WorldWideScience

Sample records for performance involving accelerated

  1. Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance

    Science.gov (United States)

    Creer, Brent Y.; Smedal, Harald A.; Wingrove, Rodney C.

    1960-01-01

    A research program the general objective of which was to measure the effects of various sustained accelerations on the control performance of pilots, was carried out on the Aviation Medical Acceleration Laboratory centrifuge, U.S. Naval Air Development Center, Johnsville, PA. The experimental setup consisted of a flight simulator with the centrifuge in the control loop. The pilot performed his control tasks while being subjected to acceleration fields such as might be encountered by a forward-facing pilot flying an atmosphere entry vehicle. The study was divided into three phases. In one phase of the program, the pilots were subjected to a variety of sustained linear acceleration forces while controlling vehicles with several different sets of longitudinal dynamics. Here, a randomly moving target was displayed to the pilot on a cathode-ray tube. For each combination of acceleration field and vehicle dynamics, pilot tracking accuracy was measured and pilot opinion of the stability and control characteristics was recorded. Thus, information was obtained on the combined effects of complexity of control task and magnitude and direction of acceleration forces on pilot performance. These tests showed that the pilot's tracking performance deteriorated markedly at accelerations greater than about 4g when controlling a lightly damped vehicle. The tentative conclusion was also reached that regardless of the airframe dynamics involved, the pilot feels that in order to have the same level of control over the vehicle, an increase in the vehicle dynamic stability was required with increases in the magnitudes of the acceleration impressed upon the pilot. In another phase, boundaries of human tolerance of acceleration were established for acceleration fields such as might be encountered by a pilot flying an orbital vehicle. A special pilot restraint system was developed to increase human tolerance to longitudinal decelerations. The results of the tests showed that human tolerance

  2. High-performance computing in accelerating structure design and analysis

    International Nuclear Information System (INIS)

    Li Zenghai; Folwell, Nathan; Ge Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-01-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R and D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields)

  3. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  4. Determination of dimensions and theoretical evaluation of the performance of electron accelerator structures

    International Nuclear Information System (INIS)

    Fuhrmann, C.; Setrao, V.A.

    1987-03-01

    A method to calculate the dimensions of a constant gradient disk-loaded structure of a linear accelerator is presented. The method is based on a description of the RF power flux along the structure axis and involves a particular dispersion that includes details of the iris geometry. The dimensions of the v p = c structure and of the buncher section of the CURUMIM linear accelerator, have been determined as an application of the above method. The theoretical performance of the accelerating structure has been evaluated for electron pulse widths ranging from 10 ns to 2 μs and for peak currents up to 10 A. (author) [pt

  5. RHIC sextant test: Accelerator systems and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  6. RHIC sextant test: Accelerator systems and performance

    International Nuclear Information System (INIS)

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-01-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  7. Performance of the FELIX accelerator

    International Nuclear Information System (INIS)

    Geer, C.A.J. van der; Bakker, R.J.; Meer, A.F.G. van der; Amersfoort, P.W. van; Gillespie, W.A.; Martin, P.F.

    1992-01-01

    The FELIX project (Free Electron Laser for Infrared eXperiments) involves the construction and operation of a rapidly tunable FEL users facility for the infrared based on a rf linear accelerator. Lasing was obtained in the summer of 1991. The spectral region already covered is between 16 and 110 μm to be extended to below 8 μm with an additional linac section. Measurement of several electron beam parameters along the beam line are presented. (author) 6 refs.; 7 figs

  8. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  9. Quantum Accelerators for High-performance Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  10. High-performance control system for a heavy-ion medical accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species.

  11. High-performance control system for a heavy-ion medical accelerator

    International Nuclear Information System (INIS)

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species

  12. Required performance to the concrete structure of the accelerator facilities

    International Nuclear Information System (INIS)

    Irie, Masaaki; Yoshioka, Masakazu; Miyahara, Masanobu

    2006-01-01

    As for the accelerator facility, there is many a thing which is constructed as underground concrete structure from viewpoint such as cover of radiation and stability of the structure. Required performance to the concrete structure of the accelerator facility is the same as the general social infrastructure, but it has been possessed the feature where target performance differs largely. As for the body sentence, expressing the difference of the performance which is required from the concrete structure of the social infrastructure and the accelerator facility, construction management of the concrete structure which it plans from order of the accelerator engineering works facility, reaches to the design, supervision and operation it is something which expresses the method of thinking. In addition, in the future of material structural analysis of the concrete which uses the neutron accelerator concerning view it showed. (author)

  13. High performance proton accelerators

    International Nuclear Information System (INIS)

    Favale, A.J.

    1989-01-01

    In concert with this theme this paper briefly outlines how Grumman, over the past 4 years, has evolved from a company that designed and fabricated a Radio Frequency Quadrupole (RFQ) accelerator from the Los Alamos National Laboratory (LANL) physics and specifications to a company who, as prime contractor, is designing, fabricating, assembling and commissioning the US Army Strategic Defense Commands (USA SDC) Continuous Wave Deuterium Demonstrator (CWDD) accelerator as a turn-key operation. In the case of the RFQ, LANL scientists performed the physics analysis, established the specifications supported Grumman on the mechanical design, conducted the RFQ tuning and tested the RFQ at their laboratory. For the CWDD Program Grumman has the responsibility for the physics and engineering designs, assembly, testing and commissioning albeit with the support of consultants from LANL, Lawrence Berkeley Laboratory (LBL) and Brookhaven National laboratory. In addition, Culham Laboratory and LANL are team members on CWDD. LANL scientists have reviewed the physics design as well as a USA SDC review board. 9 figs

  14. The evaluation of speed skating helmet performance through peak linear and rotational accelerations.

    Science.gov (United States)

    Karton, Clara; Rousseau, Philippe; Vassilyadi, Michael; Hoshizaki, Thomas Blaine

    2014-01-01

    Like many sports involving high speeds and body contact, head injuries are a concern for short track speed skating athletes and coaches. While the mandatory use of helmets has managed to nearly eliminate catastrophic head injuries such as skull fractures and cerebral haemorrhages, they may not be as effective at reducing the risk of a concussion. The purpose of this study was to evaluate the performance characteristics of speed skating helmets with respect to managing peak linear and peak rotational acceleration, and to compare their performance against other types of helmets commonly worn within the speed skating sport. Commercially available speed skating, bicycle and ice hockey helmets were evaluated using a three-impact condition test protocol at an impact velocity of 4 m/s. Two speed skating helmet models yielded mean peak linear accelerations at a low-estimated probability range for sustaining a concussion for all three impact conditions. Conversely, the resulting mean peak rotational acceleration values were all found close to the high end of a probability range for sustaining a concussion. A similar tendency was observed for the bicycle and ice hockey helmets under the same impact conditions. Speed skating helmets may not be as effective at managing rotational acceleration and therefore may not successfully protect the user against risks associated with concussion injuries.

  15. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests.

    Science.gov (United States)

    Smith, Koren; Balter, Peter; Duhon, John; White, Gerald A; Vassy, David L; Miller, Robin A; Serago, Christopher F; Fairobent, Lynne A

    2017-07-01

    The purpose of this guideline is to provide a list of critical performance tests in order to assist the Qualified Medical Physicist (QMP) in establishing and maintaining a safe and effective quality assurance (QA) program. The performance tests on a linear accelerator (linac) should be selected to fit the clinical patterns of use of the accelerator and care should be given to perform tests which are relevant to detecting errors related to the specific use of the accelerator. A risk assessment was performed on tests from current task group reports on linac QA to highlight those tests that are most effective at maintaining safety and quality for the patient. Recommendations are made on the acquisition of reference or baseline data, the establishment of machine isocenter on a routine basis, basing performance tests on clinical use of the linac, working with vendors to establish QA tests and performing tests after maintenance. The recommended tests proposed in this guideline were chosen based on the results from the risk analysis and the consensus of the guideline's committee. The tests are grouped together by class of test (e.g., dosimetry, mechanical, etc.) and clinical parameter tested. Implementation notes are included for each test so that the QMP can understand the overall goal of each test. This guideline will assist the QMP in developing a comprehensive QA program for linacs in the external beam radiation therapy setting. The committee sought to prioritize tests by their implication on quality and patient safety. The QMP is ultimately responsible for implementing appropriate tests. In the spirit of the report from American Association of Physicists in Medicine Task Group 100, individual institutions are encouraged to analyze the risks involved in their own clinical practice and determine which performance tests are relevant in their own radiotherapy clinics. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on

  16. An examination of medical linear accelerator ion-chamber performance

    International Nuclear Information System (INIS)

    Karolis, C.; Lee, C.; Rinks, A.

    1996-01-01

    Full text: The company ( Radiation Oncology Physics and Engineering Services Pty Ltd) provides medical physics services to four radiotherapy centres in NSW with a total of 6 high energy medical linear accelerators manufactured by three different companies. As part of the services, the stability of the accelerator ion chamber system is regularly examined for constancy and periodically for absolute calibration. Each accelerator ion chamber has exhibited undesirable behaviour from time to time, sometimes leading to its replacement. This presentation describes the performance of the ion chambers for some of the linacs over a period of 12-18 months and the steps taken by the manufacturer to address the problems encountered. As part of our commissioning procedure of new linacs, an absolute calibration of the accelerator output (photon and electron beams) is repeated several times over the period following examination of the physical properties of the radiation beams. These calibrations were undertaken in water using the groups calibrated ion chamber/electrometer system and were accompanied by constancy checks using an acrylic phantom and field instruments. Constancy checks were performed daily for a period of 8 weeks during the initial life of the accelerator and thereafter weekly. For one accelerator, the ion chamber was replaced 6 times in the first eighteen months of its life due to severe drifts in output, found to be due to pressure changes in one half of the chamber In another accelerator, erratic swings of 2% were observed for a period of nine months, particularly with the electron beams, before the manufacturer offered to change the chamber with another constructed from different materials. In yet another accelerator the ion chamber has shown consistent erratic behaviour, but this has not been addressed by the manufacturer. In another popular accelerator, the dosimetry was found to be very stable until some changes in the tuning were introduced resulting in small

  17. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb

    2014-05-04

    Graphics Processing Units (GPUs) are gradually becoming mainstream in supercomputing as their capabilities to significantly accelerate a large spectrum of scientific applications have been clearly identified and proven. Moreover, with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually requires an in-depth knowledge of the hardware and software specifications. We suggest a prediction-based performance tuning mechanism [3] to quickly tune OpenACC parameters for a given application to dynamically adapt to the execution environment on a given system. This approach is applied to a finite difference kernel to tune the OpenACC gang and vector clauses for mapping the compute kernels into the underlying accelerator architecture. Our experiments show a significant performance improvement against the default compiler parameters and a faster tuning by an order of magnitude compared to the brute force search tuning.

  18. Acceleration performance of individual European sea bass Dicentrarchus labrax measured with a sprint performance chamber: comparison with high-speed cinematography and correlates with ecological performance.

    Science.gov (United States)

    Vandamm, Joshua P; Marras, Stefano; Claireaux, Guy; Handelsman, Corey A; Nelson, Jay A

    2012-01-01

    Locomotor performance can influence the ecological and evolutionary success of a species. For fish, favorable outcomes of predator-prey encounters are often presumably due to robust acceleration ability. Although escape-response or "fast-start" studies utilizing high-speed cinematography are prevalent, little is known about the contribution of relative acceleration performance to ecological or evolutionary success in a species. This dearth of knowledge may be due to the time-consuming nature of analyzing film, which imposes a practical limit on sample sizes. Herein, we present a high-throughput potential alternative for measuring fish acceleration performance using a sprint performance chamber (SPC). The acceleration performance of a large number of juvenile European sea bass (Dicentrarchus labrax) from two populations was analyzed. Animals from both hatchery and natural ontogenies were assessed, and animals of known acceleration ability had their ecological performance measured in a mesocosm environment. Individuals from one population also had their acceleration performance assessed by both high-speed cinematography and an SPC. Acceleration performance measured in an SPC was lower than that measured by classical high-speed video techniques. However, short-term repeatability and interindividual variation of acceleration performance were similar between the two techniques, and the SPC recorded higher sprint swimming velocities. Wild fish were quicker to accelerate in an SPC and had significantly greater accelerations than all groups of hatchery-raised fish. Acceleration performance had no significant effect on ecological performance (as assessed through animal growth and survival in the mesocosms). However, it is worth noting that wild animals did survive predation in the mesocosm better than farmed ones. Moreover, the hatchery-originated fish that survived the mesocosm experiment, when no predators were present, displayed significantly increased acceleration

  19. Improved voltage performance of the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Meigs, M.J.; Jones, C.M.; Haynes, D.L.; Juras, R.C.; Ziegler, N.F.; Raatz, J.E.; Rathmell, R.D.

    1988-01-01

    While voltage performance of the accelerator has been adequate for the experimental program to date, it seemed clear that improvement in voltage performance could be of direct benefit to the experimental program in the future. Therefore, we began, in June 1986, a program of modifications and tests which was designed to improve voltage performance of the accelerator. In this paper, we discuss the final phase of this program and initial tests of the accelerator following completion of this final phase. 11 refs., 4 figs

  20. Performance evaluation of thin wearing courses through scaled accelerated trafficking.

    Science.gov (United States)

    2014-01-01

    The primary objective of this study was to evaluate the permanent deformation (rutting) and fatigue performance of : several thin asphalt concrete wearing courses using a scaled-down accelerated pavement testing device. The accelerated testing : was ...

  1. Automatic performance tuning of parallel and accelerated seismic imaging kernels

    KAUST Repository

    Haberdar, Hakan; Siddiqui, Shahzeb; Feki, Saber

    2014-01-01

    the performance of the MPI communications as well as developer productivity by providing a higher level of abstraction. Keeping productivity in mind, we opted toward pragma based programming for accelerated computation on latest accelerated architectures

  2. The impact of new accelerator control software on LEP performance

    International Nuclear Information System (INIS)

    Bailey, R.; Belk, A.; Collier, P.; Lamont, M.; Rigk, G. de; Tarrant, M.

    1993-01-01

    After the first year of running LEP, it became apparent that a new generation of application software would be required for efficient long term exploitation of the accelerator. In response to this need, a suite of accelerator control software has been developed, which is new both in style and functionality. During 1992 this software has been extensively used for driving LEP in many different operational modes, which include several different optics, polarisation runs at different energies and 8 bunch operation with Pretzels. The software has performed well and has undoubtedly enhanced the efficiency of accelerator operations. In particular the turnaround time has been significantly reduced, giving an increase of around 20% in the integrated luminosity for the year. Furthermore the software has made the accelerator accessible to less experienced operators. After outlining the development strategy, the overall functionality and performance of the software is discussed, with particular emphasis on improvements in operating efficiency. Some evaluation of the performance and reliability of ORACLE as an on-line database is also given

  3. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  4. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-01-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of < 100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipment: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost

  5. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M.; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-03-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of <100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipments: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost. 1 fig

  6. CLIC: The CLIC accelerator design and performance

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  7. Performance tuning for CUDA-accelerated neighborhood denoising filters

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ziyi; Mueller, Klaus [Stony Brook Univ., NY (United States). Center for Visual Computing, Computer Science; Xu, Wei

    2011-07-01

    Neighborhood denoising filters are powerful techniques in image processing and can effectively enhance the image quality in CT reconstructions. In this study, by taking the bilateral filter and the non-local mean filter as two examples, we discuss their implementations and perform fine-tuning on the targeted GPU architecture. Experimental results show that the straightforward GPU-based neighborhood filters can be further accelerated by pre-fetching. The optimized GPU-accelerated denoising filters are ready for plug-in into reconstruction framework to enable fast denoising without compromising image quality. (orig.)

  8. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    International Nuclear Information System (INIS)

    Nelson, S; Poole, B; Caporaso, G

    2007-01-01

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam

  9. Performance of photocathode rf gun electron accelerators

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area

  10. Automatic performance tuning of parallel and accelerated seismic imaging kernels

    KAUST Repository

    Haberdar, Hakan

    2014-01-01

    With the increased complexity and diversity of mainstream high performance computing systems, significant effort is required to tune parallel applications in order to achieve the best possible performance for each particular platform. This task becomes more and more challenging and requiring a larger set of skills. Automatic performance tuning is becoming a must for optimizing applications such as Reverse Time Migration (RTM) widely used in seismic imaging for oil and gas exploration. An empirical search based auto-tuning approach is applied to the MPI communication operations of the parallel isotropic and tilted transverse isotropic kernels. The application of auto-tuning using the Abstract Data and Communication Library improved the performance of the MPI communications as well as developer productivity by providing a higher level of abstraction. Keeping productivity in mind, we opted toward pragma based programming for accelerated computation on latest accelerated architectures such as GPUs using the fairly new OpenACC standard. The same auto-tuning approach is also applied to the OpenACC accelerated seismic code for optimizing the compute intensive kernel of the Reverse Time Migration application. The application of such technique resulted in an improved performance of the original code and its ability to adapt to different execution environments.

  11. The design and performance of Static Var Compensators for particle accelerators

    CERN Document Server

    Kahle, Karsten; Genton, Charles-Mathieu

    2015-01-01

    Particle accelerators, and in particular synchrotrons, represent large cycling non-linear loads connected to the electrical distribution network. This paper discusses the typical design and performance of Static Var Compensators (SVCs) to obtain the excellent power quality levels required for particle accelerator operation.

  12. KIPT accelerator-driven system design and performance

    International Nuclear Information System (INIS)

    Gohar, Y.; Bolshinsky, I.; Karnaukhov, I.

    2015-01-01

    Argonne National Laboratory (ANL) of the US is collaborating with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine to develop and construct a neutron source facility. The facility is planned to produce medical isotopes, train young nuclear professionals, support Ukraine's nuclear industry and provide capability to perform reactor physics, material research, and basic science experiments. It consists of a subcritical assembly with low-enriched uranium fuel driven with an electron accelerator. The target design utilises tungsten or natural uranium for neutron production through photonuclear reactions from the Bremsstrahlung radiation generated by 100-MeV electrons. The accelerator electron beam power is 100 KW. The neutron source intensity, spectrum, and spatial distribution have been studied as a function of the electron beam parameters to maximise the neutron yield and satisfy different engineering requirements. Physics, thermal-hydraulics, and thermal-stress analyses were performed and iterated to maximise the neutron source strength and to minimise the maximum temperature and the thermal stress in the target materials. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with an effective neutron multiplication factor of <0.98. Different fuel and reflector materials are considered for the subcritical assembly design. The mechanical design of the facility has been developed to maximise its utility and minimise the time for replacing the target, fuel, and irradiation cassettes by using simple and efficient procedures. Shielding analyses were performed to define the dose map around the facility during operation as a function of the heavy concrete shield thickness. Safety, reliability and environmental considerations are included in the facility design. The facility is configured to accommodate future design upgrades and new missions. In addition, it has unique features relative to the other international

  13. Predictive Performance Tuning of OpenACC Accelerated Applications

    KAUST Repository

    Siddiqui, Shahzeb; Feki, Saber

    2014-01-01

    , with the introduction of high level programming models such as OpenACC [1] and OpenMP 4.0 [2], these devices are becoming more accessible and practical to use by a larger scientific community. However, performance optimization of OpenACC accelerated applications usually

  14. Man-systems evaluation of moving base vehicle simulation motion cues. [human acceleration perception involving visual feedback

    Science.gov (United States)

    Kirkpatrick, M.; Brye, R. G.

    1974-01-01

    A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.

  15. Performance limiting effects in X-band accelerators

    Directory of Open Access Journals (Sweden)

    Faya Wang

    2011-01-01

    Full Text Available Acceleration gradient is a critical parameter for the design of future TeV-scale linear colliders. The major obstacle to higher gradient in room-temperature accelerators is rf breakdown, which is still a very mysterious phenomenon that depends on the geometry and material of the accelerator as well as the input power and operating frequency. Pulsed heating has been associated with breakdown for many years; however, there have been no experiments that clearly separate field and heating effects on the breakdown rate. Recently, such experiments have been performed at SLAC with both standing-wave and traveling-wave structures. These experiments have demonstrated that pulsed heating is limiting the gradient. Nevertheless the X-band structures breakdown studies show damage to the iris surfaces in locations of high electric field rather than of high magnetic field after thousands of breakdowns. It is not yet clear how the relative roles of electric field, magnetic field, and heating factor into the damage caused by rf breakdown. Thus, a dual-moded cavity has been designed to better study the electric field, magnetic field, and pulsed heating effects on breakdown damage.

  16. Accelerated testing for studying pavement design and performance (FY 2003) : research summary.

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...

  17. Postactivation potentiation of sprint acceleration performance using plyometric exercise.

    Science.gov (United States)

    Turner, Anthony P; Bellhouse, Sam; Kilduff, Liam P; Russell, Mark

    2015-02-01

    Postactivation potentiation (PAP), an acute and temporary enhancement of muscular performance resulting from previous muscular contraction, commonly occurs after heavy resistance exercise. However, this method of inducing PAP has limited application to the precompetition practices (e.g., warm-up) of many athletes. Very few studies have examined the influence of plyometric activity on subsequent performance; therefore, we aimed to examine the influence of alternate-leg bounding on sprint acceleration performance. In a randomized crossover manner, plyometric-trained men (n = 23) performed seven 20-m sprints (with 10-m splits) at baseline, ∼15 seconds, 2, 4, 8, 12, and 16 minutes after a walking control (C) or 3 sets of 10 repetitions of alternate-leg bounding using body mass (plyometric, P) and body mass plus 10% (weighted plyometric, WP). Mean sprint velocities over 10 and 20 m were similar between trials at baseline. At ∼15 seconds, WP impaired 20-m sprint velocity by 1.4 ± 2.5% when compared with C (p = 0.039). Thereafter, 10- and 20-m sprint velocities improved in WP at 4 minutes (10 m: 2.2 ± 3.1%, p = 0.009; 20 m: 2.3 ± 2.6%, p = 0.001) and 8 minutes (10 m: 2.9 ± 3.6%, p = 0.002; 20 m: 2.6 ± 2.8%, p = 0.001) compared with C. Improved 10-m sprint acceleration performance occurred in P at 4 minutes (1.8 ± 3.3%, p = 0.047) relative to C. Therefore, sprint acceleration performance is enhanced after plyometric exercise providing adequate recovery is given between these activities; however, the effects may differ according to whether additional load is applied. This finding presents a practical method to enhance the precompetition practices of athletes.

  18. CAS Accelerator Physics (RF for Accelerators) in Denmark

    CERN Multimedia

    Barbara Strasser

    2010-01-01

    The CERN Accelerator School (CAS) and Aarhus University jointly organised a specialised course on RF for Accelerators, at the Ebeltoft Strand Hotel, Denmark from 8 to 17 June 2010.   Caption The challenging programme focused on the introduction of the underlying theory, the study and the performance of the different components involved in RF systems, the RF gymnastics and RF measurements and diagnostics. This academic part was supplemented with three afternoons dedicated to practical hands-on exercises. The school was very successful, with 100 participants representing 25 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants were able to visit a small industrial exhibition organised by Aarhus University and take part in a one-day excursion consisting of a visit of the accelerators operated ...

  19. Improvement in performance and operational experience of 14 UD Pelletron accelerator facility, BARC-TIFR

    International Nuclear Information System (INIS)

    Bhagwat, P.V.

    2002-01-01

    14 UD Pelletron accelerator facility at Mumbai has been operational since 1989. The project MEHIA (Medium Energy Heavy Ion Accelerator) started in 1982 and was formally inaugurated on 30th December 1988. Since then the accelerator has been working round the clock. Improvement in accelerator performance and operational experience are described. (author)

  20. Burst muscle performance predicts the speed, acceleration, and turning performance of Anna's hummingbirds.

    Science.gov (United States)

    Segre, Paolo S; Dakin, Roslyn; Zordan, Victor B; Dickinson, Michael H; Straw, Andrew D; Altshuler, Douglas L

    2015-11-19

    Despite recent advances in the study of animal flight, the biomechanical determinants of maneuverability are poorly understood. It is thought that maneuverability may be influenced by intrinsic body mass and wing morphology, and by physiological muscle capacity, but this hypothesis has not yet been evaluated because it requires tracking a large number of free flight maneuvers from known individuals. We used an automated tracking system to record flight sequences from 20 Anna's hummingbirds flying solo and in competition in a large chamber. We found that burst muscle capacity predicted most performance metrics. Hummingbirds with higher burst capacity flew with faster velocities, accelerations, and rotations, and they used more demanding complex turns. In contrast, body mass did not predict variation in maneuvering performance, and wing morphology predicted only the use of arcing turns and high centripetal accelerations. Collectively, our results indicate that burst muscle capacity is a key predictor of maneuverability.

  1. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Gannon, J.; Kraushaar, P.; Mcinturff, A.; Nehring, R.; Saladin, V.; Savord, T.; Sorrensen, G.; Smellie, R.; Tool, G.; Voy, D.

    1993-05-01

    The intent of the Accelerator System String Test (ASST) is to obtain data for model verification and information on the magnitudes of pressures and voltages encountered in an accelerator environment. The ASST milestone run was achieved during July and August, 1992 and consisted of demonstrating the accelerator components could be configured together as a system operating at full current. Following the milestone run, the string was warmed to counteract some design flaws that impeded the operational range. The string was again cooled to cryogenic temperatures in October, and a comprehensive power testing program was conducted through the end of January, 1993. This paper describes how the collider arc components operate in an accelerator environment during quenches induced by firing both strip heaters and spot heaters. Evaluation of the data illustrates how variations in the design parameters on magnets used in a string environment can impact system performance

  2. The influence of polycarboxylate-type super-plasticizers on alkali-free liquid concrete accelerators performance

    Science.gov (United States)

    Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng

    2017-04-01

    Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.

  3. Spallator - accelerator breeder

    International Nuclear Information System (INIS)

    Steinberg, M.

    1985-01-01

    The concept involves the use of spallation neutrons produced by interaction of a high energy proton (1 to 2 GeV) from a linear accelerator (LINAC) with a heavy metal target (uranium). The principal spallator concept is based on generating fissile fuel for use in LWR nuclear power plants. The spallator functions in conjunction with a reprocessing plant to regenerate and produce the Pu-239 or U-233 for fabrication into fresh LWR reactor fuel elements. Advances in proton accelerator technology has provided a solid base for predicting performance and optimizing the design of a reliable, continuous wave, high-current LINAC required by a fissile fuel production machine

  4. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-01-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  5. Electrical performance characteristics of the SSC Accelerator System String Test

    International Nuclear Information System (INIS)

    Robinson, W.; Burgett, W.; Dombeck, T.; Gannon, J.; Kraushaar, P.; McInturff, A.; Savord, T.; Tool, G.

    1993-05-01

    The string test facility was constructed to provide a development test bed for the arc regions of the Superconducting Super Collider (SSC). Significant effort has been devoted to the development and testing of superconducting magnets, spools, and accelerator control systems required for the SSC. The string test facility provides the necessary environment required to evaluate the operational performance of these components as they are configured as an accelerator lens in the collider. This discussion will review the results of high current testing of the string conducted to evaluate magnet element uniformity and compatibility, the splice resistance used to connect the magnets, and system response to various quench conditions. Performance results of the spools, energy bypass systems, energy dump, and the power supply system are also discussed

  6. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  7. Preparation and Performance of a New-Type Alkali-Free Liquid Accelerator for Shotcrete

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-01-01

    Full Text Available A new type of alkali-free liquid accelerator for shotcrete was prepared. Specifically, the setting time and strength and shrinkage performance of two kinds of Portland cement with the accelerator were fully investigated. Moreover, the accelerating mechanism of alkali-free liquid accelerator and the hydration process of the shotcrete with accelerator were explored. Results show that alkali-free liquid accelerator significantly shortened the setting time of cement paste, where the initial setting time of cement paste with 8 wt% of the accelerator was about 3 min and the final setting time was about 7 min. Compressive strength at 1 day of cement mortar with the accelerator could reach 23.4 MPa, which increased by 36.2% compared to the strength of cement mortar without the accelerator, and the retention rate of 28-day compressive strength reached 110%. In addition, the accelerator still shows a good accelerating effect under low temperature conditions. However, the shrinkage rate of the concrete increased with the amount of the accelerator. 5~8% content of accelerator is recommended for shotcrete in practice. XRD and SEM test results showed that the alkali-free liquid accelerator promoted the formation of ettringite crystals due to the increase of Al3+ and SO42- concentration.

  8. Numerical Nudging: Using an Accelerating Score to Enhance Performance.

    Science.gov (United States)

    Shen, Luxi; Hsee, Christopher K

    2017-08-01

    People often encounter inherently meaningless numbers, such as scores in health apps or video games, that increase as they take actions. This research explored how the pattern of change in such numbers influences performance. We found that the key factor is acceleration-namely, whether the number increases at an increasing velocity. Six experiments in both the lab and the field showed that people performed better on an ongoing task if they were presented with a number that increased at an increasing velocity than if they were not presented with such a number or if they were presented with a number that increased at a decreasing or constant velocity. This acceleration effect occurred regardless of the absolute magnitude or the absolute velocity of the number, and even when the number was not tied to any specific rewards. This research shows the potential of numerical nudging-using inherently meaningless numbers to strategically alter behaviors-and is especially relevant in the present age of digital devices.

  9. Burst muscle performance predicts the speed, acceleration, and turning performance of Anna’s hummingbirds

    Science.gov (United States)

    Segre, Paolo S; Dakin, Roslyn; Zordan, Victor B; Dickinson, Michael H; Straw, Andrew D; Altshuler, Douglas L

    2015-01-01

    Despite recent advances in the study of animal flight, the biomechanical determinants of maneuverability are poorly understood. It is thought that maneuverability may be influenced by intrinsic body mass and wing morphology, and by physiological muscle capacity, but this hypothesis has not yet been evaluated because it requires tracking a large number of free flight maneuvers from known individuals. We used an automated tracking system to record flight sequences from 20 Anna's hummingbirds flying solo and in competition in a large chamber. We found that burst muscle capacity predicted most performance metrics. Hummingbirds with higher burst capacity flew with faster velocities, accelerations, and rotations, and they used more demanding complex turns. In contrast, body mass did not predict variation in maneuvering performance, and wing morphology predicted only the use of arcing turns and high centripetal accelerations. Collectively, our results indicate that burst muscle capacity is a key predictor of maneuverability. DOI: http://dx.doi.org/10.7554/eLife.11159.001 PMID:26583753

  10. Performance of resistance grading system at 14 UD Pelletron Accelerator Facility, BARC-TIFR, Mumbai

    International Nuclear Information System (INIS)

    Lal, Ram; Matkar, U.V.; Ekambaram, M.; Lokare, R.N.; Yadav, M.L.; Gore, J.A.; Kulkarni, S.G.; Gupta, A.K.; Bhagwat, P.V.; Kale, R.M.; Karande, J.N.; Kurup, M.B.

    2005-01-01

    The 14UD Pelletron Accelerator has been in operation for last sixteen years, progressively with increased efficiency. Since inception the accelerator was operating in slit control mode, however, with the installation of a TPS system, it is now possible to operate the accelerator in GVM mode even with ion beam of low intensities. Recently all the column and tube corona points were replaced by resistances. This has helped in low voltage operation of accelerator. In this paper we will discuss in detail the performance of new Terminal Potential Stabiliser system, particularly, our experience resistance grading, at the Pelletron Accelerator. (author)

  11. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets

    Science.gov (United States)

    Dionne, J. P.; Levine, J.; Makris, A.

    2018-01-01

    To design the next generation of blast mitigation helmets that offer increasing levels of protection against explosive devices, manufacturers must be able to rely on appropriate test methodologies and human surrogates that will differentiate the performance level of various helmet solutions and ensure user safety. Ideally, such test methodologies and associated injury thresholds should be based on widely accepted injury criteria relevant within the context of blast. Unfortunately, even though significant research has taken place over the last decade in the area of blast neurotrauma, there currently exists no agreement in terms of injury mechanisms for blast-induced traumatic brain injury. In absence of such widely accepted test methods and injury criteria, the current study presents a specific blast test methodology focusing on explosive ordnance disposal protective equipment, involving the readily available Hybrid III mannequin, initially developed for the automotive industry. The unlikely applicability of the associated brain injury criteria (based on both linear and rotational head acceleration) is discussed in the context of blast. Test results encompassing a large number of blast configurations and personal protective equipment are presented, emphasizing the possibility to develop useful correlations between blast parameters, such as the scaled distance, and mannequin engineering measurements (head acceleration). Suggestions are put forward for a practical standardized blast testing methodology taking into account limitations in the applicability of acceleration-based injury criteria as well as the inherent variability in blast testing results.

  12. Industrialization of Superconducting RF Accelerator Technology

    Science.gov (United States)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  13. ``Trickle Meter Gravimetry'': Precision Interferometry from Residual Berry Phase Edge Effects Involving Atoms Exiting an Accelerating Optical Lattice

    Science.gov (United States)

    Chubb, Scott

    2007-03-01

    From a generalization of conventional band theory, derived from a many-body form of multiple scattering theory, I rigorously showed that the semi-classical theory of cold atom transport in optical lattices could be related to changes in the zero of momentum of the ground state. The new formulation includes finite size effects. When the effects of excitation, associated with the loss of atoms at the boundaries of the lattice are included, in the adiabatic limit, in which the perturbing potential acts sufficiently slowly and weakly, topological changes in phase (which are equivalent to Berry phase effects in the conventional semi-classical theory) take place that introduce discontinuous changes in wave function phase (and flux). In a situation involving an accelerating optical lattice, containing ultra cold atoms in a Bose Einstein Condensate, these changes in wave function phase can be monitored and used to systematically alter the acceleration of the lattice (by altering the chirp frequency of one of one of the counter-propogating lasers), in such a way that a form of edge-effect interferometry can be performed, which, in principle, can be used to make precision measurements of gravity, with unprecedented accuracy. S.R.Chubb, Proc Roy Soc A, submitted (2006).

  14. McMaster Accelerator Laboratory. Annual report 1987

    International Nuclear Information System (INIS)

    1987-01-01

    During the past year the trend has continued of diversification of the research programmes in the laboratory. Research using the techniques of accelerator mass spectrometry is flourishing and there is increased activity in the fields of surface science and nuclear medicine. The nuclear physics activity continues strong but at a reduced level. The FN accelerators performed excellently during the year and the nuclear physics programme benefitted from the acquisition of a computer-controlled analysing-magnet NMR. Surface science at McMaster University is involved with the Ontario Government Centre of Excellence in Materials Science. This will involve new equipment for studies in molecular beam epitaxy. The research studies in brain function is also another growing area in the laboratory

  15. Accelerated Synchrotron X-ray Diffraction Data Analysis on a Heterogeneous High Performance Computing System

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J; Bauer, M A, E-mail: qin.jinhui@gmail.com, E-mail: bauer@uwo.ca [Computer Science Department, University of Western Ontario, London, ON N6A 5B7 (Canada)

    2010-11-01

    The analysis of synchrotron X-ray Diffraction (XRD) data has been used by scientists and engineers to understand and predict properties of materials. However, the large volume of XRD image data and the intensive computations involved in the data analysis makes it hard for researchers to quickly reach any conclusions about the images from an experiment when using conventional XRD data analysis software. Synchrotron time is valuable and delays in XRD data analysis can impact decisions about subsequent experiments or about materials that they are investigating. In order to improve the data analysis performance, ideally to achieve near real time data analysis during an XRD experiment, we designed and implemented software for accelerated XRD data analysis. The software has been developed for a heterogeneous high performance computing (HPC) system, comprised of IBM PowerXCell 8i processors and Intel quad-core Xeon processors. This paper describes the software and reports on the improved performance. The results indicate that it is possible for XRD data to be analyzed at the rate it is being produced.

  16. Accelerated Synchrotron X-ray Diffraction Data Analysis on a Heterogeneous High Performance Computing System

    International Nuclear Information System (INIS)

    Qin, J; Bauer, M A

    2010-01-01

    The analysis of synchrotron X-ray Diffraction (XRD) data has been used by scientists and engineers to understand and predict properties of materials. However, the large volume of XRD image data and the intensive computations involved in the data analysis makes it hard for researchers to quickly reach any conclusions about the images from an experiment when using conventional XRD data analysis software. Synchrotron time is valuable and delays in XRD data analysis can impact decisions about subsequent experiments or about materials that they are investigating. In order to improve the data analysis performance, ideally to achieve near real time data analysis during an XRD experiment, we designed and implemented software for accelerated XRD data analysis. The software has been developed for a heterogeneous high performance computing (HPC) system, comprised of IBM PowerXCell 8i processors and Intel quad-core Xeon processors. This paper describes the software and reports on the improved performance. The results indicate that it is possible for XRD data to be analyzed at the rate it is being produced.

