WorldWideScience

Sample records for perform bicoordinate navigation

  1. ANALYSIS OF FREE ROUTE AIRSPACE AND PERFORMANCE BASED NAVIGATION IMPLEMENTATION IN THE EUROPEAN AIR NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Svetlana Pavlova

    2014-12-01

    Full Text Available European Air Traffic Management system requires continuous improvements as air traffic is increasingday by day. For this purpose it was developed by international organizations Free Route Airspace and PerformanceBased Navigation concepts that allow to offer a required level of safety, capacity, environmental performance alongwith cost-effectiveness. The aim of the article is to provide detailed analysis of Free Route Airspace and PerformanceBased Navigation implementation status within European region including Ukrainian air navigation system.

  2. Juvenile Osprey Navigation during Trans-Oceanic Migration.

    Directory of Open Access Journals (Sweden)

    Travis W Horton

    Full Text Available To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean.

  3. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  4. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation

    Directory of Open Access Journals (Sweden)

    Jisun Lee

    2015-07-01

    Full Text Available In this study, simulation tests for gravity gradient referenced navigation (GGRN are conducted to verify the effects of various factors such as database (DB and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN. In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available.

  5. Human Performance Assessments when Using Augmented Reality for Navigation

    National Research Council Canada - National Science Library

    Goldiez, Brian F; Saptoka, Nabin; Aedunuthula, Prashanth

    2006-01-01

    Human performance executing search and rescue type of navigation is one area that can benefit from augmented reality technology when the proper computer generated information is added to a real scene...

  6. Multi-focal Vision and Gaze Control Improve Navigation Performance

    Directory of Open Access Journals (Sweden)

    Kolja Kuehnlenz

    2008-11-01

    Full Text Available Multi-focal vision systems comprise cameras with various fields of view and measurement accuracies. This article presents a multi-focal approach to localization and mapping of mobile robots with active vision. An implementation of the novel concept is done considering a humanoid robot navigation scenario where the robot is visually guided through a structured environment with several landmarks. Various embodiments of multi-focal vision systems are investigated and the impact on navigation performance is evaluated in comparison to a conventional mono-focal stereo set-up. The comparative studies clearly show the benefits of multi-focal vision for mobile robot navigation: flexibility to assign the different available sensors optimally in each situation, enhancement of the visible field, higher localization accuracy, and, thus, better task performance, i.e. path following behavior of the mobile robot. It is shown that multi-focal vision may strongly improve navigation performance.

  7. PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2015-08-01

    Full Text Available Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK, and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS signal outage.

  8. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    Science.gov (United States)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  9. 4D Dynamic Required Navigation Performance Final Report

    Science.gov (United States)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  10. Absolute Navigation Performance of the Orion Exploration Fight Test 1

    Science.gov (United States)

    Zanetti, Renato; Holt, Greg; Gay, Robert; D'Souza, Christopher; Sud, Jastesh

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to stress the system by placing the un-crewed vehicle on a high-energy parabolic trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. Unique challenges associated with designing the navigation system for EFT-1 are presented with an emphasis on how redundancy and robustness influenced the architecture. Two Inertial Measurement Units (IMUs), one GPS receiver and three barometric altimeters (BALTs) comprise the navigation sensor suite. The sensor data is multiplexed using conventional integration techniques and the state estimate is refined by the GPS pseudorange and deltarange measurements in an Extended Kalman Filter (EKF) that employs UDU factorization. The performance of the navigation system during flight is presented to substantiate the design.

  11. Effects of Visual, Auditory, and Tactile Navigation Cues on Navigation Performance, Situation Awareness, and Mental Workload

    National Research Council Canada - National Science Library

    Davis, Bradley M

    2007-01-01

    .... Results from both experiments indicate that augmented visual displays reduced time to complete navigation, maintained situation awareness, and drastically reduced mental workload in comparison...

  12. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  13. Sensors integration for smartphone navigation: performances and future challenges

    Science.gov (United States)

    Aicardi, I.; Dabove, P.; Lingua, A.; Piras, M.

    2014-08-01

    Nowadays the modern smartphones include several sensors which are usually adopted in geomatic application, as digital camera, GNSS (Global Navigation Satellite System) receivers, inertial platform, RFID and Wi-Fi systems. In this paper the authors would like to testing the performances of internal sensors (Inertial Measurement Unit, IMU) of three modern smartphones (Samsung GalaxyS4, Samsung GalaxyS5 and iPhone4) compared to external mass-market IMU platform in order to verify their accuracy levels, in terms of positioning. Moreover, the Image Based Navigation (IBN) approach is also investigated: this approach can be very useful in hard-urban environment or for indoor positioning, as alternative to GNSS positioning. IBN allows to obtain a sub-metrical accuracy, but a special database of georeferenced images (Image DataBase, IDB) is needed, moreover it is necessary to use dedicated algorithm to resizing the images which are collected by smartphone, in order to share it with the server where is stored the IDB. Moreover, it is necessary to characterize smartphone camera lens in terms of focal length and lens distortions. The authors have developed an innovative method with respect to those available today, which has been tested in a covered area, adopting a special support where all sensors under testing have been installed. Geomatic instrument have been used to define the reference trajectory, with purpose to compare this one, with the path obtained with IBN solution. First results leads to have an horizontal and vertical accuracies better than 60 cm, respect to the reference trajectories. IBN method, sensors, test and result will be described in the paper.

  14. Patterns of task and network actions performed by navigators to facilitate cancer care.

    Science.gov (United States)

    Clark, Jack A; Parker, Victoria A; Battaglia, Tracy A; Freund, Karen M

    2014-01-01

    Patient navigation is a widely implemented intervention to facilitate access to care and reduce disparities in cancer care, but the activities of navigators are not well characterized. The aim of this study is to describe what patient navigators actually do and explore patterns of activity that clarify the roles they perform in facilitating cancer care. We conducted field observations of nine patient navigation programs operating in diverse health settings of the national patient navigation research program, including 34 patient navigators, each observed an average of four times. Trained observers used a structured observation protocol to code as they recorded navigator actions and write qualitative field notes capturing all activities in 15-minute intervals during observations ranging from 2 to 7 hours; yielding a total of 133 observations. Rates of coded activity were analyzed using numerical cluster analysis of identified patterns, informed by qualitative analysis of field notes. Six distinct patterns of navigator activity were identified, which differed most relative to how much time navigators spent directly interacting with patients and how much time they spent dealing with medical records and documentation tasks. Navigator actions reveal a complex set of roles in which navigators both provide the direct help to patients denoted by their title and also carry out a variety of actions that function to keep the health system operating smoothly. Working to navigate patients through complex health services entails working to repair the persistent challenges of health services that can render them inhospitable to patients. The organizations that deploy navigators might learn from navigators' efforts and explore alternative approaches, structures, or systems of care in addressing both the barriers patients face and the complex solutions navigators create in helping patients.

  15. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    Science.gov (United States)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  16. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    Science.gov (United States)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  17. The effect of egocentric body movements on users' navigation performance and spatial memory in zoomable user interfaces

    OpenAIRE

    Rädle, Roman; Jetter, Hans-Christian; Butscher, Simon; Reiterer, Harald

    2013-01-01

    We present two experiments examining the impact of navigation techniques on users’ navigation performance and spatial memory in a zoomable user interface (ZUI). The first experiment with 24 participants compared the effect of egocentric body movements with traditional multi-touch navigation. The results indicate a 47% decrease in path lengths and a 34% decrease in task time in favor of egocentric navigation, but no significant effect on users’ spatial memory immediately after a navigation tas...

  18. Navigating beyond ‘here & now’ affordances - on sensorimotor maturation and ‘false belief’ performance

    Directory of Open Access Journals (Sweden)

    Maria eBrincker

    2014-12-01

    Full Text Available How and when do we learn to understand other people’s perspectives and possibly divergent beliefs? This question has elicited much theoretical and empirical research. A puzzling finding has been that toddlers perform well on so-called implicit false belief (FB tasks but do not show such capacities on traditional explicit FB tasks. I propose a navigational approach, which offers a hitherto ignored way of making sense of the seemingly contradictory results. The proposal involves a distinction between how we navigate FBs as they relate to 1 our current affordances (here & now navigation as opposed to 2 presently non-actual relations, where we need to leave our concrete embodied/situated viewpoint (counterfactual navigation. It is proposed that whereas toddlers seem able to understand FBs in their current affordance space, they do not yet possess the resources to navigate in abstraction from such concrete affordances, which explicit FB tests seem to require. It is hypothesized that counterfactual navigation depends on the development of ‘sensorimotor priors’, i.e. statistical expectations of own kinestetic re-afference, which evidence now suggests matures around age four, consistent with core findings of explicit FB performance.

  19. OSIRIS-REx Touch-And-Go (TAG) Navigation Performance

    Science.gov (United States)

    Berry, Kevin; Antreasian, Peter; Moreau, Michael C.; May, Alex; Sutter, Brian

    2015-01-01

    The Origins Spectral Interpretation Resource identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) Bennu in late 2018. Following an extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site, OSIRIES-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid's surface to obtain a regolith sample. The paper summarizes the mission design of the TAG sequence, the propulsive required to achieve the trajectory, and the sequence of events leading up to the TAG event. The paper will summarize the Monte-Carlo simulation of the TAG sequence and present analysis results that demonstrate the ability to conduct the TAG within 25 meters of the selected sample site and +-2 cms of the targeted contact velocity. The paper will describe some of the challenges associated with conducting precision navigation operations and ultimately contacting a very small asteroid.

