WorldWideScience

Sample records for performance computing center

  1. AHPCRC - Army High Performance Computing Research Center

    Science.gov (United States)

    2010-01-01

    computing. Of particular interest is the ability of a distrib- uted jamming network (DJN) to jam signals in all or part of a sensor or communications net...and reasoning, assistive technologies. FRIEDRICH (FRITZ) PRINZ Finmeccanica Professor of Engineering, Robert Bosch Chair, Department of Engineering...High Performance Computing Research Center www.ahpcrc.org BARBARA BRYAN AHPCRC Research and Outreach Manager, HPTi (650) 604-3732 bbryan@hpti.com Ms

  2. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  3. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  4. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  5. High Performance Computing in Science and Engineering '16 : Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  6. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  7. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  8. Building a High Performance Computing Infrastructure for Novosibirsk Scientific Center

    International Nuclear Information System (INIS)

    Adakin, A; Chubarov, D; Nikultsev, V; Belov, S; Kaplin, V; Sukharev, A; Zaytsev, A; Kalyuzhny, V; Kuchin, N; Lomakin, S

    2011-01-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies (ICT), and Institute of Computational Mathematics and Mathematical Geophysics (ICM and MG). Since each institute has specific requirements on the architecture of the computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for the particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM and MG), and a Grid Computing Facility of BINP. Recently a dedicated optical network with the initial bandwidth of 10 Gbps connecting these three facilities was built in order to make it possible to share the computing resources among the research communities of participating institutes, thus providing a common platform for building the computing infrastructure for various scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technologies based on XEN and KVM platforms. The solution implemented was tested thoroughly within the computing environment of KEDR detector experiment which is being carried out at BINP, and foreseen to be applied to the use cases of other HEP experiments in the upcoming future.

  9. Building the Teraflops/Petabytes Production Computing Center

    International Nuclear Information System (INIS)

    Kramer, William T.C.; Lucas, Don; Simon, Horst D.

    1999-01-01

    In just one decade, the 1990s, supercomputer centers have undergone two fundamental transitions which require rethinking their operation and their role in high performance computing. The first transition in the early to mid-1990s resulted from a technology change in high performance computing architecture. Highly parallel distributed memory machines built from commodity parts increased the operational complexity of the supercomputer center, and required the introduction of intellectual services as equally important components of the center. The second transition is happening in the late 1990s as centers are introducing loosely coupled clusters of SMPs as their premier high performance computing platforms, while dealing with an ever-increasing volume of data. In addition, increasing network bandwidth enables new modes of use of a supercomputer center, in particular, computational grid applications. In this paper we describe what steps NERSC is taking to address these issues and stay at the leading edge of supercomputing centers.; N

  10. Transportation Research & Analysis Computing Center

    Data.gov (United States)

    Federal Laboratory Consortium — The technical objectives of the TRACC project included the establishment of a high performance computing center for use by USDOT research teams, including those from...

  11. Center for Advanced Computational Technology

    Science.gov (United States)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  12. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  13. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  14. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  15. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  16. The role of dedicated data computing centers in the age of cloud computing

    Science.gov (United States)

    Caramarcu, Costin; Hollowell, Christopher; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr

    2017-10-01

    Brookhaven National Laboratory (BNL) anticipates significant growth in scientific programs with large computing and data storage needs in the near future and has recently reorganized support for scientific computing to meet these needs. A key component is the enhanced role of the RHIC-ATLAS Computing Facility (RACF) in support of high-throughput and high-performance computing (HTC and HPC) at BNL. This presentation discusses the evolving role of the RACF at BNL, in light of its growing portfolio of responsibilities and its increasing integration with cloud (academic and for-profit) computing activities. We also discuss BNL’s plan to build a new computing center to support the new responsibilities of the RACF and present a summary of the cost benefit analysis done, including the types of computing activities that benefit most from a local data center vs. cloud computing. This analysis is partly based on an updated cost comparison of Amazon EC2 computing services and the RACF, which was originally conducted in 2012.

  17. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  18. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  19. AHPCRC (Army High Performance Computing Research Center) Bulletin. Volume 1, Issue 2

    Science.gov (United States)

    2011-01-01

    area and the researchers working on these projects. Also inside: news from the AHPCRC consortium partners at Morgan State University and the NASA ...Computing Research Center is provided by the supercomputing and research facilities at Stanford University and at the NASA Ames Research Center at...atomic and molecular level, he said. He noted that “every general would like to have” a Star Trek -like holodeck, where holographic avatars could

  20. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2013-01-01

    Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world's leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the

  1. Cloud Computing in Science and Engineering and the “SciShop.ru” Computer Simulation Center

    Directory of Open Access Journals (Sweden)

    E. V. Vorozhtsov

    2011-12-01

    Full Text Available Various aspects of cloud computing applications for scientific research, applied design, and remote education are described in this paper. An analysis of the different aspects is performed based on the experience from the “SciShop.ru” Computer Simulation Center. This analysis shows that cloud computing technology has wide prospects in scientific research applications, applied developments and also remote education of specialists, postgraduates, and students.

  2. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  3. Activity report of Computing Research Center

    Energy Technology Data Exchange (ETDEWEB)

    1997-07-01

    On April 1997, National Laboratory for High Energy Physics (KEK), Institute of Nuclear Study, University of Tokyo (INS), and Meson Science Laboratory, Faculty of Science, University of Tokyo began to work newly as High Energy Accelerator Research Organization after reconstructing and converting their systems, under aiming at further development of a wide field of accelerator science using a high energy accelerator. In this Research Organization, Applied Research Laboratory is composed of four Centers to execute assistance of research actions common to one of the Research Organization and their relating research and development (R and D) by integrating the present four centers and their relating sections in Tanashi. What is expected for the assistance of research actions is not only its general assistance but also its preparation and R and D of a system required for promotion and future plan of the research. Computer technology is essential to development of the research and can communize for various researches in the Research Organization. On response to such expectation, new Computing Research Center is required for promoting its duty by coworking and cooperating with every researchers at a range from R and D on data analysis of various experiments to computation physics acting under driving powerful computer capacity such as supercomputer and so forth. Here were described on report of works and present state of Data Processing Center of KEK at the first chapter and of the computer room of INS at the second chapter and on future problems for the Computing Research Center. (G.K.)

  4. Center for computer security: Computer Security Group conference. Summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-06-01

    Topics covered include: computer security management; detection and prevention of computer misuse; certification and accreditation; protection of computer security, perspective from a program office; risk analysis; secure accreditation systems; data base security; implementing R and D; key notarization system; DOD computer security center; the Sandia experience; inspector general's report; and backup and contingency planning. (GHT)

  5. Digital optical computers at the optoelectronic computing systems center

    Science.gov (United States)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  6. High Performance Computing in Science and Engineering '08 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2009-01-01

    The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger “European Supercomputer” in Germany, where the hardware costs alone will be hundreds of millions Euro – much more than in the past – are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ¨ h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ¨ berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructur...

  7. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  8. High-Performance Java Codes for Computational Fluid Dynamics

    Science.gov (United States)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  9. Argonne Laboratory Computing Resource Center - FY2004 Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.

    2005-04-14

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  10. HPCToolkit: performance tools for scientific computing

    Energy Technology Data Exchange (ETDEWEB)

    Tallent, N; Mellor-Crummey, J; Adhianto, L; Fagan, M; Krentel, M [Department of Computer Science, Rice University, Houston, TX 77005 (United States)

    2008-07-15

    As part of the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) program, science teams are tackling problems that require simulation and modeling on petascale computers. As part of activities associated with the SciDAC Center for Scalable Application Development Software (CScADS) and the Performance Engineering Research Institute (PERI), Rice University is building software tools for performance analysis of scientific applications on the leadership-class platforms. In this poster abstract, we briefly describe the HPCToolkit performance tools and how they can be used to pinpoint bottlenecks in SPMD and multi-threaded parallel codes. We demonstrate HPCToolkit's utility by applying it to two SciDAC applications: the S3D code for simulation of turbulent combustion and the MFDn code for ab initio calculations of microscopic structure of nuclei.

  11. HPCToolkit: performance tools for scientific computing

    International Nuclear Information System (INIS)

    Tallent, N; Mellor-Crummey, J; Adhianto, L; Fagan, M; Krentel, M

    2008-01-01

    As part of the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) program, science teams are tackling problems that require simulation and modeling on petascale computers. As part of activities associated with the SciDAC Center for Scalable Application Development Software (CScADS) and the Performance Engineering Research Institute (PERI), Rice University is building software tools for performance analysis of scientific applications on the leadership-class platforms. In this poster abstract, we briefly describe the HPCToolkit performance tools and how they can be used to pinpoint bottlenecks in SPMD and multi-threaded parallel codes. We demonstrate HPCToolkit's utility by applying it to two SciDAC applications: the S3D code for simulation of turbulent combustion and the MFDn code for ab initio calculations of microscopic structure of nuclei

  12. Human-centered Computing: Toward a Human Revolution

    OpenAIRE

    Jaimes, Alejandro; Gatica-Perez, Daniel; Sebe, Nicu; Huang, Thomas S.

    2007-01-01

    Human-centered computing studies the design, development, and deployment of mixed-initiative human-computer systems. HCC is emerging from the convergence of multiple disciplines that are concerned both with understanding human beings and with the design of computational artifacts.

  13. ATLAS Tier-2 at the Compute Resource Center GoeGrid in Göttingen

    Science.gov (United States)

    Meyer, Jörg; Quadt, Arnulf; Weber, Pavel; ATLAS Collaboration

    2011-12-01

    GoeGrid is a grid resource center located in Göttingen, Germany. The resources are commonly used, funded, and maintained by communities doing research in the fields of grid development, computer science, biomedicine, high energy physics, theoretical physics, astrophysics, and the humanities. For the high energy physics community, GoeGrid serves as a Tier-2 center for the ATLAS experiment as part of the world-wide LHC computing grid (WLCG). The status and performance of the Tier-2 center is presented with a focus on the interdisciplinary setup and administration of the cluster. Given the various requirements of the different communities on the hardware and software setup the challenge of the common operation of the cluster is detailed. The benefits are an efficient use of computer and personpower resources.

  14. High performance computing in science and engineering '09: transactions of the High Performance Computing Center, Stuttgart (HLRS) 2009

    National Research Council Canada - National Science Library

    Nagel, Wolfgang E; Kröner, Dietmar; Resch, Michael

    2010-01-01

    ...), NIC/JSC (J¨ u lich), and LRZ (Munich). As part of that strategic initiative, in May 2009 already NIC/JSC has installed the first phase of the GCS HPC Tier-0 resources, an IBM Blue Gene/P with roughly 300.000 Cores, this time in J¨ u lich, With that, the GCS provides the most powerful high-performance computing infrastructure in Europe alread...

  15. Applied Computational Fluid Dynamics at NASA Ames Research Center

    Science.gov (United States)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  16. Current state and future direction of computer systems at NASA Langley Research Center

    Science.gov (United States)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)

    1992-01-01

    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  17. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  18. Center for Computing Research Summer Research Proceedings 2015.

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Andrew Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  19. High Performance Computing Software Applications for Space Situational Awareness

    Science.gov (United States)

    Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.

    The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.

  20. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  1. Argonne's Laboratory computing center - 2007 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.; Pieper, G. W.

    2008-05-28

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific

  2. Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.

    Science.gov (United States)

    Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A

    2016-01-01

    The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Top scientific research center deploys Zambeel Aztera (TM) network storage system in high performance environment

    CERN Multimedia

    2002-01-01

    " The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has implemented a Zambeel Aztera storage system and software to accelerate the productivity of scientists running high performance scientific simulations and computations" (1 page).

  4. Center for computation and visualization of geometric structures. [Annual], Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-12

    The mission of the Center is to establish a unified environment promoting research, education, and software and tool development. The work is centered on computing, interpreted in a broad sense to include the relevant theory, development of algorithms, and actual implementation. The research aspects of the Center are focused on geometry; correspondingly the computational aspects are focused on three (and higher) dimensional visualization. The educational aspects are likewise centered on computing and focused on geometry. A broader term than education is `communication` which encompasses the challenge of explaining to the world current research in mathematics, and specifically geometry.

  5. Argonne's Laboratory Computing Resource Center 2009 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B. (CLS-CI)

    2011-05-13

    Now in its seventh year of operation, the Laboratory Computing Resource Center (LCRC) continues to be an integral component of science and engineering research at Argonne, supporting a diverse portfolio of projects for the U.S. Department of Energy and other sponsors. The LCRC's ongoing mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting high-performance computing application use and development. This report describes scientific activities carried out with LCRC resources in 2009 and the broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. The LCRC Allocations Committee makes decisions on individual project allocations for Jazz. Committee members are appointed by the Associate Laboratory Directors and span a range of computational disciplines. The 350-node LCRC cluster, Jazz, began production service in April 2003 and has been a research work horse ever since. Hosting a wealth of software tools and applications and achieving high availability year after year, researchers can count on Jazz to achieve project milestones and enable breakthroughs. Over the years, many projects have achieved results that would have been unobtainable without such a computing resource. In fiscal year 2009, there were 49 active projects representing a wide cross-section of Laboratory research and almost all research divisions.

  6. Evaluate Data Center Network Performance

    DEFF Research Database (Denmark)

    Pilimon, Artur

    through a data center network, which is usually built with layer 2 switches and layer 3 routers. The topology of the data center network is crucial for latency in the data communication to and from the data center and between servers in the data center. Tests can be conducted to measure latency and other...... Engineering, scientists evaluate data center network topologies with an SDN-based (Software-Defined Networking) control framework measuring network performance – primarily latency. This can be used to plan data center scaling by testing how a new topology will function before changes are made. Data center...... performance parameters for different data center network topologies. It is however important that tests can be repeated and reproduced to have comparable information from the tests. There are, of course, many topologies that can be used for data center networks. At DTU Fotonik, Department of Photonics...

  7. DEISA2: supporting and developing a European high-performance computing ecosystem

    International Nuclear Information System (INIS)

    Lederer, H

    2008-01-01

    The DEISA Consortium has deployed and operated the Distributed European Infrastructure for Supercomputing Applications. Through the EU FP7 DEISA2 project (funded for three years as of May 2008), the consortium is continuing to support and enhance the distributed high-performance computing infrastructure and its activities and services relevant for applications enabling, operation, and technologies, as these are indispensable for the effective support of computational sciences for high-performance computing (HPC). The service-provisioning model will be extended from one that supports single projects to one supporting virtual European communities. Collaborative activities will also be carried out with new European and other international initiatives. Of strategic importance is cooperation with the PRACE project, which is preparing for the installation of a limited number of leadership-class Tier-0 supercomputers in Europe. The key role and aim of DEISA will be to deliver a turnkey operational solution for a persistent European HPC ecosystem that will integrate national Tier-1 centers and the new Tier-0 centers

  8. Performance indicators for call centers with impatience

    NARCIS (Netherlands)

    Jouini, O.; Koole, G.M.; Roubos, A.

    2013-01-01

    An important feature of call center modeling is the presence of impatient customers. This article considers single-skill call centers including customer abandonments. A number of different service-level definitions are structured, including all those used in practice, and the explicit computation of

  9. UC Merced Center for Computational Biology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Michael; Watanabe, Masakatsu

    2010-11-30

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformation of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs

  10. High performance computing system in the framework of the Higgs boson studies

    CERN Document Server

    Belyaev, Nikita; The ATLAS collaboration

    2017-01-01

    The Higgs boson physics is one of the most important and promising fields of study in modern High Energy Physics. To perform precision measurements of the Higgs boson properties, the use of fast and efficient instruments of Monte Carlo event simulation is required. Due to the increasing amount of data and to the growing complexity of the simulation software tools, the computing resources currently available for Monte Carlo simulation on the LHC GRID are not sufficient. One of the possibilities to address this shortfall of computing resources is the usage of institutes computer clusters, commercial computing resources and supercomputers. In this paper, a brief description of the Higgs boson physics, the Monte-Carlo generation and event simulation techniques are presented. A description of modern high performance computing systems and tests of their performance are also discussed. These studies have been performed on the Worldwide LHC Computing Grid and Kurchatov Institute Data Processing Center, including Tier...

  11. Argonne's Laboratory computing resource center : 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff

  12. 5th International Conference on High Performance Scientific Computing

    CERN Document Server

    Hoang, Xuan; Rannacher, Rolf; Schlöder, Johannes

    2014-01-01

    This proceedings volume gathers a selection of papers presented at the Fifth International Conference on High Performance Scientific Computing, which took place in Hanoi on March 5-9, 2012. The conference was organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University, Ho Chi Minh City University of Technology, and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and practical applications. Subjects covered include mathematical modeling; numerical simulation; methods for optimization and control; parallel computing; software development; and applications of scientific computing in physics, mechanics and biomechanics, material science, hydrology, chemistry, biology, biotechnology, medicine, sports, psychology, transport, logistics, com...

  13. 3rd International Conference on High Performance Scientific Computing

    CERN Document Server

    Kostina, Ekaterina; Phu, Hoang; Rannacher, Rolf

    2008-01-01

    This proceedings volume contains a selection of papers presented at the Third International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 6-10, 2006. The conference has been organized by the Hanoi Institute of Mathematics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its International PhD Program ``Complex Processes: Modeling, Simulation and Optimization'', and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site loca...

  14. 6th International Conference on High Performance Scientific Computing

    CERN Document Server

    Phu, Hoang; Rannacher, Rolf; Schlöder, Johannes

    2017-01-01

    This proceedings volume highlights a selection of papers presented at the Sixth International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam on March 16-20, 2015. The conference was jointly organized by the Heidelberg Institute of Theoretical Studies (HITS), the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University, and the Vietnam Institute for Advanced Study in Mathematics, Ministry of Education The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered numerical simulation, methods for optimization and control, parallel computing, and software development, as well as the applications of scientific computing in physics, mechanics, biomechanics and robotics, material science, hydrology, biotechnology, medicine, transport, scheduling, and in...

  15. Human Computer Music Performance

    OpenAIRE

    Dannenberg, Roger B.

    2012-01-01

    Human Computer Music Performance (HCMP) is the study of music performance by live human performers and real-time computer-based performers. One goal of HCMP is to create a highly autonomous artificial performer that can fill the role of a human, especially in a popular music setting. This will require advances in automated music listening and understanding, new representations for music, techniques for music synchronization, real-time human-computer communication, music generation, sound synt...

  16. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  17. Modeling Remote I/O versus Staging Tradeoff in Multi-Data Center Computing

    International Nuclear Information System (INIS)

    Suslu, Ibrahim H

    2014-01-01

    In multi-data center computing, data to be processed is not always local to the computation. This is a major challenge especially for data-intensive Cloud computing applications, since large amount of data would need to be either moved the local sites (staging) or accessed remotely over the network (remote I/O). Cloud application developers generally chose between staging and remote I/O intuitively without making any scientific comparison specific to their application data access patterns since there is no generic model available that they can use. In this paper, we propose a generic model for the Cloud application developers which would help them to choose the most appropriate data access mechanism for their specific application workloads. We define the parameters that potentially affect the end-to-end performance of the multi-data center Cloud applications which need to access large datasets over the network. To test and validate our models, we implemented a series of synthetic benchmark applications to simulate the most common data access patterns encountered in Cloud applications. We show that our model provides promising results in different settings with different parameters, such as network bandwidth, server and client capabilities, and data access ratio

  18. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure

  19. Bringing high-performance computing to the biologist's workbench: approaches, applications, and challenges

    International Nuclear Information System (INIS)

    Oehmen, C S; Cannon, W R

    2008-01-01

    Data-intensive and high-performance computing are poised to significantly impact the future of biological research which is increasingly driven by the prevalence of high-throughput experimental methodologies for genome sequencing, transcriptomics, proteomics, and other areas. Large centers such as NIH's National Center for Biotechnology Information, The Institute for Genomic Research, and the DOE's Joint Genome Institute) have made extensive use of multiprocessor architectures to deal with some of the challenges of processing, storing and curating exponentially growing genomic and proteomic datasets, thus enabling users to rapidly access a growing public data source, as well as use analysis tools transparently on high-performance computing resources. Applying this computational power to single-investigator analysis, however, often relies on users to provide their own computational resources, forcing them to endure the learning curve of porting, building, and running software on multiprocessor architectures. Solving the next generation of large-scale biology challenges using multiprocessor machines-from small clusters to emerging petascale machines-can most practically be realized if this learning curve can be minimized through a combination of workflow management, data management and resource allocation as well as intuitive interfaces and compatibility with existing common data formats

  20. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2014-01-01

    In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient s...... software. Center for Computational Wind Turbine Aerodynamics and Atmospheric Turbulence was established in 2010 in order to create a world-leading cross-disciplinary flow center that covers all relevant disciplines within wind farm meteorology and aerodynamics.......In order to design and operate a wind farm optimally it is necessary to know in detail how the wind behaves and interacts with the turbines in a farm. This not only requires knowledge about meteorology, turbulence and aerodynamics, but it also requires access to powerful computers and efficient...

  1. 14th annual Results and Review Workshop on High Performance Computing in Science and Engineering

    CERN Document Server

    Nagel, Wolfgang E; Resch, Michael M; Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2011; High Performance Computing in Science and Engineering '11

    2012-01-01

    This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2011. The reports cover all fields of computational science and engineering, ranging from CFD to computational physics and chemistry, to computer science, with a special emphasis on industrially relevant applications. Presenting results for both vector systems and microprocessor-based systems, the book allows readers to compare the performance levels and usability of various architectures. As HLRS

  2. Supporting Human Activities - Exploring Activity-Centered Computing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Bardram, Jakob

    2002-01-01

    In this paper we explore an activity-centered computing paradigm that is aimed at supporting work processes that are radically different from the ones known from office work. Our main inspiration is healthcare work that is characterized by an extreme degree of mobility, many interruptions, ad-hoc...

  3. High performance computing system in the framework of the Higgs boson studies

    CERN Document Server

    Belyaev, Nikita; The ATLAS collaboration; Velikhov, Vasily; Konoplich, Rostislav

    2017-01-01

    The Higgs boson physics is one of the most important and promising fields of study in the modern high energy physics. It is important to notice, that GRID computing resources become strictly limited due to increasing amount of statistics, required for physics analyses and unprecedented LHC performance. One of the possibilities to address the shortfall of computing resources is the usage of computer institutes' clusters, commercial computing resources and supercomputers. To perform precision measurements of the Higgs boson properties in these realities, it is also highly required to have effective instruments to simulate kinematic distributions of signal events. In this talk we give a brief description of the modern distribution reconstruction method called Morphing and perform few efficiency tests to demonstrate its potential. These studies have been performed on the WLCG and Kurchatov Institute’s Data Processing Center, including Tier-1 GRID site and supercomputer as well. We also analyze the CPU efficienc...

  4. Computer-Related Task Performance

    DEFF Research Database (Denmark)

    Longstreet, Phil; Xiao, Xiao; Sarker, Saonee

    2016-01-01

    The existing information system (IS) literature has acknowledged computer self-efficacy (CSE) as an important factor contributing to enhancements in computer-related task performance. However, the empirical results of CSE on performance have not always been consistent, and increasing an individual......'s CSE is often a cumbersome process. Thus, we introduce the theoretical concept of self-prophecy (SP) and examine how this social influence strategy can be used to improve computer-related task performance. Two experiments are conducted to examine the influence of SP on task performance. Results show...... that SP and CSE interact to influence performance. Implications are then discussed in terms of organizations’ ability to increase performance....

  5. Dynamic Performance Optimization for Cloud Computing Using M/M/m Queueing System

    Directory of Open Access Journals (Sweden)

    Lizheng Guo

    2014-01-01

    Full Text Available Successful development of cloud computing has attracted more and more people and enterprises to use it. On one hand, using cloud computing reduces the cost; on the other hand, using cloud computing improves the efficiency. As the users are largely concerned about the Quality of Services (QoS, performance optimization of the cloud computing has become critical to its successful application. In order to optimize the performance of multiple requesters and services in cloud computing, by means of queueing theory, we analyze and conduct the equation of each parameter of the services in the data center. Then, through analyzing the performance parameters of the queueing system, we propose the synthesis optimization mode, function, and strategy. Lastly, we set up the simulation based on the synthesis optimization mode; we also compare and analyze the simulation results to the classical optimization methods (short service time first and first in, first out method, which show that the proposed model can optimize the average wait time, average queue length, and the number of customer.

  6. An Application-Based Performance Evaluation of NASAs Nebula Cloud Computing Platform

    Science.gov (United States)

    Saini, Subhash; Heistand, Steve; Jin, Haoqiang; Chang, Johnny; Hood, Robert T.; Mehrotra, Piyush; Biswas, Rupak

    2012-01-01

    The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.

  7. The Computational Physics Program of the national MFE Computer Center

    International Nuclear Information System (INIS)

    Mirin, A.A.

    1989-01-01

    Since June 1974, the MFE Computer Center has been engaged in a significant computational physics effort. The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generations of supercomputers. The Computational Physics Group has been involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to tokamaks and compact toroids. A third area is the investigation of kinetic instabilities using a 3-D particle code; this work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence have been under examination, with the hope of being able to explain anomalous transport. Also, we are collaborating in an international effort to evaluate fully three-dimensional linear stability of toroidal devices. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers. A summary of these programs are included in this paper. 6 tabs

  8. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  9. Clinical quality performance in U.S. health centers.

    Science.gov (United States)

    Shi, Leiyu; Lebrun, Lydie A; Zhu, Jinsheng; Hayashi, Arthur S; Sharma, Ravi; Daly, Charles A; Sripipatana, Alek; Ngo-Metzger, Quyen

    2012-12-01

    To describe current clinical quality among the nation's community health centers and to examine health center characteristics associated with performance excellence. National data from the 2009 Uniform Data System. Health centers reviewed patient records and reported aggregate data to the Uniform Data System. Six measures were examined: first-trimester prenatal care, childhood immunization completion, Pap tests, low birth weight, controlled hypertension, and controlled diabetes. The top 25 percent performing centers were compared with lower performing (bottom 75 percent) centers on these measures. Logistic regressions were utilized to assess the impact of patient, provider, and institutional characteristics on health center performance. Clinical care and outcomes among health centers were generally comparable to national averages. For instance, 67 percent of pregnant patients received timely prenatal care (national = 68 percent), 69 percent of children achieved immunization completion (national = 67 percent), and 63 percent of hypertensive patients had blood pressure under control (national = 48 percent). Depending on the measure, centers with more uninsured patients were less likely to do well, while centers with more physicians and enabling service providers were more likely to do well. Health centers provide quality care at rates comparable to national averages. Performance may be improved by increasing insurance coverage among patients and increasing the ratios of physicians and enabling service providers to patients. © Health Research and Educational Trust.

  10. Computational geometry lectures at the morningside center of mathematics

    CERN Document Server

    Wang, Ren-Hong

    2003-01-01

    Computational geometry is a borderline subject related to pure and applied mathematics, computer science, and engineering. The book contains articles on various topics in computational geometry, which are based on invited lectures and some contributed papers presented by researchers working during the program on Computational Geometry at the Morningside Center of Mathematics of the Chinese Academy of Science. The opening article by R.-H. Wang gives a nice survey of various aspects of computational geometry, many of which are discussed in more detail in other papers in the volume. The topics include problems of optimal triangulation, splines, data interpolation, problems of curve and surface design, problems of shape control, quantum teleportation, and others.

  11. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  12. Computed tomography-guided core-needle biopsy of lung lesions: an oncology center experience

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcos Duarte; Fonte, Alexandre Calabria da; Chojniak, Rubens, E-mail: marcosduarte@yahoo.com.b [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. of Radiology and Imaging Diagnosis; Andrade, Marcony Queiroz de [Hospital Alianca, Salvador, BA (Brazil); Gross, Jefferson Luiz [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. of Chest Surgery

    2011-03-15

    Objective: The present study is aimed at describing the experience of an oncology center with computed tomography guided core-needle biopsy of pulmonary lesions. Materials and Methods: Retrospective analysis of 97 computed tomography-guided core-needle biopsy of pulmonary lesions performed in the period between 1996 and 2004 in a Brazilian reference oncology center (Hospital do Cancer - A.C. Camargo). Information regarding material appropriateness and the specific diagnoses were collected and analyzed. Results: Among 97 lung biopsies, 94 (96.9%) supplied appropriate specimens for histological analyses, with 71 (73.2%) cases being diagnosed as malignant lesions and 23 (23.7%) diagnosed as benign lesions. Specimens were inappropriate for analysis in three cases. The frequency of specific diagnosis was 83 (85.6%) cases, with high rates for both malignant lesions with 63 (88.7%) cases and benign lesions with 20 (86.7%). As regards complications, a total of 12 cases were observed as follows: 7 (7.2%) cases of hematoma, 3 (3.1%) cases of pneumothorax and 2 (2.1%) cases of hemoptysis. Conclusion: Computed tomography-guided core needle biopsy of lung lesions demonstrated high rates of material appropriateness and diagnostic specificity, and low rates of complications in the present study. (author)

  13. A Descriptive Study towards Green Computing Practice Application for Data Centers in IT Based Industries

    Directory of Open Access Journals (Sweden)

    Anthony Jnr. Bokolo

    2018-01-01

    Full Text Available The progressive upsurge in demand for processing and computing power has led to a subsequent upsurge in data center carbon emissions, cost incurred, unethical waste management, depletion of natural resources and high energy utilization. This raises the issue of the sustainability attainment in data centers of Information Technology (IT based industries. Green computing practice can be applied to facilitate sustainability attainment as IT based industries utilizes data centers to provide services to staffs, practitioners and end users. But it is a known fact that enterprise servers utilize huge quantity of energy and incur other expenditures in cooling operations and it is difficult to address the needs of accuracy and efficiency in data centers while yet encouraging a greener application practice alongside cost reduction. Thus this research study focus on the practice application of Green computing in data centers which houses servers and as such presents the Green computing life cycle strategies and best practices to be practiced for better management in data centers in IT based industries. Data was collected through questionnaire from 133 respondents in industries that currently operate their in-house data centers. The analysed data was used to verify the Green computing life cycle strategies presented in this study. Findings from the data shows that each of the life cycles strategies is significant in assisting IT based industries apply Green computing practices in their data centers. This study would be of interest to knowledge and data management practitioners as well as environmental manager and academicians in deploying Green data centers in their organizations.

  14. Contributing to the design of run-time systems dedicated to high performance computing

    International Nuclear Information System (INIS)

    Perache, M.

    2006-10-01

    In the field of intensive scientific computing, the quest for performance has to face the increasing complexity of parallel architectures. Nowadays, these machines exhibit a deep memory hierarchy which complicates the design of efficient parallel applications. This thesis proposes a programming environment allowing to design efficient parallel programs on top of clusters of multi-processors. It features a programming model centered around collective communications and synchronizations, and provides load balancing facilities. The programming interface, named MPC, provides high level paradigms which are optimized according to the underlying architecture. The environment is fully functional and used within the CEA/DAM (TERANOVA) computing center. The evaluations presented in this document confirm the relevance of our approach. (author)

  15. SCEAPI: A unified Restful Web API for High-Performance Computing

    Science.gov (United States)

    Rongqiang, Cao; Haili, Xiao; Shasha, Lu; Yining, Zhao; Xiaoning, Wang; Xuebin, Chi

    2017-10-01

    The development of scientific computing is increasingly moving to collaborative web and mobile applications. All these applications need high-quality programming interface for accessing heterogeneous computing resources consisting of clusters, grid computing or cloud computing. In this paper, we introduce our high-performance computing environment that integrates computing resources from 16 HPC centers across China. Then we present a bundle of web services called SCEAPI and describe how it can be used to access HPC resources with HTTP or HTTPs protocols. We discuss SCEAPI from several aspects including architecture, implementation and security, and address specific challenges in designing compatible interfaces and protecting sensitive data. We describe the functions of SCEAPI including authentication, file transfer and job management for creating, submitting and monitoring, and how to use SCEAPI in an easy-to-use way. Finally, we discuss how to exploit more HPC resources quickly for the ATLAS experiment by implementing the custom ARC compute element based on SCEAPI, and our work shows that SCEAPI is an easy-to-use and effective solution to extend opportunistic HPC resources.

  16. Performance evaluation for compressible flow calculations on five parallel computers of different architectures

    International Nuclear Information System (INIS)

    Kimura, Toshiya.

    1997-03-01

    A two-dimensional explicit Euler solver has been implemented for five MIMD parallel computers of different machine architectures in Center for Promotion of Computational Science and Engineering of Japan Atomic Energy Research Institute. These parallel computers are Fujitsu VPP300, NEC SX-4, CRAY T94, IBM SP2, and Hitachi SR2201. The code was parallelized by several parallelization methods, and a typical compressible flow problem has been calculated for different grid sizes changing the number of processors. Their effective performances for parallel calculations, such as calculation speed, speed-up ratio and parallel efficiency, have been investigated and evaluated. The communication time among processors has been also measured and evaluated. As a result, the differences on the performance and the characteristics between vector-parallel and scalar-parallel computers can be pointed, and it will present the basic data for efficient use of parallel computers and for large scale CFD simulations on parallel computers. (author)

  17. New computer system for the Japan Tier-2 center

    CERN Multimedia

    Hiroyuki Matsunaga

    2007-01-01

    The ICEPP (International Center for Elementary Particle Physics) of the University of Tokyo has been operating an LCG Tier-2 center dedicated to the ATLAS experiment, and is going to switch over to the new production system which has been recently installed. The system will be of great help to the exciting physics analyses for coming years. The new computer system includes brand-new blade servers, RAID disks, a tape library system and Ethernet switches. The blade server is DELL PowerEdge 1955 which contains two Intel dual-core Xeon (WoodCrest) CPUs running at 3GHz, and a total of 650 servers will be used as compute nodes. Each of the RAID disks is configured to be RAID-6 with 16 Serial ATA HDDs. The equipment as well as the cooling system is placed in a new large computer room, and both are hooked up to UPS (uninterruptible power supply) units for stable operation. As a whole, the system has been built with redundant configuration in a cost-effective way. The next major upgrade will take place in thre...

  18. InfoMall: An Innovative Strategy for High-Performance Computing and Communications Applications Development.

    Science.gov (United States)

    Mills, Kim; Fox, Geoffrey

    1994-01-01

    Describes the InfoMall, a program led by the Northeast Parallel Architectures Center (NPAC) at Syracuse University (New York). The InfoMall features a partnership of approximately 24 organizations offering linked programs in High Performance Computing and Communications (HPCC) technology integration, software development, marketing, education and…

  19. Performance of Cloud Computing Centers with Multiple Priority Classes

    NARCIS (Netherlands)

    Ellens, W.; Zivkovic, Miroslav; Akkerboom, J.; Litjens, R.; van den Berg, Hans Leo

    In this paper we consider the general problem of resource provisioning within cloud computing. We analyze the problem of how to allocate resources to different clients such that the service level agreements (SLAs) for all of these clients are met. A model with multiple service request classes

  20. Using high performance interconnects in a distributed computing and mass storage environment

    International Nuclear Information System (INIS)

    Ernst, M.

    1994-01-01

    Detector Collaborations of the HERA Experiments typically involve more than 500 physicists from a few dozen institutes. These physicists require access to large amounts of data in a fully transparent manner. Important issues include Distributed Mass Storage Management Systems in a Distributed and Heterogeneous Computing Environment. At the very center of a distributed system, including tens of CPUs and network attached mass storage peripherals are the communication links. Today scientists are witnessing an integration of computing and communication technology with the open-quote network close-quote becoming the computer. This contribution reports on a centrally operated computing facility for the HERA Experiments at DESY, including Symmetric Multiprocessor Machines (84 Processors), presently more than 400 GByte of magnetic disk and 40 TB of automoted tape storage, tied together by a HIPPI open-quote network close-quote. Focussing on the High Performance Interconnect technology, details will be provided about the HIPPI based open-quote Backplane close-quote configured around a 20 Gigabit/s Multi Media Router and the performance and efficiency of the related computer interfaces

  1. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    Science.gov (United States)

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software

  2. Conception of a computer for the nuclear medical department of the Augsburg hospital center

    International Nuclear Information System (INIS)

    Graf, G.; Heidenreich, P.

    1984-01-01

    A computer system based on the Siemens R30 process computer has been employed at the Institute of Nuclear Medicine of the Augsburg Hospital Center since early 1981. This system, including the development and testing of organ-specific evaluation programs, was used as a basis for the conception of the new computer system for the department of nuclear medicine of the Augsburg Hospital Center. The computer system was extended and installed according to this conception when the new 1400-bed hospital was opened in the 3rd phase of construction in autumn 1982. (orig.) [de

  3. A multipurpose computing center with distributed resources

    Science.gov (United States)

    Chudoba, J.; Adam, M.; Adamová, D.; Kouba, T.; Mikula, A.; Říkal, V.; Švec, J.; Uhlířová, J.; Vokáč, P.; Svatoš, M.