  17. Vortex Formation and Acceleration of a Fish-Inspired Robot Performing Starts from Rest

    Science.gov (United States)

    Devoria, Adam; Bapst, Jonathan; Ringuette, Matthew

    2009-11-01

    We investigate the unsteady flow of a fish-inspired robot executing starts from rest, with the objective of understanding the connection among the kinematics, vortex formation, and acceleration performance. Several fish perform ``fast starts,'' where the body bends into a ``C'' or ``S'' shape while turning (phase I), followed by a straightening of the body and caudal fin and a linear acceleration (phase II). The resulting highly 3-D, unsteady vortex formation and its relationship to the acceleration are not well understood. The self-propelled robotic model contains motor-driven joints with programmable motion to emulate phase II of a simplified C-start. The experiments are conducted in a water tank, and the model is constrained to 1 direction along rails. The velocity is measured using digital particle image velocimetry (DPIV) in multiple planes. Vortex boundaries are identified using the finite-time Lyapunov exponent, then the unsteady vortex circulation is computed. The thrust is estimated from the identified vortices, and correlated with the circulation and model acceleration for different kinematics.

  18. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  19. GPU accelerated CT reconstruction for clinical use: quality driven performance

    Science.gov (United States)

    Vaz, Michael S.; Sneyders, Yuri; McLin, Matthew; Ricker, Alan; Kimpe, Tom

    2007-03-01

    We present performance and quality analysis of GPU accelerated FDK filtered backprojection for cone beam computed tomography (CBCT) reconstruction. Our implementation of the FDK CT reconstruction algorithm does not compromise fidelity at any stage and yields a result that is within 1 HU of a reference C++ implementation. Our streaming implementation is able to perform reconstruction as the images are acquired; it addresses low latency as well as fast throughput, which are key considerations for a "real-time" design. Further, it is scaleable to multiple GPUs for increased performance. The implementation does not place any constraints on image acquisition; it works effectively for arbitrary angular coverage with arbitrary angular spacing. As such, this GPU accelerated CT reconstruction solution may easily be used with scanners that are already deployed. We are able to reconstruct a 512 x 512 x 340 volume from 625 projections, each sized 1024 x 768, in less than 50 seconds. The quoted 50 second timing encompasses the entire reconstruction using bilinear interpolation and includes filtering on the CPU, uploading the filtered projections to the GPU, and also downloading the reconstructed volume from GPU memory to system RAM.

  20. Estimation of acceptable beam trip frequencies of accelerators for ADS and comparison with performances of existing accelerators

    International Nuclear Information System (INIS)

    Takei, Hayanori; Tsujimoto, Kazufumi; Nishihara, Kenji; Furukawa, Kazuro; Yano, Yoshiharu; Ogawa, Yujiro; Oigawa, Hiroyuki

    2009-09-01

    Frequent beam trips as experienced in existing high power proton accelerators may cause thermal fatigue problems in ADS components which may lead to degradation of their structural integrity and reduction of their lifetime. Thermal transient analyses were performed to investigate the effects of beam trips on the reactor components, with the objective of formulating ADS design that had higher engineering possibilities and determining the requirements for accelerator reliability. These analyses were made on the thermal responses of four parts of the reactor components; the beam window, the cladding tube, the inner barrel and the reactor vessel. Our results indicated that the acceptable frequency of beam trips ranged from 50 to 2x10 4 times per year depending on the beam trip duration. As the beam trips for durations exceeding five minutes were assumed to make the plant shut down and restart, the plant availability was estimated to be 70%. In order to consider measures to reduce the frequency of beam trips on the high power accelerator for ADS, we compared the acceptable frequency of beam trips with the operation data of existing accelerators. The result of this comparison showed that for typical conditions the beam trip frequency for durations of 10 seconds or less was within the acceptable level, while that exceeding five minutes should be reduced to about 1/30 to satisfy the thermal stress conditions. (author)

  1. Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data

    International Nuclear Information System (INIS)

    Rubel, Oliver; Prabhat, Mr.; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2008-01-01

    Our work combines and extends techniques from high-performance scientific data management and visualization to enable scientific researchers to gain insight from extremely large, complex, time-varying laser wakefield particle accelerator simulation data. We extend histogram-based parallel coordinates for use in visual information display as well as an interface for guiding and performing data mining operations, which are based upon multi-dimensional and temporal thresholding and data subsetting operations. To achieve very high performance on parallel computing platforms, we leverage FastBit, a state-of-the-art index/query technology, to accelerate data mining and multi-dimensional histogram computation. We show how these techniques are used in practice by scientific researchers to identify, visualize and analyze a particle beam in a large, time-varying dataset

  2. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo [Korea Institute of Energy Research, Taejon (Korea, Republic of)] [and others

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  3. Performance review of thermionic electron gun developed for RF linear accelerators at RRCAT

    International Nuclear Information System (INIS)

    Wanmode, Yashwant; Mulchandani, J.; Reddy, T.S.; Bhisikar, A.; Singh, H.G.; Shrivastava, Purushottam

    2015-01-01

    RRCAT is engaged in development of RF electron linear accelerator for irradiation of industrial and agricultural products. Thermionic electron gun is primary source for this accelerator as beam current in the RF accelerator is modest and thermionic emission is most prevalent option for electron gun development. An electron gun has to meet high cathode emission capability, low filament power, good accessibility for cathode replacement and should provide short time for maintenance. Electron linear accelerator up to beam energy of 10 MeV require electron source of 45-50 keV beam energy and emission current of 1 A. Electron optics of gun and electron beam profile simulations were carried out using CST's particle tracking code and EGUN code. Triode type electron gun of cathode voltage 50 kV pulsed has been designed, developed and integrated with 10 MeV electron linear accelerators at RRCAT. Beam current of more than 600 mA has been measured with faraday cup in the test stand developed for characterizing the electron gun. Two accelerators one is imported and another one developed indigenously has been energized using this electron gun. Beam energy of 5-10 MeV has been achieved with beam current of 250-400 mA by integrating this electron gun with the linear accelerator. This paper reviews the performance of indigenously developed electron gun for both linear accelerators. (author)

  4. Parent Involvement and Student Performance: The Influence of School Context

    Science.gov (United States)

    McNeal, Ralph B., Jr.

    2015-01-01

    Researchers focusing on parent involvement continue to concentrate their efforts on the relationship between involvement and student performance in isolation of the school context in which involvement occurs. This research outlines an ecology of involvement and how this social context affects parent involvement and student performance. Relying on…

  5. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  6. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  7. Graduate Student Program in Materials and Engineering Research and Development for Future Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-07-07

    The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approach that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.

  8. Optimization of accelerator system performance at the NSLS

    International Nuclear Information System (INIS)

    Krinsky, S.

    1994-01-01

    There is an active program of accelerator development at the NSLS aimed at improving reliability, stability and brightness. Work is primarily focused on providing improved performance for the NSLS user community, however, important elements of our work have a generic character and should be of value to other synchrotron radiation facilities. In particular, we have successfully operated a small gap undulator with a full vertical beam aperture of only 3.8 mm, with no degradation of beam lifetime. This provides strong support for the belief that small gap, short period devices will play an important role in the future

  9. Performance tests of a 1.6-MV Van de Graaff accelerator of tandem type, 1

    International Nuclear Information System (INIS)

    Yano, Syukuro; Nakajima, Tadashi; Kitamura, Akira

    1981-01-01

    Experimental studies on the performance of a 1.6-MV Van de Graaff accelerator of tandem type, Model 5SDH of NEC, are reported. Two kinds of performance test were conducted. First, it was successfully demonstrated that the beam currents observed at two positions, 1m and 7m apart from a switching magnet in the +15 0 beam line, exceed the values accepted for our test according to the specifications of NEC. Second, it turned out that the beam transmission could be kept maximum by selecting the optimum number of live sections in the lower energy accelerator tube depending on terminal voltage. Moreover, the plot of optimum insulating SF 6 gas pressure against terminal voltage prepared by us is found very useful for efficient operation of the 5SDH accelerator. (author)

  10. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes.

    Science.gov (United States)

    Kawamori, Naoki; Nosaka, Kazunori; Newton, Robert U

    2013-03-01

    Large horizontal acceleration in short sprints is a critical performance parameter for many team sport athletes. It is often stated that producing large horizontal impulse at each ground contact is essential for high short sprint performance, but the optimal pattern of horizontal and vertical impulses is not well understood, especially when the sprints are initiated from a standing start. This study was an investigation of the relationships between ground reaction impulses and sprint acceleration performance from a standing start in team sport athletes. Thirty physically active young men with team sport background performed 10-m sprint from a standing start, whereas sprint time and ground reaction forces were recorded during the first ground contact and at 8 m from the start. Associations between sprint time and ground reaction impulses (normalized to body mass) were determined by a Pearson's correlation coefficient (r) analysis. The 10-m sprint time was significantly (p < 0.01) correlated with net horizontal impulse (r = -0.52) and propulsive impulse (r = -0.66) measured at 8 m from the start. No significant correlations were found between sprint time and impulses recorded during the first ground contact after the start. These results suggest that applying ground reaction impulse in a more horizontal direction is important for sprint acceleration from a standing start. This is consistent with the hypothesis of training to increase net horizontal impulse production using sled towing or using elastic resistance devices, which needs to be validated by future longitudinal training studies.

  11. X-band accelerator structures: On going R&D at the INFN

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, G. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, Frascati, 00044 Roma (Italy); Marcelli, A. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, Frascati, 00044 Roma (Italy); RICMASS, Rome International Center for Materials Science Superstripes, Via dei Sabelli 119A, 00185 Rome (Italy); Spataro, B. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, Frascati, 00044 Roma (Italy); Dolgashev, V.; Lewandowski, J.; Tantawi, S.G.; Yeremian, A.D. [SLAC-National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Higashi, Y. [Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495 (Japan); Rosenzweig, J. [UCLA-Department of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, CA 90095 (United States); Sarti, S. [University of Rome Sapienza, Dipartimento di Fisica, P.le A. Moro 5, 00185 Rome (Italy); Caliendo, C. [Istituto di Acustica e Sensoristica, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Castorina, G. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, Frascati, 00044 Roma (Italy); University of Catania, Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, 95126 Catania (Italy); Cibin, G. [Diamond Light Source, Chilton, Didcot, Oxon OX110DE (United Kingdom); Carfora, L. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, Frascati, 00044 Roma (Italy); Leonardi, O. [INFN, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Rigato, V. [INFN, Laboratori Nazionali di Legnaro, Legnaro, Padova (Italy); Campostrini, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro, Padova (Italy); Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento (Italy)

    2016-09-01

    The next generation of accelerators, from the compact to the large infrastructure dedicated to high energy physics, is highly demanding in terms of accelerating gradients. To upgrade performances of X band linacs at 11.424 GHz many resources are devoted to achieve high accelerating gradients and at the same time to obtain a high reliability. In the framework of a three-year funded project by the Vth Committee of the INFN to the Laboratori Nazionali di Frascati (LNF) and to the Laboratori Nazionali di Legnaro (LNL). Within a broad international collaboration the LNF has been involved in the design, manufacture and test of compact high power standing wave (SW) sections operating at high frequency while LNL is actively involved in the development of new materials and multilayers using PVD (Physical Vapor Deposition) methods. We will report about the status of the accelerating device and of the different ongoing R&D activities and characterization procedures such as tests of different materials and metallic coatings.

  12. Evaluation of linear accelerator performance standards using an outcome oriented approach

    International Nuclear Information System (INIS)

    Rangel, Alejandra; Ploquin, Nicolas; Kay, Ian; Dunscombe, Peter

    2008-01-01

    Radiation therapy, along with other branches of medicine, is moving towards a firmer basis in evidence to optimally utilize resources. As new treatment technology and strategies place greater demands on quality assurance resources, the need to objectively evaluate equipment and process performance standards from the perspective of predicted clinical impact becomes more urgent. This study evaluates the appropriateness of recommended quality control tolerance and action levels for linear accelerators based on the calculated dosimetric impact of suboptimal equipment performance. A method is described to quantify the dosimetric changes, as reflected by the changes in the outcome surrogate, equivalent uniform dose (EUD), of machine performance deviations from the optimal, specifically in the range of tolerance and action levels promulgated by the Canadian Association of Provincial Cancer Agencies (CAPCA). Linear accelerator performance deviations were simulated for the treatment of prostate, breast, lung, and brain using 3D conformal techniques, and the impact evaluated in terms of the changes in the EUD of the target volumes and two principal organs at risk (OARs) per site. The eight key performance characteristics examined are: Output constancy, beam flatness, gantry angle, collimator angle, field size indicator, laser alignment (three directions) and, by inference, the optical distance indicator. Currently accepted CAPCA tolerance levels for these eight performance characteristics are shown to maintain average EUD deviations to within 2% for the targets and 2 Gy for the OARs. However, within the 2% or 2 Gy range, the recommended tolerance levels are found to have markedly different effects on the EUDs of the structures of interest

  13. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  14. POPS: the 60MW power converter for the PS accelerator: Control strategy and performances

    CERN Document Server

    Boattini, Fulvio; Skawinski, Gregory

    2015-01-01

    The main power supply of Proton-Synchrotron (PS) accelerator is one of the biggest at CERN. The old rotating machine system has been replaced with a new NPC based DC/DC power supply named POPS (Power system for PS main magnets) with capacitor banks as energy storage mean. POPS is in operation since February 2011. The operation of the PS accelerator requires a specific design of the control system with very high performance requirements in term of accuracy and precision. This paper describes the main lines of the control strategies analyzing the problems encountered and the solutions adopted. The performances of the converter are presented throughout the paper.

  15. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  16. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  17. Performance and Adaptive Surge-Preventing Acceleration Prediction of a Turboshaft Engine under Inlet Flow Distortion

    Directory of Open Access Journals (Sweden)

    Cao Dalu

    2017-01-01

    Full Text Available The intention of this paper is to research the inlet flow distortion influence on overall performance of turboshaft engine and put forward a method called Distortion Factor Item (DFI to improve the fuel supply plan for surge-preventing acceleration when turboshaft engine suddenly encounters inlet flow distortion. Based on the parallel compressor theory, steady-state and transition-state numerical simulation model of turboshaft engine with sub-compressor model were established for researching the influence of inlet flow distortion on turboshaft engine. This paper made a detailed analysis on the compressor operation from the aspects of performance and stability, and then analyzed the overall performance and dynamic response of the whole engine under inlet flow distortion. Improved fuel supply plan with DFI method was applied to control the acceleration process adaptively when encountering different inlet flow distortion. Several simulation examples about extreme natural environments were calculated to testify DFI method’s environmental applicability. The result shows that the inlet flow distortion reduces the air inflow and decreases the surge margin of compressor, and increase the engine exhaust loss. Encountering inlet flow distortion has many adverse influences such as sudden rotor acceleration, turbine inlet temperature rise and power output reduction. By using improved fuel supply plan with DFI, turboshaft engine above-idle acceleration can avoid surge effectively under inlet flow distortion with environmental applicability.

  18. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall

  19. Properties and practical performance of SC magnets in accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    1992-01-01

    A report is given on the properties and performance of superconducting accelerator magnets in the 5-6 Tesla regime. Most of the information stems from the industrially produced HERA magnets which were thoroughly tested both at industry and at DESY; data from prototype magnets for RHIC and SSC are also included. Persistent current effects were studied in detail. During the commissioning of the proton-electron collider HERA the superconducting magnets worked with high reliability and their properties were exactly as predicted from the magnetic measurements. (author) 11 refs.; 8 figs

  20. Accelerators Spanish steps

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    In September, the CERN Accelerator School (CAS) held its third General Accelerator Physics Course, the venue this time being Salamanca, the oldest university in Spain. Spain, which rejoined CERN in 1982, now has a vigorous and steadily growing high energy physics community making substantial contributions to physics detector development and successfully involving Spanish industry. However the embryonic accelerator community cannot yet generate an equivalent level of activity, and this important channel for introducing new high technology into industry has yet to be fully exploited

  1. Performance characteristics and typical industrial applications of Selfshield electron accelerators (<300kV)

    International Nuclear Information System (INIS)

    Aaronson, J.N.; Nablo, S.V.

    1985-01-01

    Selfshielded electron accelerators have been successfully used in industry for more than ten years. One of the important advantages of these machines is their compactness for easy adaptation to conventional coating and product finishing machinery. It is equally important that these machines qualify for use under 'unrestricted' conditions as specified by OSHA. The shielding and product handling configurations which make this unrestricted designation possible for operating voltages under 300 kV are discussed. Thin film dosimetry techniques used for the determination of the machine performance parameters are discussed along with the rotary scanner techniques employed for the dose rate studies which are important in the application of the processors. Paper and wood coatings, which are important industrial applications involving electron initiated polymerization, are reviewed. The sterilization and disinfestation applications are also discussed. The increasing concern of these industries for the more effective use of energy and for compliance with more stringent pollution regulations, coupled with the novel processes this energy source makes possible, assure a bright future for this developing technology. (orig.)

  2. Review of accelerator instrumentation

    International Nuclear Information System (INIS)

    Pellegrin, J.L.

    1980-05-01

    Some of the problems associated with the monitoring of accelerator beams, particularly storage rings' beams, are reviewed along with their most common solutions. The various electrode structures used for the measurement of beam current, beam position, and the detection of the bunches' transverse oscillations, yield pulses with sub-nanosecond widths. The electronics for the processing of these short pulses involves wide band techniques and circuits usually not readily available from industry or the integrated circuit market: passive or active, successive integrations, linear gating, sample-and-hold circuits with nanosecond acquisition time, etc. This report also presents the work performed recently for monitoring the ultrashort beams of colliding linear accelerators or single-pass colliders. To minimize the beam emittance, the beam position must be measured with a high resolution, and digitized on a pulse-to-pulse basis. Experimental results obtained with the Stanford two-mile Linac single bunches are included

  3. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Lee, Y C; Bright, Victor M; Sharar, Darin J; Jankowski, Nicholas R; Morgan, Brian C

    2012-01-01

    This paper presents the fabrication and application of a micro-scale hybrid wicking structure in a flat polymer-based heat pipe heat spreader, which improves the heat transfer performance under high adverse acceleration. The hybrid wicking structure which enhances evaporation and condensation heat transfer under adverse acceleration consists of 100 µm high, 200 µm wide square electroplated copper micro-pillars with 31 µm wide grooves for liquid flow and a woven copper mesh with 51 µm diameter wires and 76 µm spacing. The interior vapor chamber of the heat pipe heat spreader was 30×30×1.0 mm 3 . The casing of the heat spreader is a 100 µm thick liquid crystal polymer which contains a two-dimensional array of copper-filled vias to reduce the overall thermal resistance. The device performance was assessed under 0–10 g acceleration with 20, 30 and 40 W power input on an evaporator area of 8×8 mm 2 . The effective thermal conductivity of the device was determined to range from 1653 W (m K) −1 at 0 g to 541 W (m K) −1 at 10 g using finite element analysis in conjunction with a copper reference sample. In all cases, the effective thermal conductivity remained higher than that of the copper reference sample. This work illustrates the possibility of fabricating flexible, polymer-based heat pipe heat spreaders compatible with standardized printed circuit board technologies that are capable of efficiently extracting heat at relatively high dynamic acceleration levels. (paper)

  4. Comparison of accelerated pavement test results with long term pavement behaviour and performance

    CSIR Research Space (South Africa)

    Jooste, FJ

    1997-08-01

    Full Text Available The aim of this study was to investigate the following:how accelerated pavement testing predictions compare with actual road behaviour and performance the relative influences of load and environmental factors on pavement deterioration and how well...

  5. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  6. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    International Nuclear Information System (INIS)

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-01-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  7. Accelerator Operators and Software Development

    International Nuclear Information System (INIS)

    April Miller; Michele Joyce

    2001-01-01

    At Thomas Jefferson National Accelerator Facility, accelerator operators perform tasks in their areas of specialization in addition to their machine operations duties. One crucial area in which operators contribute is software development. Operators with programming skills are uniquely qualified to develop certain controls applications because of their expertise in the day-to-day operation of the accelerator. Jefferson Lab is one of the few laboratories that utilizes the skills and knowledge of operators to create software that enhances machine operations. Through the programs written; by operators, Jefferson Lab has improved machine efficiency and beam availability. Because many of these applications involve automation of procedures and need graphical user interfaces, the scripting language Tcl and the Tk toolkit have been adopted. In addition to automation, some operator-developed applications are used for information distribution. For this purpose, several standard web development tools such as perl, VBScript, and ASP are used. Examples of applications written by operators include injector steering, spin angle changes, system status reports, magnet cycling routines, and quantum efficiency measurements. This paper summarizes how the unique knowledge of accelerator operators has contributed to the success of the Jefferson Lab control system. *This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150

  8. Parent involvement and student academic performance: a multiple mediational analysis.

    Science.gov (United States)

    Topor, David R; Keane, Susan P; Shelton, Terri L; Calkins, Susan D

    2010-01-01

    Parent involvement in a child's education is consistently found to be positively associated with a child's academic performance. However, there has been little investigation of the mechanisms that explain this association. The present study examines two potential mechanisms of this association: the child's perception of cognitive competence and the quality of the student-teacher relationship. This study used a sample of 158 seven-year-old participants, their mothers, and their teachers. Results indicated a statistically significant association between parent involvement and a child's academic performance, over and above the impact of the child's intelligence. A multiple mediation model indicated that the child's perception of cognitive competence fully mediated the relation between parent involvement and the child's performance on a standardized achievement test. The quality of the student-teacher relationship fully mediated the relation between parent involvement and teacher ratings of the child's classroom academic performance. Limitations, future research directions, and implications for public policy initiatives are discussed.

  9. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners

    Directory of Open Access Journals (Sweden)

    Lin Shun-Ping

    2014-12-01

    Full Text Available Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional centerof- mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month later. They were divided into an elite group (EG; n = 5 and a sub-elite group (SG; n = 5. The triaxial center-of-mass acceleration recorded during a level-surface progressive intensity running protocol (3, 6, 8, 9, 10, and 12 km/h; 5 min each was used for correlation analyses with running distance during the ultramarathon. The EG showed negative correlations between mediolateral (ML acceleration (r = −0.83 to −0.93, p < 0.05, and between anterior-posterior (AP acceleration and running distance (r = −0.8953 to −0.9653, p < 0.05, but not for vertical control of the center of mass. This study suggests that runners reduce stride length to minimize mediolateral sway and the effects of braking on the trunk; moreover, cadence must be increased to reduce braking effects and enhance impetus. Consequently, the competition level of ultramarathons can be elevated.

  10. Accelerated reliability demonstration under competing failure modes

    International Nuclear Information System (INIS)

    Luo, Wei; Zhang, Chun-hua; Chen, Xun; Tan, Yuan-yuan

    2015-01-01

    The conventional reliability demonstration tests are difficult to apply to products with competing failure modes due to the complexity of the lifetime models. This paper develops a testing methodology based on the reliability target allocation for reliability demonstration under competing failure modes at accelerated conditions. The specified reliability at mission time and the risk caused by sampling of the reliability target for products are allocated for each failure mode. The risk caused by degradation measurement fitting of the target for a product involving performance degradation is equally allocated to each degradation failure mode. According to the allocated targets, the accelerated life reliability demonstration test (ALRDT) plans for the failure modes are designed. The accelerated degradation reliability demonstration test plans and the associated ALRDT plans for the degradation failure modes are also designed. Next, the test plan and the decision rules for the products are designed. Additionally, the effects of the discreteness of sample size and accepted number of failures for failure modes on the actual risks caused by sampling for the products are investigated. - Highlights: • Accelerated reliability demonstration under competing failure modes is studied. • The method is based on the reliability target allocation involving the risks. • The test plan for the products is based on the plans for all the failure modes. • Both failure mode and degradation failure modes are considered. • The error of actual risks caused by sampling for the products is small enough

  11. Thermal management of microelectronics with electrostatic fluid accelerators

    International Nuclear Information System (INIS)

    Wang, Hsiu-Che; Jewell-Larsen, Nels E.; Mamishev, Alexander V.

    2013-01-01

    Optimal thermal management is critical in modern consumer electronics. Typically, a thermal management scheme for an electronic system involves several physical principles. In many cases, it is highly desirable to enhance heat transfer at the solid-air interface while maintaining small size of the thermal management solution. The enhancement of heat transfer at the solid-air interface can be achieved by several physical principles. One principle that is getting increased attention of thermal management design engineers is electrostatic fluid acceleration. This paper discusses recent breakthroughs in state-of-the-art of electrostatic fluid accelerators (EFAs). The paper compares and contrasts EFAs’ design and performance metrics to those of other airside cooling technologies used in small form factor applications. Since the energy efficiency, flow rate, and acoustic emissions are highly influenced by the scale of the airside cooling devices, the paper also presents the analysis of fundamental effect of scaling laws on heat transfer performance. The presented review and analysis helps drawing conclusions regarding achievable comparative performance and practicality of using different design approaches and physical principles for different applications. -- Highlights: ► Discuss breakthrough in state-of-the-art of electrostatic fluid accelerators (EFA). ► Compare EFAs' performance metrics to those of other airside cooling technologies. ► Show analysis of fundamental effect of scaling laws on heat transfer performance

  12. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  13. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  14. Accelerator-based ultrasensitive mass spectrometry

    International Nuclear Information System (INIS)

    Gove, H.E.

    1985-01-01

    This chapter describes a new mass spectrometry technique involving charged particle accelerators normally used for basic research in nuclear science. Topics considered include the limitations of conventional mass spectrometry, the limitations of the direct measurement of radioactive decay, mass spectrometry using a tandem electrostatic accelerator, mass spectrometry using a cyclotron, how accelerator mass spectrometry circumvents the limitations of conventional mass spectrometry, measurements of stable isotopes, nuclear physics and astrophysics applications, modifications to existing accelerators, descriptions of dedicated systems, and future applications

  15. Performance of the intense pulsed neutron source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) facility has now been operating in a routine way for outside users since November 1, 1981. From that date through December of 1982, the accelerator system was scheduled for neutron science for 4500 hours. During this time the accelerator achieved its short-term goals by delivering about 380,000,000 pulses of beam totaling over 6 x 10 20 protons. The changes in equipment and operating practices that evolved during this period of intense running are described. The intensity related instability threshold was increased by a factor of two and the accelerator beam current has been ion source limited. Plans to increase the accelerator intensity are also described. Initial operating results with a new H - ion source are discussed

  16. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  17. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  18. Improved laser damage threshold performance of calcium fluoride optical surfaces via Accelerated Neutral Atom Beam (ANAB) processing

    Science.gov (United States)

    Kirkpatrick, S.; Walsh, M.; Svrluga, R.; Thomas, M.

    2015-11-01

    Optics are not keeping up with the pace of laser advancements. The laser industry is rapidly increasing its power capabilities and reducing wavelengths which have exposed the optics as a weak link in lifetime failures for these advanced systems. Nanometer sized surface defects (scratches, pits, bumps and residual particles) on the surface of optics are a significant limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, magnesium fluoride, zinc sulfide, LBO and others presents a unique challenge for traditional polishing techniques. Exogenesis Corporation, using its new and proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and particle contamination leaving many material surfaces with roughness typically around one Angstrom. This surface defect mitigation via ANAB processing can be shown to increase performance properties of high intensity optical materials. This paper describes the ANAB technology and summarizes smoothing results for calcium fluoride laser windows. It further correlates laser damage threshold improvements with the smoothing produced by ANAB surface treatment. All ANAB processing was performed at Exogenesis Corporation using an nAccel100TM Accelerated Particle Beam processing tool. All surface measurement data for the paper was produced via AFM analysis on a Park Model XE70 AFM, and all laser damage testing was performed at Spica Technologies, Inc. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply mechanical forces associated with traditional polishing techniques. ANAB efficiently removes surface

  19. Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps

    Directory of Open Access Journals (Sweden)

    Guangchuan Yang

    2016-10-01

    Full Text Available This paper investigated the actual truck acceleration capability at metered on-ramps. Truck acceleration performance data were collected through a video-based data collection method. A piecewise constant acceleration model was employed to capture truck acceleration characteristics. It was found that the existing acceleration length will affect truck drivers’ acceleration behavior. At the taper type ramp that has limited acceleration distance, acceleration profile indicated a decreasing trend with distance. While for the ramp with an auxiliary lane that has sufficient acceleration distance, it was found that the acceleration behavior is to have a high acceleration rate in the beginning, then acceleration rate decrease with speed increase, and high acceleration rate again as drivers approach the merging area. Field data show that the truck acceleration performance data documented in the ITE’s (Institute of Transportation Engineers “Traffic Engineering Handbook” are much lower than the field collected data. Also, based on the regression analysis of speed versus distance profiles, it was found that the AASHTO’s (American Association of State Highway and Transportation Officials Green Book acceleration length design guidance is insufficient to accommodate trucks at metered on-ramps. The required acceleration lengths for medium and heavy trucks are approximately 1.3 and 1.6 times of the Green Book design guideline, respectively.

  20. Parental involvement and academic performance: Less control and more communication.

    Science.gov (United States)

    Fernández-Alonso, Rubén; Álvarez-Díaz, Marcos; Woitschach, Pamela; Suárez-Álvarez, Javier; Cuesta, Marcelino

    2017-11-01

    Parental involvement in the educational process is desirable, although more involvement does not guarantee better results. The aim of this research is to explore the relationship between styles of parental involvement at home and academic performance. A random sample of 26,543 Spanish students was used, with a mean age of 14.4 (SD = 0.75). Two thirds (66.2%) attended a publicly funded school; 49.7% were girls; 87.8% had Spanish nationality; and 73.5% were in the school year corresponding to their age. Different three-level hierarchical-linear models were fitted: student, school, and region (autonomous community). Students whose parents exhibited a more distal or indirect profile of family involvement tended to demonstrate better results than those from homes with a more controlling style. Parental involvement styles have an effect on achievement at an individual and school level, even after accounting for the effect of context or background variables. Given the importance of parental involvement in academic performance, schools should consider it in their family information and training policies. Schools which have more communicative family profiles tend to demonstrate lower levels of intra-school differences in students’ academic performance.

  1. Improved voltage performance of the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Meigs, M.J.; Jones, C.M.; Haynes, D.L.; Juras, R.C.; Ziegler, N.F.; Roatz, J.E.; Rathmell, R.D.

    1989-01-01

    This paper reports on the Oak Ridge 25URC tandem electrostatic accelerator one of two accelerators operated by the Holifield Heavy Ion Research Facility (HHIRF) at the Oak Ridge National Laboratory. Placed into routine service in 1982, the accelerator has provided a wide range of heavy ion beams for research in nuclear and atomic physics. These beams have been provided both directly and after further acceleration by the Oak Ridge Isochronous Cyclotron (ORIC). Show schematically in this paper, the tandem accelerator is a model 25URC Pelletron accelerator

  2. Breakdown Studies for the CLIC Accelerating

    CERN Document Server

    Calatroni, S; Kovermann, J; Taborelli, M; Timko, H; Wuensch, W; Durabekova, F; Nordlund, K; Pohjonen, A; Kuronen, A

    2010-01-01

    Optimizing the design and the manufacturing of the CLIC RF accelerating structures for achieving the target value of breakdown rate at the nominal accelerating gradient of 100 MV/m requires a detailed understanding of all the steps involved in the mechanism of breakdown. These include surface modification under RF fields, electron emission and neutral evaporation in the vacuum, arc ignition and consequent surface modification due to plasma bombardment. Together with RF tests, experiments are conducted in a simple DC test set-up instrumented with electrical diagnostics and optical spectroscopy. The results are also used for validating simulations which are performed using a wide range of numerical tools (MD coupled to electrostatic codes, PIC plasma simulations) able to include all the above phenomena. Some recent results are presented in this paper

  3. Regulating The Performance Parameters Of Accelerated Particles

    International Nuclear Information System (INIS)

    El-Saftawy, A.A.M.

    2013-01-01

    Design, fabrication and utilization of electron sources have gained unique importance in fundamental research and industrial applications. In any electron gun the geometry of the electrodes decides the main beam optics comprising of uniform flow of electrons and beam waist. So that, in the present work, A Pierce-type electron gun with spherical anode has been numerically analyzed and validated experimentally. The regulated output beam is applied to poly (ethylene terephthalate) PET membrane to improve its surface wettability. In the simulation study of the electron gun, it has been proven that, around a certain value of the aspect ratio, the resultant beam geometry could be suitably controlled. The minimum electric field required to prevent beam expansion due to space charge effect has been estimated and it is found to be proportional to the cubic root of the distance from the anode to the target. Also, it is proved that the minimum beam radius is realized at the minimum beam perveance and the maximum beam convergence angle. As a result, this reveals that, the gun geometry controls the beam emittance. The gun design analysis proposed here helps to choose the better operating conditions suitable for low energy electron beam bombardment and/or injection applications into plasma medium for plasma acceleration.Experimentally, an investigation has been made for the extraction characteristics and beam diagnosis for the electron gun. The accelerating voltage increases the electron beam currents up to 250 mA at accelerating voltage 75 kV and decreases the beam perveance, beam waist and beam emittance. The minimum beam radius could be found at the minimum beam perveance and maximum convergence angle. Also the increase of the accelerating voltage increases the beam fluence rate up to 1.3 x 10 19 e/min.cm 2 due to the increase of the extracted current. Tracing the electron beam profile by X-Y probe scanner along the beam line at two different places reveals that the spherical

  4. Performance Effects of Repetition Specific Gluteal Activation Protocols on Acceleration in Male Rugby Union Players

    Directory of Open Access Journals (Sweden)

    Barry Lorna

    2016-12-01

    Full Text Available Warm-up protocols have the potential to cause an acute enhancement of dynamic sprinting performance. The purpose of this study was to evaluate the effects of three repetition specific gluteal activation warm-up protocols on acceleration performance in male rugby union players. Forty male academy rugby union players were randomly assigned to one of 4 groups (control, 5, 10 or 15 repetition gluteal activation group and performed 10 m sprints at baseline and 30 s, 2, 4, 6 and 8 min after their specific intervention protocol. Five and ten meter sprint times were the dependent variable and dual-beam timing gates were used to record all sprint times. Repeated measures analysis of variance found no significant improvement in 5 and 10 m sprint times between baseline and post warm-up scores (p ≥ 0.05 for all groups. There were no reported significant differences between groups at any of the rest interval time points (p ≥ 0.05. However, when individual responses to the warm-up protocols were analyzed, the 15 repetition gluteal activation group had faster 10 m times post-intervention and this improvement was significant (p = 0.021. These results would indicate that there is no specific rest interval for any of the gluteal interventions that results in a potentiation effect on acceleration performance. However, the individual response analysis would seem to indicate that a 15 repetition gluteal activation warm-up protocol has a potentiating effect on acceleration performance provided that the rest interval is adequately and individually determined.

  5. Acceleration Kinematics in Cricketers: Implications for Performance in the Field

    Directory of Open Access Journals (Sweden)

    G. Lockie Robert

    2014-03-01

    Full Text Available Cricket fielding often involves maximal acceleration to retrieve the ball. There has been no analysis of acceleration specific to cricketers, or for players who field primarily in the infield (closer to the pitch or outfield (closer to the boundary. This study analyzed the first two steps of a 10-m sprint in experienced cricketers. Eighteen males (age = 24.06 ± 4.87 years; height = 1.81 ± 0.06 m; mass = 79.67 ± 10.37 kg were defined as primarily infielders (n = 10 or outfielders (n = 8. Timing lights recorded 0-5 and 0-10 m time. Motion capture measured first and second step kinematics, including: step length; step frequency; contact time; shoulder motion; lead and rear arm elbow angle; drive leg hip and knee extension, and ankle plantar flexion; swing leg hip and knee flexion, and ankle dorsi flexion. A one-way analysis of variance (p < 0.05 determined between-group differences. Data was pooled for a Pearson’s correlation analysis (p < 0.05 to analyze kinematic relationships. There were no differences in sprint times, and few variables differentiated infielders and outfielders. Left shoulder range of motion related to second step length (r = 0.471. First step hip flexion correlated with both step lengths (r = 0.570-0.598, and frequencies (r = -0.504--0.606. First step knee flexion related to both step lengths (r = 0.528-0.682, and first step frequency (r = -0.669. First step ankle plantar flexion correlated with second step length (r = -0.692 and frequency (r = 0.726. Greater joint motion ranges related to longer steps. Cricketers display similar sprint kinematics regardless of fielding position, likely because players may field in the infield or outfield depending on match situation. Due to relationships with shoulder and leg motion, and the importance and trainability of step length, cricketers should target this variable to enhance acceleration.

