of Paris (the present matrix of calibration standards) and a synthetic apatite matrix. The CCF was calculated, using relativistic form factors, for published compositions of bone, both assumed and assessed compositions of plaster, and the synthetic apatite. The main findings of the study were, first, that impurities in plaster, lead in the plaster or bone matrices, coherent scatter from non-bone tissues and the individual subject's measurement geometry are all minor or negligible effects; and, second, that the synthetic apatite matrix is more representative of bone mineral than is plaster of Paris. (author)

  11. Method to measure the force to pull and to break pin bones of fish.

    Science.gov (United States)

    Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde

    2015-02-01

    A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment. © 2015 Institute of Food Technologists®

  12. Vertical bone measurements from cone beam computed tomography images using different software packages

    International Nuclear Information System (INIS)

    Vasconcelos, Taruska Ventorini; Neves, Frederico Sampaio; Moraes, Livia Almeida Bueno; Freitas, Deborah Queiroz

    2015-01-01

    This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (‑0.11 and ‑0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p > 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data. (author)

  13. Vertical bone measurements from cone beam computed tomography images using different software packages

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Taruska Ventorini; Neves, Frederico Sampaio; Moraes, Livia Almeida Bueno; Freitas, Deborah Queiroz, E-mail: tataventorini@hotmail.com [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia

    2015-03-01

    This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (‑0.11 and ‑0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p > 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data. (author)

  14. Sequential analysis of biochemical markers of bone resorption and bone densitometry in multiple myeloma

    DEFF Research Database (Denmark)

    Abildgaard, Niels; Brixen, K; Eriksen, E.F

    2004-01-01

    BACKGROUND AND OBJECTIVES: Bone lesions often occur in multiple myeloma (MM), but no tests have proven useful in identifying patients with increased risk. Bone marker assays and bone densitometry are non-invasive methods that can be used repeatedly at low cost. This study was performed to evaluate...... 6 weeks, DEXA-scans performed every 3 months, and skeletal radiographs were done every 6 months as well as when indicated. RESULTS: Serum ICTP and urinary NTx were predictive of progressive bone events. Markers of bone formation, bone mineral density assessments, and M component measurements were...... changes, and our data do not support routine use of sequential DEXA-scans. However, lumbar DEXA-scans at diagnosis can identify patients with increased risk of early vertebral collapses. Sequential analyses of serum ICTP and urinary NTx are useful for monitoring bone damage....

  15. Modeling elemental strontium in human bone based on in vivo x-ray fluorescence measurements in osteoporotic females self-supplementing with strontium citrate

    International Nuclear Information System (INIS)

    Moise, H; Chettle, D R; Pejović-Milić, A

    2016-01-01

    An in-house custom I-125 excited in vivo x-ray fluorescence (IVXRF) system was used to perform bone strontium (Sr) measurements in individuals suffering from osteoporosis and/or osteopenia. These individuals, who were self-administering with Sr supplements of their choice, were measured frequently, ranging from weekly to biweekly to monthly, over four years, as part of the Ryerson and McMaster Sr in Bone Research Study. Based on these data collected, data from eight subjects were used to perform kinetic modeling of Sr in human bone. Power and exponential models were used to model the data based on one and two compartmental systems. Model parameters included: mean normalized baseline bone Sr signal, half-life and bone Sr uptake. A one compartmental exponential model applied to finger and ankle bone measurements gave half-lives of (508  ±  331) d and (232  ±  183) d, respectively, but did not show statistically significant differences (p  =  0.087 96). However, the values fall within literature estimates. When a two compartmental model was applied to finger bone measurements, half-lives of (300  ±  163) d and (2201  ±  1662) d were observed. Ankle bone data gave half-lives of (156  ±  117) d and (1681  ±  744) d. A two sample t-test, assuming unequal variances, showed these half-lives to be statistically different in both the finger and ankle bone measurements (p  =  0.0147 and p  =  0.00711, respectively). Common kinetic parameters amongst the different subjects could not be unambiguously identified due to the wide scatter of data, leading to an inconclusive kinetic model. The wide distribution of data is suggested to be physiological since technical and positioning factors were eliminated as possible causes. This outcome indicates the need for a more controlled study and further understanding of the physiological mechanism of Sr absorption. (paper)

  16. Aging and bone. X-ray bone densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Rikushi (Shiga Univ. of Medical Sciences, Otsu (Japan))

    1994-01-01

    Bone mass at all ages of the individuals is the integration of genetic factors, nutrition, physical exercise, hormonal environments, and other factors influencing the bone. It is also a measurable risk factor for osteoporosis which may subsequently cause bone fractures. Thus measuring bone mass is required to predict the probability of developing bone fractures subsequent to osteoporosis, and to diagnose osteoporosis, and to manage the osteoporosis patient. This paper discusses bone mineral measurements according to their characteristics and clinical application. Methodology for measuring bone mass has rapidly progressed during the past 15 years, which covers photodensitometry, photon absorptiometry (single energy X-ray absorptiometry and dual energy X-ray absorptiometry), quantitative CT, and ultrasound. These techniques have allowed noninvasive measurement of bone mineral density in any site of the skeleton with high accuracy and precision, although a single use of the technique cannot satisfy the complete clinical requirements. Thus the most appropriate method for measuring bone mineral density is important to monitor bone mass change and according to the specific site. (N.K.).

  17. Aging and bone. X-ray bone densitometry

    International Nuclear Information System (INIS)

    Morita, Rikushi

    1994-01-01

    Bone mass at all ages of the individuals is the integration of genetic factors, nutrition, physical exercise, hormonal environments, and other factors influencing the bone. It is also a measurable risk factor for osteoporosis which may subsequently cause bone fractures. Thus measuring bone mass is required to predict the probability of developing bone fractures subsequent to osteoporosis, and to diagnose osteoporosis, and to manage the osteoporosis patient. This paper discusses bone mineral measurements according to their characteristics and clinical application. Methodology for measuring bone mass has rapidly progressed during the past 15 years, which covers photodensitometry, photon absorptiometry (single energy X-ray absorptiometry and dual energy X-ray absorptiometry), quantitative CT, and ultrasound. These techniques have allowed noninvasive measurement of bone mineral density in any site of the skeleton with high accuracy and precision, although a single use of the technique cannot satisfy the complete clinical requirements. Thus the most appropriate method for measuring bone mineral density is important to monitor bone mass change and according to the specific site. (N.K.)

  18. Discriminative ability of total body bone-mineral measured by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Gotfredsen, A.; Poedenphant, J.; Nilas, L.; Christiansen, C.

    1989-01-01

    We investigated the descriminative ability of total body bone-mineral expressed as the total body bone-density (TBBD) measured by dual photon absorptiometry (DPA) in 79 healthy premenopausal women, 27 healthy postmenopausal women, and 120 female osteoporotic fracture patients presenting with either Colles' fracture, vertebral fracture or femoral neck-fracture. TBBD was compared to the bone-mineral density of the lumbar spine (BMD spine ) also measured by DPA, and to the bone-mineral content of the forearms (BMC forearm ) measured by single photon absorptiometry (SPA). TBBD, BMD spine and BMC forearm showed that all the fracture patient groups had significantly reduced bone-mass. Using receiver operating characteristic (ROC) analysis, we found that TBBD had a tendency towards better discriminative ability than BMD spine or BMC forearm with regard to the discrimination between healthy premenopausal women and the three types of osteoporotic fractures. BMC forearm had an intermediate position, whereas BMD spine had the smallest discriminative ability. TBBD also discriminated better between healthy postmenopausal women and hip-fracture patients than BMD spine or BMC forearm , whereas there was no significant difference between the three methods regarding the discrimination between the healthy postmenopausal women and the Colles' and spinal fracture patients. We conclude that the TBBD measurement by DPA has a discriminative potential which is better than the local spine or forearm measurements. (author)

  19. Osteopoikilosis: A Cause of Elevated Bone Mineral Density on Dual X-Ray Absorptiometry Measurement in a Young Woman: Case Report

    Directory of Open Access Journals (Sweden)

    Asylbek Kaparov

    2010-04-01

    Full Text Available Osteopoikilosis (OPK is an asymptomatic, rare bone dysplasia. It causes an increase in bone density. The etiology and pathogenesis is unknown. OPK is generally diagnosed incidentally on plain radiographies which were performed for other locomotor system symptoms. Diagnostic lesions of OPK are typically diffuse, round, symmetrically shaped sclerotic bone areas. Laboratory findings and bone scintigraphy are usually normal. OPK should be considered in the differential diagnosis of osteoblastic bone disorders. OPK is a benign disease and invasive diagnostic procedures as well as aggressive treatment modalities should be avoided. In young individuals who have elevated scores on dual-energy X-Ray absoptiometry measurement, OPK as well as other sclerosing bone disorders would be considered. (From the World of Osteoporosis 2010;16:25-8

  20. Structure model index does not measure rods and plates in trabecular bone

    Directory of Open Access Journals (Sweden)

    Phil L Salmon

    2015-10-01

    Full Text Available Structure model index (SMI is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4, to cylindrical (SMI = 3 to planar (SMI = 0. The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI+ and negative (SMI- components, bone volume fraction (BV/TV, the fraction of the surface that is concave (CF, and mean ellipsoid factor (EF in trabecular bone using 38 X-ray microtomography (XMT images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile. We simulated bone resorption by eroding an image of elephant trabeculae and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely less than 20%, of the trabecular surface is concave (CF 0.155 – 0.700. SMI is unavoidably influenced by aberrations from SMI-, which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from SMI's close and artefactual relationship with BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabeculae. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be treated with

  1. Instrument performance in bone density testing at five Australian centres

    Energy Technology Data Exchange (ETDEWEB)

    Khan, K M; Saul, A; Wark, J D [Royal Melbourne Hospital, Parkville, VIC (Australia). Department of Medicine; Henzell, S L [Charles Gairdner Hospital, Perth, WA (Australia). Department of Endocrinology and Diabetes; Broderick, C [University of NSW, Sydney, NSW (Australia); Prince, R L [University of Western Australia, Perth, WA. (Australia). Department of Medicine; Lomman, J [Bone Densitometry Technologist, Ashford, SA (Australia)

    1997-10-01

    Using a multicentre reliability study the accuracy and short- and long-term precision of dual-energy X-ray absorptiometry (DXA) in vitro was compared on five instruments. Measures were performed using pencil beam mode on four Hologic QDR- 2000 densitometers and one Hologic QDR-1000/W (Hologic Inc, Waltham, MA). Short-term precision of bone mineral density measurement was less than 0.5% for spine phantoms (n= 10 for each centre, mean intrasite coefficient of variation [CV] 0.39{+-}0.09% [SD]) and for hip phantoms (n=10 for each centre, mean intrasite coefficient of variation [CV] 0.34{+-}0.10% [SD]). Between-centre measurement (n=10 for each phantom) of a single spine phantom and a single hip phantom (specified mineral contents - 58.5 g and 38.6 g, respectively) revealed ranges of bone mineral content of 57.7-58.1 g (all-point CV=0.52%) and 37.1-37.8 g (all-point CV=0.70%), respectively. When results from pairs of machines were compared there were statistically different mean BMD results for the majority of the ten possible pairings for both spine and hip measurements. Each study centre measured in vitro stability of phantom BMD measurements over a one year period (n=45-283, median 157 for spine; and n=0-262, median 38, for hip); CVs ranged from 0.38 % to 0.53% for the spine measurements and from 0.38 % to 0.54% for the hip measurements. The mean all-point accuracy of the spine phantom measurements was 99.1% and the hip phantom measurements was 96.7%. It is concluded that across a number of instruments assessed in this study, DXA demonstrates in vitro all-point precision of 0.5% for the spine phantom and 0.7% for the hip phantom. The instrument demonstrates accuracy of greater than 99% at the spine and 96% at the hip (authors). 14 refs., 3 tabs., 4 figs.

  2. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  3. Feasibility of measurement of bone turnover markers in female patients with systemic lupus erythematosus.

    Science.gov (United States)

    Bogaczewicz, Jaroslaw; Karczmarewicz, Elzbieta; Pludowski, Pawel; Zabek, Jakub; Kowalski, Jan; Lukaszkiewicz, Jacek; Wozniacka, Anna

    2015-01-01

    To investigate the feasibility of bone turnover markers (BTMs) for the assessment of bone metabolism in patients with systemic lupus erythematosus (SLE), according to the guidelines of the International Osteoporosis Foundation and the International Federation of Clinical Chemistry and Laboratory Medicine. The study included 43 female SLE patients. Serum procollagen type I N propeptide (PINP), C-terminal telopeptide of type I collagen (CTX), osteocalcin, PTH, 25(OH)D, anti-cardiolipin, anti-dsDNA, and anti-nucleosome levels were measured. PINP and CTX levels were elevated in SLE patients aged > 45 in comparison to those aged 45 (p < 0.001). No significant difference in PINP, osteocalcin or CTX levels was found with respect to season, neither in the entire SLE group, nor in the under-45 or over-45 groups. Previous glucocorticoid treatment was not associated with difference in BTMs. Increased BTMs in SLE appear to predominantly reflect the pattern of bone remodeling related to age. Increased PINP is expected to be the most frequent outcome among BTMs. Better diagnoses of bone disturbances with BTMs performed in accordance with international reference standards need to be included in the approach to SLE patients, in addition to bone mineral density assessment. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  4. Evaluating the Effect of Virtual Reality Temporal Bone Simulation on Mastoidectomy Performance: A Meta-analysis.

    Science.gov (United States)

    Lui, Justin T; Hoy, Monica Y

    2017-06-01

    Background The increasing prevalence of virtual reality simulation in temporal bone surgery warrants an investigation to assess training effectiveness. Objectives To determine if temporal bone simulator use improves mastoidectomy performance. Data Sources Ovid Medline, Embase, and PubMed databases were systematically searched per the PRISMA guidelines. Review Methods Inclusion criteria were peer-reviewed publications that utilized quantitative data of mastoidectomy performance following the use of a temporal bone simulator. The search was restricted to human studies published in English. Studies were excluded if they were in non-peer-reviewed format, were descriptive in nature, or failed to provide surgical performance outcomes. Meta-analysis calculations were then performed. Results A meta-analysis based on the random-effects model revealed an improvement in overall mastoidectomy performance following training on the temporal bone simulator. A standardized mean difference of 0.87 (95% CI, 0.38-1.35) was generated in the setting of a heterogeneous study population ( I 2 = 64.3%, P virtual reality simulation temporal bone surgery studies, meta-analysis calculations demonstrate an improvement in trainee mastoidectomy performance with virtual simulation training.

  5. The Study on Bone Mineral Density Measurement Error in Accordance with Change in ROI by Utilizing Dual Energy X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Hong [Dept. of Diagnostic Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, In Ja [Dept. of Radiological Technology, Dongnam Health College, Suwon (Korea, Republic of); Yong, Hyung Jin [Dept. of Medicine Physics, The Graduate School of Biomedical Science Korea University, Seoul (Korea, Republic of)

    2012-03-15

    Dual Energy X-ray Absorptiometry(DEXA) is commonly used to diagnose Osteoporosis. The errors of DEXA bone density operation are caused by operator, bone mineral density meter, blood testing, patient. We focus on operator error then study about how much influence operator's region of intest(ROI) in bone testing result. During from March to July in 2011. 50 patients ware selected respectively from 30, 40, 50, 60, and 70 age groups who came to Korea University Medical Center(KUMC) for their Osteoporosis treatment. A-test was performed with usually ROI and B-test was performed with most widely ROI. Then, We compare A-test and B-test for find maximum difference of T-score error which occurred operator ROI controlling. Standard deviation of T-score of B-test showed 0.1 higher then A-test in femur neck. Standard deviation of B-test showed 0.2 higher then A-test in Ward's area which in Greater trocanter and Inter trocanter. Standard deviation of B-test showed 0,1 lower then A-test in L-1. Bone density testing about Two hundred patients results are as follow. When operator ROI was changed wider than normal ROI, bone density of femur was measured more higher but bone density of L-spine was measured more lower then normal bone density. That means, sometime DEXA bone density testing result is dependent by operator ROI controlling. This is relevant with the patient's medicine and health insurance, thus, tester always keep the size of ROI for to prevent any problem in the patient.

  6. Evaluation of temporal bone pneumatization on high resolution CT (HRCT) measurements of the temporal bone in normal and otitis media group and their correlation to measurements of internal auditory meatus, vestibular or cochlear aqueduct

    International Nuclear Information System (INIS)

    Nakamura, Miyako

    1988-01-01

    High resolution CT axial scans were made at the three levels of the temoral bone 91 cases. These cases consisted of 109 sides of normal pneumatization (NR group) and 73 of poor pneumatization resulted by chronic otitis (OM group). NR group included sensorineural hearing loss cases and/or sudden deafness on the side. Three levels of continuous slicing were chosen at the internal auditory meatus, the vestibular and the cochlear aqueduct, respectively. In each slice two sagittal and two horizontal measurements were done on the outer contour of the temporal bone. At the proper level, diameter as well as length of the internal acoustic meatus, the vestibular or the cochlear aqueduct were measured. Measurements of the temporal bone showed statistically significant difference between NR and OM groups. Correlation of both diameter and length of the internal auditory meatus to the temporal bone measurements were statistically significant. Neither of measurements on the vestibular or the cochlear aqueduct showed any significant correlation to that of the temporal bone. (author)

  7. DXA measurements in Rett syndrome reveal small bones with low bone mass.

    Science.gov (United States)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine; Andersen, Henrik; Nielsen, Jytte Bieber; Brøndum-Nielsen, Karen; Jensen, Jens-Erik Beck

    2011-09-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients with RTT do have low BMD when correcting for smaller bones by examination with dual-energy X-ray absorptiometry (DXA). We compared areal BMD (aBMD(spine) and aBMD(total hip) ) and volumetric bone mineral apparent density (vBMAD(spine) and vBMAD(neck) ) in 61 patients and 122 matched healthy controls. Further, spine and hip aBMD and vBMAD of patients were associated with clinical risk factors of low BMD, low-energy fractures, MECP2 mutation groups, and X chromosome inactivation (XCI). Patients with RTT had reduced bone size on the order of 10% and showed lower values of spine and hip aBMD and vBMAD (p bone mass and small bones are evident in RTT, indicating an apparent low-bone-formation phenotype. Copyright © 2011 American Society for Bone and Mineral Research.

  8. Bone mineral content measurement in small infants by single-photon absorptiometry: current methodologic issues

    International Nuclear Information System (INIS)

    Steichen, J.J.; Asch, P.A.; Tsang, R.C.

    1988-01-01

    Single-photon absorptiometry (SPA), developed in 1963 and adapted for infants by Steichen et al. in 1976, is an important tool to quantitate bone mineralization in infants. Studies of infants in which SPA was used include studies of fetal bone mineralization and postnatal bone mineralization in very low birth weight infants. The SPA technique has also been used as a research tool to investigate longitudinal bone mineralization and to study the effect of nutrition and disease processes such as rickets or osteopenia of prematurity. At present, it has little direct clinical application for diagnosing bone disease in single patients. The bones most often used to measure bone mineral content (BMC) are the radius, the ulna, and, less often, the humerus. The radius appears to be preferred as a suitable bone to measure BMC in infants. It is easily accessible; anatomic reference points are easily palpated and have a constant relationship to the radial mid-shaft site; soft tissue does not affect either palpation of anatomic reference points or BMC quantitation in vivo. The peripheral location of the radius minimizes body radiation exposure. Trabecular and cortical bone can be measured separately. Extensive background studies exist on radial BMC in small infants. Most important, the radius has a relatively long zone of constant BMC. Finally, SPA for BMC in the radius has a high degree of precision and accuracy. 61 references

  9. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    Science.gov (United States)

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). Subjects/Methods Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole body magnetic resonance imaging. BMD was measured using whole body dual-energy x-ray absorptiometry. Results An inverse correlation was observed between pelvic BMAT and pelvic, total, and spine BMD in the younger PBM group (r=-0.419 to -0.461, P<0.001) and in the older PoBL group (r=-0.405 to -0.500, P<0.001). After adjusting for age, sex, ethnicity, menopausal status, total body fat, skeletal muscle, subcutaneous and visceral adipose tissue, neither subject group (younger PBM vs. older PoBL) nor its interaction with pelvic BMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434 to 0.928). Conclusion Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes. PMID:22491495

  10. In vivo measurements of bone lead content in residents of southern Ontario

    International Nuclear Information System (INIS)

    Gamblin, C.; Gordon, C.L.; Webber, C.E.; Muir, D.C.F.; Chettle, D.R.

    1994-01-01

    In 111 subjects not occupationally exposed, bone lead content increased steadily with age in both men and women. Higher than expected bone lead levels were observed in two-thirds of 27 subjects working in occupations with potential for lead exposure. Five of 8 patients who displayed symptoms which might have been due to lead poisoning had increased bone lead levels. In vivo bone lead measurements reflect the cumulative extent of exposure to environmental and occupational sources of lead and allow the assessment of abnormal exposures. (Author)

  11. Bone microarchitecture and bone mineral density in multiple sclerosis

    DEFF Research Database (Denmark)

    Olsson, A; Oturai, A B; Søndergaard, H B

    2018-01-01

    BACKGROUND: Multiple sclerosis (MS) patients are at increased risk of reduced bone mineral density (BMD) and fractures. The aetiology of bone loss in MS is unclear. Trabecular bone score (TBS) is a novel analytical tool that provides a measurement of the bone microarchitecture. Decreased TBS...... included. TBS was calculated using TBS iNsight software (MediMaps® ). Multivariable regression analyses were performed with information on smoking, alcohol, glucocorticoid (GC) treatment, sun exposure, physical activity, vitamin D and BMI. RESULTS: Trabecular bone score was not significantly different from...... an age-matched reference population. Low TBS was associated with high age (P = .014) and smoking (P = .03). Smoking and physical inactivity were associated with low BMD in spine (P = .034, P = .032). GC treatment was not associated with TBS. CONCLUSION: We could not find altered TBS values among MS...

  12. Effect of microstructure on micromechanical performance of dry cortical bone tissues

    International Nuclear Information System (INIS)

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2009-01-01

    The mechanical properties of bone depend on composition and structure. Previous studies have focused on macroscopic fracture behavior of bone. In the present study, we performed microindentation studies to understand the deformation properties and microcrack-microstructure interactions of dry cortical bone. Dry cortical bone tissues from lamb femurs were tested using Vickers indentation with loads of 0.245-9.8 N. We examined the effect of bone microstructure on deformation and crack propagation using scanning electron microscopy (SEM). The results showed the significant effect of cortical bone microstructure on indentation deformation and microcrack propagation. The indentation deformation of the dry cortical bone was basically plastic at any applied load with a pronounced viscoelastic recovery, in particular at lower loads. More microcracks up to a length of approximately 20 μm occurred when the applied load was increased. At loads of 4.9 N and higher, most microcracks were found to develop from the boundaries of haversian canals, osteocyte lacunae and canaliculi. Some microcracks propagated from the parallel direction of the longitudinal interstitial lamellae. At loads 0.45 N and lower, no visible microcracks were observed.

  13. The usefulness of measurement of whole body count in assessing bone marrow metastasis in cancer patients with increased periarticular bone uptake on follow-up bone scan: a comparison with bone marrow scan

    International Nuclear Information System (INIS)

    Jin, Seong Chan; Choi, Yun Young; Cho, Suk Shin

    2003-01-01

    Increased periarticular uptake could be associated with peripheral bone marrow expansion in cancer patients with axial bone marrow metastasis. We compared bone scan and bone marrow scan to investigate whether the increased whole body count in patients with increased periarticular uptake on bone scan is useful in the diagnosis of axial marrow metastasis, and evaluate the role of additional bone marrow scan in these cases. Twelve patients with malignant diseases who showed increased periarticular uptake on bone scan were included. Whole body count was measured on bone scan and it is considered to be increased when the count is more than twice of other patients. Bone marrow scan was taken within 3-7 days. Five hematologic malignancy, 3 stomach cancer, 2 breast cancer, 1 prostate cancer and 1 lung canner were included. All three patients with increased whole body count on bone scan showed axial marrow suppression and peripheral marrow expansion. Eight of 9 patients without increased whole body count showed axial marrow suppression and peripheral marrow expansion. One turned out to be blastic crisis of chronic myelogeneous leukemia, and seven showed normal axial marrow with peripheral marrow expansion in chronic anemia of malignancy. The last one without increased whole body count showed normal bone marrow scan finding. Increased whole body count on bone scan could be a clue to axial bone marrow metastasis in cancer patients with increased periarticular uptake, and bone marrow scan is a valuable method for differential diagnosis in these cases

  14. Measurement of bone mineral density using DEXA and biochemical markers of bone turnover in 5-year survivors after orthotopic liver transplantation

    International Nuclear Information System (INIS)

    Xu Hao; Eichstaedt, H.

    1998-01-01

    Purpose: To observe bone loss and bone metabolism status in 5-year survivors after orthotopic liver transplantation (OLT). Methods: Measurement of bone mineral density (BMD) of the lumbar spine (L2∼L4) and femoral neck using dual energy X-ray absorptiometry (DEXA) and analysis of biochemical markers of bone turnover, such as ostecalcin (OSC), bone alkaline phosphatase (BAP), carboxy-terminal propeptide of type I procollagen (PICP), carboxy-terminal cross-linked telo-peptide of type I collagen (ICTP), PTH and 25-hydroxy-vitamin D (25-OH-D). These markers were measured in 31 5-year survivors after OLT, 34 patients with chronic liver failure (CLF) before OLT and 38 normal subjects. Results: Age-matched Z-score of BMD (Z-score) at L2∼L4 was significantly higher in 5-year survivors than that in patients with CLF before OLT. Incidence of osteoporosis (Z-score<-2.0) in 5-year survivors was significantly lower than that in patients with CLF before OLT. Although serum concentrations of bone formation and bone resorption markers in 5-year survivors were high than those of normal subjects, as compared to patients with CLF before OLT, serum OSC was increased, serum ICTP and BAP were reduced, serum PICP was unchanged. Serum PTH and 25-OH-D level was normal. Conclusions: In 5-year survivors following liver transplantation there was a reduction in bone loss and incidence of osteoporosis and an improvement of bone metabolism

  15. 3H-tetracycline as a proxy for 41Ca for measuring dietary perturbations of bone resorption

    International Nuclear Information System (INIS)

    Weaver, Connie; Cheong, Jennifer; Jackson, George; Elmore, David; McCabe, George; Martin, Berdine

    2007-01-01

    Our group is interested in evaluating early effects of dietary interventions on bone loss. Postmenopausal women lose bone following reduction in estrogen which leads to increased risk of fracture. Traditional means of monitoring bone loss and effectiveness of treatments include changes in bone density, which takes 6 months to years to observe effects, and changes in biochemical markers of bone turnover, which are highly variable and lack specificity. Prelabeling bone with 41 Ca and measuring urinary 41 Ca excretion with accelerator mass spectrometry provides a sensitive, specific, and rapid approach to evaluating effectiveness of treatment. To better understand 41 Ca technology as a tool for measuring effective treatments on reducing bone resorption, we perturbed bone resorption by manipulating dietary calcium in rats. We used 3 H-tetracycline ( 3 H-TC) as a proxy for 41 Ca and found that a single dose is feasible to study bone resorption. Suppression of bone resorption, as measured by urinary 3 H-TC, by dietary calcium was observed in rats stabilized after ovariectomy, but not in recently ovariectomized rats

  16. Body composition and bone mineral density measurements by using a multi-energy method

    International Nuclear Information System (INIS)

    Herve, L.

    2003-01-01

    Dual-energy X-ray absorptiometry is a major technique to evaluate bone mineral density, thus allowing diagnosis of bone decalcification ( osteoporosis). Recently, this method has proved useful to quantify body composition (fat ratio). However, these measurements suffer from artefacts which can lead to diagnosis errors in a number of cases. This work has aimed to improve both the reproducibility and the accuracy of bone mineral density and body composition measurements. To this avail, the acquisition conditions were optimised in order to ameliorate the results reproducibility and we have proposed a new method to correct inaccuracies in the determination of bone mineral density. Experimental validations yield encouraging results on both synthetic phantoms and biological samples. (author)

  17. Influence of pregnancy on bone density: a risk factor for osteoporosis? Measurements of the calcaneus by ultrasonometry.

    Science.gov (United States)

    Kraemer, Bernhard; Schneider, Silke; Rothmund, Ralf; Fehm, Tanja; Wallwiener, Diethelm; Solomayer, Erich-Franz

    2012-04-01

    There are conflicting opinions in the literature about whether pregnancy influences maternal bone density or osteoporosis development. The study aim was to investigate whether there is a significant alteration in maternal bone density during normal pregnancy. Bone mass of 200 pregnant women aged 22-42 years was measured twice with quantitative ultrasonometry (QUS) of the heel (Os calcaneum). The first measurement was performed between the 10th and 22nd week of pregnancy, follow-up of 149 women took place 0-9 days postpartum. A questionnaire focusing on data affecting bone metabolism and bone turnover was handed out at the first visit. Median reduction in speed of sound (SOS) was 11 m/s at follow-up indicating a decline of the stiffness during pregnancy. No significant correlation was found between lactation period and the obtained values for stiffness, SOS, T score and Z score. For broadband ultrasonographic attenuation, there was a statistically significant difference (p osteoporosis (n = 30) compared to patients without did not reveal statistical significance during pregnancy. Glucocorticoid therapy, nicotine consumption, physical exercise and nutrition was not statistically significant (p > 0.05). SOS value of women with a twin pregnancy was different over the study period (p pregnancy. Routine evaluation of the bone density in all pregnant women does not seem to be justified; however, it is reasonable in women who present with risk factors. These women could be screened with QUS.

  18. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    Science.gov (United States)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  19. Long bone reconstruction using multilevel lengthening of bone defect fragments.

    Science.gov (United States)

    Borzunov, Dmitry Y

    2012-08-01

    This paper presents experimental findings to substantiate the use of multilevel bone fragment lengthening for managing extensive long bone defects caused by diverse aetiologies and shows its clinical introduction which could provide a solution for the problem of reducing the total treatment time. Both experimental and clinical multilevel lengthening to bridge bone defect gaps was performed with the use of the Ilizarov method only. The experimental findings and clinical outcomes showed that multilevel defect fragment lengthening could provide sufficient bone formation and reduction of the total osteosynthesis time in one stage as compared to traditional Ilizarov bone transport. The method of multilevel regeneration enabled management of critical-size defects that measured on average 13.5 ± 0.7 cm in 78 patients. The experimental and clinical results proved the efficiency of the Ilizarov non-free multilevel bone plasty that can be recommended for practical use.

  20. Relationship between alveolar bone measured by 125I absorptiometry with analysis of standardized radiographs: 2. Bjorn technique

    International Nuclear Information System (INIS)

    Ortman, L.F.; McHenry, K.; Hausmann, E.

    1982-01-01

    The Bjorn technique is widely used in periodontal studies as a standardized measure of alveolar bone. Recent studies have demonstrated the feasibility of using 125 I absorptiometry to measure bone mass. The purpose of this study was to compare 125 I absorptiometry with the Bjorn technique in detecting small sequential losses of alveolary bone. Four periodontal-like defects of incrementally increasing size were produced in alveolar bone in the posterior segment of the maxilla of a human skull. An attempt was made to sequentially reduce the amount of bone in 10% increments until no bone remained, a through and through defect. The bone remaining at each step was measured using 125 I absorptiometry. At each site the 125 I absorptiometry measurements were made at the same location by fixing the photon source to a prefabricated precision-made occlusal splint. This site was just beneath the crest and midway between the borders of two adjacent teeth. Bone loss was also determined by the Bjorn technique. Standardized intraoral films were taken using a custom-fitted acrylic clutch, and bone measurements were made from the root apex to coronal height of the lamina dura. A comparison of the data indicates that: (1) in early bone loss, less than 30%, the Bjorn technique underestimates the amount of loss, and (2) in advanced bone loss, more than 60% the Bjorn technique overestimates it

  1. Phantom studies of triple photon absorptiometry and bone mineral measurement at a hip prosthesis

    International Nuclear Information System (INIS)

    Farrell, T.J.; Webber, C.E.

    1992-01-01

    The feasibility of using triple photon absorptiometry (TPA) for the measurement of bone mineral mass about a hip prosthesis was examined. A theoretical expression describing the variance of TPA measurements was verified using a triple photon source and phantom materials which simulate the soft tissue-bone mineral-metal prosthesis system. The expression for the variance was used to determine an optimized set of photon energies. It was shown that a precision of 3% could be obtained for reasonable measurement times using this optimized set of energies and that TPA should be a feasible approach for measurement of bone mineral about a hip prosthesis. (orig.)

  2. Quantitative metacarpal bone measurements before and after renal transplantation

    International Nuclear Information System (INIS)

    Andresen, J.; Nielsen, H.E.; Kommunehospitalet, Aarhus

    1986-01-01

    The outer (D) and inner diameter (d) of the second metacarpal bone, the combined cortical thickness (D-d), cortical area (D 2 -d 2 ) and bone mass ((D 2 d 2 /D 2 ) were measured in 74 renal transplant (RT) recipients at the time of renal transplantation and in a prospective analysis of 60 recipients after transplantation. The RT patient group was made up of recipients who after renal transplanation developed osteonecrosis or spontaneous fractures (RT-ON/SF) and an age- and sex-matched renal control group of subjects who did not develop these complications (RT-C). At the time of renal transplantation, in renal transplant recipient men and women, significantly reduced values in D, D-d and D 2 -d 2 was noticed. These findings could be explained by a higher ratio of bone resoprtion than formation at the periosteal surface. Following renal transplantation, significant increases in d were seen with significant decreases in D-d, D 2 -d 2 and (D 2 -d 2 )/D 2 , probably due to endosteal bone resorption, whereas D was unchanged compared with normal control persons. In the total group and in RT-ON/SF women, D decreased significantly and in ON/SF, increased significantly with significant decrease in bone mass compared with normal women whereas no significant changes in the parameters were seen in RT-C women. These findings indicate that bone loss after transplantation continues at the periosteal surface in women. The bone loss was most markedly demonstrated in women, who subsequently develop osteonecrosis or spontaneous fractures, probably due to combined periosteal and endosteal resorption of calcified bony tissue. (orig.)

  3. Methodologies for the measurement of bone density and their precision and accuracy

    International Nuclear Information System (INIS)

    Goodwin, P.N.

    1987-01-01

    Radiographic methods of determining bone density have been available for many years, but recently most of the efforts in this field have focused on the development of instruments which would accurately and automatically measure bone density by absorption, or by the use of x-ray computed tomography (CT). Single energy absorptiometers using I-125 have been available for some years, and have been used primarily for measurements on the radius, although recently equipment for measuring the os calcis has become available. Accuracy of single energy measurements is about 3% to 5%; precision, which has been poor because of the difficulty of exact repositioning, has recently been improved by automatic methods so that it now approaches 1% or better. Dual energy sources offer the advantages of greater accuracy and the ability to measure the spine and other large bones. A number of dual energy scanners are now on the market, mostly using gadolinium-153 as a source. Dual energy scanning is capable of an accuracy of a few percent, but the precision when scanning patients can vary widely, due to the difficulty of comparing exactly the same areas; 2 to 4% would appear to be typical. Quantitative computed tomography (QCT) can be used to directly measure the trabecular bone within the vertebral body. The accuracy of single-energy QCT is affected by the amount of marrow fat present, which can lead to underestimations of 10% or more. An increase in marrow fat would cause an apparent decrease in bone mineral. However, the precision can be quite good, 1% or 2% on phantoms, and nearly as good on patients when four vertebrae are averaged. Dual energy scanning can correct for the presence of fat, but is less precise, and not available on all CT units. 52 references

  4. [The injection of acrylic bone cement prevents bone collapse in the intercalar bones lacking bony support: an experimental sheep semilunar bone model].

    Science.gov (United States)

    Unsal, Murat; Tetik, Cihangir; Erol, Bülent; Cabukoğlu, Cengiz

    2003-01-01

    In a sheep semilunar bone model, we investigated whether collapse in the intercalar bones lacking bony support could be prevented by the injection of acrylic bone cement. The study included 16 limbs of eight sheep. Preoperatively, anteroposterior and lateral views of the carpal joints in the fore limbs were obtained. The animals were divided into four groups. In group 1 (n=3) no surgical procedure was performed in the right semilunar bones, whereas the periosteum on the contralateral side was elevated (group 2; n=3). The first two groups were left as controls. In Group 3 (n=5) the left semilunar bones were filled with acrylic bone cement following decancellation of the bone, while the right semilunar bones were left decancellated (group 4; n=5). The sheep were monitored for three months. Radiographs of the carpal joints were obtained to evaluate collapse occurrence in the semilunar bones. Thereafter, the animals were sacrificed and the semilunar bones were excised for biomechanical and histological examinations. Osteonecrosis and cartilage damage were sought and resistance to compressive forces was investigated. Radiologically, the extent of collapse was statistically significant in the semilunar bones in group 4 (pbone cement was found to prevent collapse in group 3, with no significant difference being noted between preoperative and postoperative semilunar bone heights (p>0.05). Biomechanically, the least resistance to compressive forces was measured in group 4 (pbone cement prevents collapse in the semilunar bones, without inducing any cartilage damage or osteonecrosis.

  5. L-shell x-ray fluorescence measurements of lead in bone: accuracy and precision

    International Nuclear Information System (INIS)

    Todd, Andrew C.; Carroll, Spencer; Khan, Fuad A.; Moshier, Erin L.; Geraghty, Ciaran; Tang, Shida; Parsons, Patrick J.

    2002-01-01

    This study aimed to quantify the accuracy and precision of a method for in vivo measurements of lead in bone using L-shell x-ray fluorescence (LXRF), the former via comparison with independent measurements of lead in bone obtained using electrothermal atomic absorption spectrometry (AAS) following acid digestion. Using LXRF, the lead content of adult human cadaver tibiae was measured, both as intact legs and as dissected tibiae with overlying tissue removed, the latter at several proximal-distal locations. After LXRF, each tibia was divided into nine cross-sectional segments, which were further separated into tibia core and surface samples for AAS measurement. The proximal-distal variability of AAS-measured core and surface tibia lead concentrations has been described elsewhere (the lead concentration was found to decrease towards both ends of the tibia). The subjects of this paper are the proximal-distal variability of the LXRF-measured lead concentrations, the measurement uncertainty and the statistical agreement between LXRF and AAS. There was no clear proximal-distal variability in the LXRF-measured concentrations; the degree of variability in actual tibia lead concentrations is far less than the LXRF measurement uncertainty. Measurement uncertainty was dominated by counting statistics and exceeded the estimate of lead concentration in most cases. The agreement between LXRF and AAS was reasonably good for bare bone measurements but poor for intact leg measurements. The variability of the LXRF measurements was large enough, for both bare bone and intact leg measurements, to yield grave concerns about the analytical use of the technique in vivo. (author)

  6. The ratio 1660/1690 cm(-1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue.

    Science.gov (United States)

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm(-1) area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm(-1) by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm(-1) by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm(-1) area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm(-1) ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm(-1) was unmodified. In conclusion, the 1660/1690 cm(-1) is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process.

  7. The Ratio 1660/1690 cm−1 Measured by Infrared Microspectroscopy Is Not Specific of Enzymatic Collagen Cross-Links in Bone Tissue

    Science.gov (United States)

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D.; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J.; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm−1 area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm−1 by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm−1 by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm−1 area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm−1 ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm−1 was unmodified. In conclusion, the 1660/1690 cm−1 is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process. PMID:22194900

  8. The prediction of cyclic proximal humerus fracture fixation failure by various bone density measures.

    Science.gov (United States)

    Varga, Peter; Grünwald, Leonard; Windolf, Markus

    2018-02-22

    Fixation of osteoporotic proximal humerus fractures has remained challenging, but may be improved by careful pre-operative planning. The aim of this study was to investigate how well the failure of locking plate fixation of osteoporotic proximal humerus fractures can be predicted by bone density measures assessed with currently available clinical imaging (realistic case) and a higher resolution and quality modality (theoretical best-case). Various density measures were correlated to experimentally assessed number of cycles to construct failure of plated unstable low-density proximal humerus fractures (N = 18). The influence of density evaluation technique was investigated by comparing local (peri-implant) versus global evaluation regions; HR-pQCT-based versus clinical QCT-based image data; ipsilateral versus contralateral side; and bone mineral content (BMC) versus bone mineral density (BMD). All investigated density measures were significantly correlated with the experimental cycles to failure. The best performing clinically feasible parameter was the QCT-based BMC of the contralateral articular cap region, providing significantly better correlation (R 2  = 0.53) compared to a previously proposed clinical density measure (R 2  = 0.30). BMC had consistently, but not significantly stronger correlations with failure than BMD. The overall best results were obtained with the ipsilateral HR-pQCT-based local BMC (R 2  = 0.74) that may be used for implant optimization. Strong correlations were found between the corresponding density measures of the two CT image sources, as well as between the two sides. Future studies should investigate if BMC of the contralateral articular cap region could provide improved prediction of clinical fixation failure compared to previously proposed measures. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Major and trace elements in mouse bone measured by surface and bulk sensitive methods

    International Nuclear Information System (INIS)

    Benkoe, I.; Geresi, K.; Ungvari, E.; Szabo, B.; Paripas, B.

    2011-01-01

    Complete text of publication follows. In the past years an increasing research interest turned to the accurate determination of the components of bone samples. These investigations focused on both the major and trace elements in the bone. Work in this field is strongly motivated because various major and trace element concentrations can be good indicators of several diseases. Number of studies also focused on the determination of the components both in the organic and inorganic parts of the bone separately, because they both have role during bone remodeling processes. Also important to note that bone can be one of the final destinations in the body where toxic elements are deposited. In this work we performed various surface and bulk sensitive analyses for the mouse bone samples to determine its major and trace element components. We have shown concentration profiles for various major and observable trace elements of the mouse bone. We found, in accordance with our expectation, that the mostly surface sensitive XPS technique is not suitable to determine the concentration of the trace elements in bone samples. It was also shown that XPS is a valuable tool not only in the determination of the chemical states of the major components of the bone powder but in the quantitative determination of their relative concentrations. Both the major and the trace elements of the bone samples are determined using PIXE and SNMS spectra. Although the information depths are very different for PIXE (a few tens of micrometer) and for XPS analysis (a few nanometers), our present PIXE result, using the bone sample in its original form for the concentration ratio between Ca and P is in excellent agreement with the XPS results using calcinated mouse bone powder. Discrepancy in Ca/Mg ratio (PIXE: 35.7 and XPS: 12.7) maybe due to many factors, which influence this ratio in bone samples. In the case of PIXE we studied native bones and determined composition of the compact bone at outside

  10. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  11. In vivo measurement of bone aluminum in population living in southern Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.; Aslam,; Pejovic-Milic, A.; Chettle, D. R. [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada); Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada)

    2008-11-15

    The harmful biological effect of excessive aluminum (Al) load in humans has been well documented in the literature. Al stored in bone, for instance due to dialysis treatment or occupational exposure, can interfere with normal bone remodeling leading to osteodystrophy, osteoarthritis, or osteomalacia. On the other hand, the relationship between chronic Al exposure and the risk of Alzheimer's disease remains controversial. In this work, the feasibility of in vivo neutron activation analysis (IVNAA) for measuring Al levels in the human hand bone, using the thermal neutron capture reaction {sup 27}Al(n,{gamma}){sup 28}Al, is reported. This noninvasive diagnostic technique employs a high beam current Tandetron accelerator based neutron source, an irradiation/shielding cavity, a 4{pi} NaI(Tl) detector system, and a new set of hand bone phantoms. The photon spectra of the irradiated phantom closely resemble those collected from the hands of nonexposed healthy subjects. A protocol was developed using the newly developed hand phantoms, which resulted in a minimum detectable limit (MDL) of 0.29 mg Al in the human hand. Using the ratio of Al to Ca as an index of Al levels per unit bone mass, the MDL was determined as 19.5{+-}1.5 {mu}g Al/g Ca, which is within the range of the measured levels of 20-27 {mu}g Al/g Ca[ICRP, Report of the Task Group on Reference Man, Publication 23 (Pergamon, Oxford, 1975)] found in other in vivo and in vitro studies. Following the feasibility studies conducted with phantoms, the diagnostic technique was used to measure Al levels in the hand bones of 20 healthy human subjects. The mean hand bone Al concentration was determined as 27.1{+-}16.1 ({+-}1 SD) {mu}g Al/g Ca. The average standard error (1{sigma}) in the Al/Ca is 14.0 {mu}g Al/g Ca, which corresponds to an average relative error of 50% in the measured levels of Al/Ca. These results were achieved with a dose equivalent of 17.6 mSv to a hand and an effective dose of 14.4 {mu}Sv. This

  12. Measurement of bone mineral content by dual photon absorptiometry in patients with metabolic bone diseases

    International Nuclear Information System (INIS)

    Ohtani, Masami; Hino, Megumu; Ikekubo, Katsuji

    1991-01-01

    Dual photon absorptiometry was used to measure bone mineral content in 225 patients with metabolic bone diseases (84 males and 102 females) and 186 healthy subjects (25 males and 200 females). Mineral content of the lumbar vertebrae tended to rapidly decrease after the age of 40 in healthy female subjects. For males, gradual decrease in mineral content was associated with aging. Bone mineral content showed a correlation with the severity of osteoporosis as shown on X-ray films. Mineral content tended to be decreased in the lumbar vertebrae in patients with vertebral compression fracture, and in the femur in patients with vertebral or femoral fracture. For hyperthyroidism, mineral content of the lumbar vertebrae was decreased in some females, but was within normal limit in males. Hyperparathyroidism and hypoparathyroidism tended to be associated with decrease and increase in mineral content, respectively. Two each patients with osteomalacia or Cushing syndrome had a decreased mineral content. In these patients, it was increased after the treatment. (N.K.)