    2017-10-01

    The Computing Center of the Institute of Physics (CC IoP) of the Czech Academy of Sciences serves a broad spectrum of users with various computing needs. It runs WLCG Tier-2 center for the ALICE and the ATLAS experiments; the same group of services is used by astroparticle physics projects the Pierre Auger Observatory (PAO) and the Cherenkov Telescope Array (CTA). OSG stack is installed for the NOvA experiment. Other groups of users use directly local batch system. Storage capacity is distributed to several locations. DPM servers used by the ATLAS and the PAO are all in the same server room, but several xrootd servers for the ALICE experiment are operated in the Nuclear Physics Institute in Řež, about 10 km away. The storage capacity for the ATLAS and the PAO is extended by resources of the CESNET - the Czech National Grid Initiative representative. Those resources are in Plzen and Jihlava, more than 100 km away from the CC IoP. Both distant sites use a hierarchical storage solution based on disks and tapes. They installed one common dCache instance, which is published in the CC IoP BDII. ATLAS users can use these resources using the standard ATLAS tools in the same way as the local storage without noticing this geographical distribution. Computing clusters LUNA and EXMAG dedicated to users mostly from the Solid State Physics departments offer resources for parallel computing. They are part of the Czech NGI infrastructure MetaCentrum with distributed batch system based on torque with a custom scheduler. Clusters are installed remotely by the MetaCentrum team and a local contact helps only when needed. Users from IoP have exclusive access only to a part of these two clusters and take advantage of higher priorities on the rest (1500 cores in total), which can also be used by any user of the MetaCentrum. IoP researchers can also use distant resources located in several towns of the Czech Republic with a capacity of more than 12000 cores in total.

  4. Annual report of R and D activities in Center for Promotion of Computational Science and Engineering and Center for Computational Science and e-Systems from April 1, 2005 to March 31, 2006

    International Nuclear Information System (INIS)

    2007-03-01

    This report provides an overview of research and development activities in Center for Computational Science and Engineering (CCSE), JAERI in the former half of the fiscal year 2005 (April 1, 2005 - Sep. 30, 2006) and those in Center for Computational Science and e-Systems (CCSE), JAEA, in the latter half of the fiscal year 2005(Oct 1, 2005 - March 31, 2006). In the former half term, the activities have been performed by 5 research groups, Research Group for Computational Science in Atomic Energy, Research Group for Computational Material Science in Atomic Energy, R and D Group for Computer Science, R and D Group for Numerical Experiments, and Quantum Bioinformatics Group in CCSE. At the beginning of the latter half term, these 5 groups were integrated into two offices, Simulation Technology Research and Development Office and Computer Science Research and Development Office at the moment of the unification of JNC (Japan Nuclear Cycle Development Institute) and JAERI (Japan Atomic Energy Research Institute), and the latter-half term activities were operated by the two offices. A big project, ITBL (Information Technology Based Laboratory) project and fundamental computational research for atomic energy plant were performed mainly by two groups, the R and D Group for Computer Science and the Research Group for Computational Science in Atomic Energy in the former half term and their integrated office, Computer Science Research and Development Office in the latter half one, respectively. The main result was verification by using structure analysis for real plant executable on the Grid environment, and received Honorable Mentions of Analytic Challenge in the conference 'Supercomputing (SC05)'. The materials science and bioinformatics in atomic energy research field were carried out by three groups, Research Group for Computational Material Science in Atomic Energy, R and D Group for Computer Science, R and D Group for Numerical Experiments, and Quantum Bioinformatics

  5. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  6. THE CENTER FOR DATA INTENSIVE COMPUTING

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.

    2002-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  7. THE CENTER FOR DATA INTENSIVE COMPUTING

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.

    2001-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  8. THE CENTER FOR DATA INTENSIVE COMPUTING

    International Nuclear Information System (INIS)

    GLIMM, J.

    2001-01-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook

  9. THE CENTER FOR DATA INTENSIVE COMPUTING

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.

    2003-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  10. A Heterogeneous High-Performance System for Computational and Computer Science

    Science.gov (United States)

    2016-11-15

    expand the research infrastructure at the institution but also to enhance the high -performance computing training provided to both undergraduate and... cloud computing, supercomputing, and the availability of cheap memory and storage led to enormous amounts of data to be sifted through in forensic... High -Performance Computing (HPC) tools that can be integrated with existing curricula and support our research to modernize and dramatically advance

  11. Intention and Usage of Computer Based Information Systems in Primary Health Centers

    Science.gov (United States)

    Hosizah; Kuntoro; Basuki N., Hari

    2016-01-01

    The computer-based information system (CBIS) is adopted by almost all of in health care setting, including the primary health center in East Java Province Indonesia. Some of softwares available were SIMPUS, SIMPUSTRONIK, SIKDA Generik, e-puskesmas. Unfortunately they were most of the primary health center did not successfully implemented. This…

  12. Environmental Modeling Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Modeling Center provides the computational tools to perform geostatistical analysis, to model ground water and atmospheric releases for comparison...

  13. A novel patient-centered "intention-to-treat" metric of U.S. lung transplant center performance.

    Science.gov (United States)

    Maldonado, Dawn A; RoyChoudhury, Arindam; Lederer, David J

    2018-01-01

    Despite the importance of pretransplantation outcomes, 1-year posttransplantation survival is typically considered the primary metric of lung transplant center performance in the United States. We designed a novel lung transplant center performance metric that incorporates both pre- and posttransplantation survival time. We performed an ecologic study of 12 187 lung transplant candidates listed at 56 U.S. lung transplant centers between 2006 and 2012. We calculated an "intention-to-treat" survival (ITTS) metric as the percentage of waiting list candidates surviving at least 1 year after transplantation. The median center-level 1-year posttransplantation survival rate was 84.1%, and the median center-level ITTS was 66.9% (mean absolute difference 19.6%, 95% limits of agreement 4.3 to 35.1%). All but 10 centers had ITTS values that were significantly lower than 1-year posttransplantation survival rates. Observed ITTS was significantly lower than expected ITTS for 7 centers. These data show that one third of lung transplant candidates do not survive 1 year after transplantation, and that 12% of centers have lower than expected ITTS. An "intention-to-treat" survival metric may provide a more realistic expectation of patient outcomes at transplant centers and may be of value to transplant centers and policymakers. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  14. Computer performance evaluation of FACOM 230-75 computer system, (2)

    International Nuclear Information System (INIS)

    Fujii, Minoru; Asai, Kiyoshi

    1980-08-01

    In this report are described computer performance evaluations for FACOM230-75 computers in JAERI. The evaluations are performed on following items: (1) Cost/benefit analysis of timesharing terminals, (2) Analysis of the response time of timesharing terminals, (3) Analysis of throughout time for batch job processing, (4) Estimation of current potential demands for computer time, (5) Determination of appropriate number of card readers and line printers. These evaluations are done mainly from the standpoint of cost reduction of computing facilities. The techniques adapted are very practical ones. This report will be useful for those people who are concerned with the management of computing installation. (author)

  15. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    Science.gov (United States)

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  16. Electoronic Performance Monitoring in Call Centers: An Ethical Decision Model

    OpenAIRE

    Perkins, David

    2013-01-01

    Ever since it emerged on a widespread basis in the 1990s, electronic performance monitoring of employees has received significant scrutiny in the literature. Call centers have been the focus of many of these studies. This particular study addresses the issue of electronic performance monitoring in call centers from an ethical perspective. The following ethical dilemma is offered: "Is it ethical for a call center manager to evaluate the performance of a call center employee using electronic pe...

  17. Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)

    Science.gov (United States)

    Valentine, Timothy

    2017-09-01

    The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.

  18. Threat and vulnerability analysis and conceptual design of countermeasures for a computer center under construction

    International Nuclear Information System (INIS)

    Rozen, A.; Musacchio, J.M.

    1988-01-01

    This project involved the assessment of a new computer center to be used as the main national data processing facility of a large European bank. This building serves as the principal facility in the country with all other branches utilizing the data processing center. As such, the building is a crucial target which may attract terrorist attacks. Threat and vulnerability assessments were performed as a basis to define and overall fully-integrated security system of passive and active countermeasures for the facility. After separately assessing the range of threats and vulnerabilities, a combined matrix of threats and vulnerabilities was used to identify the crucial combinations. A set of architectural-structural passive measures was added to the active components of the security system

  19. Changing the batch system in a Tier 1 computing center: why and how

    Science.gov (United States)

    Chierici, Andrea; Dal Pra, Stefano

    2014-06-01

    At the Italian Tierl Center at CNAF we are evaluating the possibility to change the current production batch system. This activity is motivated mainly because we are looking for a more flexible licensing model as well as to avoid vendor lock-in. We performed a technology tracking exercise and among many possible solutions we chose to evaluate Grid Engine as an alternative because its adoption is increasing in the HEPiX community and because it's supported by the EMI middleware that we currently use on our computing farm. Another INFN site evaluated Slurm and we will compare our results in order to understand pros and cons of the two solutions. We will present the results of our evaluation of Grid Engine, in order to understand if it can fit the requirements of a Tier 1 center, compared to the solution we adopted long ago. We performed a survey and a critical re-evaluation of our farming infrastructure: many production softwares (accounting and monitoring on top of all) rely on our current solution and changing it required us to write new wrappers and adapt the infrastructure to the new system. We believe the results of this investigation can be very useful to other Tier-ls and Tier-2s centers in a similar situation, where the effort of switching may appear too hard to stand. We will provide guidelines in order to understand how difficult this operation can be and how long the change may take.

  20. DOE research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-12-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models whose execution is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex; consequently, it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  1. The Role of the Radiation Safety Information Computational Center (RSICC) in Knowledge Management

    International Nuclear Information System (INIS)

    Valentine, T.

    2016-01-01

    Full text: The Radiation Safety Information Computational Center (RSICC) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 packages that have been provided by contributors from various agencies. RSICC’s customers obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to help ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programmes both domestically and internationally, as the majority of RSICC’s customers are students attending U.S. universities. RSICC also supports and promotes workshops and seminars in nuclear science and technology to further the use and/or development of computational tools and data. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC’s activities, services, and systems that support knowledge management and education and training in the nuclear field. (author

  2. High-performance computing — an overview

    Science.gov (United States)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  3. High performance computing in Windows Azure cloud

    OpenAIRE

    Ambruš, Dejan

    2013-01-01

    High performance, security, availability, scalability, flexibility and lower costs of maintenance have essentially contributed to the growing popularity of cloud computing in all spheres of life, especially in business. In fact cloud computing offers even more than this. With usage of virtual computing clusters a runtime environment for high performance computing can be efficiently implemented also in a cloud. There are many advantages but also some disadvantages of cloud computing, some ...

  4. Strategic performance evaluation in cancer centers.

    Science.gov (United States)

    Delgado, Rigoberto I; Langabeer, James R

    2009-01-01

    Most research in healthcare strategy has focused on formulating or implementing organizational plans and strategies, and little attention has been dedicated to the post-implementation control and evaluation of strategy, which we contend is the most critical aspect of achieving organizational goals. The objective of this study was to identify strategic control approaches used by major cancer centers in the country and to relate these practices to financial performance. Our intent was to expand the theory and practice of healthcare strategy to focused services, such as oncology. We designed a 17-question survey to capture elements of strategy and performance from our study sample, which comprised major cancer hospitals in the United States and shared similar mandates and resource constraints. The results suggest that high-performing cancer centers use more sophisticated analytical approaches, invest greater financial resources in performance analysis, and conduct more frequent performance reviews than do low-performing organizations. Our conclusions point to the need for a more robust approach to strategic assessment. In this article, we offer a number of recommendations for management to achieve strategic plans and goals on the basis of our research. To our knowledge, this study is one of the first to concentrate on the area of strategic control.

  5. Quantum Accelerators for High-performance Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  6. The Erasmus Computing Grid - Building a Super-Computer Virtually for Free at the Erasmus Medical Center and the Hogeschool Rotterdam

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); L.V. de Zeeuw (Luc)

    2006-01-01

    textabstractThe Set-Up of the 20 Teraflop Erasmus Computing Grid: To meet the enormous computational needs of live- science research as well as clinical diagnostics and treatment the Hogeschool Rotterdam and the Erasmus Medical Center are currently setting up one of the largest desktop

  7. Computer technique for evaluating collimator performance

    International Nuclear Information System (INIS)

    Rollo, F.D.

    1975-01-01

    A computer program has been developed to theoretically evaluate the overall performance of collimators used with radioisotope scanners and γ cameras. The first step of the program involves the determination of the line spread function (LSF) and geometrical efficiency from the fundamental parameters of the collimator being evaluated. The working equations can be applied to any plane of interest. The resulting LSF is applied to subroutine computer programs which compute corresponding modulation transfer function and contrast efficiency functions. The latter function is then combined with appropriate geometrical efficiency data to determine the performance index function. The overall computer program allows one to predict from the physical parameters of the collimator alone how well the collimator will reproduce various sized spherical voids of activity in the image plane. The collimator performance program can be used to compare the performance of various collimator types, to study the effects of source depth on collimator performance, and to assist in the design of collimators. The theory of the collimator performance equation is discussed, a comparison between the experimental and theoretical LSF values is made, and examples of the application of the technique are presented

  8. JFK Center for the Performing Arts

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number DC0000248, the JFK Center for the Performing Arts, in authorized to discharge from a facility in Washington, DC to the receiving waters named Potomac River.

  9. High-performance computing in seismology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  10. A Framework for Debugging Geoscience Projects in a High Performance Computing Environment

    Science.gov (United States)

    Baxter, C.; Matott, L.

    2012-12-01

    High performance computing (HPC) infrastructure has become ubiquitous in today's world with the emergence of commercial cloud computing and academic supercomputing centers. Teams of geoscientists, hydrologists and engineers can take advantage of this infrastructure to undertake large research projects - for example, linking one or more site-specific environmental models with soft computing algorithms, such as heuristic global search procedures, to perform parameter estimation and predictive uncertainty analysis, and/or design least-cost remediation systems. However, the size, complexity and distributed nature of these projects can make identifying failures in the associated numerical experiments using conventional ad-hoc approaches both time- consuming and ineffective. To address these problems a multi-tiered debugging framework has been developed. The framework allows for quickly isolating and remedying a number of potential experimental failures, including: failures in the HPC scheduler; bugs in the soft computing code; bugs in the modeling code; and permissions and access control errors. The utility of the framework is demonstrated via application to a series of over 200,000 numerical experiments involving a suite of 5 heuristic global search algorithms and 15 mathematical test functions serving as cheap analogues for the simulation-based optimization of pump-and-treat subsurface remediation systems.

  11. Towards the development of run times leveraging virtualization for high performance computing

    International Nuclear Information System (INIS)

    Diakhate, F.

    2010-12-01

    In recent years, there has been a growing interest in using virtualization to improve the efficiency of data centers. This success is rooted in virtualization's excellent fault tolerance and isolation properties, in the overall flexibility it brings, and in its ability to exploit multi-core architectures efficiently. These characteristics also make virtualization an ideal candidate to tackle issues found in new compute cluster architectures. However, in spite of recent improvements in virtualization technology, overheads in the execution of parallel applications remain, which prevent its use in the field of high performance computing. In this thesis, we propose a virtual device dedicated to message passing between virtual machines, so as to improve the performance of parallel applications executed in a cluster of virtual machines. We also introduce a set of techniques facilitating the deployment of virtualized parallel applications. These functionalities have been implemented as part of a runtime system which allows to benefit from virtualization's properties in a way that is as transparent as possible to the user while minimizing performance overheads. (author)

  12. Use of computers and Internet among people with severe mental illnesses at peer support centers.

    Science.gov (United States)

    Brunette, Mary F; Aschbrenner, Kelly A; Ferron, Joelle C; Ustinich, Lee; Kelly, Michael; Grinley, Thomas

    2017-12-01

    Peer support centers are an ideal setting where people with severe mental illnesses can access the Internet via computers for online health education, peer support, and behavioral treatments. The purpose of this study was to assess computer use and Internet access in peer support agencies. A peer-assisted survey assessed the frequency with which consumers in all 13 New Hampshire peer support centers (n = 702) used computers to access Internet resources. During the 30-day survey period, 200 of the 702 peer support consumers (28%) responded to the survey. More than 3 quarters (78.5%) of respondents had gone online to seek information in the past year. About half (49%) of respondents were interested in learning about online forums that would provide information and peer support for mental health issues. Peer support centers may be a useful venue for Web-based approaches to education, peer support, and intervention. Future research should assess facilitators and barriers to use of Web-based resources among people with severe mental illness in peer support centers. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Performing an allreduce operation on a plurality of compute nodes of a parallel computer

    Science.gov (United States)

    Faraj, Ahmad [Rochester, MN

    2012-04-17

    Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer. Each compute node includes at least two processing cores. Each processing core has contribution data for the allreduce operation. Performing an allreduce operation on a plurality of compute nodes of a parallel computer includes: establishing one or more logical rings among the compute nodes, each logical ring including at least one processing core from each compute node; performing, for each logical ring, a global allreduce operation using the contribution data for the processing cores included in that logical ring, yielding a global allreduce result for each processing core included in that logical ring; and performing, for each compute node, a local allreduce operation using the global allreduce results for each processing core on that compute node.

  14. US QCD computational performance studies with PERI

    International Nuclear Information System (INIS)

    Zhang, Y; Fowler, R; Huck, K; Malony, A; Porterfield, A; Reed, D; Shende, S; Taylor, V; Wu, X

    2007-01-01

    We report on some of the interactions between two SciDAC projects: The National Computational Infrastructure for Lattice Gauge Theory (USQCD), and the Performance Engineering Research Institute (PERI). Many modern scientific programs consistently report the need for faster computational resources to maintain global competitiveness. However, as the size and complexity of emerging high end computing (HEC) systems continue to rise, achieving good performance on such systems is becoming ever more challenging. In order to take full advantage of the resources, it is crucial to understand the characteristics of relevant scientific applications and the systems these applications are running on. Using tools developed under PERI and by other performance measurement researchers, we studied the performance of two applications, MILC and Chroma, on several high performance computing systems at DOE laboratories. In the case of Chroma, we discuss how the use of C++ and modern software engineering and programming methods are driving the evolution of performance tools

  15. The Internet and Computer User Profile: a questionnaire for determining intervention targets in occupational therapy at mental health vocational centers.

    Science.gov (United States)

    Regev, Sivan; Hadas-Lidor, Noami; Rosenberg, Limor

    2016-08-01

    In this study, the assessment tool "Internet and Computer User Profile" questionnaire (ICUP) is presented and validated. It was developed in order to gather information for setting intervention goals to meet current demands. Sixty-eight subjects aged 23-68 participated in the study. The study group (n = 28) was sampled from two vocational centers. The control group consisted of 40 participants from the general population that were sampled by convenience sampling based on the demographics of the study group. Subjects from both groups answered the ICUP questionnaire. Subjects of the study group answered the General Self- Efficacy (GSE) questionnaire and performed the Assessment of Computer Task Performance (ACTP) test in order to examine the convergent validity of the ICUP. Twenty subjects from both groups retook the ICUP questionnaire in order to obtain test-retest results. Differences between groups were tested using multiple analysis of variance (MANOVA) tests. Pearson and Spearman's tests were used for calculating correlations. Cronbach's alpha coefficient and k equivalent were used to assess internal consistency. The results indicate that the questionnaire is valid and reliable. They emphasize that the layout of the ICUP items facilitates in making a comprehensive examination of the client's perception regarding his participation in computer and internet activities. Implications for Rehabiliation The assessment tool "Internet and Computer User Profile" (ICUP) questionnaire is a novel assessment tool that evaluates operative use and individual perception of computer activities. The questionnaire is valid and reliable for use with participants of vocational centers dealing with mental illness. It is essential to facilitate access to computers for people with mental illnesses, seeing that they express similar interest in computers and internet as people from the general population of the same age. Early intervention will be particularly effective for young

  16. High Performance Computing and Storage Requirements for Biological and Environmental Research Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Wasserman, Harvey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)

    2013-05-01

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In addition to large-­scale computing and storage resources NERSC provides support and expertise that help scientists make efficient use of its systems. The latest review revealed several key requirements, in addition to achieving its goal of characterizing BER computing and storage needs.

  17. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL

    2011-08-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and

  18. Accurate Computation of Periodic Regions' Centers in the General M-Set with Integer Index Number

    Directory of Open Access Journals (Sweden)

    Wang Xingyuan

    2010-01-01

    Full Text Available This paper presents two methods for accurately computing the periodic regions' centers. One method fits for the general M-sets with integer index number, the other fits for the general M-sets with negative integer index number. Both methods improve the precision of computation by transforming the polynomial equations which determine the periodic regions' centers. We primarily discuss the general M-sets with negative integer index, and analyze the relationship between the number of periodic regions' centers on the principal symmetric axis and in the principal symmetric interior. We can get the centers' coordinates with at least 48 significant digits after the decimal point in both real and imaginary parts by applying the Newton's method to the transformed polynomial equation which determine the periodic regions' centers. In this paper, we list some centers' coordinates of general M-sets' k-periodic regions (k=3,4,5,6 for the index numbers α=−25,−24,…,−1 , all of which have highly numerical accuracy.

  19. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Kostadin, Damevski [Virginia State Univ., Petersburg, VA (United States)

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  20. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    Science.gov (United States)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  1. Contributing to the design of run-time systems dedicated to high performance computing; Contribution a l'elaboration d'environnements de programmation dedies au calcul scientifique hautes performances

    Energy Technology Data Exchange (ETDEWEB)

    Perache, M

    2006-10-15

    In the field of intensive scientific computing, the quest for performance has to face the increasing complexity of parallel architectures. Nowadays, these machines exhibit a deep memory hierarchy which complicates the design of efficient parallel applications. This thesis proposes a programming environment allowing to design efficient parallel programs on top of clusters of multi-processors. It features a programming model centered around collective communications and synchronizations, and provides load balancing facilities. The programming interface, named MPC, provides high level paradigms which are optimized according to the underlying architecture. The environment is fully functional and used within the CEA/DAM (TERANOVA) computing center. The evaluations presented in this document confirm the relevance of our approach. (author)

  2. Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    Energy Technology Data Exchange (ETDEWEB)

    Shorgin, Sergey Ya.; Pechinkin, Alexander V. [Institute of Informatics Problems, Russian Academy of Sciences (Russian Federation); Samouylov, Konstantin E.; Gaidamaka, Yuliya V.; Gudkova, Irina A.; Sopin, Eduard S. [Telecommunication Systems Department, Peoples’ Friendship University of Russia (Russian Federation)

    2015-03-10

    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. For better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures.

  3. Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    International Nuclear Information System (INIS)

    Shorgin, Sergey Ya.; Pechinkin, Alexander V.; Samouylov, Konstantin E.; Gaidamaka, Yuliya V.; Gudkova, Irina A.; Sopin, Eduard S.

    2015-01-01

    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. For better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures

  4. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    Science.gov (United States)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  5. High-performance computing for airborne applications

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Manuzatto, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-01-01

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  6. The NIRA computer program package (photonuclear data center). Final report

    International Nuclear Information System (INIS)

    Vander Molen, H.J.; Gerstenberg, H.M.

    1976-02-01

    The Photonuclear Data Center's NIRA library of programs, executable from mass storage on the National Bureau of Standard's central computer facility, is described. Detailed instructions are given (with examples) for the use of the library to analyze, evaluate, synthesize, and produce for publication camera-ready tabular and graphical presentations of digital photonuclear reaction cross-section data. NIRA is the acronym for Nuclear Information Research Associate

  7. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography

    DEFF Research Database (Denmark)

    Vavere, Andrea L; Simon, Gregory G; George, Richard T

    2013-01-01

    Multidetector coronary computed tomography angiography (CTA) is a promising modality for widespread clinical application because of its noninvasive nature and high diagnostic accuracy as found in previous studies using 64 to 320 simultaneous detector rows. It is, however, limited in its ability...... to detect myocardial ischemia. In this article, we describe the design of the CORE320 study ("Combined coronary atherosclerosis and myocardial perfusion evaluation using 320 detector row computed tomography"). This prospective, multicenter, multinational study is unique in that it is designed to assess...... the diagnostic performance of combined 320-row CTA and myocardial CT perfusion imaging (CTP) in comparison with the combination of invasive coronary angiography and single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI). The trial is being performed at 16 medical centers located in 8...

  8. On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers

    Science.gov (United States)

    Erli, G.; Fischer, F.; Fleig, G.; Giffels, M.; Hauth, T.; Quast, G.; Schnepf, M.; Heese, J.; Leppert, K.; Arnaez de Pedro, J.; Sträter, R.

    2017-10-01

    This contribution reports on solutions, experiences and recent developments with the dynamic, on-demand provisioning of remote computing resources for analysis and simulation workflows. Local resources of a physics institute are extended by private and commercial cloud sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers. Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable and flexible to utilize remote computing capacity via virtualization techniques or container concepts. We report on recent experience from incorporating a remote HPC center (NEMO Cluster, Freiburg University) and resources dynamically requested from the commercial provider 1&1 Internet SE into our intitute’s computing infrastructure. The Freiburg HPC resources are requested via the standard batch system, allowing HPC and HEP applications to be executed simultaneously, such that regular batch jobs run side by side to virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources, a Python API and SDK as well as the possibility to upload images were available. Large scale tests prove the capability to serve the scientific use case in the European 1&1 datacenters. The described environment at the Institute of Experimental Nuclear Physics (IEKP) at KIT serves the needs of researchers participating in the CMS and Belle II experiments. In total, resources exceeding half a million CPU hours have been provided by remote sites.

  9. Analysis of parallel computing performance of the code MCNP

    International Nuclear Information System (INIS)

    Wang Lei; Wang Kan; Yu Ganglin

    2006-01-01

    Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)

  10. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  11. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  12. Fast Performance Computing Model for Smart Distributed Power Systems

    Directory of Open Access Journals (Sweden)

    Umair Younas

    2017-06-01

    Full Text Available Plug-in Electric Vehicles (PEVs are becoming the more prominent solution compared to fossil fuels cars technology due to its significant role in Greenhouse Gas (GHG reduction, flexible storage, and ancillary service provision as a Distributed Generation (DG resource in Vehicle to Grid (V2G regulation mode. However, large-scale penetration of PEVs and growing demand of energy intensive Data Centers (DCs brings undesirable higher load peaks in electricity demand hence, impose supply-demand imbalance and threaten the reliability of wholesale and retail power market. In order to overcome the aforementioned challenges, the proposed research considers smart Distributed Power System (DPS comprising conventional sources, renewable energy, V2G regulation, and flexible storage energy resources. Moreover, price and incentive based Demand Response (DR programs are implemented to sustain the balance between net demand and available generating resources in the DPS. In addition, we adapted a novel strategy to implement the computational intensive jobs of the proposed DPS model including incoming load profiles, V2G regulation, battery State of Charge (SOC indication, and fast computation in decision based automated DR algorithm using Fast Performance Computing resources of DCs. In response, DPS provide economical and stable power to DCs under strict power quality constraints. Finally, the improved results are verified using case study of ISO California integrated with hybrid generation.

  13. Performing stencil computations

    Energy Technology Data Exchange (ETDEWEB)

    Donofrio, David

    2018-01-16

    A method and apparatus for performing stencil computations efficiently are disclosed. In one embodiment, a processor receives an offset, and in response, retrieves a value from a memory via a single instruction, where the retrieving comprises: identifying, based on the offset, one of a plurality of registers of the processor; loading an address stored in the identified register; and retrieving from the memory the value at the address.

  14. NASA Human Health and Performance Center (NHHPC)

    Science.gov (United States)

    Davis, Jeffery R.

    2010-01-01

    This slide presentation reviews the purpose, potential members and participants of the NASA Human Health and Performance Center (NHHPC). Included in the overview is a brief description of the administration and current activities of the NHHPC.

  15. High performance computing in linear control

    International Nuclear Information System (INIS)

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  16. Cloud Computing for Complex Performance Codes.

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klein, Brandon Thorin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miner, John Gifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  17. Annual report of R and D activities in center for promotion of computational science and engineering from April 1, 2004 to March 31, 2005

    International Nuclear Information System (INIS)

    2005-09-01

    This report provides an overview of research and development activities in Center for Promotion of Computational Science and Engineering (CCSE), JAERI, in the fiscal year 2004 (April 1, 2004 - March 31, 2005). The activities have been performed by Research Group for Computational Science in Atomic Energy, Research Group for Computational Material Science in Atomic Energy, R and D Group for Computer Science, R and D Group for Numerical Experiments, and Quantum Bioinformatics Group in CCSE. The ITBL (Information Technology Based Laboratory) project is performed mainly by the R and D Group for Computer Science and the Research Group for Computational Science in Atomic Energy. According to the mid-term evaluation for the ITBL project conducted by the MEXT, the achievement of the ITBL infrastructure software developed by JAERI has been remarked as outstanding at the 13th Information Science and Technology Committee in the Subdivision on R and D Planning and Evaluation of the Council for Science and Technology on April 26th, 2004. (author)

  18. The Role of Computers in Research and Development at Langley Research Center

    Science.gov (United States)

    Wieseman, Carol D. (Compiler)

    1994-01-01

    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

  19. High Performance Computing Multicast

    Science.gov (United States)

    2012-02-01

    A History of the Virtual Synchrony Replication Model,” in Replication: Theory and Practice, Charron-Bost, B., Pedone, F., and Schiper, A. (Eds...Performance Computing IP / IPv4 Internet Protocol (version 4.0) IPMC Internet Protocol MultiCast LAN Local Area Network MCMD Dr. Multicast MPI

  20. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  1. An Adaptive Middleware for Improved Computational Performance

    DEFF Research Database (Denmark)

    Bonnichsen, Lars Frydendal

    , we are improving computational performance by exploiting modern hardware features, such as dynamic voltage-frequency scaling and transactional memory. Adapting software is an iterative process, requiring that we continually revisit it to meet new requirements or realities; a time consuming process......The performance improvements in computer systems over the past 60 years have been fueled by an exponential increase in energy efficiency. In recent years, the phenomenon known as the end of Dennard’s scaling has slowed energy efficiency improvements — but improving computer energy efficiency...... is more important now than ever. Traditionally, most improvements in computer energy efficiency have come from improvements in lithography — the ability to produce smaller transistors — and computer architecture - the ability to apply those transistors efficiently. Since the end of scaling, we have seen...

  2. Contributing to the design of run-time systems dedicated to high performance computing; Contribution a l'elaboration d'environnements de programmation dedies au calcul scientifique hautes performances

    Energy Technology Data Exchange (ETDEWEB)

    Perache, M

    2006-10-15

    In the field of intensive scientific computing, the quest for performance has to face the increasing complexity of parallel architectures. Nowadays, these machines exhibit a deep memory hierarchy which complicates the design of efficient parallel applications. This thesis proposes a programming environment allowing to design efficient parallel programs on top of clusters of multi-processors. It features a programming model centered around collective communications and synchronizations, and provides load balancing facilities. The programming interface, named MPC, provides high level paradigms which are optimized according to the underlying architecture. The environment is fully functional and used within the CEA/DAM (TERANOVA) computing center. The evaluations presented in this document confirm the relevance of our approach. (author)

  3. High-performance scientific computing in the cloud

    Science.gov (United States)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  4. Computer-aided dispatch--traffic management center field operational test : Washington State final report

    Science.gov (United States)

    2006-05-01

    This document provides the final report for the evaluation of the USDOT-sponsored Computer-Aided Dispatch - Traffic Management Center Integration Field Operations Test in the State of Washington. The document discusses evaluation findings in the foll...

  5. High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away

    Science.gov (United States)

    Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.

    2012-09-01

    By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data

  6. Department of Energy research in utilization of high-performance computers

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Worlton, W.J.; Michael, G.; Rodrigue, G.

    1980-08-01

    Department of Energy (DOE) and other Government research laboratories depend on high-performance computer systems to accomplish their programmatic goals. As the most powerful computer systems become available, they are acquired by these laboratories so that advances can be made in their disciplines. These advances are often the result of added sophistication to numerical models, the execution of which is made possible by high-performance computer systems. However, high-performance computer systems have become increasingly complex, and consequently it has become increasingly difficult to realize their potential performance. The result is a need for research on issues related to the utilization of these systems. This report gives a brief description of high-performance computers, and then addresses the use of and future needs for high-performance computers within DOE, the growing complexity of applications within DOE, and areas of high-performance computer systems warranting research. 1 figure

  7. Secure data exchange between intelligent devices and computing centers

    Science.gov (United States)

    Naqvi, Syed; Riguidel, Michel

    2005-03-01

    The advent of reliable spontaneous networking technologies (commonly known as wireless ad-hoc networks) has ostensibly raised stakes for the conception of computing intensive environments using intelligent devices as their interface with the external world. These smart devices are used as data gateways for the computing units. These devices are employed in highly volatile environments where the secure exchange of data between these devices and their computing centers is of paramount importance. Moreover, their mission critical applications require dependable measures against the attacks like denial of service (DoS), eavesdropping, masquerading, etc. In this paper, we propose a mechanism to assure reliable data exchange between an intelligent environment composed of smart devices and distributed computing units collectively called 'computational grid'. The notion of infosphere is used to define a digital space made up of a persistent and a volatile asset in an often indefinite geographical space. We study different infospheres and present general evolutions and issues in the security of such technology-rich and intelligent environments. It is beyond any doubt that these environments will likely face a proliferation of users, applications, networked devices, and their interactions on a scale never experienced before. It would be better to build in the ability to uniformly deal with these systems. As a solution, we propose a concept of virtualization of security services. We try to solve the difficult problems of implementation and maintenance of trust on the one hand, and those of security management in heterogeneous infrastructure on the other hand.

  8. Information and psychomotor skills knowledge acquisition: A student-customer-centered and computer-supported approach.

    Science.gov (United States)

    Nicholson, Anita; Tobin, Mary

    2006-01-01

    This presentation will discuss coupling commercial and customized computer-supported teaching aids to provide BSN nursing students with a friendly customer-centered self-study approach to psychomotor skill acquisition.

  9. Congenital Heart Surgery Case Mix Across North American Centers and Impact on Performance Assessment.

    Science.gov (United States)

    Pasquali, Sara K; Wallace, Amelia S; Gaynor, J William; Jacobs, Marshall L; O'Brien, Sean M; Hill, Kevin D; Gaies, Michael G; Romano, Jennifer C; Shahian, David M; Mayer, John E; Jacobs, Jeffrey P

    2016-11-01

    Performance assessment in congenital heart surgery is challenging due to the wide heterogeneity of disease. We describe current case mix across centers, evaluate methodology inclusive of all cardiac operations versus the more homogeneous subset of Society of Thoracic Surgeons benchmark operations, and describe implications regarding performance assessment. Centers (n = 119) participating in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2010 through 2014) were included. Index operation type and frequency across centers were described. Center performance (risk-adjusted operative mortality) was evaluated and classified when including the benchmark versus all eligible operations. Overall, 207 types of operations were performed during the study period (112,140 total cases). Few operations were performed across all centers; only 25% were performed at least once by 75% or more of centers. There was 7.9-fold variation across centers in the proportion of total cases comprising high-complexity cases (STAT 5). In contrast, the benchmark operations made up 36% of cases, and all but 2 were performed by at least 90% of centers. When evaluating performance based on benchmark versus all operations, 15% of centers changed performance classification; 85% remained unchanged. Benchmark versus all operation methodology was associated with lower power, with 35% versus 78% of centers meeting sample size thresholds. There is wide variation in congenital heart surgery case mix across centers. Metrics based on benchmark versus all operations are associated with strengths (less heterogeneity) and weaknesses (lower power), and lead to differing performance classification for some centers. These findings have implications for ongoing efforts to optimize performance assessment, including choice of target population and appropriate interpretation of reported metrics. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  11. SCinet Architecture: Featured at the International Conference for High Performance Computing,Networking, Storage and Analysis 2016

    Energy Technology Data Exchange (ETDEWEB)

    Lyonnais, Marc; Smith, Matt; Mace, Kate P.

    2017-02-06

    SCinet is the purpose-built network that operates during the International Conference for High Performance Computing,Networking, Storage and Analysis (Super Computing or SC). Created each year for the conference, SCinet brings to life a high-capacity network that supports applications and experiments that are a hallmark of the SC conference. The network links the convention center to research and commercial networks around the world. This resource serves as a platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of applications. Volunteers from academia, government and industry work together to design and deliver the SCinet infrastructure. Industry vendors and carriers donate millions of dollars in equipment and services needed to build and support the local and wide area networks. Planning begins more than a year in advance of each SC conference and culminates in a high intensity installation in the days leading up to the conference. The SCinet architecture for SC16 illustrates a dramatic increase in participation from the vendor community, particularly those that focus on network equipment. Software-Defined Networking (SDN) and Data Center Networking (DCN) are present in nearly all aspects of the design.