  6. Results of the RAMI analyses performed for the IFMIF accelerator facility in the engineering design phase

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo@esss.se [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier; Dies, Javier; De Blas, Alfredo; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Moya, Joaquin; Ibarra, Angel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2015-10-15

    Highlights: • RAMI methodology used for IFMIF accelerator facility is presented. • Availability analyses and results are shown. • Main accelerator design changes are proposed. • Consequences and conclusions of the RAMI analyses are described. - Abstract: This paper presents a summary of the RAMI (Reliability Availability Maintainability Inspectability) analyses done for the IFMIF (International Fusion Materials Irradiation Facility) Accelerator facility in the Engineering Design Phase. The methodology followed, the analyses performed, the results obtained and the conclusions drawn are described. Moreover, the consequences of the incorporation of the RAMI studies in the IFMIF design are presented and the main outcomes of these analyses are shown.

  7. Results of the RAMI analyses performed for the IFMIF accelerator facility in the engineering design phase

    International Nuclear Information System (INIS)

    Bargalló, Enric; Arroyo, Jose Manuel; Abal, Javier; Dies, Javier; De Blas, Alfredo; Tapia, Carlos; Moya, Joaquin; Ibarra, Angel

    2015-01-01

    Highlights: • RAMI methodology used for IFMIF accelerator facility is presented. • Availability analyses and results are shown. • Main accelerator design changes are proposed. • Consequences and conclusions of the RAMI analyses are described. - Abstract: This paper presents a summary of the RAMI (Reliability Availability Maintainability Inspectability) analyses done for the IFMIF (International Fusion Materials Irradiation Facility) Accelerator facility in the Engineering Design Phase. The methodology followed, the analyses performed, the results obtained and the conclusions drawn are described. Moreover, the consequences of the incorporation of the RAMI studies in the IFMIF design are presented and the main outcomes of these analyses are shown.

  8. Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2015-01-15

    High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The

  9. Quality assurance procedure for an industrial radiography linear accelerator

    International Nuclear Information System (INIS)

    Vishwakarma, R.R.; Kannan, R.; Yadav, R.K.

    2001-01-01

    Any radiation generating equipment can be marketed and used in India, only after obtaining specific type approval from the Competent Authority i.e. Chairman, Atomic Energy Regulatory Board (AERB). Generally linear accelerators are allowed to be used in the country based on the type approval issued by the regulatory authority of the country of its origin. So type approval of imported linear accelerators do not involve many parameters to be tested in our country. However for an indigenous accelerator, test procedures are to be defined and the same are to be followed during type approval process. No such protocol is available for linear accelerators used in industrial radiography. Recently some Indian manufacturers have started manufacturing and supplying such accelerators. A need for developing an indigenous protocol for type approval/NOC of such accelerators has arisen and the same has been developed. Various requirements for such protocol are discussed in this paper. Measurements have been performed on one of the 4 MV indigenous unit. Results of such measurements are also presented. Need for a regular periodic quality assurance program is necessary for imported as well as indigenous accelerators. A program for such quality assurance is also listed in the paper. (author)

  10. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  11. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  12. Acceleration of FDTD mode solver by high-performance computing techniques.

    Science.gov (United States)

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  13. Investigation and Prediction of RF Window Performance in APT Accelerators

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1997-01-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate β superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electron multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak-RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak-RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak-RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics

  14. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  15. Channel-accelerating gap interaction and beam acceleration and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R.; Turman, B.N.; Prestwich, K.R.; Wells, J.; Struve, K.

    1992-01-01

    The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for open-ended low energy devices. It dictates the number of allowable beam recirculations through the gaps. In the case of a closed racetrack configuration, it is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. The authors have experimentally established that pulsing an accelerating gap perturbs the IFR channel. However for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition transparent grids of cusp fields positioned upstream and downstream from the gaps prevent them from perturbing the IFR channel. Experiments were performed with and without injected electron beams. For the experiments investigating the IFR channel interaction with the accelerating gap, the injector was removed and the beam line was extended downstream and upstream from the accelerating cavity. Only the first straight section of the RLA with one accelerating cavity (ET-2) was utilized. The acceleration and transport experiments were performed utilizing two injectors: first the low energy 1.3-MV Isolated Blumlein (IB) injector and most recently the new 4-MV 20-kA injector. Beams of 6--20 kA current were produced and successfully transported and accelerated through the ET-2 post-accelerating gap. For both injectors an apertured non-immersed ion-focused foilless diode was selected among various options. It is the simplest and easiest to operate and can be adjusted to provide variable beam impedance loads to the injector. The transport efficiencies were 90% for the low energy injector and 100% for the new 4-MV injector. The beam Gaussian profile and radius (5 mm) remain the same through acceleration. Experimental results will be presented and compared with numerical simulations

  16. IFMIF accelerator conceptual design activities

    International Nuclear Information System (INIS)

    Jameson, R.A.; Lagniel, J.M.; Sugimoto, M.; Kein, H.; Piaszczyk, C.; Tiplyakov, V.

    1998-01-01

    A Conceptual Design Evaluation (CDE) for the International Fusion Materials Irradiation Facility (IFMIF) began in 1997 and will be completed in 1998, as an international program of the IEA involving the European Community, Japan, Russia and the United States. The IFMIF accelerator system, comprising two 125 mA, 40 MeV deuterium accelerators operating at 175 MHz, is a key element of the IFMIF facility. The objectives and accomplishments of the CDE accelerator studies are outlined

  17. Development of an Efficient GPU-Accelerated Model for Fully Nonlinear Water Waves

    DEFF Research Database (Denmark)

    of an optimized sequential single-CPU algorithm based on a flexible-order Finite Difference Method. High performance is pursued by utilizing many-core processing in the model focusing on GPUs for acceleration of code execution. This involves combining analytical methods with an algorithm redesign of the current...

  18. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    Science.gov (United States)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  19. Basic research in the East and West: a comparison of the scientific performance of high-energy physics accelerators

    International Nuclear Information System (INIS)

    Irvine, J.; Martin, B.R.

    1985-01-01

    This paper presents the results of a study comparing the past scientific performance of high-energy physics accelerators in the Eastern bloc with that of their main Western counterparts. Output-evaluation indicators are used. After carefully examining the extent to which the output indicators used may be biased against science in the Eastern bloc, various conclusions are drawn about the relative contributions to science made by these accelerators. Where significant differences in performance are apparent, an attempt is made to identify the main factors responsible. (author)

  20. Stakeholders Involvement in Performance Management in Public General Schools

    Directory of Open Access Journals (Sweden)

    Kristi Ploom

    2013-01-01

    Full Text Available In response to increasing concerns with the legitimacy and efficiency of public spending, performance management as a part of world-wide public sector reform, called New Public Management (NPM has taken place. This is also the case of educational sector. In Estonian education system, legislation formally enables to design an integrated performance management system. But there is few research done to investigate how these policies and regulations ought to be put into force in order to gain the benefits considering the schools' and pupils' better performance. This study investigates how different stakeholders are involved into the performance management in Estonian general schools. The study is based on empirical survey data gathered from 303 schools providing secondary education in Estonia. The research findings have three main implications. Firstly, the paper contributes to the scarce knowledge about implementation of performance management issues in public schools. Our analysis revealed that compilation of school development plans in Estonian schools is rather a formal obligation. Therefore we propose that the analysis and discussion of the school development plans is needed to organize on regional level, involving all main stakeholders of a school. Secondly, we suggest that in the circumstances of a decentralised education system, like in Estonia, it is needed to implement, central practical performance assessment principles and guidance for the schools. Thirdly, it is highly necessary to improve schools’ cooperation with different stakeholder groups. Also the framework involving different stakeholder groups in the decentralized schools management system should be built up.

  1. RIKEN accelerator progress report, vol. 36. January - December 2002

    International Nuclear Information System (INIS)

    Asahi, K.; Abe, T.; Ichihara, T.

    2003-03-01

    This issue of RIKEN Accelerator Progress Report reports research activities of the RIKEN Accelerator Research Facility (RARF) during the calendar year of 2002. The research programs have been coordinated in the framework of the project entitled Multidisciplinary Researches on Heavy Ion Science. The project involves a variety of fields such as: nuclear physics, nuclear astrophysics, atomic physics, nuclear chemistry, radiation biology, condensed matter physics in terms of accelerator or radiation application, plant mutation, material characterization, application to space science, accelerator physics and engineering, laser technology, and computational technology. These activities involved ten laboratories, five Centers involving seven divisions, the RIKEN-RAL (Rutherford-Appleton Laboratory) Center, and the RBRC (RIKEN-Brookhaven Research Center at Brookhaven National Laboratory), and more than 350 researchers from domestic and foreign institutions. Thirty-six universities and institutes from within Japan and 33 institutes from 10 countries are involved. (J.P.N.)

  2. Ultrahigh impedance method to assess electrostatic accelerator performance

    Directory of Open Access Journals (Sweden)

    Nikolai R. Lobanov

    2015-06-01

    Full Text Available This paper describes an investigation of problem-solving procedures to troubleshoot electrostatic accelerators. A novel technique to diagnose issues with high-voltage components is described. The main application of this technique is noninvasive testing of electrostatic accelerator high-voltage grading systems, measuring insulation resistance, or determining the volume and surface resistivity of insulation materials used in column posts and acceleration tubes. In addition, this technique allows verification of the continuity of the resistive divider assembly as a complete circuit, revealing if an electrical path exists between equipotential rings, resistors, tube electrodes, and column post-to-tube conductors. It is capable of identifying and locating a “microbreak” in a resistor and the experimental validation of the transfer function of the high impedance energy control element. A simple and practical fault-finding procedure has been developed based on fundamental principles. The experimental distributions of relative resistance deviations (ΔR/R for both accelerating tubes and posts were collected during five scheduled accelerator maintenance tank openings during 2013 and 2014. Components with measured ΔR/R>±2.5% were considered faulty and put through a detailed examination, with faults categorized. In total, thirty four unique fault categories were identified and most would not be identifiable without the new technique described. The most common failure mode was permanent and irreversible insulator current leakage that developed after being exposed to the ambient environment. As a result of efficient in situ troubleshooting and fault-elimination techniques, the maximum values of |ΔR/R| are kept below 2.5% at the conclusion of maintenance procedures. The acceptance margin could be narrowed even further by a factor of 2.5 by increasing the test voltage from 40 V up to 100 V. Based on experience over the last two years, resistor and

  3. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  4. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    Energy Technology Data Exchange (ETDEWEB)

    Vinatier, T., E-mail: vinatier@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Bruni, C. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Roux, R. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Laboratoire d' Etude des Eléments Légers, CEA IRAMIS, bâtiment 524, 91191 Gif sur Yvette Cedex (France); Brossard, J. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); Laboratoire Astroparticule et Cosmologie, Université Paris 7, UMR 7164, bâtiment Condorcet, 75205 Paris Cedex (France); Chancé, S.; Cayla, J.N.; Chaumat, V. [Laboratoire de l' Accélérateur Linéaire (LAL), Université Paris Sud, UMR 8607, bâtiment 200, 91898 Orsay Cedex (France); and others

    2015-10-11

    The Alpha-X RF-gun was designed to produce an ultra-short (<100 fs rms), 100 pC and 6.3 MeV electron beam with a normalized rms transverse emittance of 1π mm mrad for a gun peak accelerating field of 100 MV/m. Such beams will be required by the Alpha-X project, which aims to study a laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  5. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    Science.gov (United States)

    Vinatier, T.; Bruni, C.; Roux, R.; Brossard, J.; Chancé, S.; Cayla, J. N.; Chaumat, V.; Xu, G.; Monard, H.

    2015-10-01

    The Alpha-X RF-gun was designed to produce an ultra-short (laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  6. Muon acceleration in cosmic-ray sources

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-01-01

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10 13 keV cm –1 . At gradients above 1.6 keV cm –1 , muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  7. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  8. Performance Results for Building the 1 MV Electrostatic Accelerator at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    1 MV electrostatic accelerator of KOrea Multi-purpose Accelerator Complex (KOMAC) is being developed to satisfy the needs from the users, especially for the applications with a MeV range ion beam implantation. Table 1 shows specifications of the 1MV electrostatic accelerator. The accelerator consists of ion source, beam transport system and target chamber. The ion source and accelerating column are installed inside the pressure vessel of high voltage power supply. The layout of the system is shown in Fig. 1. A 1 MV electrostatic accelerator is being developed at KOMAC. The high voltage power supply is already developed. The 200 MHz RF ion source is now being tested in the 300 kV test-stand. In the test results, it is necessary to improve increasing RF power absorption into the plasma in order to supply 1 mA beam. For this goal, we need more reliable the matching circuit and should be modified the matching components.

  9. Superconducting magnets for particle large accelerators

    International Nuclear Information System (INIS)

    Kircher, F.

    1994-01-01

    The different accelerator types (linear, circular) and the advantages of using superconductivity in particle accelerator are first reviewed. Characteristics of some large superconducting accelerators (Tevatron, HERA, RHIC, LHC CERN) are presented. The design features related to accelerator magnets are reviewed: magnet reproducibility, stability, field homogeneity, etc. and the selected design characteristics are discussed: manufacturing method, winding, shielding, cryostat. CEA involvement in this domain mainly addressing quadrupoles, is presented together with the Large Hadron Collider (LHC) project at CERN. Characteristics and design of detector magnets are also described. 5 figs., 2 tabs

  10. Implementation of Hardware Accelerators on Zynq

    DEFF Research Database (Denmark)

    Toft, Jakob Kenn

    of the ARM Cortex-9 processor featured on the Zynq SoC, with regard to execution time, power dissipation and energy consumption. The implementation of the hardware accelerators were successful. Use of the Monte Carlo processor resulted in a significant increase in performance. The Telco hardware accelerator......In the recent years it has become obvious that the performance of general purpose processors are having trouble meeting the requirements of high performance computing applications of today. This is partly due to the relatively high power consumption, compared to the performance, of general purpose...... processors, which has made hardware accelerators an essential part of several datacentres and the worlds fastest super-computers. In this work, two different hardware accelerators were implemented on a Xilinx Zynq SoC platform mounted on the ZedBoard platform. The two accelerators are based on two different...

  11. Accelerator mass spectrometry of heavy elements: /sup 36/Cl to /sup 205/Pb

    Energy Technology Data Exchange (ETDEWEB)

    Henning, W

    1987-08-25

    Measurements are discussed in which the technique of accelerator mass spectrometry was applied to problems involving heavy radioisotopes. These measurements, which depend on the ion energies that can be reached with the new heavy-ion accelerator facilities, were performed at the Argonne tandem linac accelerator system (ATLAS) and at the UNILAC accelerator at GSI. The topics include a discussion of measurements of long nuclear lifetimes, of radioisotope detection of interest to solar neutrino experiments, and of a determination of the /sup 41/Ca concentration in natural samples of terrestrial origin by making use of isotopic pre-enrichment in an isotope separator. A long-known method of isobar separation, employing a gas-filled magnetic field region, has been revived for some of these measurements and its characteristics and advantages are briefly reviewed.

  12. Accelerated testing for studying pavement design and performance (FY 2003) : evaluation of the chemical stabilized subgrade soil (CISL Experiment No. 12).

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway departments : of Missouri, Iowa, Kansas and Nebraska, has supported an accelerated pavement testing (APT) project to compare : the performance of stabilized ...

  13. Linear accelerator for burner-reactor

    International Nuclear Information System (INIS)

    Batskikh, G.I.; Murin, B.P.; Fedotov, A.P.

    1991-01-01

    Future development of nuclear power engineering depends on the successful solution of two key problems of safety and utilization of high level radioactive wastes (HLRW) of atomic power plants (APP). Modern methods of HLRW treatment involve solidification, preliminary storing for a period of 30-50 years necessary for the decay of long-living nuclides and final burial in geological formations several hundred meters below the ground surface. The depth burial of the radioactive wastes requires complicated under ground constructions. It's very expensive and doesn't meet modern ecological requirements. Alternative modern and more reasonable methods of APP HLRW treatment are under consideration now. One of the methods involves separation of APP waste radionuclides for use in economy with subsequent transmutation of the long-living isotopes into the short-living ones by high-intensity neutron fluxes generated by proton accelerators. The installation intended for the long-living radionuclides transmutation into the short-living ones is called burner-reactor. It can be based on the continuous regime proton accelerator with 1.5 GeV energy, 0.3 A current and beam mean power of 450 MW. The preferable type of the proton accelerator with the aforementioned parameters is the linear accelerator

  14. Approaching maximal performance of longitudinal beam compression in induction accelerator drivers

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Ho, D.D.M.; Brandon, S.T.; Chang, C.L.; Drobot, A.T.; Faltens, A.; Lee, E.P.; Krafft, G.A.

    1986-01-01

    Longitudinal beam compression is an integral part of the US induction accelerator development effort for heavy ion fusion. Producing maximal performance for key accelerator components is an essential element of the effort to reduce driver costs. We outline here initial studies directed towards defining the limits of final beam compression including considerations such as: maximal available compression, effects of longitudinal dispersion and beam emittance, combining pulse-shaping with beam compression to reduce the total number of beam manipulations, etc. The use of higher ion charge state Z greater than or equal to 3 is likely to test the limits of the previously envisaged beam compression and final focus hardware. A more conservative approach is to use additional beamlets in final compression and focus. On the other end of the spectrum of choices, alternate approaches might consider new final focus with greater tolerances for systematic momentum and current variations. Development of such final focus concepts would also allow more compact (and hopefully cheaper) hardware packages where the previously separate processes of beam compression, pulse-shaping and final focus occur as partially combined and nearly concurrent beam manipulations

  15. Heavy ion acceleration strategies in the AGS accelerator complex -- 1994 Status report

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Benjamin, J.; Blaskiewicz, M.

    1995-01-01

    The strategies invoked to satisfy the injected beam specifications for the Brookhaven Relativistic Heavy Ion Collider (RHIC) continue to evolve, in the context of the yearly AGS fixed target heavy ion physics runs. The primary challenge is simply producing the required intensity. The acceleration flexibility available particularly in the Booster main magnet power supply and rf accelerating systems, together with variations in the charge state delivered from the Tandem van de Graaff, and accommodation by the AGS main magnet and rf systems allow the possibility for a wide range of options. The yearly physics run provides the opportunity for exploration of these options with the resulting significant evolution in the acceleration plan. This was particularly true in 1994 with strategies involving three different charge states and low and high acceleration rates employed in the Booster. The present status of this work will be presented

  16. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  17. EMPLOYEE INVOLVEMENT IN DECISION MAKING AND FIRMS PERFORMANCE IN THE MANUFACTURING SECTOR IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Abdul-Hameed Adeola Sulaimon

    2011-03-01

    Full Text Available This study examines the relationship between employee involvement in decision making andfirms’ performance in the manufacturing sector in Nigeria. Data were generated by means ofquestionnaires to 670 manufacturing firms on employee involvement in decision making andperformance variables. Responses from the survey were statistically analysed using descriptivestatistics, product moment correlation, regression analysis and Z-test (approximated with theindependent samples t-test. The results of the study indicate a statistically significant relationshipbetween employee involvement in decision making and firms’ performance as well as reveal asignificant difference between the performance of firms whose employee involvement in decisionmaking are deep and the performance of firms whose employee involvement in decision making areshallow. The findings also reveal the involvement of participating firms in employee involvement indecision making. The implications of this study include the need for manufacturing firms todemonstrate high level of commitment to employee involvement in decision making for performanceenhancement.

  18. Analytical use of electron accelerators

    International Nuclear Information System (INIS)

    Kapitsa, S.P.; Chapyzhnikov, B.A.; Firsov, V.I.; Samosyuk, V.N.; Tsipenyuk, Y.M.

    1985-01-01

    After detailed investigation the authors conclude that the newest electron accelerators provide good scope for gamma activation and also for producing neutrons for neutron activation. These accelerators are simpler and safer than reactors, and one can provide fairly homogeneous irradiation of substantial volumes, and the determination speed and sensitivity then constitute the main advantages. The limits of detection and the reproducibility are sufficient to handle a wide range of tasks. Analysts at present face a wide range of unlikely extreme problems, while the selectivity provides exceptional analysis facilities. However, the record examples are not to be taken as exceptions, since activation analysis based on electron accelerators opens up essentially universal scope for analyzing all elements at the concentrations and accuracies currently involved, which will involve its extensive use in analytical practice in the foreseeable future. The authors indicate that the recognition of these possibilities governs the general use of these methods and the employment of current efficient fast-electron sources to implement them

  19. Performance testing of the LUEhR-40M structure with an accelerated beam

    International Nuclear Information System (INIS)

    Vakhrushin, Yu.P.; Voznyuk, V.N.; Nikolaev, V.M.; Ryabtsov, A.V.; Smirnov, V.L.; Terent'ev, V.V.

    1988-01-01

    The results of experimental investigation of the prototype of the accelerating structure of the therapeutic linear accelerator of the LUEhR-40M model with an accelerating beam are presented. The accelerating structure is the standing wave biperiodic structure with inner coupling cells of 1.6 m length. The design energy of accelerated electrons equalling 20 MeV (during single electron beam passage through an accelerating structure) is obtained. 60 % of accelerated particles are accumulated in the energy interval of (20±1) MeV at 20 mA pulse current and at 3.6 MW SHF-power at the structure input

  20. Analysis on the time and frequency domains of the acceleration in front crawl stroke.

    Science.gov (United States)

    Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella

    2012-05-01

    The swimming involves accelerations and decelerations in the swimmer's body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximum velocity test. A position transducer (200Hz) was used to collect the data, and it was synchronized to an aquatic camera (25Hz). The acceleration in the temporal (root mean square, minimum and maximum of the acceleration) and frequency (power peak, power peak frequency and spectral area) domains was calculated with Fourier analysis, as well as the velocity and the spectrums distribution in function to present one or more main peaks (type 1 and type 2). A one-way ANOVA was used to establish differences between gender and performance. Results show differences between genders in all the temporal domain variables (p<0.05) and only the Spectral Area (SA) in the frequency domain (p<0.05). Between gender and performance, only the Root Mean Square (RMS) showed differences in the performance of the male swimmers (p<0.05) and in the higher level swimmers, the Maximum (Max) and the Power Peak (PP) of the acceleration showed differences between both genders (p<0.05). These results confirms the importance of knowing the RMS to determine the efficiency of the swimmers regarding gender and performance level.

  1. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    Science.gov (United States)

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  2. CEBAF: Accelerating cavities look good

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications.

  3. CEBAF: Accelerating cavities look good

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications

  4. Delivery of single accelerated particles

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.; Schimmerling, W.; Vosburgh, K.G.; Crebbin, K.; Everette, W.; Howard, J.

    1978-01-01

    It is desirable for certain experiments involving accelerators to have the capability of delivering just a single beam particle to the target area. The essential features of such a one-at-a-time facility are discussed. Two such facilities are described which were implemented at high-energy heavy ion accelerators without having to make major structural changes in the existing beam lines or substantially interfering with other accelerator uses. Two accelerator facilities are described which had the capability of delivering a single beam particle to the target area. This feature is necessary in certain experiments investigating visual phenomena induced by charged particles, other single particle interactions in biology, and other experiments in which the low intensities of cosmic rays need to be simulated. Both facilities were implemented without having to make structural changes in the existing beam lines or substantially interfering with other accelerator uses. (Auth.)

  5. Thoughts on accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1978-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  6. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  7. The linear proton accelerator for the MYRRHA-ADS

    International Nuclear Information System (INIS)

    Vandeplassche, D.; Medeiros Ramao, L.

    2013-01-01

    The article discusses the development of a linear proton accelerator for the MYRRHA Accelerator Driven System (ADS). The linear proton accelerator provides a high energy and high intensity proton beam that is directed to a spallation target, which will deliver neutrons to a subcritical nuclear reactor core. The article describes the MYRRHA linear accelerator, which mainly consists of a sequence of superconducting accelerating radiofrequent cavities that are positioned in a linear configuration. The beam requirements for MYRRHA are discussed involving, amongst others, a continuous wave beam delivery mode with a high reliability goal. The key concepts to increase the reliability of the accelerator are described.

  8. Performance of the Fitch generator in a nanosecond electron accelerator

    International Nuclear Information System (INIS)

    Chernyj, V.V.

    1976-01-01

    The operation of the Fitch generator in the nanosecond electron accelerator is discussed. The operating principle of the generator is based on the inversion of the voltage at the storage capacitances. Only one discharger is employed in the discharge circuit of the generator which provides for decreasing the generator impedance to 24 Ohms. The maximum accelerating voltage equals 0.6 MV

  9. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    Amaldi, U.

    1979-01-01

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how the description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  10. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    Amaldi, U.

    1979-01-01

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how our description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  11. High voltage performance of BARC-TIFR Pelletron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Surendran, P.; Ansari, Q.N.; Nair, J.P., E-mail: surendra@tifr.res.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai (India); and others

    2014-07-01

    The 14 UD Pelletron Accelerator at TIFR, Mumbai is operational since its inception in 1988. It was decided to impart enough time for high voltage conditioning to achieve higher operational voltage. Prior to this, comprehensive works such as replacing all the sputter ion pumps and Titanium sublimation pumps across the accelerator tube with new or refurbished ones and replacement of Alumina balls in the SF{sub 6} drier with fresh balls were carried out. High voltage conditioning of each module was done. Further conditioning of two modules at a time in overlapping mode improved the terminal voltage. As a result of this rigorous conditioning Terminal voltage of 12.6 MV was achieved and beam has been delivered to users at 12 MV terminal. Details of this effort will be presented in this paper. (author)

  12. High voltage performance of BARC-TIFR Pelletron Accelerator

    International Nuclear Information System (INIS)

    Surendran, P.; Ansari, Q.N.; Nair, J.P.

    2014-01-01

    The 14 UD Pelletron Accelerator at TIFR, Mumbai is operational since its inception in 1988. It was decided to impart enough time for high voltage conditioning to achieve higher operational voltage. Prior to this, comprehensive works such as replacing all the sputter ion pumps and Titanium sublimation pumps across the accelerator tube with new or refurbished ones and replacement of Alumina balls in the SF_6 drier with fresh balls were carried out. High voltage conditioning of each module was done. Further conditioning of two modules at a time in overlapping mode improved the terminal voltage. As a result of this rigorous conditioning Terminal voltage of 12.6 MV was achieved and beam has been delivered to users at 12 MV terminal. Details of this effort will be presented in this paper. (author)

  13. Development of new electron beam accelerator

    International Nuclear Information System (INIS)

    Tanaka, Jiro

    1976-01-01

    Approximately two decades have elapsed since electron accelerators were first employed in industry. It is widely used in the fields of chemical and food industries and the prevention of pollution. The accelerators for industrial use are limited to those obtainable high current or high output, low cost and easy handling. The low energy (up to 2 or 3 MeV) accelerators applicable to industry include the rectification type (Cockcroft, Dynamitron, Van de Graaff etc.), the AC transformer type (resonance transformer, cascade transformer) and the transformer type. As the accelerators of higher energy (more than 3 MeV), there exist the linear accelerator and the electromagnetic induction type. The linear accelerators are widely employed for industrial and medical uses as the large output can be obtained. Though various types of accelerators are used in industry, more increasing demands in accordance with the diversification of application are not always satisfied. As it seems that the realization of a new accelerator of improved performance and cost requires long time, it may be important to perform the standardization by dividing the energy and output ranges. (Wakatsuki, Y.)

  14. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  15. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  16. Applied metrology in the production of superconducting model magnets for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ferradas Troitino, Jose [CERN; Bestmann, Patrick [CERN; Bourcey, Nicolas [CERN; Carlon Zurita, Alejandro [CERN; Cavanna, Eugenio [ASG Supercond., Genova; Ferracin, Paolo [CERN; Ferradas Troitino, Salvador [CERN; Holik, Eddie Frank [Fermilab; Izquierdo Bermudez, Susana [CERN; Lackner, Friedrich [CERN; Löffler, Christian [CERN; Maury, Gregory [CERN; Perez, Juan Carlos [CERN; Savary, Frederic [CERN; Semeraro, Michela [CERN; Vallone, Giorgio [CERN

    2017-12-22

    The production of superconducting magnets for particle accelerators involves high precision assemblies and tight tolerances, in order to achieve the requirements for their appropriate performance. It is therefore essential to have a strict control and traceability over the geometry of each component of the system, and also to be able to compensate possible inherent deviations coming from the production process.

  17. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    Zimek, Z.

    1998-01-01

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO 2 and NO x removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where

  18. The transfer of accelerator technology to industry

    International Nuclear Information System (INIS)

    Favale, A.

    1992-01-01

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  19. The tactile-stimulated startle response of tadpoles: acceleration performance and its relationship to the anatomy of wood frog (Rana sylvatica), bullfrog (Rana catesbeiana), and American toad (Bufo americanus) tadpoles.

    Science.gov (United States)

    Eidietis, Laura

    2006-04-01

    I described the tactile-stimulated startle response (TSR) of wood frog (Rana sylvatica), bullfrog (Rana catesbeiana), and American toad (Bufo americanus) tadpoles. One purpose was to rank species in terms of maximum acceleration performance. Also, I tested whether anatomical indicators of performance potential were predictive of realized performance. TSRs were elicited in a laboratory setting, filmed at 250 Hz, and digitally analyzed. TSRs began with two, initial body curls during which tadpoles showed a broad spectrum of movement patterns. TSR performance was quantified by maximum linear acceleration and maximum rotational acceleration of the head/body, both of which tended to occur immediately upon initiation of motion ( wood frog > American toad. The species' rank order for the anatomical indicator of rotational acceleration potential was bullfrog > wood frog = American toad. Thus, the anatomical indicators roughly predicted the rank order of interspecific average performance. However, the anatomical indicators did not correlate with individual tadpole performance. Variability in behavioral patterns may obscure the connection between anatomy and performance. This is seen in the current lack of intraspecific correlation between a morphological indicator of acceleration capacity and acceleration performance.

  20. Collective ion acceleration

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  1. Dielectric-Lined High-Gradient Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  2. Dielectric-Lined High-Gradient Accelerator Structure

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field (∼2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 (micro)s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10 5 RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30

  3. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  4. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    Becker, Stefan

    2010-01-01

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  5. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  6. Acceleration transforms and statistical kinetic models

    International Nuclear Information System (INIS)

    LuValle, M.J.; Welsher, T.L.; Svoboda, K.

    1988-01-01

    For a restricted class of problems a mathematical model of microscopic degradation processes, statistical kinetics, is developed and linked through acceleration transforms to the information which can be obtained from a system in which the only observable sign of degradation is sudden and catastrophic failure. The acceleration transforms were developed in accelerated life testing applications as a tool for extrapolating from the observable results of an accelerated life test to the dynamics of the underlying degradation processes. A particular concern of a physicist attempting to interpreted the results of an analysis based on acceleration transforms is determining the physical species involved in the degradation process. These species may be (a) relatively abundant or (b) relatively rare. The main results of this paper are a theorem showing that for an important subclass of statistical kinetic models, acceleration transforms cannot be used to distinguish between cases a and b, and an example showing that in some cases falling outside the restrictions of the theorem, cases a and b can be distinguished by their acceleration transforms

  7. Quick setup of test unit for accelerator control system

    International Nuclear Information System (INIS)

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-01-01

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  8. Pitch then power: limitations to acceleration in quadrupeds

    OpenAIRE

    Williams, Sarah B.; Tan, Huiling; Usherwood, James R.; Wilson, Alan M.

    2009-01-01

    Rapid acceleration and deceleration are vital for survival in many predator and prey animals and are important attributes of animal and human athletes. Adaptations for acceleration and deceleration are therefore likely to experience strong selective pressures?both natural and artificial. Here, we explore the mechanical and physiological constraints to acceleration. We examined two elite athletes bred and trained for acceleration performance (polo ponies and racing greyhounds), when performing...

  9. A link of full-scale accelerated pavement testing to long-term pavement performance study in the Western Cape Province of South Africa

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph K

    2016-09-01

    Full Text Available of Accelerated Pavement Testing in Pavement Sustainability A Link of Full-Scale Accelerated Pavement Testing to Long-Term Pavement Performance Study in the Western Cape Province of South Africa J. K. Anochie-Boateng W. JvdM Steyn C. Fisher L. Truter...

  10. A reflexing electron microwave amplifier for rf particle accelerator applications

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1988-01-01

    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  11. Does organisational commitment enhance the relationship between job involvement and in-role performance?

    Directory of Open Access Journals (Sweden)

    Talat Islam

    2012-11-01

    Full Text Available Orientation: Job involvement is essential for the performance of employees. Prior researchers have found a weak relationship between job involvement and job performance, but dimensions of commitment have been considered as a mediator to enhance the relationship.Research purpose: This research is aimed at discovering the role of organisational commitment as a mediating variable between the relationship of job involvement and performance.Motivation for the study: The aim of organisations today is to outperform each other in every respect. In order to realise this, the role of employees is crucial. To elicit the best from employees requires much attention from organisations. This research is focused on this specific issue, namely, increasing employees’ performance.Research design, approach and method: The researchers have used structured questionnaires using the quantitative approach. A similar research methodology using the survey method was applied by the researchers to make the results comparable. The simple random sampling technique was used. Data was evaluated on the basis of 208 completed questionnaires.Main findings: Findings of the study indicate that there is a relationship between job involvement and in-role performance. Affective and normative commitment can act as mediator. However, continuance commitment is not a mediator in this relationship.Practical/managerial implications: It is important for organisations that want to gain a competitive edge over its rivals to enhance the level of involvement of its employees.Contribution/value-add: The results of this study will provide a new dimension for managers on how to gain a competitive advantage over rival firms with regard to performance by increasing the level of job involvement.

  12. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  13. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Kornerup; Holm, Thomas Lindebo

    2014-07-01

    Piroxicam administration is a method for induction of enterocolitis in interleukin-10 knockout (IL-10 k.o.) mice. The piroxicam-accelerated colitis (PAC) IL-10 k.o. model combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity. The predictive validity and pathogenic mechanisms of the model have not been thoroughly investigated. In this study, IL-10 k.o. mice received piroxicam in the chow, and model qualification was performed by examining the efficacy of prophylactic anti-IL-12/23p40 monoclonal antibody (mAb), anti-TNFα mAb, cyclosporine A (CsA) and oral prednisolone treatment. To evaluate cell involvement in the disease pathogenesis, specific cell subsets were depleted by treatment with anti-CD4 mAb, anti-CD8 mAb or clodronate-encapsulated liposomes. T cell receptor co-stimulation was blocked by CTLA4-Ig. Cytokine profiling ELISAs and calprotectin immunohistochemistry were performed on colon tissue. Treatments with anti-IL-12/23p40 mAb and CsA prevented disease in PAC IL-10 k.o. mice and reduced IFNγ, IL-17A, MPO and calprotectin levels in colon. Anti-TNFα mAb treatment caused amelioration of selected clinical parameters. No effect of prednisolone was detected. Depletion of CD8(+) cells tended to increase mortality, whereas treatment with anti-CD4 mAb or CTLA4-Ig had no significant effect on disease development. Clodronate liposome treatment induced a loss of body weight; nevertheless macrophage depletion was associated with a significant reduction in colonic pathology. In conclusion, reference drugs with known efficacy in severe inflammatory bowel disease were efficacious in the PAC IL-10 k.o. model. Our data indicate that in this model macrophages are a main driver of colitis, whereas CD4(+) cells are not. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. THE RELATION OF HIGH-PERFORMANCE WORK SYSTEMS WITH EMPLOYEE INVOLVEMENT

    Directory of Open Access Journals (Sweden)

    Bilal AFSAR

    2010-01-01

    Full Text Available The basic aim of high performance work systems is to enable employees to exercise decision making, leading to flexibility, innovation, improvement and skill sharing. By facilitating the development of high performance work systems we help organizations make continuous improvement a way of life.The notion of a high-performance work system (HPWS constitutes a claim that there exists a system of work practices for core workers in an organisation that leads in some way to superior performance. This article will discuss the relation that HPWS has with the improvement of firms’ performance and high involvement of the employees.

  15. The electron accelerator in industry - safety aspects

    International Nuclear Information System (INIS)

    Kirthi, K.N.