  13. Measurement of bone mineral content by dual photon absorptiometry in patients with metabolic bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, Masami; Hino, Megumu; Ikekubo, Katsuji (Kobe City General Hospital (Japan)) (and others)

    1991-12-01

    Dual photon absorptiometry was used to measure bone mineral content in 225 patients with metabolic bone diseases (84 males and 102 females) and 186 healthy subjects (25 males and 200 females). Mineral content of the lumbar vertebrae tended to rapidly decrease after the age of 40 in healthy female subjects. For males, gradual decrease in mineral content was associated with aging. Bone mineral content showed a correlation with the severity of osteoporosis as shown on X-ray films. Mineral content tended to be decreased in the lumbar vertebrae in patients with vertebral compression fracture, and in the femur in patients with vertebral or femoral fracture. For hyperthyroidism, mineral content of the lumbar vertebrae was decreased in some females, but was within normal limit in males. Hyperparathyroidism and hypoparathyroidism tended to be associated with decrease and increase in mineral content, respectively. Two each patients with osteomalacia or Cushing syndrome had a decreased mineral content. In these patients, it was increased after the treatment. (N.K.).

  14. Bone mineral density and bone scintigraphy in adult Saudi female patients with Osteomalacia

    International Nuclear Information System (INIS)

    El-Desouki, Mahmoud I.; Othman, Saleh M.; Fouda, Mona A.

    2004-01-01

    This prospective study was conducted to demonstrate the role of bone mineral density (BMD) and bone scan in the management of adult Saudi female patients with established diagnosis of osteomalacia. Bone scan using Tc99m methylene diphosphate (MDP) and BMD of the lumbar spine and femoral neck using dual x-ray absorptiometry (DXA) were performed at the time of diagnosis 6 months and one year after therapy in 96 Saudi female patients attending the metabolic bone disease clinic at King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia, between January 1997 through to June 1999, aged between 20 and 73 years (mean 42 years). Alkaline phosphates, calcium and inorganic phosphorus were measured for all patients before and after treatment. 25 Hydroxy vitamin D was only measured with the first BMD measurements. A bone profile showed typical biochemical abnormalities of osteomalacia.The bone scan showed features of superscan in all patients and pseudofractures in 43 patients. BMD measures were compared with that of normal Saudi subjects matched for age and sex. The BMD was low at diagnosis and showed significant improvement after therapy. The improvement of bone density in response to therapy was more evident in lumbar spine than in femoral neck bone.Our results showed that BMD in adult Saudi female patients with osteomalacia was markedly affected probably due to specific constitutional and environmental factors ( inadeqate exercise, lack of sun exposure and lack of intake of milk and dairy products). In addition, lumbar BMD and serum calcium appeared to be better markers to monitor therapy.Bone scan helped in demonstrating disease activity, the presence of pseudofractures. (author)

  15. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children.

    Science.gov (United States)

    De Smet, Stephanie; Michels, Nathalie; Polfliet, Carolien; D'Haese, Sara; Roggen, Inge; De Henauw, Stefaan; Sioen, Isabelle

    2015-03-01

    The study's aim was to analyse whether children's bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6-12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life.

  16. Bone health measured using quantitative ultrasonography in adult males with muscular dystrophy.

    Science.gov (United States)

    Morse, C I; Smith, J; Denny, A; Tweedale, J; Searle, N D; Winwood, K; Onambele-Pearson, G L

    2016-12-14

    To compare muscle and bone health markers in adult males (aged 20-59 yrs) with and without muscular dystrophy (MD). Participants included 11 Fascioscapulohumeral (FSH), 11 Becker's (Be), 9 limb girdle (LG), 11 Duchenne (DMD), and 14 non-dystrophic controls (CTRL). Physical activity was assessed using Bone (BPAQ) and disability specific (PASIPD) questionnaires. Bone QUS provided T- and Z scores from the Distal Radius (DR) and Mid-shaft tibia (MST). Tibialis anterior cross sectional area (TA ACSA ) was measured using B-mode ultrasound. Grip strength was measured in all but DMD. Physical activity was lower in DMD, FSH and BeMD than CTRL (PPASIPD correlated with grip strength (r=0.65, P<0.01) and TA ACSA (r=0.46, P<0.01). Muscle size, strength, and bone health was lower in adult males with MD compared to adult males without MD, the extent of this is partially determined by physical activity.

  17. An in vivo technique for the measurement of bone blood flow in animals

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; DeLuca, P.M. Jr.; Pearson, D.W.; Nickles, R.J.; Lehner, C.E.; Lanphier, E.H.

    1987-01-01

    A new technique to measure the in vivo clearance of 41 Ar from the bone mineral matrix is demonstrated following fast neutron production of 41 Ar in bone via the 44 Ca(n,α) reaction at 14.1 MeV. At the end of irradiation, the 41 Ar activity is assayed with a Ge(Li) detector where sequential gamma-ray spectra are taken. Following full-energy peak integration, background and dead time correction, the activity of 41 Ar as a function of time is determined. Results indicated that the Ar washout from bone in rats using this technique was approximately 16 ml (100 ml min) -1 and in agreement with other measurement techniques. For sheep the bone perfusion in the tibia was approximately 1.9+-0.2 ml (100 ml min) -1 . (author)

  18. Improvement of adynamic bone disease after renal transplantation.

    Science.gov (United States)

    Abdallah, K A; Jorgetti, V; Pereira, R C; Reis, L M dos; Pereira, L M; Corrêa, P H S; Borelli, A; Ianhez, L E; Moysés, R M A; David-Neto, E

    2006-01-01

    Low bone remodeling and relatively low serum parathyroid hormone (PTH) levels characterize adynamic bone disease (ABD). The impact of renal transplantation (RT) on the course of ABD is unknown. We studied prospectively 13 patients with biopsy-proven ABD after RT. Bone histomorphometry and bone mineral density (BMD) measurements were performed in the 1st and 12th months after RT. Serum PTH, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and osteocalcin were measured regularly throughout the study. Serum PTH levels were slightly elevated at transplantation, normalized at the end of the third month and remained stable thereafter. Bone biopsies performed in the first month after RT revealed low bone turnover in all patients, with positive bone aluminum staining in 5. In the 12th month, second biopsies were performed on 12 patients. Bone histomorphometric dynamic parameters improved in 9 and were completely normalized in 6, whereas no bone mineralization was detected in 3 of these 12 patients. At 12 months post-RT, no bone aluminum was detected in any patient. We also found a decrease in lumbar BMD and an increase in femoral BMD. Patients suffering from ABD, even those with a reduction in PTH levels, may present partial or complete recovery of bone turnover after successful renal transplantation. However, it is not possible to positively identify the mechanisms responsible for the improvement. Identifying these mechanisms should lead to a better understanding of the physiopathology of ABD and to the development of more effective treatments.

  19. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT.

    Science.gov (United States)

    Blake, Glen M; Puri, Tanuj; Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac

    2018-02-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([ 18 F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [ 18 F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [ 18 F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [ 18 F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.

  20. Quantitative computed tomography in measurement of vertebral trabecular bone mass

    International Nuclear Information System (INIS)

    Nilsson, M.; Johnell, O.; Jonsson, K.; Redlund-Johnell, I.

    1988-01-01

    Measurement of bone mineral concentration (BMC) can be done by several modalities. Quantitative computed tomography (QCT) can be used for measurements at different sites and with different types of bone (trabecular-cortical). This study presents a modified method reducing the influence of fat. Determination of BMC was made from measurements with single-energy computed tomography (CT) of the mean Hounsfield number in the trabecular part of the L1 vertebra. The method takes into account the age-dependent composition of the trabecular part of the vertebra. As the amount of intravertebral fat increases with age, the effective atomic number for these parts decreases. This results in a non-linear calibration curve for single-energy CT. Comparison of BMC values using the non-linear calibration curve or the traditional linear calibration with those obtained with a pixel-by-pixel based electron density calculation method (theoretically better) showed results clearly in favor of the non-linear method. The material consisted of 327 patients aged 6 to 91 years, of whom 197 were considered normal. The normal data show a sharp decrease in trabecular bone after the age of 50 in women. In men a slower decrease was found. The vertebrae were larger in men than in women. (orig.)

  1. Bone mineral density and bone scintigraphy in children and adolescents with osteomalacia

    International Nuclear Information System (INIS)

    El-Desouki, M.; Al-Jurayyan, N.

    1997-01-01

    In order to demonstrate the role of bone mineral density (BMD) measurement and bone scans in the management of patients with osteomalacia, radioisotope bone scintigraphy using technetium-99m methylene diphosphonate (MDP) and BMD measurements of the lumbar spine and femur by means of dual X-ray absorptiometry (DXA) were performed at the time of diagnosis and 6 months after therapy in 26 Saudi patients (17 females and nine males). Their mean age was 13.5 years (range, 5-16). BMD measurements were compared with those of normal Saudi subjects matched for age and sex. Bone scan showed an increase in tracer uptake throughout the skeleton (''superscan'') in all children and demonstrated multiple stress fractures in eight. The mean BMD for the lumbar spine was 0.53 g/cm 2 (Z-score, -3.1) and for the femoral neck 0.55 g/cm 2 (Z-score, -2.8). Repeated bone scan and BMD after 6 months of therapy with oral vitamin D, calcium and proper sun exposure demonstrated a significant increase (P <0.001) in BMD and healing of pseudofractures. In conclusion, as a non-invasive method with minimal radiation exposure, measurements of BMD in children with osteomalacia are to be recommended in the initial assessment of the severity of osteopenia and in the follow-up to monitor the response to therapy. Bone scintigraphy is valuable in demonstrating the site and severity of stress fractures. (orig.). With 2 figs., 1 tab

  2. Bone mineral density and bone scintigraphy in children and adolescents with osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    El-Desouki, M. [College of Medicine and King Khalid University Hospital, King Saud University, Riyadh (Saudi Arabia); Al-Jurayyan, N. [College of Medicine and King Khalid University Hospital, King Saud University, Riyadh (Saudi Arabia)

    1997-02-01

    In order to demonstrate the role of bone mineral density (BMD) measurement and bone scans in the management of patients with osteomalacia, radioisotope bone scintigraphy using technetium-99m methylene diphosphonate (MDP) and BMD measurements of the lumbar spine and femur by means of dual X-ray absorptiometry (DXA) were performed at the time of diagnosis and 6 months after therapy in 26 Saudi patients (17 females and nine males). Their mean age was 13.5 years (range, 5-16). BMD measurements were compared with those of normal Saudi subjects matched for age and sex. Bone scan showed an increase in tracer uptake throughout the skeleton (``superscan``) in all children and demonstrated multiple stress fractures in eight. The mean BMD for the lumbar spine was 0.53 g/cm{sup 2}(Z-score, -3.1) and for the femoral neck 0.55 g/cm {sup 2}(Z-score, -2.8). Repeated bone scan and BMD after 6 months of therapy with oral vitamin D, calcium and proper sun exposure demonstrated a significant increase (P <0.001) in BMD and healing of pseudofractures. In conclusion, as a non-invasive method with minimal radiation exposure, measurements of BMD in children with osteomalacia are to be recommended in the initial assessment of the severity of osteopenia and in the follow-up to monitor the response to therapy. Bone scintigraphy is valuable in demonstrating the site and severity of stress fractures. (orig.). With 2 figs., 1 tab.

  3. DXA measurements in rett syndrome reveal small bones with low bone mass

    DEFF Research Database (Denmark)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine

    2011-01-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients...

  4. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    Science.gov (United States)

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  5. Pattern of alveolar bone loss and reliability of measurements with the radiographic technique

    International Nuclear Information System (INIS)

    Rise, J.; Albandar, J.M.

    1988-01-01

    The purposes of this paper were to study the pattern of bone loss among different teeth at the individual level and to study the effect of using different aggregated units of analysis on measurement error. Bone loss was assessed in standardized periapical radiographs from 293 subjects (18-68 years), and the mean bone loss score for each tooth type was calculated. These were then correlated by means of factor analysis to study the bone loss pattern. Reliability (measurement error) was studied by the internal consistency and the test-retest methods. The pattern of bone loss showed a unidimensional pattern, indicating that any tooth will work equally well as a dependent variable for epidemiologic descriptive purposes. However, a more thorough analysis also showed a multidimensional pattern in terms of four dimensions, which correspond to four tooth groups: incisors, upper premolars, lower premolars and molars. The four dimensions accounted for 80% of the toal variance. The multidimensional pattern may be important for the modeling of bone loss; thus different models may explain the four dimension (indices) used as dependent variables. The reliability (internal consistency) of the four indices was satisfactory. By the test-retest method, reliability was higher when the more aggregated unit (the individual) was used

  6. Significance of bone specific alkaline phosphatase as a tumor marker in malignant bone tumor

    International Nuclear Information System (INIS)

    Kim, Sug Jun; Jeon, Dae Geun; Huh, Kwang

    1998-01-01

    The relationship between total alkaline phosphatase activity and bone forming lesion is a well known fact. But alkaline phosphatase consist mainly of two portion (liver, bone). To clarify the exact activity of bone forming tissue, quantitative measurement of BALP is essential. Two finds of tests were performed for their feasibility as a laboratory test (wheat germ lectin vs electrophoresis). We analyzed 40 bony lesion and got 58 samples. Lectin method was simple, economic, with reliable resproducability. Owing to the small number of test sample, we could not identify the relationship between the disease activity and measured BALP level. Further collection of clinical sample and analysis the pattern of BALP on each clinical settings. (author). 8 refs

  7. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    Science.gov (United States)

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  8. Measurement of hand bone mineral content using single-photon absorptiometry

    International Nuclear Information System (INIS)

    Nicoll, J.J.; Smith, M.A.; Law, E.; Tothill, P.; Reid, D.; Brown, N.; Nuki, G.

    1987-01-01

    A single photon absorption imaging technique has been developed to assess the bone mass of the hand, especially in patients with rheumatoid arthritis or bronchial asthma. A modified rectilinear scanner images the hand by transmission scanning in a water bath with a 7.4 GBq 125 I source. A microcomputer is used to calculate the bone mineral distribution, and the total bone mineral content (BMC) of the hand is determined from that distribution. The precision (coefficient of variation) of the measurement is 1.9%. A control population of 20 men and 58 women has been studied to determine normal variations in hand bone mineral content with age, sex, body size, hand volume and years since menopause. The normal men are found to have an average hand BMC of 25.1 g with a coefficient of variation (CV) of 22%, which is reduced to 12% by normalising for body size using span. The normal women had an average hand BMC of 18.0 g +- 15%. The CV is reduced to 13% by normalising for span and years post-menopause. (author)

  9. Bone mineral density (BMD) and computer tomographic measurements of the equine proximal phalanx in correlation with breaking strength.

    Science.gov (United States)

    Tóth, P; Horváth, C; Ferencz, V; Tóth, B; Váradi, A; Szenci, O; Bodó, G

    2013-01-01

    Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.

  10. Quantitative computed tomography for measuring bone mineral content

    International Nuclear Information System (INIS)

    Felsenberg, D.; Kalender, W.A.; Banzer, D.; Schmilinsky, G.; Heyse, M.; Fischer, E.; Schneider, U.; Siemens A.G., Erlangen; Krankenhaus Zehlendorf, Berlin

    1988-01-01

    Quantitative computed tomography (QCT) for measuring bone mineral content of lumbar vertebrae is increasingly used internationally. The effect of using conventional CT (single energy CT, SE-CT) and dual energy CT (DE-CT) on reproducibility has been examined. We defined a standard measurement protocol, which automatically evaluates a calibration phantom. This should ensure an in vivo reproducibility of 1 to 2%. Reference data, which has been obtained with this protocol from 113 normal subjects, using SE-CT ad DE-CT, are presented. (orig.) [de

  11. The correlation between R2' and bone mineral measurements in human vertebrae: an in vitro study

    International Nuclear Information System (INIS)

    Brismar, T.B.; Karlsson, M.; Li, T.Q.; Ringertz, H.

    1999-01-01

    The aim of this study was to investigate whether MR imaging of trabecular bone structure using magnetic inhomogeneity measurements is related to the amount of bone mineral in human vertebrae. Weight, bone mineral content (BMC DXA ), bone mineral per area (BMA DXA ) and bone mineral density (BMD CT ) were determined in 12 defatted human lumbar vertebrae (L2-L4) by weighing, dual X-ray absorptiometry (DXA) and CT. Inhomogeneity caused by susceptibility differences between trabecular bone and surrounding water was studied with MR imaging at 1.5 T using the GESFIDE sequence. The pulse sequence determines the transverse relaxation rate R2 * and its two components, the non-reversible transverse relaxation rate (R2) and the reversible transverse relaxation rate (R2'; i. e. relaxation rate due to magnetic susceptibility) in a single scan. Voxel size was 0.9 x 1.9 x 5.0 mm. Positive significant correlations between R2' and weight, BMC DXA , BMA DXA and BMD CT were observed (r > 0.61 and p DXA and BMD CT (r > 0.66 and p DXA . Thus, R2' measurements are related to the amount of bone mineral, but they also provide information which is not obtainable from bone mineral measurements. (orig.) (orig.)

  12. Comparison of two methods for alveolar bone loss measurement in an experimental periodontal disease model in rats

    Directory of Open Access Journals (Sweden)

    Diego Nique Liberman

    2011-02-01

    Full Text Available There are many studies that evaluate possible risk factors for periodontal diseases in animals. Most of them have focused only on the biological aspects of disease occurrence; therefore, it has been difficult to compare studies of the different methodological approaches. The aim of the present study was to compare different methods - linear and area - of the evaluation of morphometrical alveolar bone loss. Sixty hemimaxillae, defleshed and stained with 1% methylene blue to delineate the cementoenamel junction and alveolar bone crest, were obtained from a previous study that induced periodontal disease by means of ligatures in two groups of fifteen Wistar rats during 9 weeks. Ligatures were placed around the right upper second molars, and the contra-lateral teeth remained as intra-group controls. Digital photographs were taken from the specimens and submitted to a single, calibrated, blind examiner who performed the morphometrical evaluation of alveolar bone loss using both linear and area methods. Mean values of linear and area measurements were obtained from each side - buccal and palatal - of the specimens. The degree of association between the two methods was determined by Pearson's Correlation Coefficient. An almost perfect association (0.98 was determined between the linear and area evaluations. A mathematical formula was subsequently created to estimate the total area of alveolar bone loss, from linear mean measurements. Both methods were suitable for detecting bone level alterations. The results of the present study allow for the transformation of data and better compilation of results from different studies.

  13. Repair of microdamage in osteonal cortical bone adjacent to bone screw.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Up to date, little is known about the repair mode of microdamage in osteonal cortical bone resulting from bone screw implantation. In this study, self-tapping titanium cortical bone screws were inserted into the tibial diaphyses of 24 adult male rabbits. The animals were sacrificed at 1 day, 2 weeks, 1 month and 2 months after surgery. Histomorphometric measurement and confocal microscopy were performed on basic fuchsin stained bone sections to examine the morphological characteristics of microdamage, bone resorption activity and spatial relationship between microdamage and bone resorption. Diffuse and linear cracks were coexisted in peri-screw bone. Intracortical bone resorption was significantly increased 2 weeks after screw installation and reach to the maximum at 1 month. There was no significant difference in bone resorption between 1-month and 2-months groups. Microdamage was significantly decreased within 1 month after surgery. Bone resorption was predisposed to occur in the region of <100 µm from the bone-screw interface, where had extensive diffuse damage mixed with linear cracks. Different patterns of resorption cavities appeared in peri-screw bone. These data suggest that 1 the complex microdamage composed of diffuse damage and linear cracks is a strong stimulator for initiating targeted bone remodeling; 2 bone resorption activities taking place on the surfaces of differently oriented Haversian and Volkmann canals work in a team for the repair of extensive microdamage; 3 targeted bone remodeling is a short-term reaction to microdamage and thereby it may not be able to remove all microdamage resulting from bone screw insertion.

  14. Study of osteoporosis through the measurement of bone mineral density and trace elements

    International Nuclear Information System (INIS)

    Aras, N.K.; Yilmaz, G.; Alkanl, S.; Korkusuz, F.; Ungan, M.; Kuscu, L.; Laleli, Y.; Eksioglu, F.; Sepici, B.; Gunel, U.

    2000-01-01

    The main purpose of this study was to establish a relation, if any, between bone mineral density, BMD, of the healthy Turkish population of the ages between 15 and 50 with social and demographic information, family history of fractures, personal and inherited characteristic, smoking and alcohol habit, history of fertility, level of physical activity, food consumption especially trace elements and other variables. Most of these relations were discussed in the last RCM in San Diego, CA, October 7-10,1996. Since then we have concentrated our work on more BMD and trace element measurements in bone. To this end, bone mineral density measurements, trace element studies, neutron activation analysis, fluoride analysis and atomic absorption analysis were undertaken and resulting data were analysed

  15. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    OpenAIRE

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). S...

  16. Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo

    Directory of Open Access Journals (Sweden)

    Stefan Grote

    2013-06-01

    Full Text Available Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (DensiProbe®. We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dual-energy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher’s Z-transformation. Moreover, linear regression analysis was carried out. The unpaired Student’s t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm2 (±0.17 g/cm2, followed by the upper neck region with 0.546 g/cm2 (±0.16 g/cm2, trochanteric region with 0.685 g/cm2 (±0.19 g/cm2 and the femoral neck with 0.813 g/cm2 (±0.2 g/cm2. Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm. Load to failure was 4050.2 N (±1586.7 N. The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001. The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001. A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing.

  17. In vivo performance of a reduced-modulus bone cement

    Science.gov (United States)

    Forehand, Brett Ramsey

    Total joint replacement has become one of the most common procedures in the area of orthopedics and is often the solution in patients with diseased or injured hip joints. Component loosening is a significant problem and is primarily caused by bone resorption at the bone-cement interface in cemented implants. It is our hypothesis that localized shear stresses are responsible for the resorption. It was previously shown analytically that local stresses at the interface could be reduced by using a cement of lower modulus. A new reduced modulus cement, polybutyl methylmethacrylate (PBMMA), was developed to test the hypothesis. PBMMA was formulated to exist as polybutyl methacrylate filler in a polymethyl methacrylate matrix. The success of PBMMA cement is based largely on the fact that the polybutyl component of the cement will be in the rubbery state at body temperature. In vitro characterization of the cement was undertaken previously and demonstrated a modulus of approximately one-eighth that of conventional bone cement, polymethyl methacrylate (PMMA) and increased fracture toughness. The purpose of this experiment was to perform an in vivo comparison of the two cements. A sheep model was selected. Total hip arthroplasty was performed on 50 ewes using either PBMMA or PMMA. Radiographs were taken at 6 month intervals. At one year, the contralateral femur of each sheep was implanted so that each animal served as its own control, and the animals were sacrificed. The stiffness of the bone-cement interface of the femoral component within the femur was assessed by applying a torque to the femoral component and demonstrated a significant difference in loosening between the cements when the specimens were tested in external rotation (p sheep had a greater amount of loosening for each subject, 59% versus 4% for standard PMMA. A radiographic analysis demonstrated more signs of loosening in the PMMA series of subjects. A brief histological examination showed similar bony

  18. Bone quality: educational tools for patients, physicians, and educators.

    Science.gov (United States)

    Shams, Junaid; Spitzer, Allison B; Kennelly, Ann M; Tosi, Laura L

    2011-08-01

    Defining bone quality remains elusive. From a patient perspective bone quality can best be defined as an individual's likelihood of sustaining a fracture. Fracture risk indicators and performance measures can help clinicians better understand individual fracture risk. Educational resources such as the Web can help clinicians and patients better understand fracture risk, communicate effectively, and make decisions concerning diagnosis and treatment. We examined four questions: What tools can be used to identify individuals at high risk for fracture? What clinical performance measures are available? What strategies can help ensure that patients at risk for fracture are identified? What are some authoritative Web sites for educating providers and patients about bone quality? Using Google, PUBMED, and trademark names, we reviewed the literature using the terms "bone quality" and "osteoporosis education." Web site legitimacy was evaluated using specific criteria. Educational Web sites were limited to English-language sites sponsored by nonprofit organizations The Fracture Risk Assessment Tool® (FRAX®) and the Fracture Risk Calculator (FRC) are reliable means of assessing fracture risk. Performance measures relating to bone health were developed by the AMA convened Physician Consortium for Performance Improvement® and are included in the Physician Quality Reporting Initiative. In addition, quality measures have been developed by the Joint Commission. Strategies for identifying individuals at risk include designating responsibility for case finding and intervention, evaluating secondary causes of osteoporosis, educating patients and providers, performing cost-effectiveness evaluation, and using information technology. An abundance of authoritative educational Web sites exists for providers and patients. Effective clinical indicators, performance measures, and educational tools to better understand and identify fracture risk are now available. The next challenge is to

  19. Dual photon absorptiometry for bone mineral measurements using a gamma camera

    International Nuclear Information System (INIS)

    Valkema, R.; Prpic, H.; Blokland, J.A.K.; Camps, J.A.J.; Papapoulos, S.E.; Bijvoet, O.L.M.; Pauwels, E.K.J.

    1994-01-01

    A gamma camera was equipped with a special collimator and arm assembly for bone mineral measurements with dual photon absorptiometry (DPA). The system was evaluated in vitro and in vivo and compared both with a rectilinear DPA and a dual energy X-ray (DEXA) system. All 3 systems showed a linear response in measurements of 4 vials, containing different amounts of hydroxyapatite. Phantom measurements with the gamma camera system showed a precision of 1.6% to 2.8%. Results obtained in 8 healthy volunteers with rectilinear and gamma camera systems were well correlated (R 2 = 0.78). With the photon beam directed from posterior to anterior, the separation of vertebrae was easy with the gamma camera system. We conclude that bone mineral measurements can be made with a gamma camera for assessment of fracture risk and in the decision process whether a patient needs treatment or not. For follow-up, the precision of DPA with a gamma camera is inadequate. (orig.)

  20. Application of Measurements of Serum CA15-3 and B-AKP in Diagnosis of Bone Metastasis in Patients with Post-operative Mammary Cancer

    International Nuclear Information System (INIS)

    Liu Yan; Zhang Xia; Yuan Shiqiang

    2010-01-01

    To evaluate the diagnosis value of serum CA15-3 and B-AKP measurements in diagnosis of bone metastasis images in patients with post-operative mammary cancer, retrospective study on the bone scan images and serum CA15-3 and bone alkaline phosphatase (B-AKP) levels were performed in 92 patients with confirmed post-operative mammary gland cancer. The results showed that the serum levels of CA15-3 and B-AKP were increased step by step significantly along with the advancement of bone metastatic grading from M0 to M3 (P<0.01). The serum levels of CA15-3 and B-AKP were positively correlated with the number of bone metastasis. The positive rate of bone metastasis was 63.2% with serum CA15-3 more than 25U/mL; and the negative predictive value of bone metastasis was 94.5% with serum CA15-3 less than 25U/mL. The positive rate of bone metastasis was 59.6% with serum B-AKP levels more than 20U/L; and the negative predictive value of bone metastasis was 73.5% with serum B-AKP levels less than 20U/L. The negative predictive value of bone metastasis was 100% with serum CA15-3 less than 25U/mL and serum B-AKP levels less than 20U/L. The combined measurement of the serum CA15-3 and B-AKP levels would play an important role in diagnosis of bone scan images in patients with post-operative mammary cancer. (authors)

  1. Effect of cisplatin on bone transport osteogenesis in dogs.

    Science.gov (United States)

    Ehrhart, Nicole; Eurell, Jo Ann C; Tommasini, Matteo; Constable, Peter D; Johnson, Ann L; Feretti, Antonio

    2002-05-01

    To document effects of cisplatin on regenerate bone formation during the distraction and consolidation phases of bone transport osteogenesis. 10 skeletally mature hounds. Bone transport osteogenesis was performed to reconstruct a 3-cm defect in the radius of each dog. Five dogs were randomly selected to receive cisplatin (70 mg/m2, IV, q 21 d for 4 cycles), and 5 were administered saline (0.9% NaCl) solution. Bone mineral density was measured by use of dual-energy x-ray absorptiometry (DEXA) on days 24, 55, and 90 after surgery. Dogs were euthanatized 90 days after surgery. Histomorphometry was performed on nondecalcified sections of regenerate bone. Bone mineral density and histomorphometric indices of newly formed bone were compared between groups. Densitometric differences in regenerate bone mineral density were not detected between groups at any time period. Cisplatin-treated dogs had decreased mineralized bone volume, decreased percentage of woven bone volume, decreased percentage of osteoblast-covered bone, increased porosity, and increased percentage of osteoblast-covered surfaces, compared with values for control dogs. Lamellar bone volume and osteoid volume did not differ significantly between groups. Regenerate bone will form and remodel during administration of cisplatin. Results of histomorphometric analysis suggest that bone formation and resorption may be uncoupled in cisplatin-treated regenerate bone as a result of increased osteoclast activity or delayed secondary bone formation during remodeling. These histomorphometric differences were modest in magnitude and did not result in clinically observable complications or decreased bone mineral density as measured by use of DEXA.

  2. Measurement of bone mineral contents in Pakistan by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Hashmi, R.

    1990-01-01

    Vertebral bone mineral content (BMC) was measured with dual photon absorptiometry in 144 normal males and 219 females (ages 11-85 years), 118 patients of hyperthyroidism, 7 of chronic renal failure and 5 each of postmenopausal osteoporosis and primary hyperparathyroidism. Generally males had higher BMC than females. Pattern of age related bone gain and diminution was same in both sexes but the rate of bone loss differed significantly, females having higher rate of bone loss. When compared to Western population lower BMC values in our normals were seen. However, rate of bone loss in our population was lower than that reported in the west. BMC values in patients suffering from hyperthyroidism and chronic renal failure were not significantly different that of age matched normals. The small numbers of cases of post menopausal osteoporosis and hyperpara- thyroidism, tough precluding any generalization, did show lower BMC values. Lower BMC values in our normal population could possibly be explained on racial ground. But in spite of less than ideal dietary status in our normal population in general, the lower rate of bone loss and a lower incidence of osteoporosis in hyperthyroid and chronic renal failure cases can raise the possibility of active vitamin D metabolism component, triggered by utraviolet radiation, having an overall beneficiary effect on the calcium cycle. This calls for a more comprehensive workup. (author)

  3. Molt performance and bone density of cortical, medullary, and cancellous bone in laying hens during feed restriction or alfalfa-based feed molt.

    Science.gov (United States)

    Kim, W K; Donalson, L M; Bloomfield, S A; Hogan, H A; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-09-01

    A study was conducted to evaluate the effects of alfalfa-based molt diets on molting performance and bone qualities. A total of 36 Single Comb White Leghorn hens were used for the study. There were 6 treatments: pretrial control (PC), fully fed (FF), feed withdrawal (FW), 90% alfalfa:10% layer ration (A90), 80% alfalfa:20% layer ration (A80), and 70% alfalfa:30% layer ration (A70). For the PC treatment, hens were euthanized by CO(2) gas, and bones were collected before molt was initiated. At the end of the 9-d molt period, hens were euthanized, and femurs and tibias were collected to evaluate bone qualities by peripheral quantitative computed tomography, mechanical testing, and conventional ash weights. The hens fed alfalfa-based molt diets and FW stopped laying eggs within 5 d after molt started, and all hens in these groups had reduced ovary weights compared with those of the FF hens. In the FW and A90 groups, total femur volumetric bone mineral densities (vBMD) at the midshaft were significantly lower, but those of the A80 and A70 groups were not significantly different from the values for the PC and FF hens. In cortical bone density, the midshaft tibial vBMD were significantly higher for FF and A70 hens than for PC hens. The medullary bone densities at the midshaft femur or tibia of the FW, A90, A80, and A70 hens were reduced compared with those of the PC hens. Femur cancellous densities at the distal femur for the FW and A90 hens were significantly reduced compared with those of the PC and FF hens. The FW, A80, and A70 hens yielded significantly higher elastic moduli, and the A80 hens had higher ultimate stress compared with the PC hens, suggesting that the mechanical integrity of the midshaft bone was maintained even though the medullary vBMD was reduced. These results suggest that alfalfa-based molt diets exhibit molt performance similar to FW, that medullary and cancellous bones are labile bone compartments during molting, and that alfalfa-based molt diets

  4. Objectively measured physical activity and bone strength in 9-year-old boys and girls.

    Science.gov (United States)

    Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf

    2008-09-01

    The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any

  5. Effects of soy protein isolate on bone mineral density and physical performance indices in postmenopausal women--a 2-year randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Vupadhyayula, Phani M; Gallagher, J C; Templin, Thomas; Logsdon, Susannah M; Smith, Lynette M

    2009-01-01

    Postmenopausal decreases in body composition, physical performance, and bone mass have been shown to be reversed by estrogen, but given the concerns regarding its use, women are looking for alternatives such as soy isoflavones. Most studies on the effects of soy on bone mineral density (BMD) in postmenopausal women have been short-term, that is, 3 to 6 months, and failed to provide conclusive evidence. There is no evidence of its effects on physical performance. The aim of the present study was to investigate the effects of soy plus isoflavones on BMD and physical performance in postmenopausal women. This was a 2-year randomized controlled trial. A total of 203 healthy postmenopausal women were given either 25 g of soy protein without isoflavones, 25 g of soy protein with 90 mg of isoflavones, or 25 g of milk protein (casein and whey) as a control agent for 24 months. Women were followed every 6 months with BMD and physical performance measurements for 2 years. Primary analysis was intent-to-treat analysis. Analysis of variance, chi and Fisher's exact tests, and analysis of covariance were used. There was a significant decrease in the BMD of the lumbar spine and femoral neck in those who completed the study in all groups. Soy isoflavones prevented major bone loss from baseline at the femoral trochanter with no between-group significance. Physical performance measurements decreased in all the groups. : Twenty-five grams of soy protein with 90 mg of isoflavones has no added benefit in preventing bone loss or improving physical performance.

  6. Performance of Er:YAG laser ablation of hard bone under different irrigation water cooling conditions

    Science.gov (United States)

    Beltrán Bernal, Lina M.; Shayeganrad, Gholamreza; Kosa, Gabor; Zelechowski, Marek; Rauter, Georg; Friederich, Niklaus; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.

  7. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Laib, A.; Koller, B.

    2005-01-01

    Stereology applied on histological sections is the 'gold standard' for obtaining quantitative information on cancellous bone structure. Recent advances in micro computed tomography (microCT) have made it possible to acquire three-dimensional (3D) data non-destructively. However, before the 3D...... methods can be used as a substitute for the current 'gold standard' they have to be verified against the existing standard. The aim of this study was to compare bone structural measures obtained from 3D microCT data sets with those obtained by stereology performed on conventional histological sections...... tibial metaphysis. The biopsies were embedded in methylmetacrylate before microCT scanning in a Scanco microCT 40 scanner at a resolution of 20 x 20 x 20 microm3, and the 3D data sets were analysed with a computer program. After microCT scanning, 16 sections were cut from the central 2 mm of each biopsy...

  8. Electron spin resonance (ESR dose measurement in bone of Hiroshima A-bomb victim.

    Directory of Open Access Journals (Sweden)

    Angela Kinoshita

    Full Text Available Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims' bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR. In 1973, one of the authors of the present study (SM traveled to Japan and conducted a preliminary experiment on the victims' bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles.

  9. Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim

    Science.gov (United States)

    2018-01-01

    Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims’ bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims’ bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles. PMID:29408890

  10. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass; Trabekulaere Knochendichte der Lendenwirbelsaeule bei Kindern und Jugendlichen in der quantitativen CT: Referenzwerte und Peak Bone Mass

    Energy Technology Data Exchange (ETDEWEB)

    Berthold, L.D.; Alzen, G. [Kinderradiologie, Zentrum fuer Radiologie, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany); Haras, G. [Siemens AG, Medical Solutions, Forchheim (Germany); Mann, M. [AG Medizinische Statistik, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany)

    2006-12-15

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  11. Measurement of vertebral bone marrow lipid profile at 1.5-T proton magnetic resonance spectroscopy and bone mineral density at dual-energy X-ray absorptiometry: correlation in a swine model

    Energy Technology Data Exchange (ETDEWEB)

    Di Leo, Giovanni; Fina, Laura [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milan (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-15

    Bone marrow is mainly composed of red (hematopoietic) and yellow (fatty) components. Soon after the birth there is a physiological conversion of the bone marrow from red to yellow, so that the percentage of hematopoietic cells and adipocytes changes with aging. Although bone marrow adipogenesis is a physiologic process involving all mammals, recent studies showed an accelerated marrow adipogenesis associated with several chronic conditions, including osteoporosis [4] and diabetes mellitus. Moreover, this increased marrow fat is accompanied by a decrease in bone density. Marrow fat is therefore increasingly believed to influence the bone microenvironment. Diagnostic tools for quantitative measurement of bone marrow fat and bone mineral density (BMD) include proton magnetic resonance spectroscopy (MRS) and dual-energy Xray absorptiometry (DXA), respectively. Using MRS, an inverse relationship between vertebral bone marrow fat content and lumbar BMD has been demonstrated in patients affected with osteoporosis or with diabetes mellitus. In most studies, a quite standard MRS sequence has been used, with short echo times (TE) for the measurement of the bulk methylene. In this study we sought to optimize the MRS sequence in order to try to measure other fat components of the vertebral bone marrow at 1.5 T. For this purpose, we used an animal model that allowed long acquisition times and repeated measures. Moreover, we aimed at estimating in this model the relationship between vertebral bone marrow fat content at proton MRS and BMD at DXA.

  12. Measurement of vertebral bone marrow lipid profile at 1.5-T proton magnetic resonance spectroscopy and bone mineral density at dual-energy X-ray absorptiometry: correlation in a swine model

    International Nuclear Information System (INIS)

    Di Leo, Giovanni; Fina, Laura; Bandirali, Michele; Messina, Carmelo; Sardanelli, Francesco

    2014-01-01

    Bone marrow is mainly composed of red (hematopoietic) and yellow (fatty) components. Soon after the birth there is a physiological conversion of the bone marrow from red to yellow, so that the percentage of hematopoietic cells and adipocytes changes with aging. Although bone marrow adipogenesis is a physiologic process involving all mammals, recent studies showed an accelerated marrow adipogenesis associated with several chronic conditions, including osteoporosis [4] and diabetes mellitus. Moreover, this increased marrow fat is accompanied by a decrease in bone density. Marrow fat is therefore increasingly believed to influence the bone microenvironment. Diagnostic tools for quantitative measurement of bone marrow fat and bone mineral density (BMD) include proton magnetic resonance spectroscopy (MRS) and dual-energy Xray absorptiometry (DXA), respectively. Using MRS, an inverse relationship between vertebral bone marrow fat content and lumbar BMD has been demonstrated in patients affected with osteoporosis or with diabetes mellitus. In most studies, a quite standard MRS sequence has been used, with short echo times (TE) for the measurement of the bulk methylene. In this study we sought to optimize the MRS sequence in order to try to measure other fat components of the vertebral bone marrow at 1.5 T. For this purpose, we used an animal model that allowed long acquisition times and repeated measures. Moreover, we aimed at estimating in this model the relationship between vertebral bone marrow fat content at proton MRS and BMD at DXA.

  13. Application of a novel bone osteotomy plate leads to reduction in heat-induced bone tissue necrosis in sheep.

    Science.gov (United States)

    Bekić, Marijo; Davila, Slavko; Hrskanović, Mato; Bekić, Marijana; Seiwerth, Sven; Erdeljić, Viktorija; Capak, Darko; Butković, Vladimir

    2008-12-01

    Previous studies have shown substantial effect thermal damage can have on new bone formation following osteotomy. In this study we evaluated the extent of thermal damage which occurs in four different methods of osteotomy and the effects it can have on bone healing. We further wanted to test whether a special osteotomy plate we constructed can lead to diminished heat generation during osteotomy and enhanced bone healing. The four methods evaluated included osteotomy performed by chisel, a newly constructed osteotomy plate, Gigly and oscillating saw. Twelve adult sheep underwent osteotomy performed on both tibiae. Bone fragments were stabilized using a fixation plate. Callus size was assessed using standard radiographs. Densitometry and histological evaluation were performed at 8 weeks following osteotomy. Temperature measurements were performed both in vivo during the operation, and ex vivo on explanted tibiae. The defects healed without complications and showed typical course of secondary fracture healing with callus ingrowth into the osteotomy gap. Radiographic examination of bone healing showed a tendency towards more callus formation in bones osteotomized using Gigly and oscillating saw, but this difference lacked significance. Use of Gigly and oscillating saw elicited much higher temperatures at the bone cortex surface, which subsequently lead to slightly impaired bone healing according to histological analysis. BMD was equal among all bones. In conclusion, the time required for complete healing of the defect differed depended greatly on the instruments used. The newly constructed osteotomy plate showed best results based on histological findings of capillary and osteoblast density.

  14. Limited Associations between Keel Bone Damage and Bone Properties Measured with Computer Tomography, Three-Point Bending Test, and Analysis of Minerals in Swiss Laying Hens

    Directory of Open Access Journals (Sweden)

    Sabine G. Gebhardt-Henrich

    2017-08-01

    Full Text Available Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far whether bone quality relates to keel bone damage. The goal of the present study was to detect possible associations between keel bone damage and bone properties of intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing systems. Bones were palpated and examined by peripheral quantitative computer tomography (PQCT, a three-point bending test, and analyses of bone ash. Contrary to our expectations, PQCT revealed higher cortical and trabecular contents in fractured than in intact keel bones. This might be due to structural bone repair after fractures. Density measurements of cortical and trabecular tissues of keel bones did not differ between individuals with and without fractures. In the three-point bending test of the tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral and calcium contents of the keel bone than birds with fractured keel bones. Calcium content in keel bones was correlated with calcium content in tibias. Although there were some associations between bone traits related to bone strength and keel bone damage, other factors such as stochastic events related to housing such as falls and collisions seem to be at least as important for the prevalence of keel bone damage.

  15. The measurement of gonadal and bone-marrow doses from dental radiography

    International Nuclear Information System (INIS)

    Solomon, S.B.; Morris, N.D.