  12. Evaluating trauma center structural performance: The experience of a Canadian provincial trauma system

    Directory of Open Access Journals (Sweden)

    Lynne Moore

    2013-01-01

    Full Text Available Background: Indicators of structure, process, and outcome are required to evaluate the performance of trauma centers to improve the quality and efficiency of care. While periodic external accreditation visits are part of most trauma systems, a quantitative indicator of structural performance has yet to be proposed. The objective of this study was to develop and validate a trauma center structural performance indicator using accreditation report data. Materials and Methods: Analyses were based on accreditation reports completed during on-site visits in the Quebec trauma system (1994-2005. Qualitative report data was retrospectively transposed onto an evaluation grid and the weighted average of grid items was used to quantify performance. The indicator of structural performance was evaluated in terms of test-retest reliability (kappa statistic, discrimination between centers (coefficient of variation, content validity (correlation with accreditation decision, designation level, and patient volume and forecasting (correlation between visits performed in 1994-1999 and 1998-2005. Results: Kappa statistics were >0.8 for 66 of the 73 (90% grid items. Mean structural performance score over 59 trauma centers was 47.4 (95% CI: 43.6-51.1. Two centers were flagged as outliers and the coefficient of variation was 31.2% (95% CI: 25.5% to 37.6%, showing good discrimination. Correlation coefficients of associations with accreditation decision, designation level, and volume were all statistically significant (r = 0.61, -0.40, and 0.24, respectively. No correlation was observed over time (r = 0.03. Conclusion: This study demonstrates the feasibility of quantifying trauma center structural performance using accreditation reports. The proposed performance indicator shows good test-retest reliability, between-center discrimination, and construct validity. The observed variability in structural performance across centers and over-time underlines the importance of

  13. Computer Vision Syndrome among Call Center Employees at Telecommunication Company in Bandung

    Directory of Open Access Journals (Sweden)

    Ghea Nursyifa

    2016-06-01

    Full Text Available Background: The occurrence of Computer Vision Syndrome (CVS at the workplace has increased within decades due to theprolonged use of computers. Knowledge of CVS is necessary in order to develop an awareness of how to prevent and alleviate itsprevalence . The objective of this study was to assess the knowledge of CVS among call center employees and to explore the most frequent CVS symptom experienced by the workers. Methods: A descriptive cross sectional study was conducted during the period of September to November 2014 at Telecommunication Company in Bandung using a questionnaire consisting of 30 questions. Out of the 30 questions/statements, 15 statements were about knowledge of CVS and other 15 questions were about the occurrence of CVS and its symptoms. In this study 125 call center employees participated as respondents using consecutive sampling. The level of knowledge was divided into 3 categories: good (76–100%, fair (75–56% and poor (<56%. The collected data was presented in frequency tabulation. Results: There was 74.4% of the respondents had poor knowledge of CVS. The most symptom experienced by the respondents was asthenopia. Conclusions: The CVS occurs in call center employees with various symptoms and signs. This situation is not supported by good knowledge of the syndrome which can hamper prevention programs.

  14. Annual report of R and D activities in Center for Computational Science and e-Systems from April 1, 2006 to March 31, 2007

    International Nuclear Information System (INIS)

    2008-03-01

    This report provides an overview of the research and development activities of the Center for Computational Science and e-Systems (CCSE), JAEA in fiscal year 2006 (April 1, 2006 - March 31, 2007). These research and development activities have been performed by the Simulation Technology Research and Development Office and the Computer Science Research and Development Office. The primary results of the research and development activities are the development of simulation techniques for a virtual earthquake testbed, an intelligent infrastructure for atomic energy research, computational biological disciplines to predict DNA repair function of protein, and material models for a neutron detection device, crack propagation, and gas bubble formation in nuclear fuel. (author)

  15. Performance of Air Pollution Models on Massively Parallel Computers

    DEFF Research Database (Denmark)

    Brown, John; Hansen, Per Christian; Wasniewski, Jerzy

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on the computers. Using a realistic large-scale model, we gain detailed insight about the performance of the three computers when used to solve large-scale scientific problems...

  16. Misleading Performance Claims in Parallel Computations

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.

    2009-05-29

    In a previous humorous note entitled 'Twelve Ways to Fool the Masses,' I outlined twelve common ways in which performance figures for technical computer systems can be distorted. In this paper and accompanying conference talk, I give a reprise of these twelve 'methods' and give some actual examples that have appeared in peer-reviewed literature in years past. I then propose guidelines for reporting performance, the adoption of which would raise the level of professionalism and reduce the level of confusion, not only in the world of device simulation but also in the larger arena of technical computing.

  17. Comparing levels of school performance to science teachers' reports on knowledge/skills, instructional use and student use of computers

    Science.gov (United States)

    Kerr, Rebecca

    The purpose of this descriptive quantitative and basic qualitative study was to examine fifth and eighth grade science teachers' responses, perceptions of the role of technology in the classroom, and how they felt that computer applications, tools, and the Internet influence student understanding. The purposeful sample included survey and interview responses from fifth grade and eighth grade general and physical science teachers. Even though they may not be generalizable to other teachers or classrooms due to a low response rate, findings from this study indicated teachers with fewer years of teaching science had a higher level of computer use but less computer access, especially for students, in the classroom. Furthermore, teachers' choice of professional development moderated the relationship between the level of school performance and teachers' knowledge/skills, with the most positive relationship being with workshops that occurred outside of the school. Eighteen interviews revealed that teachers perceived the role of technology in classroom instruction mainly as teacher-centered and supplemental, rather than student-centered activities.

  18. Call center performance with direct response advertising

    NARCIS (Netherlands)

    M. Kiygi Calli (Meltem); M. Weverbergh (Marcel); Ph.H.B.F. Franses (Philip Hans)

    2017-01-01

    textabstractThis study investigates the manpower planning and the performance of a national call center dealing with car repairs and on the road interventions. We model the impact of advertising on the capacity required. The starting point is a forecasting model for the incoming calls, where we take

  19. Software Systems for High-performance Quantum Computing

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; Britt, Keith A [ORNL

    2016-01-01

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.

  20. Computer task performance by subjects with Duchenne muscular dystrophy.

    Science.gov (United States)

    Malheiros, Silvia Regina Pinheiro; da Silva, Talita Dias; Favero, Francis Meire; de Abreu, Luiz Carlos; Fregni, Felipe; Ribeiro, Denise Cardoso; de Mello Monteiro, Carlos Bandeira

    2016-01-01

    Two specific objectives were established to quantify computer task performance among people with Duchenne muscular dystrophy (DMD). First, we compared simple computational task performance between subjects with DMD and age-matched typically developing (TD) subjects. Second, we examined correlations between the ability of subjects with DMD to learn the computational task and their motor functionality, age, and initial task performance. The study included 84 individuals (42 with DMD, mean age of 18±5.5 years, and 42 age-matched controls). They executed a computer maze task; all participants performed the acquisition (20 attempts) and retention (five attempts) phases, repeating the same maze. A different maze was used to verify transfer performance (five attempts). The Motor Function Measure Scale was applied, and the results were compared with maze task performance. In the acquisition phase, a significant decrease was found in movement time (MT) between the first and last acquisition block, but only for the DMD group. For the DMD group, MT during transfer was shorter than during the first acquisition block, indicating improvement from the first acquisition block to transfer. In addition, the TD group showed shorter MT than the DMD group across the study. DMD participants improved their performance after practicing a computational task; however, the difference in MT was present in all attempts among DMD and control subjects. Computational task improvement was positively influenced by the initial performance of individuals with DMD. In turn, the initial performance was influenced by their distal functionality but not their age or overall functionality.

  1. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  2. Computer-aided dispatch--traffic management center field operational test : state of Utah final report

    Science.gov (United States)

    2006-07-01

    This document provides the final report for the evaluation of the USDOT-sponsored Computer-Aided Dispatch Traffic Management Center Integration Field Operations Test in the State of Utah. The document discusses evaluation findings in the followin...

  3. Information systems performance evaluation, introducing a two-level technique: Case study call centers

    Directory of Open Access Journals (Sweden)

    Hesham A. Baraka

    2015-03-01

    The objective of this paper was to introduce a new technique that can support decision makers in the call centers industry to evaluate, and analyze the performance of call centers. The technique presented is derived from the research done on measuring the success or failure of information systems. Two models are mainly adopted namely: the Delone and Mclean model first introduced in 1992 and the Design Reality Gap model introduced by Heeks in 2002. Two indices are defined to calculate the performance of the call center; the success index and the Gap Index. An evaluation tool has been developed to allow call centers managers to evaluate the performance of their call centers in a systematic analytical approach; the tool was applied on 4 call centers from different areas, simple applications such as food ordering, marketing, and sales, technical support systems, to more real time services such as the example of emergency control systems. Results showed the importance of using information systems models to evaluate complex systems as call centers. The models used allow identifying the dimensions for the call centers that are facing challenges, together with an identification of the individual indicators in these dimensions that are causing the poor performance of the call center.

  4. Performative Computation-aided Design Optimization

    Directory of Open Access Journals (Sweden)

    Ming Tang

    2012-12-01

    Full Text Available This article discusses a collaborative research and teaching project between the University of Cincinnati, Perkins+Will’s Tech Lab, and the University of North Carolina Greensboro. The primary investigation focuses on the simulation, optimization, and generation of architectural designs using performance-based computational design approaches. The projects examine various design methods, including relationships between building form, performance and the use of proprietary software tools for parametric design.

  5. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Science.gov (United States)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  6. COMPUTERS: Teraflops for Europe; EEC Working Group on High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-03-15

    In little more than a decade, simulation on high performance computers has become an essential tool for theoretical physics, capable of solving a vast range of crucial problems inaccessible to conventional analytic mathematics. In many ways, computer simulation has become the calculus for interacting many-body systems, a key to the study of transitions from isolated to collective behaviour.

  7. COMPUTERS: Teraflops for Europe; EEC Working Group on High Performance Computing

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In little more than a decade, simulation on high performance computers has become an essential tool for theoretical physics, capable of solving a vast range of crucial problems inaccessible to conventional analytic mathematics. In many ways, computer simulation has become the calculus for interacting many-body systems, a key to the study of transitions from isolated to collective behaviour

  8. Root Canal Transportation and Centering Ability of Nickel-Titanium Rotary Instruments in Mandibular Premolars Assessed Using Cone-Beam Computed Tomography.

    Science.gov (United States)

    Mamede-Neto, Iussif; Borges, Alvaro Henrique; Guedes, Orlando Aguirre; de Oliveira, Durvalino; Pedro, Fábio Luis Miranda; Estrela, Carlos

    2017-01-01

    The aim of this study was to evaluate, using cone-beam computed tomography (CBCT), transportation and centralization of different nickel-titanium (NiTi) rotary instruments. One hundred and twenty eight mandibular premolars were selected and instrumented using the following brands of NiTi files: WaveOne, WaveOne Gold, Reciproc, ProTaper Next, ProTaper Gold, Mtwo, BioRaCe and RaCe. CBCT imaging was performed before and after root canal preparation to obtain measurements of mesial and distal dentin walls and calculations of root canal transportation and centralization. A normal distribution of data was confirmed by the Kolmogorov-Smirnov and Levene tests, and results were assessed using the Kruskal-Wallis test. Statistical significance was set at 5%. ProTaper Gold produced the lowest canal transportation values, and RaCe, the highest. ProTaper Gold files also showed the highest values for centering ability, whereas BioRaCe showed the lowest. No significant differences were found across the different instruments in terms of canal transportation and centering ability (P > 0.05). Based on the methodology employed, all instruments used for root canal preparation of mandibular premolars performed similarly with regard to canal transportation and centering ability.

  9. High performance parallel computers for science

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1989-01-01

    This paper reports that Fermilab's Advanced Computer Program (ACP) has been developing cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 Mflops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction

  10. Initial constructs for patient-centered outcome measures to evaluate brain-computer interfaces.

    Science.gov (United States)

    Andresen, Elena M; Fried-Oken, Melanie; Peters, Betts; Patrick, Donald L

    2016-10-01

    The authors describe preliminary work toward the creation of patient-centered outcome (PCO) measures to evaluate brain-computer interface (BCI) as an assistive technology (AT) for individuals with severe speech and physical impairments (SSPI). In Phase 1, 591 items from 15 existing measures were mapped to the International Classification of Functioning, Disability and Health (ICF). In Phase 2, qualitative interviews were conducted with eight people with SSPI and seven caregivers. Resulting text data were coded in an iterative analysis. Most items (79%) were mapped to the ICF environmental domain; over half (53%) were mapped to more than one domain. The ICF framework was well suited for mapping items related to body functions and structures, but less so for items in other areas, including personal factors. Two constructs emerged from qualitative data: quality of life (QOL) and AT. Component domains and themes were identified for each. Preliminary constructs, domains and themes were generated for future PCO measures relevant to BCI. Existing instruments are sufficient for initial items but do not adequately match the values of people with SSPI and their caregivers. Field methods for interviewing people with SSPI were successful, and support the inclusion of these individuals in PCO research. Implications for Rehabilitation Adapted interview methods allow people with severe speech and physical impairments to participate in patient-centered outcomes research. Patient-centered outcome measures are needed to evaluate the clinical implementation of brain-computer interface as an assistive technology.

  11. Final Report: Center for Programming Models for Scalable Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [William Marsh Rice University

    2011-09-13

    As part of the Center for Programming Models for Scalable Parallel Computing, Rice University collaborated with project partners in the design, development and deployment of language, compiler, and runtime support for parallel programming models to support application development for the “leadership-class” computer systems at DOE national laboratories. Work over the course of this project has focused on the design, implementation, and evaluation of a second-generation version of Coarray Fortran. Research and development efforts of the project have focused on the CAF 2.0 language, compiler, runtime system, and supporting infrastructure. This has involved working with the teams that provide infrastructure for CAF that we rely on, implementing new language and runtime features, producing an open source compiler that enabled us to evaluate our ideas, and evaluating our design and implementation through the use of benchmarks. The report details the research, development, findings, and conclusions from this work.

  12. The effective use of virtualization for selection of data centers in a cloud computing environment

    Science.gov (United States)

    Kumar, B. Santhosh; Parthiban, Latha

    2018-04-01

    Data centers are the places which consist of network of remote servers to store, access and process the data. Cloud computing is a technology where users worldwide will submit the tasks and the service providers will direct the requests to the data centers which are responsible for execution of tasks. The servers in the data centers need to employ the virtualization concept so that multiple tasks can be executed simultaneously. In this paper we proposed an algorithm for data center selection based on energy of virtual machines created in server. The virtualization energy in each of the server is calculated and total energy of the data center is obtained by the summation of individual server energy. The tasks submitted are routed to the data center with least energy consumption which will result in minimizing the operational expenses of a service provider.

  13. Impact of configuration management system of computer center on support of scientific projects throughout their lifecycle

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Yuzhanin, N.V.; Zolotarev, V.I.; Ezhakova, T.R.

    2017-01-01

    In this article the problem of scientific projects support throughout their lifecycle in the computer center is considered in every aspect of support. Configuration Management system plays a connecting role in processes related to the provision and support of services of a computer center. In view of strong integration of IT infrastructure components with the use of virtualization, control of infrastructure becomes even more critical to the support of research projects, which means higher requirements for the Configuration Management system. For every aspect of research projects support, the influence of the Configuration Management system is reviewed and development of the corresponding elements of the system is described in the present paper.

  14. Quantum Accelerators for High-Performance Computing Systems

    OpenAIRE

    Britt, Keith A.; Mohiyaddin, Fahd A.; Humble, Travis S.

    2017-01-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantu...

  15. The inner workings of performance management in danish job centers

    DEFF Research Database (Denmark)

    Pihl-Thingvad, Signe

    2016-01-01

    The paper discusses how a central Performance Management system in the Danish job centers affects the employees’ perception of accountability, autonomy, common goals and dialogue. Dysfunctional behavioral effects are explored in qualitative analyses based on 4 case studies. Results indicate...... that the expected positive effects of performance management do not materialize at the Danish job centers because focus in the implementation process gradually shifts from results to process goals. This is related to a series of dysfunctional behavioral effects which instead of creating commitment frustrate...

  16. Multicore Challenges and Benefits for High Performance Scientific Computing

    Directory of Open Access Journals (Sweden)

    Ida M.B. Nielsen

    2008-01-01

    Full Text Available Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexity of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.

  17. An ergonomic evaluation of a call center performed by disabled agents.

    Science.gov (United States)

    Chi, Chia-Fen; Lin, Yen-Hui

    2008-08-01

    Potential ergonomic hazards for 27 disabled call center agents engaged in computer-telephone interactive tasks were evaluated for possible associations between the task behaviors and work-related disorders. Data included task description, 300 samples of performance, a questionnaire on workstation design, body-part discomfort rating, perceived stress, potential job stressors, and direct measurement of environmental factors. Analysis indicated agents were frequently exposed to prolonged static sitting and repetitive movements, together with unsupported back and flexed neck, causing musculoskeletal discomforts. Visual fatigue (85.2% of agents), discomfort of ears (66.7%), and musculoskeletal discomforts (59.3%) were the most pronounced and prevalent complaints after prolonged working. 17 of 27 agents described job pressure as high or very high, and dealing with difficult customers and trying to fulfill the customers' needs within the time standard were main stressors. Further work on surrounding noise, earphone use, possible hearing loss of experienced agents, training programs, feasible solutions for visual fatigue, musculoskeletal symptoms, and psychosocial stress should be conducted.

  18. The psychology of computer displays in the modern mission control center

    Science.gov (United States)

    Granaas, Michael M.; Rhea, Donald C.

    1988-01-01

    Work at NASA's Western Aeronautical Test Range (WATR) has demonstrated the need for increased consideration of psychological factors in the design of computer displays for the WATR mission control center. These factors include color perception, memory load, and cognitive processing abilities. A review of relevant work in the human factors psychology area is provided to demonstrate the need for this awareness. The information provided should be relevant in control room settings where computerized displays are being used.

  19. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Science.gov (United States)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  20. Data center network performance evaluation in ns3

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Vegas Olmos, Juan José

    2015-01-01

    In the following paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies in NS3 and subjec......In the following paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies in NS3...... and subjecting them to uniformly distributed traffic routed by shortest path algorithms we are able to extract statistics related to average throughput, latency and loss rate that show the decrease in the average throughput per connection is only about 5% for the hypercube compared to 16% for the 3D torus when...

  1. Computer-aided dispatch--traffic management center field operational test final detailed test plan : WSDOT deployment

    Science.gov (United States)

    2003-10-01

    The purpose of this document is to expand upon the evaluation components presented in "Computer-aided dispatch--traffic management center field operational test final evaluation plan : WSDOT deployment". This document defines the objective, approach,...

  2. PRODEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP : HIGH PERFORMANCE COMPUTING WITH QCDOC AND BLUEGENE.

    Energy Technology Data Exchange (ETDEWEB)

    CHRIST,N.; DAVENPORT,J.; DENG,Y.; GARA,A.; GLIMM,J.; MAWHINNEY,R.; MCFADDEN,E.; PESKIN,A.; PULLEYBLANK,W.

    2003-03-11

    Staff of Brookhaven National Laboratory, Columbia University, IBM and the RIKEN BNL Research Center organized a one-day workshop held on February 28, 2003 at Brookhaven to promote the following goals: (1) To explore areas other than QCD applications where the QCDOC and BlueGene/L machines can be applied to good advantage, (2) To identify areas where collaboration among the sponsoring institutions can be fruitful, and (3) To expose scientists to the emerging software architecture. This workshop grew out of an informal visit last fall by BNL staff to the IBM Thomas J. Watson Research Center that resulted in a continuing dialog among participants on issues common to these two related supercomputers. The workshop was divided into three sessions, addressing the hardware and software status of each system, prospective applications, and future directions.

  3. Impact of configuration management system of computer center on support of scientific projects throughout their lifecycle

    Science.gov (United States)

    Bogdanov, A. V.; Iuzhanin, N. V.; Zolotarev, V. I.; Ezhakova, T. R.

    2017-12-01

    In this article the problem of scientific projects support throughout their lifecycle in the computer center is considered in every aspect of support. Configuration Management system plays a connecting role in processes related to the provision and support of services of a computer center. In view of strong integration of IT infrastructure components with the use of virtualization, control of infrastructure becomes even more critical to the support of research projects, which means higher requirements for the Configuration Management system. For every aspect of research projects support, the influence of the Configuration Management system is being reviewed and development of the corresponding elements of the system is being described in the present paper.

  4. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  5. The performance of low-cost commercial cloud computing as an alternative in computational chemistry.

    Science.gov (United States)

    Thackston, Russell; Fortenberry, Ryan C

    2015-05-05

    The growth of commercial cloud computing (CCC) as a viable means of computational infrastructure is largely unexplored for the purposes of quantum chemistry. In this work, the PSI4 suite of computational chemistry programs is installed on five different types of Amazon World Services CCC platforms. The performance for a set of electronically excited state single-point energies is compared between these CCC platforms and typical, "in-house" physical machines. Further considerations are made for the number of cores or virtual CPUs (vCPUs, for the CCC platforms), but no considerations are made for full parallelization of the program (even though parallelization of the BLAS library is implemented), complete high-performance computing cluster utilization, or steal time. Even with this most pessimistic view of the computations, CCC resources are shown to be more cost effective for significant numbers of typical quantum chemistry computations. Large numbers of large computations are still best utilized by more traditional means, but smaller-scale research may be more effectively undertaken through CCC services. © 2015 Wiley Periodicals, Inc.

  6. Computational Fluid Dynamics (CFD) Computations With Zonal Navier-Stokes Flow Solver (ZNSFLOW) Common High Performance Computing Scalable Software Initiative (CHSSI) Software

    National Research Council Canada - National Science Library

    Edge, Harris

    1999-01-01

    ...), computational fluid dynamics (CFD) 6 project. Under the project, a proven zonal Navier-Stokes solver was rewritten for scalable parallel performance on both shared memory and distributed memory high performance computers...

  7. Building a Prototype of LHC Analysis Oriented Computing Centers

    Science.gov (United States)

    Bagliesi, G.; Boccali, T.; Della Ricca, G.; Donvito, G.; Paganoni, M.

    2012-12-01

    A Consortium between four LHC Computing Centers (Bari, Milano, Pisa and Trieste) has been formed in 2010 to prototype Analysis-oriented facilities for CMS data analysis, profiting from a grant from the Italian Ministry of Research. The Consortium aims to realize an ad-hoc infrastructure to ease the analysis activities on the huge data set collected at the LHC Collider. While “Tier2” Computing Centres, specialized in organized processing tasks like Monte Carlo simulation, are nowadays a well established concept, with years of running experience, site specialized towards end user chaotic analysis activities do not yet have a defacto standard implementation. In our effort, we focus on all the aspects that can make the analysis tasks easier for a physics user not expert in computing. On the storage side, we are experimenting on storage techniques allowing for remote data access and on storage optimization on the typical analysis access patterns. On the networking side, we are studying the differences between flat and tiered LAN architecture, also using virtual partitioning of the same physical networking for the different use patterns. Finally, on the user side, we are developing tools and instruments to allow for an exhaustive monitoring of their processes at the site, and for an efficient support system in case of problems. We will report about the results of the test executed on different subsystem and give a description of the layout of the infrastructure in place at the site participating to the consortium.

  8. Building a Prototype of LHC Analysis Oriented Computing Centers

    International Nuclear Information System (INIS)

    Bagliesi, G; Boccali, T; Della Ricca, G; Donvito, G; Paganoni, M

    2012-01-01

    A Consortium between four LHC Computing Centers (Bari, Milano, Pisa and Trieste) has been formed in 2010 to prototype Analysis-oriented facilities for CMS data analysis, profiting from a grant from the Italian Ministry of Research. The Consortium aims to realize an ad-hoc infrastructure to ease the analysis activities on the huge data set collected at the LHC Collider. While “Tier2” Computing Centres, specialized in organized processing tasks like Monte Carlo simulation, are nowadays a well established concept, with years of running experience, site specialized towards end user chaotic analysis activities do not yet have a defacto standard implementation. In our effort, we focus on all the aspects that can make the analysis tasks easier for a physics user not expert in computing. On the storage side, we are experimenting on storage techniques allowing for remote data access and on storage optimization on the typical analysis access patterns. On the networking side, we are studying the differences between flat and tiered LAN architecture, also using virtual partitioning of the same physical networking for the different use patterns. Finally, on the user side, we are developing tools and instruments to allow for an exhaustive monitoring of their processes at the site, and for an efficient support system in case of problems. We will report about the results of the test executed on different subsystem and give a description of the layout of the infrastructure in place at the site participating to the consortium.

  9. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  10. Computer-aided dispatch--traffic management center field operational test final test plans : state of Utah

    Science.gov (United States)

    2004-01-01

    The purpose of this document is to expand upon the evaluation components presented in "Computer-aided dispatch--traffic management center field operational test final evaluation plan : state of Utah". This document defines the objective, approach, an...

  11. New developments in delivering public access to data from the National Center for Computational Toxicology at the EPA

    Science.gov (United States)

    Researchers at EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The goal of this researc...

  12. Enabling high performance computational science through combinatorial algorithms

    International Nuclear Information System (INIS)

    Boman, Erik G; Bozdag, Doruk; Catalyurek, Umit V; Devine, Karen D; Gebremedhin, Assefaw H; Hovland, Paul D; Pothen, Alex; Strout, Michelle Mills

    2007-01-01

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation

  13. Enabling high performance computational science through combinatorial algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Erik G [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Bozdag, Doruk [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Catalyurek, Umit V [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Devine, Karen D [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Gebremedhin, Assefaw H [Computer Science and Center for Computational Science, Old Dominion University (United States); Hovland, Paul D [Mathematics and Computer Science Division, Argonne National Laboratory (United States); Pothen, Alex [Computer Science and Center for Computational Science, Old Dominion University (United States); Strout, Michelle Mills [Computer Science, Colorado State University (United States)

    2007-07-15

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation.

  14. CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH.

    Science.gov (United States)

    Ferčec, Brigita; Mahdi, Adam

    2013-01-01

    Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety.

  15. User's guide for remote access of the Performance Assessment Center

    International Nuclear Information System (INIS)

    Peterson, C.R.; Kostelnik, K.M.

    1991-03-01

    The Performance Assessment Center (PAC) was established by the Department of Energy's National Low-Level Waste Management Program to provide technical assistance to support the development of low-level radioactive waste disposal facilities. This user's manual provides guidance to remote users of the PAC. Information is presented on how remote users may most effectively access and use the systems available at the Performance Assessment Center in Idaho Falls, Idaho. Access requirements and operating procedures are presented to assist the first-time PAC user. This manual also provides brief descriptions of each code available on the system

  16. Technical Data Management Center: a focal point for meteorological and other environmental transport computing technology

    International Nuclear Information System (INIS)

    McGill, B.; Maskewitz, B.F.; Trubey, D.K.

    1981-01-01

    The Technical Data Management Center, collecting, packaging, analyzing, and distributing information, computer technology and data which includes meteorological and other environmental transport work is located at the Oak Ridge National Laboratory, within the Engineering Physics Division. Major activities include maintaining a collection of computing technology and associated literature citations to provide capabilities for meteorological and environmental work. Details of the activities on behalf of TDMC's sponsoring agency, the US Nuclear Regulatory Commission, are described

  17. Function Follows Performance in Evolutionary Computational Processing

    DEFF Research Database (Denmark)

    Pasold, Anke; Foged, Isak Worre

    2011-01-01

    As the title ‘Function Follows Performance in Evolutionary Computational Processing’ suggests, this paper explores the potentials of employing multiple design and evaluation criteria within one processing model in order to account for a number of performative parameters desired within varied...

  18. CUDA/GPU Technology : Parallel Programming For High Performance Scientific Computing

    OpenAIRE

    YUHENDRA; KUZE, Hiroaki; JOSAPHAT, Tetuko Sri Sumantyo

    2009-01-01

    [ABSTRACT]Graphics processing units (GP Us) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. In the high performance computation capabilities, graphic processing units (GPU) lead to much more powerful performance than conventional CPUs by means of parallel processing. In 2007, the birth of Compute Unified Device Architecture (CUDA) and CUDA-enabled GPUs by NVIDIA Corporation brought a revolution in the general purpose GPU a...

  19. Computer Self-Efficacy, Computer Anxiety, Performance and Personal Outcomes of Turkish Physical Education Teachers

    Science.gov (United States)

    Aktag, Isil

    2015-01-01

    The purpose of this study is to determine the computer self-efficacy, performance outcome, personal outcome, and affect and anxiety level of physical education teachers. Influence of teaching experience, computer usage and participation of seminars or in-service programs on computer self-efficacy level were determined. The subjects of this study…

  20. Effects of organizational scheme and labeling on task performance in product-centered and user-centered retail Web sites.

    Science.gov (United States)

    Resnick, Marc L; Sanchez, Julian

    2004-01-01

    As companies increase the quantity of information they provide through their Web sites, it is critical that content is structured with an appropriate architecture. However, resource constraints often limit the ability of companies to apply all Web design principles completely. This study quantifies the effects of two major information architecture principles in a controlled study that isolates the incremental effects of organizational scheme and labeling on user performance and satisfaction. Sixty participants with a wide range of Internet and on-line shopping experience were recruited to complete a series of shopping tasks on a prototype retail shopping Web site. User-centered labels provided a significant benefit in performance and satisfaction over labels obtained through company-centered methods. User-centered organization did not result in improved performance except when the label quality was poor. Significant interactions suggest specific guidelines for allocating resources in Web site design. Applications of this research include the design of Web sites for any commercial application, particularly E-commerce.

  1. SDN Data Center Performance Evaluation of Torus and Hypercube Interconnecting Schemes

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Vegas Olmos, Juan José; Mehmeri, Victor

    2015-01-01

    — By measuring throughput, delay, loss-rate and jitter, we present how SDN framework yields a 45% performance increase in highly interconnected topologies like torus and hypercube compared to current Layer2 switching technologies, applied to data center architectures......— By measuring throughput, delay, loss-rate and jitter, we present how SDN framework yields a 45% performance increase in highly interconnected topologies like torus and hypercube compared to current Layer2 switching technologies, applied to data center architectures...

  2. A high performance scientific cloud computing environment for materials simulations

    Science.gov (United States)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  3. Pediatric echocardiograms performed at primary centers: Diagnostic errors and missing links!

    International Nuclear Information System (INIS)

    Saraf, Rahul P; Suresh, PV; Maheshwari, Sunita; Shah, Sejal S

    2015-01-01

    The present study was undertaken to assess the accuracy of pediatric echocardiograms done at non-tertiary centers and to evaluate the relationship of inaccurate interpretations with age, echocardiogram performer and complexity of congenital heart disease (CHD). The echocardiogram reports of 182 consecutive children with CHD (5 days-16 years) who were evaluated at a non-tertiary center and subsequently referred to our center were reviewed. Age of the child at echocardiogram, echocardiogram performer and complexity of CHD were noted. These reports were compared with echocardiogram done at our center. Discrepancies were noted and categorized. To assess our own error rate, we compared our echocardiogram reports with the findings obtained during surgery (n = 172), CT scan (n = 9) or cardiac catheterization reports (n = 1). Most of the children at the non-tertiary center (92%) underwent echocardiogram by personnel other than a pediatric cardiologist. Overall, diagnostic errors were found in 69/182 (38%) children. Moderate and major discrepancies affecting the final management were found in 42/182 (23%) children. Discrepancies were higher when the echocardiogram was done by personnel other than pediatric cardiologist (P < 0.01) and with moderate and high complexity lesions (P = 0.0001). There was no significant difference in proportion of these discrepancies in children ≤ 1 year vs. >1 year of age. A significant number of pediatric echocardiograms done at non-tertiary centers had discrepancies that affected the management of these children. More discrepancies were seen when the echocardiogram performer was not a pediatric cardiologist and with complex CHD

  4. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually.

    Directory of Open Access Journals (Sweden)

    Elisabeth V C Friedrich

    Full Text Available This study implemented a systematic user-centered training protocol for a 4-class brain-computer interface (BCI. The goal was to optimize the BCI individually in order to achieve high performance within few sessions for all users. Eight able-bodied volunteers, who were initially naïve to the use of a BCI, participated in 10 sessions over a period of about 5 weeks. In an initial screening session, users were asked to perform the following seven mental tasks while multi-channel EEG was recorded: mental rotation, word association, auditory imagery, mental subtraction, spatial navigation, motor imagery of the left hand and motor imagery of both feet. Out of these seven mental tasks, the best 4-class combination as well as most reactive frequency band (between 8-30 Hz was selected individually for online control. Classification was based on common spatial patterns and Fisher's linear discriminant analysis. The number and time of classifier updates varied individually. Selection speed was increased by reducing trial length. To minimize differences in brain activity between sessions with and without feedback, sham feedback was provided in the screening and calibration runs in which usually no real-time feedback is shown. Selected task combinations and frequency ranges differed between users. The tasks that were included in the 4-class combination most often were (1 motor imagery of the left hand (2, one brain-teaser task (word association or mental subtraction (3, mental rotation task and (4 one more dynamic imagery task (auditory imagery, spatial navigation, imagery of the feet. Participants achieved mean performances over sessions of 44-84% and peak performances in single-sessions of 58-93% in this user-centered 4-class BCI protocol. This protocol is highly adjustable to individual users and thus could increase the percentage of users who can gain and maintain BCI control. A high priority for future work is to examine this protocol with severely

  5. High Performance Computing Modernization Program Kerberos Throughput Test Report

    Science.gov (United States)

    2017-10-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--17-9751 High Performance Computing Modernization Program Kerberos Throughput Test ...NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT High Performance Computing Modernization Program Kerberos Throughput Test Report Daniel G. Gdula* and

  6. HIGH PERFORMANCE PHOTOGRAMMETRIC PROCESSING ON COMPUTER CLUSTERS

    Directory of Open Access Journals (Sweden)

    V. N. Adrov

    2012-07-01

    Full Text Available Most cpu consuming tasks in photogrammetric processing can be done in parallel. The algorithms take independent bits as input and produce independent bits as output. The independence of bits comes from the nature of such algorithms since images, stereopairs or small image blocks parts can be processed independently. Many photogrammetric algorithms are fully automatic and do not require human interference. Photogrammetric workstations can perform tie points measurements, DTM calculations, orthophoto construction, mosaicing and many other service operations in parallel using distributed calculations. Distributed calculations save time reducing several days calculations to several hours calculations. Modern trends in computer technology show the increase of cpu cores in workstations, speed increase in local networks, and as a result dropping the price of the supercomputers or computer clusters that can contain hundreds or even thousands of computing nodes. Common distributed processing in DPW is usually targeted for interactive work with a limited number of cpu cores and is not optimized for centralized administration. The bottleneck of common distributed computing in photogrammetry can be in the limited lan throughput and storage performance, since the processing of huge amounts of large raster images is needed.

  7. GPU-based high-performance computing for radiation therapy

    International Nuclear Information System (INIS)

    Jia, Xun; Jiang, Steve B; Ziegenhein, Peter

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. (topical review)

  8. Bridging the digital divide by increasing computer and cancer literacy: community technology centers for head-start parents and families.

    Science.gov (United States)

    Salovey, Peter; Williams-Piehota, Pamela; Mowad, Linda; Moret, Marta Elisa; Edlund, Denielle; Andersen, Judith

    2009-01-01

    This article describes the establishment of two community technology centers affiliated with Head Start early childhood education programs focused especially on Latino and African American parents of children enrolled in Head Start. A 6-hour course concerned with computer and cancer literacy was presented to 120 parents and other community residents who earned a free, refurbished, Internet-ready computer after completing the program. Focus groups provided the basis for designing the structure and content of the course and modifying it during the project period. An outcomes-based assessment comparing program participants with 70 nonparticipants at baseline, immediately after the course ended, and 3 months later suggested that the program increased knowledge about computers and their use, knowledge about cancer and its prevention, and computer use including health information-seeking via the Internet. The creation of community computer technology centers requires the availability of secure space, capacity of a community partner to oversee project implementation, and resources of this partner to ensure sustainability beyond core funding.

  9. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D. [Department of Computer and Information Science, University of Oregon; Wolf, Felix G. [Juelich Supercomputing Centre, Forschungszentrum Juelich

    2014-01-31

    The growing number of cores provided by today’s high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish

  10. Examining the Fundamental Obstructs of Adopting Cloud Computing for 9-1-1 Dispatch Centers in the USA

    Science.gov (United States)

    Osman, Abdulaziz

    2016-01-01

    The purpose of this research study was to examine the unknown fears of embracing cloud computing which stretches across measurements like fear of change from leaders and the complexity of the technology in 9-1-1 dispatch centers in USA. The problem that was addressed in the study was that many 9-1-1 dispatch centers in USA are still using old…

  11. Teaching Scientific Computing: A Model-Centered Approach to Pipeline and Parallel Programming with C

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2015-01-01

    Full Text Available The aim of this study is to present an approach to the introduction into pipeline and parallel computing, using a model of the multiphase queueing system. Pipeline computing, including software pipelines, is among the key concepts in modern computing and electronics engineering. The modern computer science and engineering education requires a comprehensive curriculum, so the introduction to pipeline and parallel computing is the essential topic to be included in the curriculum. At the same time, the topic is among the most motivating tasks due to the comprehensive multidisciplinary and technical requirements. To enhance the educational process, the paper proposes a novel model-centered framework and develops the relevant learning objects. It allows implementing an educational platform of constructivist learning process, thus enabling learners’ experimentation with the provided programming models, obtaining learners’ competences of the modern scientific research and computational thinking, and capturing the relevant technical knowledge. It also provides an integral platform that allows a simultaneous and comparative introduction to pipelining and parallel computing. The programming language C for developing programming models and message passing interface (MPI and OpenMP parallelization tools have been chosen for implementation.