    1993-01-01

    Electron beam accelerators are being used in increasing numbers in a variety of important applications. Commercial uses include radiography, food preservation, product sterilisation and radiation processing of materials. Since most of the industrial applications involve products, some that can be treated with electrons and others that require photons, electron accelerators serve this dual purpose economically. Although industrial accelerators are now regarded as standard products, finished installations show considerable diversity, reflecting the users, needs and planning. Because of the high radiation output, proper planning regarding safety is warranted. This paper discusses the hazards, safety and planning required during design and operation of the electron beam accelerators. (author). 4 refs., 1 fig

  16. Experiments on heat pipes submitted to strong accelerations; Experimentation de caloducs soumis a de fortes accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Labuthe, A [Dassault Aviation, 92 - Saint Cloud (France)

    1997-12-31

    In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)

  17. Experiments on heat pipes submitted to strong accelerations; Experimentation de caloducs soumis a de fortes accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Labuthe, A. [Dassault Aviation, 92 - Saint Cloud (France)

    1996-12-31

    In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)

  18. Classifying sows' activity types from acceleration patterns

    DEFF Research Database (Denmark)

    Cornou, Cecile; Lundbye-Christensen, Søren

    2008-01-01

    An automated method of classifying sow activity using acceleration measurements would allow the individual sow's behavior to be monitored throughout the reproductive cycle; applications for detecting behaviors characteristic of estrus and farrowing or to monitor illness and welfare can be foreseen....... This article suggests a method of classifying five types of activity exhibited by group-housed sows. The method involves the measurement of acceleration in three dimensions. The five activities are: feeding, walking, rooting, lying laterally and lying sternally. Four time series of acceleration (the three...

  19. Performance of the Argonne Wakefield Accelerator Facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator facility has begun its experimental program. It is designed to address advanced acceleration research requiring very short, intense electron bunches. It incorporates two photocathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. This paper discusses commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator

  20. A microwave inverse Cerenkov Accelerator (MICA)

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    1999-01-01

    The objective of this Phase II SBIR research program was to complete the final design originated during Phase I for a prototype Microwave Inverse Cerenkov Accelerator (MICA), to fabricate the-prototype MICA, and to test its performance as an electron accelerator. This report contains details of the design, predictions of accelerator performance, results of cold tests on the MICA structure, and details of the installation of MICA on the Yale Beam Physics Laboratory 6-MeV beamline. Discussion of future work is also included

  1. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  2. High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator CenterPart I

    Energy Technology Data Exchange (ETDEWEB)

    Caryotakis, G.

    2004-12-15

    This is Part I of a two-part report on design and manufacturing methods used at SLAC to produce accelerator klystrons. Chapter 1 begins with the history and applications for klystrons, in both of which Stanford University was extensively involved. The remaining chapters review the theory of klystron operation, derive the principal formulae used in their design, and discuss the assumptions that they involve. These formulae are subsequently used in small-signal calculations of the frequency response of a particular klystron, whose performance is also simulated by two different computer codes. The results of calculations and simulations are compared to the actual performance of the klystron.

  3. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    OpenAIRE

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length ap...

  4. Summary report on large HVEC accelerators

    International Nuclear Information System (INIS)

    Thieberger, P.

    1981-01-01

    The main features are described of the ten presently operating large HVEC tandem accelerators and of four additional HVEC accelerators which are in different stages of testing, construction or planning. Present performance characteristics are discussed as well as available information about long term reliability. Some recent improvements are mentioned and comparisons are drawn for acceleration tube gradients in various different configurations and accelerators. Finally, some possible future developments are indicated

  5. Half a century of particle accelerators - 1950-2000

    International Nuclear Information System (INIS)

    Marin, P.

    2009-01-01

    In a lively historical account the author tells of the extraordinary progress made in accelerator physics since World War II. He focuses mainly on the history of French accelerators which evolved from small electrostatic accelerators purchased abroad to complex and powerful storage rings and colliders built by French engineers and physicists. He shows how these machines served not only particle physicists, but also researchers working with synchrotron light. He recalls how these two scientific communities with such different backgrounds learned how to work together. The author was an accelerator physicist, and a project leader who played a key role in storage ring R and D, as well as in accelerator construction and operation. He describes the international context of the period, and relates the discussions on scientific policy issues of the time. He tells us about the technical challenges to be overcome and discusses the question of maintaining the balance between national development and international involvement. A number of important yet unknown features of this scientific adventure are related. This short history also includes his thoughts about the gestation of large scientific instruments which, no doubt, will interest researchers involved in 'big science'

  6. Accelerated recovery after cardiac operations.

    Science.gov (United States)

    Kaplan, Mehmet; Kut, Mustafa Sinan; Yurtseven, Nurgul; Cimen, Serdar; Demirtas, Mahmut Murat

    2002-01-01

    The accelerated-recovery approach, involving early extubation, early mobility, decreased duration of intensive care unit stay, and decreased duration of hospitalization has recently become a controversial issue in cardiac surgery. We investigated timing of extubation, length of intensive care unit stay, and duration of hospitalization in 225 consecutive cardiac surgery patients. Of the 225 patients, 139 were male and 86 were female; average age was 49.73 +/- 16.95 years. Coronary artery bypass grafting was performed in 127 patients; 65 patients underwent aortic and/or mitral or pulmonary valvular operations; 5 patients underwent valvular plus coronary artery operations; and in 28 patients surgical interventions for congenital anomalies were carried out. The accelerated-recovery approach could be applied in 169 of the 225 cases (75.11%). Accelerated-recovery patients were extubated after an average of 3.97 +/- 1.59 hours, and the average duration of stay in the intensive care unit was 20.93 +/- 2.44 hours for these patients. Patients were discharged if they met all of the following criteria: hemodynamic stability, cooperativeness, ability to initiate walking exercises within wards, lack of pathology in laboratory investigations, and psychological readiness for discharge. Mean duration of hospitalization for accelerated-recovery patients was 4.24 +/- 0.75 days. Two patients (1.18%) who were extubated within the first 6 hours required reintubation. Four patients (2.36%) who were sent to the wards returned to intensive care unit due to various reasons and 6 (3.55%) of the discharged patients were rehospitalized. Approaches for decreasing duration of intubation, intensive care unit stay and hospitalization may be applied in elective and uncomplicated cardiac surgical interventions with short duration of aortic cross-clamping and cardiopulmonary bypass, without risking patients. Frequencies of reintubation, return to intensive care unit, and rehospitalization are quite

  7. Interdependence of depressive symptoms, school involvement, and academic performance between adolescent friends: A dyadic analysis.

    Science.gov (United States)

    Chow, Chong Man; Tan, Cin Cin; Buhrmester, Duane

    2015-09-01

    Friendships play an important role in the development of school involvement and academic performance during adolescence. This study examined the interdependence of depressive symptoms, school involvement, and academic performance between adolescent same-sex friends. Using cross-sectional data, we examined whether the link between depressive symptoms and academic performance would be mediated by school involvement at the intrapersonal (actor) and interpersonal (partner) levels. Data came from 155 pairs of same-sex adolescent friends (80 boys; M(age) = 16.17, SD = 0.44). The actor-partner interdependence model was used to examine the dyadic data and mediation hypotheses. Mediated actor effects showed that adolescents who had more depressive symptoms reported lower academic performance, and such an association was mediated by their own and their friend's lower school involvement. Mediated partner effects showed that adolescents who had more depressive symptoms also had a friend with lower academic performance, and such an association was mediated by both individuals' lower school involvement. This study provided evidence to support the broader interpersonal framework for understanding school involvement and academic performance. The current findings also have potential practical implications, especially for programmes targeted at addressing adolescents' school problems. © 2015 The British Psychological Society.

  8. ORNL pellet acceleration program

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.

    1978-01-01

    The Oak Ridge National Laboratory (ORNL) pellet fueling program is centered around developing equipment to accelerate large pellets of solidified hydrogen to high speeds. This equipment will be used to experimentally determine pellet-plasma interaction physics on contemporary tokamaks. The pellet experiments performed on the Oak Ridge Tokamak (ORMAK) indicated that much larger, faster pellets would be advantageous. In order to produce and accelerate pellets of the order of 1 to 6 mm in diameter, two apparatuses have been designed and are being constructed. The first will make H 2 pellets by extruding a filament of hydrogen and mechanically chopping it into pellets. The pellets formed will be mechanically accelerated with a high speed arbor to a speed of 950 m/sec. This technique may be extended to speeds up to 5000 m/sec, which makes it a prime candidate for a reactor fueling device. In the second technique, a hydrogen pellet will be formed, loaded into a miniature rifle, and accelerated by means of high pressure hydrogen gas. This technique should be capable of speeds of the order of 1000 m/sec. While this technique does not offer the high performance of the mechanical accelerator, its relative simplicity makes it attractive for near-term experiments

  9. Tau/Charm Factory Accelerator Report

    OpenAIRE

    M. E. BiaginiINFN, Laboratori Nazionali Frascati, Italy; R. BoniINFN, Laboratori Nazionali Frascati, Italy; M. BoscoloINFN, Laboratori Nazionali Frascati, Italy; A. ChiarucciINFN, Laboratori Nazionali Frascati, Italy; R. CiminoINFN, Laboratori Nazionali Frascati, Italy; A. ClozzaINFN, Laboratori Nazionali Frascati, Italy; A. DragoINFN, Laboratori Nazionali Frascati, Italy; S. GuiducciINFN, Laboratori Nazionali Frascati, Italy; C. LigiINFN, Laboratori Nazionali Frascati, Italy; G. MazzitelliINFN, Laboratori Nazionali Frascati, Italy; R. RicciINFN, Laboratori Nazionali Frascati, Italy; C. SanelliINFN, Laboratori Nazionali Frascati, Italy; M. SerioINFN, Laboratori Nazionali Frascati, Italy; A. StellaINFN, Laboratori Nazionali Frascati, Italy; S. TomassiniINFN, Laboratori Nazionali Frascati, Italy

    2014-01-01

    The present Report concerns the current status of the Italian Tau/Charm accelerator project and in particular discusses the issues related to the lattice design, to the accelerators systems and to the associated conventional facilities. The project aims at realizing a variable energy Flavor Factory between 1 and 4.6 GeV in the center of mass, and succeeds to the SuperB project from which it inherits most of the solutions proposed in this document. The work comes from a cooperation involving t...

  10. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. We discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator. (author)

  11. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    There is considerable recent interest in the use of high energy heavy ions to irradiate deuterium-tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. This paper discusses how the technology of linear induction accelerators - well known to be matched to high current and short pulse length - may offer significant advantages for this application. (author)

  12. A new measurement tool for characterization of superconducting rf accelerator cavities using high-performance LTS SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Neubert, R [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Nietzsche, S [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Seidel, P [Friedrich-Schiller-University Jena, Helmholtzweg 5, 07743 Jena (Germany); Knaack, K [DESY Hamburg (Germany); Wittenburg, K [DESY Hamburg (Germany); Peters, A [Heidelberger Ionenstrahl-Therapiezentrum, Heidelberg (Germany)

    2007-11-15

    This paper presents a new system to measure very low currents in an accelerator environment, using a cryogenic current comparator (CCC). In principle a CCC is a conventional current transformer using the high-performance SQUID technology to sense the magnetic fields caused by the beam current. Since the system is sensitive on a pA level, it is an optimum device to detect dark currents of superconducting cavities. The system presented here is designed for the test facilities of the superconducting accelerator modules for the European XFEL at the Deutsches Elektronen-Synchrotron (DESY) in Hamburg. Measurements in a quiet environment showed that an intrinsic noise level of the CCC of 40 pA Hz{sup -1/2} could be achieved.

  13. On the history of the Linear Accelerator Department at the Institute for Theoretical and Experimental Physics (ITEP, Moscow)

    International Nuclear Information System (INIS)

    Lazarev, N. V.

    2006-01-01

    These memoirs are devoted to the Institute's anniversary and present the history of the Linear Accelerator Department at ITEP. Some studies are described in which I was involved. During more than 40 years. I worked with Professor I.M. Kapchinsky (1919-1993), a world-renowned scientist, the founder of the department. References are given to Kapchinsky's monographs and to some of the works that were performed under his supervision and were published in proceedings of accelerator conferences. Many active scientists, engineers, and technicians are mentioned who participate in the achievements of the department, which made a significant contribution to the development of accelerator science and engineering in Russia and worldwide

  14. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    International Nuclear Information System (INIS)

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  15. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    Science.gov (United States)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  16. Accelerator control systems in China

    International Nuclear Information System (INIS)

    Yao Chihyuan

    1992-01-01

    Three accelerator facilities were built in the past few years, the 2.8 GeV electron positron collider BEPC, the heavy ion SSC cyclotron accelerator HIRFL and the 800 MeV synchrotron radiation storage ring HESYRL. Aimed at different research areas, they represent a new generation of accelerator in China. This report describes the design philosophy, the structure, performance as well as future improvements of the control systems of the these facilities. (author)

  17. Accelerated testing for studying pavement design and performance (FY 2002) : research summary.

    Science.gov (United States)

    2004-01-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing : Laboratory at Kansas State University. The project was selected and funded by the : Midwest States Accelerated Testing Pooled Fund Program, which includes Iowa, Ka...

  18. New ideas for accelerating particles

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1983-01-01

    Many different schemes can be devised for accelerating particles. In recent years several concepts radically different from those in common use have been suggested. Many of these have failed to live up to the hopes of their inventors. Now that we seem near the end of the road for large conventional machines, there is a renewed interest in alternatives, especially those involving lasers. Afte After a brief historical introduction and a discussion on how to classify different types of accelerator, some of these alternative concepts will be reviewed. (author)

  19. Safety and regulatory aspects of accelerators

    International Nuclear Information System (INIS)

    Singh, Pitamber

    2017-01-01

    Particle accelerators are devices that produce beams of energetic ions and electrons which have applications in various fields. Historically, particle accelerators were developed for nuclear physics research. Although the particle physics community is still the main user group, joined by others. There is also an increasing interest in radiation therapy in the medical world and industry has been a long-time user of ion implantation an many other applications. Accelerators are also being used for nuclear energy generation using Thorium and waste management through incineration of minor actinides using accelerator driven sub-critical reactor system (ADS). This is of great interest to India as it has large resources of good quality thorium. The ADS are considered to be an inherently safe system as the reactor is sub-critical. However, ADS require high energy and high current proton beams which involve complex technologies. Accelerators deliver energy to the charged particles by means of electromagnetic fields. Depending on how the electric and magnetic fields are used, the accelerators can be grouped in three categories namely electrostatic or DC accelerators, RF accelerators and colliding rings. In DC accelerators, particles pass through a high voltage and gain energy given by E= qV where q is the charge of ion and V is the voltage tough which ion pass. In order to sustain high voltage accelerator column section is housed inside a pressure vessel which is filled with gas, normally SF_6, at high pressure (100 -150 psig)

  20. Sao Paulo pelletron accelerator: fortieth anniversary

    International Nuclear Information System (INIS)

    Pereira, Dirceu

    2012-01-01

    Full text: This year the 8MV Sao Paulo Pelletron tandem accelerator completes 40 years . This electrostatic accelerator was installed in the Sao Paulo University in 1972 , and it was the first of this model constructed the National Electrostatic Corporation with several innovations particularly with respect to the new concept of accelerator tube and the charge system. In the talk will be discussed the performance of the accelerator during all these years and the main result scientific results. (author)

  1. Sao Paulo pelletron accelerator: fortieth anniversary

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Dirceu [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This year the 8MV Sao Paulo Pelletron tandem accelerator completes 40 years . This electrostatic accelerator was installed in the Sao Paulo University in 1972 , and it was the first of this model constructed the National Electrostatic Corporation with several innovations particularly with respect to the new concept of accelerator tube and the charge system. In the talk will be discussed the performance of the accelerator during all these years and the main result scientific results. (author)

  2. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  3. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator

    International Nuclear Information System (INIS)

    Surendran, P.; Shrivastava, A.; Gupta, A.K.; Nair, J.P.; Yadav, M.L.; Gore, J.A.; Sparrow, H.; Bhagwat, P.V.; Kailas, S.

    2006-01-01

    Accelerator based mass spectrometry (ABMs) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 U D Pelletron Accelerator is an ideal machine to carry out ABMs studies with heavy isotopes like 36 Cl and 129 I. Cosmogenic radio isotope 36 Cl is widely being detected using ABMs as it has got applications in ground water research, radioactive waste management, atmospheric 36 Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing ABMs programme at 14UD Pelletron Accelerator Facility at Mumbai, a segmented gas detector developed for identification of 36 Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. Further progress made in this programme is discussed in this paper. (author)

  4. Automatic generation of application specific FPGA multicore accelerators

    DEFF Research Database (Denmark)

    Hindborg, Andreas Erik; Schleuniger, Pascal; Jensen, Nicklas Bo

    2014-01-01

    High performance computing systems make increasing use of hardware accelerators to improve performance and power properties. For large high-performance FPGAs to be successfully integrated in such computing systems, methods to raise the abstraction level of FPGA programming are required...... to identify optimal performance energy trade-offs points for a multicore based FPGA accelerator....

  5. Molr - A delegation framework for accelerator commissioning

    CERN Document Server

    Valliappan, Nachiappan

    2017-01-01

    Accelerator commissioning is the process of preparing an accelerator for beam operations. A typical commissioning period at CERN involves running thousands of tests on many complex systems and machinery to ensure smooth beam operations and correct functioning of the machine protection systems. AccTesting is a software framework which helps orchestrate the commissioning of CERN’s accelerators and it’s equipment systems. This involves running and managing tests provided by various commissioning tools and analyzing their outcomes. Currently, AccTesting only supports a specific set of commissioning tools. In this project, we aim to widen the spectrum of commissioning tools supported by AccTesting by developing a generic and programmable integration framework called Molr, which would enable the integration of more commissioning tools with AccTesting. In this report, we summarize the work done during the summer student project and lay out a brief overview of the current status and next steps for Molr.

  6. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  7. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  8. Infinite stochastic acceleration of charged particles from non-relativistic initial energies

    International Nuclear Information System (INIS)

    Buts, V.A.; Manujlenko, O.V.; Turkin, Yu.A.

    1997-01-01

    Stochastic charged particle acceleration by electro-magnetic field due to overlapping of non-linear cyclotron resonances is considered. It was shown that non-relativistic charged particles are involved in infinitive stochastic acceleration regime. This effect can be used for stochastic acceleration or for plasma heating by regular electro-magnetic fields

  9. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes.

    Science.gov (United States)

    Bezodis, Neil E; North, Jamie S; Razavet, Jane L

    2017-09-01

    A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes completed maximal effort 10-m accelerations in three conditions following different verbal instructions intended to manipulate the force vector orientation. Ground reaction forces (GRFs) were collected from the step nearest 5-m and stance leg kinematics at touchdown were also analysed to understand specific kinematic features of touchdown technique which may influence the consequent force vector orientation. Magnitude-based inferences were used to compare findings between conditions. There was a likely more horizontally oriented ground reaction force vector and a likely lower peak vertical force in the control condition compared with the experimental conditions. 10-m sprint time was very likely quickest in the control condition which confirmed the importance of force vector orientation for acceleration performance on a within-athlete basis. The stance leg kinematics revealed that a more horizontally oriented force vector during stance was preceded at touchdown by a likely more dorsiflexed ankle, a likely more flexed knee, and a possibly or likely greater hip extension velocity.

  10. Tractor accelerated test on test rig

    Directory of Open Access Journals (Sweden)

    M. Mattetti

    2013-09-01

    Full Text Available The experimental tests performed to validate a tractor prototype before its production, need a substantial financial and time commitment. The tests could be reduced using accelerated tests able to reproduce on the structural part of the tractor, the same damage produced on the tractor during real life in a reduced time. These tests were usually performed reproducing a particular harsh condition a defined number of times, as for example using a bumpy road on track to carry out the test in any weather condition. Using these procedures the loads applied on the tractor structure are different with respect to those obtained during the real use, with the risk to apply loads hard to find in reality. Recently it has been demonstrated how, using the methodologies designed for cars, it is possible to also expedite the structural tests for tractors. In particular, automotive proving grounds were recently successfully used with tractors to perform accelerated structural tests able to reproduce the real use of the machine with an acceleration factor higher than that obtained with the traditional methods. However, the acceleration factor obtained with a tractor on proving grounds is in any case reduced due to the reduced speed of the tractors with respect to cars. In this context, the goal of the paper is to show the development of a methodology to perform an accelerated structural test on a medium power tractor using a 4 post test rig. In particular, several proving ground testing conditions have been performed to measure the loads on the tractor. The loads obtained were then edited to remove the not damaging portion of signals, and finally the loads obtained were reproduced in a 4 post test rig. The methodology proposed could be a valid alternative to the use of a proving ground to reproduce accelerated structural tests on tractors.

  11. Ion accelerator applications in medicine and cultural heritage

    International Nuclear Information System (INIS)

    Denker, A.; Cordini, D.; Heufelder, J.; Homeyer, H.; Kluge, H.; Simiantonakis, I.; Stark, R.; Weber, A.

    2007-01-01

    Formerly, accelerator laboratories were mainly dedicated to nuclear physics. Today, they are used in up-coming research fields and applications like material analysis and material science as well as biology, medicine or archaeology. Practical applications have been developed, involving hospitals, industry and even humanists in the use of accelerators. This paper focuses on some medical and analytical applications of the HMI accelerator facility, especially for eye tumour therapy and archaeology. The innovation of techniques to measure the dose distribution, the development of an automated monitoring procedure allowing an improved and accelerated patient positioning, and the implementation of a modern treatment planning system will be presented first. In the second part, the employment of accelerators in better understanding of our cultural heritage will be shown

  12. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  13. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  14. Approaching maximal performance of longitudinal beam compression in induction accelerator drivers

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Ho, D.D.M.; Brandon, S.T.; Chang, C.L.; Drobot, A.T.; Faltens, A.; Lee, E.P.; Krafft, G.A.

    1986-01-01

    Longitudinal beam compression occurs before final focus and fusion chamber beam transport and is a key process determining initial conditions for final focus hardware. Determining the limits for maximal performance of key accelerator components is an essential element of the effort to reduce driver costs. Studies directed towards defining the limits of final beam compression including considerations such as maximal available compression, effects of longitudinal dispersion and beam emittance, combining pulse-shaping with beam compression to reduce the total number of beam manipulators, etc., are given. Several possible techniques are illustrated for utilizing the beam compression process to provide the pulse shapes required by a number of targets. Without such capabilities to shape the pulse, an additional factor of two or so of beam energy would be required by the targets

  15. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  16. Accelerated testing of space mechanisms

    Science.gov (United States)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  17. Delayless acceleration measurement method for motion control applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaeliviita, S.; Ovaska, S.J. [Helsinki University of Technology, Otaniemi (Finland). Institute of Intelligent Power Electronics

    1997-12-31

    Delayless and accurate sensing of angular acceleration can improve the performance of motion control in motor drives. Acceleration control is, however, seldom implemented in practical drive systems due to prohibitively high costs or unsatisfactory results of most acceleration measurement methods. In this paper we propose an efficient and accurate acceleration measurement method based on direct differentiation of the corresponding velocity signal. Polynomial predictive filtering is used to smooth the resulting noisy signal without delay. This type of prediction is justified by noticing that a low-degree polynomial can usually be fitted into the primary acceleration curve. No additional hardware is required to implement the procedure if the velocity signal is already available. The performance of the acceleration measurement method is evaluated by applying it to a demanding motion control application. (orig.) 12 refs.

  18. Phase-of-flight method for setting the accelerating fields in the ion linear accelerator

    International Nuclear Information System (INIS)

    Dvortsov, S.V.; Lomize, L.G.

    1983-01-01

    For setting amplitudes and phases of accelerating fields in multiresonator ion accelerators presently Δt-procedure is used. The determination and setting of two unknown parameters of RF-field (amplitude and phase) in n-resonator is made according to the two increments of particle time-of-flight, measured experimentally: according to the change of the particle time-of-flight Δt 1 in the n-resonator, during the field switching in the resonator, and according to the change of Δt 2 of the time-of-flight in (n+1) resonator without RF-field with the switching of accelerating field in the n-resonator. When approaching the accelerator exit the particle energy increases, relative energy increment decreases and the accuracy of setting decreases. To enchance the accuracy of accelerating fields setting in a linear ion accelerator a phase-of-flight method is developed, in which for the setting of accelerating fields the measured time-of-flight increment Δt only in one resonator is used (the one in which the change of amplitude and phase is performed). Results of simulation of point bunch motion in the IYaI AN USSR linear accelerator are presented

  19. Klystron life results in particle accelerator applications

    International Nuclear Information System (INIS)

    Bohlen, Heinz

    2002-01-01

    Based on reports contributed by various particle accelerator sites, among them DESY, CERN, and LANL, Weibull life time characteristics have been calculated for the klystrons used at these institutions. Supported by evaluations of the technologies and the operational conditions involved, the results, sometimes surprising and unexpected, present material that can be valuable for logistic considerations, the planning of future accelerators, and naturally for the design of future klystrons

  20. Involvement, knowledge sharing and proactive improvement as antecedents of logistics outsourcing performance

    Directory of Open Access Journals (Sweden)

    Andreja Križman

    2010-11-01

    Full Text Available The purpose of this article is to present the research results of a study on the impact of the drivers of logistics outsourcing performance: involvement, knowledge sharing, and innovation. The sample was derived from companies in the Slovenian market who choose to outsource their logistics services to logistics service providers. The article also attempts to contribute to the theoretical and methodological findings and managerial implications in logistics outsourcing discussions. On the basis of the existing literature and some new arguments derived from in-depth interviews with logistics experts, the measurement and structural models were empirically analysed on a sample of manufacturing and retail companies involved in an ongoing relationship with a logistics service provider. Measurement scales for the constructs, their development, refinement and measurement for validity and reliability were performed. Multivariate statistical methods (EFA, CFA and SEM – Partial Least Squares were utilised. Five hypotheses were tested and confirmed. The logistics outsourcing performance (the goal achievement and the goal exceedance is well explained by involvement, knowledge sharing, and innovation.

  1. Accelerator applications in energy and security

    CERN Document Server

    Chou, Weiren

    2015-01-01

    As accelerator science and technology progressed over the past several decades, the accelerators themselves have undergone major improvements in multiple performance factors: beam energy, beam power, and beam brightness. As a consequence, accelerators have found applications in a wide range of fields in our life and in our society. The current volume is dedicated to applications in energy and security, two of the most important and urgent topics in today's world. This volume makes an effort to provide a review as complete and up to date as possible of this broad and challenging subject. It contains overviews on each of the two topics and a series of articles for in-depth discussions including heavy ion accelerator driven inertial fusion, linear accelerator-based ADS systems, circular accelerator-based ADS systems, accelerator-reactor interface, accelerators for fusion material testing, cargo inspection, proton radiography, compact neutron generators and detectors. It also has a review article on accelerator ...

  2. Modelling accelerated degradation data using Wiener diffusion with a time scale transformation.

    Science.gov (United States)

    Whitmore, G A; Schenkelberg, F

    1997-01-01

    Engineering degradation tests allow industry to assess the potential life span of long-life products that do not fail readily under accelerated conditions in life tests. A general statistical model is presented here for performance degradation of an item of equipment. The degradation process in the model is taken to be a Wiener diffusion process with a time scale transformation. The model incorporates Arrhenius extrapolation for high stress testing. The lifetime of an item is defined as the time until performance deteriorates to a specified failure threshold. The model can be used to predict the lifetime of an item or the extent of degradation of an item at a specified future time. Inference methods for the model parameters, based on accelerated degradation test data, are presented. The model and inference methods are illustrated with a case application involving self-regulating heating cables. The paper also discusses a number of practical issues encountered in applications.

  3. Parametric study of emerging high power accelerator applications using Accelerator Systems Model (ASM)

    International Nuclear Information System (INIS)

    Berwald, D.H.; Mendelsohn, S.S.; Myers, T.J.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, CM.; Rathke, J.W.; Piechowiak, E.M.

    1996-01-01

    Emerging applications for high power rf linacs include fusion materials testing, generation of intense spallation neutrons for neutron physics and materials studies, production of nuclear materials and destruction of nuclear waste. Each requires the selection of an optimal configuration and operating parameters for its accelerator, rf power system and other supporting subsystems. Because of the high cost associated with these facilities, economic considerations become paramount, dictating a full evaluation of the electrical and rf performance, system reliability/availability, and capital, operating, and life cycle costs. The Accelerator Systems Model (ASM), expanded and modified by Northrop Grumman during 1993-96, provides a unique capability for detailed layout and evaluation of a wide variety of normal and superconducting accelerator and rf power configurations. This paper will discuss the current capabilities of ASM, including the available models and data base, and types of trade studies that can be performed for the above applications. (author)

  4. On the Phenomenology of an Accelerated Large-Scale Universe

    Directory of Open Access Journals (Sweden)

    Martiros Khurshudyan

    2016-10-01

    Full Text Available In this review paper, several new results towards the explanation of the accelerated expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated expansion of is one of the long standing problems in modern cosmology, and physics in general. There are several well defined approaches to solve this problem. One of them is an assumption concerning the existence of dark energy in recent universe. It is believed that dark energy is responsible for antigravity, while dark matter has gravitational nature and is responsible, in general, for structure formation. A different approach is an appropriate modification of general relativity including, for instance, f ( R and f ( T theories of gravity. On the other hand, attempts to build theories of quantum gravity and assumptions about existence of extra dimensions, possible variability of the gravitational constant and the speed of the light (among others, provide interesting modifications of general relativity applicable to problems of modern cosmology, too. In particular, here two groups of cosmological models are discussed. In the first group the problem of the accelerated expansion of large-scale universe is discussed involving a new idea, named the varying ghost dark energy. On the other hand, the second group contains cosmological models addressed to the same problem involving either new parameterizations of the equation of state parameter of dark energy (like varying polytropic gas, or nonlinear interactions between dark energy and dark matter. Moreover, for cosmological models involving varying ghost dark energy, massless particle creation in appropriate radiation dominated universe (when the background dynamics is due to general relativity is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale universe involving generalized

  5. Tandem accelerator operation and improvements

    International Nuclear Information System (INIS)

    Yang Bingfan; Zhang Canzhe; Qin Jiuchang; Hu Yueming; Zhang Guilian; Jiang Yongliang; Hou Deyi; Yang Weimin; Yang Zhiren; Su Shengyong; Kan Chaoxin; Liu Dezhong; Wang Liyong; Bao Yiwen; You Qubo; Yang Tao; Zhang Yan; Zhou Lipeng; Chai Shiqin; Wang Meiyan

    1998-01-01

    The scheduled operation of HI-13 tandem accelerator for various experiments was performed well in 1996 and 1997. The machine running time was 4600 h and 4182 h while the beam time was 3845 h and 3712 h in 1996 and 1997, respectively. The operation of HI-13 tandem accelerator is pretty well. The beam distribution with terminal voltage and the distribution of beam time with ion species are shown out. The development of accelerating tubes for HI-13 tandem is in progress

  6. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Jacob Kornerup

    2014-01-01

    Piroxicam administration is a method for induction of enterocolitis in interleukin-10 knockout (IL-10 k.o.) mice. The piroxicam-accelerated colitis (PAC) IL-10 k.o. model combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity. The predictive validity...... and pathogenic mechanisms of the model have not been thoroughly investigated. In this study, IL-10 k.o. mice received piroxicam in the chow, and model qualification was performed by examining the efficacy of prophylactic anti-IL-12/23p40 monoclonal antibody (mAb), anti-TNFαmAb, cyclosporine A (CsA) and oral...

  7. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Science.gov (United States)

    Salehpour, M.; Håkansson, K.; Possnert, G.; Wacker, L.; Synal, H.-A.

    2016-03-01

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV 14,13,12C3+ ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the 14C/12C and the 13C/12C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  8. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  9. Design and performance of an in situ high vacuum STM in beam line at 15 UD pelletron accelerator

    International Nuclear Information System (INIS)

    Singh, J.P.; Tripathi, A.; Ahuja, R.; Dutt, R.N.; Kanjilal, D.; Mehta, G.K.; Raychoudhuri, A.K.

    2000-01-01

    The design, installation and performance of an in situ high vacuum STM in the materials science beam line of 15 UD tandem Pelletron accelerator, NSC are reported. The scanning tunneling microscope (STM) has imaged highly oriented pyrolytic graphite (HOPG) surfaces with atomic resolution. Local current-voltage spectroscopy has also been performed on p-type Si (111) samples. A band gap of 1.09 ± 0.1 eV was calculated. (author)

  10. GPU-accelerated computation of electron transfer.

    Science.gov (United States)

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.

  11. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  12. Breakdowns and solutions in 15 UD pelletron ion accelerator facility at Inter-University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Joshi, R.; Singh, P.; Suraj; Nishal, S.M.; Panwar, N.S.; Singh, M.P.; Kumar, R.; Prasad, J.; Sota, M.; Patel, V.P.; Sharma, R.P.; Kumar, Pankaj; Devi, K.D.; Ojha, S.; Gargari, S.; Chopra, S.; Kanjilal, D.

    2013-01-01

    15UD Pelletron accelerator, installed in Inter-University Accelerator Centre (IUAC), New Delhi, is a tandem ion accelerator and is performing well since its commissioning. Constant efforts have been put to keep high uptime and better performance of the accelerator for more than two decades. In recent years, the facility was improved by many modifications and up gradations. It has also gone through a few major breakdowns related to charging system and fiber optic cables. Out of two charging systems, one system failed and devices housed in tank stopped working due to the damage of fiber optic cables. The reasons for both of these breakdowns were studied thoroughly. The entire charging system and fiber optic cable network have been rebuilt and tested. The diagnostic techniques and maintenance methods for these two breakdowns will be discussed in this paper. (author)

  13. Resolving beam transport problems in electrostatic accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    This paper reviews problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance

  14. Advances of Accelerator Physics and Technologies

    CERN Document Server

    1993-01-01

    This volume, consisting of articles written by experts with international repute and long experience, reviews the state of the art of accelerator physics and technologies and the use of accelerators in research, industry and medicine. It covers a wide range of topics, from basic problems concerning the performance of circular and linear accelerators to technical issues and related fields. Also discussed are recent achievements that are of particular interest (such as RF quadrupole acceleration, ion sources and storage rings) and new technologies (such as superconductivity for magnets and RF ca

  15. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-09-01

    There is considerable recent interest in the use of high energy (γ = 1.1), heavy (A greater than or equal to 100) ions to irradiate deuterium--tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. A discussion is given of how the technology of Linear Induction Accelerators--well known to be matched to high current and short pulse length--may offer significant advantages for this application

  16. Accelerator operation management using objects

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, H.; Timossi, C.; Valdez, M.

    1995-04-01

    Conflicts over control of shared devices or resources in an accelerator control system, and problems that can occur due to applications performing conflicting operations, are usually resolved by accelerator operators. For these conflicts to be detected by the control system, a model of accelerator operation must be available to the system. The authors present a design for an operation management system addressing the issues of operations management using the language of Object-Oriented Design (OOD). A possible implementation using commercially available software tools is also presented.

  17. Accelerator operation management using objects

    International Nuclear Information System (INIS)

    Nishimura, H.; Timossi, C.; Valdez, M.

    1995-01-01

    Conflicts over control of shared devices or resources in an accelerator control system, and problems that can occur due to applications performing conflicting operations, are usually resolved by accelerator operators. For these conflicts to be detected by the control system, a model of accelerator operation must be available to the system. The authors present a design for an operation management system addressing the issues of operations management using the language of Object-Oriented Design (OOD). A possible implementation using commercially available software tools is also presented

  18. High Energy Density Physics and Exotic Acceleration Schemes

    International Nuclear Information System (INIS)

    Cowan, T.; Colby, E.

    2005-01-01

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to

  19. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  20. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.

    2012-01-01

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  1. Management of radiation-induced accelerated carotid atherosclerosis

    International Nuclear Information System (INIS)

    Loftus, C.M.; Biller, J.; Hart, M.N.; Cornell, S.H.; Hiratzka, L.F.

    1987-01-01

    Patients with long survival following cervical irradiation are at risk for accelerated carotid atherosclerosis. The neurologic presentation in these patients mimics naturally occurring atheromatous disease, but patients often present at younger ages and with less concurrent coronary or systemic vascular disease. Hypercholesterolemia also contributes to this accelerated arteriosclerosis. Angiographic findings in this disorder include disproportionate involvement of the distal common carotid artery and unusually long carotid lesions. Pathologic findings include destruction of the internal elastic lamina and replacement of the normal intima and media with fibrous tissue. This article describes two surgical patients with radiation-induced accelerated carotid atherosclerosis who typify the presentation and characteristics of this disease

  2. Polarized proton acceleration program at the AGS

    International Nuclear Information System (INIS)

    Lee, Y.Y.