  20. OSIRI-REx Touch and Go (TAG) Navigation Performance

    Science.gov (United States)

    Berry, Kevin; Antreasian, Peter; Moreau, Michael C.; May, Alex; Sutter, Brian

    2015-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with the near-Earth asteroid (101955) Bennu in late 2018. Following an extensive campaign of proximity operations activities to characterize the properties of Bennu and select a suitable sample site, OSIRIS-REx will fly a Touch-And-Go (TAG) trajectory to the asteroid's surface to obtain a regolith sample. The paper summarizes the mission design of the TAG sequence, the propulsive maneuvers required to achieve the trajectory, and the sequence of events leading up to the TAG event. The paper also summarizes the Monte-Carlo simulation of the TAG sequence and presents analysis results that demonstrate the ability to conduct the TAG within 25 meters of the selected sample site and 2 cm/s of the targeted contact velocity. The paper describes some of the challenges associated with conducting precision navigation operations and ultimately contacting a very small asteroid.

  1. Information Fields Navigation with Piece-Wise Polynomial Approximation for High-Performance OFDM in WSNs

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2013-01-01

    Full Text Available Since Wireless sensor networks (WSNs are dramatically being arranged in mission-critical applications,it changes into necessary that we consider application requirements in Internet of Things. We try to use WSNs to assist information query and navigation within a practical parking spaces environment. Integrated with high-performance OFDM by piece-wise polynomial approximation, we present a new method that is based on a diffusion equation and a position equation to accomplish the navigation process conveniently and efficiently. From the point of view of theoretical analysis, our jobs hold the lower constraint condition and several inappropriate navigation can be amended. Information diffusion and potential field are introduced to reach the goal of accurate navigation and gradient descent method is applied in the algorithm. Formula derivations and simulations manifest that the method facilitates the solution of typical sensor network configuration information navigation. Concurrently, we also treat channel estimation and ICI mitigation for very high mobility OFDM systems, and the communication is between a BS and mobile target at a terrible scenario. The scheme proposed here combines the piece-wise polynomial expansion to approximate timevariations of multipath channels. Two near symbols are applied to estimate the first-and second-order parameters. So as to improve the estimation accuracy and mitigate the ICI caused by pilot-aided estimation, the multipath channel parameters were reestimated in timedomain employing the decided OFDM symbol. Simulation results show that this method would improve system performance in a complex environment.

  2. EYE TRACKING TO EXPLORE THE IMPACTS OF PHOTOREALISTIC 3D REPRESENTATIONS IN PEDSTRIAN NAVIGATION PERFORMANCE

    Directory of Open Access Journals (Sweden)

    W. Dong

    2016-06-01

    Full Text Available Despite the now-ubiquitous two-dimensional (2D maps, photorealistic three-dimensional (3D representations of cities (e.g., Google Earth have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users’ eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  3. The Development of Hyper-MNP: Hyper-Media Navigational Performance Scale

    Science.gov (United States)

    Firat, Mehmet; Yurdakul, Isil Kabakci

    2016-01-01

    The present study aimed at developing a scale to evaluate navigational performance as a whole, which is one of the factors influencing learning in hyper media. In line with this purpose, depending on the related literature, an item pool of 15 factors was prepared, and these variables were decreased to 5 based on the views of 38 field experts. In…

  4. Design and Flight Performance of the Orion Pre-Launch Navigation System

    Science.gov (United States)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  5. How Concept-Mapping Perception Navigates Student Knowledge Transfer Performance

    Science.gov (United States)

    Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Tan, Yue; Chiu, Chien-Jung

    2012-01-01

    The purpose of this paper is to investigate students' perception of concept maps as a learning tool where knowledge transfer is the goal. This article includes an evaluation of the learning performance of 42 undergraduate students enrolled in a nanotech course at a university in Taiwan. Canonical correlation and MANOVA analyses were employed to…

  6. Development of performance measures based on visibility for effective placement of aids to navigation

    Science.gov (United States)

    Fang, Tae Hyun; Kim, Yeon-Gyu; Gong, In-Young; Park, Sekil; Kim, Ah-Young

    2015-09-01

    In order to develop the challenging process of placing Aids to Navigation (AtoN), we propose performance measures which quantifies the effect of such placement. The best placement of AtoNs is that from which the navigator can best recognize the information provided by an AtoN. The visibility of AtoNs depends mostly on light sources, the weather condition and the position of the navigator. Visual recognition is enabled by achieving adequate contrast between the AtoN light source and background light. Therefore, the performance measures can be formulated through the amount of differences between these two lights. For simplification, this approach is based on the values of the human factor suggested by International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA). Performance measures for AtoN placement can be evaluated through AtoN Simulator, which has been being developed by KIOST/KRISO in Korea and has been launched by Korea National Research Program. Simulations for evaluation are carried out at waterway in Busan port in Korea.

  7. Development of performance measures based on visibility for effective placement of aids to navigation

    Directory of Open Access Journals (Sweden)

    Tae Hyun Fang

    2015-05-01

    Full Text Available In order to develop the challenging process of placing Aids to Navigation (AtoN, we propose performance measures which quantifies the effect of such placement. The best placement of AtoNs is that from which the navigator can best recognize the information provided by an AtoN. The visibility of AtoNs depends mostly on light sources, the weather condition and the position of the navigator. Visual recognition is enabled by achieving adequate contrast between the AtoN light source and background light. Therefore, the performance measures can be formulated through the amount of differences between these two lights. For simplification, this approach is based on the values of the human factor suggested by International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA. Performance measures for AtoN placement can be evaluated through AtoN Simulator, which has been being developed by KIOST/KRISO in Korea and has been launched by Korea National Research Program. Simulations for evaluation are carried out at waterway in Busan port in Korea.

  8. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    Science.gov (United States)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  9. Sea wind parameters retrieval using Y-configured Doppler navigation system data. Performance and accuracy

    Science.gov (United States)

    Khachaturian, A. B.; Nekrasov, A. V.; Bogachev, M. I.

    2018-05-01

    The authors report the results of the computer simulations of the performance and accuracy of the sea wind speed and direction retrieval. The analyzed measurements over the sea surface are made by the airborne microwave Doppler navigation system (DNS) with three Y-configured beams operated as a scatterometer enhancing its functionality. Single- and double-stage wind measurement procedures are proposed and recommendations for their implementation are described.

  10. Positioning performance improvements with European multiple-frequency satellite navigation - Galileo

    Science.gov (United States)

    Ji, Shengyue

    2008-10-01

    The rapid development of Global Positioning System has demonstrated the advantages of satellite based navigation systems. In near future, there will be a number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation systems. Undoubtedly, the new GNSS systems will significantly improve navigation performance over current GPS, with a better satellite coverage and multiple satellite signal bands. In this dissertation, the positioning performance improvement of new GNSS has been investigated based on both theoretical analysis and numerical study. First of all, the navigation performance of new GNSS systems has been analyzed, particularly for urban applications. The study has demonstrated that Receiver Autonomous Integrity Monitoring (RAIM) performance can be significantly improved with multiple satellite constellations, although the position accuracy improvement is limited. Based on a three-dimensional urban building model in Hong Kong streets, it is found that positioning availability is still very low in high-rising urban areas, even with three GNSS systems. On the other hand, the discontinuity of navigation solutions is significantly reduced with the combined constellations. Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS positioning, with high accuracy. Secondly, the ambiguity resolution performance has been investigated with Galileo multiple frequency band signals. The ambiguity resolution performance of three different algorithms is compared, including CAR, ILS and improved CAR methods (a new method proposed in this study). For short baselines, with four frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). For long baselines (up to 800 km), the integer ambiguity can be determined within 1 min on average. Ambiguity

  11. Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals

    Science.gov (United States)

    Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy

    2013-01-01

    NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.

  12. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    Science.gov (United States)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    GPS (Global Positioning System) Space Service Volume (SSV) signal environment is from 3,000-36,000 kilometers altitude. Current SSV specifications only capture performance provided by signals transmitted within 23.5(L1) or 26(L2-L5) off-nadir angle. Recent on-orbit data lessons learned show significant PNT (Positioning, Navigation and Timing) performance improvements when the full aggregate signal is used. Numerous military civil operational missions in High Geosynchronous Earth Orbit (HEOGEO) utilize the full signal to enhance vehicle PNT performance

  13. Performance Analysis of Network-RTK Techniques for Drone Navigation considering Ionospheric Conditions

    Directory of Open Access Journals (Sweden)

    Tae-Suk Bae

    2018-01-01

    Full Text Available Recently, an accurate positioning has become the kernel of autonomous navigation with the rapid growth of drones including mapping purpose. The Network-based Real-time Kinematic (NRTK system was predominantly used for precision positioning in many fields such as surveying and agriculture, mostly in static mode or low-speed operation. The NRTK positioning, in general, shows much better performance with the fixed integer ambiguities. However, the success rate of the ambiguity resolution is highly dependent on the ionospheric condition and the surrounding environment of Global Navigation Satellite System (GNSS positioning, which particularly corresponds to the low-cost GNSS receivers. We analyzed the effects of the ionospheric conditions on the GNSS NRTK, as well as the possibility of applying the mobile NRTK to drone navigation for mapping. Two NRTK systems in operation were analyzed during a period of high ionospheric conditions, and the accuracy and the performance were compared for several operational cases. The test results show that a submeter accuracy is available even with float ambiguity under a favorable condition (i.e., visibility of the satellites as well as stable ionosphere. We still need to consider how to deal with ionospheric disturbances which may prevent NRTK positioning.