  12. DURIP: High Performance Computing in Biomathematics Applications

    Science.gov (United States)

    2017-05-10

    Mathematics and Statistics (AMS) at the University of California, Santa Cruz (UCSC) to conduct research and research-related education in areas of...Computing in Biomathematics Applications Report Title The goal of this award was to enhance the capabilities of the Department of Applied Mathematics and...DURIP: High Performance Computing in Biomathematics Applications The goal of this award was to enhance the capabilities of the Department of Applied

  13. Visualization and Data Analysis for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  14. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Science.gov (United States)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  15. Analytical performance modeling for computer systems

    CERN Document Server

    Tay, Y C

    2013-01-01

    This book is an introduction to analytical performance modeling for computer systems, i.e., writing equations to describe their performance behavior. It is accessible to readers who have taken college-level courses in calculus and probability, networking and operating systems. This is not a training manual for becoming an expert performance analyst. Rather, the objective is to help the reader construct simple models for analyzing and understanding the systems that they are interested in.Describing a complicated system abstractly with mathematical equations requires a careful choice of assumpti

  16. Computer performance optimization systems, applications, processes

    CERN Document Server

    Osterhage, Wolfgang W

    2013-01-01

    Computing power performance was important at times when hardware was still expensive, because hardware had to be put to the best use. Later on this criterion was no longer critical, since hardware had become inexpensive. Meanwhile, however, people have realized that performance again plays a significant role, because of the major drain on system resources involved in developing complex applications. This book distinguishes between three levels of performance optimization: the system level, application level and business processes level. On each, optimizations can be achieved and cost-cutting p

  17. Computer versus paper--does it make any difference in test performance?

    Science.gov (United States)

    Karay, Yassin; Schauber, Stefan K; Stosch, Christoph; Schüttpelz-Brauns, Katrin

    2015-01-01

    CONSTRUCT: In this study, we examine the differences in test performance between the paper-based and the computer-based version of the Berlin formative Progress Test. In this context it is the first study that allows controlling for students' prior performance. Computer-based tests make possible a more efficient examination procedure for test administration and review. Although university staff will benefit largely from computer-based tests, the question arises if computer-based tests influence students' test performance. A total of 266 German students from the 9th and 10th semester of medicine (comparable with the 4th-year North American medical school schedule) participated in the study (paper = 132, computer = 134). The allocation of the test format was conducted as a randomized matched-pair design in which students were first sorted according to their prior test results. The organizational procedure, the examination conditions, the room, and seating arrangements, as well as the order of questions and answers, were identical in both groups. The sociodemographic variables and pretest scores of both groups were comparable. The test results from the paper and computer versions did not differ. The groups remained within the allotted time, but students using the computer version (particularly the high performers) needed significantly less time to complete the test. In addition, we found significant differences in guessing behavior. Low performers using the computer version guess significantly more than low-performing students in the paper-pencil version. Participants in computer-based tests are not at a disadvantage in terms of their test results. The computer-based test required less processing time. The reason for the longer processing time when using the paper-pencil version might be due to the time needed to write the answer down, controlling for transferring the answer correctly. It is still not known why students using the computer version (particularly low-performing

  18. CNC Turning Center Operations and Prove Out. Computer Numerical Control Operator/Programmer. 444-334.

    Science.gov (United States)

    Skowronski, Steven D.

    This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…

  19. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yier [Univ. of Central Florida, Orlando, FL (United States)

    2017-07-14

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from this project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.

  20. Comparison of motor and cognitive performance of children attending public and private day care centers

    Directory of Open Access Journals (Sweden)

    Mariana M. Santos

    2013-12-01

    Full Text Available BACKGROUND: Given that environmental factors, such as the school environment, can influence child development, more attention should be paid to the development of children attending day care centers. OBJECTIVE: Todetermine whether there are differences in the gross motor, fine motor, or cognitive performances of children between 1 and3 years-old of similar socioeconomic status attending public and private day care centers full time. METHOD: Participants were divided into 2 groups, 1 of children attending public day care centers (69 children and another of children attending private day care centers (47 children. All children were healthy and regularly attended day care full time for over 4 months. To assess cognitive, gross and fine motor performance, the Bayley Scales of Infant and Toddler Development III was used. The Mann-Whitney test was used for comparative analyses between groups of children between 13 and 24 months, 25 and 41 months, and 13 and 41 months. RESULTS: Children in public day care centers exhibited lower scores on the cognitive development scale beginning at 13 months old. The fine and gross motor performance scores were lower in children over the age of 25 months attending public centers. Maternal education was not related to the performance of children in either group. CONCLUSION: The scores of cognitive performance as well as fine and gross motor performance of children of similar socioeconomic status who attend public day care centers are lower than children attending private daycare centers.

  1. Radiation Shielding Information Center: a source of computer codes and data for fusion neutronics studies

    International Nuclear Information System (INIS)

    McGill, B.L.; Roussin, R.W.; Trubey, D.K.; Maskewitz, B.F.

    1980-01-01

    The Radiation Shielding Information Center (RSIC), established in 1962 to collect, package, analyze, and disseminate information, computer codes, and data in the area of radiation transport related to fission, is now being utilized to support fusion neutronics technology. The major activities include: (1) answering technical inquiries on radiation transport problems, (2) collecting, packaging, testing, and disseminating computing technology and data libraries, and (3) reviewing literature and operating a computer-based information retrieval system containing material pertinent to radiation transport analysis. The computer codes emphasize methods for solving the Boltzmann equation such as the discrete ordinates and Monte Carlo techniques, both of which are widely used in fusion neutronics. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  2. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  3. Establishment of computed tomography reference dose levels in Onassis Cardiac Surgery Center

    International Nuclear Information System (INIS)

    Tsapaki, V.; Kyrozi, E.; Syrigou, T.; Mastorakou, I.; Kottou, S.

    2001-01-01

    The purpose of the study was to apply European Commission (EC) Reference Dose Levels (RDL) in Computed Tomography (CT) examinations at Onassis Cardiac Surgery Center (OCSC). These are weighted CT Dose Index (CTDI w ) for a single slice and Dose-Length Product (DLP) for a complete examination. During the period 1998-1999, the total number of CT examinations, every type of CT examination, patient related data and technical parameters of the examinations were recorded. The most frequent examinations were chosen for investigation which were the head, chest, abdomen and pelvis. CTDI measurements were performed and CTDI w and DLP were calculated. Third Quartile values of CTDI w were chosen to be 43mGy for head, 8mGy for chest, and 22mGy for abdomen and pelvis examinations. Third quartile values of DLP were chosen to be 740mGycm for head, 370mGycm for chest, 490mGycm for abdomen and 420mGycm for pelvis examination. Results confirm that OCSC follows successfully the proposed RDL for the head, chest, abdomen and pelvis examinations in terms of radiation dose. (author)

  4. Investigating Impact Metrics for Performance for the US EPA National Center for Computational Toxicology (ACS Fall meeting)

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...

  5. On the practice of ignoring center-patient interactions in evaluating hospital performance.

    Science.gov (United States)

    Varewyck, Machteld; Vansteelandt, Stijn; Eriksson, Marie; Goetghebeur, Els

    2016-01-30

    We evaluate the performance of medical centers based on a continuous or binary patient outcome (e.g., 30-day mortality). Common practice adjusts for differences in patient mix through outcome regression models, which include patient-specific baseline covariates (e.g., age and disease stage) besides center effects. Because a large number of centers may need to be evaluated, the typical model postulates that the effect of a center on outcome is constant over patient characteristics. This may be violated, for example, when some centers are specialized in children or geriatric patients. Including interactions between certain patient characteristics and the many fixed center effects in the model increases the risk for overfitting, however, and could imply a loss of power for detecting centers with deviating mortality. Therefore, we assess how the common practice of ignoring such interactions impacts the bias and precision of directly and indirectly standardized risks. The reassuring conclusion is that the common practice of working with the main effects of a center has minor impact on hospital evaluation, unless some centers actually perform substantially better on a specific group of patients and there is strong confounding through the corresponding patient characteristic. The bias is then driven by an interplay of the relative center size, the overlap between covariate distributions, and the magnitude of the interaction effect. Interestingly, the bias on indirectly standardized risks is smaller than on directly standardized risks. We illustrate our findings by simulation and in an analysis of 30-day mortality on Riksstroke. © 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  6. Influence of socioeconomic status on trauma center performance evaluations in a Canadian trauma system.

    Science.gov (United States)

    Moore, Lynne; Turgeon, Alexis F; Sirois, Marie-Josée; Murat, Valérie; Lavoie, André

    2011-09-01

    Trauma center performance evaluations generally include adjustment for injury severity, age, and comorbidity. However, disparities across trauma centers may be due to other differences in source populations that are not accounted for, such as socioeconomic status (SES). We aimed to evaluate whether SES influences trauma center performance evaluations in an inclusive trauma system with universal access to health care. The study was based on data collected between 1999 and 2006 in a Canadian trauma system. Patient SES was quantified using an ecologic index of social and material deprivation. Performance evaluations were based on mortality adjusted using the Trauma Risk Adjustment Model. Agreement between performance results with and without additional adjustment for SES was evaluated with correlation coefficients. The study sample comprised a total of 71,784 patients from 48 trauma centers, including 3,828 deaths within 30 days (4.5%) and 5,549 deaths within 6 months (7.7%). The proportion of patients in the highest quintile of social and material deprivation varied from 3% to 43% and from 11% to 90% across hospitals, respectively. The correlation between performance results with or without adjustment for SES was almost perfect (r = 0.997; 95% CI 0.995-0.998) and the same hospital outliers were identified. We observed an important variation in SES across trauma centers but no change in risk-adjusted mortality estimates when SES was added to adjustment models. Results suggest that after adjustment for injury severity, age, comorbidity, and transfer status, disparities in SES across trauma center source populations do not influence trauma center performance evaluations in a system offering universal health coverage. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  7. High speed switching for computer and communication networks

    NARCIS (Netherlands)

    Dorren, H.J.S.

    2014-01-01

    The role of data centers and computers are vital for the future of our data-centric society. Historically the performance of data-centers is increasing with a factor 100-1000 every ten years and as a result of this the capacity of the data-center communication network has to scale accordingly. This

  8. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  9. Cone-beam Computed Tomographic Assessment of Canal Centering Ability and Transportation after Preparation with Twisted File and Bio RaCe Instrumentation.

    Directory of Open Access Journals (Sweden)

    Kiamars Honardar

    2014-08-01

    Full Text Available Use of rotary Nickel-Titanium (NiTi instruments for endodontic preparation has introduced a new era in endodontic practice, but this issue has undergone dramatic modifications in order to achieve improved shaping abilities. Cone-beam computed tomography (CBCT has made it possible to accurately evaluate geometrical changes following canal preparation. This study was carried out to compare canal centering ability and transportation of Twisted File and BioRaCe rotary systems by means of cone-beam computed tomography.Thirty root canals from freshly extracted mandibular and maxillary teeth were selected. Teeth were mounted and scanned before and after preparation by CBCT at different apical levels. Specimens were divided into 2 groups of 15. In the first group Twisted File and in the second, BioRaCe was used for canal preparation. Canal transportation and centering ability after preparation were assessed by NNT Viewer and Photoshop CS4 software. Statistical analysis was performed using t-test and two-way ANOVA.All samples showed deviations from the original axes of the canals. No significant differences were detected between the two rotary NiTi instruments for canal centering ability in all sections. Regarding canal transportation however, a significant difference was seen in the BioRaCe group at 7.5mm from the apex.Under the conditions of this in vitro study, Twisted File and BioRaCe rotary NiTi files retained original canal geometry.

  10. Computational Nanotechnology Molecular Electronics, Materials and Machines

    Science.gov (United States)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  11. Financial performance among adult day centers: results of a national demonstration program.

    Science.gov (United States)

    Reifler, B V; Henry, R S; Rushing, J; Yates, M K; Cox, N J; Bradham, D D; McFarlane, M

    1997-02-01

    This paper describes the financial performance (defined as percent of total expenses covered by net operating revenue) of 16 adult day centers participating in a national demonstration program on day services for people with dementia, including examination of possible predictors of financial performance. Participating sites submitted quarterly financial and utilization reports to the National Program Office. Descriptive statistics summarize the factors believed to influence financial performance. Sites averaged meeting 35% of expenses from self-pay and 29% from government (mainly Medicaid) revenue, totaling 64% of all (cash plus in-kind) expenses met by operating revenue. Examination of center characteristics suggests that factors related to meeting consumer needs, such as being open a full day (i.e., 7:30 am to 6:00 pm) rather than shorter hours, and providing transportation, may be related to improved utilization and, thus, improved financial performance. Higher fees were not related to lower enrollment, census, or revenue. Adult day centers are able to achieve financial viability through a combination of operating (i.e., fee-for-service) and non-operating revenue. Operating revenue is enhanced by placing emphasis on consumer responsiveness, such as being open a full day. Because higher fees were not related to lower utilization, centers should set fees to reflect actual costs. The figure of 64% of expenses met by operating revenue is conservative inasmuch as sites included in-kind revenue as expenses in their budgeting calculations, and percent of cash expenses met by operating revenue would be higher (approximately 75% for this group of centers).

  12. A methodology for performing computer security reviews

    International Nuclear Information System (INIS)

    Hunteman, W.J.

    1991-01-01

    DOE Order 5637.1, ''Classified Computer Security,'' requires regular reviews of the computer security activities for an ADP system and for a site. Based on experiences gained in the Los Alamos computer security program through interactions with DOE facilities, we have developed a methodology to aid a site or security officer in performing a comprehensive computer security review. The methodology is designed to aid a reviewer in defining goals of the review (e.g., preparation for inspection), determining security requirements based on DOE policies, determining threats/vulnerabilities based on DOE and local threat guidance, and identifying critical system components to be reviewed. Application of the methodology will result in review procedures and checklists oriented to the review goals, the target system, and DOE policy requirements. The review methodology can be used to prepare for an audit or inspection and as a periodic self-check tool to determine the status of the computer security program for a site or specific ADP system. 1 tab

  13. A methodology for performing computer security reviews

    International Nuclear Information System (INIS)

    Hunteman, W.J.

    1991-01-01

    This paper reports on DIE Order 5637.1, Classified Computer Security, which requires regular reviews of the computer security activities for an ADP system and for a site. Based on experiences gained in the Los Alamos computer security program through interactions with DOE facilities, the authors have developed a methodology to aid a site or security officer in performing a comprehensive computer security review. The methodology is designed to aid a reviewer in defining goals of the review (e.g., preparation for inspection), determining security requirements based on DOE policies, determining threats/vulnerabilities based on DOE and local threat guidance, and identifying critical system components to be reviewed. Application of the methodology will result in review procedures and checklists oriented to the review goals, the target system, and DOE policy requirements. The review methodology can be used to prepare for an audit or inspection and as a periodic self-check tool to determine the status of the computer security program for a site or specific ADP system

  14. 24th & 25th Joint Workshop on Sustained Simulation Performance

    CERN Document Server

    Bez, Wolfgang; Focht, Erich; Gienger, Michael; Kobayashi, Hiroaki

    2017-01-01

    This book presents the state of the art in High Performance Computing on modern supercomputer architectures. It addresses trends in hardware and software development in general, as well as the future of High Performance Computing systems and heterogeneous architectures. The contributions cover a broad range of topics, from improved system management to Computational Fluid Dynamics, High Performance Data Analytics, and novel mathematical approaches for large-scale systems. In addition, they explore innovative fields like coupled multi-physics and multi-scale simulations. All contributions are based on selected papers presented at the 24th Workshop on Sustained Simulation Performance, held at the University of Stuttgart’s High Performance Computing Center in Stuttgart, Germany in December 2016 and the subsequent Workshop on Sustained Simulation Performance, held at the Cyberscience Center, Tohoku University, Japan in March 2017.

  15. Architecture and Programming Models for High Performance Intensive Computation

    Science.gov (United States)

    2016-06-29

    commands from the data processing center to the sensors is needed. It has been noted that the ubiquity of mobile communication devices offers the...commands from a Processing Facility by way of mobile Relay Stations. The activity of each component of this model other than the Merge module can be...evaluation of the initial system implementation. Gao also was in charge of the development of Fresh Breeze architecture backend on new many-core computers

  16. Monitoring SLAC High Performance UNIX Computing Systems

    International Nuclear Information System (INIS)

    Lettsome, Annette K.

    2005-01-01

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface

  17. Micromagnetics on high-performance workstation and mobile computational platforms

    Science.gov (United States)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  18. Canal transportation and centering ability of protaper and self-adjusting file system in long oval canals: An ex-vivo cone-beam computed tomography analysis.

    Science.gov (United States)

    Shah, Dipali Yogesh; Wadekar, Swati Ishwara; Dadpe, Ashwini Manish; Jadhav, Ganesh Ranganath; Choudhary, Lalit Jayant; Kalra, Dheeraj Deepak

    2017-01-01

    The purpose of this study was to compare and evaluate the shaping ability of ProTaper (PT) and Self-Adjusting File (SAF) system using cone-beam computed tomography (CBCT) to assess their performance in oval-shaped root canals. Sixty-two mandibular premolars with single oval canals were divided into two experimental groups ( n = 31) according to the systems used: Group I - PT and Group II - SAF. Canals were evaluated before and after instrumentation using CBCT to assess centering ratio and canal transportation at three levels. Data were statistically analyzed using one-way analysis of variance, post hoc Tukey's test, and t -test. The SAF showed better centering ability and lesser canal transportation than the PT only in the buccolingual plane at 6 and 9 mm levels. The shaping ability of the PT was best in the apical third in both the planes. The SAF had statistically significant better centering and lesser canal transportation in the buccolingual as compared to the mesiodistal plane at the middle and coronal levels. The SAF produced significantly less transportation and remained centered than the PT at the middle and coronal levels in the buccolingual plane of oval canals. In the mesiodistal plane, the performance of both the systems was parallel.

  19. Laser performance operations model (LPOM): a computational system that automates the setup and performance analysis of the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M; House, R; Williams, W; Haynam, C; White, R; Orth, C; Sacks, R [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)], E-mail: shaw7@llnl.gov

    2008-05-15

    The National Ignition Facility (NIF) is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500-TW, 351-nm laser system together with a 10-m diameter target chamber with room for many target diagnostics. NIF will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. A computational system, the Laser Performance Operations Model (LPOM) has been developed and deployed that automates the laser setup process, and accurately predict laser energetics. LPOM determines the settings of the injection laser system required to achieve the desired main laser output, provides equipment protection, determines the diagnostic setup, and supplies post shot data analysis and reporting.

  20. Financial centers and firm performance during the crisis period

    DEFF Research Database (Denmark)

    Farooq, Omar; El Ouadrhiri, Khadija

    2014-01-01

    How does location of a firm’s headquarter impact its performance during the crisis period? This paper answers this question by using the data from India. Our results show that firms headquartered in Mumbai, the main financial center of the country, significantly outperform other firms during...

  1. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    International Nuclear Information System (INIS)

    Kirk, Bernadette Lugue

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries. An important activity of RSICC is its participation in international efforts on computational and experimental benchmarks. An example is the Shielding Integral Benchmarks Archival Database (SINBAD), which includes shielding benchmarks for fission, fusion and accelerators. RSICC is funded by the United States Department of Energy, Department of Homeland Security and Nuclear Regulatory Commission.

  2. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  3. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing. The PRIMA Project

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Computer and Information Science; Wolf, Felix G. [Wilhelm-Johnen-Strasse, Julich (Germany). Forschungszentrum Julich GmbH

    2014-01-31

    The growing number of cores provided by today’s high-­end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-­performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-­fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to

  4. Action-Centered Team Leadership Influences More than Performance

    DEFF Research Database (Denmark)

    Braun, Frank C.; Avital, Michel; Martz, Ben

    2012-01-01

    Purpose – Building on a social-technical approach to project management, the authors aim to examine the effect of action-centered leadership attributes on team member's learning, knowledge collaboration and job satisfaction during IT-related projects. Design/methodology/approach – Structural...... collaboration along with individual performance and job satisfaction, and ultimately project success. Research limitations/implications – The action-centered leadership practices construct, developed in this study, can be a good surrogate measure of what is required to be an effective leader in an IT project...... equation modeling was utilized to assess the work environment of team members as well as the leadership practices of their respective project team leaders. Data were collected with a survey questionnaire from 327 team members in a variety of organizations in 15 industry sectors including financial services...

  5. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

  6. Computer modeling with randomized-controlled trial data informs the development of person-centered aged care homes.

    Science.gov (United States)

    Chenoweth, Lynn; Vickland, Victor; Stein-Parbury, Jane; Jeon, Yun-Hee; Kenny, Patricia; Brodaty, Henry

    2015-10-01

    To answer questions on the essential components (services, operations and resources) of a person-centered aged care home (iHome) using computer simulation. iHome was developed with AnyLogic software using extant study data obtained from 60 Australian aged care homes, 900+ clients and 700+ aged care staff. Bayesian analysis of simulated trial data will determine the influence of different iHome characteristics on care service quality and client outcomes. Interim results: A person-centered aged care home (socio-cultural context) and care/lifestyle services (interactional environment) can produce positive outcomes for aged care clients (subjective experiences) in the simulated environment. Further testing will define essential characteristics of a person-centered care home.

  7. Neuroanatomical correlates of brain-computer interface performance.

    Science.gov (United States)

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  9. The contribution of high-performance computing and modelling for industrial development

    CSIR Research Space (South Africa)

    Sithole, Happy

    2017-10-01

    Full Text Available Performance Computing and Modelling for Industrial Development Dr Happy Sithole and Dr Onno Ubbink 2 Strategic context • High-performance computing (HPC) combined with machine Learning and artificial intelligence present opportunities to non...

  10. Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Damevski, Kostadin [Virginia State Univ., Petersburg, VA (United States)

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  11. Annual report of R and D activities in Center for Computational Science and e-Systems from April 1, 2007 to March 31, 2009

    International Nuclear Information System (INIS)

    2010-01-01

    This report provides an overview of research and development activities in Center for Computational Science and e-Systems (CCSE), JAEA, during the fiscal years 2007 and 2008 (Apr 1, 2007 - March 31, 2009). These research and development activities have been performed by the Simulation Technology R and D Office and Computer Science R and D Office. These activities include development of secure computational infrastructure for atomic energy research based on the grid technology, large scale seismic analysis of an entire nuclear reactor structure, large scale fluid dynamics simulation of J-PARC mercury target, large scale plasma simulation for nuclear fusion reactor, large scale atomic and subatomic simulations of nuclear fuels and materials for safety assessment, large scale quantum simulations of superconductor for the design of new devices and fundamental understanding of superconductivity, development of protein database for the identification of radiation-resistance gene, and large scale atomic simulation of proteins. (author)

  12. Computer Center: Software Review.

    Science.gov (United States)

    Duhrkopf, Richard, Ed.; Belshe, John F., Ed.

    1988-01-01

    Reviews a software package, "Mitosis-Meiosis," available for Apple II or IBM computers with colorgraphics capabilities. Describes the documentation, presentation and flexibility of the program. Rates the program based on graphics and usability in a biology classroom. (CW)

  13. Visual Analysis of Cloud Computing Performance Using Behavioral Lines.

    Science.gov (United States)

    Muelder, Chris; Zhu, Biao; Chen, Wei; Zhang, Hongxin; Ma, Kwan-Liu

    2016-02-29

    Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.

  14. Comparing the performance of SIMD computers by running large air pollution models

    DEFF Research Database (Denmark)

    Brown, J.; Hansen, Per Christian; Wasniewski, J.

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on these computers. Using a realistic large-scale model, we gained detailed insight about the performance of the computers involved when used to solve large-scale scientific...... problems that involve several types of numerical computations. The computers used in our study are the Connection Machines CM-200 and CM-5, and the MasPar MP-2216...

  15. Performance evaluation of scientific programs on advanced architecture computers

    International Nuclear Information System (INIS)

    Walker, D.W.; Messina, P.; Baille, C.F.

    1988-01-01

    Recently a number of advanced architecture machines have become commercially available. These new machines promise better cost-performance then traditional computers, and some of them have the potential of competing with current supercomputers, such as the Cray X/MP, in terms of maximum performance. This paper describes an on-going project to evaluate a broad range of advanced architecture computers using a number of complete scientific application programs. The computers to be evaluated include distributed- memory machines such as the NCUBE, INTEL and Caltech/JPL hypercubes, and the MEIKO computing surface, shared-memory, bus architecture machines such as the Sequent Balance and the Alliant, very long instruction word machines such as the Multiflow Trace 7/200 computer, traditional supercomputers such as the Cray X.MP and Cray-2, and SIMD machines such as the Connection Machine. Currently 11 application codes from a number of scientific disciplines have been selected, although it is not intended to run all codes on all machines. Results are presented for two of the codes (QCD and missile tracking), and future work is proposed

  16. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa; Parashar, Manish; Kim, Hyunjoo; Jordan, Kirk E.; Sachdeva, Vipin; Sexton, James; Jamjoom, Hani; Shae, Zon-Yin; Pencheva, Gergina; Tavakoli, Reza; Wheeler, Mary F.

    2012-01-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a

  17. Computational Physics Program of the National MFE Computer Center

    International Nuclear Information System (INIS)

    Mirin, A.A.

    1984-12-01

    The principal objective of the computational physics group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. A summary of the groups activities is presented, including computational studies in MHD equilibria and stability, plasma transport, Fokker-Planck, and efficient numerical and programming algorithms. References are included

  18. Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    OpenAIRE

    Buyya, Rajkumar; Beloglazov, Anton; Abawajy, Jemal

    2010-01-01

    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational cos...

  19. Computed radiography systems performance evaluation

    International Nuclear Information System (INIS)

    Xavier, Clarice C.; Nersissian, Denise Y.; Furquim, Tania A.C.

    2009-01-01

    The performance of a computed radiography system was evaluated, according to the AAPM Report No. 93. Evaluation tests proposed by the publication were performed, and the following nonconformities were found: imaging p/ate (lP) dark noise, which compromises the clinical image acquired using the IP; exposure indicator uncalibrated, which can cause underexposure to the IP; nonlinearity of the system response, which causes overexposure; resolution limit under the declared by the manufacturer and erasure thoroughness uncalibrated, impairing structures visualization; Moire pattern visualized at the grid response, and IP Throughput over the specified by the manufacturer. These non-conformities indicate that digital imaging systems' lack of calibration can cause an increase in dose in order that image prob/ems can be so/ved. (author)

  20. M-center growth in alkali halides: computer simulation

    International Nuclear Information System (INIS)

    Aguilar, M.; Jaque, F.; Agullo-Lopez, F.

    1983-01-01

    The heterogeneous interstitial nucleation model previously proposed to explain F-center growth curves in irradiated alkali halides has been extended to account for M-center kinetics. The interstitials produced during the primary irradiation event are assumed to be trapped at impurities and interstitial clusters or recombine with F and M centers. For M-center formation two cases have been considered: (a) diffusion and aggregation of F centers, and (b) statistical generation and pairing of F centers. Process (b) is the only one consistent with the quadratic relationship between M and F center concentrations. However, to account for the F/M ratios experimentally observed as well as for the role of dose-rate, a modified statistical model involving random creation and association of F + -F pairs has been shown to be adequate. (author)

  1. Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.

    Science.gov (United States)

    Parkland Coll., Champaign, IL.

    A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…

  2. Bioinformatics and Computational Core Technology Center

    Data.gov (United States)

    Federal Laboratory Consortium — SERVICES PROVIDED BY THE COMPUTER CORE FACILITYEvaluation, purchase, set up, and maintenance of the computer hardware and network for the 170 users in the research...

  3. Improving engineers' performance with computers

    International Nuclear Information System (INIS)

    Purvis, E.E. III

    1984-01-01

    The problem addressed is how to improve the performance of engineers in the design, operation, and maintenance of nuclear power plants. The application of computer science to this problem offers a challenge in maximizing the use of developments outside the nuclear industry and setting priorities to address the most fruitful areas first. Areas of potential benefits include data base management through design, analysis, procurement, construction, operation maintenance, cost, schedule and interface control and planning, and quality engineering on specifications, inspection, and training

  4. A high performance scientific cloud computing environment for materials simulations

    OpenAIRE

    Jorissen, Kevin; Vila, Fernando D.; Rehr, John J.

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including...

  5. ATLAS computing activities and developments in the Italian Grid cloud

    International Nuclear Information System (INIS)

    Rinaldi, L; Ciocca, C; K, M; Annovi, A; Antonelli, M; Martini, A; Barberis, D; Brunengo, A; Corosu, M; Barberis, S; Carminati, L; Campana, S; Di, A; Capone, V; Carlino, G; Doria, A; Esposito, R; Merola, L; De, A; Luminari, L

    2012-01-01

    The large amount of data produced by the ATLAS experiment needs new computing paradigms for data processing and analysis, which involve many computing centres spread around the world. The computing workload is managed by regional federations, called “clouds”. The Italian cloud consists of a main (Tier-1) center, located in Bologna, four secondary (Tier-2) centers, and a few smaller (Tier-3) sites. In this contribution we describe the Italian cloud facilities and the activities of data processing, analysis, simulation and software development performed within the cloud, and we discuss the tests of the new computing technologies contributing to evolution of the ATLAS Computing Model.

  6. Performance monitoring for brain-computer-interface actions.

    Science.gov (United States)

    Schurger, Aaron; Gale, Steven; Gozel, Olivia; Blanke, Olaf

    2017-02-01

    When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via internal monitoring. Retrospective judgements about one's own task performance, on the other hand, require first that the subject perform a task and thus could potentially be made based on motor processes, proprioceptive, and other sensory feedback rather than internal monitoring. With this dichotomy in mind, we set out to study performance monitoring using a brain-computer interface (BCI), with which subjects could voluntarily perform an action - moving a cursor on a computer screen - without any movement of the body, and thus without somatosensory feedback. Real-time visual feedback was available to subjects during training, but not during the experiment where the true final position of the cursor was only revealed after the subject had estimated where s/he thought it had ended up after 6s of BCI-based cursor control. During the first half of the experiment subjects based their assessments primarily on the prior probability of the end position of the cursor on previous trials. However, during the second half of the experiment subjects' judgements moved significantly closer to the true end position of the cursor, and away from the prior. This suggests that subjects can monitor task performance when the task is performed without overt movement of the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Static Memory Deduplication for Performance Optimization in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Gangyong Jia

    2017-04-01

    Full Text Available In a cloud computing environment, the number of virtual machines (VMs on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  8. Static Memory Deduplication for Performance Optimization in Cloud Computing.

    Science.gov (United States)

    Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan

    2017-04-27

    In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  9. Managing the Shopping Center Ambience Attributes by Using Importance-Performance Analysis: The Case from Serbia

    Directory of Open Access Journals (Sweden)

    Jelica Marković

    2014-06-01

    Full Text Available This paper examined customers’ perceived importance and performance of shopping center ambience on the examples of the Mercator shopping center and Sad Novi Bazaar shopping center in Novi Sad, Serbia. The shopping center ambience was examined through exterior and interior attributes. It was found that a number of them are very important to customers and their shopping behavior. According to the present research, the most important exterior attributes are: address and location, parking availability, congestion and traffic, exterior display windows and entrances. The most important interior attributes are: cleanliness, temperature, merchandise, lighting, music, scents, absence of tobacco smoke, width of aisles and P.A. usage. The paper also provided information for two studied shopping centers with ambience attributes that performed well or not and everything was presented on the importance-performance grids, which can serve managers as guidelines for further development.

  10. Computer Simulation Performed for Columbia Project Cooling System

    Science.gov (United States)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  11. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  12. High performance computing in science and engineering Garching/Munich 2016

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Siegfried; Bode, Arndt; Bruechle, Helmut; Brehm, Matthias (eds.)

    2016-11-01

    Computer simulations are the well-established third pillar of natural sciences along with theory and experimentation. Particularly high performance computing is growing fast and constantly demands more and more powerful machines. To keep pace with this development, in spring 2015, the Leibniz Supercomputing Centre installed the high performance computing system SuperMUC Phase 2, only three years after the inauguration of its sibling SuperMUC Phase 1. Thereby, the compute capabilities were more than doubled. This book covers the time-frame June 2014 until June 2016. Readers will find many examples of outstanding research in the more than 130 projects that are covered in this book, with each one of these projects using at least 4 million core-hours on SuperMUC. The largest scientific communities using SuperMUC in the last two years were computational fluid dynamics simulations, chemistry and material sciences, astrophysics, and life sciences.

  13. Evaluation of Flagging Criteria of United States Kidney Transplant Center Performance: How to Best Define Outliers?

    Science.gov (United States)

    Schold, Jesse D; Miller, Charles M; Henry, Mitchell L; Buccini, Laura D; Flechner, Stuart M; Goldfarb, David A; Poggio, Emilio D; Andreoni, Kenneth A

    2017-06-01

    Scientific Registry of Transplant Recipients report cards of US organ transplant center performance are publicly available and used for quality oversight. Low center performance (LP) evaluations are associated with changes in practice including reduced transplant rates and increased waitlist removals. In 2014, Scientific Registry of Transplant Recipients implemented new Bayesian methodology to evaluate performance which was not adopted by Center for Medicare and Medicaid Services (CMS). In May 2016, CMS altered their performance criteria, reducing the likelihood of LP evaluations. Our aims were to evaluate incidence, survival rates, and volume of LP centers with Bayesian, historical (old-CMS) and new-CMS criteria using 6 consecutive program-specific reports (PSR), January 2013 to July 2015 among adult kidney transplant centers. Bayesian, old-CMS and new-CMS criteria identified 13.4%, 8.3%, and 6.1% LP PSRs, respectively. Over the 3-year period, 31.9% (Bayesian), 23.4% (old-CMS), and 19.8% (new-CMS) of centers had 1 or more LP evaluation. For small centers (evaluations (52 vs 13 PSRs) for 1-year mortality with Bayesian versus new-CMS criteria. For large centers (>183 transplants/PSR), there were 3-fold additional LP evaluations for 1-year mortality with Bayesian versus new-CMS criteria with median differences in observed and expected patient survival of -1.6% and -2.2%, respectively. A significant proportion of kidney transplant centers are identified as low performing with relatively small survival differences compared with expected. Bayesian criteria have significantly higher flagging rates and new-CMS criteria modestly reduce flagging. Critical appraisal of performance criteria is needed to assess whether quality oversight is meeting intended goals and whether further modifications could reduce risk aversion, more efficiently allocate resources, and increase transplant opportunities.

  14. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa

    2012-10-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a representative HPC application. © 2012 IEEE.

  15. High-performance computational fluid dynamics: a custom-code approach

    International Nuclear Information System (INIS)

    Fannon, James; Náraigh, Lennon Ó; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain

    2016-01-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier–Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing. (paper)

  16. High-performance computational fluid dynamics: a custom-code approach

    Science.gov (United States)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  17. Development of a computer system at La Hague center

    International Nuclear Information System (INIS)

    Mimaud, Robert; Malet, Georges; Ollivier, Francis; Fabre, J.-C.; Valois, Philippe; Desgranges, Patrick; Anfossi, Gilbert; Gentizon, Michel; Serpollet, Roger.

    1977-01-01

    The U.P.2 plant, built at La Hague Center is intended mainly for the reprocessing of spent fuels coming from (as metal) graphite-gas reactors and (as oxide) light-water, heavy-water and breeder reactors. In each of the five large nuclear units the digital processing of measurements was dealt with until 1974 by CAE 3030 data processors. During the period 1974-1975 a modern industrial computer system was set up. This system, equipped with T 2000/20 material from the Telemecanique company, consists of five measurement acquisition devices (for a total of 1500 lines processed) and two central processing units (CPU). The connection of these two PCU (Hardware and Software) enables an automatic connection of the system either on the first CPU or on the second one. The system covers, at present, data processing, threshold monitoring, alarm systems, display devices, periodical listing, and specific calculations concerning the process (balances etc), and at a later stage, an automatic control of certain units of the Process [fr

  18. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  19. Abstracts of digital computer code packages assembled by the Radiation Shielding Information Center

    International Nuclear Information System (INIS)

    Carter, B.J.; Maskewitz, B.F.

    1985-04-01

    This publication, ORNL/RSIC-13, Volumes I to III Revised, has resulted from an internal audit of the first 168 packages of computing technology in the Computer Codes Collection (CCC) of the Radiation Shielding Information Center (RSIC). It replaces the earlier three documents published as single volumes between 1966 to 1972. A significant number of the early code packages were considered to be obsolete and were removed from the collection in the audit process and the CCC numbers were not reassigned. Others not currently being used by the nuclear R and D community were retained in the collection to preserve technology not replaced by newer methods, or were considered of potential value for reference purposes. Much of the early technology, however, has improved through developer/RSIC/user interaction and continues at the forefront of the advancing state-of-the-art

  20. Abstracts of digital computer code packages assembled by the Radiation Shielding Information Center

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.J.; Maskewitz, B.F.