    1981-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A multi-university/laboratory collaborative effort involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to improve and modify to accelerate polarized protons. From the experience at the ZGS and careful studies made us confident of the feasibility of achieving a polarization of over 60 percent up to 26 GeV/c with an intensity of 10 11 approx. 10 12 per pulse. The first polarized proton acceleration at the AGS is expected in 1983

  3. Radiation risk management at DOE accelerator facilities

    International Nuclear Information System (INIS)

    Dyck, O.B. van.

    1997-01-01

    The DOE accelerator contractors have been discussing among themselves and with the Department how to improve radiation safety risk management. This activity-how to assure prevention of unplanned high exposures-is separate from normal exposure management, which historically has been quite successful. The ad-hoc Committee on the Accelerator Safety Order and Guidance [CASOG], formed by the Accelerator Section of the HPS, has proposed a risk- based approach, which will be discussed. Concepts involved are risk quantification and comparison (including with non-radiation risk), passive and active (reacting) protection systems, and probabilistic analysis. Different models of risk management will be presented, and the changing regulatory environment will also be discussed

  4. The Los Alamos accelerator code group

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-01-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG's activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET

  5. Linear accelerator accelerating module to suppress back-acceleration of field-emitted particles

    Science.gov (United States)

    Benson, Stephen V.; Marhauser, Frank; Douglas, David R.; Ament, Lucas J. P.

    2017-12-05

    A method for the suppression of upstream-directed field emission in RF accelerators. The method is not restricted to a certain number of cavity cells, but requires similar operating field levels in all cavities to efficiently annihilate the once accumulated energy. Such a field balance is desirable to minimize dynamic RF losses, but not necessarily achievable in reality depending on individual cavity performance, such as early Q.sub.0-drop or quench field. The method enables a significant energy reduction for upstream-directed electrons within a relatively short distance. As a result of the suppression of upstream-directed field emission, electrons will impact surfaces at rather low energies leading to reduction of dark current and less issues with heating and damage of accelerator components as well as radiation levels including neutron generation and thus radio-activation.

  6. Resonance control for a CW accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    This paper describes a resonance-control technique that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  7. Resolving beam transport problems in electrostatic accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A review is given of problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance

  8. Does organisational commitment enhance the relationship between job involvement and in-role performance?

    Directory of Open Access Journals (Sweden)

    Talat Islam

    2012-11-01

    Research purpose: This research is aimed at discovering the role of organisational commitment as a mediating variable between the relationship of job involvement and performance. Motivation for the study: The aim of organisations today is to outperform each other in every respect. In order to realise this, the role of employees is crucial. To elicit the best from employees requires much attention from organisations. This research is focused on this specific issue, namely, increasing employees’ performance. Research design, approach and method: The researchers have used structured questionnaires using the quantitative approach. A similar research methodology using the survey method was applied by the researchers to make the results comparable. The simple random sampling technique was used. Data was evaluated on the basis of 208 completed questionnaires. Main findings: Findings of the study indicate that there is a relationship between job involvement and in-role performance. Affective and normative commitment can act as mediator. However, continuance commitment is not a mediator in this relationship. Practical/managerial implications: It is important for organisations that want to gain a competitive edge over its rivals to enhance the level of involvement of its employees. Contribution/value-add: The results of this study will provide a new dimension for managers on how to gain a competitive advantage over rival firms with regard to performance by increasing the level of job involvement.

  9. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI.

    Science.gov (United States)

    Motaal, Abdallah G; Noorman, Nils; de Graaf, Wolter L; Hoerr, Verena; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously with the heartbeat, resulting in a randomly undersampled kt-space that facilitates compressed sensing reconstruction. The sequence was tested in 4 healthy rats and 4 rats with chronic myocardial infarction, approximately 2 months after surgery. As a control, a non-accelerated self-gated multi-slice FLASH sequence with an echo time (TE) of 2.76 ms, 4.5 signal averages, a matrix of 192 × 192, and an acquisition time of 2 min 34 s per slice was used to obtain Cine MRI with 15 frames per heartbeat. Non-accelerated UTE MRI was performed with TE = 0.29 ms, a reconstruction matrix of 192 × 192, and an acquisition time of 3 min 47 s per slice for 3.5 averages. Accelerated imaging with 2×, 4× and 5× undersampled kt-space data was performed with 1 min, 30 and 15 s acquisitions, respectively. UTE Cine images up to 5× undersampled kt-space data could be successfully reconstructed using a compressed sensing algorithm. In contrast to the FLASH Cine images, flow artifacts in the UTE images were nearly absent due to the short echo time, simplifying segmentation of the left ventricular (LV) lumen. LV functional parameters derived from the control and the accelerated Cine movies were statistically identical.

  10. Notes on the voltage performance of accelerator tube sub-modules for the NSF tandem

    International Nuclear Information System (INIS)

    Eastham, D.A.; Groome, A.E.; Powell, P.

    1978-01-01

    Measurements are reported of the d.c. voltage performance of vacuum accelerator tube sub-modules for the Nuclear Structure Facility 30 MV Tandem at Daresbury. Using diagnostic techniques it has been possible to separate out the different processes in the tube which can lead to breakdown. As a result, improved sub-modules have been produced. Tests, have simulated the ion exchange processes which occur in longer tube lengths, and a better understanding has been obtained of the way in which these processes depend on the tube geometry and cleanliness. (U.K.)

  11. Status of the Cracow electrostatic accelerator project

    International Nuclear Information System (INIS)

    Hebenstreit, J.R.; Kopczynski, J.P.

    1981-01-01

    The range of nuclear reaction measurements and applied interdisciplinary research performed earlier with accelerated particles in this Institute were strongly limited the accelerators being at disposal: an open air 1 MV Van de Graaff generator in the Jagellonian University and the cyclotron U-120 in the neighboring Institute of Nuclear Physics. Due to financial problems connected with buying a new ready accelerator, an approval was obtained for carrying out a detailed design study on condition that the accelerator should be constructed in the Institute and should be built of construction elements accessible in Poland. Having obtained the final approval of the project - tandem accelerator with 5 MV pressurized Van de Graaff generator, the construction was started in 1980. The investment period should be finished in 1982 with a single ended 5 MV accelerator. Simultaneously, the calculations and preparation for a tandem mode was begun. The gas handling system has just been made by the home industry and should be mounted and tested in 1981. The reconstruction of the building should be performed in the same time

  12. Job Characteristics, Work Involvement, and Job Performance of Public Servants

    Science.gov (United States)

    Johari, Johanim; Yahya, Khulida Kirana

    2016-01-01

    Purpose: The primary purpose of this study is to assess the predicting role of job characteristics on job performance. Dimensions in the job characteristics construct are skill variety, task identity, task significance, autonomy and feedback. Further, work involvement is tested as a mediator in the hypothesized link. Design/methodology/approach: A…

  13. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  14. Operational experience with compressed geometry acceleration tubes in the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Jones, C.M.; Haynes, D.L.; Juras, R.C.; Meigs, M.J.; Ziegler, N.F.

    1989-01-01

    Installation of compressed geometry acceleration tubes and other associated modifications have increased the effective voltage capability of the Oak Ridge 25URC tandem accelerator by about 3 MV. Since mid-September 1988, the accelerator has been operated routinely at terminal potentials up to 24 MV and occasionally near 25 MV. In 3500 hours of full-column operation, including 1100 hours at potentials about 22 MV, no significant spark-included damage was observed. Some considerations related to further improvements in voltage performance are discussed. 7 refs., 5 figs

  15. Accelerated Adaptive MGS Phase Retrieval

    Science.gov (United States)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  16. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Cartelli, D.; Thatar Vento, V.; Castell, W.; Di Paolo, H.; Kesque, J.M.; Bergueiro, J.; Valda, A.A.

    2011-01-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  17. Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards

    Science.gov (United States)

    Fonseca, Ricardo

    2014-10-01

    The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.

  18. The Los Alamos accelerator code group

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-05-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG`s activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET.

  19. Recent status of superconductors for accelerator magnets

    International Nuclear Information System (INIS)

    Greene, A.F.

    1992-01-01

    A survey is given of superconductor wire and cable which has been or will be used for construction of dipole magnets for all of the large European and US superconducting accelerator rings. Included is a simplified view of the construction methods and operating requirements of an accelerator dipole magnet, with emphasis on required superconductor performance. The methods of fabricating Nb-Ti superconductors are described, including the critical parameters and materials requirements. The superconductor performance requirements are summarized in an effort to relate why these are important to accelerator designers. Some of the recently observed time dependent effects are covered briefly

  20. Interdependence of Depressive Symptoms, School Involvement, and Academic Performance between Adolescent Friends: A Dyadic Analysis

    Science.gov (United States)

    Chow, Chong Man; Tan, Cin Cin; Buhrmester, Duane

    2015-01-01

    Background: Friendships play an important role in the development of school involvement and academic performance during adolescence. This study examined the interdependence of depressive symptoms, school involvement, and academic performance between adolescent same-sex friends. Aims: Using cross-sectional data, we examined whether the link between…

  1. Pelletron ion accelerator facilities at Inter University Accelerator Centre

    International Nuclear Information System (INIS)

    Chopra, S.

    2011-01-01

    Inter University Accelerator Centre has two tandem ion accelerators, 15UD Pelletron and 5SDH-2 Pelletron, for use in different areas of research. Recently Accelerator Mass Spectrometry facility has also been added to to the existing experimental facilities of 15UD Pelletron. In these years many modifications and up gradations have been performed to 15UD Pelletron facility. A new MCSNICS ion source has been procured to produce high currents for AMS program. Two foils stripper assemblies ,one each before and after analyzing magnet, have also been added for producing higher charge state beams for LINAC and for experiments requiring higher charge states of accelerated beams. A new 1.7 MV Pelletron facility has also been recently installed at IUAC and it is equipped with RBS and Channelling experimental facility. There are two beam lines installed in the system and five more beam lines can be added to the system. A clean chemistry laboratory with all the modern facilities has also been developed at IUAC for the chemical processing of samples prior to the AMS measurements. The operational description of the Pelletron facilities, chemical processing of samples, methods of measurements and results of AMS measurements are being presented. (author)

  2. Radiation pressure acceleration of ultrathin foils

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco [Department of Physics ' E. Fermi' , Largo B Pontecorvo 3, 56127 Pisa (Italy); Liseykina, Tatyana V, E-mail: macchi@df.unipi.i [Max Planck Institute for Nuclear Physics, Heidelberg (Germany)

    2010-04-15

    The acceleration of sub-wavelength, solid-density plasma foils by the ultraintense radiation pressure of circularly polarized laser pulses is investigated analytically and with simulations. An improved 'Light Sail' or accelerating mirror model, accounting for nonlinear self-induced transparency effects, is used for estimating the optimal thickness for acceleration. The model predictions are in good agreement with one-dimensional simulations. These latter are analyzed in detail to unfold the dynamics and self-organization of electrons and ions during the acceleration. Two-dimensional simulations are also performed to address the effects of target bending and of laser intensity inhomogeneity.

  3. Do cooperative learning and family involvement improve variables linked to academic performance?

    Science.gov (United States)

    Santos Rego, Miguel A; Ferraces Otero, María J; Godas Otero, Agustín; Lorenzo Moledo, María M

    2018-05-01

    One of the most serious problems in the Spanish education system is the high percentage of school failure in Compulsory Secondary Education. The aim of this study is to analyze the influence of a socio-educational program based on cooperative learning and family involvement on a series of variables related to academic performance, paying particular attention to the differences between retained and non-retained students. A two-group quasi-experimental design incorporating pre-testing and post-testing was used. The study involved 146 students in the experimental group and 123 in the control group, 8 teachers, and 89 parents or other family members. The program was observed to have a positive effect on self-image, study habits, satisfaction with the subject, maternal support and control, and opinions about the school. In addition, the results for non-retained students are better. Cooperative work and family involvement in education affect the variables which research links to improving school performance.

  4. Accelerator Technology Division progress report, FY 1993

    International Nuclear Information System (INIS)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-01-01

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation

  5. Accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator. PD-1-2

    International Nuclear Information System (INIS)

    Bhagwat, P.V.

    2007-01-01

    Accelerator mass spectrometry (AMS) is an ultra sensitive means of counting individual atoms having sufficiently long half-life and available in small amount. The 14 UD Pelletron Accelerator is an ideal machine to carry out AMS studies with heavy isotopes like 36 Cl and 129 I. Cosmogenic radioisotope 36 Cl is widely being detected using AMS as it has got applications in ground water research, radioactive waste management, atmospheric 36 Cl transport mechanism studies of Arctic Alpine ice core etc . The AMS programme at the 14 UD Mumbai Pelletron Accelerator has taken off with the installation of the state of the art Terminal Potential Stabilizer setup and operation of the accelerator in Generating Volt Meter (GVM) mode. Feasibility studies have been carried out for detection/identification of 14 C from a charcoal sample and 3 He in natural Helium. As the primary interest of AMS programme at Mumbai Pelletron Accelerator is related to the cosmogenic nuclei, 36 Cl and 129 I, a segmented gas detector developed for identification of 36 Cl was tested for performance. Recently a beam chopper required for this measurement has also been developed

  6. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  7. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, M., E-mail: mehran.salehpour@physics.uu.se [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Håkansson, K.; Possnert, G. [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Wacker, L.; Synal, H.-A. [Ion Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 (Switzerland)

    2016-03-15

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV {sup 14,13,12}C{sup 3+} ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the {sup 14}C/{sup 12}C and the {sup 13}C/{sup 12}C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  8. FPGA hardware acceleration for high performance neutron transport computation based on agent methodology - 318

    International Nuclear Information System (INIS)

    Shanjie, Xiao; Tatjana, Jevremovic

    2010-01-01

    The accurate, detailed and 3D neutron transport analysis for Gen-IV reactors is still time-consuming regardless of advanced computational hardware available in developed countries. This paper introduces a new concept in addressing the computational time while persevering the detailed and accurate modeling; a specifically designed FPGA co-processor accelerates robust AGENT methodology for complex reactor geometries. For the first time this approach is applied to accelerate the neutronics analysis. The AGENT methodology solves neutron transport equation using the method of characteristics. The AGENT methodology performance was carefully analyzed before the hardware design based on the FPGA co-processor was adopted. The most time-consuming kernel part is then transplanted into the FPGA co-processor. The FPGA co-processor is designed with data flow-driven non von-Neumann architecture and has much higher efficiency than the conventional computer architecture. Details of the FPGA co-processor design are introduced and the design is benchmarked using two different examples. The advanced chip architecture helps the FPGA co-processor obtaining more than 20 times speed up with its working frequency much lower than the CPU frequency. (authors)

  9. Health physics manual of good practices for accelerator facilities

    International Nuclear Information System (INIS)

    Casey, W.R.; Miller, A.J.; McCaslin, J.B.; Coulson, L.V.

    1988-04-01

    It is hoped that this manual will serve both as a teaching aid as well as a useful adjunct for program development. In the context of application, this manual addresses good practices that should be observed by management, staff, and designers since the achievement of a good radiation program indeed involves a combined effort. Ultimately, radiation safety and good work practices become the personal responsibility of the individual. The practices presented in this manual are not to be construed as mandatory rather they are to be used as appropriate for the specific case in the interest of radiation safety. As experience is accrued and new data obtained in the application of this document, ONS will update the guidance to assure that at any given time the guidance reflects optimum performance consistent with current technology and practice.The intent of this guide therefore is to: define common health physics problems at accelerators; recommend suitable methods of identifying, evaluating, and managing accelerator health physics problems; set out the established safety practices at DOE accelerators that have been arrived at by consensus and, where consensus has not yet been reached, give examples of safe practices; introduce the technical literature in the accelerator health physics field; and supplement the regulatory documents listed in Appendix D. Many accelerator health physics problems are no different than those at other kinds of facilities, e.g., ALARA philosophy, instrument calibration, etc. These problems are touched on very lightly or not at all. Similarly, this document does not cover other hazards such as electrical shock, toxic materials, etc. This does not in any way imply that these problems are not serious. 160 refs

  10. Heavy-ion fusion accelerator research, 1985

    International Nuclear Information System (INIS)

    1986-10-01

    A plan for exploring the physics and technology of induction linac development is discussed which involves a series of increasingly sophisticated experiments. The first is the single-beam transport experiment, which has explored the physics of a single space-charge-dominated beam. Second is the multiple-beam experiment in which four independent beams will be transported and accelerated through a multigap accelerating structure. The single-beam transport experiment is described, and some results are given of stability studies and instrumentation studies. The design and fabrication of the multi-beam experiment are described, as well as results of a first round of experiments in which beam-current amplification was observed. Concurrent theoretical work, resulting in a variety of acce-leration schedules and sets of associated voltage waveforms required to implement the experiments, is also reported

  11. Teleportation with Multiple Accelerated Partners

    International Nuclear Information System (INIS)

    Sagheer, A.; Hamdoun, H.; Metwally, N.

    2015-01-01

    As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum channels are based on accelerated multi-qubit states, where each qubit of each of these channels represents a partner. Namely, these states are the W state, Greenberger–Horne–Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting accelerated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network. (paper)

  12. High Gradient Performance of NLC/GLC X-Band Accelerating Structures

    CERN Document Server

    Döbert, Steffen; Boffo, Cristian; Bowden, Gordon B; Burke, David; Carter, Harry; Chan, Jose; Dolgashev, Valery A; Frisch, Josef; Funahashi, Y; Gonin, Ivan V; Hayano, Hitoshi; Higashi, Norio; Higashi, Yasuo; Higo, Toshiyasu; Jobe, R Keith; Jones, Roger M; Kawamata, H; Khabiboulline, Timergali N; Kirby, Robert; Kume, T; Lewandowski, James R; Li, Zenghai; McCormick, Douglas; Miller, Roger H; Mishra, Shekhar; Morozumi, Yuichi; Nantista, Christopher D; Nelson, Janice; Pearson, Chris; Romanov, Gennady; Ross, Marc; Schultz, David; Smith, Tonee; Solyak, Nikolay; Tacku Arkan, Tug; Takata, Koji; Takatomi, Toshikazu; Tantawi, Sami G; Toge, Nobu; Ueno, K; Wang, Juwen W; Watanabe, Y

    2005-01-01

    During the past five years, there has been an concerted effort at FNAL, KEK and SLAC to develop accelerator structures that meet the high gradient performance requirements for the Next Linear Collider (NLC) and Global Linear Collider (GLC) initiatives. The structure that resulted is a 60-cm-long, traveling-wave design with low group velocity (< 4% c) and a 150 degree phase advance per cell. It has an average iris size that produces an acceptable short-range wakefield in the linacs, and dipole mode damping and detuning that adequately suppresses the long-range wakefield. More than eight such structures have operated over 1000 hours at a 60 Hz pulse rate at the design gradient (65 MV/m) and pulse length (400 ns), and have reached breakdown rate levels below the limit for the linear collider. Moreover, the structures are robust in that the breakdown rates continue to decrease over time, and if the structures are briefly exposed to air, the rates recover to their low values within a few days. This paper pr...

  13. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  14. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  15. Low energy accelerators for research and applications

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2013-01-01

    Charged particle accelerators are instruments for producing a variety of radiations under controlled conditions for basic and applied research as well as applications. They have helped enormously to study the matter, atoms, nuclei, sub-nuclear particles and their constituents, forces involved in the related phenomena etc. No other man-made instrument has been so effective in such studies as the accelerator. The large accelerator constructed so far is the Large Hadron Collider (LHC) housed in a tunnel of 27 km circumference, while a small accelerator can fit inside a room. Small accelerators accelerate charged particles such as electrons, protons, deuterons, alphas and, in general ions to low energy, generally, below several MeV. These particle beams are used for studies in nuclear astrophysics, atomic physics, material science, surface physics, bio sciences etc. They are used for ion beam analysis such as RBS, PIXE, NRA, AMS, CPAA etc. More importantly, the ion beams have important industrial applications like ion implantation, surface modification, isotope production etc. while electron beams are used for material processing, material modification, sterilization, food preservation, non destructive testing etc. In this talk, role of low energy accelerators in research and industry as well as medicine will be discussed. (author)

  16. Relativistic klystrons for high-gradient accelerators

    International Nuclear Information System (INIS)

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S.; Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.

    1991-01-01

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. The authors have learned how to overcome their previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power

  17. SU-E-E-01: Commissiong of Linear Accelerator and Beam Modeling in Treatment Planning Systems.

    Science.gov (United States)

    Pella, S; Chilukuri, M; Smith, C; Bacala, A; Dumitru, N

    2012-06-01

    Sooner or later every medical physicist is involved with commissioning and beam modeling of a new linear accelerator (linac) and a new treatment planning system (TPS). In spite of all instructions and training offered by the vendors, at the time a new linac is being purchased and added to the present ones the outside help is not so complete. The physicist who has to perform the commissioning job may not even be the one who was trained for that. What we are missing is a good comprehensive set of information and instructions on how to do's. From shielding calculation verifications, surveys, to collecting the beam data, modeling, entering the data into the TPS, and verifications of the goodness of the data we need a lot of support and we don't have it. I will provide a step by step description of the required work with the results we are looking for. Presentation of the shielding calculations, survey required, tools needed to perform them. Detailed beam data collections, scanning system needed, machine set of specs needed, applicator details needed. Importing beam data from the scanning system and beam calculations. Algorithms used in dose calculation, IMRT optimization, heterogeneity corrections presented to be understood before modeling the beam data. At the completion of this course the medical physicist will be able to commission a linear accelerator and a treatment planning system with confidence and very little help from the outside. This compendium of detailed instructions on commissioning a linear accelerator will provide good uidance to every physicist who will be involved with the installation and bringing into safe use for treatment of a new linear accelerator. © 2012 American Association of Physicists in Medicine.

  18. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Computer simulations of compact toroid formation and acceleration

    International Nuclear Information System (INIS)

    Peterkin, R.E. Jr.; Sovinec, C.R.

    1990-01-01

    Experiments to form, accelerate, and focus compact toroid plasmas will be performed on the 9.4 MJ SHIVA STAR fast capacitor bank at the Air Force Weapons Laboratory during the 1990. The MARAUDER (magnetically accelerated rings to achieve ultrahigh directed energy and radiation) program is a research effort to accelerate magnetized plasma rings with the masses between 0.1 and 1.0 mg to velocities above 10 8 cm/sec and energies above 1 MJ. Research on these high-velocity compact toroids may lead to development of very fast opening switches, high-power microwave sources, and an alternative path to inertial confinement fusion. Design of a compact toroid accelerator experiment on the SHIVA STAR capacitor bank is underway, and computer simulations with the 2 1/2-dimensional magnetohydrodynamics code, MACH2, have been performed to guide this endeavor. The compact toroids are produced in a magnetized coaxial plasma gun, and the acceleration will occur in a configuration similar to a coaxial railgun. Detailed calculations of formation and equilibration of a low beta magnetic force-free configuration (curl B = kB) have been performed with MACH2. In this paper, the authors discuss computer simulations of the focusing and acceleration of the toroid

  20. The Story of Serum Prothrombin Conversion Accelerator, Proconvertin, Stable Factor, Cothromboplastin, Prothrombin Accelerator or Autoprothrombin I, and Their Subsequent Merging into Factor VII.

    Science.gov (United States)

    Girolami, Antonio; Cosi, Elisabetta; Santarossa, Claudia; Ferrari, Silvia; Luigia Randi, Maria

    2015-06-01

    Factor VII (FVII) deficiency is one of the two congenital coagulation disorders that was not discovered by the description of a new bleeding patient whose clotting pattern did not fit the blood coagulation knowledge of the time (the other is factor XIII deficiency). The existence of an additional factor capable of accelerating the conversion of prothrombin into thrombin was suspected before 1951, the year in which the first family with FVII deficiency was discovered. As several investigators were involved in the discovery of FVII deficiency from both sides of the Atlantic, several different names were tentatively suggested to define this entity, namely stable factor (in contrast with labile factor or FV), cothromboplastin, proconvertin, serum prothrombin conversion accelerator, prothrombin acceleration, and autoprothrombin I. The last term was proposed by those who denied the existence of this new entity, which was instead considered to be a derivate of prothrombin activation, namely autoprothrombin. The description of several families, from all over the world, of the same defect, however clearly demonstrated the singularity of the condition. Factor VII was then proposed to define this protein. In subsequent years, several variants were described with peculiar reactivity toward tissue thromboplastins of different origin. Molecular biology techniques demonstrated several gene mutations, usually missense mutations, often involving exon 8 of the FVII gene. Later studies dealt with the relation of FVII with tissue factor and activated FVII (FVIIa). The evaluation of circulating FVIIa was made possible by the use of a truncated form of tissue factor, which is only sensitive to FVIIa present in the circulation. The development of FVII concentrates, both plasma derived and recombinant, has facilitated therapeutic management of FVII-deficient patients. The use of FVIIa concentrates was noted to be associated with the occasional occurrence of thrombotic events, mainly

  1. Electrostatic accelerator dielectrics

    International Nuclear Information System (INIS)

    Cooke, C.M.

    1989-05-01

    High voltage insulation problems in electrostatic accelerators are discussed. The aim of the analysis is to broaden the knowledge, highlight the characteristics of insulation technology and design strategies to improve use. The basic geometry of the insulation in accelerators is considered. A detailed description of each of the insulation regions is provided. The gas gap insulation of the terminal voltage is found to be sensitive to regions of high electric stress. In order to obtain satisfactory performance from solid support insulation, the attention is focused on the electric stress value and distribution. Potential subjects for discussion and further investigations are given

  2. The subjective determinants of job performance and job involvement in organizational context.

    OpenAIRE

    Koblicová, Leona

    2016-01-01

    The job performance is conditioned by range of objective factors and subjective determinants as well. This thesis dedicates to mapping of job involvement meaning engagement, enthusiasm, commitment and work motivation. Considering to that, oganization can influence future job performance of its employee through employee development, when it tries to grow up the job interest, develops requiered skills and so potencially supports one's performance. The text tries to sum up knowledge background o...

  3. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  4. Performance of MBE-4: An experimental multiple beam induction linear accelerator for heavy ions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Fessenden, T.J.; Keefe, D.; Kim, C.H.; Meuth, H.

    1988-06-01

    An experimental induction linac, called MBE-4, has been constructed to demonstrate acceleration and current amplification of multiple heavy ion beams. This work is part of a program to study the use of such an accelerator as a driver for heavy ion inertial fusion. MBE-4 is 16m long and accelerates four space-charge-dominated beams of singly-charged cesium ions, in this case from 200 keV to 700 keV, amplifying the current in each beam from 10mA by a factor of nine. Construction of the experiment was completed late in 1987 and we present the results of detailed measurements of the longitudinal beam dynamics. Of particular interest is the contribution of acceleration errors to the growth of current fluctuations and to the longitudinal emittance. The effectiveness of the longitudinal focusing, accomplished by means of the controlled time dependence of the accelerating fields, is also discussed. 4 refs., 5 figs., 1 tab

  5. Relativity and accelerator engineering

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-09-01

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  6. New upgradations for 15 UD Pelletron accelerator at IUAC, New Delhi

    International Nuclear Information System (INIS)

    Joshi, Rajan; Singh, P.; Kumar, S.

    2011-01-01

    Several major modifications were performed for up gradation of 15 UD Pelletron accelerator since its commissioning. Recently, two numbers of new 50 position stripper foil assemblies were installed in high energy section. A new chiller system, for SF 6 gas inside accelerator tank, is designed and installed outside accelerator tank. One out of two of the charging chains, has completed 1,00,000 hours of operation. A major maintenance work for charging system was also performed recently. Other up gradations which enhanced the performance of accelerator are foil stripper position read back, area interlocking for proton beam runs. Recent up gradations and other important activities for the Pelletron accelerator are being reported in the present paper. (author)

  7. Summary of the second international conference on electrostatic accelerator technology

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1977-01-01

    A review is given of the history of electrostatic accelerator technology, including a technology assessment of acceleration tubes, vacuum systems, voltage gradients, charging systems, and ion sources. Improvements in the performance of electrostatic accelerators during the last four years and of those currently under construction are discussed. The improved performance has greatly expanded the heavy ion research capabilities of the entire research community

  8. Augment-type two stage accelerator

    International Nuclear Information System (INIS)

    Ogino, Mutsuo; Azuma, Kingo.

    1995-01-01

    When a flying body accelerated by a gas gun at a first stage enters into an augment rail passing through an introduction tube, an ignition capacitor for initial plasmas is turned ON to apply a voltage between the augment rails. Subsequently, the accelerating gas present behind the flying body is formed into plasmas by a laser, to flow electric current from one of the inner augment rails → plasma armature → the other of the inner augment rails, and additionally accelerate the flying body by Lorentz force formed in this case. Since the plasmas are maintained in a state of higher density than the plasmas obtained by using all of the augment rails, the ignition capacitor for initial plasmas in switched to a power source. As a result, it is possible to flow the maximum current before the plasmas expand, and a large accelerating force and a high magnetic flux density are attained, to improve acceleration performance of the flying body. (N.H.)

  9. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  10. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  11. Accurate and efficient spin integration for particle accelerators

    International Nuclear Information System (INIS)

    Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; Barber, Desmond P.

    2015-01-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  12. Accurate and efficient spin integration for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Abell, Dan T.; Meiser, Dominic [Tech-X Corporation, Boulder, CO (United States); Ranjbar, Vahid H. [Brookhaven National Laboratory, Upton, NY (United States); Barber, Desmond P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-01-15

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  13. NSC KIPT accelerator on nuclear and high energy physics

    NARCIS (Netherlands)

    Dovbnya, A.N.; Guk, I.S.; Kononenko, S.G.; Wiel, van der M.J.; Botman, J.I.M.; Tarasenko, A.S.

    2004-01-01

    Qualitatively new level can be performed by creating the accelerator that will incorporate the latest technological achievements in the field of electron beam acceleration on the basis of a superconducting TESLA accelerating structure. This structure permits the production of both quasi-continuous

  14. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  15. Construction of ion accelerator for ion-surface interaction research

    International Nuclear Information System (INIS)

    Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho

    1977-09-01

    A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)

  16. Enhanced efficiency of plasma acceleration in the laser-induced cavity pressure acceleration scheme

    International Nuclear Information System (INIS)

    Badziak, J; Rosiński, M; Jabłoński, S; Pisarczyk, T; Chodukowski, T; Parys, P; Rączka, P; Krousky, E; Ullschmied, J; Liska, R; Kucharik, M

    2015-01-01

    Among various methods for the acceleration of dense plasmas the mechanism called laser-induced cavity pressure acceleration (LICPA) is capable of achieving the highest energetic efficiency. In the LICPA scheme, a projectile placed in a cavity is accelerated along a guiding channel by the laser-induced thermal plasma pressure or by the radiation pressure of an intense laser radiation trapped in the cavity. This arrangement leads to a significant enhancement of the hydrodynamic or electromagnetic forces driving the projectile, relative to standard laser acceleration schemes. The aim of this paper is to review recent experimental and numerical works on LICPA with the emphasis on the acceleration of heavy plasma macroparticles and dense ion beams. The main experimental part concerns the research carried out at the kilojoule sub-nanosecond PALS laser facility in Prague. Our measurements performed at this facility, supported by advanced two-dimensional hydrodynamic simulations, have demonstrated that the LICPA accelerator working in the long-pulse hydrodynamic regime can be a highly efficient tool for the acceleration of heavy plasma macroparticles to hyper-velocities and the generation of ultra-high-pressure (>100 Mbar) shocks through the collision of the macroparticle with a solid target. The energetic efficiency of the macroparticle acceleration and the shock generation has been found to be significantly higher than that for other laser-based methods used so far. Using particle-in-cell simulations it is shown that the LICPA scheme is highly efficient also in the short-pulse high-intensity regime and, in particular, may be used for production of intense ion beams of multi-MeV to GeV ion energies with the energetic efficiency of tens of per cent, much higher than for conventional laser acceleration schemes. (paper)

  17. Superconducting cavities for the APT accelerator

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Gentzlinger, R.C.; Haynes, B.; Montoya, D.I.; Rusnak, B.; Shapiro, A.H.

    1997-01-01

    The design of an Accelerator Production of Tritium (APT) facility being investigated at Los Alamos includes a linear accelerator using superconducting rf-cavities for the acceleration of a high-current cw proton beam. For electron accelerators with particles moving at the speed of light (β ∼ 1.0), resonators with a rounded shape, consisting of ellipsoidal and cylindrical sections, are well established. They are referred to as elliptical cavities. For the APT-design, this shape has been adapted for much slower proton beams with β ranging from 0.60 to 0.94. This is a new energy range, in which resonators of an elliptical type have never been used before. Simulations with the well-proven electromagnetic modeling tools MAFIA and SUPERFISH were performed. The structures have been optimized for their rf and mechanical properties as well as for beam dynamics requirements. The TRAK-RF simulation code is used to investigate potential multipacting in these structures. All the simulations will be put to a final test in experiments performed on single cell cavities that have started in the structures laboratory

  18. Laser-propelled ram accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sasoh, A. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science

    2000-11-01

    The concept of 'laser-propelled ram accelerator (L-RAMAC)' is proposed. Theoretically it is capable of achieving a higher launch speed than that by a chemical ram accelerator because a higher specific energy can be input to the propellant gas. The laser beam is supplied through the muzzle, focused as an annulus behind the base of the projectile. The performance of L-RAMAC is analized based on generalized Rankine-Hugoniot relations, suggesting that a superorbital muzzle speed is achievable out of this device. (orig.)

  19. A systematic FPGA acceleration design for applications based on convolutional neural networks

    Science.gov (United States)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  20. Accelerated Performance Testing on the 2006 NCAT Pavement Test Track

    Science.gov (United States)

    2009-12-01

    The original National Center for Asphalt Technology (NCAT) Pavement Test Track was built in 2000 in Opelika, Alabama where it has served as a state-of-the-art, full-scale, closed-loop accelerated loading facility. The construction, operation, and res...

  1. Hardware Accelerated Sequence Alignment with Traceback

    Directory of Open Access Journals (Sweden)

    Scott Lloyd

    2009-01-01

    in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is presented that accelerates the forward scan and traceback in hardware without memory and I/O limitations. With 256 processing elements in FPGA technology, a performance gain over 300 times that of a desktop computer is demonstrated on sequence lengths of 16000. For greater performance, the architecture is scalable to more processing elements.

  2. Influence of spraying on the early hydration of accelerated cement pastes

    International Nuclear Information System (INIS)

    Salvador, Renan P.; Cavalaro, Sergio H.P.; Cano, Miguel; Figueiredo, Antonio D.

    2016-01-01

    In practice, most of the studies about the interaction between cement and accelerators is performed with hand-mixed pastes. However, in many applications mixing occurs through spraying, which may affect accelerators reactivity and the microstructure of the hardened paste. The objective of this study is to analyze how the mixing process influences the early hydration of accelerated cement pastes. Isothermal calorimetry, X-ray diffraction, thermogravimetry and SEM imaging were performed on cement pastes produced by hand-mixing and by spraying, using equivalent doses of an alkali-free and an alkaline accelerator and two types of cement. Results showed a great influence of the spraying process on the reactivity of accelerators and on the morphology of the precipitated hydrates. Variations in hydration kinetics caused by the mixing method are explained and the results obtained might have a significant repercussion on how future research on the behavior of accelerated mixes will be performed.

  3. Accurate and efficient spin integration for particle accelerators

    Directory of Open Access Journals (Sweden)

    Dan T. Abell

    2015-02-01

    Full Text Available Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  4. Relativity and accelerator engineering

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Schenefeld (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  5. Superconducting Magnets for Accelerators

    Science.gov (United States)

    Brianti, G.; Tortschanoff, T.

    1993-03-01

    This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.