  14. Navigation performance in virtual environments varies with fractal dimension of landscape.

    Science.gov (United States)

    Juliani, Arthur W; Bies, Alexander J; Boydston, Cooper R; Taylor, Richard P; Sereno, Margaret E

    2016-09-01

    Fractal geometry has been used to describe natural and built environments, but has yet to be studied in navigational research. In order to establish a relationship between the fractal dimension (D) of a natural environment and humans' ability to navigate such spaces, we conducted two experiments using virtual environments that simulate the fractal properties of nature. In Experiment 1, participants completed a goal-driven search task either with or without a map in landscapes that varied in D. In Experiment 2, participants completed a map-reading and location-judgment task in separate sets of fractal landscapes. In both experiments, task performance was highest at the low-to-mid range of D, which was previously reported as most preferred and discriminable in studies of fractal aesthetics and discrimination, respectively, supporting a theory of visual fluency. The applicability of these findings to architecture, urban planning, and the general design of constructed spaces is discussed.

  15. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Science.gov (United States)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  16. Optimal Spatial Subdivision method for improving geometry navigation performance in Monte Carlo particle transport simulation

    International Nuclear Information System (INIS)

    Chen, Zhenping; Song, Jing; Zheng, Huaqing; Wu, Bin; Hu, Liqin

    2015-01-01

    Highlights: • The subdivision combines both advantages of uniform and non-uniform schemes. • The grid models were proved to be more efficient than traditional CSG models. • Monte Carlo simulation performance was enhanced by Optimal Spatial Subdivision. • Efficiency gains were obtained for realistic whole reactor core models. - Abstract: Geometry navigation is one of the key aspects of dominating Monte Carlo particle transport simulation performance for large-scale whole reactor models. In such cases, spatial subdivision is an easily-established and high-potential method to improve the run-time performance. In this study, a dedicated method, named Optimal Spatial Subdivision, is proposed for generating numerically optimal spatial grid models, which are demonstrated to be more efficient for geometry navigation than traditional Constructive Solid Geometry (CSG) models. The method uses a recursive subdivision algorithm to subdivide a CSG model into non-overlapping grids, which are labeled as totally or partially occupied, or not occupied at all, by CSG objects. The most important point is that, at each stage of subdivision, a conception of quality factor based on a cost estimation function is derived to evaluate the qualities of the subdivision schemes. Only the scheme with optimal quality factor will be chosen as the final subdivision strategy for generating the grid model. Eventually, the model built with the optimal quality factor will be efficient for Monte Carlo particle transport simulation. The method has been implemented and integrated into the Super Monte Carlo program SuperMC developed by FDS Team. Testing cases were used to highlight the performance gains that could be achieved. Results showed that Monte Carlo simulation runtime could be reduced significantly when using the new method, even as cases reached whole reactor core model sizes

  17. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    Science.gov (United States)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  18. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    Directory of Open Access Journals (Sweden)

    Amedeo Rodi Vetrella

    2016-12-01

    Full Text Available Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS receivers and Micro-Electro-Mechanical Systems (MEMS-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  19. Performance comparison of novel WNN approach with RBFNN in navigation of autonomous mobile robotic agent

    Directory of Open Access Journals (Sweden)

    Ghosh Saradindu

    2016-01-01

    Full Text Available This paper addresses the performance comparison of Radial Basis Function Neural Network (RBFNN with novel Wavelet Neural Network (WNN of designing intelligent controllers for path planning of mobile robot in an unknown environment. In the proposed WNN, different types of activation functions such as Mexican Hat, Gaussian and Morlet wavelet functions are used in the hidden nodes. The neural networks are trained by an intelligent supervised learning technique so that the robot makes a collision-free path in the unknown environment during navigation from different starting points to targets/goals. The efficiency of two algorithms is compared using some MATLAB simulations and experimental setup with Arduino Mega 2560 microcontroller in terms of path length and time taken to reach the target as an indicator for the accuracy of the network models.

  20. Novel cemented cup-holding technique while performing total hip arthroplasty with navigation system

    OpenAIRE

    Hirokazu Takai, MD; Tomoki Takahashi, MD, PhD

    2017-01-01

    Recently, navigation systems have been more widely utilized in total hip arthroplasty. However, almost all of these systems have been developed for cementless cups. In the case of cemented total hip arthroplasty using a navigation system, a special-ordered cemented holder is needed. We propose a novel cemented cup-holding technique for navigation systems using readily available articles. We combine a cementless cup holder with an inverted cementless trial cup. The resulting apparatus is used ...

  1. Novel cemented cup-holding technique while performing total hip arthroplasty with navigation system.

    Science.gov (United States)

    Takai, Hirokazu; Takahashi, Tomoki

    2017-09-01

    Recently, navigation systems have been more widely utilized in total hip arthroplasty. However, almost all of these systems have been developed for cementless cups. In the case of cemented total hip arthroplasty using a navigation system, a special-ordered cemented holder is needed. We propose a novel cemented cup-holding technique for navigation systems using readily available articles. We combine a cementless cup holder with an inverted cementless trial cup. The resulting apparatus is used as a cemented cup holder. The upside-down cup-holding technique is useful and permits cemented cup users to utilize a navigation system for placement of the acetabular component.

  2. Novel cemented cup-holding technique while performing total hip arthroplasty with navigation system

    Directory of Open Access Journals (Sweden)

    Hirokazu Takai, MD

    2017-09-01

    Full Text Available Recently, navigation systems have been more widely utilized in total hip arthroplasty. However, almost all of these systems have been developed for cementless cups. In the case of cemented total hip arthroplasty using a navigation system, a special-ordered cemented holder is needed. We propose a novel cemented cup-holding technique for navigation systems using readily available articles. We combine a cementless cup holder with an inverted cementless trial cup. The resulting apparatus is used as a cemented cup holder. The upside-down cup-holding technique is useful and permits cemented cup users to utilize a navigation system for placement of the acetabular component.

  3. Evaluation of the Terminal Area Precision Scheduling and Spacing System for Performance-Based Navigation Arrivals

    Science.gov (United States)

    Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy

    2013-01-01

    The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and

  4. Applying Required Navigation Performance Concept for Traffic Management of Small Unmanned Aircraft Systems

    Science.gov (United States)

    Jung, Jaewoo; D'Souza, Sarah N.; Johnson, Marcus A.; Ishihara, Abraham K.; Modi, Hemil C.; Nikaido, Ben; Hasseeb, Hashmatullah

    2016-01-01

    In anticipation of a rapid increase in the number of civil Unmanned Aircraft System(UAS) operations, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that will investigate airspace integration requirements for enabling safe, efficient low-altitude operations. One aspect a UTM system must consider is the correlation between UAS operations (such as vehicles, operation areas and durations), UAS performance requirements, and the risk to people and property in the operational area. This paper investigates the potential application of the International Civil Aviation Organizations (ICAO) Required Navigation Performance (RNP) concept to relate operational risk with trajectory conformance requirements. The approach is to first define a method to quantify operational risk and then define the RNP level requirement as a function of the operational risk. Greater operational risk corresponds to more accurate RNP level, or smaller tolerable Total System Error (TSE). Data from 19 small UAS flights are used to develop and validate a formula that defines this relationship. An approach to assessing UAS-RNP conformance capability using vehicle modeling and wind field simulation is developed to investigate how this formula may be applied in a future UTM system. The results indicate the modeled vehicles flight path is robust to the simulated wind variation, and it can meet RNP level requirements calculated by the formula. The results also indicate how vehicle-modeling fidelity may be improved to adequately verify assessed RNP level.

  5. A virtual water maze revisited: Two-year changes in navigation performance and their neural correlates in healthy adults.

    Science.gov (United States)

    Daugherty, Ana M; Raz, Naftali

    2017-02-01

    Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18-77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Navigation performance in virtual environments varies with fractal dimension of landscape

    OpenAIRE

    Juliani, Arthur W.; Bies, Alexander J.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.

    2016-01-01

    Fractal geometry has been used to describe natural and built environments, but has yet to be studied in navigational research. In order to establish a relationship between the fractal dimension (D) of a natural environment and humans’ ability to navigate such spaces, we conducted two experiments using virtual environments that simulate the fractal properties of nature. In Experiment 1, participants completed a goal-driven search task either with or without a map in landscapes that varied in D...