    1985-04-01

    This publication, ORNL/RSIC-13, Volumes I to III Revised, has resulted from an internal audit of the first 168 packages of computing technology in the Computer Codes Collection (CCC) of the Radiation Shielding Information Center (RSIC). It replaces the earlier three documents published as single volumes between 1966 to 1972. A significant number of the early code packages were considered to be obsolete and were removed from the collection in the audit process and the CCC numbers were not reassigned. Others not currently being used by the nuclear R and D community were retained in the collection to preserve technology not replaced by newer methods, or were considered of potential value for reference purposes. Much of the early technology, however, has improved through developer/RSIC/user interaction and continues at the forefront of the advancing state-of-the-art.

  1. Vocal symptoms, voice activity, and participation profile and professional performance of call center operators.

    Science.gov (United States)

    Piwowarczyk, Tatiana Carvalho; Oliveira, Gisele; Lourenço, Luciana; Behlau, Mara

    2012-03-01

    To analyze the phonatory and laryngopharyngeal symptoms reported by call center operators; and quantify the impact of these symptoms on quality of life, and the association between these issues and professional performance, number of monthly calls, and number of missed workdays. Call center operators (n=157) from a billing call center completed the Vocal Signs and Symptoms Questionnaire and the Brazilian version of the Voice Activity and Participation Profile (VAPP). The company provided data regarding professional performance, average number of monthly calls, and number of missed workdays for each employee. The mean number of current symptoms (6.8) was greater in the operators than data for the general population (1.7). On average, 4.2 symptoms were attributed to occupational factors. The average number of symptoms did not correlate with professional performance (P=0.571). However, fewer symptoms correlated with decreased missed workdays and higher mean monthly call figures. The VAPP scores were relatively low, suggesting little impact of voice difficulties on call center operator's quality of life. However, subjects with elevated VAPP scores also had poorer professional performance. The presence of vocal symptoms does not necessarily relate to decreased professional performance. However, an association between higher vocal activity limitation and participation scores and poorer professional performance was observed. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  2. A hypothesis on the formation of the primary ossification centers in the membranous neurocranium: a mathematical and computational model.

    Science.gov (United States)

    Garzón-Alvarado, Diego A

    2013-01-21

    This article develops a model of the appearance and location of the primary centers of ossification in the calvaria. The model uses a system of reaction-diffusion equations of two molecules (BMP and Noggin) whose behavior is of type activator-substrate and its solution produces Turing patterns, which represents the primary ossification centers. Additionally, the model includes the level of cell maturation as a function of the location of mesenchymal cells. Thus the mature cells can become osteoblasts due to the action of BMP2. Therefore, with this model, we can have two frontal primary centers, two parietal, and one, two or more occipital centers. The location of these centers in the simplified computational model is highly consistent with those centers found at an embryonic level. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Human resources management in fitness centers and their relationship with the organizational performance

    Directory of Open Access Journals (Sweden)

    Jerónimo García Fernández

    2014-12-01

    Full Text Available Purpose: Human capital is essential in organizations providing sports services. However, there are few studies that examine what practices are carried out and whether they, affect sports organizations achieve better results are. Therefore the aim of this paper is to analyze the practices of human resource management in private fitness centers and the relationship established with organizational performance.Design/methodology/approach: Questionnaire to 101 managers of private fitness centers in Spain, performing exploratory and confirmatory factor analysis, and linear regressions between the variables.Findings: In organizations of fitness, the findings show that training practices, reward, communication and selection are positively correlated with organizational performance.Research limitations/implications: The fact that you made a convenience sampling in a given country and reduce the extrapolation of the results to the market.Originality/value: First, it represents a contribution to the fact that there are no studies analyzing the management of human resources in sport organizations from the point of view of the top leaders. On the other hand, allows fitness center managers to adopt practices to improve organizational performance.

  4. High performance parallel computers for science: New developments at the Fermilab advanced computer program

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.

    1988-08-01

    Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs

  5. Shredder: GPU-Accelerated Incremental Storage and Computation

    OpenAIRE

    Bhatotia, Pramod; Rodrigues, Rodrigo; Verma, Akshat

    2012-01-01

    Redundancy elimination using data deduplication and incremental data processing has emerged as an important technique to minimize storage and computation requirements in data center computing. In this paper, we present the design, implementation and evaluation of Shredder, a high performance content-based chunking framework for supporting incremental storage and computation systems. Shredder exploits the massively parallel processing power of GPUs to overcome the CPU bottlenecks of content-ba...

  6. Highlighting High Performance: National Renewable Energy Laboratory's Visitors Center, Golden, Colorado

    International Nuclear Information System (INIS)

    Burgert, S.

    2001-01-01

    The National Renewable Energy Laboratory Visitors Center, also known as the Dan Schaefer Federal Building, is a high-performance building located in Golden, Colorado. The 6,400-square-foot building incorporates passive solar heating, energy-efficient lighting, an evaporative cooling system, and other technologies to minimize energy costs and environmental impact. The Visitors Center displays a variety of interactive exhibits on energy efficiency and renewable energy, and the building includes an auditorium, a public reading room, and office space

  7. Energy Performance Testing of Asetek's RackCDU System at NREL's High Performance Computing Data Center

    Energy Technology Data Exchange (ETDEWEB)

    Sickinger, D.; Van Geet, O.; Ravenscroft, C.

    2014-11-01

    In this study, we report on the first tests of Asetek's RackCDU direct-to-chip liquid cooling system for servers at NREL's ESIF data center. The system was simple to install on the existing servers and integrated directly into the data center's existing hydronics system. The focus of this study was to explore the total cooling energy savings and potential for waste-heat recovery of this warm-water liquid cooling system. RackCDU captured up to 64% of server heat into the liquid stream at an outlet temperature of 89 degrees F, and 48% at outlet temperatures approaching 100 degrees F. This system was designed to capture heat from the CPUs only, indicating a potential for increased heat capture if memory cooling was included. Reduced temperatures inside the servers caused all fans to reduce power to the lowest possible BIOS setting, indicating further energy savings potential if additional fan control is included. Preliminary studies manually reducing fan speed (and even removing fans) validated this potential savings but could not be optimized for these working servers. The Asetek direct-to-chip liquid cooling system has been in operation with users for 16 months with no necessary maintenance and no leaks.

  8. Analysis of Application Power and Schedule Composition in a High Performance Computing Environment

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gruchalla, Kenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Phillips, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Purkayastha, Avi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wunder, Nick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-05

    As the capacity of high performance computing (HPC) systems continues to grow, small changes in energy management have the potential to produce significant energy savings. In this paper, we employ an extensive informatics system for aggregating and analyzing real-time performance and power use data to evaluate energy footprints of jobs running in an HPC data center. We look at the effects of algorithmic choices for a given job on the resulting energy footprints, and analyze application-specific power consumption, and summarize average power use in the aggregate. All of these views reveal meaningful power variance between classes of applications as well as chosen methods for a given job. Using these data, we discuss energy-aware cost-saving strategies based on reordering the HPC job schedule. Using historical job and power data, we present a hypothetical job schedule reordering that: (1) reduces the facility's peak power draw and (2) manages power in conjunction with a large-scale photovoltaic array. Lastly, we leverage this data to understand the practical limits on predicting key power use metrics at the time of submission.

  9. DOE Centers of Excellence Performance Portability Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Neely, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-21

    Performance portability is a phrase often used, but not well understood. The DOE is deploying systems at all of the major facilities across ASCR and ASC that are forcing application developers to confront head-on the challenges of running applications across these diverse systems. With GPU-based systems at the OLCF and LLNL, and Phi-based systems landing at NERSC, ACES (LANL/SNL), and the ALCF – the issue of performance portability is confronting the DOE mission like never before. A new best practice in the DOE is to include “Centers of Excellence” with each major procurement, with a goal of focusing efforts on preparing key applications to be ready for the systems coming to each site, and engaging the vendors directly in a “shared fate” approach to ensuring success. While each COE is necessarily focused on a particular deployment, applications almost invariably must be able to run effectively across the entire DOE HPC ecosystem. This tension between optimizing performance for a particular platform, while still being able to run with acceptable performance wherever the resources are available, is the crux of the challenge we call “performance portability”. This meeting was an opportunity to bring application developers, software providers, and vendors together to discuss this challenge and begin to chart a path forward.

  10. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  11. Computer-aided performance monitoring program at Diablo Canyon

    International Nuclear Information System (INIS)

    Nelson, T.; Glynn, R. III; Kessler, T.C.

    1992-01-01

    This paper describes the thermal performance monitoring program at Pacific Gas ampersand Electric Company's (PG ampersand E's) Diablo Canyon Nuclear Power Plant. The plant performance monitoring program at Diablo Canyon uses the THERMAC performance monitoring and analysis computer software provided by Expert-EASE Systems. THERMAC is used to collect performance data from the plant process computers, condition that data to adjust for measurement errors and missing data points, evaluate cycle and component-level performance, archive the data for trend analysis and generate performance reports. The current status of the program is that, after a fair amount of open-quotes tuningclose quotes of the basic open-quotes thermal kitclose quotes models provided with the initial THERMAC installation, we have successfully baselined both units to cycle isolation test data from previous reload cycles. Over the course of the past few months, we have accumulated enough data to generate meaningful performance trends and, as a result, have been able to use THERMAC to track a condenser fouling problem that was costing enough megawatts to attract corporate-level attention. Trends from THERMAC clearly related the megawatt loss to a steadily degrading condenser cleanliness factor and verified the subsequent gain in megawatts after the condenser was cleaned. In the future, we expect to rebaseline THERMAC to a beginning of cycle (BOC) data set and to use the program to help track feedwater nozzle fouling

  12. High performance computing and communications: FY 1996 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-16

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

  13. RISC Processors and High Performance Computing

    Science.gov (United States)

    Bailey, David H.; Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    This tutorial will discuss the top five RISC microprocessors and the parallel systems in which they are used. It will provide a unique cross-machine comparison not available elsewhere. The effective performance of these processors will be compared by citing standard benchmarks in the context of real applications. The latest NAS Parallel Benchmarks, both absolute performance and performance per dollar, will be listed. The next generation of the NPB will be described. The tutorial will conclude with a discussion of future directions in the field. Technology Transfer Considerations: All of these computer systems are commercially available internationally. Information about these processors is available in the public domain, mostly from the vendors themselves. The NAS Parallel Benchmarks and their results have been previously approved numerous times for public release, beginning back in 1991.

  14. Management and performance features of cancer centers in Europe: A fuzzy-set analysis

    NARCIS (Netherlands)

    Wind, Anke; Lobo, Mariana Fernandes; van Dijk, Joris; Lepage-Nefkens, Isabelle; Laranja-Pontes, Jose; da Conceicao Goncalves, Vitor; van Harten, Willem H.; Rocha-Goncalves, Francisco Nuno

    2016-01-01

    The specific aim of this study is to identify the performance features of cancer centers in the European Union by using a fuzzy-set qualitative comparative analysis (fsQCA). The fsQCA method represents cases (cancer centers) as a combination of explanatory and outcome conditions. This study uses

  15. High-performance computing in accelerating structure design and analysis

    International Nuclear Information System (INIS)

    Li Zenghai; Folwell, Nathan; Ge Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-01-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R and D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields)

  16. Solar collector performance evaluated outdoors at NASA-Lewis Research Center

    Science.gov (United States)

    Vernon, R. W.

    1974-01-01

    The study of solar reflector performance reported is related to a project in which solar collectors are to be provided for the solar heating and cooling system of an office building at NASA's Langley Research Center. The solar collector makes use of a liquid consisting of 50% ethylene glycol and 50% water. A conventional air-liquid heat exchanger is employed. Collector performance and solar insolation data are recorded along with air temperature, wind speed and direction, and relative humidity.

  17. Summary of researches being performed in the Institute of Mathematics and Computer Science on computer science and information technologies

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2008-07-01

    Full Text Available Evolution of the informatization notion (which assumes automation of majority of human activities applying computers, computer networks, information technologies towards the notion of {\\it Global Information Society} (GIS challenges the determination of new paradigms of society: automation and intellectualization of production, new level of education and teaching, formation of new styles of work, active participation in decision making, etc. To assure transition to GIS for any society, including that from Republic of Moldova, requires both special training and broad application of progressive technologies and information systems. Methodological aspects concerning impact of GIS creation over the citizen, economic unit, national economy in the aggregate demands a profound study. Without systematic approach to these aspects the GIS creation would have confront great difficulties. Collective of researchers from the Institute of Mathematics and Computer Science (IMCS of Academy of Sciences of Moldova, which work in the field of computer science, constitutes the center of advanced researches and activates in those directions of researches of computer science which facilitate technologies and applications without of which the development of GIS cannot be assured.

  18. Tablet computer enhanced training improves internal medicine exam performance.

    Science.gov (United States)

    Baumgart, Daniel C; Wende, Ilja; Grittner, Ulrike

    2017-01-01

    Traditional teaching concepts in medical education do not take full advantage of current information technology. We aimed to objectively determine the impact of Tablet PC enhanced training on learning experience and MKSAP® (medical knowledge self-assessment program) exam performance. In this single center, prospective, controlled study final year medical students and medical residents doing an inpatient service rotation were alternatingly assigned to either the active test (Tablet PC with custom multimedia education software package) or traditional education (control) group, respectively. All completed an extensive questionnaire to collect their socio-demographic data, evaluate educational status, computer affinity and skills, problem solving, eLearning knowledge and self-rated medical knowledge. Both groups were MKSAP® tested at the beginning and the end of their rotation. The MKSAP® score at the final exam was the primary endpoint. Data of 55 (tablet n = 24, controls n = 31) male 36.4%, median age 28 years, 65.5% students, were evaluable. The mean MKSAP® score improved in the tablet PC (score Δ + 8 SD: 11), but not the control group (score Δ- 7, SD: 11), respectively. After adjustment for baseline score and confounders the Tablet PC group showed on average 11% better MKSAP® test results compared to the control group (plearning to their respective training programs.

  19. Business Performer-Centered Design of User Interfaces

    Science.gov (United States)

    Sousa, Kênia; Vanderdonckt, Jean

    Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.

  20. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2015-01-01

    A continuation of Contemporary High Performance Computing: From Petascale toward Exascale, this second volume continues the discussion of HPC flagship systems, major application workloads, facilities, and sponsors. The book includes of figures and pictures that capture the state of existing systems: pictures of buildings, systems in production, floorplans, and many block diagrams and charts to illustrate system design and performance.

  1. Talented Students' Satisfaction with the Performance of the Gifted Centers

    Directory of Open Access Journals (Sweden)

    Suhail Mamoud Al–Zoubi

    2016-06-01

    Full Text Available Abstract This study aimed to identify talented students' levels of satisfaction with the performance of the gifted centers. The sample of the study consisted of (142 gifted and talented students enrolled in the Najran Centers for Gifted in the Kingdom of Saudi Arabia. A questionnaire was developed and distributed to the sample of the study. The results revealed that talented students were highly satisfied with the administration and teachers, whereas they were only moderately satisfied with enrichment activities, teaching methods, student relationships and facilities and equipment. Moreover, results also showed that there were no significant differences could be attributed to gender or to the level of schooling.

  2. Virtual Meteorological Center

    Directory of Open Access Journals (Sweden)

    Marius Brinzila

    2007-10-01

    Full Text Available A virtual meteorological center, computer based with Internet possibility transmission of the information is presented. Circumstance data is collected with logging field meteorological station. The station collects and automatically save data about the temperature in the air, relative humidity, pressure, wind speed and wind direction, rain gauge, solar radiation and air quality. Also can perform sensors test, analyze historical data and evaluate statistical information. The novelty of the system is that it can publish data over the Internet using LabVIEW Web Server capabilities and deliver a video signal to the School TV network. Also the system performs redundant measurement of temperature and humidity and was improved using new sensors and an original signal conditioning module.

  3. Computational-physics program of the National MFE Computer Center

    International Nuclear Information System (INIS)

    Mirin, A.A.

    1982-02-01

    The computational physics group is ivolved in several areas of fusion research. One main area is the application of multidimensional Fokker-Planck, transport and combined Fokker-Planck/transport codes to both toroidal and mirror devices. Another major area is the investigation of linear and nonlinear resistive magnetohydrodynamics in two and three dimensions, with applications to all types of fusion devices. The MHD work is often coupled with the task of numerically generating equilibria which model experimental devices. In addition to these computational physics studies, investigations of more efficient numerical algorithms are being carried out

  4. The Benefits of Making Data from the EPA National Center for Computational Toxicology available for reuse (ACS Fall meeting 3 of 12)

    Science.gov (United States)

    Researchers at EPA’s National Center for Computational Toxicology (NCCT) integrate advances in biology, chemistry, exposure and computer science to help prioritize chemicals for further research based on potential human health risks. The goal of this research is to quickly evalua...

  5. Transportation management center data capture for performance and mobility measures guidebook.

    Science.gov (United States)

    2013-03-01

    The Guide to Transportation Management Center (TMC) Data Capture for Performance and Mobility Measures is a two-volume document consisting of this summary Guidebook and a Reference Manual. These documents provide technical guidance and recommended pr...

  6. Outline of computer application in PNC

    International Nuclear Information System (INIS)

    Aoki, Minoru

    1990-01-01

    Computer application systems are an important resource for the R and D (research and development) in PNC. Various types of computer systems are widely used on the R and D of experiment, evaluation and analysis, plant operation and other jobs in PNC. Currently, the computer centers in PNC have been established in Oarai engineering Center and Tokai Works. The former uses a large scale digital computer and supercomputer systems. The latter uses only a large scale digital computer system. These computer systems have joined in the PNC Information Network that connects between Head Office and Branches, Oarai, Tokai, Ningyotoge and Fugen, by means of super digital circuit. In the near future, the computer centers will be brought together in order to raise up efficiency of operation of the computer systems. New computer center called 'Information Center' is under construction in Oarai Engineering Center. (author)

  7. Benchmarking high performance computing architectures with CMS’ skeleton framework

    Science.gov (United States)

    Sexton-Kennedy, E.; Gartung, P.; Jones, C. D.

    2017-10-01

    In 2012 CMS evaluated which underlying concurrency technology would be the best to use for its multi-threaded framework. The available technologies were evaluated on the high throughput computing systems dominating the resources in use at that time. A skeleton framework benchmarking suite that emulates the tasks performed within a CMSSW application was used to select Intel’s Thread Building Block library, based on the measured overheads in both memory and CPU on the different technologies benchmarked. In 2016 CMS will get access to high performance computing resources that use new many core architectures; machines such as Cori Phase 1&2, Theta, Mira. Because of this we have revived the 2012 benchmark to test it’s performance and conclusions on these new architectures. This talk will discuss the results of this exercise.

  8. The path toward HEP High Performance Computing

    International Nuclear Information System (INIS)

    Apostolakis, John; Brun, René; Gheata, Andrei; Wenzel, Sandro; Carminati, Federico

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on the development of a highperformance prototype for particle transport. Achieving a good concurrency level on the emerging parallel architectures without a complete redesign of the framework can only be done by parallelizing at event level, or with a much larger effort at track level. Apart the shareable data structures, this typically implies a multiplication factor in terms of memory consumption compared to the single threaded version, together with sub-optimal handling of event processing tails. Besides this, the low level instruction pipelining of modern processors cannot be used efficiently to speedup the program. We have implemented a framework that allows scheduling vectors of particles to an arbitrary number of computing resources in a fine grain parallel approach. The talk will review the current optimisation activities within the SFT group with a particular emphasis on the development perspectives towards a simulation framework able to profit

  9. Risk factors for computer visual syndrome (CVS) among operators of two call centers in São Paulo, Brazil.

    Science.gov (United States)

    Sa, Eduardo Costa; Ferreira Junior, Mario; Rocha, Lys Esther

    2012-01-01

    The aims of this study were to investigate work conditions, to estimate the prevalence and to describe risk factors associated with Computer Vision Syndrome among two call centers' operators in São Paulo (n = 476). The methods include a quantitative cross-sectional observational study and an ergonomic work analysis, using work observation, interviews and questionnaires. The case definition was the presence of one or more specific ocular symptoms answered as always, often or sometimes. The multiple logistic regression model, were created using the stepwise forward likelihood method and remained the variables with levels below 5% (p vision (43.5%). The prevalence of Computer Vision Syndrome was 54.6%. Associations verified were: being female (OR 2.6, 95% CI 1.6 to 4.1), lack of recognition at work (OR 1.4, 95% CI 1.1 to 1.8), organization of work in call center (OR 1.4, 95% CI 1.1 to 1.7) and high demand at work (OR 1.1, 95% CI 1.0 to 1.3). The organization and psychosocial factors at work should be included in prevention programs of visual syndrome among call centers' operators.

  10. The computational physics program of the National MFE Computer Center

    International Nuclear Information System (INIS)

    Mirin, A.A.

    1988-01-01

    The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generation of supercomputers. The computational physics group is involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to compact toroids. Another major area is the investigation of kinetic instabilities using a 3-D particle code. This work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence are being examined. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers

  11. High Performance Computing Operations Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Cupps, Kimberly C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  12. Cloud Computing for Maintenance Performance Improvement

    OpenAIRE

    Kour, Ravdeep; Karim, Ramin; Parida, Aditya

    2013-01-01

    Cloud Computing is an emerging research area. It can be utilised for acquiring an effective and efficient information logistics. This paper uses cloud-based technology for the establishment of information logistics for railway system which requires information based on data from different data sources (e.g. railway maintenance, railway operation, and railway business data). In order to improve the performance of the maintenance process relevant data from various sources need to be acquired, f...

  13. Computed tomography evaluation of rotary systems on the root canal transportation and centering ability

    Directory of Open Access Journals (Sweden)

    André PAGLIOSA

    2015-01-01

    Full Text Available Abstract : The endodontic preparation of curved and narrow root canals is challenging, with a tendency for the prepared canal to deviate away from its natural axis. The aim of this study was to evaluate, by cone-beam computed tomography, the transportation and centering ability of curved mesiobuccal canals in maxillary molars after biomechanical preparation with different nickel-titanium (NiTi rotary systems. Forty teeth with angles of curvature ranging from 20° to 40° and radii between 5.0 mm and 10.0 mm were selected and assigned into four groups (n = 10, according to the biomechanical preparative system used: Hero 642 (HR, Liberator (LB, ProTaper (PT, and Twisted File (TF. The specimens were inserted into an acrylic device and scanned with computed tomography prior to, and following, instrumentation at 3, 6 and 9 mm from the root apex. The canal degree of transportation and centering ability were calculated and analyzed using one-way ANOVA and Tukey’s tests (α = 0.05. The results demonstrated no significant difference (p > 0.05 in shaping ability among the rotary systems. The mean canal transportation was: -0.049 ± 0.083 mm (HR; -0.004 ± 0.044 mm (LB; -0.003 ± 0.064 mm (PT; -0.021 ± 0.064 mm (TF. The mean canal centering ability was: -0.093 ± 0.147 mm (HR; -0.001 ± 0.100 mm (LB; -0.002 ± 0.134 mm (PT; -0.033 ± 0.133 mm (TF. Also, there was no significant difference among the root segments (p > 0.05. It was concluded that the Hero 642, Liberator, ProTaper, and Twisted File rotary systems could be safely used in curved canal instrumentation, resulting in satisfactory preservation of the original canal shape.

  14. Computed tomography evaluation of rotary systems on the root canal transportation and centering ability

    International Nuclear Information System (INIS)

    Pagliosa, Andre; Raucci-Neto, Walter; Silva-Souza, Yara Teresinha Correa; Alfredo, Edson; Sousa-Neto, Manoel Damiao; Versiani, Marco Aurelio

    2015-01-01

    The endodontic preparation of curved and narrow root canals is challenging, with a tendency for the prepared canal to deviate away from its natural axis. The aim of this study was to evaluate, by cone-beam computed tomography, the transportation and centering ability of curved mesiobuccal canals in maxillary molars after biomechanical preparation with different nickel-titanium (NiTi) rotary systems. Forty teeth with angles of curvature ranging from 20° to 40° and radii between 5.0 mm and 10.0 mm were selected and assigned into four groups (n = 10), according to the biomechanical preparative system used: Hero 642 (HR), Liberator (LB), ProTaper (PT), and Twisted File (TF). The specimens were inserted into an acrylic device and scanned with computed tomography prior to, and following, instrumentation at 3, 6 and 9 mm from the root apex. The canal degree of transportation and centering ability were calculated and analyzed using one-way ANOVA and Tukey’s tests (α = 0.05). The results demonstrated no significant difference (p > 0.05) in shaping ability among the rotary systems. The mean canal transportation was: -0.049 ± 0.083 mm (HR); -0.004 ± 0.044 mm (LB); -0.003 ± 0.064 mm (PT); -0.021 ± 0.064 mm (TF). The mean canal centering ability was: -0.093 ± 0.147 mm (HR); -0.001 ± 0.100 mm (LB); -0.002 ± 0.134 mm (PT); -0.033 ± 0.133 mm (TF). Also, there was no significant difference among the root segments (p > 0.05). It was concluded that the Hero 642, Liberator, ProTaper, and Twisted File rotary systems could be safely used in curved canal instrumentation, resulting in satisfactory preservation of the original canal shape. (author)

  15. Computed tomography evaluation of rotary systems on the root canal transportation and centering ability

    Energy Technology Data Exchange (ETDEWEB)

    Pagliosa, Andre; Raucci-Neto, Walter; Silva-Souza, Yara Teresinha Correa; Alfredo, Edson, E-mail: ysousa@unaerp.br [Universidade de Ribeirao Preto (UNAERP), SP (Brazil). Fac. de Odontologia; Sousa-Neto, Manoel Damiao; Versiani, Marco Aurelio [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Fac. de Odoentologia

    2015-03-01

    The endodontic preparation of curved and narrow root canals is challenging, with a tendency for the prepared canal to deviate away from its natural axis. The aim of this study was to evaluate, by cone-beam computed tomography, the transportation and centering ability of curved mesiobuccal canals in maxillary molars after biomechanical preparation with different nickel-titanium (NiTi) rotary systems. Forty teeth with angles of curvature ranging from 20° to 40° and radii between 5.0 mm and 10.0 mm were selected and assigned into four groups (n = 10), according to the biomechanical preparative system used: Hero 642 (HR), Liberator (LB), ProTaper (PT), and Twisted File (TF). The specimens were inserted into an acrylic device and scanned with computed tomography prior to, and following, instrumentation at 3, 6 and 9 mm from the root apex. The canal degree of transportation and centering ability were calculated and analyzed using one-way ANOVA and Tukey’s tests (α = 0.05). The results demonstrated no significant difference (p > 0.05) in shaping ability among the rotary systems. The mean canal transportation was: -0.049 ± 0.083 mm (HR); -0.004 ± 0.044 mm (LB); -0.003 ± 0.064 mm (PT); -0.021 ± 0.064 mm (TF). The mean canal centering ability was: -0.093 ± 0.147 mm (HR); -0.001 ± 0.100 mm (LB); -0.002 ± 0.134 mm (PT); -0.033 ± 0.133 mm (TF). Also, there was no significant difference among the root segments (p > 0.05). It was concluded that the Hero 642, Liberator, ProTaper, and Twisted File rotary systems could be safely used in curved canal instrumentation, resulting in satisfactory preservation of the original canal shape. (author)

  16. Performance Assessment Institute-NV

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Joesph [Univ. of Nevada, Las Vegas, NV (United States)

    2012-12-31

    The National Supercomputing Center for Energy and the Environment’s intention is to purchase a multi-purpose computer cluster in support of the Performance Assessment Institute (PA Institute). The PA Institute will serve as a research consortium located in Las Vegas Nevada with membership that includes: national laboratories, universities, industry partners, and domestic and international governments. This center will provide a one-of-a-kind centralized facility for the accumulation of information for use by Institutions of Higher Learning, the U.S. Government, and Regulatory Agencies and approved users. This initiative will enhance and extend High Performance Computing (HPC) resources in Nevada to support critical national and international needs in "scientific confirmation". The PA Institute will be promoted as the leading Modeling, Learning and Research Center worldwide. The program proposes to utilize the existing supercomputing capabilities and alliances of the University of Nevada Las Vegas as a base, and to extend these resource and capabilities through a collaborative relationship with its membership. The PA Institute will provide an academic setting for interactive sharing, learning, mentoring and monitoring of multi-disciplinary performance assessment and performance confirmation information. The role of the PA Institute is to facilitate research, knowledge-increase, and knowledge-sharing among users.

  17. High performance computing and communications: FY 1997 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  18. Simple, parallel, high-performance virtual machines for extreme computations

    International Nuclear Information System (INIS)

    Chokoufe Nejad, Bijan; Ohl, Thorsten; Reuter, Jurgen

    2014-11-01

    We introduce a high-performance virtual machine (VM) written in a numerically fast language like Fortran or C to evaluate very large expressions. We discuss the general concept of how to perform computations in terms of a VM and present specifically a VM that is able to compute tree-level cross sections for any number of external legs, given the corresponding byte code from the optimal matrix element generator, O'Mega. Furthermore, this approach allows to formulate the parallel computation of a single phase space point in a simple and obvious way. We analyze hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are introduced with this method. Our implementation of a VM can run faster than the corresponding native, compiled code for certain processes and compilers, especially for very high multiplicities, and has in general runtimes in the same order of magnitude. By avoiding the tedious compile and link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order corrections that are currently out of reach could be evaluated with a VM given enough computing power.

  19. Improved custom statistics visualization for CA Performance Center data

    CERN Document Server

    Talevi, Iacopo

    2017-01-01

    The main goal of my project is to understand and experiment the possibilities that CA Performance Center (CA PC) offers for creating custom applications to display stored information through interesting visual means, such as maps. In particular, I have re-written some of the network statistics web pages in order to fetch data from new statistics modules in CA PC, which has its own API, and stop using the RRD data.

  20. Dynamism in Electronic Performance Support Systems.

    Science.gov (United States)

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  1. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    Science.gov (United States)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  2. Lightness : a function-virtualizable software defined data center network with all-optical circuit/packet switching

    NARCIS (Netherlands)

    Saridis, G.; Peng, S.; Yan, Y.; Aguado, A.; Guo, B.; Arslan, M.; Jackson, C.; Miao, W.; Calabretta, N.; Agraz, F.; Spadaro, S.; Bernini, G.; Ciulli, N.; Zervas, G.; Nejabati, R.; Simeonidou, D.

    2016-01-01

    Modern high-performance Data Centers are responsible for delivering a huge variety of cloud applications to the end-users, which are increasingly pushing the limits of currently deployed computing and network infrastructure. All-optical dynamic data center network (DCN) architectures are strong

  3. Performance comparison between Java and JNI for optimal implementation of computational micro-kernels

    OpenAIRE

    Halli , Nassim; Charles , Henri-Pierre; Méhaut , Jean-François

    2015-01-01

    International audience; General purpose CPUs used in high performance computing (HPC) support a vector instruction set and an out-of-order engine dedicated to increase the instruction level parallelism. Hence, related optimizations are currently critical to improve the performance of applications requiring numerical computation. Moreover, the use of a Java run-time environment such as the HotSpot Java Virtual Machine (JVM) in high performance computing is a promising alternative. It benefits ...

  4. Comparing Performance of Public and Cooperative Health Centers

    Directory of Open Access Journals (Sweden)

    Mostafa Farahbakhsh

    2012-04-01

    Full Text Available Background: Health cooperatives in similar structure of health network in Iran, give primary health cares to defined population with supervisory of public sector. Materials and method: This study compares health system performance between public (PHC and cooperative (CHC health centers. Results: Client's satisfaction was 4.14 in CHC and 3.9 in PHC in 5 point Likert scale. The mean for daily health services of CHC and PHC were 110.8 and 85 respectively. Conclusion: Health cooperatives are appropriate strategy for downsizing of government in health sector

  5. Computational Performance Analysis of Nonlinear Dynamic Systems using Semi-infinite Programming

    Directory of Open Access Journals (Sweden)

    Tor A. Johansen

    2001-01-01

    Full Text Available For nonlinear systems that satisfy certain regularity conditions it is shown that upper and lower bounds on the performance (cost function can be computed using linear or quadratic programming. The performance conditions derived from Hamilton-Jacobi inequalities are formulated as linear inequalities defined pointwise by discretizing the state-space when assuming a linearly parameterized class of functions representing the candidate performance bounds. Uncertainty with respect to some system parameters can be incorporated by also gridding the parameter set. In addition to performance analysis, the method can also be used to compute Lyapunov functions that guarantees uniform exponential stability.

  6. A High Performance VLSI Computer Architecture For Computer Graphics

    Science.gov (United States)

    Chin, Chi-Yuan; Lin, Wen-Tai

    1988-10-01

    A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.

  7. FY 1992 Blue Book: Grand Challenges: High Performance Computing and Communications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — High performance computing and computer communications networks are becoming increasingly important to scientific advancement, economic competition, and national...

  8. A Perspective on Computational Human Performance Models as Design Tools

    Science.gov (United States)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  9. Certification of version 1.2 of the PORFLO-3 code for the WHC scientific and engineering computational center

    International Nuclear Information System (INIS)

    Kline, N.W.

    1994-01-01

    Version 1.2 of the PORFLO-3 Code has migrated from the Hanford Cray computer to workstations in the WHC Scientific and Engineering Computational Center. The workstation-based configuration and acceptance testing are inherited from the CRAY-based configuration. The purpose of this report is to document differences in the new configuration as compared to the parent Cray configuration, and summarize some of the acceptance test results which have shown that the migrated code is functioning correctly in the new environment

  10. Deep Recurrent Model for Server Load and Performance Prediction in Data Center

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2017-01-01

    Full Text Available Recurrent neural network (RNN has been widely applied to many sequential tagging tasks such as natural language process (NLP and time series analysis, and it has been proved that RNN works well in those areas. In this paper, we propose using RNN with long short-term memory (LSTM units for server load and performance prediction. Classical methods for performance prediction focus on building relation between performance and time domain, which makes a lot of unrealistic hypotheses. Our model is built based on events (user requests, which is the root cause of server performance. We predict the performance of the servers using RNN-LSTM by analyzing the log of servers in data center which contains user’s access sequence. Previous work for workload prediction could not generate detailed simulated workload, which is useful in testing the working condition of servers. Our method provides a new way to reproduce user request sequence to solve this problem by using RNN-LSTM. Experiment result shows that our models get a good performance in generating load and predicting performance on the data set which has been logged in online service. We did experiments with nginx web server and mysql database server, and our methods can been easily applied to other servers in data center.

  11. The Woven Body: Embodying Text in Performance Art and the Writing Center

    Science.gov (United States)

    Rifenburg, J. Michael; Allgood, Lindsey

    2015-01-01

    Drawing on Lindsey Allgood's scripts, journal entries, and images of a specific participatory performance piece she executed, we argue for seeing performance art as a form of embodied text. Such an assertion is particularly pertinent for postsecondary writing center praxis as it allows for the mindful intersections of the body and writing during…

  12. Component-based software for high-performance scientific computing

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  13. Component-based software for high-performance scientific computing

    International Nuclear Information System (INIS)

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly

  14. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    International Nuclear Information System (INIS)

    Khaleel, Mohammad A.

    2009-01-01

    This report is an account of the deliberations and conclusions of the workshop on 'Forefront Questions in Nuclear Science and the Role of High Performance Computing' held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to (1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; (2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; (3) provide nuclear physicists the opportunity to influence the development of high performance computing; and (4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  15. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  16. NASA Center for Climate Simulation (NCCS) Advanced Technology AT5 Virtualized Infiniband Report

    Science.gov (United States)

    Thompson, John H.; Bledsoe, Benjamin C.; Wagner, Mark; Shakshober, John; Fromkin, Russ

    2013-01-01

    The NCCS is part of the Computational and Information Sciences and Technology Office (CISTO) of Goddard Space Flight Center's (GSFC) Sciences and Exploration Directorate. The NCCS's mission is to enable scientists to increase their understanding of the Earth, the solar system, and the universe by supplying state-of-the-art high performance computing (HPC) solutions. To accomplish this mission, the NCCS (https://www.nccs.nasa.gov) provides high performance compute engines, mass storage, and network solutions to meet the specialized needs of the Earth and space science user communities

  17. Reducing power consumption while performing collective operations on a plurality of compute nodes

    Science.gov (United States)

    Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Peters, Amanda E [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2011-10-18

    Methods, apparatus, and products are disclosed for reducing power consumption while performing collective operations on a plurality of compute nodes that include: receiving, by each compute node, instructions to perform a type of collective operation; selecting, by each compute node from a plurality of collective operations for the collective operation type, a particular collective operation in dependence upon power consumption characteristics for each of the plurality of collective operations; and executing, by each compute node, the selected collective operation.