  6. Design Considerations of a Novel Two-Beam Accelerator

    Science.gov (United States)

    Luginsland, John William

    This thesis reports the design study of a new type of charged particle accelerator called the Twobetron. The accelerator consists of two beams of electrons traveling through a series of pillbox cavities. The power of a high current annular beam excites an electromagnetic mode in the cavities, which, in turn, drives a low current on-axis pencil beam to high energy. We focus on the design considerations that would make use of existing pulsed power systems, for a proof-of-principle experiment. Potential applications of this new device include radiotherapy, materials processing, and high energy accelerators. The first phase of the research involves analytic description of the accelerating process. This reveals the problem of phase slippage. Derbenev's proposed cure of beam radius modulation is analyzed. Further studies include the effect of initial phase and secondary beam loading. Scaling laws to characterize the Twobetron's performance are derived. Computer simulation is performed to produce a self-consistent analysis of the dynamics of the space charge and its interaction with the accelerator structure. Particle -in-cell simulations answer several questions concerning beam stability, cavity modes, and the nature of the structure. Specifically, current modulation on the primary beam is preserved in the simulations. However, these simulations also revealed that mode competition and significant cavity coupling are serious issues that need to be addressed. Also considered is non-axisymmetric instability on the driver beam of the Twobetron, in particular, the beam breakup instability (BBU), which is known to pose a serious threat to linear accelerators in general. We extend the classical analysis of BBU to annular beams. The effect of higher order non-axisymmetric modes is also examined. It is shown that annular beams are more stable than pencil beams to BBU in general. Our analysis also reveals that the rf magnetic field is more important than the rf electric field in

  7. Department of Accelerator Physics And Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2009-01-01

    Full text: The activity of department P-10 is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. In 2008, the following topics were investigated and/or realized: 1. A linear accelerator for protons called TOP (Terapia Oncologica con Protoni, Oncological Proton Therapy). Basically a proton linac of modified Alvarez type working at 3000 MHz frequency and delivering beams in the energy range from 65 MeV to 200 MeV. In 2005, a contract was signed between ENEA and SINS-Swierk for the design, manufacture and delivery to Frascati of the input section of a 65 MeV linac. This section of SCDTL type will increase the proton energy from 7 to 16 MeV. In 2008, the field distribution in the manufactured structure was measured and optimized using available universal test stand. Measurements were also performed in ENEA/Frascati in October; a small difference in results, around 0.25%, is under investigation. Beam dynamics calculations using 3D codes have been started in parallel. 2. Preparation for participation in the international X-FEL project. Calculations of the parasitic Higher Order Modes (HOMs) induced in superconducting accelerating structures by very short electron bunches have been continued. Thanks to the special research grant received by department P-10 the design and completion of the HOM elements has been started for two accelerating modules, where each module consists of eight superconducting accelerating structures and focusing/correcting elements. 3. Superconducting layers; studies in INFN-Roma. Within the European CARE/JRA1/WP4-2 project, serious modification of the Nb-coating stand for the 1.3 GHz single-cell copper resonators using a vacuum arc was performed. Thanks to this stand the internal surface of the resonator was successfully coated. 4. TiN coating vacuum stand for RF components. At this stand the analysis of the TiN layer thickness as a function of reactive atmosphere pressure

  8. Picosecond CO2 laser for relativistic particle acceleration

    International Nuclear Information System (INIS)

    Pogorelsky, I.; Ben-Zvi, I.; Kimura, W.D.; Kurnit, N.A.; Kannari, F.

    1994-01-01

    A table-top 20-GW 50-ps CO 2 laser system is under operation at the Brookhaven Accelerator Test Facility. We compare laser performance with model predictions. Extrapolations suggest the possibility of compact terawatt CO 2 laser systems suitable as laser accelerator drivers and for other strong-field applications. Latest progress on an Inverse Cherenkov Laser Accelerator experiment is reported

  9. CNSTN Accelerator

    International Nuclear Information System (INIS)

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  10. Advice on the accelerated market implementation of advanced biofuels

    International Nuclear Information System (INIS)

    2008-04-01

    The Platform for Sustainable Mobility aims to promote the accelerated market introduction of more sustainable motor fuels and vehicle technology. The Platform distinguishes four transition paths: hybridization of the fleet of cars; implementation of biofuels; hydrogen-fuelled driving (driving on natural gas and biogas); intelligent transport systems (ITS). This advice involves part of the transition path for the implementation of biofuels, i.e. accelerated market introduction of advances biofuels. [mk] [nl

  11. OpenMP for Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

    2011-03-15

    OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

  12. Accelerator mass spectrometry of 41Ca with a positive-ion source and the UNILAC accelerator

    International Nuclear Information System (INIS)

    Steinhof, A.; Henning, W.; Mueller, M.; Roeckl, E.; Schuell, D.; Korschinek, G.; Nolte, E.; Paul, M.

    1987-06-01

    We have made first tests investigating the performance characteristics of the UNILAC accelerator system at GSI, in order to explore the sensitivity achievable in accelerator mass spectrometry (AMS) of 41 Ca with high-current positive-ion sources. Positively charged Ca 3+ ions of up to about 100 micro-amperes electrical current were injected from a penning-sputter source and, after further stripping to Ca 9+ , accelerated to 14.3 MeV/nucleon. The combination of velocity-focussing accelerator and magnetic ion-beam transport system completely eliminated background from the other calcium isotopes. Full-stripping and detection of 41 Ca 20+ ions with a magnetic spectrograph provides separation from isobaric 41 K and, at present, a level of sensitivity of 41 Ca/Ca ≅ 2x10 -15 . Future improvements and implications for dating of Pleistoscene samples will be discussed. (orig.)

  13. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  14. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  15. Awakening the potential of plasma acceleration

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Civil engineering has begun for the new AWAKE experiment, which looks to push the boundaries of particle acceleration. This proof-of-principle experiment will harness the power of wakefields generated by proton beams in plasma cells, producing accelerator gradients hundreds of times higher than those used in current RF cavities.   Civil engineering works are currently ongoing at the AWAKE facility. As one of CERN's accelerator R&D experiments, the AWAKE project is rather unique. Like all of CERN's experiments, AWAKE is a collaborative endeavour with institutes and organisations participating around the world. "But unlike fixed-target experiments, where the users take over once CERN has delivered the facility, in AWAKE, the synchronised proton, electron and laser beams provided by CERN are an integral part of the experiment," explains Edda Gschwendtner, CERN AWAKE project leader. "So, of course, CERN's involvement in the project goes well...

  16. Comparison of accelerator technologies for use in ADSS

    International Nuclear Information System (INIS)

    Weng, W.T.; Ludewig, H.; Raparia, D.; Trbojevic, D.; Todosow, M.; McIntyre, P.; Sattarov, A.

    2011-01-01

    Accelerator Driven Subcritical (ADS) fission is an interesting candidate basis for nuclear waste transmutation and for nuclear power generation. ADS can use either thorium or depleted uranium as fuel, operate below criticality, and consume rather than produce long-lived actinides. A case study with a hypothetical, but realistic nuclear core configuration is used to evaluate the performance requirements of the driver proton accelerator in terms of beam energy, beam current, duty factor, beam distribution delivered to the fission core, reliability, and capital and operating cost. Comparison between a CW IC and that of a SRF proton linac is evaluated. Future accelerator R and D required to improve each candidate accelerator design is discussed. ADS fission has interesting potential for electric power generation and also for destruction of long-lived actinide waste produced by conventional critical reactors. ADS systems offer several interesting advantages in comparison to critical reactors: (1) ADS provides greater flexibility for the composition and placement of fissile, fertile, or fission product waste within the core, and require less enrichment of fissile content; (2) The core can be operated with a reactivity k eff that cannot reach criticality by any failure mode; (3) When the beam is shut off fission ceases in the core; (4) Coupling the fast neutron spectrum of the spallation drive to fast core neutronics offers a basis for more complete burning of long-lived actinides; and (5) ADS designs can provide sufficient thermal mass that meltdown cannot occur from radioactive heat after fission is stopped. In order to drive a ∼GW e fission core a CW proton beam of >700 MeV and ∼15 MW beam power is required. A previous study of the accelerator performance required for ADS systems concluded that present accelerator performance is approaching those requirements, but accelerator system cost and reliability remain particular concerns. The obvious candidates for

  17. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  18. Calibration of full-scale accelerated pavement testing data using long-term pavement performance data

    CSIR Research Space (South Africa)

    VdM Steyn, WJ

    2012-09-01

    Full Text Available Accelerated Pavement Testing (APT) has always been conducted with the objective of improving the understanding of real pavements under real traffic and environmental conditions. While APT provides an accelerated view of some of the major structural...

  19. Linear accelerator use in the nuclear field

    International Nuclear Information System (INIS)

    Lecomte, J.-C.

    Radiography of internal conformity is performed on weldments and thick castings using linear accelerators. The basic principles relating to linear accelerators are outlined and their advantages over Co 60 sources described. Linear accelerator operation related requirements are presented as well as the use of this apparatus as a method for volumetric inspection, during fabrication of French Nuclear Steam Supply Systems (NSSS). Finally the resources needed to use this technique as an inspection method is dealt with [fr

  20. Application of electron accelerator worldwide

    International Nuclear Information System (INIS)

    Machi, Sueo

    2003-01-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  1. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  2. Computer simulation of dynamic processes on accelerators

    International Nuclear Information System (INIS)

    Kol'ga, V.V.

    1979-01-01

    The problems of computer numerical investigation of motion of accelerated particles in accelerators and storages, an effect of different accelerator systems on the motion, determination of optimal characteristics of accelerated charged particle beams are considered. Various simulation representations are discussed which describe the accelerated particle dynamics, such as the enlarged particle method, the representation where a great number of discrete particle is substituted for a field of continuously distributed space charge, the method based on determination of averaged beam characteristics. The procedure is described of numerical studies involving the basic problems, viz. calculation of closed orbits, establishment of stability regions, investigation of resonance propagation determination of the phase stability region, evaluation of the space charge effect the problem of beam extraction. It is shown that most of such problems are reduced to solution of the Cauchy problem using a computer. The ballistic method which is applied to solution of the boundary value problem of beam extraction is considered. It is shown that introduction into the equation under study of additional members with the small positive regularization parameter is a general idea of the methods for regularization of noncorrect problems [ru

  3. Current Fragmentation and Particle Acceleration in Solar Flares

    Science.gov (United States)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  4. Advanced accelerator and mm-wave structure research at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  5. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  6. Trends for Electron Beam Accelerator Applications in Industry

    Science.gov (United States)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  7. Improved 36Cl performance at the ASTER HVE 5 MV accelerator mass spectrometer national facility

    International Nuclear Information System (INIS)

    Finkel, R.; Arnold, M.; Aumaître, G.; Benedetti, L.; Bourlès, D.; Keddadouche, K.; Merchel, S.

    2013-01-01

    The HVE 5 MV ASTER AMS national facility at CEREGE was accepted in 2007. Since then we have continued to optimize performance for 36 Cl. Cl-36 analyses use AgCl, a Cs negative ion sputter source, Ar stripping to +5 in the terminal of the Tandetron™ accelerator at 5 MV and a silicon nitride post-acceleration stripper foil to enhance suppression of 36 S relative to 36 Cl. The major challenges to obtaining the desired performance for Earth science applications are ion source memory, mass fractionation effects, 36 S isobar suppression and sensitivity. Redesign of the SO110 ion source by HVE to change the size of the aperture and the shape of cathode significantly reduced ion source memory to less than ∼0.1%, a level that can be compensated for by matching standards to samples. We observe small systematic drifts in 35 Cl/ 37 Cl ratios over time, the source of which is not yet determined. Measurement of standards indicates that this effect limits the precision of 35 Cl/ 37 Cl ratio determination to about 2%. 36 S is suppressed in several ways. First, the sample chemistry has been designed to reduce S to low levels. Second, cathodes are constructed of low-S nickel, enabling direct target loading without the use of AgBr pre-packing. Third, a post-acceleration Si 3 N 4 stripper foil differentially absorbs energy from 36 Cl and 36 S. A subsequent electrostatic deflector is then able to suppress 36 S by a factor of ∼240 relative to 36 Cl. Differential energy loss in the detector further suppresses 36 S by about 10 −4 , for an overall suppression factor of 4 × 10 −7 . 36 S count rates are typically equivalent to a background 36 Cl/Cl of ∼10 −15 . At typical 35 Cl currents of ∼20 μA Cl 5+ samples with 36 Cl/ 35 Cl of 6 × 10 −14 can be measured to ±5% statistical uncertainty with 1 h of analysis time. Typical machine blanks have 36 Cl/Cl ∼2 × 10 −15 .

  8. Very high pulse-energy accelerators

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1989-01-01

    The dominant trend in the development of pulsed power accelerator technology over the last decade has been towards higher power and shorter pulse widths. Limitations in high voltage, high current switch performance, and in power flow through vacuum insulator housings led to the development of highly modular designs. This modular approach requires precise synchronization of the various modules and efficient methods of combining the power from these modules to drive a common load. The need to drive very low impedance loads led to effective ways to combine these modules in parallel. The Particle Beam Fusion Accelerator I (PBFA I) and Saturn are representative of these designs. Hermes III represent a new approach towards the efficient generation of higher voltages. It is designed to drive a 22-MV, 730-kA, 40-ns electron beam diode and combines conventional, modular pulsed power technology with linear induction accelerator concepts. High-power induction accelerator cavities are combined with voltage addition along a MITL to generate the desired output. This design differs from a conventional linac in that the voltages are added by the MITL flow rather than by a drifting beam that gains kinetic energy at each stage. This design is a major extrapolation of previous state-of-the-art technology represented by the injector module of the Advanced Test Accelerator and has proven to be efficient and reliable. The design and performance of Hermes III are presented together with a discussion of the application of this technology to the light ion beam inertial confinement fusion program. 18 refs., 9 figs

  9. Status Report on the accelerators operation

    International Nuclear Information System (INIS)

    Biri, S.; Kormany, Z.; Berzi, I.; Racz, R.; Perduk, Z.; Vajda, I.

    2012-01-01

    In 2012 our particle accelerators operated as scheduled, safely and without major or long breakdowns. The utilization rates of the accelerators slightly increased in comparing to the preceding year (see Fig. 1). The cyclotron delivered 1900 hours and the 40-years old 5 MeV Van de Graaff generator supplied more than 2400 hours. The 1 MeV Van de Graaff accelerator was also operated for short basic physics experiments (160 hours). The plasma and beam on-target time at the ECR ion source was similar to the preceding years (410 hours). The isotope separator, as ion beam accelerator was utilized only for a few hours in 2012, since the research and development in this lab focused on other fields. Nevertheless it is continuously available for research requiring special deposition techniques and for isotope tracing studies. We developed the first version of an on-line accelerator status display software. Through our homepage anybody from anywhere can now check the current state of the cyclotron, VdG-5 and ECRIS accelerators. While in 2010 the cyclotron celebrated the 25 th anniversary of its regular starting-up, in 2012 two of our other accelerators had also anniversary. The ECR Ion Source project started 20 years ago, in 1992. To celebrate it, a scientific symposium was hold in September. In the symposium - beyond the high number of audience - the leaders of the Hungarian Academy of Sciences, the University of Debrecen and the City of Debrecen attended, as well. The local and national press reported about the event in many form. A short summary of the symposium is in our homepage (in Hungarian). We had the 40 th anniversary of the regular use of the 5 MeV Van de Graaff accelerator. Having obtained the final approval of the project the 'Electrostatic Accelerator Department' was organized in the Institute in July 1967 with the tasks to perform the planning and construction of the laboratory, to make all the preparations necessary for the intensive scientific use of the

  10. What's new with FASTBUS and what's it done in the particle accelerator laboratories

    International Nuclear Information System (INIS)

    Costrell, L.; Dawson, W.K.; Platner, E.D.; Paffrath, L.; Barsotti, E.J.; Downing, R.W.; Ikeda, H.; Nelson, R.O.; Kolpakov, I.; Gustavson, D.B.; Walz, H.W.

    1991-01-01

    The FASTBUS modular high-speed data acquisition and control system has been described in earlier papers. Implementations have since been made in accelerator laboratories world-wide resulting in clarifications, modifications and extensions. Of tremendous benefit to users have been FASTBUS Standard Routines. The availability of such standard software is unique for high speed bus systems and resulted from the involvement of hardware and software specialists in all aspects of the development. FASTBUS is the highest performance instrumentation and data acquisition bus in existence and its development was essential to handle the outputs of detectors used with high energy accelerators now in operation. It has been an important factor in recent experiments, including the Z 0 measurements at CERN, Fermilab and SLAC. Also among numerous FASTBUS implementations are those for TPC systems at KEK and BNL. 2 refs., 5 figs

  11. Performance report on the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.

    1994-01-01

    The Ground Test Accelerator (GTA) uses a radio-frequency quadrupole (RFQ) to bunch and accelerate a 35 keV input beam to a final energy of 2.5 MeV. Most measured parameters of the GTA RFQ agreed with simulated predictions. The relative shape of the transmission versus the vane-voltage relationship and the Courant-Snyder (CS) parameters of the output beam's transverse and longitudinal phase spaces agreed well with predictions. However, the transmission of the RFQ was significantly lower than expected. Improved simulation studies included image charges and multipole effects in the RFQ. Most of the predicted properties of the RFQ, such as input matched-beam conditions and output-beam shapes were unaffected by these additional effects. However, the comparison of measured with predicted absolute values of transmitted beam was much improved by the inclusion of these effects in the simulations. The comparison implied a value for the input emittance that is consistent with measurements

  12. Compensation Techniques in Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, Hisham Kamal [Old Dominion Univ., Norfolk, VA (United States)

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  13. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  14. Acceleration test with mixed higher harmonics in HIMAC

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sugiura, A.; Misu, T.

    2004-01-01

    In HIMAC synchrotron, beam tests with a magnetic ally loaded cavity have been performed. This cavity has very low Q-value of about 0.5, and can be added higher harmonics with fundamental acceleration frequency. In our tested system for higher harmonics, wave form of a DDS (Direct Digital Synthesizer) can be rewrite, and arbitrary wave form can be used for beam acceleration. In the beam test, second and third harmonic wave were added on the fundamental acceleration frequency, and increases of the accelerated beam intensity have been achieved. In this paper, results of the beam test and the acceleration system are presented. (author)

  15. Preliminary simulation studies of accelerator cavity loading

    International Nuclear Information System (INIS)

    Faehl, R.J.

    1980-06-01

    Two-dimensional simulations of loading effects in a 350 MHz accelerator cavity have been performed. Electron currents of 1-10 kA have been accelerated in 5 MV/m fields. Higher order cavity modes induced by the beam may lead to emittance growth. Operation in an autoaccelerator mode has been studied

  16. US DOE Grand Challenge in Computational Accelerator Physics

    International Nuclear Information System (INIS)

    Ryne, R.; Habib, S.; Qiang, J.; Ko, K.; Li, Z.; McCandless, B.; Mi, W.; Ng, C.; Saparov, M.; Srinivas, V.; Sun, Y.; Zhan, X.; Decyk, V.; Golub, G.

    1998-01-01

    Particle accelerators are playing an increasingly important role in basic and applied science, and are enabling new accelerator-driven technologies. But the design of next-generation accelerators, such as linear colliders and high intensity linacs, will require a major advance in numerical modeling capability due to extremely stringent beam control and beam loss requirements, and the presence of highly complex three-dimensional accelerator components. To address this situation, the U.S. Department of Energy has approved a ''Grand Challenge'' in Computational Accelerator Physics, whose primary goal is to develop a parallel modeling capability that will enable high performance, large scale simulations for the design, optimization, and numerical validation of next-generation accelerators. In this paper we report on the status of the Grand Challenge

  17. Future Accelerator Challenges in Support of High-Energy Physics

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Zisman, M.S.

    2008-01-01

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision

  18. Future Accelerator Challenges in Support of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  19. Digital linear accelerator: The advantages for radiotherapy

    International Nuclear Information System (INIS)

    Andric, S.; Maksimovic, M.; Dekic, M.; Clark, T.

    1998-01-01

    Technical performances of Digital Linear Accelerator were presented to point out its advantages for clinical radiotherapy treatment. The accelerator installation is earned out at Military Medical Academy, Radiotherapy Department, by Medes and Elekta companies. The unit offers many technical advantages with possibility of introduction new conformal treatment techniques as stereotactic radiosurgery, total body and total skin irradiation. In the paper are underlined advantages in relation to running conventional accelerator units at Yugoslav radiotherapy departments, both from technical and medical point of view. (author)

  20. Parental Involvement as a Mediator of Academic Performance among Special Education Middle School Students

    Science.gov (United States)

    Flores de Apodaca, Roberto; Gentling, Dana G.; Steinhaus, Joanna K.; Rosenberg, Elena A.

    2015-01-01

    This study examined parental involvement as a mediator of the academic performance of middle school students with special needs. The study built on the different types of parental involvement theorized by Epstein and colleagues (2002) and studied empirically by Fan and Chen (2001). Using a specially developed questionnaire, a sample of 82 parents…

  1. The ATOMKI Accelerator Center

    International Nuclear Information System (INIS)

    Biri, S.; Kormany, Z.; Berzi, I.; Hunyadi, M.

    2009-01-01

    for the old units. This results in major simplifications in the construction, operation and maintenance of the involved power supplies. After successful trial operation with the prototype four new units were built. Four original units in the first rack of the beamlines power supply system (belonging to the first two quadrupole doublets) were replaced with the new ones. During the last two months of the operation in 2009 these new units were used and they performed excellently under real working conditions. VdG-5 and VdG-1 machines. The 5 MV Van de Graaff accelerator (VdG- 5) was at service nearly throughout the year. The net beamtime was 1601 hours, mainly proton particles were accelerated (99%). There was little need (1%) for 4 He + particles. The beam time was distributed among the different research subjects as shown in Table 3. The typical energy range of the ion-beam per research subjects were: Nuclear physics 0.8 MeV-1.3 MeV; Nuclear astrophysics 0.8 MeV-3.6 MeV; Analytical studies 2 MeV; Micromachining 0.8 MeV-2 MeV. We had a three week break-down in October. During that time we repaired the broken parts and performed all the maintenance work that is needed periodically. We replaced some parts of the ion-source, repaired the prefocus power supply, and carried the maintenance work of the belt driving system out (including replacing some of the special bearings and greasing). This maintenance did not cause any problem to the users. In 2009 the VdG- 1 machine was not used however it was available for users. During the year the preparation of a complicated measurement was carried out in the target room. The measurement itself is scheduled in 2010. Tandetron installation. The tandetron is a used accelerator given as a gift to our institute years ago. For some technical difficulties it is still under assembling so there has not been operation experience about this accelerator in 2009 yet.

  2. Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng

    2017-09-01

    Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.

  3. The acceleration of cosmic ray by shock waves

    International Nuclear Information System (INIS)

    Axford, W.I.; Leer, E.; Skadron, G.

    1977-01-01

    The acceleration of cosmic rays in flows involving shocks and other compressional waves is considered in terms of one-dimensionl, steady flows and the diffusion approximation. The results suggest that very substantial energy conversion can occur. (author)

  4. Accelerating VASP electronic structure calculations using graphic processing units

    KAUST Repository

    Hacene, Mohamed

    2012-08-20

    We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.

  5. Accelerating VASP electronic structure calculations using graphic processing units

    KAUST Repository

    Hacene, Mohamed; Anciaux-Sedrakian, Ani; Rozanska, Xavier; Klahr, Diego; Guignon, Thomas; Fleurat-Lessard, Paul

    2012-01-01

    We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.

  6. The present situation and prospect of industrial irradiation accelerator industry in China

    International Nuclear Information System (INIS)

    Zhao Wenyan; Wang Chuanzhen; Hou Fuzhen

    2005-01-01

    Accelerator technology and the machines are an important part of the nuclear technology and also are the system integration of modern science technology. The application of accelerator technology has made the important breakthrough in many science research fields, in the development course of particle physics, several milestone developments are closely related to accelerator developments. In 1960s, accelerators gradually transferred from the science research to the national economy and society application fields. In 1970s, accelerators applied in many fields involved the industry, medical hygiene, agriculture, environmental protection, and proceed the development of new technique, new craft, new product, and developed lots of newly arisen edge industries, such as the medical equipments, no damage examination, ion injecting, radiation processing. Now accelerators have become a firmly established industry. This paper primarily reviewed the application of industrial radiation accelerators by the 20 years developments of accelerators in China. (author)

  7. The continuous electron beam accelerator facility

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1989-01-01

    Tunnel construction and accelerator component development, assembly, and testing are under way at the Continuous Electron Beam Accelerator Facility. CEBAF's 4-GeV, 200-μA superconducting recirculating accelerator will provide cw beam to simultaneous experiments in three end stations for studies of the nuclear many-body system, its quark substructure, and the strong and electroweak interactions governing this form of matter. Prototype accelerating cavities, assembled in cryostats and tested on site, continue to exceed performance specifications. An on-site liquid helium capability supports cryostat development and cavity testing. Major elements of the accelerator instrumentation and control hardware and software are in use in cryogenics, rf, and injector tests. Prototype rf systems have been operated and prototype klystrons have been ordered. The initial, 100-keV, room-temperature region of the 45-MeV injector is operational and meets specifications. CEBAF's end stations have been conceptually designed; experimental equipment conceptual designs will be completed in 1989. 2 refs., 5 figs., 2 tabs

  8. Accelerated cyclic corrosion tests

    Directory of Open Access Journals (Sweden)

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  9. CD97-decay-accelerating factor interaction is not involved in leukocyte adhesion to endothelial cells

    NARCIS (Netherlands)

    Boulday, Gwénola; Hamann, Jörg; Soulillou, Jean-Paul; Charreau, Béatrice

    2002-01-01

    Background. Effective improvement in xenograft survival is achieved using transplants from transgenic pigs expressing human complement (C) regulatory proteins, including decay-accelerating factor (DAF), CD59, and CD46 on endothelial cells (ECs). The aim of this study was to investigate whether human

  10. Accelerator design and construction in the 1950s

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1989-01-01

    This article looks into the history of the design, construction and operation of four of the large particle accelerators of the 1950s, the Cosmotron and more powerful alternating-gradient synchrotron (AGS) at Brookhaven, the Bevatron at Berkeley and the CERN proton synchrotron in Geneva with which the author was involved. The author's own contribution was in magnet design for the Cosmotron and the radiofrequency accelerating system. He later worked on linear accelerators and strong focusing later used in the AGS with Nick Christofilos from Athens. Collaboration between CERN and Brookhaven continued following a British study of alternating-gradient focusing which showed up possible resonance problems. In 1953, the ''phase transition'' problem was overcome. The author's personal contribution to the AGS project completes the article. (UK)

  11. Resonance control for a cw [continuous wave] accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    A resonance-control technique is described that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  12. Measurement of the radiation in the accelerator-therapy room

    International Nuclear Information System (INIS)

    Zutz, Hayo

    2013-01-01

    The measurement of the scattering radiation in the accelerator-therapy room of the PTB is described. The accelerators are commercial linear accelerators of the firm Elektra of the type ''Precise''. The measurements were performed by means of secondary-normal ionization chambers and a special measurement technique developed in the PTB both with and without the used beam. (HSI)

  13. The operational experience with 15 UD Pelletron tandem accelerator and its status

    International Nuclear Information System (INIS)

    Joshi, R.; Singh, J.; Singh, P.

    2015-01-01

    IUAC, New Delhi is equipped with many accelerators of different energy ranges. The 15 UD Pelletron tandem accelerator, the first ion accelerator installed, is a heavy ion accelerator and can accelerate almost all the injected negative ions. It has been operational since 1990 and is being used efficiently in different areas of research. The up time of this accelerator has always been better than 95% while the beam on target time has improved from ∼35% in earlier years to more than 60%. In these years, immense efforts have been put in for its operational improvements and better ion beam energies as well as currents. Recently a proper diagnosis was performed to improve its terminal voltage. Regular maintenance of its charging system, accelerating columns and regular unit wise conditioning have improved overall terminal voltage. The conditioning voltage of 15.5 MV was recently achieved and beam tests were performed at 15.1 MV. This has overall improved the performance of accelerator and the stable beam was delivered to user at the maximum terminal potential of 13.9 MV. The 15 UD Pelletron accelerator is also being used regularly as an injector for LINAC. Recently, few problems were encountered, in 15 UD Pelletron, during a routine LINAC operation. Those problems caused lots of beam instability and consequently beam, after boosting the energy from LINAC, was unstable. Proper investigations were carried out and necessary steps were performed in ion source and 15 UD Pelletron accelerator to overcome these problems. Thereafter, stable beam was delivered to user, using LINAC, continuously for around three months. All the efforts done to improve the performance of 15 UD Pelletron as well as to achieve stable beam from LINAC will be discussed. (author)

  14. Acceleration of plasma into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, John [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    The first part of this paper is a discussion of the magnetic acceleration of plasma. The second part contains a description of some experiments which have been performed. In the work reported the intention is: 1. To produce a burst of gas in vacuo; 2. To ionize the gas and heat it to such an extent that it becomes a good electrical conductor. 3. To accelerate the plasma thus produced into vacuum by the use of external time-varying magnetic fields.

  15. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  16. Main physical problems of superhigh energy accelerators

    International Nuclear Information System (INIS)

    Lapidus, L.I.

    1979-01-01

    A survey is given of the state and prospects for the scientific researches to be carried out at the largest charged particle accelerators now under construction. The fundamental problems of the elementary particle physics are considered which can be solved on the base of experiments at high-energy accelerators. The problems to be solved involve development of the theory of various quark number, accurate determination of the charged and neutral intermediate vector boson masses in the Weinberg-Salam theory, the problem of production of t-quark, W -+ - and Z deg bosons, Higgs mesons and investigation of their interactions, examination of quark and lepton spectra, studies on the effects of strong interactions. As a result of the investigations on hadrons at maximum momentum transfers, the data on space-time structure at short distances can be obtained. It is emphasized that there are no engineering barriers to the construction of such accelerators. The main problem lies in financial investment. A conclusion is drawn that the next generation of accelerators will be developed on the base of cooperation between many countries [ru

  17. Detection of 26Al and 41Ca by accelerator spectrometry

    International Nuclear Information System (INIS)

    Yiou, F.; Raisbeck, G.M.

    1982-01-01

    The 26 Al (half-life, 730,000 years) and 41 Ca (100,000 years) isotopes were detected by the technique of accelerator spectoarometry, using the ALICE facility (linear accelerator plus cyclotron) at Orsay. The procedure for eliminating the interfering. 26 Mg and 41 K isobars involves accelerating the 26 Al and 41 Ca to sufficiently high energies such that a significant fraction of them can be completely stripped of electrons and then passing. them through a magnetic analyzer. Work is in progress to develope this procedure for the detection of natural cosmogenic 26 Al and 41 Ca. (author)

  18. The particle accelerator; L'accelerateur de particules

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, K. [Palais de la Decouverte, Dept. de Physique, 75 - Paris (France)

    2011-01-15

    As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures

  19. Impact-induced acceleration by obstacles

    Science.gov (United States)

    Corbin, N. A.; Hanna, J. A.; Royston, W. R.; Singh, H.; Warner, R. B.

    2018-05-01

    We explore a surprising phenomenon in which an obstruction accelerates, rather than decelerates, a moving flexible object. It has been claimed that the right kind of discrete chain falling onto a table falls faster than a free-falling body. We confirm and quantify this effect, reveal its complicated dependence on angle of incidence, and identify multiple operative mechanisms. Prior theories for direct impact onto flat surfaces, which involve a single constitutive parameter, match our data well if we account for a characteristic delay length that must impinge before the onset of excess acceleration. Our measurements provide a robust determination of this parameter. This supports the possibility of modeling such discrete structures as continuous bodies with a complicated constitutive law of impact that includes angle of incidence as an input.

  20. Accelerating the culture change!

    Science.gov (United States)

    Klunk, S W; Panetta, J; Wooten, J

    1996-11-01

    Exide Electronics, a major supplier of uninterruptible power system equipment, embarked on a journey of changing a culture to improve quality, enhance customer responsiveness, and reduce costs. This case study examines the evolution of change over a period of seven years, with particular emphasis on the most recent years, 1992 through 1995. The article focuses on the Raleigh plant operations and describes how each succeeding year built on the successes and fixed the shortcomings of the prior years to accelerate the culture change, including corrective action and continuous improvement processes, organizational structures, expectations, goals, achievements, and pitfalls. The real challenge to changing the culture was structuring a dynamic approach to accelerate change! The presentation also examines how the evolutionary process itself can be created and accelerated through ongoing communication, regular feedback of progress and goals, constant evaluation and direction of the process, and measuring and paying for performance.

  1. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  2. Machine protection: availability for particle accelerators

    International Nuclear Information System (INIS)

    Apollonio, A.

    2015-01-01

    Machine availability is a key indicator for the performance of the next generation of particle accelerators. Availability requirements need to be carefully considered during the design phase to achieve challenging objectives in different fields, as e.g. particle physics and material science. For existing and future High-Power facilities, such as ESS (European Spallation Source) and HL-LHC (High-Luminosity LHC), operation with unprecedented beam power requires highly dependable Machine Protection Systems (MPS) to avoid any damage-induced downtime. Due to the high complexity of accelerator systems, finding the optimal balance between equipment safety and accelerator availability is challenging. The MPS architecture, as well as the choice of electronic components, have a large influence on the achievable level of availability. In this thesis novel methods to address the availability of accelerators and their protection systems are presented. Examples of studies related to dependable MPS architectures are given in the thesis, both for Linear accelerators (Linac4, ESS) and circular particle colliders (LHC and HL-LHC). A study of suitable architectures for interlock systems of future availability-critical facilities is presented. Different methods have been applied to assess the anticipated levels of accelerator availability. The thesis presents the prediction of the performance (integrated luminosity for a particle collider) of LHC and future LHC up- grades, based on a Monte Carlo model that allows reproducing a realistic timeline of LHC operation. This model does not only account for the contribution of MPS, but extends to all systems relevant for LHC operation. Results are extrapolated to LHC run 2, run 3 and HL-LHC to derive individual system requirements, based on the target integrated luminosity. (author)

  3. A LEGO paradigm for virtual accelerator concept

    International Nuclear Information System (INIS)

    Andrianov, S.; Ivanov, A.; Podzyvalov, E.

    2012-01-01

    The paper considers basic features of a Virtual Accelerator concept based on LEGO paradigm. This concept involves three types of components: different mathematical models for accelerator design problems, integrated beam simulation packages (i. e. COSY, MAD, OptiM and others), and a special class of virtual feedback instruments similar to real control systems (EPICS). All of these components should inter-operate for more complete analysis of control systems and increased fault tolerance. The Virtual Accelerator is an information and computing environment which provides a framework for analysis based on these components that can be combined in different ways. Corresponding distributed computing services establish interaction between mathematical models and low level control system. The general idea of the software implementation is based on the Service-Oriented Architecture (SOA) that allows using cloud computing technology and enables remote access to the information and computing resources. The Virtual Accelerator allows a designer to combine powerful instruments for modeling beam dynamics in a friendly way including both self-developed and well-known packages. In the scope of this concept the following is also proposed: the control system identification, analysis and result verification, visualization as well as virtual feedback for beam line operation. The architecture of the Virtual Accelerator system itself and results of beam dynamics studies are presented. (authors)

  4. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL

    International Nuclear Information System (INIS)

    Forot, M.

    2006-12-01

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects

  5. Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance

    Science.gov (United States)

    Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay

    2013-01-01

    When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…

  6. Impulsive ion acceleration in earth's outer magnetosphere

    International Nuclear Information System (INIS)

    Baker, D.N.; Belian, R.D.

    1985-01-01

    Considerable observational evidence is found that ions are accelerated to high energies in the outer magnetosphere during geomagnetic disturbances. The acceleration often appears to be quite impulsive causing temporally brief (10's of seconds), very intense bursts of ions in the distant plasma sheet as well as in the near-tail region. These ion bursts extend in energy from 10's of keV to over 1 MeV and are closely associated with substorm expansive phase onsets. Although the very energetic ions are not of dominant importance for magnetotail plasma dynamics, they serve as an important tracer population. Their absolute intensity and brief temporal appearance bespeaks a strong and rapid acceleration process in the near-tail, very probably involving large induced electric fields substantially greater than those associated with cross-tail potential drops. Subsequent to their impulsive acceleration, these ions are injected into the outer trapping regions forming ion ''drift echo'' events, as well as streaming tailward away from their acceleration site in the near-earth plasma sheet. Most auroral ion acceleration processes occur (or are greatly enhanced) during the time that these global magnetospheric events are occurring in the magnetotail. A qualitative model relating energetic ion populations to near-tail magnetic reconnection at substorm onset followed by global redistribution is quite successful in explaining the primary observational features. Recent measurements of the elemental composition and charge-states have proven valuable for showing the source (solar wind or ionosphere) of the original plasma population from which the ions were accelerated

  7. A Survey of Hadron Therapy Accelerator Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  8. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  9. 36Chlorine accelerator mass spectrometry programme at BARC-TIFR pelletron accelerator. RSP-12

    International Nuclear Information System (INIS)

    Surendran, P.; Shrivastava, A.; Gupta, A.K.; Nair, J.P.; Yadav, M.L.; Gore, J.A.; Sparrow, H.; Bhagwat, P.V.; Kailas, S.; Kale, R.M.; Hemalatha, M.