  7. Pilot performance: assessing how scan patterns & navigational assessments vary by flight expertise.

    Science.gov (United States)

    Yang, Ji Hyun; Kennedy, Quinn; Sullivan, Joseph; Fricker, Ronald D

    2013-02-01

    Helicopter overland navigation is a cognitively complex task that requires continuous monitoring of system and environmental parameters and many hours of training to master. This study investigated the effect of expertise on pilots' gaze measurements, navigation accuracy, and subjective assessment of their navigation accuracy in overland navigation on easy and difficult routes. A simulated overland task was completed by 12 military officers who ranged in flight experience as measured by total flight hours (TFH). They first studied a map of a route that included both easy and difficult route sections, and then had to 'fly' this simulated route in a fixed-base helicopter simulator. They also completed pre-task estimations and post-task assessments of the navigational difficulty of the transit to each waypoint in the route. Their scan pattern was tracked via eye tracking systems, which captured both the subject's out-the-window (OTW) and topographical map scan data. TFH was not associated with navigation accuracy or root mean square (RMS) error for any route section. For the easy routes, experts spent less time scanning out the window (p = 0.61) and had shorter OTW dwell (p = -0.66). For the difficult routes, experts appeared to slow down their scan by spending as much time scanning out the window as the novices while also having fewer Map fixations (p = -0.65) and shorter OTW dwell (p = -0.69). However, TFH was not significantly correlated with more accurate estimates of route difficulty. This study found that TFH did not predict navigation accuracy or subjective assessment, but was correlated with some gaze parameters.

  8. The effects of mental representation on performance in a navigation task

    Science.gov (United States)

    Barshi, Immanuel

    Most aviation accidents and incidents are attributed to human error. Among the various kinds of human errors found in aviation, problems in communication constitute a large majority. The purpose of this study is to understand some of the cognitive factors influencing these misunderstandings so they can be prevented. Five experiments tested individuals' ability to follow verbal instructions pertaining to navigating in space. The experiments simulated the kinds of instructions pilots receive from air traffic controllers. All five experiments show the importance of the mental representation of the task over and above the short-term memory demands. The results of Experiment 1 show that the number of instructional units is a critical factor, rather than the number of words per unit. The results of Experiment 2 show that when moving in a three dimensional space, it does not matter whether movement is required along all three dimensions or along only two of the three dimensions. The results of Experiment 3 show that individuals perform much better when they have to maintain a two-dimensional mental representation than when they have to maintain a three-dimensional mental representation. What is more, it shows that even immediate verbatim recall is affected by the representation of the situation to which the language input applies. The results of Experiments 4 and 5 show that the two-dimensional advantage found in Experiment 3 is indeed an aspect of the mental representation, rather than a result of translating a visual display into a mental representation. These results also suggest that three units is the capacity limit of short-term memory. Thus, to minimize misunderstandings due to message length, air traffic controllers are advised to limit their messages to no more than three instructions at a time. In addition to ATC procedures, this research has practical implications for computer/visual displays, and for training environments.

  9. Quantifying the impact on navigation performance in visually impaired: Auditory information loss versus information gain enabled through electronic travel aids.

    Directory of Open Access Journals (Sweden)

    Alex Kreilinger

    Full Text Available This study's purpose was to analyze and quantify the impact of auditory information loss versus information gain provided by electronic travel aids (ETAs on navigation performance in people with low vision. Navigation performance of ten subjects (age: 54.9±11.2 years with visual acuities >1.0 LogMAR was assessed via the Graz Mobility Test (GMT. Subjects passed through a maze in three different modalities: 'Normal' with visual and auditory information available, 'Auditory Information Loss' with artificially reduced hearing (leaving only visual information, and 'ETA' with a vibrating ETA based on ultrasonic waves, thereby facilitating visual, auditory, and tactile information. Main performance measures comprised passage time and number of contacts. Additionally, head tracking was used to relate head movements to motion direction. When comparing 'Auditory Information Loss' to 'Normal', subjects needed significantly more time (p<0.001, made more contacts (p<0.001, had higher relative viewing angles (p = 0.002, and a higher percentage of orientation losses (p = 0.011. The only significant difference when comparing 'ETA' to 'Normal' was a reduced number of contacts (p<0.001. Our study provides objective, quantifiable measures of the impact of reduced hearing on the navigation performance in low vision subjects. Significant effects of 'Auditory Information Loss' were found for all measures; for example, passage time increased by 17.4%. These findings show that low vision subjects rely on auditory information for navigation. In contrast, the impact of the ETA was not significant but further analysis of head movements revealed two different coping strategies: half of the subjects used the ETA to increase speed, whereas the other half aimed at avoiding contacts.

  10. Expertise on Cognitive Workloads and Performance During Navigation and Target Detection

    Science.gov (United States)

    2012-03-01

    Examples may include sport orienteering, land navigation exercises, boy/girl scouts etc.)?      No Related Experience Very Limited...measure heart rate, HRV , and respiration? Luton, UK: Royal Aircraft Establishment Bedford. Shepherd, A., & Stammers, R. B. (2005). Task Analysis. In

  11. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  12. Improving Real World Performance of Vision Aided Navigation in a Flight Environment

    Science.gov (United States)

    2016-09-15

    alternatives for military systems by leveraging information from non-navigation sen- sors that are already deployed on fielded platforms. The motivation of...plane x and y residuals are provided in the title. Each color represents residuals from a specific image. . . . . . . . . . . . . 97 xi Figure Page 29...are provided in the title. Each color represents residuals from a specific image. . . . . . . . . . . . . 98 30. Illustration of landmark database

  13. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    Science.gov (United States)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  14. Comparison of CT characteristics of extravertebral cement leakages after vertebroplasty performed by different navigation and injection techniques

    International Nuclear Information System (INIS)

    Kaso, G.; Horvath, Z.; Doczi, T.; Szenohradszky, K.; Sandor, J.

    2008-01-01

    This study was intended to assess the results of post-operative CT scans in three groups of patients following percutaneous vertebroplasty (VP) using different navigation and injection methods, in an attempt to explain the radiological characteristics of extravertebral cement leakage with relation to needle placement and focused on the ventral epidural accumulation of bone cement. Furthermore, we have suggested a morphological (and functional) classification of the types of cement leakage. Between July 2001 and February 2005, 123 percutaneous VP procedures were performed during 75 sessions in 65 patients for treatment of painful osteoporotic vertebral body compression fractures. These included: group 1: 28 patients, 33 sessions; 50 right sided unilateral VP under fluoroscopic control with central position of the tip of the needle within the bone marrow. Group 2: 27 patients, 28 sessions; 50 bilateral VP under fluoroscopic control with separate cement injections into both 'hemivertebrae'. Group 3: 14 patients, 14 sessions; 23 bilateral VP navigated by frameless stereotaxy (neuronavigation). Needles were positioned strictly into the lateral thirds of the vertebral bodies. Leakages were classified as epidural, foraminal, intradiscal, venous paravertebral, compact extravertebral on the post-operative CT scans, and their frequency was compared in relation to the navigation method and the position of the tip of the needle. Group 1: extravertebral cement was detected in 23 patients (82 %), and in 35 (70 %) of the 50 vertebrae treated (ventral epidural: 23 vertebrae = 46 %; intradiscal: 12 vertebrae = 24 %; venous paravertebral: 8 vertebrae = 16 %; intraforaminal: 7 vertebrae = 14 %; and compact extravertebral: 3 vertebrae = 6 %). Group 2: extravertebral cement was detected in 20 patients (74 %), and in 38 (76 %) of the 50 vertebrae treated (ventral epidural: 12 vertebrae = 24 %; intradiscal: 12 vertebrae = 24 %; venous paravertebral: 9 vertebrae = 18 %; and foraminal: 1

  15. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    Science.gov (United States)

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  16. Structural hippocampal anomalies in a schizophrenia population correlate with navigation performance on a wayfinding task.

    Science.gov (United States)

    Ledoux, Andrée-Anne; Boyer, Patrice; Phillips, Jennifer L; Labelle, Alain; Smith, Andra; Bohbot, Véronique D

    2014-01-01

    Episodic memory, related to the hippocampus, has been found to be impaired in schizophrenia. Further, hippocampal anomalies have also been observed in schizophrenia. This study investigated whether average hippocampal gray matter (GM) would differentiate performance on a hippocampus-dependent memory task in patients with schizophrenia and healthy controls. Twenty-one patients with schizophrenia and 22 control participants were scanned with an MRI while being tested on a wayfinding task in a virtual town (e.g., find the grocery store from the school). Regressions were performed for both groups individually and together using GM and performance on the wayfinding task. Results indicate that controls successfully completed the task more often than patients, took less time, and made fewer errors. Additionally, controls had significantly more hippocampal GM than patients. Poor performance was associated with a GM decrease in the right hippocampus for both groups. Within group regressions found an association between right hippocampi GM and performance in controls and an association between the left hippocampi GM and performance in patients. A second analysis revealed that different anatomical GM regions, known to be associated with the hippocampus, such as the parahippocampal cortex, amygdala, medial, and orbital prefrontal cortices, covaried with the hippocampus in the control group. Interestingly, the cuneus and cingulate gyrus also covaried with the hippocampus in the patient group but the orbital frontal cortex did not, supporting the hypothesis of impaired connectivity between the hippocampus and the frontal cortex in schizophrenia. These results present important implications for creating intervention programs aimed at measuring functional and structural changes in the hippocampus in schizophrenia.