  18. Evaluation of high-performance computing software

    Energy Technology Data Exchange (ETDEWEB)

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  19. Inclusive vision for high performance computing at the CSIR

    CSIR Research Space (South Africa)

    Gazendam, A

    2006-02-01

    Full Text Available and computationally intensive applications. A number of different technologies and standards were identified as core to the open and distributed high-performance infrastructure envisaged...

  20. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  1. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    Science.gov (United States)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  2. High performance parallel computing of flows in complex geometries: II. Applications

    International Nuclear Information System (INIS)

    Gourdain, N; Gicquel, L; Staffelbach, G; Vermorel, O; Duchaine, F; Boussuge, J-F; Poinsot, T

    2009-01-01

    Present regulations in terms of pollutant emissions, noise and economical constraints, require new approaches and designs in the fields of energy supply and transportation. It is now well established that the next breakthrough will come from a better understanding of unsteady flow effects and by considering the entire system and not only isolated components. However, these aspects are still not well taken into account by the numerical approaches or understood whatever the design stage considered. The main challenge is essentially due to the computational requirements inferred by such complex systems if it is to be simulated by use of supercomputers. This paper shows how new challenges can be addressed by using parallel computing platforms for distinct elements of a more complex systems as encountered in aeronautical applications. Based on numerical simulations performed with modern aerodynamic and reactive flow solvers, this work underlines the interest of high-performance computing for solving flow in complex industrial configurations such as aircrafts, combustion chambers and turbomachines. Performance indicators related to parallel computing efficiency are presented, showing that establishing fair criterions is a difficult task for complex industrial applications. Examples of numerical simulations performed in industrial systems are also described with a particular interest for the computational time and the potential design improvements obtained with high-fidelity and multi-physics computing methods. These simulations use either unsteady Reynolds-averaged Navier-Stokes methods or large eddy simulation and deal with turbulent unsteady flows, such as coupled flow phenomena (thermo-acoustic instabilities, buffet, etc). Some examples of the difficulties with grid generation and data analysis are also presented when dealing with these complex industrial applications.

  3. High performance computing and communications: Advancing the frontiers of information technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental in the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.

  4. High-performance computing on GPUs for resistivity logging of oil and gas wells

    Science.gov (United States)

    Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.

    2017-10-01

    We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.

  5. [Activities of Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  6. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  7. Computer-aided dispatching system design specification

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, M.G.

    1997-12-16

    This document defines the performance requirements for a graphic display dispatching system to support Hanford Patrol Operations Center. This document reflects the as-built requirements for the system that was delivered by GTE Northwest, Inc. This system provided a commercial off-the-shelf computer-aided dispatching system and alarm monitoring system currently in operations at the Hanford Patrol Operations Center, Building 2721E. This system also provides alarm back-up capability for the Plutonium Finishing Plant (PFP).

  8. Computer-aided dispatching system design specification

    International Nuclear Information System (INIS)

    Briggs, M.G.

    1997-01-01

    This document defines the performance requirements for a graphic display dispatching system to support Hanford Patrol Operations Center. This document reflects the as-built requirements for the system that was delivered by GTE Northwest, Inc. This system provided a commercial off-the-shelf computer-aided dispatching system and alarm monitoring system currently in operations at the Hanford Patrol Operations Center, Building 2721E. This system also provides alarm back-up capability for the Plutonium Finishing Plant (PFP)

  9. Performance Evaluation of a Mobile Wireless Computational Grid ...

    African Journals Online (AJOL)

    This work developed and simulated a mathematical model for a mobile wireless computational Grid architecture using networks of queuing theory. This was in order to evaluate the performance of theload-balancing three tier hierarchical configuration. The throughput and resource utilizationmetrics were measured and the ...

  10. Spectrum of tablet computer use by medical students and residents at an academic medical center

    Directory of Open Access Journals (Sweden)

    Robert Robinson

    2015-07-01

    Full Text Available Introduction. The value of tablet computer use in medical education is an area of considerable interest, with preliminary investigations showing that the majority of medical trainees feel that tablet computers added value to the curriculum. This study investigated potential differences in tablet computer use between medical students and resident physicians.Materials & Methods. Data collection for this survey was accomplished with an anonymous online questionnaire shared with the medical students and residents at Southern Illinois University School of Medicine (SIU-SOM in July and August of 2012.Results. There were 76 medical student responses (26% response rate and 66 resident/fellow responses to this survey (21% response rate. Residents/fellows were more likely to use tablet computers several times daily than medical students (32% vs. 20%, p = 0.035. The most common reported uses were for accessing medical reference applications (46%, e-Books (45%, and board study (32%. Residents were more likely than students to use a tablet computer to access an electronic medical record (41% vs. 21%, p = 0.010, review radiology images (27% vs. 12%, p = 0.019, and enter patient care orders (26% vs. 3%, p < 0.001.Discussion. This study shows a high prevalence and frequency of tablet computer use among physicians in training at this academic medical center. Most residents and students use tablet computers to access medical references, e-Books, and to study for board exams. Residents were more likely to use tablet computers to complete clinical tasks.Conclusions. Tablet computer use among medical students and resident physicians was common in this survey. All learners used tablet computers for point of care references and board study. Resident physicians were more likely to use tablet computers to access the EMR, enter patient care orders, and review radiology studies. This difference is likely due to the differing educational and professional demands placed on

  11. A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.; Schiess, Adrian B.; Howell, Jamie; Baca, Michael J.; Partridge, L. Donald; Finnegan, Patrick Sean; Wolfley, Steven L.; Dagel, Daryl James; Spahn, Olga Blum; Harper, Jason C.; Pohl, Kenneth Roy; Mickel, Patrick R.; Lohn, Andrew; Marinella, Matthew

    2013-10-01

    The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.

  12. Analysis of kinematic movement characteristics of the common center of athlete's body mass while performing the crouch start

    Directory of Open Access Journals (Sweden)

    Liudmyla Shesterova

    2017-04-01

    Full Text Available Purpose: to determine the basic conditions for minimizing the cost of effort to accelerate the movement speed of the common center of athlete's body mass in the specified direction of his movement. Material & Methods: the study used video footage for short distances of the world's leading sprinters and athletes of various qualifications. To solve the problems, we used: a method for estimating the angles between biosigns and storyboard video, method of analogies, method of the theory of similarity and dimension, the method of computer modeling, statistical analysis, estimation of physical stress and strength impulse using the method of estimating the interdependence of the developed effort on the angle of expansion between the corresponding biokinematic links. Results: it sets the basic position kinematics movement common center of the athlete's body mass (CCM, which improves the efficiency of performance crouch start. The results of the dynamics of the movement of a common force vector are presented, which determines the direction of movement of the body's CCM in three-dimensional space, ensuring its movement along the center line of the run are presented. On the basis of the observed dynamics of the change in the direction of the resultant force vector, when a crouch start is performed, it is established that the trajectory of its movement is a helicoid. Conclusion: movement of the common center of body mass is carried out along the helicoid with subsequent reduction of its radius. Changes in the length of the helix forming the radius are systematic and reflect the energy efficiency of the running costs. The dynamics of the helicoidal movement of the generating vector is observed in each supporting phase of the running step, which makes it possible to assess the stability of the dynamic stereotype manifestation of the running step, and to judge by these indicators about the degree of athlete fatigue at the distance.

  13. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study

    DEFF Research Database (Denmark)

    de Sitter, Alexandra; Steenwijk, Martijn D; Ruet, Aurélie

    2017-01-01

    (Lesion-TOADS); and k-Nearest Neighbor with Tissue Type Priors (kNN-TTP). Main software parameters were optimized using a training set (N = 18), and formal testing was performed on the remaining patients (N = 52). To evaluate volumetric agreement with the reference segmentations, intraclass correlation......BACKGROUND AND PURPOSE: In vivoidentification of white matter lesions plays a key-role in evaluation of patients with multiple sclerosis (MS). Automated lesion segmentation methods have been developed to substitute manual outlining, but evidence of their performance in multi-center investigations......-one-center-out design to exclude the center of interest from the training phase to evaluate the performance of the method on 'unseen' center. RESULTS: Compared to the reference mean lesion volume (4.85 ± 7.29 mL), the methods displayed a mean difference of 1.60 ± 4.83 (Cascade), 2.31 ± 7.66 (LGA), 0.44 ± 4.68 (LPA), 1...

  14. High-performance computing for structural mechanics and earthquake/tsunami engineering

    CERN Document Server

    Hori, Muneo; Ohsaki, Makoto

    2016-01-01

    Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe.  To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows ...

  15. Pain, Work-related Characteristics, and Psychosocial Factors among Computer Workers at a University Center.

    Science.gov (United States)

    Mainenti, Míriam Raquel Meira; Felicio, Lilian Ramiro; Rodrigues, Erika de Carvalho; Ribeiro da Silva, Dalila Terrinha; Vigário Dos Santos, Patrícia

    2014-04-01

    [Purpose] Complaint of pain is common in computer workers, encouraging the investigation of pain-related workplace factors. This study investigated the relationship among work-related characteristics, psychosocial factors, and pain among computer workers from a university center. [Subjects and Methods] Fifteen subjects (median age, 32.0 years; interquartile range, 26.8-34.5 years) were subjected to measurement of bioelectrical impedance; photogrammetry; workplace measurements; and pain complaint, quality of life, and motivation questionnaires. [Results] The low back was the most prevalent region of complaint (76.9%). The number of body regions for which subjects complained of pain was greater in the no rest breaks group, which also presented higher prevalences of neck (62.5%) and low back (100%) pain. There were also observed associations between neck complaint and quality of life; neck complaint and head protrusion; wrist complaint and shoulder angle; and use of a chair back and thoracic pain. [Conclusion] Complaint of pain was associated with no short rest breaks, no use of a chair back, poor quality of life, high head protrusion, and shoulder angle while using the mouse of a computer.

  16. High performance computing and communications: FY 1995 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The High Performance Computing and Communications (HPCC) Program was formally established following passage of the High Performance Computing Act of 1991 signed on December 9, 1991. Ten federal agencies in collaboration with scientists and managers from US industry, universities, and laboratories have developed the HPCC Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1994 and FY 1995. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency. Although the Department of Education is an official HPCC agency, its current funding and reporting of crosscut activities goes through the Committee on Education and Health Resources, not the HPCC Program. For this reason the Implementation Plan covers nine HPCC agencies.

  17. Measuring transplant center performance: The goals are not controversial but the methods and consequences can be.

    Science.gov (United States)

    Jay, Colleen; Schold, Jesse D

    2017-03-01

    Risks of regulatory scrutiny has generated widespread concern about increasingly risk averse transplant center behaviors regarding both donor and candidate acceptance patterns. To address potential unintended consequences threatening access to care, we discuss recent changes in regulatory metrics and potential improvements in quality oversight of transplant centers. Despite many recent changes to one-year patient and graft survival regulatory criteria, the capacity to accurately identify true underperforming centers and avoiding false positive flagging remains an area of great concern. Numerous studies have demonstrated restrictions in transplant volume and access following transplant center flagging. Current regulatory criteria are limited in their capacity to accurately identify poorly performing centers and potentially encourage risk-averse behavior by transplant centers. Efforts to address these concerns should focus on (1) improving risk-adjustment models with better data which captures the acuity of candidate and donor risk, (2) reconsidering primary outcomes measured to assess comprehensive transplant center performance, (3) improving education to address rational or perceived disincentives, and (4) using data more effectively to share best practices.

  18. About Security Solutions in Fog Computing

    Directory of Open Access Journals (Sweden)

    Eugen Petac

    2016-01-01

    Full Text Available The key for improving a system's performance, its security and reliability is to have the dataprocessed locally in remote data centers. Fog computing extends cloud computing through itsservices to devices and users at the edge of the network. Through this paper it is explored the fogcomputing environment. Security issues in this area are also described. Fog computing providesthe improved quality of services to the user by complementing shortages of cloud in IoT (Internet ofThings environment. Our proposal, named Adaptive Fog Computing Node Security Profile(AFCNSP, which is based security Linux solutions, will get an improved security of fog node withrich feature sets.

  19. Play for Performance: Using Computer Games to Improve Motivation and Test-Taking Performance

    Science.gov (United States)

    Dennis, Alan R.; Bhagwatwar, Akshay; Minas, Randall K.

    2013-01-01

    The importance of testing, especially certification and high-stakes testing, has increased substantially over the past decade. Building on the "serious gaming" literature and the psychology "priming" literature, we developed a computer game designed to improve test-taking performance using psychological priming. The game primed…

  20. Parallel computing in enterprise modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.

  1. Lecture 4: Cloud Computing in Large Computer Centers

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This lecture will introduce Cloud Computing concepts identifying and analyzing its characteristics, models, and applications. Also, you will learn how CERN built its Cloud infrastructure and which tools are been used to deploy and manage it. About the speaker: Belmiro Moreira is an enthusiastic software engineer passionate about the challenges and complexities of architecting and deploying Cloud Infrastructures in ve...

  2. 8th International Workshop on Parallel Tools for High Performance Computing

    CERN Document Server

    Gracia, José; Knüpfer, Andreas; Resch, Michael; Nagel, Wolfgang

    2015-01-01

    Numerical simulation and modelling using High Performance Computing has evolved into an established technique in academic and industrial research. At the same time, the High Performance Computing infrastructure is becoming ever more complex. For instance, most of the current top systems around the world use thousands of nodes in which classical CPUs are combined with accelerator cards in order to enhance their compute power and energy efficiency. This complexity can only be mastered with adequate development and optimization tools. Key topics addressed by these tools include parallelization on heterogeneous systems, performance optimization for CPUs and accelerators, debugging of increasingly complex scientific applications, and optimization of energy usage in the spirit of green IT. This book represents the proceedings of the 8th International Parallel Tools Workshop, held October 1-2, 2014 in Stuttgart, Germany – which is a forum to discuss the latest advancements in the parallel tools.

  3. Trends in HPC and Data Center Power, Packaging, and Cooling

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    air vs liquid-cooling, and metrics to track it all will be discussed. About the speaker Michael K. Patterson is a Senior Principal Engineer in the Technical Computing Group - Systems Architecture & Pathfinding at the Intel Corporation, in Dupont, Washington, where he works in the power, thermal, and energy-efficient-performance areas of High Performance Computing. The work covers silicon level activity, through platform and rack-level solutions, and on up to interface with Data Center power and cooling technologies. He did his undergraduate work at Purdue University, received his MS degree in Management from Rensselaer Polytechnic Institute, an...

  4. Factors related to the performance of Specialized Dental Care Centers

    Directory of Open Access Journals (Sweden)

    Flávia Christiane de Azevedo Machado

    2015-04-01

    Full Text Available The Specialized Dental Care Centers (SDCC have the mission to expand access to public medium complexity dental care and support the primary health care actions at this level of complexity. However, it is necessary to ensure the quality of services and to evaluate such services continuously to identify weaknesses and strengths that support the processes of leadership/management. Nevertheless, there is a dearth of studies on the assessment of oral health in specialized care that may indicate which factors should be investigated. Therefore, this integrated literature review sought to explore the plethora of publications on the evaluation of SDCC in the LILACS and MEDLINE data bases in October 2013 to identify factors possibly related to the performance of such health services. Thus, 13 references were included in this review pointing to forms of organization and management of work processes related to the creation of healthcare networks (operation of regulation centers and setting up of health consortiums. They include the contextual characteristics of the places where SDCCs are located (population size, Family Health Strategy coverage, Municipal Human Development Index, governance, governing capacity were factors that influenced the SDCCs performance.

  5. Transportation management center data capture for performance and mobility measures reference manual.

    Science.gov (United States)

    2013-03-01

    The Guide to Transportation Management Center (TMC) Data Capture for Performance and Mobility Measures is a two-volume document consisting of a summary Guidebook and this Reference Manual. These documents provide technical guidance and recommended pr...

  6. Computer fan performance enhancement via acoustic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, David, E-mail: davidg@technion.ac.il [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel); Avraham, Tzahi; Golan, Maayan [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Computer fan effectiveness was increased by introducing acoustic perturbations. Black-Right-Pointing-Pointer Acoustic perturbations controlled blade boundary layer separation. Black-Right-Pointing-Pointer Optimum frequencies corresponded with airfoils studies. Black-Right-Pointing-Pointer Exploitation of flow instabilities was responsible for performance improvements. Black-Right-Pointing-Pointer Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin-Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.

  7. Computer fan performance enhancement via acoustic perturbations

    International Nuclear Information System (INIS)

    Greenblatt, David; Avraham, Tzahi; Golan, Maayan

    2012-01-01

    Highlights: ► Computer fan effectiveness was increased by introducing acoustic perturbations. ► Acoustic perturbations controlled blade boundary layer separation. ► Optimum frequencies corresponded with airfoils studies. ► Exploitation of flow instabilities was responsible for performance improvements. ► Peak pressure and peak flowrate were increased by 40% and 15% respectively. - Abstract: A novel technique for increasing computer fan effectiveness, based on introducing acoustic perturbations onto the fan blades to control boundary layer separation, was assessed. Experiments were conducted in a specially designed facility that simultaneously allowed characterization of fan performance and introduction of the perturbations. A parametric study was conducted to determine the optimum control parameters, namely those that deliver the largest increase in fan pressure for a given flowrate. The optimum reduced frequencies corresponded with those identified on stationary airfoils and it was thus concluded that the exploitation of Kelvin–Helmholtz instabilities, commonly observed on airfoils, was responsible for the fan blade performance improvements. The optimum control inputs, such as acoustic frequency and sound pressure level, showed some variation with different fan flowrates. With the near-optimum control conditions identified, the full operational envelope of the fan, when subjected to acoustic perturbations, was assessed. The peak pressure and peak flowrate were increased by up to 40% and 15% respectively. The peak fan efficiency increased with acoustic perturbations but the overall system efficiency was reduced when the speaker input power was accounted for.

  8. Performance of particle in cell methods on highly concurrent computational architectures

    International Nuclear Information System (INIS)

    Adams, M.F.; Ethier, S.; Wichmann, N.

    2009-01-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.

  9. Performance of particle in cell methods on highly concurrent computational architectures

    International Nuclear Information System (INIS)

    Adams, M F; Ethier, S; Wichmann, N

    2007-01-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores

  10. Scalability of DL_POLY on High Performance Computing Platform

    CSIR Research Space (South Africa)

    Mabakane, Mabule S

    2017-12-01

    Full Text Available stream_source_info Mabakanea_19979_2017.pdf.txt stream_content_type text/plain stream_size 33716 Content-Encoding UTF-8 stream_name Mabakanea_19979_2017.pdf.txt Content-Type text/plain; charset=UTF-8 SACJ 29(3) December... when using many processors within the compute nodes of the supercomputer. The type of the processors of compute nodes and their memory also play an important role in the overall performance of the parallel application running on a supercomputer. DL...

  11. An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center

    Science.gov (United States)

    Gleason, J. L.; Little, M. M.

    2013-12-01

    NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.

  12. Performance Measurements in a High Throughput Computing Environment

    CERN Document Server

    AUTHOR|(CDS)2145966; Gribaudo, Marco

    The IT infrastructures of companies and research centres are implementing new technologies to satisfy the increasing need of computing resources for big data analysis. In this context, resource profiling plays a crucial role in identifying areas where the improvement of the utilisation efficiency is needed. In order to deal with the profiling and optimisation of computing resources, two complementary approaches can be adopted: the measurement-based approach and the model-based approach. The measurement-based approach gathers and analyses performance metrics executing benchmark applications on computing resources. Instead, the model-based approach implies the design and implementation of a model as an abstraction of the real system, selecting only those aspects relevant to the study. This Thesis originates from a project carried out by the author within the CERN IT department. CERN is an international scientific laboratory that conducts fundamental researches in the domain of elementary particle physics. The p...

  13. NINJA: Java for High Performance Numerical Computing

    Directory of Open Access Journals (Sweden)

    José E. Moreira

    2002-01-01

    Full Text Available When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently. These performance deficiencies can be attacked with a combination of class libraries (packages, in Java that implement truly multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.

  14. Human factors in computing systems: focus on patient-centered health communication at the ACM SIGCHI conference.

    Science.gov (United States)

    Wilcox, Lauren; Patel, Rupa; Chen, Yunan; Shachak, Aviv

    2013-12-01

    Health Information Technologies, such as electronic health records (EHR) and secure messaging, have already transformed interactions among patients and clinicians. In addition, technologies supporting asynchronous communication outside of clinical encounters, such as email, SMS, and patient portals, are being increasingly used for follow-up, education, and data reporting. Meanwhile, patients are increasingly adopting personal tools to track various aspects of health status and therapeutic progress, wishing to review these data with clinicians during consultations. These issues have drawn increasing interest from the human-computer interaction (HCI) community, with special focus on critical challenges in patient-centered interactions and design opportunities that can address these challenges. We saw this community presenting and interacting at the ACM SIGCHI 2013, Conference on Human Factors in Computing Systems, (also known as CHI), held April 27-May 2nd, 2013 at the Palais de Congrès de Paris in France. CHI 2013 featured many formal avenues to pursue patient-centered health communication: a well-attended workshop, tracks of original research, and a lively panel discussion. In this report, we highlight these events and the main themes we identified. We hope that it will help bring the health care communication and the HCI communities closer together. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. The correlation between a passion for computer games and the school performance of younger schoolchildren.

    Directory of Open Access Journals (Sweden)

    Maliy D.V.

    2015-07-01

    Full Text Available Today computer games occupy a significant place in children’s lives and fundamentally affect the process of the formation and development of their personalities. A number of present-day researchers assert that computer games have a developmental effect on players. Others share the point of view that computer games have negative effects on the cognitive and emotional spheres of a child and claim that children with low self-esteem who neglect their schoolwork and have difficulties in communication are particularly passionate about computer games. This article reviews theoretical and experimental pedagogical and psychological studies of the nature of the correlation between a passion for computer games and the school performance of younger schoolchildren. Our analysis of foreign and Russian psychology studies regarding the problem of playing activities mediated by information and computer technologies allowed us to single out the main criteria for children’s passion for computer games and school performance. This article presents the results of a pilot study of the nature of the correlation between a passion for computer games and the school performance of younger schoolchildren. The research involved 32 pupils (12 girls and 20 boys aged 10-11 years in the 4th grade. The general hypothesis was that there are divergent correlations between the passion of younger schoolchildren for computer games and their school performance. A questionnaire survey administered to the pupils allowed us to obtain information about the amount of time they devoted to computer games, their preferences for computer-game genres, and the extent of their passion for games. To determine the level of school performance we analyzed class registers. To establish the correlation between a passion for computer games and the school performance of younger schoolchildren, as well as to determine the effect of a passion for computer games on the personal qualities of the children

  16. FY 1993 Blue Book: Grand Challenges 1993: High Performance Computing and Communications

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — High performance computing and computer communications networks are becoming increasingly important to scientific advancement, economic competition, and national...

  17. The Impact of Wireless Technology on Order Selection Audits at an Auto Parts Distribution Center

    Science.gov (United States)

    Goomas, David T.

    2012-01-01

    Audits of store order pallets or totes performed by auditors at five distribution centers (two experimental and three comparison distribution centers) were used to check for picking accuracy prior to being loaded onto a truck for store delivery. Replacing the paper audits with wireless handheld computers that included immediate auditory and visual…

  18. Performativity, Fabrication and Trust: Exploring Computer-Mediated Moderation

    Science.gov (United States)

    Clapham, Andrew

    2013-01-01

    Based on research conducted in an English secondary school, this paper explores computer-mediated moderation as a performative tool. The Module Assessment Meeting (MAM) was the moderation approach under investigation. I mobilise ethnographic data generated by a key informant, and triangulated with that from other actors in the setting, in order to…

  19. Computing for Lattice QCD: new developments from the APE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R [INFN, Sezione di Roma Tor Vergata, Roma (Italy); Biagioni, A; De Luca, S [INFN, Sezione di Roma, Roma (Italy)

    2008-06-15

    As the Lattice QCD develops improved techniques to shed light on new physics, it demands increasing computing power. The aim of the current APE (Array Processor Experiment) project is to provide the reference computing platform to the Lattice QCD community for the period 2009-2011. We present the project proposal for a peta flops range super-computing center with high performance and low maintenance costs, to be delivered starting from 2010.

  20. Computing for Lattice QCD: new developments from the APE experiment

    International Nuclear Information System (INIS)

    Ammendola, R.; Biagioni, A.; De Luca, S.

    2008-01-01

    As the Lattice QCD develops improved techniques to shed light on new physics, it demands increasing computing power. The aim of the current APE (Array Processor Experiment) project is to provide the reference computing platform to the Lattice QCD community for the period 2009-2011. We present the project proposal for a peta flops range super-computing center with high performance and low maintenance costs, to be delivered starting from 2010.

  1. Diagnostic performance of 64-slice multidetector coronary computed tomographic angiography in women.

    Science.gov (United States)

    Jug, Borut; Gupta, Mohit; Papazian, Jenny; Li, Dong; Tsang, Janet; Bhatia, Harpreet; Karlsberg, Ronald; Budoff, Matthew

    2012-12-01

    Diagnostic approach to chest pain in women is challenging, but still under-investigated. The purpose of this study was to assess the diagnostic performance of 64-slice multidetector coronary computed tomographic angiography (CCTA) in women with chest pain. We included 606 patients--255 women and 351 men (mean age 61 ± 12 years for both)--who had been referred for a CCTA and an invasive coronary angiography (diagnostic standard) because of chest pain, either as part of clinical work-up in two urban medical centers or as part of the multicenter ACCURACY trial. On a patient-based model, the sensitivity, specificity, and positive predictive value (PPV) and negative predictive value to detect ≥50% and ≥70% stenosis were 98%, 84%, 87%, and 97% and 96%, 83%, 77%, and 97%, respectively, for women and 97%, 83%, 89%, and 95% and 94%, 91%, 90%, and 94%, respectively, for men. There were no statistically significant differences between men and women in diagnostic performance measures except for the PPV of detecting a ≥70% stenosis (P = .007). In women with chest pain, 64-slice multidetector CCTA is at least as sensitive and specific as in men. Our findings suggest that CCTA is a promising diagnostic tool for timely detection and/or exclusion of CAD in symptomatic intermediate-risk female populations.

  2. Routing performance analysis and optimization within a massively parallel computer

    Science.gov (United States)

    Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen

    2013-04-16

    An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.

  3. Unified, Cross-Platform, Open-Source Library Package for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Kozacik, Stephen [EM Photonics, Inc., Newark, DE (United States)

    2017-05-15

    Compute power is continually increasing, but this increased performance is largely found in sophisticated computing devices and supercomputer resources that are difficult to use, resulting in under-utilization. We developed a unified set of programming tools that will allow users to take full advantage of the new technology by allowing them to work at a level abstracted away from the platform specifics, encouraging the use of modern computing systems, including government-funded supercomputer facilities.

  4. Connecting Performance Analysis and Visualization to Advance Extreme Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, Peer-Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohr, Bernd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schulz, Martin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pasccci, Valerio [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunst, Holger [Dresden Univ. of Technology (Germany)

    2015-07-29

    The characterization, modeling, analysis, and tuning of software performance has been a central topic in High Performance Computing (HPC) since its early beginnings. The overall goal is to make HPC software run faster on particular hardware, either through better scheduling, on-node resource utilization, or more efficient distributed communication.

  5. Personality Profiles of Effective Leadership Performance in Assessment Centers.

    Science.gov (United States)

    Parr, Alissa D; Lanza, Stephanie T; Bernthal, Paul

    2016-01-01

    Most research examining the relationship between effective leadership and personality has focused on individual personality traits. However, profiles of personality traits more fully describe individuals, and these profiles may be important as they relate to leadership. This study used latent class analysis to examine how personality traits combine and interact to form subpopulations of leaders, and how these subpopulations relate to performance criteria. Using a sample of 2,461 executive-level leaders, six personality profiles were identified: Unpredictable Leaders with Low Diligence (7.3%); Conscientious, Backend Leaders (3.6%); Unpredictable Leaders (8.6%); Creative Communicators (20.8%); Power Players (32.4%); and Protocol Followers (27.1%). One profile performed well on all criteria in an assessment center; remaining profiles exhibited strengths and weaknesses across criteria. Implications and future directions for research are highlighted.

  6. Thinking processes used by high-performing students in a computer programming task

    Directory of Open Access Journals (Sweden)

    Marietjie Havenga

    2011-07-01

    Full Text Available Computer programmers must be able to understand programming source code and write programs that execute complex tasks to solve real-world problems. This article is a trans- disciplinary study at the intersection of computer programming, education and psychology. It outlines the role of mental processes in the process of programming and indicates how successful thinking processes can support computer science students in writing correct and well-defined programs. A mixed methods approach was used to better understand the thinking activities and programming processes of participating students. Data collection involved both computer programs and students’ reflective thinking processes recorded in their journals. This enabled analysis of psychological dimensions of participants’ thinking processes and their problem-solving activities as they considered a programming problem. Findings indicate that the cognitive, reflective and psychological processes used by high-performing programmers contributed to their success in solving a complex programming problem. Based on the thinking processes of high performers, we propose a model of integrated thinking processes, which can support computer programming students. Keywords: Computer programming, education, mixed methods research, thinking processes.  Disciplines: Computer programming, education, psychology

  7. Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1993-01-01

    This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.

  8. Computer simulation of steady-state performance of air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, R D; Creswick, F A

    1978-03-01

    A computer model by which the performance of air-to-air heat pumps can be simulated is described. The intended use of the model is to evaluate analytically the improvements in performance that can be effected by various component improvements. The model is based on a trio of independent simulation programs originated at the Massachusetts Institute of Technology Heat Transfer Laboratory. The three programs have been combined so that user intervention and decision making between major steps of the simulation are unnecessary. The program was further modified by substituting a new compressor model and adding a capillary tube model, both of which are described. Performance predicted by the computer model is shown to be in reasonable agreement with performance data observed in our laboratory. Planned modifications by which the utility of the computer model can be enhanced in the future are described. User instructions and a FORTRAN listing of the program are included.

  9. Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation

    Science.gov (United States)

    Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael

    2018-01-01

    This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.

  10. LANSCE (Los Alamos Neutron Scattering Center) target system performance

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Robinson, H.; Legate, G.L.; Bridge, A.; Sanchez, R.J.; Brewton, R.J.; Woods, R.; Hughes, H.G. III

    1989-01-01

    The authors measured neutron beam fluxes at LANSCE using gold foil activation techniques. They did an extensive computer simulation of the as-built LANSCE Target/Moderator/Reflector/Shield geometry. They used this mockup in a Monte Carlo calculation to predict LANSCE neutronic performance for comparison with measured results. For neutron beam fluxes at 1 eV, the ratio of measured data to calculated varies from ∼0.6-0.9. The computed 1 eV neutron leakage at the moderator surface is 3.9 x 10 10 n/eV-sr-s-μA for LANSCE high-intensity water moderators. The corresponding values for the LANSCE high-resolution water moderator and the liquid hydrogen moderator are 3.3 and 2.9 x 10 10 , respectively. LANSCE predicted moderator intensities (per proton) for a tungsten target are essentially the same as ISIS predicted moderator intensities for a depleted uranium target. The calculated LANSCE steady state unperturbed thermal (E 13 n/cm 2 -s. The unique LANSCE split-target/flux-trap-moderator system is performing exceedingly well. The system has operated without a target or moderator change for over three years at nominal proton currents of 25 μA of 800-MeV protons. 17 refs., 8 figs., 3 tabs

  11. Unravelling the structure of matter on high-performance computers

    International Nuclear Information System (INIS)

    Kieu, T.D.; McKellar, B.H.J.

    1992-11-01

    The various phenomena and the different forms of matter in nature are believed to be the manifestation of only a handful set of fundamental building blocks-the elementary particles-which interact through the four fundamental forces. In the study of the structure of matter at this level one has to consider forces which are not sufficiently weak to be treated as small perturbations to the system, an example of which is the strong force that binds the nucleons together. High-performance computers, both vector and parallel machines, have facilitated the necessary non-perturbative treatments. The principles and the techniques of computer simulations applied to Quantum Chromodynamics are explained examples include the strong interactions, the calculation of the mass of nucleons and their decay rates. Some commercial and special-purpose high-performance machines for such calculations are also mentioned. 3 refs., 2 tabs

  12. CICART Center For Integrated Computation And Analysis Of Reconnection And Turbulence

    International Nuclear Information System (INIS)

    Bhattacharjee, Amitava

    2016-01-01

    CICART is a partnership between the University of New Hampshire (UNH) and Dartmouth College. CICART addresses two important science needs of the DoE: the basic understanding of magnetic reconnection and turbulence that strongly impacts the performance of fusion plasmas, and the development of new mathematical and computational tools that enable the modeling and control of these phenomena. The principal participants of CICART constitute an interdisciplinary group, drawn from the communities of applied mathematics, astrophysics, computational physics, fluid dynamics, and fusion physics. It is a main premise of CICART that fundamental aspects of magnetic reconnection and turbulence in fusion devices, smaller-scale laboratory experiments, and space and astrophysical plasmas can be viewed from a common perspective, and that progress in understanding in any of these interconnected fields is likely to lead to progress in others. The establishment of CICART has strongly impacted the education and research mission of a new Program in Integrated Applied Mathematics in the College of Engineering and Applied Sciences at UNH by enabling the recruitment of a tenure-track faculty member, supported equally by UNH and CICART, and the establishment of an IBM-UNH Computing Alliance. The proposed areas of research in magnetic reconnection and turbulence in astrophysical, space, and laboratory plasmas include the following topics: (A) Reconnection and secondary instabilities in large high-Lundquist-number plasmas, (B) Particle acceleration in the presence of multiple magnetic islands, (C) Gyrokinetic reconnection: comparison with fluid and particle-in-cell models, (D) Imbalanced turbulence, (E) Ion heating, and (F) Turbulence in laboratory (including fusion-relevant) experiments. These theoretical studies make active use of three high-performance computer simulation codes: (1) The Magnetic Reconnection Code, based on extended two-fluid (or Hall MHD) equations, in an Adaptive Mesh

  13. Modeling and performance analysis for composite network–compute service provisioning in software-defined cloud environments

    Directory of Open Access Journals (Sweden)

    Qiang Duan

    2015-08-01

    Full Text Available The crucial role of networking in Cloud computing calls for a holistic vision of both networking and computing systems that leads to composite network–compute service provisioning. Software-Defined Network (SDN is a fundamental advancement in networking that enables network programmability. SDN and software-defined compute/storage systems form a Software-Defined Cloud Environment (SDCE that may greatly facilitate composite network–compute service provisioning to Cloud users. Therefore, networking and computing systems need to be modeled and analyzed as composite service provisioning systems in order to obtain thorough understanding about service performance in SDCEs. In this paper, a novel approach for modeling composite network–compute service capabilities and a technique for evaluating composite network–compute service performance are developed. The analytic method proposed in this paper is general and agnostic to service implementation technologies; thus is applicable to a wide variety of network–compute services in SDCEs. The results obtained in this paper provide useful guidelines for federated control and management of networking and computing resources to achieve Cloud service performance guarantees.

  14. Multi-Language Programming Environments for High Performance Java Computing

    OpenAIRE

    Vladimir Getov; Paul Gray; Sava Mintchev; Vaidy Sunderam

    1999-01-01

    Recent developments in processor capabilities, software tools, programming languages and programming paradigms have brought about new approaches to high performance computing. A steadfast component of this dynamic evolution has been the scientific community’s reliance on established scientific packages. As a consequence, programmers of high‐performance applications are reluctant to embrace evolving languages such as Java. This paper describes the Java‐to‐C Interface (JCI) tool which provides ...

  15. Performance measurements in 3D ideal magnetohydrodynamic stability computations

    International Nuclear Information System (INIS)

    Anderson, D.V.; Cooper, W.A.; Gruber, R.; Schwenn, U.

    1989-10-01

    The 3D ideal magnetohydrodynamic stability code TERPSICHORE has been designed to take advantage of vector and microtasking capabilities of the latest CRAY computers. To keep the number of operations small most efficient algorithms have been applied in each computational step. The program investigates the stability properties of fusion reactor relevant plasma configurations confined by magnetic fields. For a typical 3D HELIAS configuration that has been considered we obtain an overall performance in excess of 1 Gflops on an eight processor CRAY-YMP machine. (author) 3 figs., 1 tab., 11 refs

  16. Nuclear forces and high-performance computing: The perfect match

    International Nuclear Information System (INIS)

    Luu, T; Walker-Loud, A

    2009-01-01

    High-performance computing is now enabling the calculation of certain hadronic interaction parameters directly from Quantum Chromodynamics, the quantum field theory that governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong force. In this paper we briefly describe the state of the field and show how other aspects of hadronic interactions will be ascertained in the near future. We give estimates of computational requirements needed to obtain these goals, and outline a procedure for incorporating these results into the broader nuclear physics community.

  17. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY

    International Nuclear Information System (INIS)

    FENG, H.; JONES, K.W.; MCGUIGAN, M.; SMITH, G.J.; SPILETIC, J.