    1980-06-01

    The method of calculation of the radiation doses to the gonads and to the active bone marrow arising from dental radiography is described. The bone-marrow doses have been calculated using a computer model of X-ray depth doses within the skull for typical dental radiographic examinations as performed in Australia. The ovarian and testicular doses, as a percentage of skin dose have been determined experimentally. The dependence of the gonadal doses on X-ray tube voltage, face to cone distance and direction of the X-ray beam relative to the face is detailed

  16. Evolutionary Patterns of Bone Histology and Bone Compactness in Xenarthran Mammal Long Bones

    OpenAIRE

    Straehl, Fiona; Scheyer, Torsten; Forasiepi, Analia Marta; Macphee, Ross; Sanchez-Villagra, Marcelo

    2015-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xen...

  17. Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity

    DEFF Research Database (Denmark)

    Saparin, Peter I.; Thomsen, Jesper Skovhus; Prohaska, Steffen

    2005-01-01

    3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify...

  18. Direct measurement of local oxygen concentration in the bone marrow of live animals

    Science.gov (United States)

    Spencer, Joel A.; Ferraro, Francesca; Roussakis, Emmanuel; Klein, Alyssa; Wu, Juwell; Runnels, Judith M.; Zaher, Walid; Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Yusuf, Rushdia; Côté, Daniel; Vinogradov, Sergei A.; Scadden, David T.; Lin, Charles P.

    2014-04-01

    Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.

  19. Influence of Contrast Media on Bone Mineral Density (BMD) Measurements from Routine Contrast-Enhanced MDCT Datasets using a Phantom-less BMD Measurement Tool.

    Science.gov (United States)

    Toelly, Andrea; Bardach, Constanze; Weber, Michael; Gong, Rui; Lai, Yanbo; Wang, Pei; Guo, Yulin; Kirschke, Jan; Baum, Thomas; Gruber, Michael

    2017-06-01

    Aim  To evaluate the differences in phantom-less bone mineral density (BMD) measurements in contrast-enhanced routine MDCT scans at different contrast phases, and to develop an algorithm for calculating a reliable BMD value. Materials and Methods  112 postmenopausal women from the age of 40 to 77 years (mean age: 57.31 years; SD 9.61) who underwent a clinically indicated MDCT scan, consisting of an unenhanced, an arterial, and a venous phase, were included. A retrospective analysis of the BMD values of the Th12 to L4 vertebrae in each phase was performed using a commercially available phantom-less measurement tool. Results  The mean BMD value in the unenhanced MDCT scans was 79.76 mg/cm³ (SD 31.20), in the arterial phase it was 85.09 mg/cm³ (SD 31.61), and in the venous phase it was 86.18 mg/cm³ (SD 31.30). A significant difference (p Influence of Contrast Media on Bone Mineral Density (BMD) Measurements from Routine Contrast-Enhanced MDCT Datasets using a Phantom-less BMD Measurement Tool. Fortschr Röntgenstr 2017; 189: 537 - 543. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Assessment of bone mineral content in the internal bone volume

    International Nuclear Information System (INIS)

    Hoeiseth, A.; Alho, A.; Husby, T.; Ullevaal Sykehus, Oslo

    1991-01-01

    A method for assessing values related to bone density and mass is described. Mean attenuation and pixel area are measured in pixels selected on the basis of CT units. The method is to a large extent computerized and not dependent on manual positioning or outlining of a region of interest. Because it is not dependent on a comparatively large volume of homogeneous bone it can be used to make assessments even in very heterogeneous bones including cortical bone. The method is adaptable for measurement in all parts of the skeleton and values related to both bone density (DRV) and bone mass (MRV) are derived. The measurements in the femoral condyles were shown to have a precision of approximately 0.25 to 0.30 Z-score units (standard deviation of the measurements expressed in Z-score units). The agreement between chemically analyzed calcium density (weight of calcium per volume) and DRV was little less than 0.50 Z-scores and 0.30 Z-scores for the chemically determined calcium mass and the MRV. The agreement with mechanical bone strength was 0.78 Z-scores for DRV and 0.64 for the MRV. Altering scan parameters or measuring approaches gave systematic differences in the measurements. There were, however, good linear correlations between the measurements which show that these different measuring approaches essentially gave identical measurements. (orig.)

  1. Measurement of trace cadmium and elements in bone by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Dowlati, R.; Jervis, R.E.

    1991-01-01

    Epithermal neutron activation analysis (ENAA) was applied to measure quantitatively Cd and other elements in bone samples from control and Cd-fed rats. This method was found to be non-destructive to the bone samples, with no sign of 'radiolytic charring' and was sensitive enough to detect and quantify Cd in bone samples at normal levels for mammals (viz. 0.5-1.0 μg/g) and higher. Two different thermal neutron shield materials were utilized, namely cadmium and boron. The boron shield resulted in a 27% improvement in the detection limit of Cd in bone. The accuracy of ENAA for Cd was assessed by intercomparison with electrothermal atomic absorption spectrophotometry (ETAAS), and the results in fair agreement (±23%) with those from ENAA

  2. Design of a phantom equivalent to measure bone-fluorine in a human's hand via delayed neutron activation analysis

    International Nuclear Information System (INIS)

    Mostafaei, F; McNeill, F E; Chettle, D R; Prestwich, W V; Inskip, M

    2013-01-01

    Fluorine is an element that can be either beneficial or harmful, depending on the total amount accumulated in the teeth or bones. In our laboratory, we have developed a non-invasive technique for the in vivo measurement of fluoride in bone using neutron activation analysis and performed the first pilot human study. Fluoride in humans is quantified by comparing the γ-ray signal from a person to the γ-ray signal obtained from appropriate anthropomorphic calibration phantoms. An identified problem with existing fluoride phantoms is contamination with aluminum. Aluminum creates an interfering γ-ray signal which, although it can be subtracted out, increases the uncertainty in the measurement and worsens the detection limit. This paper outlines a series of studies undertaken to develop a better calibration phantom for fluorine measurement, which does not have aluminum contamination. (paper)

  3. Error analysis: How precise is fused deposition modeling in fabrication of bone models in comparison to the parent bones?

    Directory of Open Access Journals (Sweden)

    M V Reddy

    2018-01-01

    Full Text Available Background: Rapid prototyping (RP is used widely in dental and faciomaxillary surgery with anecdotal uses in orthopedics. The purview of RP in orthopedics is vast. However, there is no error analysis reported in the literature on bone models generated using office-based RP. This study evaluates the accuracy of fused deposition modeling (FDM using standard tessellation language (STL files and errors generated during the fabrication of bone models. Materials and Methods: Nine dry bones were selected and were computed tomography (CT scanned. STL files were procured from the CT scans and three-dimensional (3D models of the bones were printed using our in-house FDM based 3D printer using Acrylonitrile Butadiene Styrene (ABS filament. Measurements were made on the bone and 3D models according to data collection procedures for forensic skeletal material. Statistical analysis was performed to establish interobserver co-relation for measurements on dry bones and the 3D bone models. Statistical analysis was performed using SPSS version 13.0 software to analyze the collected data. Results: The inter-observer reliability was established using intra-class coefficient for both the dry bones and the 3D models. The mean of absolute difference is 0.4 that is very minimal. The 3D models are comparable to the dry bones. Conclusions: STL file dependent FDM using ABS material produces near-anatomical 3D models. The high 3D accuracy hold a promise in the clinical scenario for preoperative planning, mock surgery, and choice of implants and prostheses, especially in complicated acetabular trauma and complex hip surgeries.

  4. Error Analysis: How Precise is Fused Deposition Modeling in Fabrication of Bone Models in Comparison to the Parent Bones?

    Science.gov (United States)

    Reddy, M V; Eachempati, Krishnakiran; Gurava Reddy, A V; Mugalur, Aakash

    2018-01-01

    Rapid prototyping (RP) is used widely in dental and faciomaxillary surgery with anecdotal uses in orthopedics. The purview of RP in orthopedics is vast. However, there is no error analysis reported in the literature on bone models generated using office-based RP. This study evaluates the accuracy of fused deposition modeling (FDM) using standard tessellation language (STL) files and errors generated during the fabrication of bone models. Nine dry bones were selected and were computed tomography (CT) scanned. STL files were procured from the CT scans and three-dimensional (3D) models of the bones were printed using our in-house FDM based 3D printer using Acrylonitrile Butadiene Styrene (ABS) filament. Measurements were made on the bone and 3D models according to data collection procedures for forensic skeletal material. Statistical analysis was performed to establish interobserver co-relation for measurements on dry bones and the 3D bone models. Statistical analysis was performed using SPSS version 13.0 software to analyze the collected data. The inter-observer reliability was established using intra-class coefficient for both the dry bones and the 3D models. The mean of absolute difference is 0.4 that is very minimal. The 3D models are comparable to the dry bones. STL file dependent FDM using ABS material produces near-anatomical 3D models. The high 3D accuracy hold a promise in the clinical scenario for preoperative planning, mock surgery, and choice of implants and prostheses, especially in complicated acetabular trauma and complex hip surgeries.

  5. Bone densitometry by gamma ray attenuation measurement. Development of an apparatus for use on medullary casualties

    International Nuclear Information System (INIS)

    Berard, E.J.-J.

    1975-01-01

    We proposed to follow changes in the bone mineral content of medullary damage cases by measuring the attenuation of a monoenergetic gamma ray according to the Cameron and Sorenson technique. Apart from their high cost, existing instruments are not designed for this bedside observation of patients. Our aim was therefore to design and develop an easily portable, inexpensive apparatus. The γ radiation is supplied by a sealed 125 I source fitted with a narrow collimator. The battery-operated scintillation detector is that used to detect post-operative phlebites after injection of radio-fibrinogen. The source-detector unit can move to allow a transverse bone mineral content measurement. Data from the detector are processed electronically and the results given: - either graphically on a tracing board which gives an area proportional to the bone mineral content, - or numerically by means of an integrator computing this area and supplying the linear bone density directly. Experiments carried out in vivo showed the apparatus to be sensitive and the measurements reproducible, the results obtained being comparable with those of other authors. Using pieces of embalmed bone moreover an excellent correlation was observed between the bone mineral content obtained after incineration and the results displayed by our apparatus, which can therefore be calibrated [fr

  6. Photoacoustic and ultrasound characterization of bone composition

    Science.gov (United States)

    Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas

    2015-02-01

    This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.

  7. Secondary Hyperparathyroidism and Bone Turnover in Elderly with Bone Loss - Original Investigation

    Directory of Open Access Journals (Sweden)

    Nurdan Peker

    2006-12-01

    Full Text Available Bone loss is common in the elderly. Parathyroid hormone (PTH, which regulates serum calcium levels,calcitonin and vitamin D metabolites have various effects on skeletal system. The aim of this study was to assess secondary hyperparathyroidism (HPTH and bone turnover in elderly with bone loss. Fifty-five patients (9 men,46 women older than 65 years with bone loss were included in the study. Bone mineral density was measured by dual energy x-ray absorptiomety (DXA at L1-4 vertebrae and proximal femur regions. Patients with T scores <-1.5 at one of the measurement sites were included in the study. Study subjects were assessed in terms of fracture history, sunbathing and walking activity. Routine biochemical tests, serum osteocalcin (OC and C-telopeptide type 1 collagen (CTX and lateral thoracal and lumbar vertebrae radyographic evaluation was performed. Our results showed that 70.9% of the patients had HPTH. Total femur BMD values and femur neck T scores were significantly lower in HPTH group than PTH normal one (p=0.05, p=0.03. Serum OC and CTX levels were higher in both groups. There was a negative correlation with femur neck BMD and CTX (r=0,321. There was no correlation between serum PTH levels and lumbar vertebrae and proximal femur BMD values. Serum PTH and alkaline phosphatase levels showed a significant positive correlation. In conclusion secondary HPTH and increased bone turnover is common elderly with bone loss. Adequate calcium and vitamin D intake is important the older people. (Osteoporoz Dünyasından 2006; 12: 70-3

  8. Measuring the stopping power of α particles in compact bone for BNCT

    Science.gov (United States)

    Provenzano, L.; Rodríguez, L. M.; Fregenal, D.; Bernardi, G.; Olivares, C.; Altieri, S.; Bortolussi, S.; González, S. J.

    2015-01-01

    The stopping power of α particles in thin films of decalcified sheep femur, in the range of 1.5 to 5.0 MeV incident energy, was measured by transmission of a backscattered beam from a heavy target. Additionally, the film elemental composition was determined by Rutherford Backscattering Spectrometry (RBS). These data will be used to measure boron concentration in thin films of bone using a spectrometry technique developed by the University of Pavia, since the concentration ratio between healthy tissue and tumor is of fundamental importance in Boron Neutron Capture Therapy (BNCT). The present experimental data are compared with numerical simulation results and with tabulated stopping power data of non-decalcified human bone.

  9. EFFECTS OF RUN TRAINING ON BONE DEVELOPMENT AND BONE MINERALIZATION IN GROWING MICE

    Directory of Open Access Journals (Sweden)

    B Gönül

    2011-06-01

    Full Text Available We planned to study the body weights, bone sizes and bone mineral (Ca, Mg, Zn contents of growing mice subjected to treadmill training. Twelve 4-week-old male Swiss Albino mice were divided into sedentary and exercise groups. The mice were trained by running exercise on a flat bed treadmill with 15 m/min, 30 min/day motion, throughout 5 days per week, for 12 weeks. The body weight of animals, and length, fat-free dry weight and Ca, Mg, and Zn contents of bones were measured in both groups. Body weights of animals, and lengths and wet and dry weights of the femur and the tibia were significantly higher in the exercised group. Also, the Zn, Mg and Ca mineral contents of bones in the group that underwent exercise were higher than in the other group. Running exercise with a flat bed treadmill performed by the growing mice is an effective exercise mode, especially for bone morphology.

  10. Age- and sex-related bone uptake of Tc-99m-HDP measured by whole-body bone scanning

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, W.; Sieweke, N.; Kampen, W.U.; Zuhayra, M.; Henze, E. [Klinik fuer Nuklearmedizin, Univ. Kiel (Germany); Bohuslavizki, K.H.; Clausen, M. [Abt. Nuklearmedizin, Universitaetskrankenhaus Eppendorf, Hamburg (Germany)

    2000-08-01

    Aim of this study was to validate a recently introduced new and easy-to-perform method for quantifying bone uptake of Tc-99m-labelled diphosphonate in a routine clinical setting and to establish a normal data base for bone uptake depending on age and gender. Methods: In 49 women (14-79 years) and 47 men (6-89 years) with normal bone scans as well as in 49 women (33-81 years) and 37 men (27-88 years) with metastatic bone disease whole-body bone scans were acquired at 3 min and 3-4 hours p.i. to calculate bone uptake after correction for both urinary excretion and soft tissue retention. Results: Bone uptake values of various age-related subgroups showed no significant differences between men and women (p>0.05). Furthermore, no differences could be proven between age-matched subgroups of normals and patients with less than 10 metastatic bone lesions, while patients with wide-spread bone metastases revealed significantly increased uptake values. In both men and women highest bone uptake was obtained (p<0.05) in subjects younger than 20 years with active epiphyseal growth plates. In men, bone uptake slowly decreased with age up to 60 years and then showed a tendency towards increasing uptake values. In women, the mean uptake reached a minimum in the decade 20-29 years and then slowly increased with a positive linear correlation of age and uptake in subjects older than 55 years (r=0.57). Conclusion: Since the results proposed in this study are in good agreement with data from literature, the new method used for quantification could be validated in a large number of patients. Furthermore, age- and sex-related normal bone uptake values of Tc-99m-HDP covering a wide range of age could be presented for this method as a basis for further studies on bone uptake. (orig.) [German] Ziel dieser Studie war die Validierung einer von uns neu entwickelten einfachen Methode zur Quantifizierung des Skelettuptake von Tc-99m-HDP im Rahmen der klinischen Routineanwendung und die Erstellung

  11. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    International Nuclear Information System (INIS)

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-01-01

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm 3 , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm 3 , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm 3 ) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm 3 and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0.05, Tukey's HSD

  12. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  13. Precision of bone densitometry measurements: When is change true change and does it vary across bone density values?

    International Nuclear Information System (INIS)

    Wong, J.C.H.; Griffiths, M.R.

    2003-01-01

    The precision error of the bone densitometer is used to interpret significant change in bone mineral density (BMD) in serial studies. The precision error can be expressed as standard deviation (SD) or coefficient of variation (CV). The aims of this study are to determine the precision error over a range of BMD values and to demonstrate the application of the precision error in clinical practice. A bone phantom was used consisting of a perspex block with eight compartments containing varying amounts of hydroxyapatite powder to simulate a range of bone densities. The block was scanned 21 times and manual regions placed over each compartment to measure the BMD in each compartment. There were no significant differences in the variances or SD for all eight compartments, that is, over the range of BMD normally encountered in clinical practice. However, the calculated CV show a progressive fall in values as the BMD rises. Therefore, the SD should be used to calculate significant BMD change. In a practise with quality control procedures in place to detect calibration drift and with appropriately trained personnel, a change of approximately 0.05 g/cm 2 is generally regarded as being a significant change at a 95% confidence level. Copyright (2003) Blackwell Science Pty Ltd

  14. Quantitation of specific myeloid cells in rat bone marrow measured by in vitro /sup 35/S-sulphate incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A F; Rose, M S

    1984-08-01

    A biochemical measurement which can be used for quantitation of specific early myeloid cells in rat bone marrow has been developed. This measurement consists of a rapid, simple assay for the in vitro quantitation of /sup 35/S-sulfate incorporation into rat bone marrow cells. Incubation of bone marrow cells with /sup 35/S-sulfate led to a time-dependent increase in radioactivity obtained in perchloric acid insoluble fractions of bone marrow cell suspensions. This incorporation was inhibited by cyanide and puromycin. Autoradiography has demonstrated the radiolabel to be specifically associated with immature cells of the myeloid series. The cells most active in this respect were eosinophils. When rats were treated with endotoxin, the rate of /sup 35/S-sulfate incorporation was increased. Cell number measurements, using conventional histopathology and a Coulter Counter, demonstrated that endotoxin caused an initial release of mature granulocytes from the bone marrow. The regeneration of this mature population in the marrow was rapid, and was characterized by an increase in the number of immature cells and a concomitant increase in the rate of /sup 35/S-sulfate incorporation measured in preparations of bone marrow cells in vitro. Furthermore, this response to endotoxin has demonstrated that Coulter Counting techniques can be used to distinguish specific populations of cells (e.g. mature granulocytes) within the bone marrow.

  15. Bone blood flow measured by 41Ar clearance formed by 44Ca(n,α)41Ar

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; DeLuca, P.M. Jr.; Pearson, D.W.; Nickles, R.J.

    1983-01-01

    A technique to measure regional inert gas washout in bone, in vivo, by measuring 41 Ar clearance formed by fast-neutron activation of 44 Ca has been developed. Following fast-neutron irradiation of whole rats, the perfusion-limited clearance of 41 Ar was measured for both dead and living rats. The clearance rate for the live rats indicate that the bone perfusion is in the range of 3 to 20 ml/100 Argon distribution volume

  16. Bone graft viability evaluated by three phase bone scan

    International Nuclear Information System (INIS)

    Ljiljana Jaukovic Rajko Spaic; Marijan Novakovic; Srbislav Stosic

    2004-01-01

    Bone defects resulting war injury can be replaced by microvascular bone grafts from fibula. Aim: The aim of this study was to assess the value of three phase (3P) bone scintigraphy in the early detection of the bone graft complications. Method: 3P bone scans were performed in four patients (two after mandible reconstruction with micro vascular fibular bone grafts, one after fibular transplantation for ulnar and one with humeral reconstruction). First dynamic phase scan was performed immediately after iv injection of 740 MBq Tc- 99m DPD, acquiring 15 two seconds duration frames. Second, early static scan was performed during next 300 seconds, and third, delayed scan three hours later. All scans were obtained under the bone graft region. The scans were evaluated using ROI under graft region and the corresponding contra lateral area. Blood flow in graft region was determined using first phase scan, and tracer uptake in the same region was determined using second and third phase scans. Results: in all patients blood flow in graft region was particularly normal. Tracer uptake in one of two patients with mandible reconstruction was diffusely increased in graft, strongly suggesting infection; In the other patient delayed scan showed no tracer uptake in graft center .Both patients with ulnar and humeral reconstruction showed only slightly decreased tracer uptake in bone grafts. 3 phase bone scintigraphy may play a role in the evaluation of bone graft viability by predicting the infection and necrosis. (authors)

  17. Intravenous contrast injection significantly affects bone mineral density measured on CT

    NARCIS (Netherlands)

    Pompe, Esther; Willemink, Martin J.; Dijkhuis, Gawein R.; Verhaar, Harald J. J.; Mohamed Hoesein, Firdaus A A; de Jong, Pim A.

    OBJECTIVE: The objective is to evaluate the effect of intravenous contrast media on bone mineral density (BMD) assessment by comparing unenhanced and contrast-enhanced computed tomography (CT) examinations performed for other indications. METHODS: One hundred and fifty-two patients (99 without and

  18. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    Science.gov (United States)

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  19. A computerized system to measure interproximal alveolar bone levels in epidemiologic, radiographic investigations. I

    International Nuclear Information System (INIS)

    Wouters, F.R.; Jon-And, C.; Frithiof, L.; Soeder, P.Oe.; Lavstedt, S.

    1988-01-01

    The aims of the study were to adapt a computerized system to epidemiologic conditions, for rapid full-mouth measurements of alveolar bone levels from X5-magnified periapical radiographs and to analyze the variations in measurement due to different system components. Full-mouth measurements of interproximal alveolar bone height in percentage of root and tooth lengths were completed within av average time of 15 min. per set of radiographs. An analysis of variance showed that the examiner variation in measurement of a linear scale distance was 0.02 mm. The measurement accuracy was different for different distances. Each distance (d) measured with this system should therefore be calibrated with the equation Y = -0.007 - 0.014 (log 3d - 1.50) where Y is the estimate of measurement accuracy. The present computerized system enabled rapid recordings and demonstrated good measurement precision and accuracy. These are valuable features in epidemiologic investigations

  20. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    International Nuclear Information System (INIS)

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-01-01

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm 3 . Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact specimens

  1. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    Science.gov (United States)

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  2. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    Science.gov (United States)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  3. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    Science.gov (United States)

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  4. Bone demarcation of the temporomandibular joint. Validity of clinical assessment of bone thickness by means of CT

    International Nuclear Information System (INIS)

    Ahlqvist, J.B.; Isberg, A.M.

    1998-01-01

    Purpose: To study the CT depiction of bone demarcations in the temporomandibular joint, using conventional window level and window width; and to evaluate observer performance in estimating bone thickness in these images. Material and Methods: Seven joint specimens were imaged by CT and then cryosectioned. The measurements of bone wall thickness in the images were compared to the true bone thickness at each cutting level. In addition, 4 experienced radiologists estimated the thickness of the bone walls in the images. Results: The relative difference between the CT reproduction and the true bone thickness was small for bone walls thicker than 2 mm. This difference increased with the decrease in bone thickness and the increase in the inclination of the bone wall from the perpendicular to the image plane. Bone walls thinner than 1 mm were reproduced as considerably thicker than their true thickness. This resulted in a clinical overestimation of bone thickness. Conclusion: Both the CT representation and the interpretation of bone demarcation in the temporomandibular joint may constitute a problem. Partial volume averaging effects can result in an overestimation of bone dimensions amounting to 200% for thin bones. The central white zone in images of thin bone walls obtained with the parameters described here could serve as an indicator that could help to reduce the risk of overestimating bone thickness. (orig.)

  5. Bone Density, Microarchitecture, and Tissue Quality Long-term After Kidney Transplant.

    Science.gov (United States)

    Pérez-Sáez, María José; Herrera, Sabina; Prieto-Alhambra, Daniel; Nogués, Xavier; Vera, María; Redondo-Pachón, Dolores; Mir, Marisa; Güerri, Roberto; Crespo, Marta; Díez-Pérez, Adolfo; Pascual, Julio

    2017-06-01

    Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is used to assess bone health in kidney transplant recipients (KTR). Trabecular bone score and in vivo microindentation are novel techniques that directly measure trabecular microarchitecture and mechanical properties of bone at a tissue level and independently predict fracture risk. We tested the bone status of long-term KTR using all 3 techniques. Cross-sectional study including 40 KTR with more than 10 years of follow-up and 94 healthy nontransplanted subjects as controls. Bone mineral density was measured at lumbar spine and the hip. Trabecular bone score was measured by specific software on the dual-energy x-ray absorptiometry scans of lumbar spine in 39 KTR and 77 controls. Microindentation was performed at the anterior tibial face with a reference-point indenter device. Bone measurements were standardized as percentage of a reference value, expressed as bone material strength index (BMSi) units. Multivariable (age, sex, and body mass index-adjusted) linear regression models were fitted to study the association between KTR and BMD/BMSi/trabecular bone score. Bone mineral density was lower at lumbar spine (0.925 ± 0.15 vs 0.982 ± 0.14; P = 0.025), total hip (0.792 ± 0.14 vs 0.902 ± 0.13; P bone score was borderline lower (1.21 ± 0.14 vs 1.3 ± 0.15; adjusted P = 0.072) in KTR. Despite persistent decrease in BMD, trabecular microarchitecture and tissue quality remain normal in long-term KTR, suggesting important recovery of bone health.

  6. A torque-measuring micromotor provides operator independent measurements marking four different density areas in maxillae.

    Science.gov (United States)

    Di Stefano, Danilo Alessio; Arosio, Paolo; Piattelli, Adriano; Perrotti, Vittoria; Iezzi, Giovanna

    2015-02-01

    Bone density at implant placement site is a key factor to obtain the primary stability of the fixture, which, in turn, is a prognostic factor for osseointegration and long-term success of an implant supported rehabilitation. Recently, an implant motor with a bone density measurement probe has been introduced. The aim of the present study was to test the objectiveness of the bone densities registered by the implant motor regardless of the operator performing them. A total of 3704 bone density measurements, performed by means of the implant motor, were registered by 39 operators at different implant sites during routine activity. Bone density measurements were grouped according to their distribution across the jaws. Specifically, four different areas were distinguished: a pre-antral (between teeth from first right maxillary premolar to first left maxillary premolar) and a sub-antral (more distally) zone in the maxilla, and an interforaminal (between and including teeth from first left mandibular premolar to first right mandibular premolar) and a retroforaminal (more distally) zone in the lower one. A statistical comparison was performed to check the inter-operators variability of the collected data. The device produced consistent and operator-independent bone density values at each tooth position, showing a reliable bone-density measurement. The implant motor demonstrated to be a helpful tool to properly plan implant placement and loading irrespective of the operator using it.

  7. Comparison of Singh index accuracy and dual energy X-ray absorptiometry bone mineral density measurement for evaluating osteoporosis

    International Nuclear Information System (INIS)

    Salamat, M. R.; Rostampour, N.; Zofaghari, Sh. J.; Hoseyni-Panah, H.; Javdan, M.

    2010-01-01

    The Singh index is an inexpensive simple method to evaluate bone density, commonly used to assess osteoporosis is based on the radiological appearance of the trabecular bone structure of the proximal femur on a plain antero-posterior radiograph. The purpose of this study was to compare between Singh index and bone mineral density measurement using dual energy X-ray absorptiometry. Materials and Methods: Three orthopedists evaluated radiographs of 72 patients suspected with osteoporosis. The inter-observer agreements of the Singh index were obtained by using kappa statistics. The bone mineral density of proximal femur was measured by dual energy X-ray absorptiometry in all patients, and then the bone mineral density results were compared with those of Singh index by using reference radiographic charts of the Singh index method. Dual-energy X-ray absorptiometry was used to measure bone mineral density. A Norland XR46 system was used for the investigations. Results: The inter-observer agreement kappa values were 0.01, 0.07 and 0.09 (mean value: 0.05) and the strength of the observer agreements was negligible. The obtained Osteoporosis prevalence among the studied patients was 38.9%. Conclusion: The inter-observer variation was large, there was no any correlation between the Singh index and bone densitometry. So, the index cannot be used; for evaluating and osteoporosis diagnosis, because of its low reliability.

  8. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    Science.gov (United States)

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.

  9. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available Introduction. An increasing number of studies are utilizing different magnetic resonance (MR methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI, modified Dixon method (also called fat fraction MRI (FFMRI, and magnetic resonance spectroscopy (MRS. Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI. Bone marrow adipose tissue (BMAT of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  10. Design, fabrication and evaluation of a new calibration phantom for in vivo measurement of bone-seeking radionuclides (invited paper)

    International Nuclear Information System (INIS)

    Spitz, H.B.; Lodwick, J.

    2000-01-01

    A new anthropometric phantom has been developed for use in calibrating in vivo measurements of bone-seeking radionuclides. The phantom has the external shape and appearance of the human adult knee and contains a realistic femur, patella, tibia, and fibula. Unique formulations of polyurethanes, CaCo 3 , and other trace materials are used in construction of the phantom to produce substitutes for human tissue having the same density, attenuation coefficient, and effective Z as that of human muscle and trabecular bone. The formulation for trabecular bone includes provision for a precisely known quantity of radioactive material that is either uniformly distributed throughout the bone matrix or deposited on the exterior surface. The knee phantom is assembled in three interlocking sections that simplify inserting the skeletal structures and prevent streaming. One or more detectors can easily be positioned on the top or sides of the phantom. Intercomparison measurements of 241 Am in bone using separate arrays of phoswich and germanium detectors demonstrate that a single knee phantom exhibits the same detection efficiency as that using the skull. In vivo measurement of the knee is a desirable alternative to the head if facial contamination is present or when evaluating recent exposure to bone seeking radionuclides, since bones of the knee exhibit more rapid uptake than the skull. In practice, greater measurement efficiency can be obtained by placing detectors over both knees since a larger fraction of the total body activity is observed. Calibration measurements using the new anthropometric knee phantom demonstrate that it is durable, easy to use, and provides consistent results over repeated measurements. (author)

  11. Maxillary sinus floor elevation surgery with BioOss (R) mixed with a bone marrow concentrate or autogenous bone : test of principle on implant survival and clinical performance

    NARCIS (Netherlands)

    Rickert, D.; Vissink, A.; Slot, Jan; Sauerbier, S.; Meijer, H. J. A.; Raghoebar, G. M.

    The purpose of this study was to assess implant survival and 1-year clinical performance of implants placed in the posterior maxilla that had been subjected to maxillary sinus floor elevation surgery with bovine bone mineral (BioOss (R)) mixed with autogenous bone marrow concentrate or autogenous

  12. Dual energy X-ray absorptiometry for the measurement of bone mineral density in Shanghai residents

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Li Deyi; Ma Jixiao; Huang Qiren

    1996-01-01

    In recent years, the rapid development of bone mineral density determination technique provides a powerful research tool to diagnose osteoporosis and prevent fracture. Since the beginning of 1995, the research group incooperation with Shanghai 6th people's hospital is carrying on bone density measurements as a part of Co-ordinated Research Programme (CRP) organized by International Atomic Energy Agency (IAEA). The purpose of this study is to determine the age of peak bone mass in each study group of Shanghai residents and to quantify differences in bone density as functions of the age and sex of persons in the study groups. At the same time the authors should get the normal human BMD (Bone Mineral Density) reference database specially for Shanghai residents, China. The roles of various life styles, exercise, diet and so on are also investigated

  13. Comparative study of conventional and ultrasonically-assisted bone drilling.

    Science.gov (United States)

    Alam, K; Ahmed, Naseer; Silberschmidt, V V

    2014-01-01

    Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.

  14. The outcome of bone mineral density measurements on patients referred from general practice

    DEFF Research Database (Denmark)

    Iqbal, Sofia Inez; Mørch, Lina Steinrud; Rosenzweig, Mary

    2005-01-01

    The incidence of osteoporosis is increasing and the general practitioner is integral to identifying these patients. It is, therefore, of interest to characterize the referral pattern of patients scheduled for determination of bone density by means of dual-energy X-ray absorptiometry scanning. Alt......) increased the predictive value considerably. A low BMI is a good indicator for referral of women less than 60 yr for measurements of bone density. Forty-five percent of the referred women from general practitioners had a normal BMD....

  15. Evaluation of bone diseases using dynamic bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Machiko; Tamura, Kenji; Hamada, Tatsumi; Ishida, Osamu [Kinki Univ., Higashi-Osaka, Osaka (Japan); Kajita, Akiyoshi

    1983-12-01

    Dynamic bone scintigraphy with sup(99m)Tc-EHDP was performed on 96 patients with various bone diseases. The dynamic scintigrams obtained were then used to aid in the differential diagnosis of malignant (49 cases) and benign (8 cases) diseases. Short-term local deposition of the tracer in all cases of malignant bone diseases was observed in vascular (10-40 sec. after injection), and blood pool (1-3 min. after injection) phases. In the cases of malignant bone tumors where osteosclerotic lesions were present, tracer accumulation appeared in the blood pool phase. If osteolytic lesions were present, accumulation appeared in the vascular phase, and when the lesion was larger than 2 cm, accumulation was frequently found in the arterial phase. Scintigraphic differentiation of early primary and metastatic bone tumors from other lesions was facilitated by performing the dynamic scintigraphy with sup(99m)Tc-EHDP. Dynamic bone scintigraphy also allowed early diagnosis of avascular necrosis (14 cases) prior to the appearance of minimally abnormal X-ray findings, especially in cases of corticosteroid-induced necrosis.

  16. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662keV γ-ray energies

    International Nuclear Information System (INIS)

    Akar, A.; Baltas, H.; Cevik, U.; Korkmaz, F.; Okumusoglu, N.T.

    2006-01-01

    The half-value thicknesses, linear and mass attenuation coefficients of biological samples such as bone, muscle, fat and water have been measured at 140, 364 and 662keV γ-ray energies by using the ATOMLAB TM -930 medical spectrometer. The γ-rays were obtained from 99m Tc, 131 I and 137 Cs γ-ray point sources. Also theoretical calculations have been performed in order to obtain the half-value thicknesses and, mass and linear attenuation coefficients at photon energies 0.001keV-20MeV for bone, muscle and water samples. The calculated value and the experimental results of this work and the other results in literature are found to be in good agreement

  17. Effect of low levels of dietary available phosphorus on phosphorus utilization, bone mineralization, phosphorus transporter mRNA expression and performance in growing pigs.

    Science.gov (United States)

    Pokharel, Bishwo B; Regassa, Alemu; Nyachoti, Charles M; Kim, Woo K

    2017-06-03

    A study was conducted to examine the effects of different dietary levels of available phosphorus (aP) on P excretion, bone mineralization, performance and the mRNA expression of sodium-dependent P transporters in growing pigs. Sixty-day old growing pigs (n = 54) with an average initial BW of 19.50 ± 1.11 kg were randomly allocated to a control diet (C) containing 0.23% available phosphorus (aP), T1 containing 0.17% aP and T2 containing 0.11% aP. There were 6 pens per treatment with 3 pigs per pen. Body weight and feed intake were measured weekly. At the end of each week, one pig from each pen was housed in a metabolic crate for 24 h to collect fecal and urine samples and then sacrificed to obtain third metacarpal (MC3) bones and jejunal and kidney samples. Bones were scanned by Dual Energy X-ray Absorptiometry (DEXA). Fecal and urine samples were sub-sampled and analyzed for P content. The expression of P transporter mRNA in jejunum and kidney samples was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Data were analyzed using GLM procedure of the Statistical Analysis System (SAS Institute version 9.2). Pigs fed the T2 diet had reduced (P reduced (P reduced (P reduced ADG, bone mineralization and urinary P level, but moderate reduction in dietary P up to 0.17% aP in the diet has the potential to reduce environmental pollution by reducing P concentration in swine manure and without compromising performance.

  18. Development of parietal bone surrogates for parietal graft lift training

    Directory of Open Access Journals (Sweden)

    Hollensteiner Marianne

    2016-09-01

    Full Text Available Currently the surgical training of parietal bone graft techniques is performed on patients or specimens. Commercially available bone models do not deliver realistic haptic feedback. Thus customized parietal skull surrogates were developed for surgical training purposes. Two human parietal bones were used as reference. Based on the measurement of insertion forces of drilling, milling and saw procedures suitable material compositions for molding cortical and cancellous calvarial layers were found. Artificial skull caps were manufactured and tested. Additionally microtomograpy images of human and artificial parietal bones were performed to analyze outer table and diploe thicknesses. Significant differences between human and artificial skulls were not detected with the mechanical procedures tested. Highly significant differences were found for the diploe thickness values. In conclusion, an artificial bone has been created, mimicking the properties of human parietal bone thus being suitable for tabula externa graft lift training.

  19. Bone markers in craniofacial bone deformations and dysplasias

    Directory of Open Access Journals (Sweden)

    Monika Seifert

    2015-10-01

    Full Text Available Various forms of bony deformations and dysplasias are often present in the facial skeleton. Bone defects can be either localized or general. Quite often they are not only present in the skull but also can be found in other parts of the skeleton. In many cases the presence and levels of specific bone markers should be measured in order to fully describe their activity and presence in the skeleton. Fibrous dysplasia (FD is the most common one in the facial skeleton; however, other bone deformations regarding bone growth and activity can also be present. Every clinician should be aware of all common, rare and uncommon bony diseases and conditions such as cherubism, Paget’s disease, osteogenesis imperfecta and others related to genetic conditions. We present standard (calcium, parathyroid hormone, calcitonin, alkaline phosphatase, vitamin D and specialized bone markers (pyridinium, deoxypyridinium, hydroxyproline, RANKL/RANK/OPG pathway, growth hormone, insulin-like growth hormone-1 that can be used to evaluate, measure or describe the processes occurring in craniofacial bones.

  20. Special distraction osteogenesis before bone grafting for alveolar cleft defects to correct maxillary deformities in patients with bilateral cleft lips and palates: distraction osteogenesis performed separately for each bone segment.

    Science.gov (United States)

    Mitsukawa, Nobuyuki; Saiga, Atsuomi; Morishita, Tadashi; Satoh, Kaneshige

    2014-07-01

    Patients with bilateral cleft lips and palates have premaxillary protrusion and characteristic jaw deformities involving three-dimensional malposition of the premaxilla and bilateral maxillary bone segments. This study examined patients with bilateral cleft lips and palates who had deviation and hypoplasia of the premaxillas and bilateral maxillary segments. Before bone grafting, the patients were treated with special distraction performed separately for each bone segment using a halo-type external device. This report describes this novel treatment method which produced good results. The subjects were five patients with severe jaw deformities due to bilateral cleft lip and palate. They were treated with maxillary Le Fort I osteotomy and subsequent distraction performed separately for each bone segment using a halo device. In three of five patients, premaxillary osteotomy was not performed, and osteotomy and distraction were performed only for the right and left lateral segments with severe hypoplasia. All patients achieved distraction close to the desired amount. The widths of the alveolar clefts were narrowed, and satisfactory occlusion and maxillary arch form were achieved. After the surgery, three of five patients underwent bone grafting for bilateral alveolar cleft defects and the bone graft survival was satisfactory. This method had many benefits, including narrowing of alveolar clefts, improvement of maxillary hypoplasia, and achievement of a good maxillary arch form. In addition, subsequent bone grafting for alveolar cleft defects was beneficial, dental prostheses were unnecessary, and frequency of surgery and surgical invasiveness were reduced. This method is a good surgical procedure that should be considered for patients with bilateral cleft lips and palates who have premaxillary protrusion and hypoplasia of the right and left lateral segments. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights

  1. Study of osteoporosis through the measurement of bone mineral density, trace elements and immunocytochemicals

    International Nuclear Information System (INIS)

    Aras, N.K; Alkan, S.; Yilmaz, G.

    1998-01-01

    One of the primary purposes of the coordinated research program was to measure BMD of the healthy population of the ages between 15 and 49 based on the protocol discussed during the first research coordination meeting, RCM, in Vienna, December 12-15, 1994. The work carried out since then can be divided into several topics. Each of these subjects will be summarized in the following sections. Atomic Absorption Spectrometry (AAS) was used for determination of Ca, K, Mg, Na, Mn, Zn and Cu in bone samples. Sample preparation is a critical step prior to AAS. It requires the oxidation of organic matter of biological samples to prepare a solution ready for analysis of mineral elements. For bone samples, for dissolution purposes several acid or acid mixtures can be used. For the preparation of bone samples for AAS, cleaned, separated from blood, muscle and fat, powdered and homogenized bone samples were dissolved in nitric acid. Different dissolution procedures such as hot plate dissolution, dissolution at room temperature and microwave dissolution were tried. After these experiments, microwave dissolution procedure was chosen as the main digestion method for its following advantages: Rapid dissolution (only 8 minutes), complete digestion, minimal reagent consumption, sample integrity which allows volatile element determination, lower reagent blank and potential automation. Bone samples weighing approximately 300 mg will be irradiated with thermal neutrons at Cekmece Nuclear Research Center, TR-2 Reactor in Istanbul. Gamma rays of the radioactive isotopes of the samples will be measured with the nuclear spectroscopy system at the Department of Chemistry, METU. We have already analyzed five bone samples (cortical and trabecular parts separately) weighing approximately 200 mg, both short and long irradiation at Massachusetts Institute of Technology (NUT), USA

  2. The effects of surgicel and bone wax hemostatic agents on bone healing: An experimental study

    Directory of Open Access Journals (Sweden)

    Nasser Nooh

    2014-01-01

    Full Text Available Background: The biological effects of hemostatic agends on the physiological healing process need to be tested. The aim of this study was to assess the effects of oxidized cellulose (surgicel and bone wax on bone healing in goats′ feet. Materials and Methods: Three congruent circular bone defects were created on the lateral aspects of the right and left metacarpal bones of ten goats. One defect was left unfilled and acted as a control; the remaining two defects were filled with bone wax and surgicel respectively. The 10 animals were divided into two groups of 5 animals each, to be sacrificed at the 3rd and 5th week postoperatively. Histological analysis assessing quality of bone formed and micro-computed tomography (MCT measuring the quantities of bone volume (BV and bone density (BD were performed. The results of MCT analysis pertaining to BV and BD were statistically analyzed using two-way analysis of variance (ANOVA and posthoc least significant difference tests. Results: Histological analysis at 3 weeks showed granulation tissue with new bone formation in the control defects, active bone formation only at the borders for surgicel filled defects and fibrous encapsulation with foreign body reaction in the bone wax filled defects. At 5 weeks, the control and surgicel filled defects showed greater bone formation; however the control defects had the greatest amount of new bone. Bone wax filled defects showed very little bone formation. The two-way ANOVA for MCT results showed significant differences for BV and BD between the different hemostatic agents during the two examination periods. Conclusion: Surgicel has superiority over bone wax in terms of osseous healing. Bone wax significantly hinders osteogenesis and induces inflammation.

  3. Method and system for in vivo measurement of bone tissue using a two level energy source

    Science.gov (United States)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  4. In vivo, noninvasive functional measurements of bone sarcoma using diffuse optical spectroscopic imaging

    Science.gov (United States)

    Peterson, Hannah M.; Hoang, Bang H.; Geller, David; Yang, Rui; Gorlick, Richard; Berger, Jeremy; Tingling, Janet; Roth, Michael; Gill, Jonathon; Roblyer, Darren

    2017-12-01

    Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.

  5. Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects

    Directory of Open Access Journals (Sweden)

    D.C.L. Carvalho

    2006-10-01

    Full Text Available Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11 and control (N = 10 groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.

  6. Simplified Summative Temporal Bone Dissection Scale Demonstrates Equivalence to Existing Measures.

    Science.gov (United States)

    Pisa, Justyn; Gousseau, Michael; Mowat, Stephanie; Westerberg, Brian; Unger, Bert; Hochman, Jordan B

    2018-01-01

    Emphasis on patient safety has created the need for quality assessment of fundamental surgical skills. Existing temporal bone rating scales are laborious, subject to evaluator fatigue, and contain inconsistencies when conferring points. To address these deficiencies, a novel binary assessment tool was designed and validated against a well-established rating scale. Residents completed a mastoidectomy with posterior tympanotomy on identical 3D-printed temporal bone models. Four neurotologists evaluated each specimen using a validated scale (Welling) and a newly developed "CanadaWest" scale, with scoring repeated after a 4-week interval. Nineteen participants were clustered into junior, intermediate, and senior cohorts. An ANOVA found significant differences between performance of the junior-intermediate and junior-senior cohorts for both Welling and CanadaWest scales ( P .05). Cohen's kappa found strong intrarater reliability (0.711) with a high degree of interrater reliability of (0.858) for the CanadaWest scale, similar to scores on the Welling scale of (0.713) and (0.917), respectively. The CanadaWest scale was facile and delineated performance by experience level with strong intrarater reliability. Comparable to the validated Welling Scale, it distinguished junior from senior trainees but was challenged in differentiating intermediate and senior trainee performance.