  17. Structural hippocampal anomalies in a schizophrenia population correlate with navigation performance on a wayfinding task

    Directory of Open Access Journals (Sweden)

    Andrée-Anne eLedoux

    2014-03-01

    Full Text Available Episodic memory, related to the hippocampus, has been found to be impaired in schizophrenia. Further, hippocampal anomalies have also been observed in schizophrenia. This study investigated whether average hippocampal grey matter (GM would differentiate performance on a hippocampus-dependent memory task in patients with schizophrenia and healthy controls. Twenty-one patients with schizophrenia and twenty-two control participants were scanned with an MRI while being tested on a wayfinding task in a virtual town (e.g., find the grocery store from the school. Regressions were performed for both groups individually and together using GM and performance on the wayfinding task. Results indicate that controls successfully completed the task more often than patients, took less time, and made fewer errors. Additionally, controls had significantly more hippocampal GM than patients. Poor performance was associated with a GM decrease in the right hippocampus for both groups. Within group regressions found an association between right hippocampi GM and performance in controls and an association between the left hippocampi GM and performance in patients. A second analysis revealed that different anatomical GM regions, known to be associated with the hippocampus, such as the parahippocampal cortex, amygdala, medial and orbital prefrontal cortices, covaried with the hippocampus in the control group. Interestingly, the cuneus and cingulate gyrus also covaried with the hippocampus in the patient group but the orbital frontal cortex did not, supporting the hypothesis of impaired connectivity between the hippocampus and the frontal cortex in schizophrenia. These results present important implications for creating intervention programs aimed at measuring functional and structural changes in the hippocampus in schizophrenia.

  18. Multitarget Approaches to Robust Navigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance, stability, and statistical consistency of a vehicle's navigation algorithm are vitally important to the success and safety of its mission....

  19. 77 FR 5615 - First Meeting: RTCA Special Committee 227, Standards of Navigation Performance

    Science.gov (United States)

    2012-02-03

    ... Performance--Background/History Review of SC 181 Products and Intended Applications Walk through of DO-236B... Responsibilities Any Other Business Establish Agenda for Next Meeting Date and Place of Next Meeting Adjourn... Washington, DC, on January 30, 2012. John Raper, Manager, Business Operations Branch, Federal Aviation...

  20. What Can Theatre Do about the Refugee Crisis? Enacting Commitment and Navigating Complicity in Performative Interventions

    Science.gov (United States)

    Marschall, Anika

    2018-01-01

    This article argues that in a society transformed by an increasing bureaucratic nexus of migration, artistic responses to political crises are particularly effective when working with institutions. To probe the prevalent discourse on the efficacy of performance art, the article interrogates "Grandhotel Cosmopolis" through a lens of…

  1. Experimental analysis of the performance of machine learning algorithms in the classification of navigation accident records

    Directory of Open Access Journals (Sweden)

    REIS, M V. S. de A.

    2017-06-01

    Full Text Available This paper aims to evaluate the use of machine learning techniques in a database of marine accidents. We analyzed and evaluated the main causes and types of marine accidents in the Northern Fluminense region. For this, machine learning techniques were used. The study showed that the modeling can be done in a satisfactory manner using different configurations of classification algorithms, varying the activation functions and training parameters. The SMO (Sequential Minimal Optimization algorithm showed the best performance result.

  2. Virtual navigation performance: the relationship to field of view and prior video gaming experience.

    Science.gov (United States)

    Richardson, Anthony E; Collaer, Marcia L

    2011-04-01

    Two experiments examined whether learning a virtual environment was influenced by field of view and how it related to prior video gaming experience. In the first experiment, participants (42 men, 39 women; M age = 19.5 yr., SD = 1.8) performed worse on a spatial orientation task displayed with a narrow field of view in comparison to medium and wide field-of-view displays. Counter to initial hypotheses, wide field-of-view displays did not improve performance over medium displays, and this was replicated in a second experiment (30 men, 30 women; M age = 20.4 yr., SD = 1.9) presenting a more complex learning environment. Self-reported video gaming experience correlated with several spatial tasks: virtual environment pointing and tests of Judgment of Line Angle and Position, mental rotation, and Useful Field of View (with correlations between .31 and .45). When prior video gaming experience was included as a covariate, sex differences in spatial tasks disappeared.

  3. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot

    Directory of Open Access Journals (Sweden)

    Emmanuele eTidoni

    2014-06-01

    Full Text Available Advancement in brain computer interfaces (BCI technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid’s walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI’s user and help in the feeling of control over it. Our results shed light on the possibility to increase robot’s control through the combination of multisensory feedback to a BCI user.

  4. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    Science.gov (United States)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  5. Ecodesign Navigator

    DEFF Research Database (Denmark)

    Simon, M; Evans, S.; McAloone, Timothy Charles

    The Ecodesign Navigator is the product of a three-year research project called DEEDS - DEsign for Environment Decision Support. The initial partners were Manchester Metropolitan University, Cranfield University, Engineering 6 Physical Sciences Resaech Council, Electrolux, ICL, and the Industry...

  6. Performance-related increases in hippocampal N-acetylaspartate (NAA) induced by spatial navigation training are restricted to BDNF Val homozygotes.

    Science.gov (United States)

    Lövdén, Martin; Schaefer, Sabine; Noack, Hannes; Kanowski, Martin; Kaufmann, Jörn; Tempelmann, Claus; Bodammer, Nils Christian; Kühn, Simone; Heinze, Hans-Jochen; Lindenberger, Ulman; Düzel, Emrah; Bäckman, Lars

    2011-06-01

    Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.

  7. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  8. Surgical Navigation

    DEFF Research Database (Denmark)

    Azarmehr, Iman; Stokbro, Kasper; Bell, R. Bryan

    2017-01-01

    Purpose: This systematic review investigates the most common indications, treatments, and outcomes of surgical navigation (SN) published from 2010 to 2015. The evolution of SN and its application in oral and maxillofacial surgery have rapidly developed over recent years, and therapeutic indicatio...

  9. Responsibility navigator

    NARCIS (Netherlands)

    Kuhlmann, Stefan; Edler, Jakob; Ordonez Matamoros, Hector Gonzalo; Randles, Sally; Walhout, Bart; Walhout, Bart; Gough, Clair; Lindner, Ralf; Lindner, Ralf; Kuhlmann, Stefan; Randles, Sally; Bedsted, Bjorn; Gorgoni, Guido; Griessler, Erich; Loconto, Allison; Mejlgaard, Niels

    2016-01-01

    Research and innovation activities need to become more responsive to societal challenges and concerns. The Responsibility Navigator, developed in the Res-AGorA project, supports decision-makers to govern such activities towards more conscious responsibility. What is considered “responsible” will

  10. Cislunar navigation

    Science.gov (United States)

    Cesarone, R. J.; Burke, J. D.; Hastrup, R. C.; Lo, M. W.

    2003-01-01

    In the future, navigation and communication in Earth-Moon space and on the Moon will differ from past practice due to evolving technology and new requirements. Here we describe likely requirements, discuss options for meeting them, and advocate steps that can be taken now to begin building the navcom systems needed in coming years for exploring and using the moon.

  11. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task

    OpenAIRE

    Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P.

    2017-01-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for C...

  12. Effects of transionospheric signal decorrelation on Global Navigation Satellite Systems (GNSS) performance studied from irregularity dynamics around the northern crest of the EIA

    Science.gov (United States)

    Das, T.; Roy, B.; Paul, A.

    2014-10-01

    Transionospheric satellite navigation links operate primarily at L band and are frequently subject to severe degradation of performances arising out of ionospheric irregularities. Various characteristic features of equatorial ionospheric irregularity bubbles like the drift velocity, characteristic velocity, decorrelation time, and decorrelation distance can be determined using spaced aerial measurements at VHF. These parameters measured at VHF from a station Calcutta situated near the northern crest of the Equatorial Ionization Anomaly (EIA) in the geophysically sensitive Indian longitude sector have been correlated with L band scintillation indices and GPS position accuracy parameters for identifying possible proxies to L band scintillations. Good correspondences have been observed between decorrelation times and distances at VHF with GPS S4 and Position Dilution of Precision during periods of GPS scintillations (S4 > 0.3) for February-April 2011, August-October 2011, and February-April 2012. A functional relation has been developed between irregularity drift velocity measured at VHF and S4 at L band during February-April 2011, and validation of measured S4 and predicted values performed during August-October 2011 and February-April 2012. Significant improvement in L band scintillation prediction and consequent navigational accuracy will result using such relations derived from VHF irregularity measurements which are much simpler and inexpensive.

  13. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  14. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Science.gov (United States)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  15. Navigation Lights - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  16. Navigating to new frontiers in behavioral neuroscience: Traditional neuropsychological tests predict human performance on a rodent-inspired radial-arm maze

    Directory of Open Access Journals (Sweden)

    Sarah E. Mennenga

    2014-09-01

    Full Text Available We constructed an 11-arm, walk-through, human radial-arm maze (HRAM as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM and standard human neuropsychological and cognitive tests. We show that the HRAM is a useful instrument to examine working memory ability, explore the relationships between rodent and human memory and cognition models, and evaluate factors that contribute to human navigational ability. One-hundred-and-fifty-seven participants were tested on the HRAM, and scores were compared to performance on a standard cognitive battery focused on episodic memory, working memory capacity, and visuospatial ability. We found that errors on the HRAM increased as working memory demand became elevated, similar to the pattern typically seen in rodents, and that for this task, performance appears similar to Miller’s classic description of human working memory capacity of 7±2 items. Regression analysis revealed that measures of working memory capacity and visuospatial ability accounted for a large proportion of variance in HRAM scores, while measures of episodic memory and general intelligence did not serve as significant predictors of HRAM performance. We present the HRAM as a novel instrument for measuring navigational behavior in humans, as is traditionally done in basic science studies evaluating rodent learning and memory, thus providing a useful tool to help connect and translate between human and rodent models of cognitive functioning.