    2001-01-01

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data

  18. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  19. High Performance Computing - Power Application Programming Interface Specification.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  20. A general framework for performance guaranteed green data center networking

    OpenAIRE

    Wang, Ting; Xia, Yu; Muppala, Jogesh; Hamdi, Mounir; Foufou, Sebti

    2014-01-01

    From the perspective of resource allocation and routing, this paper aims to save as much energy as possible in data center networks. We present a general framework, based on the blocking island paradigm, to try to maximize the network power conservation and minimize sacrifices of network performance and reliability. The bandwidth allocation mechanism together with power-aware routing algorithm achieve a bandwidth guaranteed tighter network. Besides, our fast efficient heuristics for allocatin...

  1. Proceedings: Computer Science and Data Systems Technical Symposium, volume 1

    Science.gov (United States)

    Larsen, Ronald L.; Wallgren, Kenneth

    1985-01-01

    Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form are included for topics in three categories: computer science, data systems and space station applications.

  2. Human Computation An Integrated Approach to Learning from the Crowd

    CERN Document Server

    Law, Edith

    2011-01-01

    Human computation is a new and evolving research area that centers around harnessing human intelligence to solve computational problems that are beyond the scope of existing Artificial Intelligence (AI) algorithms. With the growth of the Web, human computation systems can now leverage the abilities of an unprecedented number of people via the Web to perform complex computation. There are various genres of human computation applications that exist today. Games with a purpose (e.g., the ESP Game) specifically target online gamers who generate useful data (e.g., image tags) while playing an enjoy

  3. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    Science.gov (United States)

    Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.

    2012-09-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  4. Data Center Consolidation: A Step towards Infrastructure Clouds

    Science.gov (United States)

    Winter, Markus

    Application service providers face enormous challenges and rising costs in managing and operating a growing number of heterogeneous system and computing landscapes. Limitations of traditional computing environments force IT decision-makers to reorganize computing resources within the data center, as continuous growth leads to an inefficient utilization of the underlying hardware infrastructure. This paper discusses a way for infrastructure providers to improve data center operations based on the findings of a case study on resource utilization of very large business applications and presents an outlook beyond server consolidation endeavors, transforming corporate data centers into compute clouds.

  5. The Soviet center of astronomical data

    International Nuclear Information System (INIS)

    Dluzhnevskaya, O.B.

    1982-01-01

    On the basis of the current French-Soviet cooperation in science and technology, the Astronomical Council of the U.S.S.R. Academy of Sciences and the Strasbourg Center signed in 1977 an agreement on setting up the Soviet Center of Astronomical Data as its filial branch. The Soviet Center was created on the basis of a computation center at the Zvenigorod station of the Astronomical Council of the U.S.S.R. Academy of Sciences, which had already had considerable experience of working with stellar catalogues. In 1979 the Center was equipped with a EC-1033 computer. In 1978-1979 the Soviet Center of Astronomical Data (C.A.D.) received from Strasbourg 96 of the most important catalogues. By September 1981 the list of catalogues available at the Soviet Center has reached 140 catalogues some of which are described. (Auth.)

  6. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  7. Computational modelling of expressive music performance in hexaphonic guitar

    OpenAIRE

    Siquier, Marc

    2017-01-01

    Computational modelling of expressive music performance has been widely studied in the past. While previous work in this area has been mainly focused on classical piano music, there has been very little work on guitar music, and such work has focused on monophonic guitar playing. In this work, we present a machine learning approach to automatically generate expressive performances from non expressive music scores for polyphonic guitar. We treated guitar as an hexaphonic instrument, obtaining ...

  8. A performance model for the communication in fast multipole methods on high-performance computing platforms

    KAUST Repository

    Ibeid, Huda; Yokota, Rio; Keyes, David E.

    2016-01-01

    model and the actual communication time on four high-performance computing (HPC) systems, when latency, bandwidth, network topology, and multicore penalties are all taken into account. To our knowledge, this is the first formal characterization

  9. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    Science.gov (United States)

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will

  10. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  11. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Maxine D. [Acting Director, EVL; Leigh, Jason [PI

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  12. Integration of the Chinese HPC Grid in ATLAS Distributed Computing

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00081160; The ATLAS collaboration

    2016-01-01

    Fifteen Chinese High Performance Computing sites, many of them on the TOP500 list of most powerful supercomputers, are integrated into a common infrastructure providing coherent access to a user through an interface based on a RESTful interface called SCEAPI. These resources have been integrated into the ATLAS Grid production system using a bridge between ATLAS and SCEAPI which translates the authorization and job submission protocols between the two environments. The ARC Computing Element (ARC CE) forms the bridge using an extended batch system interface to allow job submission to SCEAPI. The ARC CE was setup at the Institute for High Energy Physics, Beijing, in order to be as close as possible to the SCEAPI front-end interface at the Computing Network Information Center, also in Beijing. This paper describes the technical details of the integration between ARC CE and SCEAPI and presents results so far with two supercomputer centers, Tianhe-IA and ERA. These two centers have been the pilots for ATLAS Monte C...

  13. Integration of the Chinese HPC Grid in ATLAS Distributed Computing

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00081160

    2017-01-01

    Fifteen Chinese High-Performance Computing sites, many of them on the TOP500 list of most powerful supercomputers, are integrated into a common infrastructure providing coherent access to a user through an interface based on a RESTful interface called SCEAPI. These resources have been integrated into the ATLAS Grid production system using a bridge between ATLAS and SCEAPI which translates the authorization and job submission protocols between the two environments. The ARC Computing Element (ARC-CE) forms the bridge using an extended batch system interface to allow job submission to SCEAPI. The ARC-CE was setup at the Institute for High Energy Physics, Beijing, in order to be as close as possible to the SCEAPI front-end interface at the Computing Network Information Center, also in Beijing. This paper describes the technical details of the integration between ARC-CE and SCEAPI and presents results so far with two supercomputer centers, Tianhe-IA and ERA. These two centers have been the pilots for ATLAS Monte C...

  14. Scalable optical packet switch architecture for low latency and high load computer communication networks

    NARCIS (Netherlands)

    Calabretta, N.; Di Lucente, S.; Nazarathy, Y.; Raz, O.; Dorren, H.J.S.

    2011-01-01

    High performance computer and data-centers require PetaFlop/s processing speed and Petabyte storage capacity with thousands of low-latency short link interconnections between computers nodes. Switch matrices that operate transparently in the optical domain are a potential way to efficiently

  15. A model for calculating the optimal replacement interval of computer systems

    International Nuclear Information System (INIS)

    Fujii, Minoru; Asai, Kiyoshi

    1981-08-01

    A mathematical model for calculating the optimal replacement interval of computer systems is described. This model is made to estimate the best economical interval of computer replacement when computing demand, cost and performance of computer, etc. are known. The computing demand is assumed to monotonously increase every year. Four kinds of models are described. In the model 1, a computer system is represented by only a central processing unit (CPU) and all the computing demand is to be processed on the present computer until the next replacement. On the other hand in the model 2, the excessive demand is admitted and may be transferred to other computing center and processed costly there. In the model 3, the computer system is represented by a CPU, memories (MEM) and input/output devices (I/O) and it must process all the demand. Model 4 is same as model 3, but the excessive demand is admitted to be processed in other center. (1) Computing demand at the JAERI, (2) conformity of Grosch's law for the recent computers, (3) replacement cost of computer systems, etc. are also described. (author)

  16. Performance evaluation of two highly interconnected Data Center networks

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Mihai Poncea, Ovidiu; Vegas Olmos, Juan José

    2015-01-01

    In this paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies and subjecting them...... to uniformly distributed traffic routed by shortest path algorithms, we are able to extract relevant statistics related to average throughput, latency and loss rate. A decrease in throughput per connection of only about 5% for the hypercube compared to 16% for the 3D torus was measured when the size...

  17. Innovation in user-centered skills and performance improvement for sustainable complex service systems.

    Science.gov (United States)

    Karwowski, Waldemar; Ahram, Tareq Z

    2012-01-01

    In order to leverage individual and organizational learning and to remain competitive in current turbulent markets it is important for employees, managers, planners and leaders to perform at high levels over time. Employee competence and skills are extremely important matters in view of the general shortage of talent and the mobility of employees with talent. Two factors emerged to have the greatest impact on the competitiveness of complex service systems: improving managerial and employee's knowledge attainment for skills, and improving the training and development of the workforce. This paper introduces the knowledge-based user-centered service design approach for sustainable skill and performance improvement in education, design and modeling of the next generation of complex service systems. The rest of the paper cover topics in human factors and sustainable business process modeling for the service industry, and illustrates the user-centered service system development cycle with the integration of systems engineering concepts in service systems. A roadmap for designing service systems of the future is discussed. The framework introduced in this paper is based on key user-centered design principles and systems engineering applications to support service competitiveness.

  18. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    International Nuclear Information System (INIS)

    Adib, M A H M; Ismail, A R; Kardigama, K; Salaam, H A; Ahmad, Z; Johari, N H; Anuar, Z; Azmi, N S N; Adnan, F

    2012-01-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ∼ 60%) acceptable compared to diffuser with 6mm ∼ 40% and 12mm ∼ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  19. PERC 2 High-End Computer System Performance: Scalable Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Reed

    2006-10-15

    During two years of SciDAC PERC-2, our activities had centered largely on development of new performance analysis techniques to enable efficient use on systems containing thousands or tens of thousands of processors. In addition, we continued our application engagement efforts and utilized our tools to study the performance of various SciDAC applications on a variety of HPC platforms.

  20. Proceedings: Computer Science and Data Systems Technical Symposium, volume 2

    Science.gov (United States)

    Larsen, Ronald L.; Wallgren, Kenneth

    1985-01-01

    Progress reports and technical updates of programs being performed by NASA centers are covered. Presentations in viewgraph form, along with abstracts, are included for topics in three catagories: computer science, data systems, and space station applications.

  1. Effect of CRAC units layout on thermal management of data center

    International Nuclear Information System (INIS)

    Nada, S.A.; Said, M.A.

    2017-01-01

    Highlights: • CFD study of thermal management in data centers. • Effects of layout arrangements of the CRACs units relative to the racks array on data center performance. • Design guide liens for data centers energy efficiency improvements. - Abstract: Comprehensive numerical studies of thermal management of data centers were presented by several investigators for different geometric and operating conditions of data centers. In the present work, a technical note regarding the effect of the computer room air conditioning (CRAC) units layout arrangements is presented. Two arrangements of CRAC units layouts are investigated; namely locating CRACs units in line with the racks row and locating the CRACs units perpendicular to the rack row. Temperature distributions, air flow characteristics particularly air recirculation and bypass and thermal management in data centers are evaluated in terms of the measureable overall performance parameters: supply/return heat indices (SHI/RHI) and return temperature indices (RTI). The results showed that locating CRAC units perpendicular to the racks row has the following effects: (i) enhances the uniformity of the air flow from the perforated tiles along the rack row, (ii) reduces the hot air recirculation at the ends racks of the row and the cold air bypass at the middle rack of the row and (iii) enhances the data center performance parameters RTI, SHI and RHI.

  2. Computing at Stanford.

    Science.gov (United States)

    Feigenbaum, Edward A.; Nielsen, Norman R.

    1969-01-01

    This article provides a current status report on the computing and computer science activities at Stanford University, focusing on the Computer Science Department, the Stanford Computation Center, the recently established regional computing network, and the Institute for Mathematical Studies in the Social Sciences. Also considered are such topics…

  3. The high performance cluster computing system for BES offline data analysis

    International Nuclear Information System (INIS)

    Sun Yongzhao; Xu Dong; Zhang Shaoqiang; Yang Ting

    2004-01-01

    A high performance cluster computing system (EPCfarm) is introduced, which used for BES offline data analysis. The setup and the characteristics of the hardware and software of EPCfarm are described. The PBS, a queue management package, and the performance of EPCfarm is presented also. (authors)

  4. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  5. Scalability of DL_POLY on High Performance Computing Platform

    Directory of Open Access Journals (Sweden)

    Mabule Samuel Mabakane

    2017-12-01

    Full Text Available This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.

  6. Evaluating computer program performance on the CRAY-1

    International Nuclear Information System (INIS)

    Rudsinski, L.; Pieper, G.W.

    1979-01-01

    The Advanced Scientific Computers Project of Argonne's Applied Mathematics Division has two objectives: to evaluate supercomputers and to determine their effect on Argonne's computing workload. Initial efforts have focused on the CRAY-1, which is the only advanced computer currently available. Users from seven Argonne divisions executed test programs on the CRAY and made performance comparisons with the IBM 370/195 at Argonne. This report describes these experiences and discusses various techniques for improving run times on the CRAY. Direct translations of code from scalar to vector processor reduced running times as much as two-fold, and this reduction will become more pronounced as the CRAY compiler is developed. Further improvement (two- to ten-fold) was realized by making minor code changes to facilitate compiler recognition of the parallel and vector structure within the programs. Finally, extensive rewriting of the FORTRAN code structure reduced execution times dramatically, in three cases by a factor of more than 20; and even greater reduction should be possible by changing algorithms within a production code. It is condluded that the CRAY-1 would be of great benefit to Argonne researchers. Existing codes could be modified with relative ease to run significantly faster than on the 370/195. More important, the CRAY would permit scientists to investigate complex problems currently deemed infeasibile on traditional scalar machines. Finally, an interface between the CRAY-1 and IBM computers such as the 370/195, scheduled by Cray Research for the first quarter of 1979, would considerably facilitate the task of integrating the CRAY into Argonne's Central Computing Facility. 13 tables

  7. Comparative Analysis of Canal Centering Ability of Different Single File Systems Using Cone Beam Computed Tomography- An In-Vitro Study.

    Science.gov (United States)

    Agarwal, Rolly S; Agarwal, Jatin; Jain, Pradeep; Chandra, Anil

    2015-05-01

    The ability of an endodontic instrument to remain centered in the root canal system is one of the most important characteristic influencing the clinical performance of a particular file system. Thus, it is important to assess the canal centering ability of newly introduced single file systems before they can be considered a viable replacement of full-sequence rotary file systems. The aim of the study was to compare the canal transportation, centering ability, and time taken for preparation of curved root canals after instrumentation with single file systems One Shape and Wave One, using cone-beam computed tomography (CBCT). Sixty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 20(o) to 35(o) were divided into three groups of 20 samples each: ProTaper PT (group I) - full-sequence rotary control group, OneShape OS (group II)- single file continuous rotation, WaveOne WO - single file reciprocal motion (group III). Pre instrumentation and post instrumentation three-dimensional CBCT images were obtained from root cross-sections at 3mm, 6mm and 9mm from the apex. Scanned images were then accessed to determine canal transportation and centering ability. The data collected were evaluated using one-way analysis of variance (ANOVA) with Tukey's honestly significant difference test. It was observed that there were no differences in the magnitude of transportation between the rotary instruments (p >0.05) at both 3mm as well as 6mm from the apex. At 9 mm from the apex, Group I PT showed significantly higher mean canal transportation and lower centering ability (0.19±0.08 and 0.39±0.16), as compared to Group II OS (0.12±0.07 and 0.54±0.24) and Group III WO (0.13±0.06 and 0.55±0.18) while the differences between OS and WO were not statistically significant. It was concluded that there was minor difference between the tested groups. Single file systems demonstrated average canal transportation and centering ability comparable to full sequence

  8. Comparative Analysis of Canal Centering Ability of Different Single File Systems Using Cone Beam Computed Tomography- An In-Vitro Study

    Science.gov (United States)

    Agarwal, Jatin; Jain, Pradeep; Chandra, Anil

    2015-01-01

    Background The ability of an endodontic instrument to remain centered in the root canal system is one of the most important characteristic influencing the clinical performance of a particular file system. Thus, it is important to assess the canal centering ability of newly introduced single file systems before they can be considered a viable replacement of full-sequence rotary file systems. Aim The aim of the study was to compare the canal transportation, centering ability, and time taken for preparation of curved root canals after instrumentation with single file systems One Shape and Wave One, using cone-beam computed tomography (CBCT). Materials and Methods Sixty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 20o to 35o were divided into three groups of 20 samples each: ProTaper PT (group I) – full-sequence rotary control group, OneShape OS (group II)- single file continuous rotation, WaveOne WO – single file reciprocal motion (group III). Pre instrumentation and post instrumentation three-dimensional CBCT images were obtained from root cross-sections at 3mm, 6mm and 9mm from the apex. Scanned images were then accessed to determine canal transportation and centering ability. The data collected were evaluated using one-way analysis of variance (ANOVA) with Tukey’s honestly significant difference test. Results It was observed that there were no differences in the magnitude of transportation between the rotary instruments (p >0.05) at both 3mm as well as 6mm from the apex. At 9 mm from the apex, Group I PT showed significantly higher mean canal transportation and lower centering ability (0.19±0.08 and 0.39±0.16), as compared to Group II OS (0.12±0.07 and 0.54±0.24) and Group III WO (0.13±0.06 and 0.55±0.18) while the differences between OS and WO were not statistically significant Conclusion It was concluded that there was minor difference between the tested groups. Single file systems demonstrated average canal

  9. High performance simulation for the Silva project using the tera computer

    International Nuclear Information System (INIS)

    Bergeaud, V.; La Hargue, J.P.; Mougery, F.; Boulet, M.; Scheurer, B.; Le Fur, J.F.; Comte, M.; Benisti, D.; Lamare, J. de; Petit, A.

    2003-01-01

    In the context of the SILVA Project (Atomic Vapor Laser Isotope Separation), numerical simulation of the plant scale propagation of laser beams through uranium vapour was a great challenge. The PRODIGE code has been developed to achieve this goal. Here we focus on the task of achieving high performance simulation on the TERA computer. We describe the main issues for optimizing the parallelization of the PRODIGE code on TERA. Thus, we discuss advantages and drawbacks of the implemented diagonal parallelization scheme. As a consequence, it has been found fruitful to fit out the code in three aspects: memory allocation, MPI communications and interconnection network bandwidth usage. We stress out the interest of MPI/IO in this context and the benefit obtained for production computations on TERA. Finally, we shall illustrate our developments. We indicate some performance measurements reflecting the good parallelization properties of PRODIGE on the TERA computer. The code is currently used for demonstrating the feasibility of the laser propagation at a plant enrichment level and for preparing the 2003 Menphis experiment. We conclude by emphasizing the contribution of high performance TERA simulation to the project. (authors)

  10. High performance simulation for the Silva project using the tera computer

    Energy Technology Data Exchange (ETDEWEB)

    Bergeaud, V.; La Hargue, J.P.; Mougery, F. [CS Communication and Systemes, 92 - Clamart (France); Boulet, M.; Scheurer, B. [CEA Bruyeres-le-Chatel, 91 - Bruyeres-le-Chatel (France); Le Fur, J.F.; Comte, M.; Benisti, D.; Lamare, J. de; Petit, A. [CEA Saclay, 91 - Gif sur Yvette (France)

    2003-07-01

    In the context of the SILVA Project (Atomic Vapor Laser Isotope Separation), numerical simulation of the plant scale propagation of laser beams through uranium vapour was a great challenge. The PRODIGE code has been developed to achieve this goal. Here we focus on the task of achieving high performance simulation on the TERA computer. We describe the main issues for optimizing the parallelization of the PRODIGE code on TERA. Thus, we discuss advantages and drawbacks of the implemented diagonal parallelization scheme. As a consequence, it has been found fruitful to fit out the code in three aspects: memory allocation, MPI communications and interconnection network bandwidth usage. We stress out the interest of MPI/IO in this context and the benefit obtained for production computations on TERA. Finally, we shall illustrate our developments. We indicate some performance measurements reflecting the good parallelization properties of PRODIGE on the TERA computer. The code is currently used for demonstrating the feasibility of the laser propagation at a plant enrichment level and for preparing the 2003 Menphis experiment. We conclude by emphasizing the contribution of high performance TERA simulation to the project. (authors)

  11. A Strategy for Automatic Performance Tuning of Stencil Computations on GPUs

    Directory of Open Access Journals (Sweden)

    Joseph D. Garvey

    2018-01-01

    Full Text Available We propose and evaluate a novel strategy for tuning the performance of a class of stencil computations on Graphics Processing Units. The strategy uses a machine learning model to predict the optimal way to load data from memory followed by a heuristic that divides other optimizations into groups and exhaustively explores one group at a time. We use a set of 104 synthetic OpenCL stencil benchmarks that are representative of many real stencil computations. We first demonstrate the need for auto-tuning by showing that the optimization space is sufficiently complex that simple approaches to determining a high-performing configuration fail. We then demonstrate the effectiveness of our approach on NVIDIA and AMD GPUs. Relative to a random sampling of the space, we find configurations that are 12%/32% faster on the NVIDIA/AMD platform in 71% and 4% less time, respectively. Relative to an expert search, we achieve 5% and 9% better performance on the two platforms in 89% and 76% less time. We also evaluate our strategy for different stencil computational intensities, varying array sizes and shapes, and in combination with expert search.

  12. CICART Center For Integrated Computation And Analysis Of Reconnection And Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [Univ. of New Hampshire, Durham, NH (United States)

    2016-03-27

    CICART is a partnership between the University of New Hampshire (UNH) and Dartmouth College. CICART addresses two important science needs of the DoE: the basic understanding of magnetic reconnection and turbulence that strongly impacts the performance of fusion plasmas, and the development of new mathematical and computational tools that enable the modeling and control of these phenomena. The principal participants of CICART constitute an interdisciplinary group, drawn from the communities of applied mathematics, astrophysics, computational physics, fluid dynamics, and fusion physics. It is a main premise of CICART that fundamental aspects of magnetic reconnection and turbulence in fusion devices, smaller-scale laboratory experiments, and space and astrophysical plasmas can be viewed from a common perspective, and that progress in understanding in any of these interconnected fields is likely to lead to progress in others. The establishment of CICART has strongly impacted the education and research mission of a new Program in Integrated Applied Mathematics in the College of Engineering and Applied Sciences at UNH by enabling the recruitment of a tenure-track faculty member, supported equally by UNH and CICART, and the establishment of an IBM-UNH Computing Alliance. The proposed areas of research in magnetic reconnection and turbulence in astrophysical, space, and laboratory plasmas include the following topics: (A) Reconnection and secondary instabilities in large high-Lundquist-number plasmas, (B) Particle acceleration in the presence of multiple magnetic islands, (C) Gyrokinetic reconnection: comparison with fluid and particle-in-cell models, (D) Imbalanced turbulence, (E) Ion heating, and (F) Turbulence in laboratory (including fusion-relevant) experiments. These theoretical studies make active use of three high-performance computer simulation codes: (1) The Magnetic Reconnection Code, based on extended two-fluid (or Hall MHD) equations, in an Adaptive Mesh

  13. The Place of Computed Tomography as a Guidance Modality in Percutaneous Nephrostomy: Analysis of a 10-Year Single-Center Experience

    Energy Technology Data Exchange (ETDEWEB)

    Egilmez, H.; Oztoprak, I.; Atalar, M.; Cetin, A.; Gumus, C.; Gultekin, Y.; Bulut, S.; Arslan, M.; Solak, O. [Depts. of Radiology, Obstetrics and Gynecology, and Urology, Cumhuriyet Univ. School of Medicine, Sivas (Turkey)

    2007-09-15

    Background: Percutaneous nephrostomy (PCN) has been established as an effective technique for urinary decompression or diversion. This procedure may be performed with the guidance of fluoroscopy, ultrasonography, a combination of fluoroscopy and ultrasonography, computed tomography (CT), or magnetic resonance imaging. Purpose: To retrospectively review experience with CT-guided PCN over a 10-year period in a single center. Material and Methods: All CT-guided PCN procedures performed in adults at our institution between 1995 and 2005 were evaluated. In 882 patients, 1113 nephrostomy catheters were inserted. Interventional radiologists or radiology residents under direct attending supervision inserted all catheters. During the PCN procedure, bleeding, sepsis, and injuries to adjacent organs were regarded as major complications. Clinical events requiring nominal therapy with no sequelae were regarded as minor complications. Results: PCN procedures were performed via 1-3 punctures in patients with grades 0-1 and 2 hydronephrosis, and via 1-2 punctures in patients with grade 3 hydronephrosis. They were carried out with a procedure time ranging from 9 to 26 min. All PCNs were considered as technically successful, and no major complications were observed. There were minor complications including transient macroscopic hematuria (28.6%, 19.9%, and 4.9% in patients with hydronephrosis grades 0-1, 2, and 3, respectively) and perirenal hematomas in a total of eight patients. No patient required additional intervention secondary to complications of the PCN procedure. Conclusion: CT-guided PCN is an efficient and safe procedure with major and minor complication rates below the accepted thresholds. It can be used for the management of patients requiring nephrostomy insertion in inpatient settings, and might be a preferable procedure in patients with minimal or no dilatation of the renal pelvis. Keywords: Computed tomography; percutaneous nephrostomy; urinary obstruction.

  14. The Place of Computed Tomography as a Guidance Modality in Percutaneous Nephrostomy: Analysis of a 10-Year Single-Center Experience

    International Nuclear Information System (INIS)

    Egilmez, H.; Oztoprak, I.; Atalar, M.; Cetin, A.; Gumus, C.; Gultekin, Y.; Bulut, S.; Arslan, M.; Solak, O.

    2007-01-01

    Background: Percutaneous nephrostomy (PCN) has been established as an effective technique for urinary decompression or diversion. This procedure may be performed with the guidance of fluoroscopy, ultrasonography, a combination of fluoroscopy and ultrasonography, computed tomography (CT), or magnetic resonance imaging. Purpose: To retrospectively review experience with CT-guided PCN over a 10-year period in a single center. Material and Methods: All CT-guided PCN procedures performed in adults at our institution between 1995 and 2005 were evaluated. In 882 patients, 1113 nephrostomy catheters were inserted. Interventional radiologists or radiology residents under direct attending supervision inserted all catheters. During the PCN procedure, bleeding, sepsis, and injuries to adjacent organs were regarded as major complications. Clinical events requiring nominal therapy with no sequelae were regarded as minor complications. Results: PCN procedures were performed via 1-3 punctures in patients with grades 0-1 and 2 hydronephrosis, and via 1-2 punctures in patients with grade 3 hydronephrosis. They were carried out with a procedure time ranging from 9 to 26 min. All PCNs were considered as technically successful, and no major complications were observed. There were minor complications including transient macroscopic hematuria (28.6%, 19.9%, and 4.9% in patients with hydronephrosis grades 0-1, 2, and 3, respectively) and perirenal hematomas in a total of eight patients. No patient required additional intervention secondary to complications of the PCN procedure. Conclusion: CT-guided PCN is an efficient and safe procedure with major and minor complication rates below the accepted thresholds. It can be used for the management of patients requiring nephrostomy insertion in inpatient settings, and might be a preferable procedure in patients with minimal or no dilatation of the renal pelvis. Keywords: Computed tomography; percutaneous nephrostomy; urinary obstruction

  15. FY 1995 Blue Book: High Performance Computing and Communications: Technology for the National Information Infrastructure

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The Federal High Performance Computing and Communications HPCC Program was created to accelerate the development of future generations of high performance computers...

  16. Annual report of R and D activities in center for promotion of computational science and engineering from April 1, 2003 to March 31, 2004

    International Nuclear Information System (INIS)

    2005-08-01

    Major Research and development activities of Center for Promotion of Computational Science and Engineering (CCSE), JAERI, have focused on ITBL (IT Based Laboratory) project, computational material science and Quantum Bioinformatics. This report provides an overview of research and development activities in (CCSE) in the fiscal year 2003 (April 1, 2003 - March 31, 2004). (author)

  17. Scintillator performance considerations for dedicated breast computed tomography

    Science.gov (United States)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew

    2017-09-01

    Dedicated breast computed tomography (BCT) is an emerging clinical modality that can eliminate tissue superposition and has the potential for improved sensitivity and specificity for breast cancer detection and diagnosis. It is performed without physical compression of the breast. Most of the dedicated BCT systems use large-area detectors operating in cone-beam geometry and are referred to as cone-beam breast CT (CBBCT) systems. The large-area detectors in CBBCT systems are energy-integrating, indirect-type detectors employing a scintillator that converts x-ray photons to light, followed by detection of optical photons. A key consideration that determines the image quality achieved by such CBBCT systems is the choice of scintillator and its performance characteristics. In this work, a framework for analyzing the impact of the scintillator on CBBCT performance and its use for task-specific optimization of CBBCT imaging performance is described.

  18. In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study

    International Nuclear Information System (INIS)

    Pang, Kar Mun; Ng, Hoon Kiat; Gan, Suyin

    2012-01-01

    Highlights: ► A performance benchmarking exercise is conducted for diesel combustion simulations. ► The reduced chemical mechanism shows its advantages over base and skeletal models. ► High efficiency and great reduction of CPU runtime are achieved through 4-node solver. ► Increasing ISAT memory from 0.1 to 2 GB reduces the CPU runtime by almost 35%. ► Combustion and soot processes are predicted well with minimal computational cost. - Abstract: In the present study, in-cylinder diesel combustion simulation was performed with parallel processing on an Intel Xeon Quad-Core platform to allow both fluid dynamics and chemical kinetics of the surrogate diesel fuel model to be solved simultaneously on multiple processors. Here, Cartesian Z-Coordinate was selected as the most appropriate partitioning algorithm since it computationally bisects the domain such that the dynamic load associated with fuel particle tracking was evenly distributed during parallel computations. Other variables examined included number of compute nodes, chemistry sizes and in situ adaptive tabulation (ISAT) parameters. Based on the performance benchmarking test conducted, parallel configuration of 4-compute node was found to reduce the computational runtime most efficiently whereby a parallel efficiency of up to 75.4% was achieved. The simulation results also indicated that accuracy level was insensitive to the number of partitions or the partitioning algorithms. The effect of reducing the number of species on computational runtime was observed to be more significant than reducing the number of reactions. Besides, the study showed that an increase in the ISAT maximum storage of up to 2 GB reduced the computational runtime by 50%. Also, the ISAT error tolerance of 10 −3 was chosen to strike a balance between results accuracy and computational runtime. The optimised parameters in parallel processing and ISAT, as well as the use of the in-house reduced chemistry model allowed accurate

  19. JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility.

    Science.gov (United States)

    Jaschob, Daniel; Riffle, Michael

    2012-07-30

    Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster. JobCenter is a client-server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or "in the cloud") and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows. JobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available at http://code.google.com/p/jobcenter/.

  20. Heat exchanger performance analysis programs for the personal computer

    International Nuclear Information System (INIS)

    Putman, R.E.

    1992-01-01

    Numerous utility industry heat exchange calculations are repetitive and thus lend themselves to being performed on a Personal Computer. These programs may be regarded as engineering tools which, when put together, can form a Toolbox. However, the practicing Results Engineer in the utility industry desires not only programs that are robust as well as easy to use but can also be used both on desktop and laptop PC's. The latter also offer the opportunity to take the computer into the plant or control room, and use it there to process test or operating data right on the spot. Most programs evolve through the needs which arise in the course of day-to-day work. This paper describes several of the more useful programs of this type and outlines some of the guidelines to be followed when designing personal computer programs for use by the practicing Results Engineer

  1. Overview of Parallel Platforms for Common High Performance Computing

    Directory of Open Access Journals (Sweden)

    T. Fryza

    2012-04-01

    Full Text Available The paper deals with various parallel platforms used for high performance computing in the signal processing domain. More precisely, the methods exploiting the multicores central processing units such as message passing interface and OpenMP are taken into account. The properties of the programming methods are experimentally proved in the application of a fast Fourier transform and a discrete cosine transform and they are compared with the possibilities of MATLAB's built-in functions and Texas Instruments digital signal processors with very long instruction word architectures. New FFT and DCT implementations were proposed and tested. The implementation phase was compared with CPU based computing methods and with possibilities of the Texas Instruments digital signal processing library on C6747 floating-point DSPs. The optimal combination of computing methods in the signal processing domain and new, fast routines' implementation is proposed as well.

  2. RAPPORT: running scientific high-performance computing applications on the cloud.

    Science.gov (United States)

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  3. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    International Nuclear Information System (INIS)

    Bancroft, G.; Plessel, T.; Merritt, F.; Watson, V.

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers. 7 refs

  4. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ashley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bland, Arthur S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Gary, Jeff D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Hack, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; McNally, Stephen T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Rogers, James H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Straatsma, T. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Sukumar, Sreenivas Rangan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Thach, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Tichenor, Suzy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Wells, Jack C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility

    2016-03-01

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatest number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern

  5. High performance computations using dynamical nucleation theory

    International Nuclear Information System (INIS)

    Windus, T L; Crosby, L D; Kathmann, S M

    2008-01-01

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, we describe the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A 'master-slave' solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are described

  6. Application of the coupled code Athlet-Quabox/Cubbox for the extreme scenarios of the OECD/NRC BWR turbine trip benchmark and its performance on multi-processor computers

    International Nuclear Information System (INIS)

    Langenbuch, S.; Schmidt, K.D.; Velkov, K.

    2003-01-01

    The OECD/NRC BWR Turbine Trip (TT) Benchmark is investigated to perform code-to-code comparison of coupled codes including a comparison to measured data which are available from turbine trip experiments at Peach Bottom 2. This Benchmark problem for a BWR over-pressure transient represents a challenging application of coupled codes which integrate 3-dimensional neutron kinetics into thermal-hydraulic system codes for best-estimate simulation of plant transients. This transient represents a typical application of coupled codes which are usually performed on powerful workstations using a single CPU. Nowadays, the availability of multi-CPUs is much easier. Indeed, powerful workstations already provide 4 to 8 CPU, computer centers give access to multi-processor systems with numbers of CPUs in the order of 16 up to several 100. Therefore, the performance of the coupled code Athlet-Quabox/Cubbox on multi-processor systems is studied. Different cases of application lead to changing requirements of the code efficiency, because the amount of computer time spent in different parts of the code is varying. This paper presents main results of the coupled code Athlet-Quabox/Cubbox for the extreme scenarios of the BWR TT Benchmark together with evaluations of the code performance on multi-processor computers. (authors)

  7. Examination of concept of next generation computer. Progress report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Hasegawa, Yukihiro; Hirayama, Toshio

    2000-12-01

    The Center for Promotion of Computational Science and Engineering has conducted R and D works on the technology of parallel processing and has started the examination of the next generation computer in 1999. This report describes the behavior analyses of quantum calculation codes. It also describes the consideration for the analyses and examination results for the method to reduce cash misses. Furthermore, it describes a performance simulator that is being developed to quantitatively examine the concept of the next generation computer. (author)

  8. High-performance secure multi-party computation for data mining applications

    DEFF Research Database (Denmark)

    Bogdanov, Dan; Niitsoo, Margus; Toft, Tomas

    2012-01-01

    Secure multi-party computation (MPC) is a technique well suited for privacy-preserving data mining. Even with the recent progress in two-party computation techniques such as fully homomorphic encryption, general MPC remains relevant as it has shown promising performance metrics in real...... operations such as multiplication and comparison. Secondly, the confidential processing of financial data requires the use of more complex primitives, including a secure division operation. This paper describes new protocols in the Sharemind model for secure multiplication, share conversion, equality, bit...

  9. User-centered design in brain-computer interfaces-a case study.

    Science.gov (United States)

    Schreuder, Martijn; Riccio, Angela; Risetti, Monica; Dähne, Sven; Ramsay, Andrew; Williamson, John; Mattia, Donatella; Tangermann, Michael

    2013-10-01

    The array of available brain-computer interface (BCI) paradigms has continued to grow, and so has the corresponding set of machine learning methods which are at the core of BCI systems. The latter have evolved to provide more robust data analysis solutions, and as a consequence the proportion of healthy BCI users who can use a BCI successfully is growing. With this development the chances have increased that the needs and abilities of specific patients, the end-users, can be covered by an existing BCI approach. However, most end-users who have experienced the use of a BCI system at all have encountered a single paradigm only. This paradigm is typically the one that is being tested in the study that the end-user happens to be enrolled in, along with other end-users. Though this corresponds to the preferred study arrangement for basic research, it does not ensure that the end-user experiences a working BCI. In this study, a different approach was taken; that of a user-centered design. It is the prevailing process in traditional assistive technology. Given an individual user with a particular clinical profile, several available BCI approaches are tested and - if necessary - adapted to him/her until a suitable BCI system is found. Described is the case of a 48-year-old woman who suffered from an ischemic brain stem stroke, leading to a severe motor- and communication deficit. She was enrolled in studies with two different BCI systems before a suitable system was found. The first was an auditory event-related potential (ERP) paradigm and the second a visual ERP paradigm, both of which are established in literature. The auditory paradigm did not work successfully, despite favorable preconditions. The visual paradigm worked flawlessly, as found over several sessions. This discrepancy in performance can possibly be explained by the user's clinical deficit in several key neuropsychological indicators, such as attention and working memory. While the auditory paradigm relies

  10. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

    2010-08-01

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools

  11. Performance assessment handbook for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Seitz, R.R.; Garcia, R.S.; Kostelnik, K.M.; Starmer, R.J.