  7. Bone and bone-marrow blood flow in chronic granulocytic leukemia and primary myelofibrosis

    International Nuclear Information System (INIS)

    Lahtinen, R.; Lahtinen, T.; Romppanen, T.

    1982-01-01

    Blood flow in hematopoietic bone marrow and in nonhematopoietic bone has been measured with a Xe-133 washout method in 20 patients with chronic granulocytic leukemia (CGL) and in seven with primary myelofibrosis. Age-matched healthy persons served as controls. Bone-marrow blood flow in CGL was dependent upon the phase of the disease. In the metamorphosis phase, bone-marrow blood flow was high compared with that in the well-controlled phase. Apart from the initial phase, the mean values for bone blood flow in CGL were increased compared with the values of the healthy controls. In myelofibrosis the bone blood flow was also increased. Bone-marrow blood flow in these diseases was dependent upon the cellularity of bone marrow as measured morphometrically

  8. A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation.

    Science.gov (United States)

    Gandini, Paola; Mancini, Marta; Andreani, Federico

    2006-11-01

    To compare skeletal maturation as measured by hand-wrist bone analysis and by cervical vertebral analysis. A radiographic hand-wrist bone analysis and cephalometric cervical vertebral analysis of 30 patients (14 males and 16 females; 7-18 years of age) were examined. The hand-wrist bone analysis was evaluated by the Bjork index, whereas the cervical vertebral analysis was assessed by the cervical vertebral maturation stage (CVMS) method. To define vertebral stages, the analysis consisted of both cephalometric (13 points) and morphologic evaluation of three cervical vertebrae (concavity of second, third, and fourth vertebrae and shape of third and fourth vertebrae). These measurements were then compared with the hand-wrist bone analysis, and the results were statistically analyzed by the Cohen kappa concordance index. The same procedure was repeated after 6 months and showed identical results. The Cohen kappa index obtained (mean +/- SD) was 0.783 +/- 0.098, which is in the significant range. The results show a concordance of 83.3%, considering that the estimated percentage for each case is 23.3%. The results also show a correlation of CVMS I with Bjork stages 1-3 (interval A), CVMS II with Bjork stage 4 (interval B), CVMS III with Bjork stage 5 (interval C), CVMS IV with Bjork stages 6 and 7 (interval D), and CVMS V with Bjork stages 8 and 9 (interval E). Vertebral analysis on a lateral cephalogram is as valid as the hand-wrist bone analysis with the advantage of reducing the radiation exposure of growing subjects.

  9. Small animals bone density and morphometry analysis with a dual energy X-rays absorptiometry bone densitometer using a 2D digital radiographic detector

    International Nuclear Information System (INIS)

    Boudousq, V.; Bordy, T.; Gonon, G.; Dinten, J.M.

    2004-01-01

    LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. In previous papers, technical principles and patients' Bone Mineral Density (BMD) measurement performances were presented. Bone densitometers are also used on small animals for drug development. In this presentation, we show how LEXXOS can be adapted for small animals' examinations and evaluate its performances. At first, in order to take advantage of the whole area of the 20 x 20 cm 2 digital radiographic detector, it has been made profit of X-Rays magnification by adapting the geometrical configuration. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the averaged total body BMD has been measured. This evaluation shows that the right order of BMD magnitude is obtained and, as expected, BMD increases on two sets until a period around puberty and the ovariectomized set presents a significant decrease after. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing useful complementary information on bone morphometry and architecture. This study shows that LEXXOS cone beam bone densitometer provides simultaneously useful quantitative and qualitative information for analysis of bone evolution on small animals. In the future, same system architecture and processing methodology can be used with higher resolution detectors in order to refine information on bone architecture. (authors)

  10. A measurement instrument for bone mineral content of adult and children

    International Nuclear Information System (INIS)

    Liu Shaofang

    1996-01-01

    The γ radiation source was used in bone mineral content measurement analysis of adult and children and a new instrument is developed successfully. It's precision is +2%. The advantage of this instrument is light, cheap and reliable. It can be used widely in medical science and clinic for diagnosis on certain diseases and research work

  11. Feasibility study for the in vivo measurement of lead in bone using L-x-ray fluorescence

    International Nuclear Information System (INIS)

    Wielopolski, L.; Slatkin, D.N.; Vartsky, D.; Ellis, K.J.; Cohn, S.H.

    1980-01-01

    Lead deposits in bone were detected by x-ray fluorescence using x-rays from either a 125 I or a 109 Cd source. Measurements were taken from tibia in intact human legs, post-mortem. On the basis of preliminary measurements, it was concluded that an exposure of one rad is adequate for determination of lead in bone. Both the advantages and the disadvantages of L-x-rays, used in the technique developed for this study, are compared with those of K-x-rays

  12. Performing bone marrow biopsies with or without sedation: a comparison.

    Science.gov (United States)

    Giannoutsos, I; Grech, H; Maboreke, T; Morgenstern, G

    2004-06-01

    Although intravenous sedation (ISED) in addition to a local anaesthetic (LA) is commonly used in the performance of a bone marrow aspirate and trephine (BMAT), it is not clear under what circumstances and in which way sedation may be most beneficial. In this study, information was gathered using a questionnaire, from 112 patients shortly after undergoing BMAT; the duration of the procedures and the length of the biopsy cores were measured and any complications noted. Most patients (68%) chose to receive LA only, and almost all (74/76) were happy with their decision. Patients who received sedation gave lower pain scores than patients receiving LA only (1 vs. 3) and were found to have lower levels of apprehension at the thought of having a repeat procedure. Patients having a repeat BMAT showed a slightly increased preference for having sedation compared with patients who were undergoing it for the first time. There is some concern that guidelines regarding the use of ISED for procedures other than BMAT are not always adhered to, and current practice may be best revealed by a large-scale audit of sedation practice for the performance of BMAT. Patients should be given the choice of having ISED if the appropriate resources are available, but in most cases the additional small risk of receiving sedation can be avoided.

  13. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    Science.gov (United States)

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  14. Strength through structure: visualization and local assessment of the trabecular bone structure

    International Nuclear Information System (INIS)

    Raeth, C; Monetti, R; Bauer, J; Sidorenko, I; Mueller, D; Matsuura, M; Lochmueller, E-M; Zysset, P; Eckstein, F

    2008-01-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  15. Influence of bone mineral density measurement on fracture risk assessment tool® scores in postmenopausal Indian women.

    Science.gov (United States)

    Daswani, Bhavna; Desai, Meena; Mitra, Sumegha; Gavali, Shubhangi; Patil, Anushree; Kukreja, Subhash; Khatkhatay, M Ikram

    2016-03-01

    Fracture risk assessment tool® calculations can be performed with or without addition of bone mineral density; however, the impact of this addition on fracture risk assessment tool® scores has not been studied in Indian women. Given the limited availability and high cost of bone mineral density testing in India, it is important to know the influence of bone mineral density on fracture risk assessment tool® scores in Indian women. Therefore, our aim was to assess the contribution of bone mineral density in fracture risk assessment tool® outcome in Indian women. Apparently healthy postmenopausal Indian women (n = 506), aged 40-72 years, without clinical risk factors for bone disease, were retrospectively selected, and their fracture risk assessment tool® scores calculated with and without bone mineral density were compared. Based on WHO criteria, 30% women were osteoporotic, 42.9% were osteopenic and 27.1% had normal bone mineral density. Fracture risk assessment tool® scores for risk of both major osteoporotic fracture and hip fracture significantly increased on including bone mineral density (P women eligible without bone mineral density was 0 and with bone mineral density was 1, P > 0.05, whereas, for hip fracture risk number of women eligible without bone mineral density was 2 and with bone mineral density was 17, P Indian women. © The Author(s) 2016.

  16. The interchangeability of radioisotope and X-ray based measurements of bone mineral density

    International Nuclear Information System (INIS)

    Adachi, J.D.; Webber, C.E.

    1991-01-01

    Lumbar spine and femoral neck bone mineral density (BMD) were measured with a Novo radioisotope based dual photon densitometer and with a Lunar X-ray densitometer in 94 subjects attending a Metabolic Bone Disease Clinic. There was a strong correlation between results obtained from each machine. The correlation coefficients for the spine and femoral neck were 0.97 and 0.88, respectively. Differences between results from each machine were normally distributed with a mean bias of 37.5% (spine) and 27.8% (femur), arising principally from differences in machine calibration. In each case the BMD was greater measured by X-ray absorptiometry. The range for the bias was approximately 25-50% for the spine and 10-45% for the femoral neck. The results from these two machines are not interchangeable. When subjects participating in long term studies using a radioisotope densitometer are transferred to an X-ray densitometer, an individual conversion factor must be measured at each site for each subject. (author)

  17. Accuracy of Bone Measurements in the Vicinity of Titanium Implants in CBCT Data Sets: A Comparison of Radiological and Histological Findings in Minipigs

    Directory of Open Access Journals (Sweden)

    Alexander Gröbe

    2017-01-01

    Full Text Available Purpose. The aim of this animal study was the determination of accuracy of bone measurements in CBCT (cone-beam computed tomography in close proximity to titanium implants. Material and Methods. Titanium implants were inserted in eight Göttingen minipigs. 60 implants were evaluated histologically in ground section specimen and radiologically in CBCT in regard to thickness of the buccal bone. With random intercept models, the difference of histologic measurements and CBCT measurements of bone thickness was calculated. Results. The mean histological thickness of the buccal bone was 5.09 mm (CI 4.11–6.08 mm. The four raters measured slightly less bone in CBCT than it was found in histology. The random effect was not significant (p value 1.000. Therefore, the Intraclass Correlation Coefficient (ICC was 98.65% (CI 100.00–96.99%. Conclusion. CBCT is an accurate technique to measure even thin bone structures in the vicinity of titanium implants.

  18. Bone scintigraphy on chronic hemodialyzed patients

    International Nuclear Information System (INIS)

    Koizumi, Yoshiko

    1990-01-01

    Patients with renal osteodystrophy (ROD) are classified into four types (secondary hyperparathyroidism: HPT, osteomalasia, ectopic calcification and normal bone scintigram type) according to findings of whole body bone scintigrams. Markedly high accumulations of Tc-99m-MDP are seen in the skull, especially in patients with HPT. For a quantitative evaluation of bone mineral dynamics, factor analysis (FA) was performed on bone scintigraphy in 36 patients with ROD and in 17 controls. Four were examined before and after parathyroidectomy (PTX). In the early phase (20 min) of bone scintigraphy, the bone factor was clearly extracted by FA. Two original parameters were calculated, one is bone radionuclide (RN) uptake count (BUC), the product of the total RN uptake count of the head and the contribution ratio, the other is bone RN uptake count ratio (BUR) derived by the time activity curve (physiological component of bone) of FA. Bone factor shown by FA is significantly different among patients with HPT, osteomalasia and controls. The value of BUC in patients with HPT is high compared to findings in the controls. The results of FA of ROD correlate well with planar images of bone scintigrams and with data on bone minerals, measured by quantitative methods such as single photon absorptiometry, CT attenuation number of the frontal bone, RN activity ratio ([frontal bone]/[brain]), using SPECT of bone scan. In the cases of PTX, the value of BUC was improved compared to preoperative data. FA of bone scintigraphy is a sensitive and useful method for quantitative evaluation of bone mineral dynamics and to assess the therapeutic effects in ROD. (author)

  19. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    International Nuclear Information System (INIS)

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-01-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process

  20. A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content

    International Nuclear Information System (INIS)

    Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.

    1982-01-01

    Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)

  1. Paget's disease of bone resembling bone metastasis from gastric cancer.

    Science.gov (United States)

    Shimoyama, Yasuyuki; Kusano, Motoyasu; Shimoda, Yoko; Ishihara, Shingo; Toyomasu, Yoshitaka; Ohno, Tetsuro; Mochiki, Erito; Sano, Takaaki; Hirato, Junko; Mori, Masatomo

    2011-08-01

    A 74-year-old man had an endoscopic type 0'-IIc tumor in the upper gastric body on the greater curvature and biopsy showed the tumor to be a well-differentiated adenocarcinoma (Group 5). He was referred to us for endoscopic submucosal dissection (ESD). Endoscopy revealed fold convergency, fold swelling, and fusion of the fold, indicating tumor invasion into the submucosa, which was outside the indications for ESD. In addition, there was an increase of serum bone-type alkaline phosphatase (ALP-III and ALP-IV) and urinary cross-linked N-terminal telopeptide of type I collagen (a bone metabolism marker), while (18)F-fluorodeoxyglucose positron emission tomography showed increased uptake in the left pelvis and Th10, suggesting bone metastases. We first diagnosed gastric cancer with bone metastases; however, the symptoms suggested pathological bone fracture and no bone pain. Therefore, a computed tomography-guided aspiration bone biopsy was performed to exclude the possibility of Paget's disease of bone. Biopsy specimens revealed no tumor and a mosaic pattern. No increased uptake of (18)F-FAMT (L-[3-(18)F] α-methyltyrosine) supported a diagnosis of no bone metastases from gastric cancer. We finally diagnosed gastric cancer accompanied by Paget's disease of bone and performed a laparoscopy-assisted proximal gastrectomy. The pathological diagnosis was U less 0-IIb, and U post 0-IIc ypT1a (M) N0H0P0M0 yp stage IA. In gastric cancer patients with suspected bone metastasis, we also need to consider Paget's disease of bone.

  2. Exercise and bone mass in adults.

    Science.gov (United States)

    Guadalupe-Grau, Amelia; Fuentes, Teresa; Guerra, Borja; Calbet, Jose A L

    2009-01-01

    There is a substantial body of evidence indicating that exercise prior to the pubertal growth spurt stimulates bone growth and skeletal muscle hypertrophy to a greater degree than observed during growth in non-physically active children. Bone mass can be increased by some exercise programmes in adults and the elderly, and attenuate the losses in bone mass associated with aging. This review provides an overview of cross-sectional and longitudinal studies performed to date involving training and bone measurements. Cross-sectional studies show in general that exercise modalities requiring high forces and/or generating high impacts have the greatest osteogenic potential. Several training methods have been used to improve bone mineral density (BMD) and content in prospective studies. Not all exercise modalities have shown positive effects on bone mass. For example, unloaded exercise such as swimming has no impact on bone mass, while walking or running has limited positive effects. It is not clear which training method is superior for bone stimulation in adults, although scientific evidence points to a combination of high-impact (i.e. jumping) and weight-lifting exercises. Exercise involving high impacts, even a relatively small amount, appears to be the most efficient for enhancing bone mass, except in postmenopausal women. Several types of resistance exercise have been tested also with positive results, especially when the intensity of the exercise is high and the speed of movement elevated. A handful of other studies have reported little or no effect on bone density. However, these results may be partially attributable to the study design, intensity and duration of the exercise protocol, and the bone density measurement techniques used. Studies performed in older adults show only mild increases, maintenance or just attenuation of BMD losses in postmenopausal women, but net changes in BMD relative to control subjects who are losing bone mass are beneficial in

  3. A simple method of screening for metabolic bone disease

    International Nuclear Information System (INIS)

    Broughton, R.B.K.; Evans, W.D.

    1982-01-01

    The purpose of this investigation was to find a simple method -to be used as an adjunct to the conventional bone scintigram- that could differentiate between decreased bone metabolism or mass, i.e., osteoporosis -normal bone- and the group of conditions of increased bone metabolism or mass namely, osteomalacia, renal osteodystrophy, hyperparathyroidism and Paget's disease. The Fogelman's method using the bone to soft tissue ratios from region of interest analysis at 4 hours post injection, was adopted. An initial experience in measuring a value for the count rate density in lumbar vertebrae at 1 hr post injection during conventional bone scintigraphy appears to give a clear indication of the overall rate of bone metabolism. The advantage over whole body retention methods is that the scan performed at the end of the metabolic study will reveal localized bone disease that may otherwise not be anticipated

  4. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    Science.gov (United States)

    Straehl, Fiona R; Scheyer, Torsten M; Forasiepi, Analía M; MacPhee, Ross D; Sánchez-Villagra, Marcelo R

    2013-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.

  5. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    Directory of Open Access Journals (Sweden)

    Fiona R Straehl

    Full Text Available Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua, with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.

  6. Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone

    Science.gov (United States)

    Roschger, Andreas; Gamsjaeger, Sonja; Hofstetter, Birgit; Masic, Admir; Blouin, Stéphane; Messmer, Phaedra; Berzlanovich, Andrea; Paschalis, Eleftherios P.; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter

    2014-06-01

    Raman microspectroscopy and quantitative backscattered electron imaging (qBEI) of bone are powerful tools to investigate bone material properties. Both methods provide information on the degree of bone matrix mineralization. However, a head-to-head comparison of these outcomes from identical bone areas has not been performed to date. In femoral midshaft cross sections of three women, 99 regions (20×20 μ) were selected inside osteons and interstitial bone covering a wide range of matrix mineralization. As the focus of this study was only on regions undergoing secondary mineralization, zones exhibiting a distinct gradient in mineral content close to the mineralization front were excluded. The same regions were measured by both methods. We found a linear correlation (R2=0.75) between mineral/matrix as measured by Raman spectroscopy and the wt. %Mineral/(100-wt. %Mineral) as obtained by qBEI, in good agreement with theoretical estimations. The observed deviations of single values from the linear regression line were determined to reflect biological heterogeneities. The data of this study demonstrate the good correspondence between Raman and qBEI outcomes in describing tissue mineralization. The obtained correlation is likely sensitive to changes in bone tissue composition, providing an approach to detect potential deviations from normal bone.

  7. Radioimmune imaging of bone marrow in patients with suspected bone metastases from primary breast cancer

    International Nuclear Information System (INIS)

    Duncker, C.M.; Carrio, I.; Berna, L.; Estorch, M.; Alonso, C.; Ojeda, B.; Blanco, R.; Germa, J.R.; Ortega, V.

    1990-01-01

    Radioimmune imaging of bone marrow was performed by technetium-99m- (99mTc) labeled antigranulocyte monoclonal antibody BW 250/183 (AGMoAb) scans in 32 patients with suspected bone metastases from primary breast cancer. AGMoAb scans showed bone marrow defects in 25/32 (78%) patients; bone invasion was subsequently confirmed in 23 (72%) patients. Conventional bone scans performed within the same week detected bone metastases in 17/32 (53%) patients (p less than 0.001). AGMoAb scans detected more sites indicating metastatic disease than bone scans in 12 of these 17 patients (71%). All patients with bone metastases in the axial skeleton had bone marrow defects at least at the sites of bone metastases. Of 15 patients with normal, or indicative of, benign disease bone scans, 8 patients (53%) presented with bone marrow defects in the AGMoAb scans. Bone invasion was confirmed in six of them. AGMoAb bone marrow scans provide a method for the early detection of bone metastatic invasion in patients with breast cancer and suspected bone metastases

  8. Electrical impedance spectroscopy as a potential tool for recovering bone porosity

    International Nuclear Information System (INIS)

    Bonifasi-Lista, C; Cherkaev, E

    2009-01-01

    This paper deals with the recovery of porosity of bone from measurements of its effective electrical properties. The microstructural information is contained in the spectral measure in the Stieltjes representation of the bone effective complex permittivity or complex conductivity and can be recovered from the measurements over a range of frequencies. The problem of reconstruction of the spectral measure is very ill-posed and requires the use of regularization techniques. We apply the method to the effective electrical properties of cancellous bone numerically calculated using micro-CT images of human vertebrae. The presented method is based on an analytical approach and does not rely on correlation analysis nor on any a priori model of the bone micro-architecture. However the method requires a priori knowledge of the properties of the bone constituents (trabecular tissue and bone marrow). These properties vary from patient to patient. To address this issue, a sensitivity analysis of the technique was performed. Normally distributed random noise was added to the data to simulate uncertainty in the properties of the constituents and possible experimental errors in measurements of the effective properties. The values of porosity calculated from effective complex conductivity are in good agreement with the true values of bone porosity even assuming high level errors in the estimation of the bone components. These results prove the future potential of electrical impedance spectroscopy for in vivo monitoring of level and treatment of osteoporosis.

  9. A computerized system to measure interproximal alveolar bone levels in epidemiologic, radiographic investigations. II

    International Nuclear Information System (INIS)

    Wouters, F.R.; Frithiof, L.; Soeder, P.Oe.; Hellden, L.; Lavstedt, S.; Salonen, L.

    1988-01-01

    The study was aimed at analyzing intra- and inter-examiner variations in computerized measurement and in non-measurability of alveolar bone level in a cross-sectional, epidemiologic material. At each interproximal tooth surface, alveolar bone height in percentage of root length (B/R) and tooth length (B/T) were determined twice by one examiner and once by a second examiner from X5-magnified periapical radiographs. The overall intra- and inter-examiner variations in measurement were 2.85% and 3.84% of root length and 1.97% and 2.82% of tooth length, respectively. The varations were different for different tooth groups and for different degrees of severity of marginal periodontitis. The overall proportions on non-measurable tooth surfaces varied with examiner from 32% to 39% and from 43% to 48% of the available interproximal tooth surfaces for B/R and B/T, respectively. With regard to the level of reliability, the computerized method reported is appropriate to cross-sectional, epidemiologic investigations from radiographs

  10. Effect of nanosilicon dioxide on growth performance, egg quality, liver histopathology and concentration of calcium, phosphorus and silicon in egg, liver and bone in laying quails

    Science.gov (United States)

    Faryadi, Samira; Sheikhahmadi, Ardashir

    2017-11-01

    This experiment was conducted to evaluate the effects of different levels of nanosilicon dioxide (nSiO2) on performance, egg quality, liver histopathology and concentration of calcium (Ca), phosphorus and silicon (Si) in egg, liver and bone in laying quails. The experiment was administered using 60 laying quails at 16-26 weeks of age with five treatments [0 (control), 500, 1000, 2000 and 4000 mg nSiO2 per kg of diet] and four replicates in a completely randomized design. During the experiment, the amount of feed intake was recorded weekly and performance parameters were measured. During the last 3 days of the experiment, all of the eggs in each replicate were collected and egg quality parameters were measured. At the end of 26 weeks of age, the birds were sacrificed and blood samples were collected. Liver samples from each treatment were fixed in 10% buffered formalin for histopathological assessment. The right thigh bone and a portion of liver were inserted in plastic bags and stored at - 20. The results showed that nSiO2 supplementation significantly affected egg weight and egg mass ( P 0.05) by dietary treatments. In conclusion, the results indicated that dietary supplementation of nSiO2 could improve bone density and performance without any adverse effect on the health of laying quails.

  11. Bone blood flow in conscious dogs at rest and during exercise

    International Nuclear Information System (INIS)

    Toendevold, E.; Buelow, J.

    1983-01-01

    Using the microsphere technique bone flow was measured in different anatomical and functional regions in long bones in conscious dogs. The measurements were performed during physical exercise upon a treadmill, and the bone blood flow values were obtained as prework resting values after 1 and 2 hours of exercise and after 1 hour of rest. The perfusion rates increased 50 per cent from 1.6 to 2.5 ml x 100 g tissue - 1 x min - 1 in the femoral and tibial cortical bones during work. In the cancelleous bone of the femoral head an increase from 12.6 to 20.6 ml x 100 g tissue - 1 x min - 1 was found. Equal flow responses were determined in the fat-filled tibia-condylar and femoral supracondylar bone. The increase took place after 2 hours' exercise, but nonstatistically verified increased perfusion was found after 1 hour's work. The alternation in bone blood flow suggest that bone has a capability of physical vasodilatation during muscular work but the flow response is slow and therefore the vasodilatation seems mediated by a metabolically induced stimulus. (author)

  12. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    Science.gov (United States)

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  13. Study of osteoporosis through the measurement of bone mineral density and trace elements

    International Nuclear Information System (INIS)

    Aras, N.K.; Yilmaz, G.; Alkan, S.; Korkusuz, F.; Ungan, M.; Kuscu, L.; Laleli, Y.; Eksioglu, F.; Sepici, B.

    2002-01-01

    The main purpose of this study was to establish a relation, if any, between bone mineral density (BMD) of the healthy Turkish population of the ages between 15 and 50 with social and demographic information, family history of fractures, personal and inherited characteristic, smoking and alcohol habit, history of fertility, level of physical activity, food consumption especially trace elements and other variables. Most of these relations were discussed in the last two Research Coordinated Meetings, in San Diego, CA, October 1996 and Sao Paulo, Brazil, August 1998. Since then we have concentrated our work on more BMD and trace element measurements in bone

  14. Diagnostic performance of 11C-choline PET/CT and bone scintigraphy in the detection of bone metastases in patients with prostate cancer.

    Science.gov (United States)

    Kitajima, Kazuhiro; Fukushima, Kazuhito; Yamamoto, Shingo; Kato, Takashi; Odawara, Soichi; Takaki, Haruyuki; Fujiwara, Masayuki; Yamakado, Koichiro; Nakanishi, Yukako; Kanematsu, Akihiro; Nojima, Michio; Hirota, Shozo

    2017-08-01

    The aim of this study was to compare 11C-choline PET/CT and bone scintigraphy (BS) for detection of bone metastases in patients with prostate cancer. Twenty-one patients with histologically proven prostate cancer underwent 11C-choline PET/CT and BS before (n = 4) or after (n = 17) treatment. Patient-, region-, and lesion-based diagnostic performances of bone metastasis of both 11C-choline PET/CT and BS were evaluated using a five-point scale by two experienced readers. Bone metastases were present in 11 (52.4%) of 21 patients and 48 (32.7%) of 147 regions; 111 lesions were found to have bone metastases. Region-based analysis showed that the sensitivity, specificity, accuracy, and area under the receiver-operating-characteristic curves (AUC) of 11C-choline PET/CT were 97.9%, 99.0%, 98.6%, and 0.9989, respectively; those of BS were 72.9%, 99.0%, 90.5%, and 0.8386, respectively. Sensitivity, accuracy, and AUC significantly differed between the two methods (McNemar test, p = 0.0015, p = 0.0015, and p PET/CT detected 110/111 metastatic lesions (99.1%); BS detected 85 (76.6%) (p PET/BS were 100%/90.3% for the blastic type, 91.7%/8.3% for the lytic type, 100%/100% for the mixed type, and 100%/53.3% for the invisible type, respectively. Significant differences in blastic, lytic, and invisible types were observed between the two methods (p = 0.013, p = 0.0044, and p = 0.023, respectively). In conclusion, 11C-choline PET/CT had greater sensitivity and accuracy than BS for detection of bone involvement in patients with prostate cancer.

  15. Radionuclide bone imaging in spondylolysis of the lumbar spine in children

    International Nuclear Information System (INIS)

    Gelfand, M.J.; Strife, J.L.; Kereiakes, J.G.

    1981-01-01

    Bone scintigraphy and radiography were performed in seven children with back pain. Six of the children with radiographic evidence of a pars interarticularis defect also had abnormal scintigrams. Increased uptake of the bone imaging agent occurred at six of the ten sites of radiographic pars interarticularis defects, implying increased bone metabolic activity. However, the location of scintigraphic abnormalities did not correspond to the location of radiographic abnormalities in several cases. Measurements of absorbed radiation dose indicate that plain radiography, including oblique views where appropriate, has a lower absorbed radiation dose than scintigraphy or tomography and should be performed prior to these studies

  16. Radionuclide bone imaging in spondylolysis of the lumbar spine in children

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, M.J.; Strife, J.L.; Kereiakes, J.G.

    1981-07-01

    Bone scintigraphy and radiography were performed in seven children with back pain. Six of the children with radiographic evidence of a pars interarticularis defect also had abnormal scintigrams. Increased uptake of the bone imaging agent occurred at six of the ten sites of radiographic pars interarticularis defects, implying increased bone metabolic activity. However, the location of scintigraphic abnormalities did not correspond to the location of radiographic abnormalities in several cases. Measurements of absorbed radiation dose indicate that plain radiography, including oblique views where appropriate, has a lower absorbed radiation dose than scintigraphy or tomography and should be performed prior to these studies.

  17. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  18. Investigation of bone morphology using X-ray microfluorescence bidimensional mapping

    International Nuclear Information System (INIS)

    Lima, I.; Sales, E.; Anjos, M.J.; Assis, J.T.; Lopes, R.T.

    2008-01-01

    Full text: The utilization of radiation for medical purposes is an important tool that has been helping in finding the causes of several illnesses. In relation to application of radioisotope in medicine, it has been making a great contribution to the development of analytical techniques that can help diagnostic illness. The X-ray fluorescence technique is within this context providing identification of chemical elements, and moreover, it can provide its spatial concentrations and distributions in several kinds of biological tissues, such as bone. Several issues concerning bone metabolism are still under study, and the investigation of its morphology, in relation to mineral distribution, can be useful. The aim of this study is to characterize trabecular bone samples in order to verify the influence of the chemical elemental distribution in bone morphology through bi-dimensional mapping obtained through X-ray fluorescence technique with synchrotron radiation. The measurements were performed at Brazilian Synchrotron Light National Laboratory (XRF beam line). This line is equipped with an HPGe detector with a resolution of 150 eV at 5.9 keV, a white beam, and the sample holder is placed at 45 deg in relation to the detector and the incident beam. The beam is focused by a fine conical capillary which provides X-ray microbeam of 20 μm diameter. To perform the experiment, the samples were placed in a mylar adhesive tape, positioned in the experimental set up and their measurements was taken into account in the calculation of concentration. The spectra were acquired in 10 s and 200 s to perform 2D images and single profiles respectively. No sample preparation was required and the experiment was performed in vertebrae and femur bone sites (in several positions) with 150 μm of thickness approximately. It was measured NIST Standard Reference Material (bone ash and bone meal - SRM 1400 and SRM 1486) in order to evaluate our experimental method. The sample holder has complete

  19. Are bone turnover markers associated with volumetric bone density, size, and strength in older men and women? The AGES-Reykjavik study.

    Science.gov (United States)

    Marques, E A; Gudnason, V; Sigurdsson, G; Lang, T; Johannesdottir, F; Siggeirsdottir, K; Launer, L; Eiriksdottir, G; Harris, T B

    2016-05-01

    Association between serum bone formation and resorption markers and bone mineral, structural, and strength variables derived from quantitative computed tomography (QCT) in a population-based cohort of 1745 older adults was assessed. The association was weak for lumbar spine and femoral neck areal and volumetric bone mineral density. The aim of this study was to examine the relationship between levels of bone turnover markers (BTMs; osteocalcin (OC), C-terminal cross-linking telopeptide of type I collagen (CTX), and procollagen type 1N propeptide (P1NP)) and quantitative computed tomography (QCT)-derived bone density, geometry, and strength indices in the lumbar spine and femoral neck (FN). A total of 1745 older individuals (773 men and 972 women, aged 66-92 years) from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik cohort were studied. QCT was performed in the lumbar spine and hip to estimate volumetric trabecular, cortical, and integral bone mineral density (BMD), areal BMD, bone geometry, and bone strength indices. Association between BTMs and QCT variables were explored using multivariable linear regression. Major findings showed that all BMD measures, FN cortical index, and compressive strength had a low negative correlation with the BTM levels in both men and women. Correlations between BTMs and bone size parameters were minimal or not significant. No associations were found between BTMs and vertebral cross-sectional area in women. BTMs alone accounted for only a relatively small percentage of the bone parameter variance (1-10 %). Serum CTX, OC, and P1NP were weakly correlated with lumbar spine and FN areal and volumetric BMD and strength measures. Most of the bone size indices were not associated with BTMs; thus, the selected bone remodeling markers do not reflect periosteal bone formation. These results confirmed the limited ability of the most sensitive established BTMs to predict bone structural integrity in older adults.

  20. Measurements of fluorine in contemporary urban Canadians: a comparison of the levels found in human bone using in vivo and ex vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Mostafaei, F; McNeill, F E; Chettle, D R; Prestwich, W V; Wainman, B C; Pidruczny, A E

    2015-01-01

    Non-invasive in vivo neutron activation analysis (NAA) was used to measure the fluorine concentration in 35 people in Hamilton, Ontario, Canada. Measurement and precision data of this second generation NAA system were determined in 2013, and the results were compared with the performance of a first generation system used in a pilot study of 33 participants from the Hamilton area in 2008. Improvements in precision in line with those predicted by phantom studies were observed, but the use of fewer technicians during measurement seemed adversely to affect performance. We compared the levels of fluorine observed in people between the two studies and found them to be comparable. The average fluorine concentration in bone was found to be 3  ±  0.3 mg and 3.5  ±  0.4 mg F/g Ca for 2013 and 2008 measurements respectively. Ten people were measured in both studies; the observed average change in bone fluorine in this subgroup was consistent with that predicted by the observation of the relationship between bone fluorine and age in the wider group. In addition, we observed differences in the relationship between bone fluorine level and age between men and women, which may be attributable either to sex or gender differences. The rate of increase in fluorine content for men was found to be 0.096  ±  0.022 mg F/g Ca per year while the rate of increase for women was found to be slightly less than half that of men, 0.041  ±  0.017 mg F/g Ca per year. A discontinuity in the rate of increase in fluorine content with age was observed in women at around age 50. Bone fluorine content was significantly lower (p<0.01) in women age 50 to 59 than in women age 40 to 49, which we suggest may be attributable to bone metabolism changes associated with menopause. We also observed increased fluorine levels in tea drinkers as compared to non-tea drinkers, suggesting tea may be a significant source of exposure in Canada. The rate of increase in fluorine content

  1. Chronic Alcohol Abuse Leads to Low Bone Mass with No General Loss of Bone Structure or Bone Mechanical Strength

    DEFF Research Database (Denmark)

    Ulhøi, Maiken Parm; Meldgaard, Karoline; Steiniche, Torben

    2017-01-01

    Chronic alcohol abuse (CAA) has deleterious effects on skeletal health. This study examined the impact of CAA on bone with regard to bone density, structure, and strength. Bone specimens from 42 individuals with CAA and 42 individuals without alcohol abuse were obtained at autopsy. Dual-energy X......-ray absorptiometry (DEXA), compression testing, ashing, and bone histomorphometry were performed. Individuals with CAA had significantly lower bone mineral density (BMD) in the femoral neck and significantly lower bone volume demonstrated by thinner trabeculae, decreased extent of osteoid surfaces, and lower mean...... wall thickness of trabecular osteons compared to individuals without alcohol abuse. No significant difference was found for bone strength and structure. Conclusion: CAA leads to low bone mass due to a decrease in bone formation but with no destruction of bone architecture nor a decrease in bone...

  2. Radionuclide bone imaging in spondylolysis of the lumbar spine in children

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, M.J.; Strife, J.L.; Kereiakes, J.G.

    1981-07-01

    Bone scintigraphy and radiography were performed in seven children with back pain. Six of the children with radiographic evidence of a pars interarticularis defect also had abnormal scintigrams. Increased uptake of the bone imaging agent occurred at six of the ten sites of radiographic pars interarticularis defects, implying increased bone metabolic activity. However, the location of scintigraphic abnormalities did not correspond to the location of radiographic abnormalities in several cases. Possible explanations for the discordant findings are: (a) normal bone metabolism at the site of an old spondylolysis and (b) radiographically inapparent stress fractures. Measurements of absorbed radiation dose indicate that plain radiography, including oblique views where appropriate, has a lower absorbed radiation dose than scintigraphy or tomography and should be performed prior to these studies.

  3. Evaluation of unilateral cleft lip and palate using anthropometry measurements post-alveolar bone grafting

    Science.gov (United States)

    Simorangkir, H. J.; Hak, M. S.; Tofani, I.

    2017-08-01

    Rehabilitation of patients with unilateral cleft lip and palate (UCLP) requires multiple steps and coordination of multidisciplinary sciences to produce optimal results. Alveolar bone-grafting (ABG) is an important procedure in the treatment of such patients because it influences the eruption of teeth and stabilizes the maxilla. To evaluate the effect and suitability of alveolar bone grafting procedure at Cleft Center Harapan Kita Maternal and Child Hospital on nasal deformity from anthropometry with photogrammetry and aesthetic proportional in patients with unilateral cleft lip and palate with UCLP. Patients with UCLP were evaluated post-ABG using anthropometry and photogrammetry to investigate the results anteriorly, laterally, and basally. Anthropometric measurements taken photogrammetrically used 14 points and 11 distance items. Evaluations were made of upper lip length, upper lip projection, and nostril sill elevation for both the cleft and non-cleft sides of patients’ faces. A t-test showed that the values for upper lip length and projection were significantly increased, and a correction test using a Fisher exam gave a value of 1. The ABG treatment protocol for patients with UCLP at the Cleft Lip and Palate Unit at Harapan Kita Maternal and Child Hospital is suitable to be performed; it aesthetically satisfies patients and their families.

  4. Bone position emission tomography with or without CT Is more accurate than bone scan for detection of bone metastasis

    International Nuclear Information System (INIS)

    Lee, Soo Jin; Lee, Wom Woo; Kim, Sang Eun

    2013-01-01

    Na1 8F bone positron emission tomography (bone PET) is a new imaging modality which is useful for the evaluation of bone diseases. Here, we compared the diagnostic accuracies between bone PET and bone scan for the detection of bone metastasis (BM). Sixteen cancer patients (M:F = 10:6, mean age = 60 ± 12 years) who underwent both bone PET and bone scan were analyzed. Bone PET was conducted 30 minutes after the injection of 370 MBq Na1 8F , and a bone scan was performed 3 hours after the injection of 1295 MBq 9 9mT c-hydroxymethylene diphosphonate. In the patient-based analysis (8 patients with BM and 8 without BM), the sensitivities of bone PET (100% 8/8) and bone scan (87.5% = 7/8) were not significantly different (p > 0.05), whereas the specificity of bone PET (87.5% = 7/8) was significantly greater than that of the bone scan (25% = 2/8) (p 8F bone PET is more accurate than bone scan for BM evaluation.

  5. The effect of calcium and magnesium supplementation on performance and bone strength of broiler chickens

    Directory of Open Access Journals (Sweden)

    Filip Karásek

    2017-01-01

    Full Text Available Aim of the experiment was evaluation of the effect of reduced calcium and magnesium content in the broiler chickens diet on its parameters of fattening, bone strength and calcium and magnesium content in liver. The trial was performed with cockerels of Ross 308 hybrid (n = 160 which were fattened in cage batteries from day 11th to 36th day of age. Cockerels were divided into 4 groups (differ in various intake levels of calcium and magnesium in four replications. The maize-wheat-soybean basal diet contained 2.33 g Ca and 1.58 g Mg per kilogram. Calcium was added by CaCO3 and magnesium by MgSO4. Control group (C received feed mixture with added CaCO3 in dose of 19.49 g.kg-1 and 0.41 g.kg-1 of MgSO4. Three experimental groups contain added CaCO3 in dose of 11.83 g.kg-1 and 0 g.kg-1 MgSO4 (group Exp1; CaCO3 11.83 g.kg-1 and 0.41 g.kg-1 MgSO4 (group Exp2; CaCO3 19.49 g.kg-1 and 0 g.kg-1 MgSO4 (group Exp3, respectively. The feed consumption was daily monitored and the cockerels were weighed twice a week. At the end of the study the experimental animals were weighted and slaughtered by decapitation. The weight of carcasses, liver and proportion of breast and thigh muscle was determined in the selected chickens (n = 24. The atomic absorption spectrometry was used for Ca and Mg evaluation in liver tissues. Bone strength parameter was measured at the femur bone. The statistically significant differences (p >0.05 were not detected between control and experimental groups in the case of studied parameters of fattening, bone strength and calcium and magnesium content in the chicken´s liver. Based on the obtained results it could be concluded the reduction of determined elements in the chicken diet did not deteriorate parameters of yield, elements content in liver tissue as well as the bone strength of broiler chickens. Normal 0 21 false false false CS X-NONE X-NONE

  6. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    Science.gov (United States)

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  7. Micro-computerised tomography optimisation for the measurement of bone mineral density around titanium dental implants

    International Nuclear Information System (INIS)

    Park, C.; Swain, M.; Duncan, W.

    2010-01-01

    Titanium dental implants (screws) are commonly used to replace missing teeth by forming a biological union with bone ('osseointegration'). Micro-computerised tomography (μCT) may be useful for measuring bone mineral density around dental implants. Major issues arise because of various artefacts that occur with polychromatic X-rays associated bench type instruments that may compromise interpretation of the observations. In this study various approaches to minimise artefacts such as; beam hardening, filtering and edge effects are explored with a homogeneous polymeric material, Teflon, with and without an implant present. The implications of the limitations of using such polychromatic μCT systems to quantify bone mineral density adjacent to the implant are discussed. (author)

  8. [Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].

    Science.gov (United States)

    Vattimo, A; Martini, G; Pisani, M

    1983-05-30

    Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.

  9. Reproducibility of DXA measurements of bone mineral density and body composition in children

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Cheryl M.; Roza, Melissa A.; Webber, Colin E. [Hamilton Health Sciences, Department of Nuclear Medicine, Hamilton, ON (Canada); Barr, Ronald D. [McMaster Children' s Hospital, Hamilton, ON (Canada)

    2009-02-15

    The technique of X-ray-based dual photon absorptiometry (DXA) is frequently used in children for the detection of changes in bone mass or body composition. Such changes can only be considered real if the uncertainties arising from the measurement technique are exceeded. Our objectives were twofold: (1) to determine the reproducibility of bone mineral density (BMD) measurements in children at the spine and the hip and from the whole body, as well as of whole-body measurements of mineral mass, lean body mass and fat mass in children; and (2) to estimate, from the measured precision, the time interval that needs to elapse before a statistically significant change in a DXA variable can be detected. The reproducibility of techniques for the measurement of BMD and body composition using DXA was measured in 15 young children (9 girls and 6 boys) and 17 older children (9 girls and 8 boys). Reproducibility was derived from the standard deviation of three repeated measurements of spine BMD, total hip BMD, whole-body BMD (WBBMD), whole-body bone mineral content (WBBMC), lean mass and fat mass. Technique precision was better than 0.01 g cm{sup -2} for spine BMD and for WBBMD. Hip BMD measurements were slightly less precise, particularly in younger children (0.013 g cm{sup -2}). For body composition variables, technique precision was 13 g for WBBMC, 201 g for lean body mass and 172 g for fat mass in younger children. Technique precision for older children was 18 g, 251 g and 189 g for the corresponding variables. Predictions showed that the absence of a normal increase in WBBMC in a small-for-age girl could be established after 12 months. For spine BMD, a significant increase should be observable after 6 months for boys over the age of 11 years. For younger boys, more than 12 months has to elapse before anticipated changes can be detected with confidence. The time intervals required to elapse before decisions can be made concerning the significance of observed differences

  10. Reproducibility of DXA measurements of bone mineral density and body composition in children

    International Nuclear Information System (INIS)

    Leonard, Cheryl M.; Roza, Melissa A.; Webber, Colin E.; Barr, Ronald D.