  17. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task.

    Science.gov (United States)

    Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P

    2017-09-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water-maze acquisition and in the open field, males tended to perform less reliably in the water-maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water-maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water-maze are used in preclinical research. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.

  18. Similar reliability and equivalent performance of female and male mice in the open field and water‐maze place navigation task

    Science.gov (United States)

    Fritz, Ann‐Kristina; Amrein, Irmgard

    2017-01-01

    Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water‐maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water‐maze acquisition and in the open field, males tended to perform less reliably in the water‐maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water‐maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water‐maze are used in preclinical research. PMID:28654717

  19. Towards Safe Navigation by Formalizing Navigation Rules

    Directory of Open Access Journals (Sweden)

    Arne Kreutzmann

    2013-06-01

    Full Text Available One crucial aspect of safe navigation is to obey all navigation regulations applicable, in particular the collision regulations issued by the International Maritime Organization (IMO Colregs. Therefore, decision support systems for navigation need to respect Colregs and this feature should be verifiably correct. We tackle compliancy of navigation regulations from a perspective of software verification. One common approach is to use formal logic, but it requires to bridge a wide gap between navigation concepts and simple logic. We introduce a novel domain specification language based on a spatio-temporal logic that allows us to overcome this gap. We are able to capture complex navigation concepts in an easily comprehensible representation that can direcly be utilized by various bridge systems and that allows for software verification.

  20. Effects of the juvenile hormone analogue methoprene on rate of behavioural development, foraging performance and navigation in honey bees (Apis mellifera).

    Science.gov (United States)

    Chang, Lun-Hsien; Barron, Andrew B; Cheng, Ken

    2015-06-01

    Worker honey bees change roles as they age as part of a hormonally regulated process of behavioural development that ends with a specialised foraging phase. The rate of behavioural development is highly plastic and responsive to changes in colony condition such that forager losses, disease or nutritional stresses accelerate behavioural development and cause an early onset of foraging in workers. It is not clear to what degree the behavioural development of workers can be accelerated without there being a cost in terms of reduced foraging performance. Here, we compared the foraging performance of bees induced to accelerate their behavioural development by treatment with the juvenile hormone analogue methoprene with that of controls that developed at a normal rate. Methoprene treatment accelerated the onset of both flight and foraging behaviour in workers, but it also reduced foraging span, the total time spent foraging and the number of completed foraging trips. Methoprene treatment did not alter performance in a short-range navigation task, however. These data indicate a limitation to the physiological plasticity of bees, and a trade off between forager performance and the speed at which bees begin foraging. Chronic stressors will be expected to reduce the mean age of the foraging force, and therefore also reduce the efficiency of the foraging force. This interaction may explain why honey bee colonies react to sustained stressors with non-linear population decline. © 2015. Published by The Company of Biologists Ltd.

  1. E-navigation Services for Non-SOLAS Ships

    Directory of Open Access Journals (Sweden)

    Kwang An

    2016-06-01

    Full Text Available It is clearly understood that the main benefits of e-navigation are improved safety and better protection of the environment through the promotion of standards of navigational system and a reduction in human error. In order to meet the expectations on the benefit of e-navigation, e-navigation services should be more focused on non-SOLAS ships. The purpose of this paper is to present necessary e-navigation services for non-SOLAS ships in order to prevent marine accidents in Korean coastal waters. To meet the objectives of the study, an examination on the present navigation and communication system for non-SOLAS ships was performed. Based on the IMO's e-navigation Strategy Implementation Plan (SIP and Korea's national SIP for e-navigation, future trends for the development and implementation of e-navigation were discussed. Consequently, Electronic Navigational Chart (ENC download and ENC up-date service, ENC streaming service, route support service and communication support service based on Maritime Cloud were presented as essential e-navigation services for non-SOLAS ships. This study will help for the planning and designing of the Korean e-navigation system. It is expected that the further researches on the navigation support systems based on e-navigation will be carried out in order to implement the essential e-navigation services for non-SOLAS ships.

  2. Usability Testing of Two Ambulatory EHR Navigators.

    Science.gov (United States)

    Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B

    2016-01-01

    Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.

  3. Volumetrically-Derived Global Navigation Satellite System Performance Assessment from the Earths Surface through the Terrestrial Service Volume and the Space Service Volume

    Science.gov (United States)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user from the Earth's surface through the Terrestrial Service Volume (TSV) to the edge of the Space Service Volume (SSV), when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative was recently expanded to compare nadir-facing and zenith-facing user hemispherical antenna coverage with omnidirectional antenna coverage at different distances of 8,000 km altitude and 36,000 km altitude. This report summarizes the performance using these antenna coverage techniques at distances ranging from 100 km altitude to 36,000 km to be all encompassing, as well as the volumetrically-derived system availability metrics.

  4. A Semantic Navigation Model for Video Games

    Science.gov (United States)

    van Driel, Leonard; Bidarra, Rafael

    Navigational performance of artificial intelligence (AI) characters in computer games is gaining an increasingly important role in the perception of their behavior. While recent games successfully solve some complex navigation problems, there is little known or documented on the underlying approaches, often resembling a primitive conglomerate of ad-hoc algorithms for specific situations.

  5. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  6. Free-breathing pediatric chest MRI: Performance of self-navigated golden-angle ordered conical ultrashort echo time acquisition.

    Science.gov (United States)

    Zucker, Evan J; Cheng, Joseph Y; Haldipur, Anshul; Carl, Michael; Vasanawala, Shreyas S

    2018-01-01

    To assess the feasibility and performance of conical k-space trajectory free-breathing ultrashort echo time (UTE) chest magnetic resonance imaging (MRI) versus four-dimensional (4D) flow and effects of 50% data subsampling and soft-gated motion correction. Thirty-two consecutive children who underwent both 4D flow and UTE ferumoxytol-enhanced chest MR (mean age: 5.4 years, range: 6 days to 15.7 years) in one 3T exam were recruited. From UTE k-space data, three image sets were reconstructed: 1) one with all data, 2) one using the first 50% of data, and 3) a final set with soft-gating motion correction, leveraging the signal magnitude immediately after each excitation. Two radiologists in blinded fashion independently scored image quality of anatomical landmarks on a 5-point scale. Ratings were compared using Wilcoxon rank-sum, Wilcoxon signed-ranks, and Kruskal-Wallis tests. Interobserver agreement was assessed with the intraclass correlation coefficient (ICC). For fully sampled UTE, mean scores for all structures were ≥4 (good-excellent). Full UTE surpassed 4D flow for lungs and airways (P 93% scans for all techniques (P = 0.27). Interobserver agreement was excellent for combined scores (ICC = 0.83). High-quality free-breathing conical UTE chest MR is feasible, surpassing 4D flow for lungs and airways, with equivalent PA visualization. Data subsampling only mildly degraded images, favoring lesser scan times. Soft-gating motion correction overall did not improve image quality. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:200-209. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Comprehension of Navigation Directions

    Science.gov (United States)

    Schneider, Vivian I.; Healy, Alice F.

    2000-01-01

    In an experiment simulating communication between air traffic controllers and pilots, subjects were given navigation instructions varying in length telling them to move in a space represented by grids on a computer screen. The subjects followed the instructions by clicking on the grids in the locations specified. Half of the subjects read the instructions, and half heard them. Half of the subjects in each modality condition repeated back the instructions before following them,and half did not. Performance was worse for the visual than for the auditory modality on the longer messages. Repetition of the instructions generally depressed performance, especially with the longer messages, which required more output than did the shorter messages, and especially with the visual modality, in which phonological recoding from the visual input to the spoken output was necessary. These results are explained in terms of the degrading effects of output interference on memory for instructions.

  8. Gray and White Matter Correlates of Navigational Ability in Humans

    NARCIS (Netherlands)

    Wegman, J.B.T.; Fonteijn, H.M.; Ekert, J. van; Tyborowska, A.B.; Jansen, C.; Janzen, G.

    2014-01-01

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different

  9. Lost in Virtual Space: Studies in Human and Ideal Spatial Navigation

    Science.gov (United States)

    Stankiewicz, Brian J.; Legge, Gordon E.; Mansfield, J. Stephen; Schlicht, Erik J.

    2006-01-01

    The authors describe 3 human spatial navigation experiments that investigate how limitations of perception, memory, uncertainty, and decision strategy affect human spatial navigation performance. To better understand the effect of these variables on human navigation performance, the authors developed an ideal-navigator model for indoor navigation…

  10. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-05-01

    Full Text Available Signals from Global Navigation Satellite Systems (GNSS were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice… can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS.

  11. Fuzzy Logic Controller for Small Satellites Navigation

    National Research Council Canada - National Science Library

    Della Pietra, G; Falzini, S; Colzi, E; Crisconio, M

    2005-01-01

    .... The navigator aims at operating satellites in orbit with a minimum ground support and very good performances, by the adoption of innovative technologies, such as attitude observation GPS, attitude...