    2007-01-01

    Accelerator mass spectrometry (AMS) is an ultra sensitive means of counting individual atoms having sufficiently long half life and available in small amount. The 14 UD Pelletron Accelerator is an ideal machine to carry out AMS studies with heavy isotopes like 36 Cl and 129 I. Cosmogenic radio isotope 36 Cl is widely being detected using AMS as it has got applications in ground water research, radioactive waste management, atmospheric 36 Cl transport mechanism studies of Arctic Alpine ice core etc. As a part of the ongoing AMS programme at 14UD Pelletron Accelerator Facility, Mumbai, a segmented gas detector developed for identification of 36 Cl was tested for performance. Recently a beam chopper required for this measurement has been developed. 36 Cl measurements carried out to detect and measure the ratio of 36 Cl to 35 Cl in an irradiated sample and dated sample are reported in this paper

  10. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    International Nuclear Information System (INIS)

    Ryne, Robert D

    2006-01-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, 'Facilities for the Future of Science: A Twenty-Year Outlook'. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects

  11. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    Science.gov (United States)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  12. Extraordinary Tools for Extraordinary Science: The Impact of SciDAC on Accelerator Science and Technology

    International Nuclear Information System (INIS)

    Ryne, Robert D.

    2006-01-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects

  13. A Statistical Perspective on Highly Accelerated Testing

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  14. Accelerated EM-based clustering of large data sets

    NARCIS (Netherlands)

    Verbeek, J.J.; Nunnink, J.R.J.; Vlassis, N.

    2006-01-01

    Motivated by the poor performance (linear complexity) of the EM algorithm in clustering large data sets, and inspired by the successful accelerated versions of related algorithms like k-means, we derive an accelerated variant of the EM algorithm for Gaussian mixtures that: (1) offers speedups that

  15. First muon acceleration using a radio-frequency accelerator

    Directory of Open Access Journals (Sweden)

    S. Bae

    2018-05-01

    Full Text Available Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu^{-}, which are bound states of positive muons (μ^{+} and two electrons, are generated from μ^{+}’s through the electron capture process in an aluminum degrader. The generated Mu^{-}’s are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ. In the RFQ, the Mu^{-}’s are accelerated to 89 keV. The accelerated Mu^{-}’s are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  16. CAS CERN Accelerator School: Power converters for particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    This volume presents the proceedings of the fifth specialized course organized by the CERN Accelerator School, the subject on this occasion being power converters for particle accelerators. The course started with lectures on the classification and topologies of converters and on the guidelines for achieving high performance. It then went on to cover the more detailed aspects of feedback theory, simulation, measurements, components, remote control, fault diagnosis and equipment protection as well as systems and grid-related problems. The important topics of converter specification, procurement contract management and the likely future developments in semiconductor components were also covered. Although the course was principally directed towards DC and slow-pulsed supplies, lectures were added on fast converters and resonant excitation. Finally the programme was rounded off with three seminars on the related fields of Tokamak converters, battery energy storage for electric vehicles, and the control of shaft generators in ships. (orig.)

  17. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  18. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  19. rf quadrupole linac: a new low-energy accelerator

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Fuller, C.W.

    1980-01-01

    A new concept in low-energy particle accelerators, the radio-frequency quadrupole (RFQ) linac, is currently being developed at the Los Alamos National Scientific Laboratory. In this new linear accelerating structure both the focusing and accelerating forces are produced by the rf fields. It can accept a high-current, low-velocity dc ion beam and bunch it with a high capture efficiency. The performance of this structure as a low-energy linear accelerator has been verified with the successful construction of a proton RFQ linac. This test structure has accelerated 38 mA of protons from 100 keV to 640 keV in 1.1 meters with a capture efficiency greater than 80%. In this paper a general description of the RFQ linac and an outline of the basic RFQ linac design procedure are presented in addition to the experimental results from the test accelerator. Finally, several applications of this new accelerator are discussed

  20. Commissioning measurements for photon beam data on three TrueBeam linear accelerators, and comparison with Trilogy and Clinac 2100 linear accelerators

    Science.gov (United States)

    2013-01-01

    This study presents the beam data measurement results from the commissioning of three TrueBeam linear accelerators. An additional evaluation of the measured beam data within the TrueBeam linear accelerators contrasted with two other linear accelerators from the same manufacturer (i.e., Clinac and Trilogy) was performed to identify and evaluate any differences in the beam characteristics between the machines and to evaluate the possibility of beam matching for standard photon energies. We performed a comparison of commissioned photon beam data for two standard photon energies (6 MV and 15 MV) and one flattening filter‐free (“FFF”) photon energy (10 FFF) between three different TrueBeam linear accelerators. An analysis of the beam data was then performed to evaluate the reproducibility of the results and the possibility of “beam matching” between the TrueBeam linear accelerators. Additionally, the data from the TrueBeam linear accelerator was compared with comparable data obtained from one Clinac and one Trilogy linear accelerator models produced by the same manufacturer to evaluate the possibility of “beam matching” between the TrueBeam linear accelerators and the previous models. The energies evaluated between the linear accelerator models are the 6 MV for low energy and the 15 MV for high energy. PDD and output factor data showed less than 1% variation and profile data showed variations within 1% or 2 mm between the three TrueBeam linear accelerators. PDD and profile data between the TrueBeam, the Clinac, and Trilogy linear accelerators were almost identical (less than 1% variation). Small variations were observed in the shape of the profile for 15 MV at shallow depths (linear accelerators; the TrueBeam data resulted in a slightly greater penumbra width. The diagonal scans demonstrated significant differences in the profile shapes at a distance greater than 20 cm from the central axis, and this was more notable for the 15 MV energy. Output factor

  1. An adaptive cryptographic accelerator for network storage security on dynamically reconfigurable platform

    Science.gov (United States)

    Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei

    2008-12-01

    Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.

  2. Accelerated stress testing of terrestrial solar cells

    Science.gov (United States)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  3. Design study of a microwave driver for a Relativistic Klystron Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Houck, T.L.

    1993-05-01

    In two-beam accelerators, the reacceleration of a modulated drive beam can enable high conversion efficiency of electron beam energy to rf energy. However, the stability issues involved with the transport of high current electron beams through rf extraction structures and induction accelerator cells are critical. The author reports on theoretical studies and computer simulations of a two-beam accelerator design using traveling-wave extraction structures. Specific issues addressed include regenerative and cumulative transverse instabilities

  4. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  5. Electrostatic analysis of 750 keV DC accelerator

    International Nuclear Information System (INIS)

    Kumar, Abhay; Dwivedi, Jishnu; Jana, Arup Ratan

    2011-01-01

    The indigenously developed 750 keV DC accelerator working at RRCAT for the last 5 years uses SF 6 at 6 bar pressure as the insulating gas. The green house potential of this gas is about 22,000 times more than that of CO 2 gas. An electrostatic analysis of this accelerator was performed in order to probe the necessity of using this gas with a very elaborate gas handling system. The DC accelerator is approximated by a 2-D axisymmetric model in ANSYS and voltages were defined at the individual stages of the accelerating tube. The result of the study shows that the present design needs SF 6 gas and the pressure vessel dimensions need to be modified to operate the DC accelerator with environmentally friendly N 2 -CO 2 mixture. This paper presents the methodology of the analysis, discusses the DC accelerator finite element model and presents the results of the analysis. The paper also proposes changes in the DC accelerator design to run the accelerator with N 2 -CO 2 mixture. (author)

  6. Ion extraction capabilities of two-grid accelerator systems

    International Nuclear Information System (INIS)

    Rovang, D.C.; Wilbur, P.J.

    1984-02-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems

  7. JUMP KINETIC DETERMINANTS OF SPRINT ACCELERATION PERFORMANCE FROM STARTING BLOCKS IN MALE SPRINTERS

    Directory of Open Access Journals (Sweden)

    Peter S. Maulder

    2006-06-01

    Full Text Available The purpose of this research was to identify the jump kinetic determinants of sprint acceleration performance from a block start. Ten male (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42} track sprinters at a national and regional competitive level performed 10 m sprints from a block start. Anthropometric dimensions along with squat jump (SJ, countermovement jump (CMJ, continuous straight legged jump (SLJ, single leg hop for distance, and single leg triple hop for distance measures of power were also tested. Stepwise multiple regression analysis identified CMJ average power (W/kg as a predictor of 10 m sprint performance from a block start (r = 0.79, r2 = 0.63, p<0.01, SEE = 0.04 (s, %SEE = 2.0. Pearson correlation analysis revealed CMJ force and power (r = -0.70 to -0.79; p = 0.011 - 0.035 and SJ power (r = -0.72 to -0.73; p = 0.026 - 0.028 generating capabilities to be strongly related to sprint performance. Further linear regression analysis predicted an increase in CMJ average and peak take-off power of 1 W/kg (3% & 1.5% respectively to both result in a decrease of 0.01 s (0.5% in 10 m sprint performance. Further, an increase in SJ average and peak take-off power of 1 W/kg (3.5% & 1.5% respectively was predicted to result in a 0.01 s (0.5% reduction in 10 m sprint time. The results of this study seem to suggest that the ability to generate power both elastically during a CMJ and concentrically during a SJ to be good indicators of predicting sprint performance over 10 m from a block start

  8. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  9. CERN: Accelerator school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  10. Accelerators and associated infrastructure at IUAC

    International Nuclear Information System (INIS)

    Roy, Amit

    2009-01-01

    Full text: The 15UD Pelletron accelerator forms the heart of the core facilities of IUAC and has been in regular operation round the clock, 7 days a week except during maintenance periods with a remarkable uptime of more than 90% since July 1991. The accelerator augmentation programme intends to provide superconducting linear accelerator modules to boost the energy of ions in the range of 500-600 MeV. On-line beam acceleration with superbuncher, first linac module and rebuncher was successfully conducted and first nuclear physics experiment was performed using this beam. The fabrication of the second and third linac modules with sixteen resonators is going on in full swing and construction is expected to be completed within this year. The first element of the high current injector is a High Tc superconducting magnet ECR source, which would be followed by a room temperature radio frequency quadrupole accelerator and drift tube linac cavities. Prototypes of the RFQ working at 48.5 MHz, and that of the DTL working at 97 MHz have been fabricated and undergoing tests. (author)

  11. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  12. Accelerated testing for studying pavement design and performance (FY 2002) : performance of foamed asphalt stabilized base in full depth reclaimed asphalt pavement.

    Science.gov (United States)

    2004-08-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing Laboratory at Kansas : State University. The project was selected and funded by the Midwest Accelerated Testing Pooled Fund Program , : which includes Iowa, Kansas, ...

  13. Modeling the Relations among Parental Involvement, School Engagement and Academic Performance of High School Students

    Science.gov (United States)

    Al-Alwan, Ahmed F.

    2014-01-01

    The author proposed a model to explain how parental involvement and school engagement related to academic performance. Participants were (671) 9th and 10th graders students who completed two scales of "parental involvement" and "school engagement" in their regular classrooms. Results of the path analysis suggested that the…

  14. Experimental studies of particle acceleration with ultra-intense lasers - Applications to nuclear physics experiments involving laser-produced plasmas

    International Nuclear Information System (INIS)

    Plaisir, C.

    2010-11-01

    For the last ten years, the Ultra High Intensity Lasers offer the opportunity to produce accelerated particle beams which contain more than 10 12 electrons, protons accelerated into a few ps. We have simulated and developed some diagnostics based on nuclear activation to characterize both the angular and the energy distributions of the particle beams produced with intense lasers. The characterization methods which are presented are illustrated by means of results obtained in different experiments. We would use the particle beams produced to excite nuclear state in a plasma environment. It can modify intrinsic characteristics of the nuclei such as the half-life of some isomeric states. To prepare this kind of experiments, we have measured the nuclear reaction cross section (gamma,n) to produce the isomeric state of the 84 Rb, which has an excitation energy of 463 keV, with the electron accelerator ELSA of CEA/DIF in Bruyeres-le-Chatel (France). (author)

  15. Professor Kodi Husimi promoted accelerator projects

    International Nuclear Information System (INIS)

    Kikuchi, Ken

    2009-01-01

    The main aim of my article is to describe how deeply Professor Husimi devoted himself to promote large accelerator projects in Japan, as the establishment of National Laboratory for High Energy Physics (KEK), Photon Factory and TRISTAN, in which I myself was deeply involved. In addition, some topics related that I was a student of Professor Husimi are also reported. (author)

  16. Wandering accelerators throughout my life (4)

    International Nuclear Information System (INIS)

    Nakai, Kozi

    2010-01-01

    My effort in the last stage of wandering about accelerator was to bridge the gap between nuclear and high-energy physics at the KEK-PS. Since the TRISTAN construction started, the KEK-PS has been opened to nuclear physics users. Among various possibilities, emphasis was placed on the hypernuclear experiments, K-decay experiments, and later, the long-base-line neutrino experiment (K2K), which were successfully carried out. Although the TRISTAN experiment was unable to find the top quark, the CP-test experiments at TRISTAN-II (KEKB) have proven the Kobayashi-Maskawa theory successfully. During the last three years of my tenure in KEK, I served as a science adviser to Minister of Education, and I was involved in international affairs of accelerator science. (author)

  17. Status of the Next European Dipole (NED) Activity of the Collaborated Accelerator Research in Europe (CARE) Project

    CERN Document Server

    Devred, Arnaud; Baynham, D Elwyn; Boutboul, T; Canfer, S; Chorowski, M; den Ouden, A; Fabbricatore, P; Farinon, S; Fessia, P; Fydrych, J; Félice, H; Greco, Michela; Greenhalgh, J; Leroy, D; Loveridge, P W; Michel, F; Oberli, L R; Pedrini, D; Polinski, J; Previtali, V; Quettier, L; Rifflet, J M; Rochford, J; Rondeaux, F; Sanz, S; Sgobba, Stefano; Sorbi, M; Toral-Fernandez, F; Van Weelderen, R; Vincent-Viry, O; Volpini, G; Védrine, P

    2005-01-01

    Plans for LHC upgrade and for the final focalization of linear colliders call for large aperture and/or high-performance dipole and quadrupole magnets that may be beyond the reach of conventional NbTi magnet technology. The Next European Dipole (NED) activity was launched on January 1st, 2004 to promote the development of high-performance, Nb$_{3}$Sn wires in collaboration with European industry (aiming at a non-copper critical current density of 1500 A/mm2 at 4.2 K and 15 T) and to assess the suitability of Nb$_{3}$Sn technology to the next generation of accelerator magnets (aiming at an aperture of 88 mm and a conductor peak field of 15 T). It is integrated within the Collaborated Accelerator Research in Europe (CARE) project, involves seven collaborators, and is partly funded by the European Union. We present here an overview of the NED activity and we report on the status of the various work packages it encompasses.

  18. Personal computers in accelerator control

    International Nuclear Information System (INIS)

    Anderssen, P.S.

    1988-01-01

    The advent of the personal computer has created a popular movement which has also made a strong impact on science and engineering. Flexible software environments combined with good computational performance and large storage capacities are becoming available at steadily decreasing costs. Of equal importance, however, is the quality of the user interface offered on many of these products. Graphics and screen interaction is available in ways that were only possible on specialized systems before. Accelerator engineers were quick to pick up the new technology. The first applications were probably for controllers and data gatherers for beam measurement equipment. Others followed, and today it is conceivable to make personal computer a standard component of an accelerator control system. This paper reviews the experience gained at CERN so far and describes the approach taken in the design of the common control center for the SPS and the future LEP accelerators. The design goal has been to be able to integrate personal computers into the accelerator control system and to build the operator's workplace around it. (orig.)

  19. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    International Nuclear Information System (INIS)

    Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; Wang, H.; Bruhwiler, D.L.; Dechow, D.; Mullowney, P.; Messmer, P.; Nieter, C.; Ovtchinnikov, S.; Paul, K.; Stoltz, P.; Wade-Stein, D.; Mori, W.B.; Decyk, V.; Huang, C.K.; Lu, W.; Tzoufras, M.; Tsung, F.; Zhou, M.; Werner, G.R.; Antonsen, T.; Katsouleas, T.; Morris, B.

    2007-01-01

    Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction

  20. Optimization of negative ion accelerators

    International Nuclear Information System (INIS)

    Pamela, J.

    1991-01-01

    We have started to study negative ion extraction and acceleration systems in view of designing a 1 MeV D - accelerator. This study is being made with a two-Dimensional code that has been specifically developed in our laboratory and validated by comparison to three sets of experimental data. We believe that the criteria for negative ion accelerator design optimization should be: (i) to provide the best optics; (ii) to reduce the power load on the extraction grid; (iii) to allow operation with low electric fields in order to reduce the problem of breakdowns. We show some results of optics calculations performed for two systems that will be operational in the next months: the CEA-JAERI collaboration at Cadarache and the european DRAGON experiment at Culham. Extrapolations to higher energies of 500 to 1100 keV have also been conducted. All results indicate that the overall accelerator length, whatever be the number of gaps, is constrained by space charge effects (Child-Langmuir). We have combined this constraint with high-voltage hold-off empirical laws. As a result, it appears that accelerating 10 mA/cm 2 of D - at 1 MeV with good optics, as required for NET or ITER, is close to the expected limit of high-voltage hold-off

  1. Spectral analysis of an algebraic collapsing acceleration for the characteristics method

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.

    2005-01-01

    A spectral analysis of a diffusion synthetic acceleration called Algebraic Collapsing Acceleration (ACA) was carried out in the context of the characteristics method to solve the neutron transport equation. Two analysis were performed in order to assess the ACA performances. Both a standard Fourier analysis in a periodic and infinite slab-geometry and a direct spectral analysis for a finite slab-geometry were investigated. In order to evaluate its performance, ACA was compared with two competing techniques used to accelerate the convergence of the characteristics method, the Self-Collision Re-balancing technique and the Asymptotic Synthetic Acceleration. In the restricted framework of 1-dimensional slab-geometries, we conclude that ACA offers a good compromise between the reduction of the spectral radius of the iterative matrix and the resources to construct, store and solve the corrective system. A comparison on a monoenergetic 2-dimensional benchmark was performed and tends to confirm these conclusions. (authors)

  2. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  3. Minkowski spacetime does not apply to a homogeneously accelerating medium

    Directory of Open Access Journals (Sweden)

    Brian Coleman

    Full Text Available Home and comoving inertial frame parameters of an individual point of an idealized medium of launch length L uniformly co-accelerating between identical fixed-thrust rockets, are well known. This is not the case with the varying inter-rocket radar periods and related implications regarding a changing ‘noninertial own-length’ Λ which differs from a front rocket’s retrospective separation L from the simultaneously relatively moving rear rocket. On the other hand, the nonhomogeneous acceleration case involving every comoving frame’s unchanging perception of a contrived ‘rigor mortis’ medium (so-called ‘rigid motion’ traditionally associated with ‘Rindler coordinates’ whereby Λ=L=L, constitutes the sole extended accelerating medium scenario where the entrenched Minkowski metric is actually applicable. Paraphrasing Wolfgang Pauli, not only is Minkowski spacetime not correct [in the general sense], it is not even wrong [in the restricted sense]. Keywords: Homogeneous acceleration, Radar intervals, Minkowski metric, Rigor mortis acceleration, Medium-timed photon crossing rate, Retrospective separation

  4. The formation of kappa-distribution accelerated electron populations in solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Stackhouse, Duncan J.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: d.stackhouse.1@research.gla.ac.uk, E-mail: eduard@astro.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2014-12-01

    Driven by recent RHESSI observations of confined loop-top hard X-ray sources in solar flares, we consider stochastic acceleration of electrons in the presence of Coulomb collisions. If electron escape from the acceleration region can be neglected, the electron distribution function is determined by a balance between diffusive acceleration and collisions. Such a scenario admits a stationary solution for the electron distribution function that takes the form of a kappa distribution. We show that the evolution toward this kappa distribution involves a 'wave front' propagating forward in velocity space, so that electrons of higher energy are accelerated later; the acceleration timescales with energy according to τ{sub acc} ∼ E {sup 3/2}. At sufficiently high energies escape from the finite-length acceleration region will eventually dominate. For such energies, the electron velocity distribution function is obtained by solving a time-dependent Fokker-Planck equation in the 'leaky-box' approximation. Solutions are obtained in the limit of a small escape rate from an acceleration region that can effectively be considered a thick target.

  5. Machine Protection: Availability for Particle Accelerators

    CERN Document Server

    Apollonio, Andrea; Schmidt, Ruediger

    2015-03-16

    Machine availability is a key indicator for the performance of the next generation of particle accelerators. Availability requirements need to be carefully considered during the design phase to achieve challenging objectives in different fields, as e.g. particle physics and material science. For existing and future High-Power facilities, such as ESS (European Spallation Source) and HL-LHC (High-Luminosity LHC), operation with unprecedented beam power requires highly dependable Machine Protection Systems (MPS) to avoid any damage-induced downtime. Due to the high complexity of accelerator systems, finding the optimal balance between equipment safety and accelerator availability is challenging. The MPS architecture, as well as the choice of electronic components, have a large influence on the achievable level of availability. In this thesis novel methods to address the availability of accelerators and their protection systems are presented. Examples of studies related to dependable MPS architectures are given i...

  6. Prototyping high-gradient mm-wave accelerating structures

    International Nuclear Information System (INIS)

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; Neilson, Jeffrey; Tantawi, Sami

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value of 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.

  7. Virtual Accelerator for Accelerator Optics Improvement

    CERN Document Server

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  8. Prototype superconducting magnet for the FFAG accelerator

    International Nuclear Information System (INIS)

    Obana, T.; Ogitsu, T.; Yamamoto, A.; Yoshimoto, M.; Mori, Y.; Fujii, T.; Iwasa, M.; Orikasa, T.

    2006-01-01

    A study of a superconducting magnet for the Fixed Field Alternating Gradient (FFAG) accelerator has been performed. The FFAG accelerator requires static magnetic field, and it is suitable for superconducting magnet applications, because problems associated with time varying magnetic field such as eddy current loss can be eliminated. The superconducting magnet, which can generate high magnetic field, is possible to realize a higher beam energy with a given accelerator size or the size to be smaller for a given beam energy. The FFAG accelerator magnet is demanded to have a complicated nonlinear magnetic field with high accuracy. As a first prototype superconducting coil, the coil configuration which consists of left-right asymmetric cross-section and large aperture has been designed. The prototype coil has been successfully developed by using a 6-axis Computer Numerical Control (CNC) winding machine. The magnetic field of the prototype coil has been demonstrated in warm measurement. As a consequence, the technical feasibility has been verified with the prototype coil development and the performance test. In addition, the technology components developed in the prototype coil have a possibility to transfer to a fusion magnet

  9. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  10. Reble, a radially converging electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  11. Pushing XPath Accelerator to its Limits

    OpenAIRE

    Grün, Christian; Holupirek, Alexander; Kramis, Marc; Scholl, Marc H.; Waldvogel, Marcel

    2006-01-01

    Two competing encoding concepts are known to scale well with growing amounts of XML data: XPath Accelerator encoding implemented by MonetDB for in-memory documents and X-Hive's Persistent DOM for on-disk storage. We identified two ways to improve XPath Accelerator and present prototypes for the respective techniques: BaseX boosts in-memory performance with optimized data and value index structures while Idefix introduces native block-oriented persistence with logarithmic update behavior for t...

  12. Laser-driven particle acceleration for radiobiology and radiotherapy: where we are and where we are going

    Science.gov (United States)

    Giulietti, Antonio

    2017-05-01

    Radiation therapy of tumors progresses continuously and so do devices, sharing a global market of about $ 4 billions, growing at an annual rate exceeding 5%. Most of the progress involves tumor targeting, multi-beam irradiation, reduction of damage on healthy tissues and critical organs, dose fractioning. This fast-evolving scenario is the moving benchmark for the progress of the laser-based accelerators towards clinical uses. As for electrons, both energy and dose requested by radiotherapy are available with plasma accelerators driven by lasers in the power range of tens of TW but several issues have still to be faced before getting a prototype device for clinical tests. They include capability of varying electron energy, stability of the process, reliability for medical users. On the other side hadron therapy, presently applied to a small fraction of cases but within an exponential growth, is a primary option for the future. With such a strong motivation, research on laser-based proton/ion acceleration has been supported in the last decade in order to get performances suitable to clinical standards. None of these performances has been achieved so far with laser techniques. In the meantime a rich crop of data have been obtained in radiobiological experiments performed with beams of particles produced with laser techniques. It is quite significant however that most of the experiments have been performed moving bio samples to laser labs, rather moving laser equipment to bio labs or clinical contexts. This give us the measure that laser community cannot so far provide practical devices usable by non-laser people.

  13. Thin film studies toward improving the performance of accelerator electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Md Abdullah [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2016-05-31

    Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identical 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(±0.05) x 10-13 Torr L s-1 cm-2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(±0.05) x 10-13 Torr L s-1 cm-2 following an initial 90 °C bake and 2(±20) x 10-16 Torr L s-1 cm-2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify

  14. Research project on accelerator-driven subcritical system using FFAG accelerator and Kyoto University critical assembly

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Unesaki, Hironobu; Misawa, Tsuyoshi; Tanigaki, Minoru; Mori, Yoshiharu; Shiroya, Seiji; Inoue, Makoto; Ishi, Y.; Fukumoto, Shintaro

    2005-01-01

    The KART (Kumatori Accelerator-driven Reactor Test facility) project started in Research Reactor Institute, Kyoto University in fiscal year 2002 with the grant by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The purpose of this research project is to demonstrate the basis feasibility of accelerator driven system (ADS), studying the effect of incident neutron energy on the effective multiplication factor in a subcritical nuclear fuel system. For this purpose, a variable-energy FFAG (Fixed Field Alternating Gradient) accelerator complex is being constructed to be coupled with the Kyoto University Critical Assembly (KUCA). The FFAG proton accelerator complex consists of ion-beta, booster and main rings. This system aims to attain 1 μA proton beam with energy range from 20 to 150 MeV with a repetition rate of 120 Hz. The first beam from the FFAG complex is expected to be available by the end of FY 2005, and the experiment on ADS with KUCA and the FFAG complex (FFAG-KUCA experiment) will start in FY 2006. Before the FFAG-KUCA experiment starts, preliminary experiments with 14 MeV neutrons are currently being performed using a Cockcroft-Walton type accelerator coupled with the KUCA. Experimental data are analyzed using continuous energy Monte-Carlo codes MVP, MCNP and MNCP-X. (author)

  15. Radiation safety and radiation protection problems on the TESLA Accelerator Installation

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.; Orlic, M.

    1997-01-01

    As we can see from the examples of many accelerator facilities installed throughout the world with ion beam energy, mass and charge characteristics and design similar to the TESLA Accelerator Installation, there is a great diversity among them, and each radiation protection and safety programme must be designed to facilitate the safe and effective operation of the accelerator according to the needs of the operating installation. Although there is no standard radiation protection and safety organization suitable for all institutions, experience suggests some general principles that should be integrated with all the disciplines involved in a comprehensive safety programme. (author)

  16. Synergia CUDA: GPU-accelerated accelerator modeling package

    International Nuclear Information System (INIS)

    Lu, Q; Amundson, J

    2014-01-01

    Synergia is a parallel, 3-dimensional space-charge particle-in-cell accelerator modeling code. We present our work porting the purely MPI-based version of the code to a hybrid of CPU and GPU computing kernels. The hybrid code uses the CUDA platform in the same framework as the pure MPI solution. We have implemented a lock-free collaborative charge-deposition algorithm for the GPU, as well as other optimizations, including local communication avoidance for GPUs, a customized FFT, and fine-tuned memory access patterns. On a small GPU cluster (up to 4 Tesla C1070 GPUs), our benchmarks exhibit both superior peak performance and better scaling than a CPU cluster with 16 nodes and 128 cores. We also compare the code performance on different GPU architectures, including C1070 Tesla and K20 Kepler.

  17. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  18. R&D for Future Accelerators

    CERN Document Server

    Zimmermann, Frank

    2006-01-01

    Research & development for future accelerators are reviewed. First, I discuss colliding hadron beams, in particular upgrades to the Large Hadron Collider (LHC). This is followed by an overview of new concepts and technologies for lepton ring colliders, with examples taken from VEPP-2000, DAFNE-2, and Super-KEKB. I then turn to recent progress and studies for the multi-TeV Compact Linear Collider (CLIC). Some generic linear-collider research, centered at the KEK Accelerator Test Facility, is described next. Subsequently, I survey the neutrino factory R&D performed in the framework of the US feasibility study IIa, and I also comment on a novel scheme for producing monochromatic neutrinos from an electron-capture beta beam. Finally, I present innovative ideas for a high-energy muon collider and I consider recent experimental progress on laser and plasma acceleration.

  19. Analyzing radial acceleration with a smartphone acceleration sensor

    Science.gov (United States)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  20. Modeling Acceleration of a System of Two Objects Using the Concept of Limits

    Science.gov (United States)

    Sokolowski, Andrzej

    2018-01-01

    Traditional school laboratory exercises on a system of moving objects connected by strings involve deriving expressions for the system acceleration, a = (?F)/m, and sketching a graph of acceleration vs. force. While being in the form of rational functions, these expressions present great opportunities for broadening the scope of the analysis by…

  1. Development of Power System for Medium Energy Accelerator

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Seol, Kyung Tae; Jang, Ji Ho; Cho, Yong Sub; Hong, In Seok; Kim, Kyung Ryul

    2008-05-01

    The main goal of the studies are to develop a power supply system used for 100MeV proton accelerator and to operate 20MeV accelerator which has been installed in KAERI site. The 100MeV proton accelerator uses RF cavity to accelerate beams and need RF amplifier, klystron. To operate the klystron, a high power pulse power supply is required and the power supply system should have high quality because the reliability of the power supply has critical impact on the overall reliability of accelerator system. Therefore, high power pulse power system and related technology development are inevitable for 100MeV accelerator system development. 20MeV accelerator system has been developed and installed in KAERI site, which will be used as an injector for 100MeV accelerator and supply 20MeV beam to users. A study on the 20MeV accelerator characteristics should be performed to operate the machine efficiently. In addition, this machine can be used as a test bench for developing the 100MeV accelerator components. Therefore, not only the hardware so called 'high voltage power supply', but the related technology of the high quality high voltage power system and man power can be obtained from the results of this studies. The test results of the 20MeV accelerator can be utilized as a basis for efficient operation of 100MeV accelerator and these are the ultimate objective and necessities of the study

  2. Simulating autonomous driving styles: Accelerations for three road profiles

    Directory of Open Access Journals (Sweden)

    Karjanto Juffrizal

    2017-01-01

    Full Text Available This paper presents a new experimental approach to simulate projected autonomous driving styles based on the accelerations at three road profiles. This study was focused on the determination of ranges of accelerations in triaxial direction to simulate the autonomous driving experience. A special device, known as the Automatic Acceleration and Data controller (AUTOAccD, has been developed to guide the designated driver to accomplish the selected accelerations based on the road profiles and the intended driving styles namely assertive, defensive and light rail transit (LRT. Experimental investigations have been carried out at three different road profiles (junction, speed hump, and corner with two designated drivers with five trials on each condition. A driving style with the accelerations of LRT has also been included in this study as it is significant to the present methodology because the autonomous car is predicted to accelerate like an LRT, in such a way that it enables the users to conduct activities such as working on a laptop, using personal devices or eating and drinking while travelling. The results demonstrated that 92 out of 110 trials of the intended accelerations for autonomous driving styles could be achieved and simulated on the real road by the designated drivers. The differences between the two designated drivers were negligible, and the rates of succeeding in realizing the intended accelerations were high. The present approach in simulating autonomous driving styles focusing on accelerations can be used as a tool for experimental setup involving autonomous driving experience and acceptance.

  3. A new collective-field acceleration mechanism using a powerful laser

    International Nuclear Information System (INIS)

    Willis, W.J.

    1975-01-01

    Performance estimates for a linear accelerator for positive ions are presented. Focusing and acceleration is performed by means of a local, strong modulation of a relativistic electron beam using the electromagnetic field of a laser. For high-power laser beams of 1010 watts per square wavelength, the accelerating field strength can be several GV/m, assuming free electrons. Various interaction mechanisms of the laser beam with the electron beam are briefly discussed, notably inverse bremsstrahlung and interaction with the self-magnetic field of the electron beam. Finally, coherent effects and the injection of ions are dealt with. (author)

  4. The IFMIF-EVEDA accelerator beam dump design

    International Nuclear Information System (INIS)

    Iglesias, D.; Arranz, F.; Arroyo, J.M.; Barrera, G.; Branas, B.; Casal, N.; Garcia, M.; Lopez, D.; Martinez, J.I.; Mayoral, A.; Ogando, F.; Parro, M.; Oliver, C.; Rapisarda, D.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2011-01-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 x 10 5 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition.

  5. Results of LIA-10M accelerator investigations

    CERN Document Server

    Gordeev, V S; Filippov, V O

    2001-01-01

    There are presented basic results of experiments on the LIA-10M accelerator since its putting into operation (1994) till today. There were investigated various modes of accelerator operation and its output characteristics depending on the parameters of injected electron beam,number of connected accelerator modules,time program of inductors switch-in etc. There was obtained a large scope of experimental data that are of interest for LIA-10M accelerator practical use and for the development of new facilities of this type. The investigations that have been performed recently make it possible to considerably (half as much again) increase the output dose parameters of the accelerator as compared to the level achieved before:maximal dose(Si) and dose rate on the output flange constitute 400 Gy and 2.5 centre dot 10 Gy/s, while at a 1 meter distance from the target they are equal to 7.5 Gy and 5 centre dot 10 sup 8 Gy/s, respectively.

  6. Development of small C-band standing-wave accelerator structure

    International Nuclear Information System (INIS)

    Miura, S.; Takahashi, A.; Hisanaga, N.; Sekido, H.; Yoshizumi, A.

    2000-01-01

    We have newly developed a compact C-band (5712 MHz) standing-wave accelerator for the medical product/waste sterilization applications. The accelerator consists of an electron gun operating at 25 kV DC followed by a single-cell pre-buncher and 3-cell buncher section, and 11-cell of the side-coupled standing-wave accelerating structure. The total length including the electron gun is about 600 mm. The first high-power test was performed in March 2000, where the accelerator successively generated the electron beam of 9 MeV energy and 160 mA peak-current at 3.8 MW RF input power. Mitsubishi Heavy Industry starts to serve the sterilization systems using C-band accelerator reported here, and also supplies the accelerator components for the medical oncology applications. (author)

  7. Towards MRI-guided linear accelerator control: gating on an MRI accelerator.

    Science.gov (United States)

    Crijns, S P M; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2011-08-07

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  8. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    , was found to be 4.9 mm. Both values are in good agreement with theory. In addition, for our laser parameters, the factors that limit the acceleration distance at the different densities were identified. In the desirable low-density case, where in principle the highest energies can be reached, diffraction of the driver pulse stops the acceleration even before the dephasing length is reached. While plasma-length scans have been performed by other groups, this is the first comprehensive scan that covers a wide range of lengths, even beyond the dephasing length, thus allowing for a reliable determination of acceleration parameters. Only with this knowledge the gas target length and electron density can be optimized for given laser parameters. In a second experiment, the influence of a tilted laser-pulse-intensity front on laser- wakefield acceleration was investigated. Such a tilt may be used to excite asymmetric plasma wakes, which can steer electron bunches away from the initial laser axis and thus allow for all-optical control of the electron-pointing direction, in our setup within an 8 mrad opening window. This also implies that the pulse front tilt (PFT) originating in the laser system needs to be carefully monitored if one wants to avoid this effect. We also discovered evidence of collective electron-betatron oscillations due to off-axis electron injection into the wakefield induced by a pulse-front tilt. This is a potential knob to tune the X-ray radiation wavelength, as the strength of PFT changes the off-axis distances for injection. All experimental results are support by full-scale three-dimensional Particle-in-Cell simulations.

  9. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    International Nuclear Information System (INIS)

    Popp, Antonia

    2011-01-01

    . Both values are in good agreement with theory. In addition, for our laser parameters, the factors that limit the acceleration distance at the different densities were identified. In the desirable low-density case, where in principle the highest energies can be reached, diffraction of the driver pulse stops the acceleration even before the dephasing length is reached. While plasma-length scans have been performed by other groups, this is the first comprehensive scan that covers a wide range of lengths, even beyond the dephasing length, thus allowing for a reliable determination of acceleration parameters. Only with this knowledge the gas target length and electron density can be optimized for given laser parameters. In a second experiment, the influence of a tilted laser-pulse-intensity front on laser-wakefield acceleration was investigated. Such a tilt may be used to excite asymmetric plasma wakes, which can steer electron bunches away from the initial laser axis and thus allow for all-optical control of the electron-pointing direction, in our setup within an 8 mrad opening window. This also implies that the pulse front tilt (PFT) originating in the laser system needs to be carefully monitored if one wants to avoid this effect. We also discovered evidence of collective electron-betatron oscillations due to off-axis electron injection into the wakefield induced by a pulse-front tilt. This is a potential knob to tune the X-ray radiation wavelength, as the strength of PFT changes the off-axis distances for injection. All experimental results are support by full-scale three-dimensional Particle-in-Cell simulations.