    2009-01-01

    The technique of X-ray-based dual photon absorptiometry (DXA) is frequently used in children for the detection of changes in bone mass or body composition. Such changes can only be considered real if the uncertainties arising from the measurement technique are exceeded. Our objectives were twofold: (1) to determine the reproducibility of bone mineral density (BMD) measurements in children at the spine and the hip and from the whole body, as well as of whole-body measurements of mineral mass, lean body mass and fat mass in children; and (2) to estimate, from the measured precision, the time interval that needs to elapse before a statistically significant change in a DXA variable can be detected. The reproducibility of techniques for the measurement of BMD and body composition using DXA was measured in 15 young children (9 girls and 6 boys) and 17 older children (9 girls and 8 boys). Reproducibility was derived from the standard deviation of three repeated measurements of spine BMD, total hip BMD, whole-body BMD (WBBMD), whole-body bone mineral content (WBBMC), lean mass and fat mass. Technique precision was better than 0.01 g cm -2 for spine BMD and for WBBMD. Hip BMD measurements were slightly less precise, particularly in younger children (0.013 g cm -2 ). For body composition variables, technique precision was 13 g for WBBMC, 201 g for lean body mass and 172 g for fat mass in younger children. Technique precision for older children was 18 g, 251 g and 189 g for the corresponding variables. Predictions showed that the absence of a normal increase in WBBMC in a small-for-age girl could be established after 12 months. For spine BMD, a significant increase should be observable after 6 months for boys over the age of 11 years. For younger boys, more than 12 months has to elapse before anticipated changes can be detected with confidence. The time intervals required to elapse before decisions can be made concerning the significance of observed differences between

  11. Development and design of a bone-equivalent cortical shell phantom to determine accuracy measures on DXA and PQCT scanners

    International Nuclear Information System (INIS)

    Khoo, B.C.C.; Beck, T.J. Johns; Turk, B.; Price, R.I.

    2004-01-01

    Full text: Hip Structural Analysis (HSA), is an algorithm that computes bone-structural geometry from dual energy X-ray absorptiometry (DXA) derived hip images and may be used in a complementary manner to DXA areal bone mineral density (BMD) for bone strength interpretation. DXA is normally used to facilitate the diagnosis and management of bone metabolic diseases such as osteoporosis. HSA provides a biomechanical interpretation of BMD, using its mass profiles to compute cross-sectional structural geometry. In essence, HSA provides insight into bone structural and biomechanical properties, particularly of long bones, which BMD alone cannot. While conventional (vendor-provided) phantoms calibrate DXA machines for densitometric precision, analogous phantoms for calibrating structural geometry are lacking. This paper describes the design and preliminary testing of a densitometric bone-equivalent cylindrical phantom with 'cortical' shells and 'cancellous' core, and the use of this phantom to do a performance test of structural geometry variables such as cortical thickness, bone width and section modulus derived, from pQCT and DXA scan data. Powdered calcium-sulphate (CSC) was water-mixed in vacuum and cured. This mixture exhibited hydroxyapatite-like DXA photon-attenuation properties with density monotonically related to added water-mass. Its mass and BMD maintained temporal stability (CV%=0.03%, n=4 specimens over 321 d). Using CSC designed for a BMD=1.04g/cm, (for plate-thickness 10mm), a cylindrical phantom with cortical shell thicknesses of 0.5, 1.0, 2.0, 4.0mm, an acrylic-based internal core diameter of 26mm, and an acrylic surrounding 'soft-tissue' were constructed. The phantom was scanned using a DXA scanner (Hologic QDRl000W) and pQCT (Stratec XCT2000, pixel resolution 0.15mm). Selected cortical structural-geometric variables, derived from calculated geometry; pQCT mass-projections, and DXA HSA. In conclusion, dimensions of this novel cortical-shell phantom

  12. Measurements of Sr/Ca in bones to evaluate differences in temperature

    International Nuclear Information System (INIS)

    Santos, P.R.; Added, N.; Aburaya, J.H.; Rizzutto, M.A.

    2008-01-01

    Analysis of aragonite from sea shells and coral skeletons showed a clear correlation between the strontium and calcium concentrations for these crystals (Sr/Ca ratio) and seawater temperature obtained by satellites and ship readings. In this work we present the results of a study that correlates Sr/Ca ratio with formation temperature of another calcium crystal, the hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), main mineral compound of teeth and bones from vertebrates. These animals, independent of its thermoregulation pattern (endothermic or ectothermic) have variations of internal temperature along the body. One interesting application of this work is to differentiate warm-blooded animals from cold-blooded ones just by measuring Sr/Ca ratio in their bones. Bones from a crocodile from Caiman yacare species and two dogs, a poodle and a non defined race, were analyzed using PIXE technique and thick target correction. A 1.78 (18) MeV external proton beam was used in LAMFI-USP with an accumulated charge of about 10 μC for probing the samples. Emitted X-rays were collected using Si-PIN detectors (140 keV for Fe). As in coral skeletons, the Sr/Ca ratio of animals is lower in the body's warmer parts and higher in colder parts

  13. Measurements of Sr/Ca in bones to evaluate differences in temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, P.R. [IFUSP, Travessa R da rua do Matao 187, Cidade Universitaria, CEP 05508-970, Sao Paulo, SP (Brazil); Added, N. [IFUSP, Travessa R da rua do Matao 187, Cidade Universitaria, CEP 05508-970, Sao Paulo, SP (Brazil)], E-mail: nemitala@dfn.if.usp.br; Aburaya, J.H.; Rizzutto, M.A. [IFUSP, Travessa R da rua do Matao 187, Cidade Universitaria, CEP 05508-970, Sao Paulo, SP (Brazil)

    2008-04-15

    Analysis of aragonite from sea shells and coral skeletons showed a clear correlation between the strontium and calcium concentrations for these crystals (Sr/Ca ratio) and seawater temperature obtained by satellites and ship readings. In this work we present the results of a study that correlates Sr/Ca ratio with formation temperature of another calcium crystal, the hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), main mineral compound of teeth and bones from vertebrates. These animals, independent of its thermoregulation pattern (endothermic or ectothermic) have variations of internal temperature along the body. One interesting application of this work is to differentiate warm-blooded animals from cold-blooded ones just by measuring Sr/Ca ratio in their bones. Bones from a crocodile from Caiman yacare species and two dogs, a poodle and a non defined race, were analyzed using PIXE technique and thick target correction. A 1.78 (18) MeV external proton beam was used in LAMFI-USP with an accumulated charge of about 10 {mu}C for probing the samples. Emitted X-rays were collected using Si-PIN detectors (140 keV for Fe). As in coral skeletons, the Sr/Ca ratio of animals is lower in the body's warmer parts and higher in colder parts.

  14. Differential diagnosis of metastases in bone scans: chemotherapy induced bone necrosis

    International Nuclear Information System (INIS)

    Reuland, P.

    1999-01-01

    Aim: Influenced by the incorrect diagnosis of a bone metastasis caused by bone necrosis we evaluated reasons and frequency of bone necrosis in patients referred for bone scanning in follow-up of tumors. Methods: Bone scans performed within two years on patients with primary bone tumors or tumors metastatic to bone were reviewed in respect to the final diagnosis bone necrosis. Results: We found the cases of three young patients who presented the appearance of hot spots on bone scintigrams which were finally diagnosed as bone necrosis. In two cases the diagnosis was based on histological findings, in one case the diagnosis was made evident by follow-up. All the three patients had been treated by chemotherapy and presented no other reason for the development of bone necrosis. Enhanced tracer uptake in all sites decreased within eight weeks up to two years without therapy. Conclusion: Single and multiple hot spots after chemotherapy may be originated by bone necrosis but mimikry metastases. (orig.) [de

  15. Bone density as a marker for local response to radiotherapy of spinal bone metastases in women with breast cancer: a retrospective analysis

    International Nuclear Information System (INIS)

    Foerster, Robert; Eisele, Christian; Bruckner, Thomas; Bostel, Tilman; Schlampp, Ingmar; Wolf, Robert; Debus, Juergen; Rief, Harald

    2015-01-01

    We designed this study to quantify the effects of radiotherapy (RT) on bone density as a local response in spinal bone metastases of women with breast cancer and, secondly, to establish bone density as an accurate and reproducible marker for assessment of local response to RT in spinal bone metastases. We retrospectively assessed 135 osteolytic spinal metastases in 115 women with metastatic breast cancer treated at our department between January 2000 and January 2012. Primary endpoint was to compare bone density in the bone metastases before, 3 months after and 6 months after RT. Bone density was measured in Hounsfield units (HU) in computed tomography scans. We calculated mean values in HU and the standard deviation (SD) as a measurement of bone density before, 3 months and 6 months after RT. T-test was used for statistical analysis of difference in bone density as well as for univariate analysis of prognostic factors for difference in bone density 3 and 6 months after RT. Mean bone density was 194.8 HU ± SD 123.0 at baseline. Bone density increased significantly by a mean of 145.8 HU ± SD 139.4 after 3 months (p = .0001) and by 250.3 HU ± SD 147.1 after 6 months (p < .0001). Women receiving bisphosphonates showed a tendency towards higher increase in bone density in the metastases after 3 months (152.6 HU ± SD 141.9 vs. 76.0 HU ± SD 86.1; p = .069) and pathological fractures before RT were associated with a significantly higher increase in bone density after 3 months (202.3 HU ± SD 161.9 vs. 130.3 HU ± SD 129.2; p = .013). Concomitant chemotherapy (ChT) or endocrine therapy (ET), hormone receptor status, performance score, applied overall RT dose and prescription of a surgical corset did not correlate with a difference in bone density after RT. Bone density measurement in HU is a practicable and reproducible method for assessment of local RT response in osteolytic metastases in breast cancer. Our analysis demonstrated an excellent local response within

  16. Quantitation of mandibular ramus volume as a source of bone grafting.

    Science.gov (United States)

    Verdugo, Fernando; Simonian, Krikor; Smith McDonald, Roberto; Nowzari, Hessam

    2009-10-01

    When alveolar atrophy impairs dental implant placement, ridge augmentation using mandibular ramus graft may be considered. In live patients, however, an accurate calculation of the amount of bone that can be safely harvested from the ramus has not been reported. The use of a software program to perform these calculations can aid in preventing surgical complications. The aim of the present study was to intra-surgically quantify the volume of the ramus bone graft that can be safely harvested in live patients, and compare it to presurgical computerized tomographic calculations. The AutoCAD software program quantified ramus bone graft in 40 consecutive patients from computerized tomographies. Direct intra-surgical measurements were recorded thereafter and compared to software data (n = 10). In these 10 patients, the bone volume was also measured at the recipient sites 6 months post-sinus augmentation. The mandibular second and third molar areas provided the thickest cortical graft averaging 2.8 +/- 0.6 mm. The thinnest bone was immediately posterior to the third molar (1.9 +/- 0.3 mm). The volume of ramus bone graft measured by AutoCAD averaged 0.8 mL (standard deviation [SD] 0.2 mL, range: 0.4-1.2 mL). The volume of bone graft measured intra-surgically averaged 2.5 mL (SD 0.4 mL, range: 1.8-3.0 mL). The difference between the two measurement methods was significant (p AutoCAD software program did not overestimate the volume of bone that can be safely harvested from the mandibular ramus.

  17. Muscular strength measurements indicate bone mineral density loss in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Zhou Z

    2013-10-01

    Full Text Available Zhixiong Zhou,1,2 Lu Zheng,3 Dengyun Wei,4 Ming Ye,3 Xun Li2 1School of Physical Education and Coaching Science, Capital University of Physical Education and Sports, Beijing, People’s Republic of China; 2Graduate School, Beijing Sport University, Beijing, People’s Republic of China; 3School of Kinesiology and Health Education, Capital University of Physical Education and Sports, Beijing, People’s Republic of China; 4Department of Physical Education, Anhui Normal University, Anhui, People’s Republic of China Background: The literature is inconsistent and inconclusive on the relationship between bone mineral density (BMD and muscular strength in postmenopausal women. Objective: To evaluate the relationship between isokinetically and isometrically determined muscle strength and BMD in postmenopausal women of different age groups. Methods: Healthy postmenopausal women (n = 293; mean age, 54.22 ± 3.85 years were enrolled in this study. They were grouped by age according to World Health Organization life expectancy: 45–50 years, 51–53 years, 54–56 years, 57–59 years, and 60–64 years. Total BMD, L2–4 BMD, and femoral neck BMD were measured by dual-energy X-ray bone densitometry; isokinetic and isometric muscle strength of the right hip and trunk muscles were measured during contractile exercise. Stepwise regression analysis was used to examine the relationships between BMD and strength measures, controlling for subject age and years since menopause. Results: Results of stepwise regression showed that hip extensor and flexor strength at 120°/second and back extend strength at 30°/second accounted for 26% total BMD variance among menopausal subjects, 19% L2–4 BMD variance, and 15% femoral neck BMD variance; in postmenopausal women of different age groups, hip extensor and flexor strength at 120°/second and back extend strength at 30°/second accounted for 25%–35% total BMD variance. Conclusion: Different optimal strength

  18. Critical assessment of bone scan quantitation (bone to soft tissue ratios) in the diagnosis of metabolic bone disease

    Energy Technology Data Exchange (ETDEWEB)

    Fogelman, I.; Gordon, D.; Bessent, R.G.

    1981-03-01

    Accurate quantitation from the bone scan image of skeletal uptake of radiopharmaceutical would be of value in the assessment of patients with metabolic bone disease. Repeat measurements of bone to soft tissue (B/ST) ratios on the one set of images were made for 103 subjects, a) by the same observer using lumbar vertebra 2 for the area of bone; b) by the same observer using lumbar vertebra 2 then lumbar vertebra 4; c) by two observers both using lumbar vertebra 2. The median difference between repeat measurements by the same observer was well under 1% but the 5-95 percentile range was -13 to +14%. Between the two observers there was a median difference of 10.6% with a 5-95 percentile range of -11 to +44%. We also measured B/ST ratios in 150 control subjects and 139 patients with various metabolic bone disorders. While statistically significant differences for B/ST ratios were found between the osteomalacia, renal osteodystrophy, Paget's groups, and the control population (P < 0.001 in all cases), there was appreciable overlap between individual patient results and the control range. It is concluded, therefore, that measurement of B/ST ratios for the individual is of limited value in clinical practice.

  19. Biophotonics and Bone Biology

    Science.gov (United States)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.

  20. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2017-09-01

    Microscale lacunar-canalicular (L-C) porosity is a major contributor to intracortical bone stiffness variability. In this work, such variability is investigated experimentally using micro hardness indentation tests and numerically using a homogenization scheme. Cross sectional rings of cortical bones are cut from the middle tubular part of bovine femur long bone at mid-diaphysis. A series of light microscopy images are taken along a line emanating from the cross-section center starting from the ring's interior (endosteum) ring surface toward the ring's exterior (periosteum) ring surface. For each image in the line, computer vision analysis of porosity is conducted employing an image segmentation methodology based on pulse coupled neural networks (PCNN) recently developed by the authors. Determined are size and shape of each of the lacunar-canalicular (L-C) cortical micro constituents: lacunae, canaliculi, and Haversian canals. Consequently, it was possible to segment and quantify the geometrical attributes of all individual segmented pores leading to accurate determination of derived geometrical measures such as L-C cortical pores' total porosity (pore volume fraction), (elliptical) aspect ratio, orientation, location, and number of pores in secondary and primary osteons. Porosity was found to be unevenly (but linearly) distributed along the interior and exterior regions of the intracortical bone. The segmented L-C porosity data is passed to a numerical microscale-based homogenization scheme, also recently developed by the authors, that analyses a composite made up of lamella matrix punctuated by multi-inclusions and returns corresponding values for longitudinal and transverse Young's modulus (matrix stiffness) for these micro-sized spatial locations. Hence, intracortical stiffness variability is numerically quantified using a combination of computer vision program and numerical homogenization code. These numerically found stiffness values of the homogenization

  1. Relationship between Bone-Specific Physical Activity Scores and Measures for Body Composition and Bone Mineral Density in Healthy Young College Women.

    Directory of Open Access Journals (Sweden)

    SoJung Kim

    Full Text Available The purpose of this cross-sectional study was to investigate the relationship between bone-specific physical activity (BPAQ scores, body composition, and bone mineral density (BMD in healthy young college women.Seventy-three college women (21.7 ± 1.8 years; 162.1 ± 4.6 cm; 53.9 ± 5.8 kg between the ages of 19 and 26 years were recruited from the universities in Seoul and Gyeonggi province, South Korea. We used dual energy X-ray absorptiometry to measure the lumbar spine (L2-L4 and proximal femur BMD (left side; total hip, femoral neck. The BPAQ scores (past, pBPAQ; current, cBPAQ; total, tBPAQ were used to obtain a comprehensive account of lifetime physical activity related to bone health. We used X-scan plus II instrumentation to measure height (cm, weight (kg, fat free mass (FFM, kg, percent body fat (%, and body mass index (BMI. Participants were asked to record their 24-hour food intake in a questionnaire.There were positive correlations between BPAQ scores and total hip (pBPAQ r = 0.308, p = 0.008; tBPAQ, r = 0.286, p = 0.014 and FN BMD (pBPAQ r = 0.309, p = 0.008; tBPAQ, r = 0.311, p = 0.007, while no significant relationships were found in cBPAQ (p > 0.05. When FFM, Vitamin D intake, cBPAQ, pBPAQ, and tBPAQ were included in a stepwise multiple linear regression analysis, FFM and pBPAQ were predictors of total hip, accounting for 16% (p = 0.024, while FFM and tBPAQ predicted 14% of the variance in FN (p = 0.015. Only FFM predicted 15% of the variance in L2-L4 (p = 0.004. There was a positive correlation between Vitamin D intake and L2-L4 (p = 0.025, but other dietary intakes variables were not significant (p > 0.05.BPAQ-derived physical activity scores and FFM were positively associated with total hip and FN BMD in healthy young college women. Our study suggests that osteoporosis awareness and effective bone healthy behaviors for college women are required to prevent serious bone diseases later in life.

  2. Bone markers during acute burn care: Relevance to clinical practice?

    Science.gov (United States)

    Rousseau, Anne-Françoise; Damas, Pierre; Delanaye, Pierre; Cavalier, Etienne

    2017-02-01

    Bone changes are increasingly described after burn. How bone markers could help to detect early bone changes or to screen burn patients at higher risk of demineralization is still not made clear. We performed an observational study assessing the changes in serum bone markers after moderate burn. Adults admitted in the first 24h following burn extended on >10% body surface area were included. Serum levels of collagen type 1 cross-linked C-telopeptide (CTX), tartrate-resistant acid phosphatase 5b (TRAP), type 1 procollagen N-terminal (P1NP) and bone alkaline phosphatase (b-ALP) were measured at admission and every week during the first month. Data are expressed as median [min-max]. Bone markers were measured in 20 patients: 18 men, 2 women (including one post-menopausal). Age was 46 [19-86] years old, burn surface area reached 15 [7-85] %. Twelve patients completed the study. All biomarkers mainly remained into normal ranges during evolution. A huge variability was observed regarding biomarkers evolution. Patient's evolution was not linear and could fluctuate from a decrease to an increase of blood concentrations. There was not necessarily a consistency between the two formation or the two resorption markers. Variations observed between two consecutive measurements were lesser than the accepted critical difference in almost one third of the cases. Considering available data, role and interest of bone markers in management of burn related bone disease remain unclear. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  3. The effects of boron supplementation of layer diets varying in calcium and phosphorus concentrations on performance, egg quality, bone strength and mineral constituents of serum, bone and faeces.

    Science.gov (United States)

    Küçükyilmaz, K; Erkek, R; Bozkurt, M

    2014-01-01

    1. A 2 × 3 factorial arrangement of treatments was used to investigate the effects of dietary calcium (Ca), phosphorus (P), and supplemental boron (B) (0, 75, and 150 mg/kg) on the performance, egg quality, bone strength, and mineral constituents in bone, serum and faeces. 2. A reduction by 18% in the dietary Ca-P concentration from the recommended levels for the hen strain reduced (P properties did not corroborate the hypothesis that B is a trace element playing an important role in mineral metabolism and bone strength through an interaction with Ca, P and Mg.

  4. A Comparative Study of Quantitative Assessment of Bone Mineral Density of Mandible

    International Nuclear Information System (INIS)

    Park, Won Kyl; Choi, Eui Hwan; Kim, Jae Duk

    1999-01-01

    This study was performed to compare the bone mineral densities measured at mandibular premolar area by copper-equivalent image and hydroxyapatite phantom with those measured at radius by dual energy absorptiometry and to evaluate the clinical usefulness of Digital system with slide scanner, copper-equivalent image, and hydroxyapatite phantom. For experiment, intraoral radiograms of 15 normal subjects ranged from 20 years old to 67 old were taken with copper-step wedge at mandibular premolar area and bone mineral densities calculated by conversion equation to bone mineral density of hydroxyapatite were compared with those measured at radius distal 1/3 area by Hologic QDR-1000. Obtained results as follows: 1) The conversion equation was Y=5.97X-0.25 and its determination coefficient was 0.9967. The coefficient of variation in the measurement of copper-equivalent value ranged from 4% to 8% and showed high reproducibility. 2) The coefficient of variation in the measurement of bone mineral density by the equation ranged from 7% to 8% and showed high reproducibility. 3) The bone mineral densities ranged from 0.35 to 0.79 g/cm 2 at mandibular premolar area. 4) The correlation coefficient between bone mineral densities at mandibular premolar area and those at radius distal 1/3 area was 0.8965. As summary, digital image analyzing system using copper-equivalent image and hydroxyapatite phantom appeared to be clinically useful to measure the bone mineral density at dental area.

  5. Imaging investigation of metabolic and endocrine bone disease of vertebral density

    International Nuclear Information System (INIS)

    Cai Yuezeng; Tian Xiali; Li Jingxue

    2006-01-01

    Objective: To probe vertebral density of metabolic and endocrine bone disease imaging features, characterize the regional distribution of bone trabecular in sandwich spine. Methods: Thirty-six patients who had the bone density abnormality appearance in radiograms were collected in this study. Twelve patients with sandwich spine were performed lumbar CT scan. Thirty-two healthy volunteers as control group were performed lumbar CT scan too. CT values of two groups were measured from different portions of vertebral body, and then were analysed. Twenty two patients were performed dual-energy x-ray absorptiometry (DXA). One patient was performed bone histomorphometry. Results: Abnormal density included decreased and increased density. Decreased density was found in different portions of all patients, which divided into general and regional type. Increased density was obviously in vertebrae, including diffusely increased density and sandwich spine. The mean CT values of superior, middle and inferior portions of sandwich vertebral body were (259.94±18.08), (182.96±34.85), (270.34±19.40) HU. The mean CT values of both superior and inferior portions of sandwich vertebral body were higher than that of control group. The mean CT values of superior and inferior portions of sandwich spine were higher than that of middle portion. The difference of mean CT values between superior and inferior portions had no statistical significance. The difference of CT values among the regions of superior and inferior portions had no statistical significance (F=0.457, 0.462, P>0.05). The difference of CT values among the regions of middle portion had statistical significance(F=4.539, P<0.05). The DXA measurement of sandwich spine showed high, normal and low BMD. Conclusion: The sandwich spine is useful to measure superior and inferior portions of sandwich vertebral body if QCT would be performed. Sandwich spine sign can be used as an imaging index of state evaluation. Increased density in

  6. Comparison of bone densitometry methods in healthy and osteoporotic women

    International Nuclear Information System (INIS)

    Reinbold, W.D.; Dinkel, E.; Genant, H.K.

    1988-01-01

    To compare methods of noninvasive measurement of bone mineral content, 40 healthy early postmenopausal women and 68 postmenopausal women with osteoporosis were studied. The methods included mono- and dual-energy quantitative computed tomography (QCT) and dual-photon absorptiometry (DPA) of the lumbar spine, single-photon absorptiometry (SPA) of the distal third of the radius, and combined cortical thickness (CCT) of the second metacarpal shaft. Lateral thoracolumbar radiographic studies were performed and the spinal fracture index calculated. There was good correlation between QCT and DPA methods in early postmenopausal women and moderate correlation in postmenopausal osteoporotic women. Correlations between spinal measurements (QCT or DPA) and appendicular cortical measurements (SPA or CCT) were moderate in healthy women and poor in osteoporotic women. Measurements resulting from one method were not predictive of measurements obtained by another method for individual patients. The strongest correlation with severity of vertebral fracture was provided by QCT and the weakest by SPA. There was good correlation between single- and dual-energy QCT results. Osteoporotic women and younger healthy women can be distinguished by the measurement of spinal trabecular bone density using QCT, and this method is more sensitive than the measurement of spinal integral bone by DPA or of appendicular cortical bone by SPA or CCT. (orig.) [de

  7. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    International Nuclear Information System (INIS)

    Fränzle, Andrea; Giske, Kristina; Bretschi, Maren; Bäuerle, Tobias; Hillengass, Jens; Bendl, Rolf

    2013-01-01

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approach is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean

  8. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].

    Science.gov (United States)

    Suda, Hiromi Kimura

    2015-10-01

    Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.

  9. The effect of cartilage and bone density of mushroom-shaped, photooxidized, osteochondral transplants: an experimental study on graft performance in sheep using transplants originating from different species

    Directory of Open Access Journals (Sweden)

    Hilbe Monika

    2005-12-01

    Full Text Available Abstract Background Differences in overall performance of osteochondral photooxidized grafts were studied in accordance of their species origin and a new, more rigorous cleansing procedure using alcohol during preparation. Methods Photooxidized mushroom-shaped grafts of bovine, ovine, human and equine origin were implanted in the femoral condyles of 32 sheep (condyles: n = 64. No viable chondrocytes were present at the time of implantation. Grafts were evaluated at 6 months using plastic embedded sections of non-decalcified bone and cartilage specimens. Graft incorporation, the formation of cyst-like lesions at the base of the cartilage junction as well as cartilage morphology was studied qualitatively, semi-quantitatively using a score system and quantitatively by performing histomorphometrical measurements of percentage of bone and fibrous tissue of the original defects. For statistical analysis a factorial analysis of variance (ANOVA- test was applied. Results Differences of graft performance were found according to species origin and cleansing process during graft preparation. According to the score system cartilage surface integrity was best for equine grafts, as well as dislocation or mechanical stability. The equine grafts showed the highest percentage for bone and lowest for fibrous tissue, resp. cystic lesions. The new, more rigorous cleansing process decreased cartilage persistence and overall graft performance. Conclusion Performance of grafts from equine origin was better compared to bovine, ovine and human grafts. The exact reason for this difference was not proven in the current study, but could be related to differences in density of cartilage and subchondral bone between species.

  10. Quantitative measurement of bone mineral contents in patients with senile osteoporosis and chronic renal failure

    International Nuclear Information System (INIS)

    Fukuda, Teruo

    1985-01-01

    Computed tomography using X-ray (XCT) and single photon emission computed tomography (SPECT) using sup(99m)Tc-MDP of the skull were performed in patients with ''senile osteoporosis'' and with chronic renal failure, in order to quantitatively determine bone mineral contents. XCT: In females with postmenopausal osteoporosis (6th decade), the EMI number of frontal bone was significantly low compared with that of control group, of the same age. The EMI number in ''senile osteoporosis'' correlated with the value of serum 25 (OH) D and 1 α - 25 (OH) 2 D. The EMI number in hemodialyzed patients was significantly low compared with that in the control group. On the other hand, the EMI number in non-hemodialyzed chronic renal failure patients showed no significant difference compared with findings in the control group. The EMI number of the frontal bone in patients with partial parathyroidectomy showed a slight rise compared with findings before surgery. Bone scintigram, Bone scan SPECT: Positive scan was seen in patients with long term hemodialysis and increased values of serum Alk-Pase and PTH were often apparent. Scintigraphic improvement in patients with renal osteodystrophy treated with vitamin D 3 showed a good correlation with improvement in serum Alk-Pase values. On SPECT, frontal bone activity in patients with renal osteodystrophy was significantly high compared with that in the control group. In case of renal osteodystrophy treated with partial parathyroidectomy, the frontal bone activity was markedly decreased compared with findings before surgery. (J.P.N.)

  11. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  12. Relationship between bone strength and dual-energy X-ray absorptiometry measurements in pigs

    DEFF Research Database (Denmark)

    Nielsen, Dorte Hald; McEvoy, Fintan; Madsen, M.T.

    2007-01-01

    BMD (1.4 g/cm2, respectively). The results showed a difference in the maximum load, in the stress at maximum load, and stiffness among each BMD group (P ... and extrinsic measures of bone strength and BMD was thus demonstrated. The projected change in each of the variables reported, for a 0.1 /cm2 alteration in BMD (within the BMD range evaluated in this study), is as follows: maximum load, 708 N; stress at maximum load, 50 N/mm2; stiffness, 391.6 N/mm; and elastic...... modulus, 108 N/mm2 (P relationship between BMD and bone strength and indicate that BMD screening can be used in fracture risk assessments in production pigs....

  13. The clinical research of bone scan in patients with fibrous dysplasia of bone

    International Nuclear Information System (INIS)

    Yuan Zhibin; Yu Jianfang; Luo Quanyong; Lu Hankui; Zhu Jifang; Zhu Ruisen

    2002-01-01

    Objective: To study the characteristics of fibrous dysplasia of bone in bone imaging and evaluate the diagnostic value of radionuclide bone scan in fibrous dysplasia of bone. Methods: All 42 cases of fibrous dysplasia of bone patients had radionuclide bone scan performed and compared with other imaging modalities. A retrospective study method was used to analyze the imaging results. Results: Although fibrous dysplasia of bone showed uptake of 99m Tc-MDP in the images, its appearance characteristic was different from those metastatic bone tumors and other bone diseases. Combining with X rays and other imaging modalities can improve the diagnostic accuracy of this disease. Conclusion: Radionuclide bone scan has got certain value in the diagnosis of fibrous dysplasia of bone. Combining with other imaging modality can make up its disadvantage of low specificity

  14. Normal values for bone mineral content measured by dual photon absorptiometry in children

    International Nuclear Information System (INIS)

    Tison, F.; Lecouffe, P.; Rousseau, J.; Marchandise, X.; Ythier, H.

    1990-01-01

    The results of dual photon absorptiometry measurements in 43 normal children are analyzed. Results were correlated with age, body weight, and stature. Reference stature-specific values for bone mineral content in children are proposed. Furthermore, the results show that mineralization continues beyond the end of statural growth [fr

  15. Progression and association with lameness and racing performance of radiographic changes in the proximal sesamoid bones of young Standardbred trotters

    International Nuclear Information System (INIS)

    Grøndahl, A.M.; Gaustad, G.; Engeland, A.

    1994-01-01

    Radiographic examination of the metacarpo- and metatarsophalangeal joints was performed on 753 Standardbred trotters (6-21 months of age): 21 showed obvious changes in 26 proximal sesamoid bones on lateromedial projection. The radiographic changes were divided into 6 different types: (1) irregular abaxial margin (8 horses); (2) enlargement of the sesamoid bone (6 horses); (3) 'fracture' or separate centre of ossification of the apex (4 horses); (4) vertical, non-articular fracture of the plantar part of the sesamoid bone (1 horse); (5) a small bony fragment located in a defect in the apical part of the bone (2 horses); and (6) multiple areas of decreased radiodensity (1 horse). Each horse displayed only one type of radiographic change except for one which possessed those of types 3 and 5. Follow-up radiographic examination of 21 of the 26 affected proximal sesamoid bones at approximately 6-month intervals revealed a reduction in the changes in 13 bones and an unaltered condition in 8. Lameness examination was performed on 16 of the 21 horses at 3 years of age and 14 (87.5%) were observed to be lame, but detected lameness did not seem to be referrable to the sesamoid changes. Earnings after the racing season as 3- and 4-year-old horses showed no differences (P > 0.05) between horses with radiographic changes in the proximal sesamoid bones and those without such changes

  16. Effects of age and loading rate on equine cortical bone failure.

    Science.gov (United States)

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    Science.gov (United States)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  18. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    Science.gov (United States)

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density.

  19. Diagnostic performance of [18F] FDG PET-CT compared to bone scintigraphy for the detection of bone metastases in lung cancer patients

    International Nuclear Information System (INIS)

    RODRIGUES, Margarida; STARK, Hannes; RENDL, Gundula; RETTENBACHER, Lukas; PIRICH, Christian; DATZ, Lidwina; STUDNICKA, Michael

    2016-01-01

    Accurate staging of lung cancer is essential for effective patient management and selection of appropriate therapeutic strategy. The aim of this paper was to compare the value of bone scintigraphy and FDG PET-CT for detecting bone metastases in lung cancer patients and the impact of these modalities in disease staging. One hundred sixty-four lung cancer patients who had undergone both FDG PET-CT and bone scintigraphy within 14 days were included into this study. The analysis of FDG PET-CT and bone scintigraphy was carried out patient- and lesion-based. One hundred twenty-one patients were negative and 43 patients positive for bone metastases. FDG PET-CT found bone metastases in 42/43 patients and bone scintigraphy in 38/43 patients. Sensitivity, specificity and accuracy of FDG PET-CT and bone scintigraphy for detecting bone metastases were 97.7%, 100% and 99.4%, and 87.8%, 97.5% and 94.2%, respectively. FDG PET-CT identified 430 bone metastases and bone scintigraphy 246 bone metastases. Skull was the only region where bone scintigraphy identified more lesions than FDG PET-CT. Based on both scintigraphic modalities disagreement concerning disease stage was found in 3 patients. In conclusion, FDG PET-CT yielded a higher sensitivity, specificity and accuracy than bone scintigraphy for identifying bone metastases in lung cancer patients. FDG PET-CT thus can be recommended for initial staging of lung cancer patients without applying bone scintigraphy for the detection of bone metastases.

  20. Bone formation in cranial, mandibular, tibial and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O

    1995-01-01

    Several studies have suggested that grafts from membranous derived bone (e.g., calvarial grafts) retain their volume better than those from endochondral derived bone (e.g., iliac bone grafts). Increased osteogenesis in grafts of the former type has been offered as the explanation. However, simple...... volume measurements of the recovered grafts do not differentiate between viable and dead bone. We studied fresh syngeneic full-thickness bone grafts from calvaria, mandibula, tibia diaphysis, and iliac bone implanted in the back muscles of young Lewis rats. Bone formation in grafts recovered 3 weeks...... that the anatomical area of harvest is important regarding new bone formation in syngeneic bone grafts. However, the results do not support the contention that better maintenance of volume of calvarial grafts compared with iliac bone grafts is due to enhanced osteogenesis in the former....

  1. Augmented reality in bone tumour resection

    Science.gov (United States)

    Park, Y. K.; Gupta, S.; Yoon, C.; Han, I.; Kim, H-S.; Choi, H.; Hong, J.

    2017-01-01

    Objectives We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143. PMID:28258117

  2. Gender differences in D-aspartic acid content in skull bone.

    Science.gov (United States)

    Torikoshi-Hatano, Aiko; Namera, Akira; Shiraishi, Hiroaki; Arima, Yousuke; Toubou, Hirokazu; Ezaki, Jiro; Morikawa, Masami; Nagao, Masataka

    2012-12-01

    In forensic medicine, the personal identification of cadavers is one of the most important tasks. One method of estimating age at death relies on the high correlation between racemization rates in teeth and actual age, and this method has been applied successfully in forensic odontology for several years. In this study, we attempt to facilitate the analysis of racemized amino acids and examine the determination of age at death on the basis of the extent of aspartic acid (Asp) racemization in skull bones. The specimens were obtained from 61 human skull bones (19 females and 42 males) that underwent judicial autopsy from October 2010 to May 2012. The amount of D-Asp and L-Asp, total protein, osteocalcin, and collagen I in the skull bones was measured. Logistic regression analysis was performed for age, sex, and each measured protein. The amount of D-Asp in the female skull bones was significantly different from that in the male skull bones (p = 0.021), whereas the amount of L-Asp was similar. Thus, our study indicates that the amount of D-Asp in skull bones is different between the sexes.

  3. Large-angle coherent/Compton scattering method for measurement in vitro of trabecular bone mineral concentration

    International Nuclear Information System (INIS)

    Gigante, G.E.; Sciuti, S.

    1985-01-01

    In this paper, experiments and related theoretical deductions on coherent/Compton scattering of 59.5-keV Am241 gamma line by bonelike materials are described. In particular, the authors demonstrate that a photon scattering mineralometer (PSM) can attain the best working conditions when it operates in a backscattering geometry mode. In fact, the large scattering angle they chose, theta = 135 degrees, allowed them to assemble a very compact source-detector device. Further, the relative sensitivity at 135 degrees turns out to be congruent to 1.7 and congruent to 6 times bigger than at 90 degrees and 45 degrees, respectively. The performances of the theta = 135 degrees PSM were experimentally investigated; i.e., in a measuring time of 10(3) s, a congruent to 5% statistical precision for bonelike materials, such as K 2 HPO 4 -water solutions, was obtained. The large-angle PSM device seems to be very promising for trabecular bone mineral density measurements in vivo in peripheral anatomic sites

  4. Total glucosides of paeony prevents juxta-articular bone loss in experimental arthritis

    OpenAIRE

    Wei, Chen Chao; You, Fan Tian; Mei, Li Yu; Jian, Sun; Qiang, Chen Yong

    2013-01-01

    Background Total glucosides of paeony (TGP) is a biologically active compound extracted from Paeony root. TGP has been used in rheumatoid arthritis therapy for many years. However, the mechanism by which TGP prevents bone loss has been less explored. Methods TGP was orally administered for 3?months to New Zealand rabbits with antigen-induced arthritis (AIA). Digital x-ray knee images and bone mineral density (BMD) measurements of the subchondral knee bone were performed before sacrifice. Chon...

  5. Multicellular tumor spheroid interactions with bone cells and bone

    International Nuclear Information System (INIS)

    Wezeman, F.H.; Guzzino, K.M.; Waxler, B.

    1985-01-01

    In vitro coculture techniques were used to study HSDM1C1 murine fibrosarcoma multicellular tumor spheroid (HSDM1C1-MTS) interactions with mouse calvarial bone cells having osteoblastic characteristics and mouse bone explants. HSDM1C1-MTS attached to confluent bone cell monolayers and their attachment rate was quantified. HSDM1C1-MTS interaction with bone cells was further demonstrated by the release of 3 H-deoxyuridine from prelabeled bone cells during coculture with multicellular tumor spheroids. HSDM1C1-MTS-induced cytotoxicity was mimicked by the addition of 10(-5) M prostaglandin E2 (PGE2) to 3 H-deoxyuridine-labeled bone cells. The effects of low (10(-9) M) and high (10(-5) M) concentrations of PGE2 on bone cell proliferation were also studied. Higher concentrations of PGE2 inhibited bone cell proliferation. HSDM1C1-MTS resorbed living explants in the presence of indomethacin, suggesting that other tumor cell products may also participate in bone resorption. HSDM1C1-MTS caused direct bone resorption as measured by the significantly elevated release of 45 Ca from prelabeled, devitalized calvaria. However, the growth of a confluent bone cell layer on devitalized, 45 Ca-prelabeled calvaria resulted in a significant reduction in the amount of 45 Ca released subsequent to the seeding of HSDM1C1-MTS onto the explants. Bone cells at the bone surface may act as a barrier against invasion and tumor cell-mediated bone resorption. Violation of this cellular barrier is achieved, in part, by tumor cell products

  6. Cross-calibration of domestic devices and GE lunar prodigy advance dual-energy X-ray densitometer devices for bone mineral measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Su [Chungbuk Health and Science University, Cheongju (Korea, Republic of); Rho, Young Hoon; Lee, In Ju; Kim, Jung Min [Korea University Graduate School, Seoul (Korea, Republic of); Kim, Kyoung A [CHA Bundang Medical Center, CHA University, Seongnam (Korea, Republic of); Lee, In Ja [Dongnam Health University, Suwon (Korea, Republic of)

    2017-03-15

    Reliable follow-up of bone mineral density (BMD) by dual energy X-ray absorptiometry (DXA) is essential in clinical practice. When there is a difference in the BMD values from DXA systems in the same patient, cross calibration equation is required for the reliable follow-up. Unfortunately, no equation is existed in BMD measure between GE Lunar Prodigy Advance (US, GE Healthcare; LPA) and Osteosys Dexxum T (Korea, Osteosys; ODT) DXA systems. In this study, we evaluate the agreement of BMD values between LPA and ODT and suggest the cross calibration equation using European spine phantom (ESP) with two systems. We performed BMD measurements using ten scans with ESP in each DXA systems. We compared BMD values and calculated cross calibration equation by linear regression analysis. The comparison between the LPA and ODT bone densitometers used the ESP. Compared to the ESP BMD values, ODT underestimated 14.36% and LPA overestimated 12.96%. The average of total BMD measurement values acquired with ODT were 21.44% lower than those from LPA. Cross-calibration equation for LPA and ODT was derived from ESP. We calculated simple cross calibration equation for LPA and ODT DXA systems. Cross-calibration equation is necessary for the reliable follow-up of BMD values in two different systems.

  7. An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2015-09-01

    Full Text Available Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non-ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (T1 and duration (T2 of the backscatter signal of interest (SOI were varied, and the apparent integrated backscatter (AIB, frequency slope of apparent backscatter (FSAB, zero frequency intercept of apparent backscatter (FIAB, and spectral centroid shift (SCS were calculated. The results showed that the SOI selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P10 µs. Moderate positive correlations (|R| up to 0.45, P10 µs. The T2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOI selection and neonatal cancellous bone assessment.

  8. An experimental investigation on thermal exposure during bone drilling.

    Science.gov (United States)

    Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed

    2012-12-01

    This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Bone metabolism following gastric surgery. Microdensitometry and single-photon absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mikio; Yamauchi, Hidemi; Fukushima, Koohei; Sasaki, Iwao; Ouchi, Akio.

    1988-11-01

    The impairment of bone metabolism was investigated in patients who underwent gastrectomy or vagotomy with drainage two or more years ago. Serum biochemical analysis, microdensitometry of the 2nd metacarpal bone, and measurements of bone mineral content of the radius (measured 1/3 distally) using single-photon absorptiometry were performed at follow-up examination. Although serum levels of calcium, phosphorus and alkaline phosphatase were within normal range, alkaline phosphatase levels were slightly for the Billroth II group than for Billroth I. Twenty-eight of 50 gastrectomy cases (56 %), and four of 10 vagotomy cases (40 %) showed pathologically thin bone : microdensitometric (MD) scores were greater than 3. The Billroth II group showed a far higher frequency of greater MD scores than Billroth I. The MD scores showed significant positive relationship with the age at follow-up, but did not correlate well with the length of the postoperative period. Radial bone mineral content (BMC) was lower in patients with Billroth II anastomosis, or with total or proximal gastrectomy, than in those undergoing Billroth I. These results suggest that metabolic bone disorders following gastric surgery can be detected by MD score and BMC of appendicular bones. However, there was not sufficient resolution with these parameters to detect any bone changes in patients treated with active vitamin D/sub 3/.

  10. Dual photon absorptiometry measurement of the lumbar bone mineral content. Methodology - Reproductibility - Normal values

    International Nuclear Information System (INIS)

    Braillon, P.; Duboeuf, F.; Delmas, P.D.; Meunier, P.J.

    1987-01-01

    Measurements were made with a DPA apparatus (Novo Lab 22a) on different phantoms and on volunteers in an attempt to evaluate the system precision. The reproductibility was found in the range of 0.98 to 4.10 % in the case of in vitro measurements, depending on the geometry of the phantoms used, and in the range of 1.6 to 2.94 % for volunteers after repositioning. Secondly, the BMD in the lumbar spine of normal women and normal men was estimated. In control females, the BMD is well fitted to the age by a cubic regression. The maximum value of the BMD is found in this case at the age of 31.5 and the maximum rate of bone loss takes place at 57. Total bone loss between 31.5 and the elderly is about 32 %. In control males, results are more scattered and are represented by a simple linear regression. The average mineral loss between 30 and 80 years is 11.5 % in this area of measurement [fr

  11. Performance of X-ray absorptiometry in post-menopausal vertebral osteoporosis. Discriminant value of vertebral and femoral measurements, fracture threshold, reproducibility. Performances de l'absorptiometrie a rayons X dans l'osteoporose vertebrale post-menopausique

    Energy Technology Data Exchange (ETDEWEB)

    Pouilles, J.M.; Tremollieres, F.; Ribot, C. (Hopital Purpan, 31 - Toulouse (FR))

    1990-12-01

    The aim of this study was to assess the performance of a new bone densitometry technique, X-ray absorptiometry, in vertebral osteoporosis with fracture(s). Vertebral and femoral (neck, Ward's triangle and trochanter) bone density was measured in 60 women with at least one vertebral compression fracture of osteoporotic origin (mean age: 61), 100 controls of the same age and in 40 young adults (mean age: 30). Osteoporosis patients had significantly (p<0.0005) low bone density values in comparison with the young adults. Measurements using the spine and Ward's triangle had the best discriminant values assessed by the ROC (Receiver Operating Characteristics) technique (areas under the curve: 95% and 84% respectively). The fracture threshold was fixed at a vertebral bone density of 0.78 g/cm{sup 2}, this value giving the best compromise between sensitivity (83%) and specificity (95%) with 91% of subjects appropriately classifed. Reproducibility was assessed in the short term in 9 osteoporosis patients. The mean standard deviation of measurements was 0.017 g/cm{sup 2} (coefficient of variation: 2.6%) as compared with 0.010 g/cm{sup 2} (coefficient of variation: 0.8%) in the young adult. These results emphasise the true advance represented by X-ray absorptiometry in the area of bone densitometry, notably in the assessment and monitoring of demineralisation disorders.