  12. Adaptive Landmark-Based Navigation System Using Learning Techniques

    DEFF Research Database (Denmark)

    Zeidan, Bassel; Dasgupta, Sakyasingha; Wörgötter, Florentin

    2014-01-01

    The goal-directed navigational ability of animals is an essential prerequisite for them to survive. They can learn to navigate to a distal goal in a complex environment. During this long-distance navigation, they exploit environmental features, like landmarks, to guide them towards their goal. In...... hexapod robots. As a result, it allows the robots to successfully learn to navigate to distal goals in complex environments.......The goal-directed navigational ability of animals is an essential prerequisite for them to survive. They can learn to navigate to a distal goal in a complex environment. During this long-distance navigation, they exploit environmental features, like landmarks, to guide them towards their goal....... Inspired by this, we develop an adaptive landmark-based navigation system based on sequential reinforcement learning. In addition, correlation-based learning is also integrated into the system to improve learning performance. The proposed system has been applied to simulated simple wheeled and more complex...

  13. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  14. Time and Motion Study of a Community Patient Navigator

    Directory of Open Access Journals (Sweden)

    Sara S. Phillips

    2014-04-01

    Full Text Available Research on patient navigation has focused on validating the utility of navigators by defining their roles and analyzing their effects on patient outcomes, patient satisfaction, and cost effectiveness. Patient navigators are increasingly used outside the research context, and their roles without research responsibilities may look very different. This pilot study captured the activities of a community patient navigator for uninsured women with a positive screening test for breast cancer, using a time and motion approach over a period of three days. We followed the actions of this navigator minute by minute to assess the relative ratios of actions performed and to identify areas for time efficiency improvement to increase direct time with patients. This novel approach depicts the duties of a community patient navigator no longer fettered by navigation logs, research team meetings, surveys, and the consent process. We found that the community patient navigator was able to spend more time with patients in the clinical context relative to performing paperwork or logging communication with patients as a result of her lack of research responsibilities. By illuminating how community patient navigation functions as separate from the research setting, our results will inform future hiring and training of community patient navigators, system design and operations for improving the efficiency and efficacy of navigators, and our understanding of what community patient navigators do in the absence of research responsibilities.

  15. Target relative navigation results from hardware-in-the-loop tests using the sinplex navigation system

    NARCIS (Netherlands)

    Steffes, S.; Dumke, M.; Heise, D.; Sagliano, M.; Samaan, M.; Theil, S.; Boslooper, E.C.; Oosterling, J.A.J.; Schulte, J.; Skaborn, D.; Söderholm, S.; Conticello, S.; Esposito, M.; Yanson, Y.; Monna, B.; Stelwagen, F.; Visee, R.

    2014-01-01

    The goal of the SINPLEX project is to develop an innovative solution to significantly reduce the mass of the navigation subsystem for exploration missions which include landing and/or rendezvous and capture phases. The system mass is reduced while still maintaining good navigation performance as

  16. Navigating Hybridized Language Learning Spaces through Translanguaging Pedagogy: Dual Language Preschool Teachers' Languaging Practices in Support of Emergent Bilingual Children's Performance of Academic Discourse

    Science.gov (United States)

    Gort, Mileidis; Sembiante, Sabrina Francesca

    2015-01-01

    In recent years, there has been a growing interest among policymakers, practitioners, and researchers in early bilingual development and the unique role of the educational setting's language policy in this development. In this article, we describe how one dual language preschool teacher, in partnership with two co-teachers, navigated the tensions…

  17. SLS Model Based Design: A Navigation Perspective

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  18. A Leapfrog Navigation System

    Science.gov (United States)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  19. Restricted Navigation Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  20. Performance Improvement Based Authentication Protocol for Intervessel Traffic Service Data Exchange Format Protocol Based on U-Navigation System in WoT Environment

    Directory of Open Access Journals (Sweden)

    Byunggil Lee

    2014-01-01

    Full Text Available International Association of Lighthouse Authorities (IALA is developing the standard intersystem VTS exchange format (IVEF protocol for exchange of navigation and vessel information between VTS systems and between VTS and vessels. VTS (vessel traffic system is an important marine traffic monitoring system which is designed to improve the safety and efficiency of navigation and the protection of the marine environment. And the demand of Inter-VTS networking has been increased for realization of e-Navigation as shore side collaboration for maritime safety. And IVEF (inter-VTS data exchange format for inter-VTS network has become a hot research topic of VTS system. Currently, the IVEF developed by the International Association of Lighthouse Authorities (IALA does not include any highly trusted certification technology for the connectors. The output of standardization is distributed as the IALA recommendation V-145, and the protocol is implemented with an open source. The IVEF open source, however, is the code used to check the functions of standard protocols. It is too slow to be used in the field and requires a large memory. And the vessel traffic information requires high security since it is highly protected by the countries. Therefore, this paper suggests the authentication protocol to increase the security of the VTS systems using the main certification server and IVEF.

  1. Getting Lost Through Navigation

    DEFF Research Database (Denmark)

    Debus, Michael S.

    2017-01-01

    In this presentation, I argued two things. First, that it is navigation that lies at the core of contemporary (3D-) videogames and that its analysis is of utmost importance. Second, that this analysis needs a more rigorous differentiation between specific acts of navigation. Considering the Oxford...... in videogames is a configurational rather than an interpretational one (Eskelinen 2001). Especially in the case of game spaces, navigation appears to be of importance (Wolf 2009; Flynn 2008). Further, it does not only play a crucial role for the games themselves, but also for the experience of the player...

  2. Inertial navigation without accelerometers

    Science.gov (United States)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  3. Low Cost Integrated Navigation System for Unmanned Vessel

    Directory of Open Access Journals (Sweden)

    Yang Changsong

    2017-11-01

    Full Text Available Large errors of low-cost MEMS inertial measurement unit (MIMU lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS. This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.

  4. Clinical applications of virtual navigation bronchial intervention.

    Science.gov (United States)

    Kajiwara, Naohiro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2018-01-01

    In patients with bronchial tumors, we frequently consider endoscopic treatment as the first treatment of choice. All computed tomography (CT) must satisfy several conditions necessary to analyze images by Synapse Vincent. To select safer and more precise approaches for patients with bronchial tumors, we determined the indications and efficacy of virtual navigation intervention for the treatment of bronchial tumors. We examined the efficacy of virtual navigation bronchial intervention for the treatment of bronchial tumors located at a variety of sites in the tracheobronchial tree using a high-speed 3-dimensional (3D) image analysis system, Synapse Vincent. Constructed images can be utilized to decide on the simulation and interventional strategy as well as for navigation during interventional manipulation in two cases. Synapse Vincent was used to determine the optimal planning of virtual navigation bronchial intervention. Moreover, this system can detect tumor location and alsodepict surrounding tissues, quickly, accurately, and safely. The feasibility and safety of Synapse Vincent in performing useful preoperative simulation and navigation of surgical procedures can lead to safer, more precise, and less invasion for the patient, and makes it easy to construct an image, depending on the purpose, in 5-10 minutes using Synapse Vincent. Moreover, if the lesion is in the parenchyma or sub-bronchial lumen, it helps to perform simulation with virtual skeletal subtraction to estimate potential lesion movement. By using virtual navigation system for simulation, bronchial intervention was performed with no complications safely and precisely. Preoperative simulation using virtual navigation bronchial intervention reduces the surgeon's stress levels, particularly when highly skilled techniques are needed to operate on lesions. This task, including both preoperative simulation and intraoperative navigation, leads to greater safety and precision. These technological instruments

  5. Semiotic resources for navigation

    DEFF Research Database (Denmark)

    Due, Brian Lystgaard; Lange, Simon Bierring

    2018-01-01

    This paper describes two typical semiotic resources blind people use when navigating in urban areas. Everyone makes use of a variety of interpretive semiotic resources and senses when navigating. For sighted individuals, this especially involves sight. Blind people, however, must rely on everything...... else than sight, thereby substituting sight with other modalities and distributing the navigational work to other semiotic resources. Based on a large corpus of fieldwork among blind people in Denmark, undertaking observations, interviews, and video recordings of their naturally occurring practices...... of walking and navigating, this paper shows how two prototypical types of semiotic resources function as helpful cognitive extensions: the guide dog and the white cane. This paper takes its theoretical and methodological perspective from EMCA multimodal interaction analysis....

  6. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  7. Visual Guided Navigation

    National Research Council Canada - National Science Library

    Banks, Martin

    1999-01-01

    .... Similarly, the problem of visual navigation is the recovery of an observer's self-motion with respect to the environment from the moving pattern of light reaching the eyes and the complex of extra...

  8. Tinnitus Patient Navigator

    Science.gov (United States)

    ... Cure About Us Initiatives News & Events Professional Resources Tinnitus Patient Navigator Want to get started on the ... unique and may require a different treatment workflow. Tinnitus Health-Care Providers If you, or someone you ...