    1992-02-01

    Performance assessments of proposed low-level radioactive waste disposal facilities must be conducted to support licensing. This handbook provides a reference document that can be used as a resource by management and staff responsible for performance assessments. Brief discussions describe the performance assessment process and emphasize selected critical aspects of the process. References are also provided for additional information on many aspects of the performance assessment process. The user's manual for the National Low-Level Waste Management Program's Performance Assessment Center (PAC) on the Idaho National Engineering Laboratory Cray computer is included as Appendix A. The PAC provides users an opportunity to experiment with a number of performance assessment computer codes on a Cray computer. Appendix B describes input data required for 22 performance assessment codes

  12. Status of the Grid Computing for the ALICE Experiment in the Czech Republic

    International Nuclear Information System (INIS)

    Adamova, D; Hampl, J; Chudoba, J; Kouba, T; Svec, J; Mendez, Lorenzo P; Saiz, P

    2010-01-01

    The Czech Republic (CR) has been participating in the LHC Computing Grid project (LCG) ever since 2003 and gradually, a middle-sized Tier-2 center has been built in Prague, delivering computing services for national HEP experiments groups including the ALICE project at the LHC. We present a brief overview of the computing activities and services being performed in the CR for the ALICE experiment.

  13. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  14. High Performance Spaceflight Computing (HPSC)

    Data.gov (United States)

    National Aeronautics and Space Administration — Space-based computing has not kept up with the needs of current and future NASA missions. We are developing a next-generation flight computing system that addresses...

  15. Reliability in Warehouse-Scale Computing: Why Low Latency Matters

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2015-01-01

    , the limiting factor of these warehouse-scale data centers is the power dissipation. Power is dissipated not only in the computation itself, but also in heat removal (fans, air conditioning, etc.) to keep the temperature of the devices within the operating ranges. The need to keep the temperature low within......Warehouse sized buildings are nowadays hosting several types of large computing systems: from supercomputers to large clusters of servers to provide the infrastructure to the cloud. Although the main target, especially for high-performance computing, is still to achieve high throughput...

  16. Modeling subsurface reactive flows using leadership-class computing

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Richard Tran [Computational Earth Sciences Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6015 (United States); Hammond, Glenn E [Hydrology Group, Environmental Technology Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lichtner, Peter C [Hydrology, Geochemistry, and Geology Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sripathi, Vamsi [Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206 (United States); Mahinthakumar, G [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695-7908 (United States); Smith, Barry F, E-mail: rmills@ornl.go, E-mail: glenn.hammond@pnl.go, E-mail: lichtner@lanl.go, E-mail: vamsi_s@ncsu.ed, E-mail: gmkumar@ncsu.ed, E-mail: bsmith@mcs.anl.go [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844 (United States)

    2009-07-01

    We describe our experiences running PFLOTRAN-a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media- on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.

  17. Modeling subsurface reactive flows using leadership-class computing

    International Nuclear Information System (INIS)

    Mills, Richard Tran; Hammond, Glenn E; Lichtner, Peter C; Sripathi, Vamsi; Mahinthakumar, G; Smith, Barry F

    2009-01-01

    We describe our experiences running PFLOTRAN-a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media- on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.

  18. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  19. Classification of rhinoplasties performed in an otorhinolaryngology referral center in Brazil

    Directory of Open Access Journals (Sweden)

    Flávio Barbosa Nunes

    2014-12-01

    Full Text Available Introduction: Facial plastic and reconstructive surgery involves the use of surgical procedures to achieve esthetic and functional improvement. It can be used for traumatic, congenital, or developmental injuries. Medicine, with an emphasis on facial plastic surgery, has made progress in several areas, including rhinoplasty, providing good long-term results and higher patient satisfaction. Objective: To evaluate cases of rhinoplasty and its subtypes in a referral center, and to understand the relevance of teaching rhinoplasty techniques in a service of otolaryngology residency. Methods: A retrospective study that assessed 325 rhinoplasties performed by third-year medical residents under the supervision of chief residents in charge of the Service of Facial Plastic Surgery in this hospital was conducted from January of 2003 to August of 2012. The Service Protocol included the following subtypes: functional, esthetic, post-traumatic, revision, and reconstructive rhinoseptoplasty. Results: Of the rhinoplasties performed 184 (56.21% were functional, 59 (18.15% were post-traumatic, 27 were (8.30% esthetic, 15 were (4.61% reconstructive, and 40 (12.30% were revision procedures. Conclusion: Functional rhinoseptoplasties were the most prevalent type, which highlights the relevance of teaching surgical techniques, not only for septoplasty, but also the inclusion of rhinoplasty techniques in teaching centers.

  20. Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe.

    Science.gov (United States)

    Mouthaan, Brian E; Rados, Matea; Barsi, Péter; Boon, Paul; Carmichael, David W; Carrette, Evelien; Craiu, Dana; Cross, J Helen; Diehl, Beate; Dimova, Petia; Fabo, Daniel; Francione, Stefano; Gaskin, Vladislav; Gil-Nagel, Antonio; Grigoreva, Elena; Guekht, Alla; Hirsch, Edouard; Hecimovic, Hrvoje; Helmstaedter, Christoph; Jung, Julien; Kalviainen, Reetta; Kelemen, Anna; Kimiskidis, Vasilios; Kobulashvili, Teia; Krsek, Pavel; Kuchukhidze, Giorgi; Larsson, Pål G; Leitinger, Markus; Lossius, Morten I; Luzin, Roman; Malmgren, Kristina; Mameniskiene, Ruta; Marusic, Petr; Metin, Baris; Özkara, Cigdem; Pecina, Hrvoje; Quesada, Carlos M; Rugg-Gunn, Fergus; Rydenhag, Bertil; Ryvlin, Philippe; Scholly, Julia; Seeck, Margitta; Staack, Anke M; Steinhoff, Bernhard J; Stepanov, Valentin; Tarta-Arsene, Oana; Trinka, Eugen; Uzan, Mustafa; Vogt, Viola L; Vos, Sjoerd B; Vulliémoz, Serge; Huiskamp, Geertjan; Leijten, Frans S S; Van Eijsden, Pieter; Braun, Kees P J

    2016-05-01

    In 2014 the European Union-funded E-PILEPSY project was launched to improve awareness of, and accessibility to, epilepsy surgery across Europe. We aimed to investigate the current use of neuroimaging, electromagnetic source localization, and imaging postprocessing procedures in participating centers. A survey on the clinical use of imaging, electromagnetic source localization, and postprocessing methods in epilepsy surgery candidates was distributed among the 25 centers of the consortium. A descriptive analysis was performed, and results were compared to existing guidelines and recommendations. Response rate was 96%. Standard epilepsy magnetic resonance imaging (MRI) protocols are acquired at 3 Tesla by 15 centers and at 1.5 Tesla by 9 centers. Three centers perform 3T MRI only if indicated. Twenty-six different MRI sequences were reported. Six centers follow all guideline-recommended MRI sequences with the proposed slice orientation and slice thickness or voxel size. Additional sequences are used by 22 centers. MRI postprocessing methods are used in 16 centers. Interictal positron emission tomography (PET) is available in 22 centers; all using 18F-fluorodeoxyglucose (FDG). Seventeen centers perform PET postprocessing. Single-photon emission computed tomography (SPECT) is used by 19 centers, of which 15 perform postprocessing. Four centers perform neither PET nor SPECT in children. Seven centers apply magnetoencephalography (MEG) source localization, and nine apply electroencephalography (EEG) source localization. Fourteen combinations of inverse methods and volume conduction models are used. We report a large variation in the presurgical diagnostic workup among epilepsy surgery centers across Europe. This diversity underscores the need for high-quality systematic reviews, evidence-based recommendations, and harmonization of available diagnostic presurgical methods. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  1. A High Performance COTS Based Computer Architecture

    Science.gov (United States)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  2. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  3. Performance of Ultrasound in the Diagnosis of Gout in a Multi-Center Study

    DEFF Research Database (Denmark)

    Ogdie, Alexis; Taylor, William J; Neogi, Tuhina

    2017-01-01

    OBJECTIVES: To examine the performance of ultrasound for the diagnosis of gout using presence of monosodium urate (MSU) crystals as the gold standard. METHODS: We analyzed data from the Study for Updated Gout Classification Criteria (SUGAR), a large, multi-center observational cross-sectional stu...

  4. Running Interactive Jobs on Peregrine | High-Performance Computing | NREL

    Science.gov (United States)

    shell prompt, which allows users to execute commands and scripts as they would on the login nodes. Login performed on the compute nodes rather than on login nodes. This page provides instructions and examples of , start GUIs etc. and the commands will execute on that node instead of on the login node. The -V option

  5. Topic 14+16: High-performance and scientific applications and extreme-scale computing (Introduction)

    KAUST Repository

    Downes, Turlough P.

    2013-01-01

    As our understanding of the world around us increases it becomes more challenging to make use of what we already know, and to increase our understanding still further. Computational modeling and simulation have become critical tools in addressing this challenge. The requirements of high-resolution, accurate modeling have outstripped the ability of desktop computers and even small clusters to provide the necessary compute power. Many applications in the scientific and engineering domains now need very large amounts of compute time, while other applications, particularly in the life sciences, frequently have large data I/O requirements. There is thus a growing need for a range of high performance applications which can utilize parallel compute systems effectively, which have efficient data handling strategies and which have the capacity to utilise current and future systems. The High Performance and Scientific Applications topic aims to highlight recent progress in the use of advanced computing and algorithms to address the varied, complex and increasing challenges of modern research throughout both the "hard" and "soft" sciences. This necessitates being able to use large numbers of compute nodes, many of which are equipped with accelerators, and to deal with difficult I/O requirements. © 2013 Springer-Verlag.

  6. Comparison of the Performance of Health Volunteers in the Health Centers of Shahid Beheshti University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Ahmad-Reza Farsar

    2015-02-01

    Full Text Available Background and Objective: Health volunteers are the women who do charity work to prevent, protect and promote the health status of the covered neighbors and hereby cooperate with the health centers. The aim of this study was to compare the health volunteer's performance in the covered health centers by Shahid Beheshti University of Medical Sciences.Materials and Methods: This descriptive- analytical study was performed by the participation of 2060 Health volunteers, who were cooperating with 90 covered health centers by Shahid Beheshti University of Medical Sciences. These include Shomal, Shargh, Shemiranat, Pakdasht, Damavand and Firoozkooh. We used census sampling method. Demographic data was gathered through interviews with the health volunteers and their performance evaluated by the supervisor of the volunteers; through the evaluation forms and these data gathered together.Results: The mean (SD of the health volunteers performance was 30.9 (16.4 in all centers. They were 35.1 (22 in Shargh, 34 (14.5 in Shomal, 32 (11.3 in Firoozkooh, 28.3 (14 in Shemiranat, 7.9 (9.2 in Damavand and 23.6 (8.5 in Pakdasht respectively. The mean (SD of the efficacy of health volunteers was 8.6 (9.9 in all centers. They were 11.7 (5.6 in Firoozkooh, 10.7 (15.7 in Shargh, 9.4 (6.8 in Shomal, 7.9 (4.9 in Damavand, 7.9 (6.1 in Shemiranat and 4.6 (4.3 in Pakdasht respectively. Older and married volunteers with more experience performed better. There was no significant relationship between the efficacy of health volunteers with their literacy level, employment status and absorber of them.              Conclusion: The health volunteers of Shomal, Shargh and Firoozkooh had the best performances respectively. The performances of those in Shemiranat, Damavand and Pakdasht were less than the overall health centers’ mean score. The efficacy score of Firoozkooh, Shomal and Shargh health centers were above the overall health centers’ mean score respectively

  7. Performance characteristics of a Kodak computed radiography system.

    Science.gov (United States)

    Bradford, C D; Peppler, W W; Dobbins, J T

    1999-01-01

    The performance characteristics of a photostimulable phosphor based computed radiographic (CR) system were studied. The modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) of the Kodak Digital Science computed radiography (CR) system (Eastman Kodak Co.-model 400) were measured and compared to previously published results of a Fuji based CR system (Philips Medical Systems-PCR model 7000). To maximize comparability, the same measurement techniques and analysis methods were used. The DQE at four exposure levels (30, 3, 0.3, 0.03 mR) and two plate types (standard and high resolution) were calculated from the NPS and MTF measurements. The NPS was determined from two-dimensional Fourier analysis of uniformly exposed plates. The presampling MTF was determined from the Fourier transform (FT) of the system's finely sampled line spread function (LSF) as produced by a narrow slit. A comparison of the slit type ("beveled edge" versus "straight edge") and its effect on the resulting MTF measurements was also performed. The results show that both systems are comparable in resolution performance. The noise power studies indicated a higher level of noise for the Kodak images (approximately 20% at the low exposure levels and 40%-70% at higher exposure levels). Within the clinically relevant exposure range (0.3-3 mR), the resulting DQE for the Kodak plates ranged between 20%-50% lower than for the corresponding Fuji plates. Measurements of the presampling MTF with the two slit types have shown that a correction factor can be applied to compensate for transmission through the relief edges.

  8. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L.

    2013-01-01

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  9. Spatial Processing of Urban Acoustic Wave Fields from High-Performance Computations

    National Research Council Canada - National Science Library

    Ketcham, Stephen A; Wilson, D. K; Cudney, Harley H; Parker, Michael W

    2007-01-01

    .... The objective of this work is to develop spatial processing techniques for acoustic wave propagation data from three-dimensional high-performance computations to quantify scattering due to urban...

  10. Computer classes and games in virtual reality environment to reduce loneliness among students of an elderly reference center: Study protocol for a randomised cross-over design.

    Science.gov (United States)

    Antunes, Thaiany Pedrozo Campos; Oliveira, Acary Souza Bulle de; Crocetta, Tania Brusque; Antão, Jennifer Yohanna Ferreira de Lima; Barbosa, Renata Thais de Almeida; Guarnieri, Regiani; Massetti, Thais; Monteiro, Carlos Bandeira de Mello; Abreu, Luiz Carlos de

    2017-03-01

    Physical and mental changes associated with aging commonly lead to a decrease in communication capacity, reducing social interactions and increasing loneliness. Computer classes for older adults make significant contributions to social and cognitive aspects of aging. Games in a virtual reality (VR) environment stimulate the practice of communicative and cognitive skills and might also bring benefits to older adults. Furthermore, it might help to initiate their contact to the modern technology. The purpose of this study protocol is to evaluate the effects of practicing VR games during computer classes on the level of loneliness of students of an elderly reference center. This study will be a prospective longitudinal study with a randomised cross-over design, with subjects aged 50 years and older, of both genders, spontaneously enrolled in computer classes for beginners. Data collection will be done in 3 moments: moment 0 (T0) - at baseline; moment 1 (T1) - after 8 typical computer classes; and moment 2 (T2) - after 8 computer classes which include 15 minutes for practicing games in VR environment. A characterization questionnaire, the short version of the Short Social and Emotional Loneliness Scale for Adults (SELSA-S) and 3 games with VR (Random, MoviLetrando, and Reaction Time) will be used. For the intervention phase 4 other games will be used: Coincident Timing, Motor Skill Analyser, Labyrinth, and Fitts. The statistical analysis will compare the evolution in loneliness perception, performance, and reaction time during the practice of the games between the 3 moments of data collection. Performance and reaction time during the practice of the games will also be correlated to the loneliness perception. The protocol is approved by the host institution's ethics committee under the number 52305215.3.0000.0082. Results will be disseminated via peer-reviewed journal articles and conferences. This clinical trial is registered at ClinicalTrials.gov identifier: NCT

  11. Computer-aided Detection of Lung Cancer on Chest Radiographs: Effect on Observer Performance

    NARCIS (Netherlands)

    de Hoop, Bartjan; de Boo, Diederik W.; Gietema, Hester A.; van Hoorn, Frans; Mearadji, Banafsche; Schijf, Laura; van Ginneken, Bram; Prokop, Mathias; Schaefer-Prokop, Cornelia

    2010-01-01

    Purpose: To assess how computer-aided detection (CAD) affects reader performance in detecting early lung cancer on chest radiographs. Materials and Methods: In this ethics committee-approved study, 46 individuals with 49 computed tomographically (CT)-detected and histologically proved lung cancers

  12. The Relationship Between Job Satisfaction and Job Performance Among Midwives Working in Healthcare Centers of Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Hadizadeh Talasaz

    2014-07-01

    Full Text Available Background and Aim: Job satisfaction represents individuals' positive or negative attitude towards their occupation. Job satisfaction is of high significance in health care field and could affects the quality of patients' health care and satisfaction. Every organization should pay considerable attention to job satisfaction and performance and continually monitor these indices. Therefore, we aimed to determine the relationship between job satisfaction and job performance of midwives, employed in health care centers of Mashhad, Iran. Methods: This descriptive correlational study was performed on 90 midwives, working in healthcare centers of Mashhad, Iran, in 2014 who were selected through multistage sampling from five healthcare centers. Data collection tools included a questionnaire to record demographic, personal and occupational data, Minnesota Job Satisfaction Questionnaire (MSQ as well as a self-structured observational checklist to measure the quality of educational, care, and communicative job performance of midwives. SPSS version 19 was used to analyze data through descriptive statistics, and also Spearman and Kruskal-Wallis tests. Results: The mean age of the participants was 39.63±6.92 years. Spearman correlation test showed a direct correlation between job satisfaction and the total score of job performance (P

  13. Performance Evaluation of Extension Education Centers in Universities Based on the Balanced Scorecard

    Science.gov (United States)

    Wu, Hung-Yi; Lin, Yi-Kuei; Chang, Chi-Hsiang

    2011-01-01

    This study aims at developing a set of appropriate performance evaluation indices mainly based on balanced scorecard (BSC) for extension education centers in universities by utilizing multiple criteria decision making (MCDM). Through literature reviews and experts who have real practical experiences in extension education, adequate performance…

  14. Acceleration of FDTD mode solver by high-performance computing techniques.

    Science.gov (United States)

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  15. Integration of the Chinese HPC Grid in ATLAS Distributed Computing

    Science.gov (United States)

    Filipčič, A.; ATLAS Collaboration

    2017-10-01

    Fifteen Chinese High-Performance Computing sites, many of them on the TOP500 list of most powerful supercomputers, are integrated into a common infrastructure providing coherent access to a user through an interface based on a RESTful interface called SCEAPI. These resources have been integrated into the ATLAS Grid production system using a bridge between ATLAS and SCEAPI which translates the authorization and job submission protocols between the two environments. The ARC Computing Element (ARC-CE) forms the bridge using an extended batch system interface to allow job submission to SCEAPI. The ARC-CE was setup at the Institute for High Energy Physics, Beijing, in order to be as close as possible to the SCEAPI front-end interface at the Computing Network Information Center, also in Beijing. This paper describes the technical details of the integration between ARC-CE and SCEAPI and presents results so far with two supercomputer centers, Tianhe-IA and ERA. These two centers have been the pilots for ATLAS Monte Carlo Simulation in SCEAPI and have been providing CPU power since fall 2015.

  16. Gender Differences in Attitudes toward Computers and Performance in the Accounting Information Systems Class

    Science.gov (United States)

    Lenard, Mary Jane; Wessels, Susan; Khanlarian, Cindi

    2010-01-01

    Using a model developed by Young (2000), this paper explores the relationship between performance in the Accounting Information Systems course, self-assessed computer skills, and attitudes toward computers. Results show that after taking the AIS course, students experience a change in perception about their use of computers. Females'…

  17. CSP: A Multifaceted Hybrid Architecture for Space Computing

    Science.gov (United States)

    Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron

    2014-01-01

    Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.

  18. JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility

    Directory of Open Access Journals (Sweden)

    Jaschob Daniel

    2012-07-01

    Full Text Available Abstract Background Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster. Results JobCenter is a client–server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or “in the cloud” and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows. Conclusions JobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available at http://code.google.com/p/jobcenter/.

  19. The Development of University Computing in Sweden 1965-1985

    Science.gov (United States)

    Dahlstrand, Ingemar

    In 1965-70 the government agency, Statskontoret, set up five university computing centers, as service bureaux financed by grants earmarked for computer use. The centers were well equipped and staffed and caused a surge in computer use. When the yearly flow of grant money stagnated at 25 million Swedish crowns, the centers had to find external income to survive and acquire time-sharing. But the charging system led to the computers not being fully used. The computer scientists lacked equipment for laboratory use. The centers were decentralized and the earmarking abolished. Eventually they got new tasks like running computers owned by the departments, and serving the university administration.

  20. Concurrent validity of an automated algorithm for computing the center of pressure excursion index (CPEI).

    Science.gov (United States)

    Diaz, Michelle A; Gibbons, Mandi W; Song, Jinsup; Hillstrom, Howard J; Choe, Kersti H; Pasquale, Maria R

    2018-01-01

    Center of Pressure Excursion Index (CPEI), a parameter computed from the distribution of plantar pressures during stance phase of barefoot walking, has been used to assess dynamic foot function. The original custom program developed to calculate CPEI required the oversight of a user who could manually correct for certain exceptions to the computational rules. A new fully automatic program has been developed to calculate CPEI with an algorithm that accounts for these exceptions. The purpose of this paper is to compare resulting CPEI values computed by these two programs on plantar pressure data from both asymptomatic and pathologic subjects. If comparable, the new program offers significant benefits-reduced potential for variability due to rater discretion and faster CPEI calculation. CPEI values were calculated from barefoot plantar pressure distributions during comfortable paced walking on 61 healthy asymptomatic adults, 19 diabetic adults with moderate hallux valgus, and 13 adults with mild hallux valgus. Right foot data for each subject was analyzed with linear regression and a Bland-Altman plot. The automated algorithm yielded CPEI values that were linearly related to the original program (R 2 =0.99; Pcomputation methods. Results of this analysis suggest that the new automated algorithm may be used to calculate CPEI on both healthy and pathologic feet. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Performance Assessment Strategies: A computational framework for conceptual design of large roofs

    Directory of Open Access Journals (Sweden)

    Michela Turrin

    2014-01-01

    Full Text Available Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies

  2. Real-time Tsunami Inundation Prediction Using High Performance Computers

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  3. Computer technology and computer programming research and strategies

    CERN Document Server

    Antonakos, James L

    2011-01-01

    Covering a broad range of new topics in computer technology and programming, this volume discusses encryption techniques, SQL generation, Web 2.0 technologies, and visual sensor networks. It also examines reconfigurable computing, video streaming, animation techniques, and more. Readers will learn about an educational tool and game to help students learn computer programming. The book also explores a new medical technology paradigm centered on wireless technology and cloud computing designed to overcome the problems of increasing health technology costs.

  4. Modeling Road Traffic Using Service Center

    Directory of Open Access Journals (Sweden)

    HARAGOS, I.-M.

    2012-05-01

    Full Text Available Transport systems have an essential role in modern society because they facilitate access to natural resources and they stimulate trade. Current studies aimed at improving transport networks by developing new methods for optimization. Because of the increase in the global number of cars, one of the most common problems facing the transport network is congestion. By creating traffic models and simulate them, we can avoid this problem and find appropriate solutions. In this paper we propose a new method for modeling traffic. This method considers road intersections as being service centers. A service center represents a set consisting of a queue followed by one or multiple servers. This model was used to simulate real situations in an urban traffic area. Based on this simulation, we have successfully determined the optimal functioning and we have computed the performance measures.

  5. Development of an evaluation performance scale for social educators in child protection centers

    Directory of Open Access Journals (Sweden)

    Juan Manuel Fernández Millán

    2013-09-01

    Full Text Available Purpose: In a context of economic crisis, as in the case of Spain, the evaluation of the performance of employees in any field is a key tool for improving worker efficiency. For those professions that are developed in order to provide basic social services to the people of its importance is even greater. Thereby, this study is focused on developing a Performance Rating Scale of Social Workers using BARS technique. Design/methodology/approach: We asked 11 experts to list those competencies they believed necessary to perform this task efficiently. Thereafter, we selected competencies what coincide with an Interjudge arrangement of at least 3. Then each competency was associated with two critical incidents and developed corresponding behavioral anchors. In addition, the scale has a collection of personal data such as age and time off work, often used as indicators defining performance. Finally, the scale was tested to a sample of 128 Social Workers working in interim child care centers and children and youth correctional centers. Findings and Originality/value: The results show that the scale meets the criteria required for validation psychometric (α= 0,873. Also, the scale could be factored (Kaiser-Meyer-Olkin=0,810. Three dimensions were obtained: team work, interpersonal skills and competencies of the work. Research limitations/implications: An appreciation of the lack of covariation between external criteria used as identifiers of good performance (age and number of sick leave and the employee's competence. This confirms the inadequacy of these criteria to predict performance. Necessitating the development of performance evaluation tools that include absenteeism and experience as predictors of performance measures. Practical implications: The inadequacy may be due to the usually confusion between work experience - seniority and sick leave - absenteeism. Originality/value: The study helps define the figure and the competences of social

  6. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  7. Integrated State Estimation and Contingency Analysis Software Implementation using High Performance Computing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yousu; Glaesemann, Kurt R.; Rice, Mark J.; Huang, Zhenyu

    2015-12-31

    Power system simulation tools are traditionally developed in sequential mode and codes are optimized for single core computing only. However, the increasing complexity in the power grid models requires more intensive computation. The traditional simulation tools will soon not be able to meet the grid operation requirements. Therefore, power system simulation tools need to evolve accordingly to provide faster and better results for grid operations. This paper presents an integrated state estimation and contingency analysis software implementation using high performance computing techniques. The software is able to solve large size state estimation problems within one second and achieve a near-linear speedup of 9,800 with 10,000 cores for contingency analysis application. The performance evaluation is presented to show its effectiveness.

  8. What Physicists Should Know About High Performance Computing - Circa 2002

    Science.gov (United States)

    Frederick, Donald

    2002-08-01

    High Performance Computing (HPC) is a dynamic, cross-disciplinary field that traditionally has involved applied mathematicians, computer scientists, and others primarily from the various disciplines that have been major users of HPC resources - physics, chemistry, engineering, with increasing use by those in the life sciences. There is a technological dynamic that is powered by economic as well as by technical innovations and developments. This talk will discuss practical ideas to be considered when developing numerical applications for research purposes. Even with the rapid pace of development in the field, the author believes that these concepts will not become obsolete for a while, and will be of use to scientists who either are considering, or who have already started down the HPC path. These principles will be applied in particular to current parallel HPC systems, but there will also be references of value to desktop users. The talk will cover such topics as: computing hardware basics, single-cpu optimization, compilers, timing, numerical libraries, debugging and profiling tools and the emergence of Computational Grids.

  9. Senior Computational Scientist | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  10. Efficient workload management in geographically distributed data centers leveraging autoregressive models

    Science.gov (United States)

    Altomare, Albino; Cesario, Eugenio; Mastroianni, Carlo

    2016-10-01

    The opportunity of using Cloud resources on a pay-as-you-go basis and the availability of powerful data centers and high bandwidth connections are speeding up the success and popularity of Cloud systems, which is making on-demand computing a common practice for enterprises and scientific communities. The reasons for this success include natural business distribution, the need for high availability and disaster tolerance, the sheer size of their computational infrastructure, and/or the desire to provide uniform access times to the infrastructure from widely distributed client sites. Nevertheless, the expansion of large data centers is resulting in a huge rise of electrical power consumed by hardware facilities and cooling systems. The geographical distribution of data centers is becoming an opportunity: the variability of electricity prices, environmental conditions and client requests, both from site to site and with time, makes it possible to intelligently and dynamically (re)distribute the computational workload and achieve as diverse business goals as: the reduction of costs, energy consumption and carbon emissions, the satisfaction of performance constraints, the adherence to Service Level Agreement established with users, etc. This paper proposes an approach that helps to achieve the business goals established by the data center administrators. The workload distribution is driven by a fitness function, evaluated for each data center, which weighs some key parameters related to business objectives, among which, the price of electricity, the carbon emission rate, the balance of load among the data centers etc. For example, the energy costs can be reduced by using a "follow the moon" approach, e.g. by migrating the workload to data centers where the price of electricity is lower at that time. Our approach uses data about historical usage of the data centers and data about environmental conditions to predict, with the help of regressive models, the values of the

  11. User-centered virtual environment design for virtual rehabilitation

    Directory of Open Access Journals (Sweden)

    Rizzo Albert A

    2010-02-01

    Full Text Available Abstract Background As physical and cognitive rehabilitation protocols utilizing virtual environments transition from single applications to comprehensive rehabilitation programs there is a need for a new design cycle methodology. Current human-computer interaction designs focus on usability without benchmarking technology within a user-in-the-loop design cycle. The field of virtual rehabilitation is unique in that determining the efficacy of this genre of computer-aided therapies requires prior knowledge of technology issues that may confound patient outcome measures. Benchmarking the technology (e.g., displays or data gloves using healthy controls may provide a means of characterizing the "normal" performance range of the virtual rehabilitation system. This standard not only allows therapists to select appropriate technology for use with their patient populations, it also allows them to account for technology limitations when assessing treatment efficacy. Methods An overview of the proposed user-centered design cycle is given. Comparisons of two optical see-through head-worn displays provide an example of benchmarking techniques. Benchmarks were obtained using a novel vision test capable of measuring a user's stereoacuity while wearing different types of head-worn displays. Results from healthy participants who performed both virtual and real-world versions of the stereoacuity test are discussed with respect to virtual rehabilitation design. Results The user-centered design cycle argues for benchmarking to precede virtual environment construction, especially for therapeutic applications. Results from real-world testing illustrate the general limitations in stereoacuity attained when viewing content using a head-worn display. Further, the stereoacuity vision benchmark test highlights differences in user performance when utilizing a similar style of head-worn display. These results support the need for including benchmarks as a means of better

  12. User-centered virtual environment design for virtual rehabilitation.

    Science.gov (United States)

    Fidopiastis, Cali M; Rizzo, Albert A; Rolland, Jannick P

    2010-02-19

    As physical and cognitive rehabilitation protocols utilizing virtual environments transition from single applications to comprehensive rehabilitation programs there is a need for a new design cycle methodology. Current human-computer interaction designs focus on usability without benchmarking technology within a user-in-the-loop design cycle. The field of virtual rehabilitation is unique in that determining the efficacy of this genre of computer-aided therapies requires prior knowledge of technology issues that may confound patient outcome measures. Benchmarking the technology (e.g., displays or data gloves) using healthy controls may provide a means of characterizing the "normal" performance range of the virtual rehabilitation system. This standard not only allows therapists to select appropriate technology for use with their patient populations, it also allows them to account for technology limitations when assessing treatment efficacy. An overview of the proposed user-centered design cycle is given. Comparisons of two optical see-through head-worn displays provide an example of benchmarking techniques. Benchmarks were obtained using a novel vision test capable of measuring a user's stereoacuity while wearing different types of head-worn displays. Results from healthy participants who performed both virtual and real-world versions of the stereoacuity test are discussed with respect to virtual rehabilitation design. The user-centered design cycle argues for benchmarking to precede virtual environment construction, especially for therapeutic applications. Results from real-world testing illustrate the general limitations in stereoacuity attained when viewing content using a head-worn display. Further, the stereoacuity vision benchmark test highlights differences in user performance when utilizing a similar style of head-worn display. These results support the need for including benchmarks as a means of better understanding user outcomes, especially for patient

  13. Polyphony: A Workflow Orchestration Framework for Cloud Computing

    Science.gov (United States)

    Shams, Khawaja S.; Powell, Mark W.; Crockett, Tom M.; Norris, Jeffrey S.; Rossi, Ryan; Soderstrom, Tom

    2010-01-01

    Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and Titan.

  14. NASA Human Health and Performance Center: Open Innovation Successes and Collaborative Projects

    Science.gov (United States)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2014-01-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, which resulted in the development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the open innovation successes and collaborative projects developed over this timeframe, including the efforts of the NASA Human Health and Performance Center (NHHPC), which was established to advance human health and performance innovations for spaceflight and societal benefit via collaboration in new markets.

  15. Monitoring and optimization of ATLAS Tier 2 center GoeGrid

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219638; Quadt, Arnulf; Yahyapour, Ramin

    The demand on computational and storage resources is growing along with the amount of information that needs to be processed and preserved. In order to ease the provisioning of the digital services to the growing number of consumers, more and more distributed computing systems and platforms are actively developed and employed. The building block of the distributed computing infrastructure are single computing centers, similar to the Worldwide LHC Computing Grid, Tier 2 centre GoeGrid. The main motivation of this thesis was the optimization of GoeGrid performance by efficient monitoring. The goal has been achieved by means of the GoeGrid monitoring information analysis. The data analysis approach was based on the adaptive-network-based fuzzy inference system (ANFIS) and machine learning algorithm such as Linear Support Vector Machine (SVM). The main object of the research was the digital service, since availability, reliability and serviceability of the computing platform can be measured according to the const...

  16. Analysis and modeling of social influence in high performance computing workloads

    KAUST Repository

    Zheng, Shuai; Shae, Zon Yin; Zhang, Xiangliang; Jamjoom, Hani T.; Fong, Liana

    2011-01-01

    Social influence among users (e.g., collaboration on a project) creates bursty behavior in the underlying high performance computing (HPC) workloads. Using representative HPC and cluster workload logs, this paper identifies, analyzes, and quantifies

  17. Performance of scientific computing platforms with MCNP4B

    International Nuclear Information System (INIS)

    McLaughlin, H.E.; Hendricks, J.S.

    1998-01-01

    Several computing platforms were evaluated with the MCNP4B Monte Carlo radiation transport code. The DEC AlphaStation 500/500 was the fastest to run MCNP4B. Compared to the HP 9000-735, the fastest platform 4 yr ago, the AlphaStation is 335% faster, the HP C180 is 133% faster, the SGI Origin 2000 is 82% faster, the Cray T94/4128 is 1% faster, the IBM RS/6000-590 is 93% as fast, the DEC 3000/600 is 81% as fast, the Sun Sparc20 is 57% as fast, the Cray YMP 8/8128 is 57% as fast, the sun Sparc5 is 33% as fast, and the Sun Sparc2 is 13% as fast. All results presented are reproducible and allow for comparison to computer platforms not included in this study. Timing studies are seen to be very problem dependent. The performance gains resulting from advances in software were also investigated. Various compilers and operating systems were seen to have a modest impact on performance, whereas hardware improvements have resulted in a factor of 4 improvement. MCNP4B also ran approximately as fast as MCNP4A

  18. A performance model for the communication in fast multipole methods on high-performance computing platforms

    KAUST Repository

    Ibeid, Huda

    2016-03-04

    Exascale systems are predicted to have approximately 1 billion cores, assuming gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. The fast multipole method (FMM) was originally developed for accelerating N-body problems in astrophysics and molecular dynamics but has recently been extended to a wider range of problems. Its high arithmetic intensity combined with its linear complexity and asynchronous communication patterns make it a promising algorithm for exascale systems. In this paper, we discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on internode communication. We focus on the communication part only; the efficiency of the computational kernels are beyond the scope of the present study. We develop a performance model that considers the communication patterns of the FMM and observe a good match between our model and the actual communication time on four high-performance computing (HPC) systems, when latency, bandwidth, network topology, and multicore penalties are all taken into account. To our knowledge, this is the first formal characterization of internode communication in FMM that validates the model against actual measurements of communication time. The ultimate communication model is predictive in an absolute sense; however, on complex systems, this objective is often out of reach or of a difficulty out of proportion to its benefit when there exists a simpler model that is inexpensive and sufficient to guide coding decisions leading to improved scaling. The current model provides such guidance.

  19. Software package as an information center product

    International Nuclear Information System (INIS)

    Butler, M.K.

    1977-01-01

    The Argonne Code Center serves as a software exchange and information center for the U.S. Energy Research and Development Administration and the Nuclear Regulatory Commission. The goal of the Center's program is to provide a means for sharing of software among agency offices and contractors, and for transferring computing applications and technology, developed within the agencies, to the information-processing community. A major activity of the Code Center is the acquisition, review, testing, and maintenance of a collection of software--computer systems, applications programs, subroutines, modules, and data compilations--prepared by agency offices and contractors to meet programmatic needs. A brief review of the history of computer program libraries and software sharing is presented to place the Code Center activity in perspective. The state-of-the-art discussion starts off with an appropriate definition of the term software package, together with descriptions of recommended package contents and the Carter's package evaluation activity. An effort is made to identify the various users of the product, to enumerate their individual needs, to document the Center's efforts to meet these needs and the ongoing interaction with the user community. Desirable staff qualifications are considered, and packaging problems, reviewed. The paper closes with a brief look at recent developments and a forecast of things to come. 2 tables

  20. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    Directory of Open Access Journals (Sweden)

    Hua KL

    2015-08-01

    Full Text Available Kai-Lung Hua,1 Che-Hao Hsu,1 Shintami Chusnul Hidayati,1 Wen-Huang Cheng,2 Yu-Jen Chen3 1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 2Research Center for Information Technology Innovation, Academia Sinica, 3Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan Abstract: Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. Keywords: nodule classification, deep learning, deep belief network, convolutional neural network