  12. Evaluation of 99mTc-MDP bone imaging in bone transplantation

    International Nuclear Information System (INIS)

    Liu Sheng; Lu Bin; Chen Shaoxiong

    1995-01-01

    Radionuclide bone imaging was performed to evaluate bone metabolic activity after transplantation with coral combined autologous red marrow and the single coral group. The result was also compared with histological and X-ray examination. This finding revealed that 99m Tc-MDP concentration in the area of the transplanted bone changed dynamically and reached its maximum in 12 weeks following operation and showed various bone metabolic activities with different grafting materials. Clinical application showed that three phase bone imaging could evaluate the blood supply and activity of growing bone of the graft two months earlier than X-ray examination. It was considered that non-accumulation of 99m Tc-MDP in grafted area was a reliable indication of failure in transplantation one month after operation

  13. Histologic diagnosis of metabolic bone diseases: bone histomorphometry

    Directory of Open Access Journals (Sweden)

    L. Dalle Carbonare

    2011-09-01

    Full Text Available Histomorphometry or quantitative histology is the analysis on histologic sections of bone resorption parameters, formation and structure. It is the only technique that allows a dynamic evaluation of the activity of bone modelling after labelling with tetracycline. Moreover, the new measurement procedures through the use of the computer allow an assessment of bone microarchitecture too. Histomorphometric bone biopsy is a reliable and well-tolerated procedure. Complications are reported only in 1% of the subjects (hematoma, pain, transient neuralgia. Histomorphometry is used to exclude or confirm the diagnosis of osteomalacia. It is employed in the evaluation of bone damage associated with particular treatments (for example, anticonvulsants or in case of rare bone diseases (osteogenesis imperfecta, systemic mastocytosis. It is also an essential approach when clinical, biochemical and other diagnostic data are not consistent. Finally, it is a useful method to understand the pathophysiologic mechanisms of drugs. The bone sample is taken at the level of iliac crest under local anesthesia. It is then put into methyl-metacrilate resin where the sections are prepared for the microscopic analysis of the various histomorphometric parameters.

  14. Bone mineral density measurement over the shoulder region

    DEFF Research Database (Denmark)

    Doetsch, A M; Faber, J; Lynnerup, N

    2002-01-01

    values decreased with age (P shoulder BMD levels increased significantly with increased body mass index (BMI) (P positive relationship between the increased hip/shoulder BMD differential with BMI supports the conclusion that the shoulder is subject......The purpose of this study was to (1). establish a method for measuring bone mineral density (BMD) over the shoulder region; (2). compare the relationship between shoulder BMD levels with hip BMD and body mass index (BMI); and (3). discuss the relevance of the shoulder scan as an early indicator...... of osteoporosis compared with hip scans, the latter representing a weight-bearing part of the skeleton. We developed a scanning procedure, including a shoulder fixation device, and determined the most appropriate software in order to establish a reference material with the highest possible precision. Duplicate...

  15. Classification of temporal bone pneumatization based on sigmoid sinus using computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.-J. [Department of Otorhinolaryngology, National Health Insurance Corporation Ilsan Hospital, Seoul (Korea, Republic of); Song, M.H. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of); Kim, J. [Department of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, W.-S. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of); Lee, H.-K. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of)], E-mail: hoki@yuhs.ac

    2007-11-15

    Aim: To analyse several reference structures using axial computed tomography (CT) imaging of the temporal bone, which may reflect pneumatization of the entire temporal bone by statistical correlation to the actual volume of the temporal bone measured using three-dimensional reconstruction. Materials and methods: One hundred and sixteen temporal bones were studied, comprising 48 with normal findings and 68 sides showing chronic otitis media or temporal bone fracture. After measuring the volume of temporal bone air cells by the volume rendering technique using three-dimensional reconstruction images, classification of temporal bone pneumatization was performed using various reference structures on axial images to determine whether significant differences in the volume of temporal bone air cells could be found between the groups. Results: When the sigmoid sinus at the level of the malleoincudal complex was used in the classification, there were statistically significant differences between the groups that correlated with the entire volume of the temporal bone. Grouping based on the labyrinth and the ascending carotid artery showed insignificant differences in volume. Furthermore, there was no significant correlation between the cross-sectional area of the antrum and the entire volume of the temporal bone. Conclusion: The degree of pneumatization of temporal bone can be estimated easily by the evaluation of the air cells around the sigmoid sinus on axial CT images.

  16. Bone marrow evaluation in small cell carcinoma of the lung. [Radiographic and nuclear medical examinations also performed

    Energy Technology Data Exchange (ETDEWEB)

    Giaccone, G.; Ciuffreda, L.; Donadio, M.; Ferrati, P.; Risio, M.; Leria, G.; Bonardi, G.; Calciati, A.

    1987-01-01

    Bone marrow examination is commonly included in the staging of small cell lung carcinoma (SCLC). We reviewed marrow samples of 103 patients. Marrow examination was mainly performed by unilateral or bilateral biopsy of iliac crests, using a Jamshidi needle. Only 6 of 97 evaluable cases (6.2%) were positive for marrow metastases at staging, and in 3 cases (3%) bone marrow was the only metastatic site. No focal metastases were found in additional sections made from the blocks of negative samples. In our experience bone marrow biopsy was of little value in staging SCLC. Bilateral biopsy plus aspirate, with the addition of more sophisticated staining techniques might, however, provide a higher yield of positive marrow involvement.

  17. Local bone pain and osseous scintigraphic findings in patients with metastatic bone tumor

    International Nuclear Information System (INIS)

    Imaeda, Takeyoshi; Iinuma, Gen; Hirota, Keiichi; Inoue, Akemi; Sone, Yasuhiro; Seki, Matsuzo; Suzuki, Masao; Doi, Hidetaka

    1988-01-01

    Local bone pain and osseous scintigraphic findings were evaluated in patients with cancer of the lung, breast or prostate. (1) In 77-92% out of the patients with local pain, metastatic bone lesions were detected. (2) The sacrum and scapulae were the frequent sites of pain as estimated from the metastatic bone lesions. On the other hand, the incidence of pain was low in the ribs, cervical vertebrae, skull and femurs. (3) When calculated by the weight of red bone marrow, the most likely sites for bone metastases consisted of the scapulae, clavicles, sternum, humeri, ribs and cervical vertebrae, somewhat different from previous reports. Those bones involved were all proximate to the heart. (4) Extensive bone metastases were already detected in more than 50% of patients who complain of pain in the metastatic bone lesion. On the other hand, extensive bone metastases occurred in less than 6% of patients who didn't complain of pain. (5) The appearance of pain in the metastatic bone lesion was earlier in only 3% and was later in 71% than the detection of abnormal radioisotope accumulation on scintigram. (6) Majority of the patients with pain in the metastatic bone lesion showed a high degree of abnormal radioisotope accumulation which measured more than 5 cm in diameter on scintigram. On the other hand, the abnormal radioisotope accumulation in most of patients without pain was mild and mostly measured less than 5 cm in diameter. (7) The positive rate of bone metastasis amounted to 29% by plain X-ray and 41% by local bone pain as compaired to positive bone scintigram. (author)

  18. Local bone pain and osseous scintigraphic findings in patients with metastatic bone tumor

    Energy Technology Data Exchange (ETDEWEB)

    Imaeda, Takeyoshi; Iinuma, Gen; Hirota, Keiichi; Inoue, Akemi; Sone, Yasuhiro; Seki, Matsuzo; Suzuki, Masao; Doi, Hidetaka

    1988-12-01

    Local bone pain and osseous scintigraphic findings were evaluated in patients with cancer of the lung, breast or prostate. (1) In 77-92% out of the patients with local pain, metastatic bone lesions were detected. (2) The sacrum and scapulae were the frequent sites of pain as estimated from the metastatic bone lesions. On the other hand, the incidence of pain was low in the ribs, cervical vertebrae, skull and femurs. (3) When calculated by the weight of red bone marrow, the most likely sites for bone metastases consisted of the scapulae, clavicles, sternum, humeri, ribs and cervical vertebrae, somewhat different from previous reports. Those bones involved were all proximate to the heart. (4) Extensive bone metastases were already detected in more than 50% of patients who complain of pain in the metastatic bone lesion. On the other hand, extensive bone metastases occurred in less than 6% of patients who didn't complain of pain. (5) The appearance of pain in the metastatic bone lesion was earlier in only 3% and was later in 71% than the detection of abnormal radioisotope accumulation on scintigram. (6) Majority of the patients with pain in the metastatic bone lesion showed a high degree of abnormal radioisotope accumulation which measured more than 5 cm in diameter on scintigram. On the other hand, the abnormal radioisotope accumulation in most of patients without pain was mild and mostly measured less than 5 cm in diameter. (7) The positive rate of bone metastasis amounted to 29% by plain X-ray and 41% by local bone pain as compaired to positive bone scintigram.

  19. Usefulness of bone scintigraphic classification and quantitative evaluation of bone mineralization with X-CT and SPECT in renal osteodystrophy

    International Nuclear Information System (INIS)

    Okamura, Terue; Fukuda, Teruo; Inoue, Yuuichi; Koizumi, Yoshiko; Ikeda, Hozumi; Ochi, Hironobu

    1987-01-01

    1. Bone scintigraphy with Tc-99m-MDP was performed on 52 patients with chronic renal failure. These bone scintigrams were classified into 4 groups, each of which was correlated to laboratory data and quantitative data of bone mineralization. Group I (32 patients) showed high accumulation of Tc-99m-MDP in the bone. High level of Alk-Pase and c-PTH, low BMC/BW, low EMI number and high radionuclide activity ratio (RN ratio) were observed. Group II (9 patients) demonstrated nuclear bone images with high background activity. RN ratio was slightly higher than the normal. Group III (11 patients) showed extraosseous accumulation of Tc-99m-MDP in the lung, kidney or soft tissues. One patient belonged to Group I. High level of Ca x P product and slightly high RN ratio were observed. In both Group II and III, BMC/BW and EMI number were normal. Group IV (one patient) showed normal skeletal activity on bone scintigram. The mean duration of hemodialysis was the longest in Group I. Our scintigraphic classification is convenient and might contribute an understanding of patho-physiological bone changes in such patients. 2. Subtotal parathyroidectomy (S-PTX) was employed in 18 of 52 patients on chronic renal failure with secondary hyperparathyroidism. These patients were studied before and after S-PTX using 6 different procedures; conventional radiography, microdensitometry, bone mineral analysis, measurement of EMI number with X-CT (frontal bone), bone scintigraphy, and RN ratio (frontal bone/brain) with SPECT. On the bone scan, the diffuse increased activity in the calvarium became less prominent after S-PTX in all 18 patients. We devised a new method to quantify the bone changes revealed by the bone scan; the RN ratio with SPECT. The ratio decreased markedly after surgery. This method seems to be most useful for detecting dynamic bone changes sensitively and quantitatively. (author)

  20. Measurement of elastic modulus and Vickers hardness of surround bone implant using dynamic microindentation--parameters definition.

    Science.gov (United States)

    Soares, Priscilla Barbosa Ferreira; Nunes, Sarah Arantes; Franco, Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa, Darceny; Soares, Carlos José

    2014-01-01

    The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.

  1. Evaluation of the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material

    International Nuclear Information System (INIS)

    Araujo, P.M.; Lima, M.G.; Costa, A.C.; Pallone, E.M.

    2016-01-01

    This study aims to evaluate the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material. To this end, mass CAPs relative to the total weight of Al2O3 prepared Al_2O_3/CAPs using percentage of 0, 10, 20 and 30% composites. The composites characterized were by X-ray diffraction, scanning electron microscopy with scanning. After implanted in rabbit tibia randomly divided were into two groups, each with nine rabbits, according to the euthanasia period (30 days after surgery). After euthanasia was performed radiographic and histological evaluation of the grafted areas. The results confirm that the compounds Al_2O_3/CAPs presented major phase of alumina and the second phase calcium pyrophosphate. Increasing the concentration of CAPs on alumina promoted with a reduction in density and increase in porosity, as well as an increase in grain size and heterogeneity in the microstructure. Upon radiographic examination of the tibiae of the nine (9) rabbits score was observed with grade 3, or similar radiopacity presented by the remaining cortical bone. It shown was that the tibiae of rabbits with the implant showed the presence of foreign material (composite), well delimited with bone formation and bone proliferation around the implants. At the point where the composite in 30 days' time of sacrifice, there was no observable sign of infection was established, since there were observed no cellular infiltration, no rejection of the implant, concluding that the biocompatible composite was studied. (author)

  2. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  3. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    International Nuclear Information System (INIS)

    Shagina, N.B.; Tolstykh, E.I.; Degteva, M.O.; Anspaugh, L.R.; Napier, Bruce A.

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  4. Bias correction by use of errors-in-variables regression models in studies with K-X-ray fluorescence bone lead measurements.

    Science.gov (United States)

    Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard

    2011-01-01

    In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. ITI implants with overdentures: a prevention of bone loss in edentulous mandibles?

    DEFF Research Database (Denmark)

    von Wowern, N; Harder, F; Hjørting-Hansen, E

    1990-01-01

    Changes in the bone mineral content (BMC) of edentulous mandibles with osseointegrated ITI implants supporting overdentures were measured in vivo by dual-photon absorptiometry. The BMC measurements were performed 3 weeks postoperatively and at the 2-year follow-up visit. Measurements were made...

  6. Method and system for in vivo measurement of bone tissue using a two level energy source

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Cameron, J.R.; Judy, P.F.

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content according to the following relationship: I = (I 0 ) exp [(μBM/sup M/BM) - (μST/sup M/ST)] wherein I 0 is the unattentuated intensity of the radiations in the beam, μ is the mass attenuation coefficient, M is mass in g/cm 2

  7. Incidental finding of knee osteoarthritis in bone scans performed in obese patients with neoplasia

    International Nuclear Information System (INIS)

    Regalado R, R.; Morales G, R.; Cano P, R.; Mendoza P, G.; Vidal N, L.

    1996-01-01

    Bone scanning performed in the Nuclear Medicine Center (IPEN-INEN) to patients with neoplastic diagnosis between January 1995 and June 1996, permitted the incidental finding of increased uptake images in the knees of 28 patients associated to an asymptomatic arthropathy: osteoarthritis. The histories and bone scanning of this patients were reviewed obtaining their weight, occupation, symptomatology, neoplastic diagnosis and previous scan diagnosis. Patients under 66 years old, asymptomatic, were included, not presenting secondary focuses, without arthropathia antecedent and with a body mass index equal or above class I. The arthropathy was classified according to the localization of the compromised compartment of the knee. >From the body mass index assessment of every patient it was obtained: Class I=12, Class II=11, Class III=3 and Class IV=1. The predominant localization of the osteoarthritic lesions was the patellar zone. We discuss factors that may influence the absence of symptoms of this disease, the relation obesity-osteoarthritis and the usefulness of bone scanning in the diagnosis of this arthropathy in these patients. (authors). 16 refs., 1 fig., 3 tabs

  8. Evaluation of bone viability in patients after girdlestone arthroplasty: comparison of bone SPECT/CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Diederichs, G.; Collettini, F.; Hamm, B.; Makowski, M.R. [Department of Radiology, Berlin (Germany); Hoppe, P.; Brenner, W. [Department of Nuclear Medicine, Berlin (Germany); Wassilew, G. [Department of Orthopedic Surgery, Berlin (Germany)

    2017-09-15

    To test the diagnostic performance of bone SPECT/CT and MRI for the evaluation of bone viability in patients after girdlestone-arthroplasty with histopathology used as gold standard. In this cross-sectional study, patients after girdlestone-arthroplasty were imaged with single-photon-emission-computed-tomography/computed-tomography (SPECT/CT) bone-scans using 99mTc-DPD. Additionally, 1.5 T MRI was performed with turbo-inversion-recovery-magnitude (TIRM), contrast-enhanced T1-fat sat (FS) and T1-mapping. All imaging was performed within 24 h prior to revision total-hip-arthroplasty in patients with a girdlestone-arthroplasty. In each patient, four standardized bone-tissue-biopsies (14 patients) were taken intraoperatively at the remaining acetabulum superior/inferior and trochanter major/minor. Histopathological evaluation of bone samples regarding bone viability was used as gold standard. A total of 56 bone-segments were analysed and classified as vital (n = 39) or nonvital (n = 17) by histopathology. Mineral/late-phase SPECT/CT showed a high sensitivity (90%) and specificity (94%) to distinguish viable and nonviable bone tissue. TIRM (sensitivity 87%, specificity 88%) and contrast-enhanced T1-FS (sensitivity 90%, specificity 88%) also achieved a high sensitivity and specificity. T1-mapping achieved the lowest values (sensitivity 82%, specificity 82%). False positive results in SPECT/CT and MRI resulted from small bone fragments close to metal artefacts. Both bone SPECT/CT and MRI allow a reliable differentiation between viable and nonviable bone tissue in patients after girdlestone arthroplasty. The findings of this study could also be relevant for the evaluation of bone viability in the context of avascular bone necrosis. (orig.)

  9. Evaluation of bone viability in patients after girdlestone arthroplasty: comparison of bone SPECT/CT and MRI

    International Nuclear Information System (INIS)

    Diederichs, G.; Collettini, F.; Hamm, B.; Makowski, M.R.; Hoppe, P.; Brenner, W.; Wassilew, G.

    2017-01-01

    To test the diagnostic performance of bone SPECT/CT and MRI for the evaluation of bone viability in patients after girdlestone-arthroplasty with histopathology used as gold standard. In this cross-sectional study, patients after girdlestone-arthroplasty were imaged with single-photon-emission-computed-tomography/computed-tomography (SPECT/CT) bone-scans using 99mTc-DPD. Additionally, 1.5 T MRI was performed with turbo-inversion-recovery-magnitude (TIRM), contrast-enhanced T1-fat sat (FS) and T1-mapping. All imaging was performed within 24 h prior to revision total-hip-arthroplasty in patients with a girdlestone-arthroplasty. In each patient, four standardized bone-tissue-biopsies (14 patients) were taken intraoperatively at the remaining acetabulum superior/inferior and trochanter major/minor. Histopathological evaluation of bone samples regarding bone viability was used as gold standard. A total of 56 bone-segments were analysed and classified as vital (n = 39) or nonvital (n = 17) by histopathology. Mineral/late-phase SPECT/CT showed a high sensitivity (90%) and specificity (94%) to distinguish viable and nonviable bone tissue. TIRM (sensitivity 87%, specificity 88%) and contrast-enhanced T1-FS (sensitivity 90%, specificity 88%) also achieved a high sensitivity and specificity. T1-mapping achieved the lowest values (sensitivity 82%, specificity 82%). False positive results in SPECT/CT and MRI resulted from small bone fragments close to metal artefacts. Both bone SPECT/CT and MRI allow a reliable differentiation between viable and nonviable bone tissue in patients after girdlestone arthroplasty. The findings of this study could also be relevant for the evaluation of bone viability in the context of avascular bone necrosis. (orig.)

  10. Performance Measurement und Environmental Performance Measurement

    OpenAIRE

    Sturm, Anke

    2000-01-01

    Die Zielsetzung der vorliegenden Dissertationsschrift besteht in der Entwicklung einer systematisierten Vorgehensweise, eines Controllingmodells, zur unternehmensinternen Umweltleistungsmessung. Das entwickelte Environmental Performance Measurement (EPM)-Modell umfaßt die fünf Stufen Festlegung der Ziele der Umweltleistungsmessung (1. Stufe), Erfassung der Umwelteinflüsse nach der ökologischen Erfolgsspaltung (2. Stufe), Bewertung der Umwelteinflüsse auf der Grundlage des qualitätszielbezogen...

  11. Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma

    DEFF Research Database (Denmark)

    Abildgaard, N; Glerup, H; Rungby, Jørgen

    2000-01-01

    In order to evaluate the use of recently developed assays of bone metabolism in multiple myeloma we performed a histomorphometric study of bone biopsies in 16 myeloma patients. Furthermore, we measured the levels of interleukin-6 (IL-6), soluble IL-6 receptor (IL-6sR), IL-1beta, tumour necrosis f...

  12. Reconstruction of the mandible bone by treatment of resected bone with pasteurization.

    Science.gov (United States)

    Uehara, Masataka; Inokuchi, Tsugio; Sano, Kazuo; Sumita, Yoshinori; Tominaga, Kazuhiro; Asahina, Izumi

    2012-11-01

    The results of long-term follow-up for reimplantation of the mandibular bone treated with pasteurization are reported. Mandibulectomy was performed for mandibular malignancy in 3 cases. The resected bones were subsequently reimplanted after treatment with pasteurization in 3 cases to eradicate tumor cells involved in the resected bone. Although postoperative infection was observed in 2 of 3 cases, reimplantation of the resected mandibular bone treated by pasteurization was finally successful. Ten to 22 years of follow-up was carried out. Pasteurization was able to devitalize tumor cells involved in the resected bone and to preserve bone-inductive activity. Reimplantation of pasteurization could be a useful strategy for reconstruction of the mandible in patients with mandibular malignancy.

  13. Localized in vivo proton spectroscopy of the bone marrow in patients with leukemia

    DEFF Research Database (Denmark)

    Jensen, K E; Jensen, M; Grundtvig, P

    1990-01-01

    Volume selective magnetic resonance (MR) proton spectroscopy was used to investigate the haemopoietic (iliac bone) and fatty bone marrow (tibia) in patients with leukemia and polycythaemia vera. Selective measurements of the relaxation times T1 and T2 for the "water" and "fat" resonances in the b......Volume selective magnetic resonance (MR) proton spectroscopy was used to investigate the haemopoietic (iliac bone) and fatty bone marrow (tibia) in patients with leukemia and polycythaemia vera. Selective measurements of the relaxation times T1 and T2 for the "water" and "fat" resonances...... to chemotherapeutic treatment. Nine patients with polycythaemia vera and 21 normal control subjects were examined with identical methods for comparison. All patients had bone marrow biopsies performed prior to every MR examination. Significant differences could be detected in the spectral patterns from iliac bone...... decrease in marrow fat content. The T1 relaxation times of the "water" resonance in the spectra from the iliac bone marrow of the leukemic patients were significantly prolonged at diagnosis, compared to the normal controls and the patients with polycythaemia vera. After chemotherapeutic induction...

  14. Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements

    International Nuclear Information System (INIS)

    Rajon, D.A.; Shah, A.P.; Watchman, C.J.; Bolch, W.E.; Jokisch, D.W.; Patton, P.W.

    2002-01-01

    Chord-length distributions through the trabecular regions of the skeleton have been investigated since the early 1960s. These distributions have become important features for bone marrow dosimetry; as such, current models rely on the accuracy of their measurements. Recent techniques utilize nuclear magnetic resonance (NMR) microscopy to acquire 3D images of trabecular bone that are then used to measure 3D chord-length distributions by Monte Carlo methods. Previous studies have shown that two voxel effects largely affect the acquisition of these distributions within digital images. One is particularly pertinent as it dramatically changes the shape of the distribution and reduces its mean. An attempt was made to reduce this undesirable effect and good results were obtained for a single-sphere model using minimum acceptable chord (MAC) methods (Jokisch et al 2001 Med. Phys. 28 1493-504). The goal of the present work is to extend the study of these methods to more general models in order to better quantify their consequences. First, a mathematical model of a trabecular bone sample was used to test the usefulness of the MAC methods. The results showed that these methods were not efficient for this simulated bone model. These methods were further tested on a single voxelized sphere over a large range of voxel sizes. The results showed that the MAC methods are voxel-size dependent and overestimate the mean chord length for typical resolutions used with NMR microscopy. The study further suggests that bone and marrow chord-length distributions currently utilized in skeletal dosimetry models are most likely affected by voxel effects that yield values of mean chord length lower than their true values. (author)

  15. Development of bone-lead reference materials for validating in vivo XRF measurements

    International Nuclear Information System (INIS)

    Parsons, P.J.; Zong, Y.Y.; Matthews, M. R.

    1995-01-01

    A number of biological reference materials (RM) have been prepared in our laboratory specifically for validating analytical methods for the determination of Pb in biological matrices (e.g. blood, urine, liver, and bone). The RM's were developed using animal (goats and cows) that are routinely dosed with lead acetate to produce proficiency test samples for blood lead (and erythrocyte protoporphyrin). In cases where an animal becomes injured or infirm, the veterinarian in charge may recommend that the animal be euthanized. In such cases, samples of bone, brain, liver, and other tissues containing lead are removed at autopsy. Currently, we have collected bone samples from nine goats and one cow that were dosed with lead over periods ranging from 1 to 10 years. During the autopsy, the epiphyses (bone joints) are separated from each long bone. Skin, muscle, and other adhering tissues are dissected or scraped from each bone. Bone marrow is also removed. All bare bones are currently stored at -70 degrees C until analyses for Pb are conducted

  16. Bone mineral density in healthy Syrian women measured by dual energy X-ray absorptiometry

    Directory of Open Access Journals (Sweden)

    Bakir Mohamed Adel

    2018-03-01

    Full Text Available Assessment of bone mineral density (BMD using dual energy X-ray absorptiometry (DXA technique is considered as a standard technique for diagnosing osteopenia and osteoporosis and evaluating the severity of such diseases. Numerous studies have demonstrated the necessity to establish an ethnic-specific reference data for Bone mineral density measurements. Such data are lacking for the Syrian population. The objectives of this study are (1 to establish BMD reference values in a group of healthy Syrian women using DXA technique, (2 to compare with values from other populations, (3 to study the prevalence of osteopenia and osteoporosis in Syrian women using the manufacturer reference values. A total of 951 healthy Syrian women aged 20-79 years participated in this study. Weight, height, and BMI have been determined. BMD measurements were performed using Lunar Prodigy Advance System (GE. The data were compared with those from other populations. The results have demonstrated the expected decline in BMD with age after peaking at 30-39 years old group. The peak values of the lumbar spine and femur neck were 1.16 (0.12, and 0.95 (0.13 g/cm2, respectively. The results of the Syrian women were compared with those from other populations and the differences were presented. Osteopenia was diagnosed in 35.80% and 60.31% and osteoporosis in 6.23% and 2.72% in lumbar spine and femur neck, respectively, of women 50-59 years of age. These ratios increased to 36.84%, 68.42% and 23.68%, 13.10%, respectively, in the age group more than 59 years. BMD values of the Syrian women were determined for the first time. The results demonstrate the importance of establishing population-specific reference range for BMD values for an accurate assessment of Osteoporosis. High prevalence of osteopenia and osteoporosis was demonstrated in Syrian using the manufacturer reference values.

  17. Relationships between bone strength and bone quality. Three-dimensional imaging analysis in ovariectomized mice

    International Nuclear Information System (INIS)

    Wakabayashi, Suguru; Sakurai, Takashi; Kashima, Isamu

    2004-01-01

    Low-energy trauma resulting in fractures of the distal femur is often observed in elderly patients with osteoporosis; such fractures are often associated with treatment difficulties and poor prognosis. The purpose of this study was to clarify the factors that affect the bone strength of the distal femur. We used ovariectomized mice to demonstrate bone quality factors associated with deterioration of the strength of the distal femur. Ten-week old ICR-strain mice were ovariectomized or sham-ovariectomized. Total bone mineral density (BMD), total bone area, cortical BMD, cortical thickness, and trabecular BMD were measured by peripheral quantitative computed tomography in the distal metaphyseal region of the femora. As three-dimensional architectural parameters, the trabecular number, trabecular thickness (Tb.Th), trabecular separation, and connectivity density were measured in the same region by micro-computed tomography. The maximum load measured by compression testing of the distal metaphyseal region was regarded as the bone strength of each sample. No significant differences in total bone area or in cortical BMD were found between the groups. Bone strength showed the closest relationship with total BMD (r=0.834). Multiple regression analysis demonstrated that total BMD greatly depended on cortical thickness. The addition of Tb.Th to trabecular BMD markedly reflected bone strength (R=0.857), suggesting that Tb.Th affected bone strength more significantly than trabecular BMD. These findings suggested that deterioration of bone strength of the distal femur (metaphysis) was not caused by a reduction in cortical BMD, but was related to reduced cortical thickness, which reduced total BMD, and to trabecular BMD and architecture, in particular to reduced Tb.Th. (author)

  18. Association between osteocalcin and cognitive performance in healthy older adults

    NARCIS (Netherlands)

    Bradburn, Steven; Mcphee, Jamie S.; Bagley, Liam; Sipila, Sarianna; Stenroth, Lauri; Narici, Marco Vincenzo; Pääsuke, Mati; Gapeyeva, Helena; Osborne, Gabrielle; Sassano, Lorraine; Meskers, Carel G.M.; Maier, Andrea B.; Hogrel, Jean Yves; Barnouin, Yoann; Butler-Browne, Gillian; Murgatroyd, Chris

    2016-01-01

    Introduction: cognitive deterioration and reductions of bone health coincide with increasing age. We examine the relationship between bone composition and plasma markers of bone remodelling with measures of cognitive performance in healthy adults. Methods: this cross-sectional study included 225 old

  19. Roentgenometric reference values in the long bones of the extermities of newborn children

    International Nuclear Information System (INIS)

    Georgiev, I.; Georgieva, P.

    1983-01-01

    Roentgenometric study was performed on 1302 roentgenograms of the long bones of the extremities of newborn children. Maximal lenght and diaphysis lenght of each roentgenographed bone were measured in antero-posterior projection. Careful statistical analysis was made. The referent values were determined. The roentgenometric reference values in the long bones of the extremities of newborn children have gained acceptance in everyday clinical roentgenographic and pediatric practice for differentiation of norm from pathology and in forensic medicine for indentification. (authors)

  20. A theoretical analysis of the accuracy of single-energy CT bone-mineral measurements

    International Nuclear Information System (INIS)

    Crawley, E.O.; Evans, W.D.; Owen, G.M.

    1988-01-01

    A relationship has been derived between the in vivo concentration of calcium hydroxyapatite and the in vitro concentration of K 2 HPO 4 solution in a single-energy quantitative computed tomography (QCT) bone-mineral determination. Under certain simplifying assumptions this relationship is linear. The gradient term has been calculated as a function of scanner effective energy using the measured variation of solvent water density with K 2 HPO 4 concentration; it ranges from 1.17 at 60 keV to 1.21 at 80 keV. The intercept term has been calculated as a function of effective energy, patient age and trabecular bone volume (TBV) by modelling the constituents of whole trabecular bone and using published normal composition data. It varies from about 15 to 25 mg cm -3 at an effective energy of 70 keV and within a TBV range of 5 to 20%. This intercept term may be used as an additive correction which improves the accuracy of single-energy QCT results without significant loss of precision. However, the method is limited by the uncertainties of tissue composition in an individual patient. (author)

  1. Using laser-induced breakdown spectroscopy to assess preservation quality of archaeological bones by measurement of calcium-to-fluorine ratios.

    Science.gov (United States)

    Rusak, David Alexander; Marsico, Ryan Matthew; Taroli, Brett Louis

    2011-10-01

    We determined calcium-to-fluorine (Ca/F) signal ratios at the surface and in the depth dimension in approximately 6000-year-old sheep and cattle bones using Ca I 671.8 and F I 685.6 emission lines. Because the bones had been previously analyzed for collagen preservation quality by measurement of C/N ratios at the Oxford Radiocarbon Accelerator Unit, we were able to examine the correlation between our ratios and quality of preservation. In the bones analyzed in this experiment, the Ca I 671.8/F I 685.6 ratio was generally lower and decreased with successive laser pulses into poorly preserved bones while the ratio was generally higher and increased with successive laser pulses into well-preserved bones. After 210 successive pulses, a discriminator value for this ratio (5.70) could be used to distinguish well-preserved and poorly preserved bones regardless of species. © 2011 Society for Applied Spectroscopy

  2. Bone material strength index as measured by impact microindentation is altered in patients with acromegaly.

    Science.gov (United States)

    Malgo, F; Hamdy, N A T; Rabelink, T J; Kroon, H M; Claessen, K M J A; Pereira, A M; Biermasz, N R; Appelman-Dijkstra, N M

    2017-03-01

    Acromegaly is a rare disease caused by excess growth hormone (GH) production by the pituitary adenoma. The skeletal complications of GH and IGF-1 excess include increased bone turnover, increased cortical bone mass and deteriorated microarchitecture of trabecular bone, associated with a high risk of vertebral fractures in the presence of relatively normal bone mineral density (BMD). We aimed to evaluate tissue-level properties of bone using impact microindentation (IMI) in well-controlled patients with acromegaly aged ≥18 years compared to 44 controls from the outpatient clinic of the Centre for Bone Quality. In this cross-sectional study, bone material strength index (BMSi) was measured in 48 acromegaly patients and 44 controls with impact microindentation using the osteoprobe. Mean age of acromegaly patients (54% male) was 60.2 years (range 37.9-76.5), and 60.5 years (range 39.8-78.6) in controls (50% male). Patients with acromegaly and control patients had comparable BMI (28.2 kg/m 2  ± 4.7 vs 26.6 kg/m 2  ± 4.3, P = 0.087) and comparable BMD at the lumbar spine (1.04 g/cm 2  ± 0.21 vs 1.03 g/cm 2  ± 0.13, P = 0.850) and at the femoral neck (0.84 g/cm 2  ± 0.16 vs 0.80 g/cm 2  ± 0.09, P = 0.246). BMSi was significantly lower in acromegaly patients than that in controls (79.4 ± 0.7 vs 83.2 ± 0.7; P acromegaly after reversal of long-term exposure to pathologically high GH and IGF-1 levels. Our findings also suggest that methods other than DXA should be considered to evaluate bone fragility in patients with acromegaly. © 2017 European Society of Endocrinology.

  3. Validation of a physical activity questionnaire to measure the effect of mechanical strain on bone mass.

    Science.gov (United States)

    Kemper, Han C G; Bakker, I; Twisk, J W R; van Mechelen, W

    2002-05-01

    Most of the questionnaires available to estimate the daily physical activity levels of humans are based on measuring the intensity of these activities as multiples of resting metabolic rate (METs). Metabolic intensity of physical activities is the most important component for evaluating effects on cardiopulmonary fitness. However, animal studies have indicated that for effects on bone mass the intensity in terms of energy expenditure (metabolic component) of physical activities is less important than the intensity of mechanical strain in terms of the forces by the skeletal muscles and/or the ground reaction forces. The physical activity questionnaire (PAQ) used in the Amsterdam Growth and Health Longitudinal Study (AGAHLS) was applied to investigate the long-term effects of habitual physical activity patterns during youth on health and fitness in later adulthood. The PAQ estimates both the metabolic components of physical activities (METPA) and the mechanical components of physical activities (MECHPA). Longitudinal measurements of METPA and MECHPA were made in a young population of males and females ranging in age from 13 to 32 years. This enabled evaluation of the differential effects of physical activities during adolescence (13-16 years), young adulthood (21-28 years), and the total period of 15 years (age 13-28 years) on bone mineral density (BMD) of the lumbar spine, as measured by dual-energy X-ray absorptiometry (DXA) in males (n = 139) and females (n = 163) at a mean age of 32 years. The PAQ used in the AGAHLS during adolescence (13-16 years) and young adulthood (21-28 years) has the ability to measure the physical activity patterns of both genders, which are important for the development of bone mass at the adult age. MECHPA is more important than METPA. The highest coefficient of 0.33 (p PAQ was established by comparing PAQ scores during four annual measurements in 200 boys and girls with two other objective measures of physical activity: movement

  4. Strategic Measures of Teacher Performance

    Science.gov (United States)

    Milanowski, Anthony

    2011-01-01

    Managing the human capital in education requires measuring teacher performance. To measure performance, administrators need to combine measures of practice with measures of outcomes, such as value-added measures, and three measurement systems are needed: classroom observations, performance assessments or work samples, and classroom walkthroughs.…

  5. A feasibility study for measuring fluorine in bone, in-vivo, using neutron activation analysis

    International Nuclear Information System (INIS)

    Chamberlain, M.; McNeill, F.; Aslam; Byun, S.H.

    2008-01-01

    Full text: Skeletal fluorosis is a bone disease which is a result of excessive fluoride ingestion and may cause osteosclerosis, osteoporosis and calcification of tendons and ligaments. Endemic levels of fluorosis are commonly reported in areas of the world with naturally high concentrations of fluoride in the drinking water. However, fluorosis is difficult to medically diagnose, and due to its prevalence, a non-invasive method for measuring the concentration of fluoride in bone is warranted. A feasibility study has been conducted to determine the possibility of measuring fluorine non-invasively in exposed populations using neutron activation analysis. Neutron activation analysis has been used successfully to measure the amount of fluoride in bone biopsy samples. However, measurement of fluorine is challenging, and has not, to our knowledge, previously been attempted in vivo, as the 20 F isotope has the very short half life of 11s. Transfer from activation counting must therefore be fast. For this study, plaster of Paris powder phantoms doped with varying fluoride concentrations were created to simulate a fist. They were irradiated using a low energy neutron beam at McMaster's Tandem Accelerator facility. The 7 Li(p,n) 7 Be reaction was used as the source of neutrons; the Be target was irradiated with an incident proton energy of 2.15MeV. The fluorine was detected via the neutron capture reaction, 19 F(n,γ) 20 F, using two 20 cm x 5 cm NaI detectors. Fluorine emits a gamma ray at 1633 keV upon decay. A calibration curve of peak area versus phantom fluorine content was created and a detection limit of 1.8 mg F/g Ca, with a corresponding dose of approximately 12 mSv to the hand. This data will be presented and the feasibility of measurement discussed in the context of the delivered dose. In addition, results of the investigation of the competing reaction, 23 Na(n,α) 20 F, will be presented. Data illustrating the relative activation and count rates from fluorine

  6. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone

    Directory of Open Access Journals (Sweden)

    Yuchin eWu

    2015-05-01

    Full Text Available Micro-computed tomography images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone micro-architectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived greyscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two and three dimensional bone microarchitecture from sham and ovariectomized (OVX rats (n=10/group. A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA because micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading.

  7. Prediction of the Setting Properties of Calcium Phosphate Bone Cement

    Directory of Open Access Journals (Sweden)

    Seyed Mahmud Rabiee

    2012-01-01

    Full Text Available Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties.

  8. A well-balanced diet combined or not with exercise induces fat mass loss without any decrease of bone mass despite bone micro-architecture alterations in obese rat.

    Science.gov (United States)

    Gerbaix, Maude; Metz, Lore; Mac-Way, Fabrice; Lavet, Cédric; Guillet, Christelle; Walrand, Stéphane; Masgrau, Aurélie; Vico, Laurence; Courteix, Daniel

    2013-04-01

    The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (pdiet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (pdiet had involved a significant lower MS/BS and BFR/BS in L2 (pdiet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    Directory of Open Access Journals (Sweden)

    Freslier Marie

    2011-07-01

    Full Text Available Abstract Background Dynamic three-dimensional (3D deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better

  10. The effect of phytase and fructooligosaccharide supplementation on growth performance, bone quality, and phosphorus utilization in broiler chickens.

    Science.gov (United States)

    Shang, Y; Rogiewicz, A; Patterson, R; Slominski, B A; Kim, W K

    2015-05-01

    An experiment was conducted to investigate the effects of phytase and 2 levels of fructooligosaccharide (FOS) supplementation on growth performance, bone mineralization, and P utilization of broiler chickens. A total of 210 day-old male broiler chickens (Ross) were randomly placed into 7 dietary treatments consisting of 6 replicates with 5 birds per pen. The experiment was designed as an augmented 2 × 3 factorial arrangement with 0 or 500 U/kg of phytase and 0, 0.5% or 1% of FOS added to a reduced Ca (0.8%) and available P (0.25%) negative control diet (NC). A positive control diet (PC) that contained 1% Ca and 0.45% available P was also included. During the entire experimental period, phytase supplementation significantly improved (P Phytase supplementation increased femur BMD (P Phytase alone and in combination with 0.5% FOS increased P utilization significantly when compared with other treatments (P phytase supplementation in low Ca and P diets improved growth performance, bone quality, and P utilization. However, supplementing NC diets with phytase and FOS did not result in bone mineralization values comparable with that of the PC diet. The application of dietary FOS alone had a negative effect on broiler bone quality. © 2015 Poultry Science Association Inc.

  11. Enzymatic maceration of bone

    DEFF Research Database (Denmark)

    Uhre, Marie-Louise; Eriksen, Anne Marie; Simonsen, Kim Pilkjær

    2015-01-01

    and afterwards macerated by one of the two methods. DNA extraction was performed to see the effect of the macerations on DNA preservation. Furthermore, the bone pieces were examined in a stereomicroscope to assess for any bone damage. The results demonstrated that both methods removed all flesh/soft tissue from...... the bones. The DNA analysis showed that DNA was preserved on all the pieces of bones which were examined. Finally, the investigation suggests that enzyme maceration could be gentler on the bones, as the edges appeared less frayed. The enzyme maceration was also a quicker method; it took three hours compared...

  12. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Science.gov (United States)

    Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.

    2014-08-01

    Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  13. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor.

    Science.gov (United States)

    Joeckel, Elke; Haber, Tobias; Prawitt, Dirk; Junker, Kerstin; Hampel, Christian; Thüroff, Joachim W; Roos, Frederik C; Brenner, Walburgis

    2014-02-28

    The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.

  14. Influence of bone density on the cement fixation of femoral hip resurfacing components.

    Science.gov (United States)

    Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael

    2010-08-01

    In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender

    Science.gov (United States)

    Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.