  10. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  11. Superconducting LINAC booster for the pelletron accelerator at Bombay

    International Nuclear Information System (INIS)

    Pillay, R.G.; Kurup, M.B.; Jain, A.K.; Biswas, D.; Kori, S.A.; Srinivasan, B.

    1989-01-01

    A superconducting heavy ion linear accelerator being constructed as a booster for the 14 UD pelletron installed recently at Bombay. The work involved in this project and the progress made so far are reviewed. (author). 15 refs., 8 figs

  12. A history of accelerators in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ophel, T. R.

    1996-04-01

    Over a period of almost sixty years, a surprisingly diverse range of accelerator activity has occurred. The earliest involved the electrostatic machines constructed at the University of Melbourne between 1938 and 1950. The most ambitious project undertaken, a 20.6 GeV proton synchrotron at Canberra, was never completed. These and other developments in laboratories throughout the country will be reviewed. 23 refs.,4 tabs., 8 figs.

  13. A history of accelerators in Australia

    International Nuclear Information System (INIS)

    Ophel, T. R.

    1996-04-01

    Over a period of almost sixty years, a surprisingly diverse range of accelerator activity has occurred. The earliest involved the electrostatic machines constructed at the University of Melbourne between 1938 and 1950. The most ambitious project undertaken, a 20.6 GeV proton synchrotron at Canberra, was never completed. These and other developments in laboratories throughout the country will be reviewed. 23 refs.,4 tabs., 8 figs

  14. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    International Nuclear Information System (INIS)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs

  15. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  16. PBFA [Particle Beam Fusion Accelerator] II: The pulsed power characterization phase

    International Nuclear Information System (INIS)

    Martin, T.H.; Turman, B.N.; Goldstein, S.A.

    1987-01-01

    The Particle Beam Fusion Accelerator II, PBFA II, is now the largest pulsed power device in operation. This paper summarizes its first year and a half of operation for the Department of Energy (DOE) Inertial Confinement Fusion (ICF) program. Thirty-six separate modules provide 72 output pulses that combine to form a 100 TW output pulse at the accelerator center. PBFA II was successfully test fired for the first time on December 11, 1985. This test completed the construction phase (Phase 1) within the expected schedule and budget. The accelerator checkout phase then started (Phase 2). The first priority during checkout was to bring the Phase 1 subsystems into full operation. The accelerator was first tested to determine overall system performance. Next, subsystems that were not performing adequately were modified. The accelerator is now being used for ion diode studies. 32 refs

  17. Muon Acceleration: Neutrino Factory and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-03-01

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.

  18. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  19. Performance of carbon nanofiber-cement composites subjected to accelerated decalcification

    OpenAIRE

    Arnold J.; Kosson D.; Sanchez F.; Brown L.

    2013-01-01

    The effect of decalcification on the chemo-mechanical behavior of carbon nanofiber (CNF)-cement composites was studied. Portland cement pastes with and without 0.2% CNFs were subjected to accelerated decalcification by exposure to ammonium nitrate solutions. The influence of microstructural alterations during decalcification on the physical and mechanical properties of the composites was examined. The presence of CNF agglomerates influenced the chemo-mechanical behavior of the composite durin...

  20. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  1. Scaling laws of design parameters for plasma wakefield accelerators

    International Nuclear Information System (INIS)

    Uhm, Han S.; Nam, In H.; Suk, Hyyong

    2012-01-01

    Simple scaling laws for the design parameters of plasma wakefield accelerators were obtained using a theoretical model, which were confirmed via particle simulation studies. It was found that the acceleration length was given by Δx=0.804λ p /(1−β g ), where λ p is the plasma wavelength and β g c the propagation velocity of the ion cavity. The acceleration energy can also be given by ΔE=(γ m −1)mc 2 =2.645mc 2 /(1−β g ), where m is the electron rest mass. As expected, the acceleration length and energy increase drastically as β g approached unity. These simple scaling laws can be very instrumental in the design of better-performing plasma wakefield accelerators. -- Highlights: ► Simple scaling laws for the design parameters of laser wakefield accelerators were obtained using a theoretical model. ► The scaling laws for acceleration length and acceleration energy were compared with particle-in-cell simulation results. ► The acceleration length and the energy increase drastically as β g approaches unity. ► These simple scaling laws can be very instrumental in the design of laser wakefield accelerators.

  2. Transport synthetic acceleration scheme for multi-dimensional neutron transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Modak, R S; Kumar, Vinod; Menon, S V.G. [Theoretical Physics Div., Bhabha Atomic Research Centre, Mumbai (India); Gupta, Anurag [Reactor Physics Design Div., Bhabha Atomic Research Centre, Mumbai (India)

    2005-09-15

    The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)

  3. Transport synthetic acceleration scheme for multi-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Modak, R.S.; Vinod Kumar; Menon, S.V.G.; Gupta, Anurag

    2005-09-01

    The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)

  4. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1992-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. We will summarized measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters will also be presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  5. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1993-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. The authors summarize measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters are also presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  6. Accelerated testing for studying pavement design and performance (FY 2004) : research summary.

    Science.gov (United States)

    2009-03-01

    The thirteenth full-scale Accelerated Pavement Test (APT) experiment at the Civil Infrastructure Laboratory (CISL) of Kansas State University aimed to determine the response and the failure mode of thin concrete overlays.

  7. Performance tests of the 600-kW cw, 80-MHz, radio-frequency systems for the FMIT accelerator

    International Nuclear Information System (INIS)

    Nylander, R.F.; Bacci, F.F.; Fazio, M.V.; Rodgers, J.D.

    1983-01-01

    The high-power rf system for the Fusion Materials Irradiation Test (FMIT) accelerator consists of 14 sets of equipment,** each of which can deliver up to 600 kW (cw) at 80 MHz into a load having a VSWR of 1.4 or less (any phase). The equipment was designed and constructed to FMIT specifications by Continental Electronics Mfg. Co. (CEMC) of Dallas, Texas. Four sets have been shipped to Los Alamos for use with the accelerator (two with the radio-frequency quadrupole (RFQ) and two with the drift-tube linac (DTL)). The first set was fully tested at CEMC; results are summarized. Further tests conducted at Los Alamos, both into a resistive (electrolytic) load and into a resonant cavity (Q about 21,000), have confirmed that this system meets, and in most cases far exceeds, the specified performance limits. The first of the 13 production sets also was tested at CEMC before shipping any of the rf equipment to the Hanford Engineering and Development Laboratory at Richland, Washington. Because of the differences in behavior observed when No. 1 was operated at Los Alamos with a different tube installed in the final power amplifier (FPA) cavity, CEMC agreed to test No. 5 with two tubes having widely differing characteristics (notably primary screen emission). As expected, behavior differed markedly, and some design modification was necessary to meet all specifications with either tube. Results of final performance tests on No. 5 are summarized. As noted in the table, detailed test results are presented in the CEMC Acceptance Test Reports (ATRs) dated April 7, 1982 and January 3, 1983. Discussion of the most significant aspects of CEMC's tests and of those performed at Los Alamos follows a brief description of the equipment

  8. Accelerated pavement testing efforts using the heavy vehicle simulator

    CSIR Research Space (South Africa)

    Du Plessis, Louw

    2017-10-01

    Full Text Available This paper provides a brief description of the technological developments involved in the development and use of the Heavy Vehicle Simulator (HVS) accelerated pavement testing equipment. This covers the period from concept in the late 1960’s...

  9. The nonlinear CWFA [Cherenkov Wakefield Accelerator

    International Nuclear Information System (INIS)

    Schoessow, P.

    1989-01-01

    The possible use of nonlinear media to enhance the performance of the Cherenkov Wakefield Accelerator (CWFA) is considered. Numerical experiments have been performed using a new wakefield code which demonstrate larger gradients and transformer ratios in the nonlinear CWFA than are obtained in the linear case. 7 refs., 3 figs

  10. Emotional intelligence as a predictor of academic performance in first-year accelerated graduate entry nursing students.

    Science.gov (United States)

    Fernandez, Ritin; Salamonson, Yenna; Griffiths, Rhonda

    2012-12-01

    To examine the association between trait emotional intelligence and learning strategies and their influence on academic performance among first-year accelerated nursing students. The study used a prospective survey design. A sample size of 81 students (100% response rate) who undertook the accelerated nursing course at a large university in Sydney participated in the study. Emotional intelligence was measured using the adapted version of the 144-item Trait Emotional Intelligence Questionnaire. Four subscales of the Motivated Strategies for Learning Questionnaire were used to measure extrinsic goal motivation, peer learning, help seeking and critical thinking among the students. The grade point average score obtained at the end of six months was used to measure academic achievement. The results demonstrated a statistically significant correlation between emotional intelligence scores and critical thinking (r = 0.41; p peer learning (r = 0.32; p academic achievement (β = 0.25; p = 0.023). In addition to their learning styles, higher levels of awareness and understanding of their own emotions have a positive impact on students' academic achievement. Higher emotional intelligence may lead students to pursue their interests more vigorously and think more expansively about subjects of interest, which could be an explanatory factor for higher academic performance in this group of nursing students. The concepts of emotional intelligence are central to clinical practice as nurses need to know how to deal with their own emotions as well as provide emotional support to patients and their families. It is therefore essential that these skills are developed among student nurses to enhance the quality of their clinical practice. © 2012 Blackwell Publishing Ltd.

  11. Research and development activities around the EUROTRANS accelerator for ADS applications

    International Nuclear Information System (INIS)

    Biarrotte, J. L.; Mueller, A. C.

    2007-01-01

    An Accelerator Driven System (ADS) for transmutation of nuclear waste typically requires a 600 MeV - 1 GeV accelerator delivering a proton flux of a few mAs for demonstrators, and of a few tens of mAs for large industrial systems. Such a machine belongs to the category of the high power proton accelerators, with an additional requirement for exceptional 'reliability': because of the induced thermal stress to the subcritical core, the number of unwanted 'beam-trips' should not exceed a few per year, a specification that is several orders of magnitude above usual performance. This paper briefly describes the reference solution adopted for such a machine, based on a linear superconducting accelerator, and presents the status of the Research and Development performed in this context. This work is performed within the 6th Framework Program EC project 'EUROTRANS' (EC Contract No: FI6W 516520, 'EUROTRANS')

  12. Evolutionary optimization methods for accelerator design

    Science.gov (United States)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained

  13. A Qualitative Acceleration Model Based on Intervals

    Directory of Open Access Journals (Sweden)

    Ester MARTINEZ-MARTIN

    2013-08-01

    Full Text Available On the way to autonomous service robots, spatial reasoning plays a main role since it properly deals with problems involving uncertainty. In particular, we are interested in knowing people's pose to avoid collisions. With that aim, in this paper, we present a qualitative acceleration model for robotic applications including representation, reasoning and a practical application.

  14. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  15. CAS CERN Accelerator School: Applied geodesy for particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This specialized course addresses the many topics involved in the application of geodesy to large particle accelerators, though many of the techniques described are equally applicable to large construction projects and surveillance systems where the highest possible surveying accuracies are required. The course reflects the considerable experience gained over many years, not only at CERN but in projects all over the world. The methods described range from the latest approach using satellites to recent developments in conventional techniques. They include the global positioning system (GPS), its development, deployment and precision, the use of the Terrameter and the combination or comparison of its results with those of the GPS, the automation of instruments, the management of measurements and data, and the highly evolved treatment of the observations. (orig.)

  16. Linear accelerator for radioisotope production

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-μA source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-μA beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons

  17. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  18. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano [ENEA-Centro Ricerche ' Ezio Clementel' , Advanced Physics Technology Division, Via Martiri di Monte Sole, 4, 40129 Bologna (Italy)]. E-mail: burgazzi@bologna.enea.it; Pierini, Paolo [INFN-Sezione di Milano, Laboratorio Acceleratori e Superconduttivita Applicata, Via Fratelli Cervi 201, I-20090 Segrate (MI) (Italy)

    2007-04-15

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well.

  19. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Burgazzi, Luciano; Pierini, Paolo

    2007-01-01

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well

  20. Instrumentation Of The CERN Accelerator Logging Service: Ensuring Performance, Scalability, Maintenance And Diagnostics

    CERN Document Server

    Roderick, C; Dinis Teixeira, D

    2011-01-01

    The CERN accelerator Logging Service currently holds more than 90 terabytes of data online, and processes approximately 450 gigabytes per day, via hundreds of data loading processes and data extraction requests. This service is mission-critical for day-to-day operations, especially with respect to the tracking of live data from the LHC beam and equipment. In order to effectively manage any service, the service provider’s goals should include knowing how the underlying systems are being used, in terms of: “Who is doing what, from where, using which applications and methods, and how long each action takes”. Armed with such information, it is then possible to: analyse and tune system performance over time; plan for scalability ahead of time; assess the impact of maintenance operations and infrastructure upgrades; diagnose past, on-going, or re-occurring problems. The Logging Service is based on Oracle DBMS and Application Servers, and Java technology, and is comprised of several layered and multi-tiered s...

  1. Self-pinch focusing experiments performed on the KALIF accelerator using the Bappl diode

    International Nuclear Information System (INIS)

    Hoppe, P.; Nakagawa, Y.; Bauer, W.

    1996-01-01

    Experiments using the B appl diode with a subdivided beam drift section were performed on the KALIF accelerator with the objective to investigate the generation of net currents and their influence on the focusing properties of the extracted proton beam. The generation of net currents up to 50% of the diode current was observed for argon gas pressures below 0.1 mbar in the second drift section. The differences in the time histories of various net current monitors might be related to a radial dependency of the net current densities in the beam. A comparison of the focusing properties investigated in shots with and without current neutralization showed only small differences. No enhancement of the power density related to self-pinch effects was found. However, the possibility of beam propagation over a short vacuum distance allows the use of a backlighter target required for laser absorption spectroscopy. (author). 4 figs., 4 refs

  2. Database application research in real-time data access of accelerator control system

    International Nuclear Information System (INIS)

    Chen Guanghua; Chen Jianfeng; Wan Tianmin

    2012-01-01

    The control system of Shanghai Synchrotron Radiation Facility (SSRF) is a large-scale distributed real-time control system, It involves many types and large amounts of real-time data access during the operating. Database system has wide application prospects in the large-scale accelerator control system. It is the future development direction of the accelerator control system, to replace the differently dedicated data structures with the mature standardized database system. This article discusses the application feasibility of database system in accelerators based on the database interface technology, real-time data access testing, and system optimization research and to establish the foundation of the wide scale application of database system in the SSRF accelerator control system. Based on the database interface technology, real-time data access testing and system optimization research, this article will introduce the application feasibility of database system in accelerators, and lay the foundation of database system application in the SSRF accelerator control system. (authors)

  3. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    Directory of Open Access Journals (Sweden)

    G. Fubiani

    2008-01-01

    Full Text Available The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses. The resulting secondary particles (positive ions, neutrals, and electrons are accelerated and deflected by the electric and magnetic fields inside the accelerator and may induce more secondaries after a likely impact with the accelerator grids. This chain of reactions is responsible for a non-negligible heat load on the grids and must be understood in detail. In this paper, we will provide a comprehensive summary of the physics involved in the process of secondary emission in a typical ITER-like negative ion electrostatic accelerator together with a precise description of the numerical method and approximations involved. As an example, the multiaperture-multigrid accelerator concept will be discussed.

  4. A Framework for Dynamically-Loaded Hardware Library (HLL) in FPGA Acceleration

    DEFF Research Database (Denmark)

    Cardarilli, Gian Carlo; Di Carlo, Leonardo; Nannarelli, Alberto

    2016-01-01

    Hardware acceleration is often used to address the need for speed and computing power in embedded systems. FPGAs always represented a good solution for HW acceleration and, recently, new SoC platforms extended the flexibility of the FPGAs by combining on a single chip both high-performance CPUs...... and FPGA fabric. The aim of this work is the implementation of hardware accelerators for these new SoCs. The innovative feature of these accelerators is the on-the-fly reconfiguration of the hardware to dynamically adapt the accelerator’s functionalities to the current CPU workload. The realization...... of the accelerators preliminarily requires also the profiling of both the SW (ARM CPU + NEON Units) and HW (FPGA) performance, an evaluation of the partial reconfiguration times and the development of an applicationspecific IP-cores library. This paper focuses on the profiling aspect of both the SW and HW...

  5. Accelerating tube for the ''EG-1'' electrostatic accelerator

    International Nuclear Information System (INIS)

    Romanov, V.A.; Ivanov, V.V.; Krupnov, E.P.; Debin, V.K.; Dudkin, N.I.; Volodin, V.I.

    1980-01-01

    A design of an accelerating tube (AT) for an electrostatic accelerator of the EG-1 type is described. Primary consideration in the development of the AT has been given to increasing the electric strength of accelerating gaps, the vacuum conductivity and better insulator screening from charged particles. After AT vacuum and high-voltage ageing in the accelerator, a hydrogen ions beam of up to 80 μA has been produced. The beam was adequately shaped in the energy range from 1.8 to 5.0 MeV [ru

  6. Occupational dose due to neutrons in medical linear accelerators

    International Nuclear Information System (INIS)

    Larcher, Ana M.; Bonet Duran, Stella M.; Lerner, Ana M.

    2000-01-01

    This paper describes a semi-empirical method to calculate the occupational dose due to neutrons and capture gamma rays in medical linear accelerators. It compares theoretical dose values with measurements performed in several 15 MeV medical accelerators installed in the country. Good agreement has been found between calculations made using the model and dose measurements, except for those accelerator rooms in which the maze length was shorter than the postulated tenth value distance. For those cases the model seems to overestimate neutron dose. The results demonstrate that the semi-empirical model is a good tool for quick and conservative shielding calculations for radiation protection purposes. Nevertheless, it is necessary to continue with the measurements in order to perform a more accurate validation of the model. (author)

  7. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  8. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    International Nuclear Information System (INIS)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-01-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented

  9. Intermittent sea-level acceleration

    Science.gov (United States)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  10. Latest Development in Superconducting RF Structures for beta=1 Particle Acceleration

    International Nuclear Information System (INIS)

    Peter Kneisel

    2006-01-01

    Superconducting RF technology is since nearly a decade routinely applied to different kinds of accelerating devices: linear accelerators, storage rings, synchrotron light sources and FEL's. With the technology recommendation for the International Linear Collider (ILC) a year ago, new emphasis has been placed on improving the performance of accelerating cavities both in Q-value and in accelerating gradients with the goal to achieve performance levels close to the fundamental limits given by the material parameters of the choice material, niobium. This paper will summarize the challenges to SRF technology and will review the latest developments in superconducting structure design. Additionally, it will give an overview of the newest results and will report on the developments in alternative materials and technologies

  11. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL; Acceleration de particules au sein des vents relativistes de pulsar: simulation et contraintes observationelles avec le satellite INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Forot, M

    2006-12-15

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects.

  12. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL; Acceleration de particules au sein des vents relativistes de pulsar: simulation et contraintes observationelles avec le satellite INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Forot, M

    2006-12-15

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects.

  13. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2016-03-01

    Full Text Available Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO technique was applied and compared with standard particle swarm optimization (PSO considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time.

  14. Accelerating phylogenetics computing on the desktop: experiments with executing UPGMA in programmable logic.

    Science.gov (United States)

    Davis, J P; Akella, S; Waddell, P H

    2004-01-01

    Having greater computational power on the desktop for processing taxa data sets has been a dream of biologists/statisticians involved in phylogenetics data analysis. Many existing algorithms have been highly optimized-one example being Felsenstein's PHYLIP code, written in C, for UPGMA and neighbor joining algorithms. However, the ability to process more than a few tens of taxa in a reasonable amount of time using conventional computers has not yielded a satisfactory speedup in data processing, making it difficult for phylogenetics practitioners to quickly explore data sets-such as might be done from a laptop computer. We discuss the application of custom computing techniques to phylogenetics. In particular, we apply this technology to speed up UPGMA algorithm execution by a factor of a hundred, against that of PHYLIP code running on the same PC. We report on these experiments and discuss how custom computing techniques can be used to not only accelerate phylogenetics algorithm performance on the desktop, but also on larger, high-performance computing engines, thus enabling the high-speed processing of data sets involving thousands of taxa.

  15. CAS CERN Accelerator School superconductivity in particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  16. Design and performance of a 3.3-MeV linear induction accelerator (LIA)

    International Nuclear Information System (INIS)

    Cheng Nianan; Zhang Shouyun; Tao Zucong

    1992-01-01

    A 3.3-MeV linear induction accelerator (LIA) has been designed and constructed at the China Academy of Engineering Physics. The parameters of 3.4 MeV, 2 kA, 80 ns and 1 x 10 4 A/(rad.cm) 2 have been achieved. It has been used for SG-1 FEL experiments. The accelerator is mounted on a movable frame so that , after moving 3 m transversely, it can be assembled with more modules into a 10-MeV LIA. The authors summarize the physics and engineering aspects of the LIA facility and describe the measuring means of characters for the beam

  17. Argonne lectures on particles accelerator magnets

    International Nuclear Information System (INIS)

    Devred, A.

    1999-09-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundred to several thousand) high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high-current-density, low-critical-temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (lecture 1), we briefly recall the origins of superconductivity and we review the parameters of existing superconducting particle accelerators (lecture 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb 3 Sn) and we explain in details the manufacturing of NbTi wires and cables (lecture 3). We also present the difficulties of processing and insulating Nb 3 Sn conductors, which so far have limited the use of this material in spite of its superior performances. We continue by discussing the two dimensional current distributions which are the most appropriate for generating pure dipole and quadrupole fields and we explain how these ideal distributions can be approximated by so called cosθ and cos 2θ coil designs (lecture 4). We also present a few alternative designs which are being investigated and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that are used in existing accelerator magnets (lecture 5) and we describe how the magnets are assembled (lecture 6). Some of the toughest requirements on the

  18. Argonne lectures on particles accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    1999-09-01

    The quest for elementary particles has promoted the development of particle accelerators producing beams of increasingly higher energies. In a synchrotron, the particle energy is directly proportional to the product of the machine's radius times the bending magnets' field strength. Present proton experiments at the TeV scale require facilities with circumferences ranging from a few to tens of kilometers and relying on a large number (several hundred to several thousand) high field dipole magnets and high field gradient quadrupole magnets. These electro-magnets use high-current-density, low-critical-temperature superconducting cables and are cooled down at liquid helium temperature. They are among the most costly and the most challenging components of the machine. After explaining what are the various types of accelerator magnets and why they are needed (lecture 1), we briefly recall the origins of superconductivity and we review the parameters of existing superconducting particle accelerators (lecture 2). Then, we review the superconducting materials that are available at industrial scale (chiefly, NbTi and Nb{sub 3}Sn) and we explain in details the manufacturing of NbTi wires and cables (lecture 3). We also present the difficulties of processing and insulating Nb{sub 3}Sn conductors, which so far have limited the use of this material in spite of its superior performances. We continue by discussing the two dimensional current distributions which are the most appropriate for generating pure dipole and quadrupole fields and we explain how these ideal distributions can be approximated by so called cos{theta} and cos 2{theta} coil designs (lecture 4). We also present a few alternative designs which are being investigated and we describe the difficulties of realizing coil ends. Next, we present the mechanical design concepts that are used in existing accelerator magnets (lecture 5) and we describe how the magnets are assembled (lecture 6). Some of the toughest

  19. Accelerated aging as vigor test for sunn hemp seeds

    OpenAIRE

    Silva, Clíssia Barboza da; Barbosa, Rafael Marani; Vieira, Roberval Daiton

    2016-01-01

    ABSTRACT: This study aimed to determine the most appropriate method to assess the sunn hemp ( Crotalaria juncea L.) seed vigor in the accelerated aging test. Five seed lots from harvest 2007/2008 were evaluated for germination, vigor and seedling emergence in the field. Accelerated aging test was performed at 41°C during 48, 72 and 96 hours, with and without sodium chloride saturated solution. Then, the promising procedure was also performed for 2008/2009 and 2009/2010 harvests. In the tradit...

  20. Accelerated aging as vigor test for sunn hemp seeds

    OpenAIRE

    Silva,Clíssia Barboza da; Barbosa,Rafael Marani; Vieira,Roberval Daiton

    2017-01-01

    ABSTRACT: This study aimed to determine the most appropriate method to assess the sunn hemp ( Crotalaria juncea L.) seed vigor in the accelerated aging test. Five seed lots from harvest 2007/2008 were evaluated for germination, vigor and seedling emergence in the field. Accelerated aging test was performed at 41°C during 48, 72 and 96 hours, with and without sodium chloride saturated solution. Then, the promising procedure was also performed for 2008/2009 and 2009/2010 harvests. In the tradit...

  1. Study on the limiting acceleration rate in the VLEPP linear accelerator

    International Nuclear Information System (INIS)

    Balakin, V.E.; Brezhnev, O.N.; Zakhvatkin, M.N.

    1987-01-01

    To realize the design of colliding linear electron-positron beams it is necessary to solve the radical problem of production of accelerating structure with acceleration rate of approximately 100 MeV/m which can accelerate 10 12 particles in a bunch. Results of experimental studies of the limiting acceleration rate in the VLEPP accelerating structure are presented. Accelerating sections of different length were tested. When testing sections 29 cm long the acceleration rate of 55 MeV/m was attained, and for 1 m section the value reached 40 MeV/m. The maximum rate of acceleration (90 MeV/m) was attained when electric field intensity on the structure surface constituted more than 150 MV/m

  2. Accelerator-driven transmutation of spent fuel elements

    Science.gov (United States)

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  3. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuan S. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics; Shao, Xi [Univ. of Maryland, College Park, MD (United States)

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks on our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.

  4. Radio-frequency quadrupole: a new linear accelerator

    International Nuclear Information System (INIS)

    Stokes, R.H.; Wangler, T.P.; Crandall, K.R.

    1981-01-01

    In many Laboratories, great emphasis now is placed on the development of linear accelerators with very large ion currents. To achieve this goal, a primary concern must be the low-velocity part of the accelerator, where the current limit is determined and where most of the emittance growth occurs. The use of magnetic focusing, the conflicting requirements in the choice of linac frequency, and the limitations of high-voltage dc injectors, have tended to produce low-velocity designs that limit overall performance. The radio-frequency quadrupole (RFQ) linear accelerator, invented in the Soviet Union and developed at Los Alamos, offers an attractive solution to many of these low-velocity problems. In the RFQ, the use of RF electric fields for radial focusing, combined with special programming of the bunching, allows high-current dc beams to be captured and accelerated with only small beam loss and low radial emittance growth. Advantages of the RFQ linac include a low injection energy (20 to 50 keV for protons) and a final energy high enough so the beam can be further accelerated with high efficiency in a Wideroee or Alvarez linac. These properties have been confirmed at Los Alamos in a highly successful experimental test performed during the past year. The success of this test and the advances in RFQ design procedures have led to the adoption of this linac for a wide range of applications. The beam-dynamics parameters of three RFQ systems are described. These are the final design for the protytype test of the Fusion Materials Irradiation Test (FMIT) accelerator, the final design for the prototype test of the Pion Generator for Medical Irradiations (PIGMI), and an improved low-velocity linac for heavy ion fusion

  5. Development of C-band Accelerating Section for SuperKEKB

    CERN Document Server

    Kamitani, T; Ikeda, M; Kakihara, K; Ohsawa, S; Oogoe, T; Sugimura, T; Takatomi, T; Yamaguchi, S; Yokoyama, K

    2004-01-01

    For the luminosity upgrade of the present KEK B-factory to SuperKEKB, the injector linac has to increase the positron acceleration energy from 3.5 to 8.0 GeV. In order to double the acceleration field gradient from 21 to 42 MV/m, design studies on C-band accelerator module has started in 2002. First prototype 1-m long accelerating section has been fabricated based upon a design which is half scale of the present S-band section. High power test of the C-band section has been performed at a test stand and later at an accelerator module in the KEKB injector linac. In a beam acceleration test, a field gradient of 41 MV/m is achieved with 43 MW RF power from a klystron. This paper report on the recent status of the high-power test and also the development of a second prototype section.

  6. How to Commission, Operate and Maintain a Large Future Accelerator Complex From Far Remote Sites

    International Nuclear Information System (INIS)

    Phinney, Nan

    2001-01-01

    A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commissioning, machine development, maintenance, trouble shooting and repair. Experience from existing accelerators confirms that most of these activities are already performed remotely. The large high-energy physics experiments and astronomy projects, already involve international collaborations of distant institutions. Based on this experience, the prospects for a machine operated remotely from far sites are encouraging. Experts from each laboratory would remain at their home institution but continue to participate in the operation of the machine after construction. Experts are required to be on site only during initial commissioning and for particularly difficult problems. Repairs require an on-site non-expert maintenance crew. Most of the interventions can be made without an expert and many of the rest resolved with remote assistance. There appears to be no technical obstacle to controlling an accelerator from a distance. The major challenge is to solve the complex management and communication problems

  7. How to Commission, Operate and Maintain a Large Future Accelerator Complex From Far Remote Sites

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, Nan

    2001-12-07

    A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commissioning, machine development, maintenance, troubleshooting and repair. Experience from existing accelerators confirms that most of these activities are already performed 'remotely'. The large high-energy physics experiments and astronomy projects, already involve international collaborations of distant institutions. Based on this experience, the prospects for a machine operated remotely from far sites are encouraging. Experts from each laboratory would remain at their home institution but continue to participate in the operation of the machine after construction. Experts are required to be on site only during initial commissioning and for particularly difficult problems. Repairs require an on-site non-expert maintenance crew. Most of the interventions can be made without an expert and many of the rest resolved with remote assistance. There appears to be no technical obstacle to controlling an accelerator from a distance. The major challenge is to solve the complex management and communication problems.

  8. Hysteresis effects in the cores of particle accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2086181; Schoerling, Daniel

    A study of the hysteresis effects in the cores of particle accelerator magnets has been performed in the framework of the work presented in this thesis. This study has been focused on normal conducting particle accelerator magnets whose cores are manufactured using ferromagnetic materials. The magnetic circuits have been modelled using the developed models: one model for the magnetic circuit and one for the magnetization of the material in the core. The parameters of the magnetic circuit model have been identified with the help of simulations which rely on the finite element method (Opera 3D), while the parameters of the magnetic hysteresis model have been identified through experimental measurements performed using a method developed in the framework of this work. The modelling results have been validated by means of experimental measurements performed on two magnets: one small size magnet which has been specifically designed and manufactured, and one magnet which is currently used in a particle accelerator ...

  9. Accelerated hyperfractionated radiotherapy for malignant gliomas

    International Nuclear Information System (INIS)

    Buatti, John M.; Marcus, Robert B.; Mendenhall, William M.; Friedman, William A.; Bova, Francis J.

    1996-01-01

    Purpose: To evaluate accelerated hyperfractionated radiotherapy for the treatment of malignant gliomas. Methods and Materials: Between April 1985 and June 1994, 70 adult patients with pathologically confirmed malignant glioma (75% glioblastoma multiforme, 25% anaplastic astrocytoma) suitable for high-dose therapy were selected for treatment with accelerated hyperfractionated radiotherapy, 1.5 Gy twice daily to a total target dose of 60 Gy. Two patients were excluded from analysis (one patient had a fatal pulmonary embolism after 18 Gy; one patient discontinued therapy after 28.5 Gy against medical advice and without sequelae or progression). The 68 patients in the study group had a median age of 52 years and a median Karnofsky performance status of 90. Stereotactic implant ( 125 I) or stereotactic radiosurgery boosts were delivered to 16 patients (24%) in the study group. Minimum follow-up was 6 months. Results: Median survival was 13.8 months and median progression-free survival was 7.4 months. The absolute Kaplan-Meier survival rate was 16% at 2 years and 4% at 5 years. Multivariate analysis for the prognostic impact of age, gender, histology, Karnofsky performance status, symptomatology, surgical resection vs. biopsy, and boost vs nonboost therapy revealed that Karnofsky performance status ≥ 90, boost therapy, and surgical excision predicted significantly improved outcome. No severe toxicity occurred in patients treated with accelerated hyperfractionated radiotherapy alone, although 5% required steroids temporarily for edema. Progression occurred during treatment in one patient (1.5%). Conclusion: This regimen of accelerated hyperfractionated radiotherapy is well tolerated and leads to results comparable with those of standard therapy. The rate of disease progression during treatment is significantly better (p = 0.001) than is reported for patients treated with standard fractionation, with or without chemotherapy. This regimen is a reasonable starting point

  10. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  11. ACCELERATION OF POLARIZED PROTONS AT RHIC

    International Nuclear Information System (INIS)

    HUANG, H.

    2002-01-01

    Relativistic Heavy Ion Collider (RHIC) ended its second year of operation in January 2002 with five weeks of polarized proton collisions. Polarized protons were successfully injected in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. This is the first time that polarized protons have been accelerated to 100 GeV. The machine performance and accomplishments during the polarized proton run will be reviewed. The plans for the next polarized proton run will be outlined

  12. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    Science.gov (United States)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  13. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  14. Accelerator mass spectrometry in NIPNE

    International Nuclear Information System (INIS)

    Ivascu, M; Marinescu, L.; Dima, R.; Cata-Danil, D.; Petrascu, M.; Popescu, I.; Stan-Sion, C.; Radulescu, M.; Plostinaru, D.

    1997-01-01

    The Accelerator Mass Spectrometry (AMS) is today the method capable to measure the lowest concentration of a particular nuclide in sample materials. The method has applications in environmental physics, medicine, measurements of cosmic-ray or nuclear power plant produced radionuclides in the earth's atmosphere. All over the world, more than 40 charged particles and heavy ion accelerators are performing such analyses concerning the research interest of a huge number of laboratories. The Romanian Institute of Nuclear Physics and Engineering in Bucharest has initiated a construction project for the AMS facility at the FN - Van de Graaff Tandem accelerator. This program benefits of technical and financial assistance provided by IAEA in the frame of the IAEA-TC Project ROM 8014-265C. A general lay-out of the AMS project is presented. The construction work has begun and first tests of the AMS injector will take place between July - September this year. (authors)

  15. Prospects for 10T accelerator dipole magnets

    International Nuclear Information System (INIS)

    Taylor, C.E.; Meuser, R.B.

    1981-03-01

    A next-generation major accelerator will require the highest possible field to minimize the circumference; however, there have been no proven designs for suitable magnets with fields substantially higher than 5T. A number of successful 4 to 5T dipole magnets have been built in recent years; these have involved long and difficult development projects. The 3'' bore 4.25T magnets for the Doubler are being produced by the hundreds at Fermilab, and a number of prototypes of the 5.2'' bore 5T ISABELLE magnets have been built. Successful short, approx. 5T models have been made at SACLAY, KEK, and Serpukhov, and a number of model magnets with lower fields have been built at many laboratories. Field uniformity achieved in these magnets is about ΔB/B approx. = 10 -3 . 10T magnets with higher field uniformity will be a challenging development task. The general problems of high-field (10T) magnets are discussed in terms of superconductor performance and mechanical limitations

  16. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  17. The planned replacement of a functioning control system on the CERN 28 GEV accelerator

    International Nuclear Information System (INIS)

    Carpenter, B.E.; Daneels, A.; Perriollat, F.

    1979-01-01

    The subject is discussed under the following headings: the accelerators (in the 28 GeV accelerator complex) and the old control system; goals of the new control system; constraints (involved in planning a replacement for the control system); a pilot project; major software issues in the system design; portability; parallelism; transition; conclusion. (U.K.)

  18. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  19. Performance of linear accelerator Mevatron-74 at Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar - a 15 years experience

    International Nuclear Information System (INIS)

    Bhat, M.A.; Abbas, S.M.; Kaul, S.K.; Khan, F.A.; Ashraf Teli, M.

    1998-01-01

    In 1984, a linear accelerator, Mevatron-74 was installed in the Dept. of Radiation Oncology. Discussed in this paper is our experience with this costly machine which has not been cost effective at all with regard to the purpose it was purchased for. This will lay a guideline for the developing centres of our country to make correct decision as regards the purchase of radiotherapy equipment keeping in view their performance

  20. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    International Nuclear Information System (INIS)

    2015-01-01

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)