    1996-01-01

    Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non

  16. Ellis van Creveld2 is required for postnatal craniofacial bone development

    Science.gov (United States)

    Badri, Mohammed K.; Zhang, Honghao; Ohyama, Yoshio; Venkitapathi, Sundharamani; Kamiya, Nobuhiro; Takeda, Haruko; Ray, Manas; Scott, Greg; Tsuji, Takehito; Kunieda, Tetsuo; Mishina, Yuji; Mochida, Yoshiyuki

    2016-01-01

    Ellis-van Creveld (EvC) syndrome is a genetic disorder with mutations in either EVC or EVC2 gene. Previous case studies reported that EvC patients underwent orthodontic treatment, suggesting the presence of craniofacial bone phenotypes. To investigate whether a mutation in EVC2 gene causes a craniofacial bone phenotype, Evc2 knockout (KO) mice were generated and cephalometric analysis was performed. The heads of wild type (WT), heterozygous (Het) and homozygous Evc2 KO mice (1-, 3- and 6-week-old) were prepared and cephalometric analysis based on the selected reference points on lateral X-ray radiographs was performed. The linear and angular bone measurements were then calculated, compared between WT, Het and KO and statistically analyzed at each time point. Our data showed that length of craniofacial bones in KO was significantly lowered by ~20% to that of WT and Het, the growth of certain bones, including nasal bone, palatal length and premaxilla was more affected in KO, and the reduction in these bone length was more significantly enhanced at later postnatal time points (3 and 6 weeks) than early time point (1 week). Furthermore, bone-to-bone relationship to cranial base and cranial vault in KO was remarkably changed, i.e. cranial vault and nasal bone were depressed and premaxilla and mandible were developed in a more ventral direction. Our study was the first to show the cause-effect relationship between Evc2 deficiency and craniofacial defects in EvC syndrome, demonstrating that Evc2 is required for craniofacial bone development and its deficiency leads to specific facial bone growth defect. PMID:27090777

  17. Measurement of Trabecular Bone Parameters in Porcine Vertebral Bodies Using Multidetector CT: Evaluation of Reproducibility of 3-Dimensional CT Histomorphometry

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hwan; Goo, Jin Mo [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Moon Kyung Chul [Dept. of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); An, Sang Bu [Dept. of radiology, National Cancer Center, Goyang (Korea, Republic of); Kim, Kwang Gi [Dept. of Biomedical Engineering, Division of Basic and Applied Sciences, National Cancer Center, Goyang (Korea, Republic of)

    2011-05-15

    To evaluate the reproducibility of 3-dimensional histomorphometry for the microarchitecture analysis of trabecular bone parameters using multidetector computed tomography (MDCT). Thirty-six specimens from porcine vertebral bodies were imaged five times with a 64- detector row MDCT system using the same scan protocols. Locations of the specimens were nearly identical through the scans. Three-dimensional structural parameters of trabecular bone were derived from the five data sets using image analyzing software. The features measured by the analysis programs were trabecular bone volume, trabecular bone volume/tissue volume, trabecular thickness, trabecular separation, trabecular number, trabecular bone pattern factor, structural model index. The structural trabecular parameters showed excellent reproducibility through repeated scanning. Intraclass correlation coefficients of all seven structural parameters were in the range of 0.998 to 1.000. Coefficients of variation of the six structural parameters, excluding structural model index, were not over 1.6%. The measurement of the trabecular structural parameters using multidetector CT and three-dimensional histomophometry analysis program was validated and showed excellent reproducibility. This method could be used as a noninvasive and easily available test in a clinical setting.

  18. Comparison of ossification of demineralized bone, hydroxyapatite, Gelfoam, and bone wax in cranial defect repair.

    Science.gov (United States)

    Papay, F A; Morales, L; Ahmed, O F; Neth, D; Reger, S; Zins, J

    1996-09-01

    Demineralized bone allografts in the repair of calvarial defects are compared with other common bone fillers. This study uses a video-digitizing radiographic analysis of calvarial defect ossification to determine calcification of bone defects and its relation to postoperative clinical examination and regional controls. The postoperative clinical results at 3 months demonstrated that bony healing was greatest in bur holes filled with demineralized bone and hydroxyapatite. Radiographic analysis demonstrated calcification of demineralized bone-filled defects compared to bone wax- and Gelfoam-filled regions. Hydroxyapatite granules are radiographically dense, thus not allowing accurate measurement of true bone healing. The results suggest that demineralized bone and hydroxyapatite provide better structural support via bone healing to defined calvarial defects than do Gelfoam and bone wax.

  19. An experimental study on the change of bone mineral metabolism after irradiation

    International Nuclear Information System (INIS)

    Chin, Hae Yun; Lee, Sang Rae

    1988-01-01

    Irradiation is widely used for the treatment of malignant diseases, and possibly cause the osteoporosis. The bone densitometry and bone scintigraphy and valuable when used to monitor the patients longitudinally to access the progression of osteoporosis and risk of osteoradionecrosis. To evaluate the osteoporosis after irradiation of cobalt-60 gamma ray on the lumbar spines of New Zealand white rabbits, bone densitometry by dual photon absorptiometry and bone scintigraphy were performed weekly. The decrease of bone density began at the first week after irradiation, and were in the nadir at 4-6th week. The osteoblastic activity measured by bone scintigraphy decreased in the first week, and was in the nadir at 4-6th week. The severity of these changes were related to the radiation dose. In conclusion, the osteoporosis before presentation of the osteoradionecrosis can be developed at low dose irradiation and confirmed by bone densitometry, bone scanning, and histopathology.

  20. A study of trabecular bone strength and morphometric analysis of bone microstructure from digital radiographic image

    International Nuclear Information System (INIS)

    Han, Seung Yun; Lee, Sun Bok; Oh, Sung Ook; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Kim, Jong Dae

    2003-01-01

    To evaluate the relationship between morphometric analysis of microstructure from digital radiographic image and trabecular bone strength. One hundred eleven bone specimens with 5 mm thickness were obtained from the mandibles of 5 pigs. Digital images of specimens were taken using a direct digital intraoral radiographic system. After selection of ROI(100 x 100 pixel) within the trabecular bone, mean gray level and standard deviation were obtained. Fractal dimension and the variants of morphometric analysis (trabecular area, periphery, length of skeletonized trabeculae, number of terminal point, number of branch point) were obtained from ROI. Punch sheer strength analysis was performed using Instron (model 4465, Instron Corp., USA). The loading force (loading speed 1mm/min) was applied to ROI of bone specimen by a 2 mm diameter punch. Stress-deformation curve was obtained from the punch sheer strength analysis and maximum stress, yield stress, Young's modulus were measured. Maximum stress had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). Yield stress had a negative linear correlation with mean gray level, periphery, fractal dimension and the length of skeletonized trabeculae significantly (p<0.05). Young's modulus had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). The strength of cancellous bone exhibited a significantly linear relationship between mean gray level, fractal dimension and morphometric analysis. The methods described above can be easily used to evaluate bone quality clinically.

  1. Bone mineral content (BMC) of the lumbar vertebrae (L2-L4) measured by quantitative computed tomography (QCT) and dual energy X-ray absorptiometry (DXA) in 21 hemodialysis (HD) patients

    International Nuclear Information System (INIS)

    Takahashi, Nobuyoshi; Suzuki, Tadashi; Sato, Motoaki; Oh, Songchol; Sato, Atsushi; Saito, Hisao; Funyu, Tomihisa.

    1996-01-01

    BMC of lumbar vertebrae (L2-L4) was measured by QCT and DXA in 21 HD patients. The effect of sex, aging, HD duration, postmenopausal years and various blood parameters of bone metabolism on BMC was assessed statistically. BMC showed a good positive correlation not only with DXA and QCT (trabecular and cortical bone), but with QCT (trabecular bone) and QCT (cortical bone). A significant age-related decrease in BMC, particularly by QCT (trabecular bone), was found in both sexes. BMC measured by QCT (trabecular bone) increased with the duration of HD in male patients. A negative relationship between postmenopausal years and BMC measured by QCT (trabecular and cortical bone) was prominent. BMC was not found to be correlated with various blood parameters of bone metabolism. Thus, measurement of BMC (L2-L4) by QCT has the advantage of allowing more precise examination of changes in cortical and trabecular bone. (author)

  2. Fracture risk in unicameral bone cyst. Is magnetic resonance imaging a better predictor than plain radiography?

    Science.gov (United States)

    Pireau, Nathalie; De Gheldere, Antoine; Mainard-Simard, Laurence; Lascombes, Pierre; Docquier, Pierre-Louis

    2011-04-01

    The classical indication for treating a simple bone cyst is usually the risk of fracture, which can be predicted based on three parameters: the bone cyst index, the bone cyst diameter, and the minimal cortical thickness. A retrospective review was carried out based on imaging of 35 simple bone cysts (30 humeral and 5 femoral). The three parameters were measured on standard radiographs, and on T1-weighted and T2-weighted MRI. The measurements were performed by two independent reviewers, and twice by the same reviewer. Kappa values and binary logistic regression were used to assess the ability of the parameters to predict the fracture risk. Inter- and intra-observer agreement was measured. T1-weighted MRI was found to have the best inter- and intraobserver repeatability. The bone cyst index was found to be the best predictor for the risk of fracture.

  3. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study.

    Science.gov (United States)

    Ross, P D; Kress, B C; Parson, R E; Wasnich, R D; Armour, K A; Mizrahi, I A

    2000-01-01

    The aim of this study was to assess the ability of serum bone-specific alkaline phosphatase (bone ALP), creatinine-corrected urinary collagen crosslinks (CTx) and calcaneus bone mineral density (BMD) to identify postmenopausal women who have an increased risk of osteoporotic fractures. Calcaneus BMD and biochemical markers of bone turnover (serum bone ALP and urinary CTx) were measured in 512 community-dwelling postmenopausal women (mean age at baseline 69 years) participating in the Hawaii Osteoporosis Study. New spine and nonspine fractures subsequent to the BMD and biochemical bone markers measurements were recorded over an average of 2.7 years. Lateral spinal radiographs were used to identify spine fractures. Nonspine fractures were identified by self-report at the time of each examination. During the 2.7-year follow-up, at least one osteoporotic fracture occurred in 55 (10.7%) of the 512 women. Mean baseline serum bone ALP and urinary CTx were significantly higher among women who experienced an osteoporotic fracture compared with those women who did not fracture. In separate age-adjusted logistic regression models, serum bone ALP, urinary CTx and calcaneus BMD were each significantly associated with new fractures (odds ratios of 1.53, 1.54 and 1.61 per SD, respectively). Multiple variable logistic regression analysis identified BMD and serum bone ALP as significant predictors of fracture (p = 0.002 and 0.017, respectively). The results from this investigation indicate that increased bone turnover is significantly associated with an increased risk of osteoporotic fracture in postmenopausal women. This association is similar in magnitude and independent of that observed for BMD.

  4. In vivo measurements of the T1 relaxation processes in the bone marrow in patients with myelodysplastic syndrome

    International Nuclear Information System (INIS)

    Jensen, K.E.; Nielsen, H.; Thomsen, C.; Soerensen, P.G.; Karle, H.; Christoffersen, P.; Henriksen, O.; Hvidovre Hospital, Copenhagen; Hvidovre Hospital, Copenhagen

    1989-01-01

    Nine patients with myelodysplastic syndrome (MDS) were examined with magnetic resonance imaging and in vivo T1 relaxation time measurements of the vertebral bone marrow in a 1.5 tesla whole body scanner. Two patients underwent transformation to acute myeloid leukemia and were evaluated at follow-up examinations. At the time of diagnosis the T1 relaxation times of the vertebral bone marrow were significantly prolonged compared with normal values. The T1 relaxation times of the vertebral bone marrow in patients with MDS showed significantly lower values compared with patients with acute leukemia and did not differ from patients with polycythemia vera. (orig.)

  5. Bone shortening of clavicular fractures

    DEFF Research Database (Denmark)

    Thorsmark, A H; Muhareb Udby, P; Ban, I

    2017-01-01

    BACKGROUND: The indication for operative treatment of clavicular fractures with bone shortening over 2 cm is much debated. Correct measurement of clavicular length is essential, and reliable measures of clavicular length are therefore highly requested by clinical decision-makers. The aim of this ......BACKGROUND: The indication for operative treatment of clavicular fractures with bone shortening over 2 cm is much debated. Correct measurement of clavicular length is essential, and reliable measures of clavicular length are therefore highly requested by clinical decision-makers. The aim......-fracture bone lengthening that indicated methodological problems. The Hill et al. and Silva et al. methods had high minimal detectable change, making their use unreliable. CONCLUSION: As all three measurement methods had either reliability or methodological issues, we found it likely that differences...

  6. Bone formation in sinus augmentation procedures using autologous bone, porcine bone, and a 50 : 50 mixture: a human clinical and histological evaluation at 2 months.

    Science.gov (United States)

    Cassetta, Michele; Perrotti, Vittoria; Calasso, Sabrina; Piattelli, Adriano; Sinjari, Bruna; Iezzi, Giovanna

    2015-10-01

    The aim of this study was to perform a 2 months clinical and histological comparison of autologous bone, porcine bone, and a 50 : 50 mixture in maxillary sinus augmentation procedures. A total of 10 consecutive patients, undergoing two-stage sinus augmentation procedures using 100% autologous bone (Group A), 100% porcine bone (Group B), and a 50 : 50 mixture of autologous and porcine bone (Group C) were included in this study. After a 2-month healing period, at the time of implant insertion, clinical evaluation was performed and bone core biopsies were harvested and processed for histological analysis. The postoperative healing was uneventful regardless of the materials used for the sinus augmentation procedures. The histomorphometrical analysis revealed comparable percentages of newly formed bone, marrow spaces, and residual grafted material in the three groups. The clinical and histological results of this study indicated that porcine bone alone or in combination with autologous bone are biocompatible and osteoconductive materials and can be successfully used in sinus augmentation procedures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Evaluation of interference fit and bone damage of an uncemented femoral knee implant.

    Science.gov (United States)

    Berahmani, Sanaz; Hendriks, Maartje; de Jong, Joost J A; van den Bergh, Joop P W; Maal, Thomas; Janssen, Dennis; Verdonschot, Nico

    2018-01-01

    During implantation of an uncemented femoral knee implant, press-fit interference fit provides the primary stability. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much press-fit interference fit is eventually achieved. Five cadaveric femora were prepared and implantation was performed by an experienced surgeon. Micro-CT- and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. Additionally, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions. By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit. Our analysis showed an average cutting error of 0.67mm (SD 0.17mm), which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48mm (SD 0.27mm), which was close to the nominal value of 1.5mm. We observed combinations of bone damage and elastic deformation in all bone specimens, which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation. The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components to achieve adequate primary stability for all patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In vitro evaluation of allogeneic bone screws for use in internal fixation of transverse fractures created in proximal sesamoid bones obtained from equine cadavers.

    Science.gov (United States)

    Sasaki, Naoki; Takakuwa, Jun; Yamada, Haruo; Mori, Ryuji

    2010-04-01

    To evaluate effectiveness of allogeneic bone screws and pins for internal fixation of midbody transverse fractures of equine proximal sesamoid bones (PSBs) in vitro. 14 forelimbs from cadavers of 3-year-old Thoroughbreds. Allogeneic cortical bone fragments were collected from the limbs of a male Thoroughbred, and cortical bone screws were prepared from the tissue by use of a precision desktop microlathe programmed with the dimensions of a metal cortical bone screw. A midbody transverse osteotomy of each PSB was performed by use of a bone-shaping oscillating saw and repaired via 1 of 3 internal fixation techniques: 1 allogeneic bone screw with 1 allogeneic bone pin (type I; n = 6 PSBs), 2 allogeneic bone screws (type II; 8), or 1 stainless steel cortical bone screw (control repair; 6). Mechanical tension measurements were obtained by use of a commercially available materials testing system. Mean +/- SD tensile strength (TS) was 668.3 +/- 216.6 N for type I repairs, 854.4 +/- 253.2 N for type II repairs, and 1,150.0 +/- 451.7 N for control repairs. Internal fixation of PSB fractures by the use of allogeneic bone screws and bone pins was successful. Although mean TS of control repairs with stainless steel cortical bone screws was greater than the mean TS of type I and type II repairs, the difference between type II and control repairs was not significant. Allogeneic screws may advance healing and result in fewer complications in a clinical setting.

  9. Osteoporotic Animal Models of Bone Healing: Advantages and Pitfalls.

    Science.gov (United States)

    Calciolari, Elena; Donos, Nikolaos; Mardas, Nikos

    2017-10-01

    The aim of this review was to summarize the advantages and pitfalls of the available osteoporotic animal models of bone healing. A thorough literature search was performed in MEDLINE via OVID and EMBASE to identify animal studies investigating the effect of experimental osteoporosis on bone healing and bone regeneration. The osteotomy model in the proximal tibia is the most popular osseous defect model to study the bone healing process in osteoporotic-like conditions, although other well-characterized models, such as the post-extraction model, might be taken into consideration by future studies. The regenerative potential of osteoporotic bone and its response to biomaterials/regenerative techniques has not been clarified yet, and the critical size defect model might be an appropriate tool to serve this purpose. Since an ideal animal model for simulating osteoporosis does not exist, the type of bone remodeling, the animal lifespan, the age of peak bone mass, and the economic and ethical implications should be considered in our selection process. Furthermore, the influence of animal species, sex, age, and strain on the outcome measurement should be taken into account. In order to make future studies meaningful, standardized international guidelines for osteoporotic animal models of bone healing need to be set up.

  10. Nanoscale characterization of bone-implant interface and biomechanical modulation of bone ingrowth

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Paul A. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States)]. E-mail: pclark4@gmail.com; Clark, Andrew M. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Rodriguez, Anthony [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Hussain, Mohammad A. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Mao, Jeremy J. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States)]. E-mail: jmao2@uic.edu

    2007-04-15

    Bone-implant interface is characterized by an array of cells and macromolecules. This study investigated the nanomechancial properties of bone-implant interface using atomic force microscopy in vitro, and the mechanical modulation of implant bone ingrowth in vivo using bone histomorphometry. Upon harvest of screw-type titanium implants placed in vivo in the rabbit maxilla and proximal femur for 4 weeks, nanoindentation was performed in the bone-implant interface at 60-{mu}m intervals radially from the implant surface. The average Young's Moduli (E) of the maxillary bone-implant interface was 1.13 {+-} 0.27 MPa, lacking significant differences at all intervals. In contrast, an increasing gradient of E was observed radially from the femur bone-implant interface: 0.87 {+-} 0.25 MPa to 2.24 {+-} 0.69 MPa, representing significant differences among several 60-{mu}m intervals. In a separate experiment, bone healing was allowed for 6 weeks for proximal femur implants. The right femoral implant received axial cyclic loading at 200 mN and 1 Hz for 10 min/d over 12 days, whereas the left femoral implant served as control. Cyclic loading induced significantly higher bone volume, osteoblast numbers per endocortical bone surface, mineral apposition rate, and bone formation rate than controls. These data demonstrate nanoscale and microscale characterizations of bone-implant interface, and mechanical modulation of bone ingrowth surrounding titanium implants.

  11. Nanoscale characterization of bone-implant interface and biomechanical modulation of bone ingrowth

    International Nuclear Information System (INIS)

    Clark, Paul A.; Clark, Andrew M.; Rodriguez, Anthony; Hussain, Mohammad A.; Mao, Jeremy J.

    2007-01-01

    Bone-implant interface is characterized by an array of cells and macromolecules. This study investigated the nanomechancial properties of bone-implant interface using atomic force microscopy in vitro, and the mechanical modulation of implant bone ingrowth in vivo using bone histomorphometry. Upon harvest of screw-type titanium implants placed in vivo in the rabbit maxilla and proximal femur for 4 weeks, nanoindentation was performed in the bone-implant interface at 60-μm intervals radially from the implant surface. The average Young's Moduli (E) of the maxillary bone-implant interface was 1.13 ± 0.27 MPa, lacking significant differences at all intervals. In contrast, an increasing gradient of E was observed radially from the femur bone-implant interface: 0.87 ± 0.25 MPa to 2.24 ± 0.69 MPa, representing significant differences among several 60-μm intervals. In a separate experiment, bone healing was allowed for 6 weeks for proximal femur implants. The right femoral implant received axial cyclic loading at 200 mN and 1 Hz for 10 min/d over 12 days, whereas the left femoral implant served as control. Cyclic loading induced significantly higher bone volume, osteoblast numbers per endocortical bone surface, mineral apposition rate, and bone formation rate than controls. These data demonstrate nanoscale and microscale characterizations of bone-implant interface, and mechanical modulation of bone ingrowth surrounding titanium implants

  12. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  13. Mechanical response tissue analyzer for estimating bone strength

    Science.gov (United States)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  14. Randall Selitto pressure algometry for assessment of bone-related pain in rats.

    Science.gov (United States)

    Falk, S; Ipsen, D H; Appel, C K; Ugarak, A; Durup, D; Dickenson, A H; Heegaard, A M

    2015-03-01

    Deep pain is neglected compared with cutaneous sources. Pressure algometry has been validated in the clinic for assessment of bone-related pain in humans. In animal models of bone-related pain, we have validated the Randall Selitto behavioural test for assessment of acute and pathological bone pain and compared the outcome with more traditional pain-related behaviour measures. Randall Selitto pressure algometry was performed over the anteromedial part of the tibia in naïve rats, sham-operated rats, and rats inoculated with MRMT-1 carcinoma cells in the left tibia, and the effect of morphine was investigated. Randall Selitto measures of cancer-induced bone pain were supplemented by von Frey testing, weight-bearing and limb use test. Contribution of cutaneous nociception to Randall Selitto measures were examined by local anaesthesia. Randall Selitto pressure algometry over the tibia resulted in reproducible withdrawal thresholds, which were dose-dependently increased by morphine. Cutaneous nociception did not contribute to Randall Selitto measures. In cancer-bearing animals, compared with sham, significant differences in pain-related behaviours were demonstrated by the Randall Selitto test on day 17 and 21 post-surgery. A difference was also demonstrated by von Frey testing, weight-bearing and limb use tests. Our results indicate that pressure applied by the Randall Selitto algometer on a region, where the bone is close to the skin, may offer a way to measure bone-related pain in animal models and could provide a supplement to the traditional behavioural tests and a means to study deep pain. © 2014 European Pain Federation - EFIC®

  15. Bone allografting in children

    Science.gov (United States)

    Sadovoy, M. A.; Kirilova, I. A.; Podorognaya, V. T.; Matsuk, S. A.; Novoselov, V. P.; Moskalev, A. V.; Bondarenko, A. V.; Afanasev, L. M.; Gubina, E. V.

    2017-09-01

    A total of 522 patients with benign and intermediate bone tumors of various locations, aged 1 to 15 years, were operated in the period from 1996 to 2016. To diagnose skeleton tumors, we used clinical observation, X-ray, and, if indicated, tomography and tumor site biopsy. In the extensive bone resection, we performed bone reconstruction with the replacement of a defect with an allograft (bone strips, deproteinized and spongy grafts), sometimes in the combination with bone autografting. After segmental resection, the defects were filled with bone strips in the form of matchstick grafts; the allografts were received from the Laboratory for Tissue Preparation and Preservation of the Novosibirsk Research Institute of Traumatology and Orthopedics. According to the X-ray data, a complete reorganization of bone grafts occurred within 1.5 to 3 years. The long-term result was assessed as good.

  16. Development of an in vitro three dimensional loading-measurement system for long bone fixation under multiple loading conditions: a technical description

    Directory of Open Access Journals (Sweden)

    Wilson David A

    2007-11-01

    Full Text Available Abstract The purpose of this investigation was to design and verify the capabilities of an in vitro loading-measurement system that mimics in vivo unconstrained three dimensional (3D relative motion between long bone ends, applies uniform load components over the entire length of a test specimen, and measures 3D relative motion between test segment ends to directly determine test segment construct stiffness free of errors due to potting-fixture-test machine finite stiffness. Intact equine cadaveric radius bones, which were subsequently osteotomized/ostectomized and instrumented with bone plates were subjected to non-destructive axial, torsion, and 4-point bending loads through fixtures designed to allow unconstrained components of non-load associated 3D relative motion between radius ends. 3D relative motion between ends of a 50 mm long test segment was measured by an infrared optical tracking system to directly determine its stiffness. Each specimen was then loaded to ultimate failure in either torsion or bending. Cortical bone cross-section diameters and published bone biomechanical properties were substituted into classical mechanics equations to predict the intact test segment theoretical stiffness for comparison and thus loading-measurement system verification. Intact measured stiffness values were the same order of magnitude as theoretically predicted. The primary component of relative motion between ends of the test segment corresponded to that of the applied load with the other 3D components being evident and consistent in relative magnitude and direction for unconstrained loading of an unsymmetrical double plate oblique fracture configuration. Bone failure configurations were reproducible and consistent with theoretically predicted. The 3D loading-measurement system designed: a mimics unconstrained relative 3D motion between radius ends that occurs in clinical situations, b applies uniform compression, torsion, and 4-point bending loads

  17. Vitamin E improved bone strength and bone minerals in male rats given alcohol

    Directory of Open Access Journals (Sweden)

    Syuhada Zakaria

    2017-12-01

    Full Text Available Objective(s: Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats. Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I control group; (II alcohol (3 g/kg + normal saline; (III alcohol (3 g/kg + olive oil; (IV alcohol (3 g/kg + alpha-tocopherol (60 mg/kg and (V alcohol (3 g/kg + palm vitamin E (60 mg/kg. The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar and left tibia bones were harvested for bone mineral measurement. Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young’s modulus and bone minerals (bone calcium and magnesium compared to control group (P

  18. Clinical Usefulness of 18F-fluoride Bone PET

    International Nuclear Information System (INIS)

    Kang, Ji Yeon; Lee, Won Woo; Lee, Byung Chul; Kim, Sang Eun; So, Young

    2010-01-01

    18 F-fluoride bone positron emission tomography (PET) has been reported as a useful bone imaging modality. However, no clinical bone PET study had been performed previously in Korea. The authors investigated the usefulness of 18 F-fluoride bone PET in Korean patients with malignant or benign bone disease. Eighteen consecutive patients (eight women, ten men; mean age, 55±12 years) who had undergone 18 F-fluoride bone PET for the evaluation of bone metastasis (n=13) or benign bone lesions (n=5) were included. The interpretation of bone lesions on 18 F-fluoride bone PET was determined by consensus of two nuclear medicine physicians, and final results were confirmed using combination of all imaging studies and/or clinical follow-up. The analysis was performed on the basis of lesion group. Thirteen patients with malignant disease had 15 lesion groups, among which seven were confirmed as metastatic bone lesions and eight were confirmed as non-metastatic lesions. 18 F-fluoride bone PET correctly identified six of seven metastatic lesions (sensitivity, 86%), and seven of eight non-metastatic lesions (specificity, 88%). On the other hand, five patients with benign conditions had five bone lesion groups; four were confirmed as benign bone diseases and the other one was confirmed as not a bone lesion. 18 F-fluoride bone PET showed correct results in all the five lesion groups. 18 F-fluoride bone PET showed promising potential for bone imaging in Korean patients with malignant diseases as well as with various benign bone conditions. Therefore, further studies are required on the diagnostic performance and cost-effectiveness of 18 F-fluoride bone PET.

  19. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    Science.gov (United States)

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  20. Challenges of Estimating Fracture Risk with DXA: Changing Concepts About Bone Strength and Bone Density.

    Science.gov (United States)

    Licata, Angelo A

    2015-07-01

    Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.

  1. Nuclear microprobe analysis of lead profile in crocodile bones

    Energy Technology Data Exchange (ETDEWEB)

    Orlic, I. E-mail: ivo@ansto.gov.au; Siegele, R.; Hammerton, K.; Jeffree, R.A.; Cohen, D.D

    2003-09-01

    Elevated concentrations of lead were found in Australian free ranging saltwater crocodile (Crocodylus porosus) bone and flesh. Lead shots were found as potential source of lead in these animals. ANSTO's heavy ion nuclear microprobe was used to measure the distribution of Pb in a number of bones and osteoderms. The aim was to find out if elevated Pb concentration remains in growth rings and if the concentration is correlated with the blood levels recorded at the time. Results of our study show a very distinct distribution of accumulated Pb in bones and osteoderms as well as good correlation with the level of lead concentration in blood. To investigate influence of ion species on detection limits measurements of the same sample were performed by using 3 MeV protons, 9 MeV He ions and 20 MeV carbon ions. Peak to background ratios, detection limits and the overall 'quality' of obtained spectra are compared and discussed.

  2. The impact on children's bone health of a school-based physical education program and participation in leisure time sports

    DEFF Research Database (Denmark)

    Heidemann, Malene; Jespersen, Eva; Holst, René

    2013-01-01

    lessons per week) were compared to children at "traditional" schools (2×45min of PE lessons per week) in Svendborg, Denmark. Whole-body DXA scans were performed at baseline (2008) and at a two-year follow-up (2010). Bone mineral content (BMC), bone mineral density (BMD), and bone area (BA) were measured...

  3. Esophageal Cancer with Bone Marrow Hyperplasia Mimicking Bone Metastasis: Report of a Case

    Directory of Open Access Journals (Sweden)

    Hiromi Yasuda

    2016-11-01

    Full Text Available A 63-year-old man visited the clinic with numbness in the right hand. Magnetic resonance imaging demonstrated multiple low-intensity lesions in the cervical vertebrae and sacrum, which was suspicious of cervical bone metastasis. Fluorodeoxyglucose positron emission tomography/computed tomography revealed areas of increased fluorodeoxyglucose uptake in the thoracic esophagus, sternum and sacrum. A flat, elevated esophageal cancer was identified by upper gastrointestinal endoscopy, and the macroscopic appearance indicated early-stage disease. From the cervical, thoracic and abdominal computed tomography images, there were no metastatic lesions except for the bone lesions. To confirm whether the bone lesions were metastatic, we performed bone biopsy. The histopathological diagnosis was bone marrow hyperplasia. It was crucial for treatment planning to establish whether the lesions were distant metastases. Here, we report a case of esophageal cancer with bone marrow hyperplasia mimicking bone metastasis.

  4. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone

    Energy Technology Data Exchange (ETDEWEB)

    Kasem, M.A. [National Institute of Laser Enhanced Science (NILES), Cairo University, Giza (Egypt); Gonzalez, J.J.; Russo, R.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Harith, M.A., E-mail: mharithm@niles.edu.eg [National Institute of Laser Enhanced Science (NILES), Cairo University, Giza (Egypt)

    2014-11-01

    The analytical exploitation of the laser induced plasma suffers from its transient behavior due to some nonlinear effects. These phenomena are matrix-dependent and limit the use of LIBS to mostly semi-quantitative precision. The plasma parameters have to be kept as constant as possible during LIBS measurements. Studying archaeological bone samples using LIBS technique could be more difficult since these samples are less tough in their texture than many other solid samples. Thus, the ablation process could change the sample morphological features rapidly resulting in poor reproducibility and statistics. Furthermore archaeological bones are subjected to diagenesis effects due to burial environment and postmortem effects. In the present work comparative analytical study of UV (266 nm) and IR (1064 nm) LIBS for archaeological bone samples belonging to four ancient Egyptian dynasties representing the middle kingdom (1980–1630 BC), 2nd intermediate period (1630–1539/23 BC), Roman–Greek period (30 BC–A.D. 395) and the late period (664–332 BC). Measurements have been performed under identical experimental conditions except the laser wavelength to examine its effects. Elemental fluctuations within the same dynasty were studied for reliable information about each dynasty. The analytical results demonstrated that UV-LIBS gives a more realistic picture for bone elemental composition within the same dynasty, and bone ash could be more suitable as a reference material for bone calibration in the case of UV-LIBS. - Highlights: • UV and IR LIBS for archaeological bone samples have been performed. • Elemental fluctuations within the same dynasty were studied. • UV-LIBS gave realistic picture for bone elemental composition for the same dynasty. • Depth profile for Sr/Ca concentration was an indicator for the diagenesis effect. • Bone ash is the most suitable for calcified tissue calibration for UV-LIBS.

  5. Effect of the wavelength on laser induced breakdown spectrometric analysis of archaeological bone

    International Nuclear Information System (INIS)

    Kasem, M.A.; Gonzalez, J.J.; Russo, R.E.; Harith, M.A.

    2014-01-01

    The analytical exploitation of the laser induced plasma suffers from its transient behavior due to some nonlinear effects. These phenomena are matrix-dependent and limit the use of LIBS to mostly semi-quantitative precision. The plasma parameters have to be kept as constant as possible during LIBS measurements. Studying archaeological bone samples using LIBS technique could be more difficult since these samples are less tough in their texture than many other solid samples. Thus, the ablation process could change the sample morphological features rapidly resulting in poor reproducibility and statistics. Furthermore archaeological bones are subjected to diagenesis effects due to burial environment and postmortem effects. In the present work comparative analytical study of UV (266 nm) and IR (1064 nm) LIBS for archaeological bone samples belonging to four ancient Egyptian dynasties representing the middle kingdom (1980–1630 BC), 2nd intermediate period (1630–1539/23 BC), Roman–Greek period (30 BC–A.D. 395) and the late period (664–332 BC). Measurements have been performed under identical experimental conditions except the laser wavelength to examine its effects. Elemental fluctuations within the same dynasty were studied for reliable information about each dynasty. The analytical results demonstrated that UV-LIBS gives a more realistic picture for bone elemental composition within the same dynasty, and bone ash could be more suitable as a reference material for bone calibration in the case of UV-LIBS. - Highlights: • UV and IR LIBS for archaeological bone samples have been performed. • Elemental fluctuations within the same dynasty were studied. • UV-LIBS gave realistic picture for bone elemental composition for the same dynasty. • Depth profile for Sr/Ca concentration was an indicator for the diagenesis effect. • Bone ash is the most suitable for calcified tissue calibration for UV-LIBS

  6. Bone marrow scintigraphy vs bone scintigraphy and radiography in multiple myeloma

    International Nuclear Information System (INIS)

    Feggi, M.; Prandini, N.; Orzincolo, C.; Bagni, B.; Scutellari, P.N.; Spanedda, R.; Gennari, M.; Scapoli, C.L.

    1988-01-01

    The radiography patterns of the skeleton of 73 patients affected by multiple myeloma (MM) were compared to the correspondent scintigraphic findings. Whole body scans were performed using Tc-diphosphonates 99m (bone scintigraphy). And Tc-microcolloides 99m (bone marrow scintigraphy). The results indicate that: a) radiography is more sensitive and accurate than scintigraphy in detecting typical myeloma-related bone lesions; b) bone scintigraphy is useful in detecting alterations in particular locations-i.e. sternum, ribs, scapulae, etc.-which are difficult to demonstrate by plain X-rays; moreover, the recovery of the fractures can be visualized; c) bone marrow scintigraphy is employed to demonstrate the presence of marrow expasion, of cold/hot spots, and relative marrow uptake, related to phagocytic activity. Since in adult men red marrow is confined to the epiphysis of long bones and to the spine, all the diseases affecting bone marrow cause medullary expansion/reduction, which are both easily detected by specific radiopharmaceuticals. The peripheral expasions is clearly documented especially in distal humeri and femora since marrow uptake is included, in healthy adults, in the axial and proximal appendicular skeleton. In spite of its yielding unique informetion, bone marrow scintigraphy remains an additional technique of bone scan, because of its low diagnoditc accuracy

  7. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study.

    Science.gov (United States)

    Shen, Wei; Scherzer, Rebecca; Gantz, Madeleine; Chen, Jun; Punyanitya, Mark; Lewis, Cora E; Grunfeld, Carl

    2012-04-01

    An increasing number of studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Our previous study of Caucasian women demonstrated that there is an inverse relationship between BMAT and whole-body bone mineral density (BMD). It is unknown whether visceral adipose tissue (VAT), sc adipose tissue (SAT), and skeletal muscle had an effect on the relationship between BMAT and BMD. In the present study we investigated the relationship between pelvic, hip, and lumbar spine BMAT with hip and lumbar spine BMD in the population-based Coronary Artery Risk Development in Young Adults (CARDIA) sample with adjustment for whole-body magnetic resonance imaging (MRI)-measured VAT, SAT, and skeletal muscle. T1-weighted MRI was acquired for 210 healthy African-American and Caucasian men and women (age 38-52 yr). Hip and lumbar spine BMD were measured by dual-energy x-ray absorptiometry. Pelvic, hip, and lumbar spine BMAT had negative correlations with hip and lumbar spine BMD (r = -0.399 to -0.550, P BMAT and BMD remained strong after adjusting for demographics, weight, skeletal muscle, SAT, VAT, total adipose tissue (TAT), menopausal status, lifestyle factors, and inflammatory markers (standardized regression coefficients = -0. 296 to -0.549, P BMAT (standardized regression coefficients = 0.268-0.614, P BMAT and hip and lumbar spine BMD independent of demographics and body composition. These observations support the growing evidence linking BMAT with low bone density.

  8. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    Energy Technology Data Exchange (ETDEWEB)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania, E-mail: oocristina@yahoo.com; Mitoseriu, Liliana, E-mail: lmtsr@uaic.ro

    2013-11-20

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring.

  9. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    International Nuclear Information System (INIS)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania; Mitoseriu, Liliana

    2013-01-01

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring

  10. Development of the in vivo measurement system of bone mineral content using monoenergetic gamma rays

    International Nuclear Information System (INIS)

    Nardocci, A.C.

    1990-08-01

    A system, developed for in vivo measurement of bone mineral content (BMC) using monoenergetic gamma-rays of 241 Am, is described. It presents a discussion of the theoretical and practical aspects of the technique, with details of acquisition and data processing and also discusses the calibration procedure used. The results obtained with in vivo measurements are presented and BMC values of clinically normal subjects and chronic renal patients are compared. (author)

  11. Early decrements in bone density after completion of neoadjuvant chemotherapy in pediatric bone sarcoma patients

    Directory of Open Access Journals (Sweden)

    Hardes Jendrik

    2010-12-01

    Full Text Available Abstract Background Bone mineral density (BMD accrual during childhood and adolescence is important for attaining peak bone mass. BMD decrements have been reported in survivors of childhood bone sarcomas. However, little is known about the onset and development of bone loss during cancer treatment. The objective of this cross-sectional study was to evaluate BMD in newly diagnosed Ewing's and osteosarcoma patients by means of dual-energy x-ray absorptiometry (DXA after completion of neoadjuvant chemotherapy. Methods DXA measurements of the lumbar spine (L2-4, both femora and calcanei were performed perioperatively in 46 children and adolescents (mean age: 14.3 years, range: 8.6-21.5 years. Mean Z-scores, areal BMD (g/cm2, calculated volumetric BMD (g/cm3 and bone mineral content (BMC, g were determined. Results Lumbar spine mean Z-score was -0.14 (95% CI: -0.46 to 0.18, areal BMD was 1.016 g/cm2 (95% CI: 0.950 to 1.082 and volumetric BMD was 0.330 g/cm3 (95% CI: 0.314 to 0.347 which is comparable to healthy peers. For patients with a lower extremity tumor (n = 36, the difference between the affected and non-affected femoral neck was 12.1% (95% CI: -16.3 to -7.9 in areal BMD. The reduction of BMD was more pronounced in the calcaneus with a difference between the affected and contralateral side of 21.7% (95% CI: -29.3 to -14.0 for areal BMD. Furthermore, significant correlations for femoral and calcaneal DXA measurements were found with Spearman-rho coefficients ranging from ρ = 0.55 to ρ = 0.80. Conclusions The tumor disease located in the lower extremity in combination with offloading recommendations induced diminished BMD values, indicating local osteopenia conditions. However, the results revealed no significant decrements of lumbar spine BMD in pediatric sarcoma patients after completion of neoadjuvant chemotherapy. Nevertheless, it has to be taken into account that bone tumor patients may experience BMD decrements or secondary osteoporosis

  12. Support Immersion Endoscopy in Post-Extraction Alveolar Bone Chambers: A New Window for Microscopic Bone Imaging In Vivo.

    Directory of Open Access Journals (Sweden)

    Wilfried Engelke

    Full Text Available Using an endoscopic approach, small intraoral bone chambers, which are routinely obtained during tooth extraction and implantation, provide visual in vivo access to internal bone structures. The aim of the present paper is to present a new method to quantify bone microstructure and vascularisation in vivo. Ten extraction sockets and 6 implant sites in 14 patients (6 men / 8 women were examined by support immersion endoscopy (SIE. After tooth extraction or implant site preparation, microscopic bone analysis (MBA was performed using short distance SIE video sequences of representative bone areas for off-line analysis with ImageJ. Quantitative assessment of the microstructure and vascularisation of the bone in dental extraction and implant sites in vivo was performed using ImageJ. MBA revealed bone morphology details such as unmineralised and mineralised areas, vascular canals and the presence of bleeding through vascular canals. Morphometric examination revealed that there was more unmineralised bone and less vascular canal area in the implant sites than in the extraction sockets.

  13. Sodium and bone health

    DEFF Research Database (Denmark)

    Teucher, B.; Dainty, J. R.; Spinks, C. A.

    2008-01-01

    High salt intake is a well-recognized risk factor for osteoporosis because it induces calciuria, but the effects of salt on calcium metabolism and the potential impact on bone health in postmenopausal women have not been fully characterized. This study investigated adaptive mechanisms in response.......9 Versus 11.2 g) diets, reflecting lower and upper intakes in post men opausal women consuming a Western-style diet, were provided. Stable isotope labeling techniques were used to measure calcium absorption and excretion, compartmental modeling was undertaken to estimate bone calcium balance......, and biomarkers of bone formation and resorption were measured in blood and urine. Moderately high salt intake (11.2 g/d) elicited a significant increase in urinary calcium excretion (p = 0.0008) and significantly affected bone calcium balance with the high calcium diet 0.024). Efficiency of calcium absorption...

  14. Developing Effective Performance Measures

    Science.gov (United States)

    2014-10-14

    University When Performance Measurement Goes Bad Laziness Vanity Narcissism Too Many Pettiness Inanity 52 Developing Effective...Kasunic, October 14, 2014 © 2014 Carnegie Mellon University Narcissism Measuring performance from the organization’s point of view, rather than from

  15. Bone changes in endometrosis

    International Nuclear Information System (INIS)

    Jensen, P.S.; Orphanoudakis, S.C.; Hutchinson-Williams, K.; Lewis, A.B.; Lovett, L.; Polan, M.L.; DeCherney, A.H.; Comite, F.

    1989-01-01

    In this study, quantitative CT is used to measure bone in the distal radius in normal women, women with endometriosis who had not been treated, and women with endometriosis who had been treated with danazol--an anabolic (androgen) steroid. Measurements of cortex and trabeculae indicate that untreated women have decreased bone mass (1125 HU and 160 HU, respectively), compared with bone mass in normal women (1269 HU and 257 HU; P < .05) and treated women (1238 HU and 255 HU). This finding is important because the most effective way to reduce the complications of osteoporosis is identification of risk factors, prevention, and early treatment

  16. Correlation analysis of alveolar bone loss in buccal/palatal and proximal surfaces in rats

    Directory of Open Access Journals (Sweden)

    Carolina Barrera de Azambuja

    2012-12-01

    Full Text Available The aim was to correlate alveolar bone loss in the buccal/palatal and the mesial/distal surfaces of upper molars in rats. Thirty-three, 60-day-old, male Wistar rats were divided in two groups, one treated with alcohol and the other not treated with alcohol. All rats received silk ligatures on the right upper second molars for 4 weeks. The rats were then euthanized and their maxillae were split and defleshed with sodium hypochlorite (9%. The cemento-enamel junction (CEJ was stained with 1% methylene blue and the alveolar bone loss in the buccal/palatal surfaces was measured linearly in 5 points on standardized digital photographs. Measurement of the proximal sites was performed by sectioning the hemimaxillae, restaining the CEJ and measuring the alveolar bone loss linearly in 3 points. A calibrated and blinded examiner performed all the measurements. Intraclass Correlation Coefficient revealed values of 0.96 and 0.89 for buccal/lingual and proximal surfaces, respectively. The Pearson Correlation Coefficient (r between measurements in buccal/palatal and proximal surfaces was 0.35 and 0.05 for the group treated with alcohol, with and without ligatures, respectively. The best correlations between buccal/palatal and proximal surfaces were observed in animals not treated with alcohol, in sites both with and without ligatures (r = 0.59 and 0.65, respectively. A positive correlation was found between alveolar bone loss in buccal/palatal and proximal surfaces. The correlation is stronger in animals that were not treated with alcohol, in sites without ligatures. Areas with and without ligature-induced periodontal destruction allow detection of alveolar bone loss in buccal/palatal and proximal surfaces.

  17. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    Science.gov (United States)

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  18. Relationship between bone turnover markers and the heel stiffness index measured by quantitative ultrasound in middle-aged and elderly Japanese men

    Science.gov (United States)

    Nishimura, Takayuki; Arima, Kazuhiko; Abe, Yasuyo; Kanagae, Mitsuo; Mizukami, Satoshi; Okabe, Takuhiro; Tomita, Yoshihito; Goto, Hisashi; Horiguchi, Itsuko; Aoyagi, Kiyoshi

    2018-01-01

    Abstract The aim of the present study was to investigate the age-related patterns and the relationships between serum levels of tartrate-resistant acid phosphatase-5b (TRACP-5b) or bone-specific alkaline phosphatase (BAP), and the heel stiffness index measured by quantitative ultrasound (QUS) in 429 Japanese men, with special emphasis on 2 age groups (40–59 years and 60 years or over). The heel stiffness index (bone mass) was measured by QUS. Serum samples were collected, and TRACP-5b and BAP levels were measured. The stiffness index was significantly decreased with age. Log (TRACP-5b) was significantly increased with age, but Log (BAP) was stable. Generalized linear models showed that higher levels of Log (TRACP-5b) and Log (BAP) were correlated with a lower stiffness index after adjusting for covariates in men aged 60 years or over, but not in men aged 40 to 59 years. In conclusion, higher rates of bone turnover markers were associated with a lower stiffness index only in elderly men. These results may indicate a different mechanism of low bone mass among different age groups of men. PMID:29465590

  19. Bone metabolism in thyroidectomized patients

    International Nuclear Information System (INIS)

    Sugino, Kiminori; Kure, Yoshio; Suzuki, Akira; Sekino, Haruo; Iwasaki, Hiroyuki; Goto, Hisashi; Matsumoto, Akihiko

    1990-01-01

    The bone mineral content in the patients who had undergone operation for thyroid carcinoma was measured by quantitative CT. Thirty-eight cases were enrolled as the subjects. All cases were papillary adenocarcinoma of the thyroid. The totally thyroidectomized group consisted of 3 males and 14 females, and the non-totally thyroidectomized group (post-lobectomy) 3 males and 18 females. Thirty-eight healthy males and females were assigned to the control group. For evaluation of bone mineral content, quantitative CT was used and bone mineral content in the patient's lumbar vertebrae was measured. Concurrently, bone metabolic parameter in serum was determined. No significant difference was observed in the mean bone mineral content among the above three groups. To make correction by sex and age, BMC-index was defined as the value that the bone mineral content in each case was divided by the standard mean by the same age and sex. No significant difference was observed in BMC-index among the above three groups. No significant correlation was observed in serum calcitonin level with the bone mineral content and BMC-index. It suggests that no influence is exerted on bone metabolism if serum calcitonin is maintained in the physiological level. (author)

  20. A clinical study evaluating bone mineral mass in the radius during skeletal growth

    International Nuclear Information System (INIS)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome. (author)

  1. Segmenting Bone Parts for Bone Age Assessment using Point Distribution Model and Contour Modelling

    Science.gov (United States)

    Kaur, Amandeep; Singh Mann, Kulwinder, Dr.

    2018-01-01

    Bone age assessment (BAA) is a task performed on radiographs by the pediatricians in hospitals to predict the final adult height, to diagnose growth disorders by monitoring skeletal development. For building an automatic bone age assessment system the step in routine is to do image pre-processing of the bone X-rays so that features row can be constructed. In this research paper, an enhanced point distribution algorithm using contours has been implemented for segmenting bone parts as per well-established procedure of bone age assessment that would be helpful in building feature row and later on; it would be helpful in construction of automatic bone age assessment system. Implementation of the segmentation algorithm shows high degree of accuracy in terms of recall and precision in segmenting bone parts from left hand X-Rays.

  2. [Histological diagnosis of bone tumors: Guidelines of the French committee of bone pathologists reference network on bone tumors (RESOS)].

    Science.gov (United States)

    Galant, Christine; Bouvier, Corinne; Larousserie, Frédérique; Aubert, Sébastien; Audard, Virginie; Brouchet, Anne; Marie, Béatrice; Guinebretière, Jean-Marc; de Pinieux du Bouexic, Gonzague

    2018-04-01

    The management of patients having a bone lesion requires in many cases the realization of a histological sample in order to obtain a diagnosis. However, with the technological evolution, CT-guided biopsies are performed more frequently, often in outpatient clinics. Interpretation of these biopsies constitutes new challenges for the pathologists within the wide spectrum of bone entities. The purpose of the document is to propose guidelines based on the experience of the French committee of bone pathologists of the reference network on bone tumors (RESOS) regarding the indications and limitations of the diagnosis on restricted material. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    Science.gov (United States)

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  4. The Politics of Performance Measurement

    DEFF Research Database (Denmark)

    Bjørnholt, Bente; Larsen, Flemming

    2014-01-01

    Performance measurements are meant to improve public decision making and organizational performance. But performance measurements are far from always rational tools for problem solving, they are also political instruments. The central question addressed in this article is how performance...... impact on the political decision making process, as the focus on performance goals entails a kind of reductionism (complex problems are simplified), sequential decision making processes (with a division in separate policy issues) and short-sighted decisions (based on the need for making operational goals)....... measurement affects public policy. The aim is to conceptualize the political consequences of performance measurements and of special concern is how performance systems influence how political decisions are made, what kind of political decisions are conceivable, and how they are implemented. The literature...

  5. An Experimental Study on the Change of Bone Mineral Metabolism After Irradiation

    International Nuclear Information System (INIS)

    Hong, Sung Woon; Lim, Sang Moo; Jang, Ja June; Lee, Jin Oh; Kang, Tae Woong

    1990-01-01

    Irradiation is widely used for the treatment of malignant diseases, and possibly cause the osteoporosis. The densitometry and bone scintigraphy are valuable when used to monitor the patients longitudinally to access the progression of osteoporosis and risk of osteoradionecrosis. To evaluate the osteoporosis after irradiation of Cobalt-60 gamma ray on the lumbar spines of New Zealand white rabbits, bone densitometry by dual photon absorptiometry and bone scintigraphy were performed weekly. The decrease of bone density began at the first week after irradiation, and were in the nadir at 4-6th week. The osteoblastic activity measured by bone scintigraphy decreased in the first week, and was in the nadir at 4-6th week. The severity of these changes were related to the radiation dose. In conclusion, the osteoporosis before the presentation of the osteoradionecrosis can be diagnosed early with the dual photon absorptiometry and bone scintigraphy.

  6. Comparison of how different feed phosphates affect performance, bone mineralization and phosphorus retention in broilers

    Directory of Open Access Journals (Sweden)

    Manel Hamdi

    2017-12-01

    Full Text Available The objective of this work was to evaluate the comparative P bio-avalability of different sources of phosphate based on their effects on animal performance, bones mineralization and mineral retention in broilers. To achieve this goal, two experiments were conducted. In Experiment 1, twenty diets were prepared including five different phosphorus sources, either mono-calcium phosphate (MCP or 4 different batches of di-calcium phosphate, to supplement non phytic P (NPP levels at 3.0, 3.5, 4.0 and 4.5 g/kg in the diets. In Experiment 2, three treatments were used: the low MCP diet was deficient in NPP (3.1 g/kg for the starter phase and 2.8 g/kg for the grower phase; the high MCP diet and the high TCP (tri-calcium phosphate diet included adequate levels of NPP (4.4-4.7 g/kg for the starter phase and 4.2-4.3 g/kg for the grower phase. Phytase was not added to experimental diets. Results of Exp. 1 indicated that an increase of NPP in the diet from 3.0 to 4.0 g/kg increased weight gain and feed intake between d 1 and d 21 (Trial 1. Alternatively, tibia weight and ash percentage at d 21 responded up to the level of 4.5 g/kg and showed significant difference with birds of the 4.0 g/kg NPP group. In Trial 2, chickens fed with the high MCP and TCP had improved growth performances and bone mineralization. No differences were observed on the P availability among different mineral P sources. A level of 4.5 g/kg, NPP is recommended when phytase is not included to maximize both performance and bone mineralization in broiler chickens up to d 21.

  7. Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone.

    Science.gov (United States)

    Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel

    2016-01-01

    Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.

  8. Bone mineral density measurements using peripheral quantitative computed tomography (pQCT). An evaluation of its clinical utility

    International Nuclear Information System (INIS)

    Imai, Yoshiyuki

    1999-01-01

    Bone densitometry has become a major tool for the risk assessment of osteoporosis. Peripheral quantitative computed tomography (pQCT) has the potential to measure true volumetric bone mineral density (BMD, g/cm 3 ) separating cortical and trabecular BMD. The most widely used dual-energy X-ray absorptiometry (DXA) provides areal BMD (mg/cm 2 ). The purpose of this study was to clarify the clinical usefulness of pQCT as a method for bone mineral measurement. The pQCT measurements were carried out at the ultradistal- and mid-radius and the tibia using a Densiscan-1000 (Scanco Medical AG). In both sexes, radial and tibial BMDs in the elderly group (aged more than 60 y.o., 17 men, and 26 women) were significantly lower than those in the young group (aged 20-44 y.o., 107 men and 78 women). The percent difference between the two groups was the greatest in trabecular BMD (D50). As to the sex-related difference, the mean values of radial and tibial BMD in men were significantly higher than in women in elderly groups. The radial BMDs measured by pQCT correlated significantly with BMDs in the lumbar spine, radius and femoral neck measured by DXA (p<0.001). Lumbar BMD measured by DXA showed the highest correlation to rD50 measured by pQCT. Diagnostic ability of pQCT and DXA to detect osteoporosis was determined by comparing BMD measurements. Kappa statistics showed that in general the diagnostic agreement between these measurements was fair or moderate. The discriminative ability of these methods for vertebral fracture was assessed by receiver operating characteristic (ROC) analysis. The areas under the ROC curves were 0.68, 0.71, 0.69 and 0.78 for D50, D100, P100 and L-BMD, respectively. These results indicate that BMD measurements made by pQCT can provide information regarding both trabecular and cortical BMD, and that this method has potential for the diagnosis and management of osteoporosis. (author)

  9. Bone scanning as a routine examination of patients with mammary carcinoma; a critical consideration

    International Nuclear Information System (INIS)

    Heslinga, J.M.; Pauwels, E.K.J.; Zwaveling, A.

    1982-01-01

    The usefulness of bone scanning as a routine examination was evaluated in 136 female patients with mammary carcinoma of whom 81 were staged as Columbia A and 55 as Columbia B/C. The preoperative bone scanning was positive in only 4 patients (2.9%). Consequently, bone scanning is no longer performed in the authors clinic for the preoperative detection of skeletal metastases. Bone scanning as a routine examination at 6-month intervals does not appear to be useful for the first 4 years of the follow-up, either. Most of the patients with a positive bone scan displayed other signs of skeletal metastases at the same time, such as ostealgia and a raised serum alkaline phosphatase level. Further increase of the frequency of bone scanning during the follow-up period would increase the costs considerably, almost prohibitively, even apart from the question whether such a measure might indeed significantly influence the patient's prognosis. The authors conclude that bone scanning should only be performed on the basis of the anamnesis, physical and laboratory findings, both prior to operation and during the follow-up period. (Auth.)

  10. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    Science.gov (United States)

    Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo

    2017-01-01

    The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  11. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Patricia Das Neves Borges

    Full Text Available The degradation of articular cartilage, which characterises osteoarthritis (OA, is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods.OA was induced by destabilisation of the medial meniscus (DMM in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed.Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments.Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  12. Representability of metastatic bone lesions in magnification radiography

    International Nuclear Information System (INIS)

    Togawa, Takashi

    1981-01-01

    Magnification radiography, bone scintigraphy, and normal roentgenography were performed on patients with malignant tumors to detect their bone metastases, and from the results obtained, these diagnostic procedures were evaluated for the detectability and representability of metastatic bone lesions. Bone scan and normal roentgenography were performed on 90 metastatic bone lesions in 37 patients, and magnification radiography was done on 14 bone lesions noted in 10 of the 37 and another with benign osseous change. Among the three, bone scintigraphy was best, and magnification radiography and normal roentgenography did not differ significantly in detectability. In magnification radiography, some metastatic bone lesions were represented more clearly than by normal roentgeography, but some were not. As regards the representability of the ribs, magnification radiography was very useful. One case of bone destruction was detected by magnification radiography, but not by normal roentgenography. (author)

  13. Longitudinal study on osteoarthritis and bone metabolism

    Directory of Open Access Journals (Sweden)

    L. Postiglione

    2011-09-01

    Full Text Available Objective: The relationship between Osteoarthritis (OA and Osteoporosis (OP is not well defined due to lacking in longitudinal data, mainly regarding correlations between biochemical factors and OA incidence. Aim of this paper was to investigate the predictive value for OA incidence of bone mass variations and of selected biochemical markers in healthy women participating in a population-based longitudinal study carried out in Naples (Italy. Subjects and Methods: High completion rate (85.2% and statistically adequate sample size were obtained: 139 women (45 to 79 years of age were examined and follow up visit was performed after two years (24±2 months, following the same protocol. Patients underwent medical examination, questionnaire, anthropometric measurements, blood sampling and urine collection. Bone mineral density (BMD measurement was performed by dual energy X-ray absorptiometry (DEXA at the lumbar spine (L1-L4 and femoral neck. Radiographs of dorsal and lumbar spine in lateral view were performed at basal and at 24 months visits; a team of three experts scored radiographs using Kellegren and Lawrence grading. Results: The score was calculated for two individual radiographic features (narrowing of the joint space, presence of osteophytes and as a global score. Results show a relevant percentage, 23% up, of subjects presenting both OA and OP. In the cross-sectional study the presence of osteophytosis correlates with anthropometric variables and PTH levels. In the longitudinal study results show a correlation between serum vitamin D and delta score for osteophytosis (β=0.02 p<0.05. Conclusions: Data obtained outline the importance of further studies on the pathogenetic link between OA and bone metabolism.

  14. Validating in vivo Raman spectroscopy of bone in human subjects

    Science.gov (United States)

    Esmonde-White, Francis W. L.; Morris, Michael D.

    2013-03-01

    Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.

  15. Bone composition and bone mineral density of long bones of free-living raptors

    Directory of Open Access Journals (Sweden)

    Britta Schuhmann

    2014-10-01

    Full Text Available Bone composition and bone mineral density (BMD of long bones of two raptor and one owl species were assessed. Right humerus and tibiotarsus of 40 common buzzards, 13 white-tailed sea eagles and 9 barn owls were analyzed. Statistical analysis was performed for influence of species, age, gender and nutritional status. The BMD ranged from 1.8 g/cm3 (common buzzards to 2.0 g/cm3 (white-tailed sea eagles. Dry matter was 87.0% (buzzards to 89.5% (sea eagles. Percentage of bone ash was lower in sea eagles than in buzzards and owls. Content of crude fat was lower than 2% of the dry matter in all bones. In humeri lower calcium values (220 g/kg fat free dry matter were detected in sea eagles than in barn owls (246 g/kg, in tibiotarsi no species differences were observed. Phosphorus levels were lowest in sea eagles (humeri 104 g/kg fat free dry matter, tibiotarsi 102 g/kg and highest in barn owls. Calcium-phosphorus ratio was about 2:1 in all species. Magnesium content was lower in sea eagles (humeri 2590 mg/kg fat free dry matter, tibiotarsi 2510 mg/kg than in buzzards and owls. Bones of barn owls contained more copper (humeri 8.7 mg/kg fat free dry matter, tibiotarsi 12.7 mg/kg than in the Accipitridae. Zinc content was highest in sea eagles (humeri 278 mg/kg fat free dry matter, tibiotarsi 273 mg/kg and lowest in barn owls (humeri 185 mg/kg, tibiotarsi 199 mg/kg. The present study shows that bone characteristics can be considered as species specific in raptors.

  16. Functional adaptation of long bone extremities involves the localized "tuning" of the cortical bone composition; evidence from Raman spectroscopy.

    Science.gov (United States)

    Buckley, Kevin; Kerns, Jemma G; Birch, Helen L; Gikas, Panagiotis D; Parker, Anthony W; Matousek, Pavel; Goodship, Allen E

    2014-01-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by 10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  17. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    Science.gov (United States)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by 10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  18. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jia-yun [Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055 (China); Chen, Xian-shuai; Zhang, Chun-yu [Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou 511458 (China); Liu, Yun; Wang, Jing [Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055 (China); Deng, Fei-long, E-mail: drdfl@163.com [Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055 (China)

    2016-11-01

    Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P < 0.05) and higher total protein contents on the 14th day (P < 0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P < 0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes. - Highlights: • SLM titanium is modified by adding nano-porous features to the microrough substrate

  19. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation

    International Nuclear Information System (INIS)

    Xu, Jia-yun; Chen, Xian-shuai; Zhang, Chun-yu; Liu, Yun; Wang, Jing; Deng, Fei-long

    2016-01-01

    Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P < 0.05) and higher total protein contents on the 14th day (P < 0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P < 0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes. - Highlights: • SLM titanium is modified by adding nano-porous features to the microrough substrate

  20. Stresses in ultrasonically assisted bone cutting

    International Nuclear Information System (INIS)

    Alam, K; Mitrofanov, A V; Silberschmidt, V V; Baeker, M

    2009-01-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  1. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones.

    Science.gov (United States)

    Ho, Jung-Ting; Wu, Jay; Huang, Heng-Li; Chen, Michael Y c; Fuh, Lih-Jyh; Hsu, Jui-Ting

    2013-11-09

    This study compared the adequacy of dental cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) in evaluating the structural parameters of trabecular bones. The cellular synthetic bones in 4 density groups (Groups 1-4: 0.12, 0.16, 0.20, and 0.32 g/cm3) were used in this study. Each group comprised 8 experimental specimens that were approximately 1 cm3. Dental CBCT and micro-CT scans were conducted on each specimen to obtain independent measurements of the following 4 trabecular bone structural parameters: bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th.), and trabecular separation (Tb.Sp.). Wilcoxon signed ranks tests were used to compare the measurement variations between the dental CBCT and micro-CT scans. A Spearman analysis was conducted to calculate the correlation coefficients (r) of the dental CBCT and micro-CT measurements. Of the 4 groups, the BV/TV and Tb.Th. measured using dental CBCT were larger compared with those measured using micro-CT. By contrast, the BS/BV measured using dental CBCT was significantly less compared with those measured using micro-CT. Furthermore, in the low-density groups (Groups 1 and 2), the Tb.Sp. measured using dental CBCT was smaller compared with those measured using micro-CT. However, the Tb.Sp. measured using dental CBCT was slightly larger in the high-density groups (Groups 3 and 4) than it was in the low density groups. The correlation coefficients between the BV/TV, BS/BV, Tb.Th., and Tb.Sp. values measured using dental CBCT and micro-CT were 0.9296 (p < .001), 0.8061 (p < .001), 0.9390 (p < .001), and 0.9583 (p < .001), respectively. Although the dental CBCT and micro-CT approaches exhibited high correlations, the absolute values of BV/TV, BS/BV, Tb.Th., Tb.Sp. differed significantly between these measurements. Additional studies must be conducted to evaluate using dental CBCT in clinical practice.

  2. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  3. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.

    Science.gov (United States)

    Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer

    2009-10-01

    Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.

  4. Repeatability of quantitative parameters of 18F-fluoride PET/CT and biochemical tumour and specific bone remodelling markers in prostate cancer bone metastases.

    Science.gov (United States)

    Wassberg, Cecilia; Lubberink, Mark; Sörensen, Jens; Johansson, Silvia

    2017-12-01

    18F-fluoride PET/CT exhibits high sensitivity to delineate and measure the extent of bone metastatic disease in patients with prostate cancer. 18F-fluoride PET/CT could potentially replace traditional bone scintigraphy in clinical routine and trials. However, more studies are needed to assess repeatability and biological uptake variation. The aim of this study was to perform test-retest analysis of quantitative PET-derived parameters and blood/serum bone turnover markers at the same time point. Ten patients with prostate cancer and verified bone metastases were prospectively included. All underwent two serial 18F-fluoride PET/CT at 1 h post-injection. Up to five dominant index lesions and whole-body 18F-fluoride skeletal tumour burden were recorded per patient. Lesion-based PET parameters were SUVmax, SUVmean and functional tumour volume applying a VOI with 50% threshold (FTV 50% ). The total skeletal tumour burden, total lesion 18F-fluoride (TLF), was calculated using a threshold of SUV of ≥15. Blood/serum biochemical bone turnover markers obtained at the time of each PET were PSA, ALP, S-osteocalcin, S-beta-CTx, 1CTP and BAP. A total of 47 index lesions and a range of 2-122 bone metastases per patient were evaluated. Median time between 18F-fluoride PET/CT was 7 days (range 6-8 days). Repeatability coefficients were for SUVmax 26%, SUVmean 24%, FTV 50% for index lesions 23% and total skeletal tumour burden (TLF) 35%. Biochemical bone marker repeatability coefficients were for PSA 19%, ALP 23%, S-osteocalcin 18%, S-beta-CTx 22%, 1CTP 18% and BAP 23%. Quantitative 18F-fluoride uptake and simultaneous biochemical bone markers measurements are reproducible for prostate cancer metastases and show similar magnitude in test-retest variation.

  5. Thermal Conductivity of Human Bone in Cryoprobe Freezing as Related to Density.

    Science.gov (United States)

    Walker, Kyle E; Baldini, Todd; Lindeque, Bennie G

    2017-03-01

    Cryoprobes create localized cell destruction through freezing. Bone is resistant to temperature flow but is susceptible to freezing necrosis at warmer temperatures than tumor cells. Few studies have determined the thermal conductivity of human bone. No studies have examined conductivity as related to density. The study goal was to examine thermal conductivity in human bone while comparing differences between cancellous and cortical bone. An additional goal was to establish a relationship between bone density and thermal conductivity. Six knee joints from 5 cadavers were obtained. The epiphyseal region was sliced in half coronally prior to inserting an argon-circulating cryoprobe directed away from the joint line. Thermistor thermometers were placed perpendicularly at measured increments, and the freezing cycle was recorded until steady-state conditions were achieved. For 2 cortical samples, the probe was placed intramedullary in metaphyseal samples and measurements were performed radially from the central axis of each sample. Conductivity was calculated using Fournier's Law and then plotted against measured density of each sample. Across samples, density of cancellous bone ranged from 0.86 to 1.38 g/mL and average thermal conductivity ranged between 0.404 and 0.55 W/mK. Comparatively, cortical bone had a density of 1.70 to 1.86 g/mL and thermal conductivity of 0.0742 to 0.109 W/mK. A strong 2-degree polynomial correlation was seen (R 2 =0.8226, P<.001). Bone is highly resistant to temperature flow. This resistance varies and inversely correlates strongly with density. This information is clinically relevant to maximize tumor ablation while minimizing morbidity through unnecessary bone loss and damage to surrounding structures. [Orthopedics. 2017; 40(2):90-94.]. Copyright 2016, SLACK Incorporated.

  6. In vivo measurements of bone-seeking radionuclides. Progress report, September 1, 1977--February 28, 1979

    International Nuclear Information System (INIS)

    Cohen, N.

    1978-01-01

    Progress is reported on the following research projects: estimation of the skeletal burden of bone-seeking radionuclides from in vivo scintillation measurements of their content in the skull; contribution from radionuclides in the thoracic skeleton to in vivo measurements of activity in the lung; design and optimization characterictics of in vivo detection system; development of a calibration phantom structure for determining activity deposited in the thoracic skeleton; computer assisted in vivo measurements of internally deposited radionuclides using dual-crystal scintillation detectors; low energy, photon-emitting nuclides; reference spectra library; and in vivo measurements of exposed individuals

  7. In vivo measurements of bone-seeking radionuclides. Progress report, September 1, 1977--February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, N.

    1978-11-01

    Progress is reported on the following research projects: estimation of the skeletal burden of bone-seeking radionuclides from in vivo scintillation measurements of their content in the skull; contribution from radionuclides in the thoracic skeleton to in vivo measurements of activity in the lung; design and optimization characterictics of in vivo detection system; development of a calibration phantom structure for determining activity deposited in the thoracic skeleton; computer assisted in vivo measurements of internally deposited radionuclides using dual-crystal scintillation detectors; low energy, photon-emitting nuclides; reference spectra library; and in vivo measurements of exposed individuals. (HLW)

  8. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities

    International Nuclear Information System (INIS)

    Carrasco, P.; Jornet, N.; Duch, M. A.; Panettieri, V.; Weber, L.; Eudaldo, T.; Ginjaume, M.; Ribas, M.

    2007-01-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10x10, 5x5, and 2x2 cm 2 ) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2x2 cm 2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values within

  9. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities.

    Science.gov (United States)

    Carrasco, P; Jornet, N; Duch, M A; Panettieri, V; Weber, L; Eudaldo, T; Ginjaume, M; Ribas, M

    2007-08-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 x 10, 5 x 5, and 2 x 2 cm2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 x 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  10. Sensitivity Analysis of the Bone Fracture Risk Model

    Science.gov (United States)

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane

    2017-01-01

    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including

  11. Treatment for unicameral bone cysts in long bones: an evidence based review.

    Science.gov (United States)

    Donaldson, Sandra; Chundamala, Josie; Yandow, Suzanne; Wright, James G

    2010-03-20

    The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009) was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments.

  12. Treatment for unicameral bone cysts in long bones: an evidence based review

    Directory of Open Access Journals (Sweden)

    Sandra E. Donaldson

    2010-05-01

    Full Text Available The purpose of this paper is to perform an evidence based review for treatment of unicameral bone cysts. A search of MEDLINE (1966 to 2009 was conducted and the studies were classified according to levels of evidence. This review includes only comparative Level I-III studies. The systematic review identified 16 studies. There is one level I study, one level II study and the remaining 14 studies are level III. Seven of the sixteen studies had statistically different results: three studies indicated that steroid injection was superior to bone marrow injection or curettage and bone grafting; one study indicated that cannulated screws were superior to steroid injections; one study indicated resection and myoplasty was superior to steroid injection; one study indicated a combination of steroid, demineralized bone matrix and bone marrow aspirate, and curettage and bone grafting were superior to steroid injection; and one study indicated that curettage and bone grafting was superior to non-operative immobilization. Based on one Level I study, including a limited number of individuals, steroid injection seems to be superior to bone marrow injection. As steroid injections have already demonstrated superiority over bone marrow injections in a randomized clinical trial, the next step would be a prospective trial comparing steroid injections with other treatments.

  13. THE MEASURABILITY OF CONTROLLING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    V. Laval

    2017-04-01

    Full Text Available The urge to increase the performance of company processes is ongoing. Surveys indicate however, that many companies do not measure the controlling performance with a defined set of key performance indicators. This paper will analyze three categories of controlling key performance indicators based on their degree of measurability and their impact on the financial performance of a company. Potential measures to optimize the performance of the controlling department will be outlined and put in a logical order. The aligning of the controlling activity with the respective management expectation will be discussed as a key success factor of this improvement project.

  14. 3-D repositioning and differential images of volumetric CT measurements

    International Nuclear Information System (INIS)

    Muench, B.; Rueegsegger, P.

    1993-01-01

    In quantitative computed tomography (QCT), time serial measurements are performed to detect a global bone density loss or to identify localized bone density changes. A prerequisite for an unambiguous analysis is the comparison of identical bone volumes. Usually, manual repositioning is too coarse. The authors therefore developed a mathematical procedure that allows matching two three-dimensional image volumes. The algorithm is based on correlation techniques. The procedure has been optimized and applied to computer-tomographic 3-D images of the human knee. It has been tested with both artificially created and in vivo measured image data. Furthermore, typical results of differential images calculated from real bone measurements are presented

  15. Bone scanning as a routine examination of patients with mammary carcinoma; a critical consideration. [Preoperative scanning

    Energy Technology Data Exchange (ETDEWEB)

    Heslinga, J M; Pauwels, E K.J.; Zwaveling, A [Rijksuniversiteit Leiden (Netherlands). Academisch Ziekenhuis

    1982-06-05

    The usefulness of bone scanning as a routine examination was evaluated in 136 female patients with mammary carcinoma of whom 81 were staged as Columbia A and 55 as Columbia B/C. The preoperative bone scanning was positive in only 4 patients (2.9%). Consequently, bone scanning is no longer performed in the authors clinic for the preoperative detection of skeletal metastases. Bone scanning as a routine examination at 6-month intervals does not appear to be useful for the first 4 years of the follow-up, either. Most of the patients with a positive bone scan displayed other signs of skeletal metastases at the same time, such as ostealgia and a raised serum alkaline phosphatase level. Further increase of the frequency of bone scanning during the follow-up period would increase the costs considerably, almost prohibitively, even apart from the question whether such a measure might indeed significantly influence the patient's prognosis. The authors conclude that bone scanning should only be performed on the basis of the anamnesis, physical and laboratory findings, both prior to operation and during the follow-up period.

  16. The petrous bone

    DEFF Research Database (Denmark)

    Jørkov, Marie Louise Schjellerup; Heinemeier, Jan; Lynnerup, Niels

    2009-01-01

    Intraskeletal variation in the composition of carbon (delta(13)C) and nitrogen (delta(15)N) stable isotopes measured in collagen is tested from various human bones and dentine. Samples were taken from the femur, rib, and petrous part of the temporal bone from well-preserved skeletons of both adults...... (n = 34) and subadults (n = 24). Additional samples of dentine from the root of 1st molars were taken from 16 individuals. The skeletal material is from a medieval cemetery (AD 1200-1573) in Holbaek, Denmark. Our results indicate that the petrous bone has an isotopic signal that differs significantly...... from that of femur and rib within the single skeleton (P bone and the 1st molar. The intraskeletal variation may reflect differences...

  17. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  18. Measurements of bone mineral density of the proximal femur by two commercially available dual energy X-ray absorptiometric systems

    International Nuclear Information System (INIS)

    Svendsen, O.L.; Marslew, U.; Hassager, C.; Christiansen, C.

    1992-01-01

    Two dual energy X-ray absorptiometric (DXA) instruments have recently become commercially available for local bone densitometry: the QDR-1000 (Hologic Inc.) and the DPX (Lunar Radiation Corp.). We report the precision, influence of femoral, rotation, correlation and agreement of bone mineral measurements of the proximal fermur by these two instruments. In vitro (femur phantom) short-term precision was 1.1%-3.5%, and the long-term precision was 1.2%-3.8%. In vivo (groups of 10 premenopausal and 10 postmenopausal women) short-term precision of duplicate measurements was 1.6%-4.7%, and long-term precision was 1.9%-5.5%. Overall, the precision for Ward's triangle was over 3% and that for the femoral neck and trochanter, 2%-3%. Rotation of the femur phantom produced a statistically significant change in the bone mineral density (BMD) of the femoral neck. Within a clinically relevant range of femoral rotation (20deg inward rotation ±5deg) the coefficient of variation (CV%) increased by a mean factor of 1.1-1.4. Although the correlation (r<0.9) between BMD measurements of the proximal femur by the DPX and QDR-1000 in 30 postmenopausal women was high, there was lack of agreement between the two instruments. We found no statistically significant differences between the right and left femur in 30 postmenopausal women. A bilateral femur scan took a mean total time of about 22 min. We conclude that with the introduction of DXA instruments, the precision of bone mineral measurments of the proximal femur has improved. However, for comparability between commercially available DXA instruments, it might be advantageous if units were standardized. (orig.)

  19. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    International Nuclear Information System (INIS)

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.; Kurzynski, M.

    2010-01-01

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size, anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle ( 64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system achieved 78.8% classification accuracy and outperformed the WND

  20. The usefulness of bone marrow scintigraphy in the detection of bone metastasis from prostatic cancer

    International Nuclear Information System (INIS)

    Otsuka, Nobuaki; Fukunaga, Masao; Morita, Rikushi

    1985-01-01

    A combination study of bone and bone marrow scintigraphy was performed on 25 pts with prostatic cancer, and, in order to study the usefulness in the diagnosis of bone metastasis, the findings of 2 scintigraphies were compared with those of skeletal roentgenography. Out of the 18 cases with the hot spots of sup(99m)Tc-MDP in the lower lumbar spine or/and the pelvic bone, 8 showed normal bone marrow scintigrams which were eventually proved to have degenerative changes of the spine accompanied by aging. On the other hand, nine cases of the ten, who had accumulation defects on the bone marrow scintigrams were finally proved having bone metastasis. All six cases with extensive bone metastases shown by bone scintigraphy with sup(99m)Tc-MDP, demonstrated multiple accumulation defects on bone marrow scintigraphy with sup(99m)Tc-sulfur colloid. In conclusion, bone marrow scintigraphy was thought to be helpful in distinguishing the metastatic lesions from the benign spinal degenerative changes in the cases with suspicions bone involvement and in evaluating equivocal lesions in the pelvis. Therefore, it was shown that, in the detection and diagnosis of bone metastasis from prostatic cancer, bone scintigraphy alone was insufficient, and that combination with bone marrow scintigraphy was found to be useful. (author)

  1. Use of Vitamin D and Its Metabolites in Broiler Chicken Feed on Performance, Bone Parameters and Meat Quality

    Directory of Open Access Journals (Sweden)

    Ana Flávia Quiles Marques Garcia

    2013-03-01

    Full Text Available The objective of this experiment was to assess the use of different vitamin D metabolites in the feed of broiler chickens and the effects of the metabolites on performance, bone parameters and meat quality. A total of 952 one-day-old male broiler chicks were distributed in a completely randomised design, with four treatments, seven replicates and 34 birds per experimental unit. The treatments consisted of four different sources of vitamin D included in the diet, D3, 25(OHD3, 1,25(OH2D3, and 1α(OHD3, providing 2000 and 1600 IU of vitamin D in the starter (1 to 21 d and growth phases (22 to 42 d, respectively. Mean weight, feed:gain and weight gain throughout the rearing period were less in animals fed 1α(OHD3 when compared with the other treatments (p0.05 for various bone parameters. Meat colour differed among the treatments (p>0.05. All of the metabolites used in the diets, with the exception of 1α(OHD3, can be used for broiler chickens without problems for performance and bone quality, however, some aspects of meat quality were affected.

  2. Evaluation of secondary alveolar bone grafting outcomes performed after canine eruption in complete unilateral cleft lip and palate.

    Science.gov (United States)

    Lorenzoni, Diego Coelho; Janson, Guilherme; Bastos, Juliana Cunha; Carvalho, Roberta Martinelli; Bastos, José Carlos; de Cássia Moura Carvalho Lauris, Rita; Henriques, José Fernando Castanha; Ozawa, Terumi Okada

    2017-01-01

    Evaluate the results of secondary alveolar bone grafting (SABG) in patients with complete unilateral cleft lip and palate (UCLP), operated after permanent canine eruption (CE). Seventy-four periapical radiographs from patients with complete UCLP (mean age 14 years) submitted to SABG were retrospectively analyzed for the amount of bone in the cleft site through the Bergland and Chelsea scales. Of the cases, 47.3 % was classified as Bergland type I and Chelsea type A, 35.2 % as type II/C, 6.7 % as type III/D, and 10.8 % as type IV/failure. When the canine was moved into the grafted area, the success rate (type I/A) was 56.8 %; for cases in which the space was maintained for an implant or prosthetic finishing, the index was 45.8 %; however, this difference was not statistically significant. Even in advanced ages, after permanent canine eruption, SABG can be considered a highly successful procedure. This research shows good results of secondary alveolar bone grafting performed in patients with unilateral complete cleft lip and palate, even when it was performed after eruption of the permanent canine in the cleft area.

  3. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.

    Science.gov (United States)

    Troy, Karen L; Morse, Leslie R

    2015-01-01

    Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

  4. Effect of alpha-calciferol on bone mineral density, bone histomorphometry and bone biomechanics in rats by radiative injury to kidney

    International Nuclear Information System (INIS)

    Zhu Feipeng; Wang Hongfu; Gao Linfeng; Jin Weifang

    2003-01-01

    The work is to study the effects of alpha-calciferol on bone mineral density, histomorphometry and biomechanics in rats with osteoporosis induced by irradiation of the rat kidney. 32 male SD rats of six months in age were randomly divided into 4 groups (8 rats per group), i.e. the model group, the sham group, the bone one group and the fosamax group. Osteoporosis was developed in the rats by irradiating the kidney. Then the rats were administrated orally as follows in a 90 days, 0.1 g·kg -1 BW.d of alpha-calciferol for the bone one group, 10 mg·kg -1 BW.d of alendronate sodium in 1 mL CMC for the fosamax group, and 1 mL CMC for both the model group and sham group. BMD of L1-4, bone histomorphometry and the bone biomechanical properties were measured. Compared with the model group, both the bone one group and the fosamax group were characterized with significantly higher BMD of L1-4 (p<0.01), significantly larger volume and width of bone trabecula, smaller space of bone trabecula (p<0.05, p<0.01), and significantly larger maximal stress of femur and lumbar vertebra (p<0.05, p<0.01). It is concluded that Alpha-calciferol can improve BMD, bone histomorphometry and bone biomechanical properties in rat osteoporosis induced by kidney irradiation

  5. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep.

    Science.gov (United States)

    Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin

    2014-11-01

    Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.

  6. The effects of the organopollutant PCB 126 on bone density in juvenile diamondback terrapins (Malaclemys terrapin)

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, Dawn K., E-mail: dawn.holliday@westminster-mo.edu [Department of Biological Sciences and the Appalachian Rural Health Institute, Ohio University, Athens, OH 45701 (United States); Holliday, Casey M., E-mail: hollidayca@missouri.edu [Department of Pathology and Anatomical Sciences, M318 Medical Sciences Building, University of Missouri, Columbia, MO 65212 (United States)

    2012-03-15

    Bone is a dynamic tissue with diverse functions including growth, structural support, pH balance and reproduction. These functions may be compromised in the presence of organopollutants that can alter bone properties. We exposed juvenile diamondback terrapins (Malaclemys terrapin) to 3,3 Prime ,4,4 Prime ,5-pentachlorobiphenyl (PCB 126), a ubiquitous anthropogenic organochlorine, and measured organic content, apparent bone mineral density (aBMD) using radiography and computed tomography, and quantified bone microstructure using histological preparations of femora. PCB-exposed terrapins were smaller in total size. Skulls of exposed animals had a higher organic content and a skeletal phenotype more typical of younger animals. The femora of exposed individuals had significantly reduced aBMD and significantly more cortical area occupied by non-bone. Because bone is an integral component of physiology, the observed skeletal changes can have far-reaching impacts on feeding and locomotor performance, calcium reserves and ultimately life history traits and reproductive success. Additionally, we caution that measurements of bone morphology, density, and composition from field-collected animals need to account not only for relatedness and age, but also environmental pollutants.

  7. Histomorphological evaluation of Compound bone of Granulated Ricinus in bone regeneration in rabbits

    International Nuclear Information System (INIS)

    Mateus, Christiano Pavan; Chierice, Gilberto Orivaldo; Okamoto, Tetuo

    2011-01-01

    Histological evaluation is an effective method in the behavioral description of the qualitative and quantitative implanted materials. The research validated the performance of Compound bone of Granulated Ricinus on bone regeneration with the histomorphological analysis results. Were selected 30 rabbits, females, divided into 3 groups of 10 animals (G1, G2, G3) with a postoperative time of 45, 70 and 120 days respectively. Each animal is undergone 2 bone lesions in the ilium, one implemented in the material: Compound bone of Granulated Ricinus and the other for control. After the euthanasia, the iliac bone was removed, identified and subjected to histological procedure. The evaluation histological, histomorphological results were interpreted and described by quantitative and qualitative analysis based facts verified in the three experimental groups evaluating the rate of absorption of the material in the tissue regeneration, based on the neo-bone formation. The histomorphologic results classified as a material biocompatible and biologically active. Action in regeneration by bone resorption occurs slowly and gradually. Knowing the time and rate of absorption and neo-formation bone biomaterial, which can be determined in the bone segment applicable in the clinical surgical area.

  8. Objectively measured physical activity predicts hip and spine bone mineral content in children and adolescents ages 5 - 15 years: Iowa Bone Development Study

    Directory of Open Access Journals (Sweden)

    Kathleen F Janz

    2014-07-01

    Full Text Available This study examined the association between physical activity (PA and bone mineral content (BMC; g from middle childhood to middle adolescence and compared the impact of vigorous-intensity PA (VPA over moderate- to vigorous-intensity PA (MVPA. Participants from the Iowa Bone Development Study were examined at ages 5, 8, 11, 13, and 15 yr (n=369, 449, 452, 410, 307, respectively. MVPA and VPA (min/day were measured using ActiGraph accelerometers. Anthropometry was used to measure body size and somatic maturity. Spine BMC and hip BMC were measured via dual-energy x-ray absorptiometry. Sex-specific multi-level linear models were fit for spine BMC and hip BMC, adjusted for weight (kg, height (cm, linear age (yr, non-linear age (yr2, and maturity (pre peak height velocity vs. at/post peak height velocity. The interaction effects of PA×maturity and PA×age were tested. We also examined differences in spine BMC and hip BMC between the least (10th percentile and most (90th percentile active participants at each examination period. Results indicated that PA added to prediction of BMC throughout the 10-year follow-up, except MVPA did not predict spine BMC in females. Maturity and age did not modify the PA effect for males nor females. At age 5, the males at the 90th percentile for VPA had 8.5% more hip BMC than males in the 10th percentile for VPA. At age 15, this difference was 2.0%. Females at age 5 in the 90th percentile for VPA had 6.1% more hip BMC than those in the 10th percentile for VPA. The age 15 difference was 1.8%. VPA was associated with BMC at weight-bearing skeletal sites from childhood to adolescence, and the effect was not modified by maturity or age. Our findings indicate the importance of early and sustained interventions that focus on VPA. Approaches focused on MVPA may be inadequate for optimal bone health, particularly for females.

  9. Clinical study on bone mineral density and bone metabolism biochemical marker in hyperthyroidism

    International Nuclear Information System (INIS)

    Xu Ying; Xu Xiaohui

    2004-01-01

    To investigate the mechanism and relationship between hyperthyroidism and osteoporosis, bone mineral density was observed using dual-energy X-ray absorptiometry in 149 cases of hyperthyroidism, while serum FT 3 , FT 4 , TSH, alkaline phosphatase (ALP), BGP, and D-pyd levels were measured in 81 cases of hyperthyroidism. The osteopenia rate is 30.2% and the osteoporosis rate is 24.1% in hyperthyroidism patients. Compare with control group, bone metabolic biochemical markers in all cases of hyperthyroidism showed a significant increase, which displays high turnover osteoporosis. In order to find out the case of osteoporosis as soon as possible, bone mineral density of all patients with hyperthyroidism should be measured in the period of treatment. (authors)

  10. The distribution of 210Pb in human bone and its impact on methods for the retrospective estimation of 222Rn exposure from in vivo measurements.

    Science.gov (United States)

    Johnston, Peter N; Hult, Mikael; Gasparro, Joël; Martínez-Canet, María-José; Vasselli, Roberto; McKenzie, Raymond J; Solomon, Steven B; Lambrichts, Ivo

    2005-01-01

    It is possible to estimate radon exposure to man retrospectively by the in vivo measurement of the decay product (210)Pb, which accumulates in the bones. For in vivo methods, knowledge of the distribution of (210)Pb in the skeleton is needed to determine the optimal site for measurement, the skull or the knee. In this study the activity of (210)Pb in a variety of bone samples from 3 individuals have been measured in vitro using underground gamma-ray spectrometry. The individuals were unlikely to have had elevated intakes of Rn. These measurements give baseline data on the bone massic activity of (210)Pb. They show that the massic activity is similar for each of these people and there are similar massic activities of (210)Pb in the skull and the knee of the 2 individuals for which the skull was measured. Additionally for 2 of the individuals trabecular and cortical bone were separated and massic activities were found to be strongly correlated indicating that the (210)Pb is associated with the hydroxyapatite.

  11. The distribution of 210Pb in human bone and its impact on methods for the retrospective estimation of 222Rn exposure from in vivo measurements

    International Nuclear Information System (INIS)

    Johnston, Peter N.; Hult, Mikael; Gasparro, Jogl; Martinez-Canet, Maria-Jose; Vasselli, Roberto; McKenzie, Raymond J.; Solomon, Steven B.; Lambrichts, Ivo

    2005-01-01

    It is possible to estimate radon exposure to man retrospectively by the in vivo measurement of the decay product 210 Pb, which accumulates in the bones. For in vivo methods, knowledge of the distribution of 210 Pb in the skeleton is needed to determine the optimal site for measurement, the skull or the knee. In this study the activity of 210 Pb in a variety of bone samples from 3 individuals have been measured in vitro using underground γ-ray spectrometry. The individuals were unlikely to have had elevated intakes of Rn. These measurements give baseline data on the bone massic activity of 210 Pb. They show that the massic activity is similar for each of these people and there are similar massic activities of 210 Pb in the skull and the knee of the 2 individuals for which the skull was measured. Additionally for 2 of the individuals trabecular and cortical bone were separated and massic activities were found to be strongly correlated indicating that the 210 Pb is associated with the hydroxyapatite