  9. Development of field navigation system; Field navigation system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibara, S; Minode, M; Nishioka, K [Daihatsu Motor Co. Ltd., Osaka (Japan)

    1995-04-20

    This paper describes the following matters on a field navigation system developed for the purpose of covering a field of several kilometer square. This system consists of a center system and a vehicle system, and the center system comprises a map information computer and a communication data controlling computer; since the accuracy for a vehicle position detected by a GPS is not sufficient, an attempt of increasing the accuracy of vehicle position detection is made by means of a hybrid system; the hybrid system uses a satellite navigation method of differential system in which the error components in the GPS are transmitted from the center, and also uses a self-contained navigation method which performs an auxiliary function when the accuracy in the GPS has dropped; corrected GPS values, emergency messages to all of the vehicles and data of each vehicle position are communicated by wireless transmission in two ways between the center and vehicles; and accommodation of the map data adopted a system that can respond quickly to any change in roads and facilities. 3 refs., 13 figs., 1 tab.

  10. NFC Internal: An Indoor Navigation System

    Science.gov (United States)

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  11. NFC Internal: An Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Busra Ozdenizci

    2015-03-01

    Full Text Available Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  12. Distributed Cognition in Ship Navigation and Prevention of Collision

    DEFF Research Database (Denmark)

    Koester, Thomas; Hyll, Nikolaj; Stage, Jan

    2009-01-01

    In this paper we investigate how technology can help the navigator to a better performance. We use three examples based on observations onboard three ships to show, how technology can support the work of the navigator and thereby enhance the performance. Our analysis is based on the paradigm...

  13. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    The need to assess security and take protection decisions is at least as old as our civilisation. However, the complexity and development speed of our interconnected technical systems have surpassed our capacity to imagine and evaluate risk scenarios. This holds in particular for risks...... that are caused by the strategic behaviour of adversaries. Therefore, technology-supported methods are needed to help us identify and manage these risks. In this paper, we describe the attack navigator: a graph-based approach to security risk assessment inspired by navigation systems. Based on maps of a socio...

  14. Navigating in higher education

    DEFF Research Database (Denmark)

    Thingholm, Hanne Balsby; Reimer, David; Keiding, Tina Bering

    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informati......Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur...

  15. Navigating ‘riskscapes’

    DEFF Research Database (Denmark)

    Gee, Stephanie; Skovdal, Morten

    2017-01-01

    This paper draws on interview data to examine how international health care workers navigated risk during the unprecedented Ebola outbreak in West Africa. It identifies the importance of place in risk perception, including how different spatial localities give rise to different feelings of threat...... or safety, some from the construction of physical boundaries, and others mediated through aspects of social relations, such as trust, communication and team dynamics. Referring to these spatial localities as ‘riskscapes’, the paper calls for greater recognition of the role of place in understanding risk...... perception, and how people navigate risk....

  16. A simultaneous navigation and radiation evasion algorithm (SNARE)

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Mohammed A., E-mail: mkha@ieee.org [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Jaradat, Mohammad A., E-mail: majaradat@just.edu.jo [Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Al-Shboul, Zeina Aman M., E-mail: xeinaaman@gmail.com [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan)

    2013-12-15

    Highlights: • A new navigation algorithm for radiation evasion around nuclear facilities. • An optimization criteria minimized under algorithm operation. • A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. • Benefits of using localized navigation as opposed to global navigation schemas. • A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. - Abstract: In this paper, we address the issue of localization as pertains to indoor navigation under radiation contaminated environments. In this context, navigation, in the absence of any GPS signals, is guided by the location of the sensors that make up the entire wireless sensor network in a given locality within a nuclear facility. It, also, draws on the radiation levels as measured by the sensors around a given locale. Here, localization is inherently embedded into the algorithm presented in (Khasawneh et al., 2011a, 2011b) which was designed to provide navigational guidance to optimize any of two criteria: “Radiation Evasion” and “Nearest Exit”. As such, the algorithm can either be applied to setting a navigational “lowest” radiation exposure path from an initial point A to some other point B; a case typical of occupational workers performing maintenance operations around the facility; or providing a radiation-safe passage from point A to the nearest exit. Algorithm's navigational performance is tested under statistical reference, wherein for a given number of runs (trials) algorithm performance is evaluated as a function of the number of steps of look-ahead it uses to acquire navigational information, and is compared against the performance of the renowned Dijkstra global navigation algorithm. This is done with reference to the amount of (radiation × time) product and that of the time needed to reach an exit point, under the two optimization criteria. To evaluate algorithm

  17. A simultaneous navigation and radiation evasion algorithm (SNARE)

    International Nuclear Information System (INIS)

    Khasawneh, Mohammed A.; Jaradat, Mohammad A.; Al-Shboul, Zeina Aman M.

    2013-01-01

    Highlights: • A new navigation algorithm for radiation evasion around nuclear facilities. • An optimization criteria minimized under algorithm operation. • A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. • Benefits of using localized navigation as opposed to global navigation schemas. • A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. - Abstract: In this paper, we address the issue of localization as pertains to indoor navigation under radiation contaminated environments. In this context, navigation, in the absence of any GPS signals, is guided by the location of the sensors that make up the entire wireless sensor network in a given locality within a nuclear facility. It, also, draws on the radiation levels as measured by the sensors around a given locale. Here, localization is inherently embedded into the algorithm presented in (Khasawneh et al., 2011a, 2011b) which was designed to provide navigational guidance to optimize any of two criteria: “Radiation Evasion” and “Nearest Exit”. As such, the algorithm can either be applied to setting a navigational “lowest” radiation exposure path from an initial point A to some other point B; a case typical of occupational workers performing maintenance operations around the facility; or providing a radiation-safe passage from point A to the nearest exit. Algorithm's navigational performance is tested under statistical reference, wherein for a given number of runs (trials) algorithm performance is evaluated as a function of the number of steps of look-ahead it uses to acquire navigational information, and is compared against the performance of the renowned Dijkstra global navigation algorithm. This is done with reference to the amount of (radiation × time) product and that of the time needed to reach an exit point, under the two optimization criteria. To evaluate algorithm

  18. Cancer Patient Navigator Tasks across the Cancer Care Continuum

    Science.gov (United States)

    Braun, Kathryn L.; Kagawa-Singer, Marjorie; Holden, Alan E. C.; Burhansstipanov, Linda; Tran, Jacqueline H.; Seals, Brenda F.; Corbie-Smith, Giselle; Tsark, JoAnn U.; Harjo, Lisa; Foo, Mary Anne; Ramirez, Amelie G.

    2011-01-01

    Cancer patient navigation (PN) programs have been shown to increase access to and utilization of cancer care for poor and underserved individuals. Despite mounting evidence of its value, cancer patient navigation is not universally understood or provided. We describe five PN programs and the range of tasks their navigators provide across the cancer care continuum (education and outreach, screening, diagnosis and staging, treatment, survivorship, and end-of-life). Tasks are organized by their potential to make cancer services understandable, available, accessible, affordable, appropriate, and accountable. Although navigators perform similar tasks across the five programs, their specific approaches reflect differences in community culture, context, program setting, and funding. Task lists can inform the development of programs, job descriptions, training, and evaluation. They also may be useful in the move to certify navigators and establish mechanisms for reimbursement for navigation services. PMID:22423178

  19. Fault-tolerant Sensor Fusion for Marine Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2006-01-01

    Reliability of navigation data are critical for steering and manoeuvring control, and in particular so at high speed or in critical phases of a mission. Should faults occur, faulty instruments need be autonomously isolated and faulty information discarded. This paper designs a navigation solution...... where essential navigation information is provided even with multiple faults in instrumentation. The paper proposes a provable correct implementation through auto-generated state-event logics in a supervisory part of the algorithms. Test results from naval vessels document the performance and shows...... events where the fault-tolerant sensor fusion provided uninterrupted navigation data despite temporal instrument defects...

  20. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  1. Improving Canada's Marine Navigation System through e-Navigation

    Directory of Open Access Journals (Sweden)

    Daniel Breton

    2016-06-01

    The conclusion proposed is that on-going work with key partners and stakeholders can be used as the primary mechanism to identify e-Navigation related innovation and needs, and to prioritize next steps. Moving forward in Canada, implementation of new e-navigation services will continue to be stakeholder driven, and used to drive improvements to Canada's marine navigation system.

  2. The effect of experienced individuals on navigation by king penguin chick pairs

    NARCIS (Netherlands)

    Nesterova, A.P.; Flack, A.; van Loon, E.E.; Bonadonna, F.; Biro, D.

    2015-01-01

    Group members' individual experience can have important influences when navigating collectively. However, how exactly they structure group travel performance is still not fully understood. This study investigated how navigation and leadership dynamics are affected by the presence of an experienced

  3. Visual navigation using edge curve matching for pinpoint planetary landing

    Science.gov (United States)

    Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei

    2018-05-01

    Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.

  4. Nautical Navigation Aids (NAVAID) Locations

    Data.gov (United States)

    Department of Homeland Security — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  5. Inland Electronic Navigational Charts (IENC)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — These Inland Electronic Navigational Charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  6. Navigating ECA-Zones

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Hendriksen, Christian

    This report examines the effect that ECA-zone regulation has on the optimal vessel fuel strategies for compliance. The findings of this report are trifold, and this report is coupled with a calculation tool which is released to assist ship-owners in the ECA decision making. The first key insight...... much time their operated vessels navigate the ECA in the future....

  7. Vision/INS Integrated Navigation System for Poor Vision Navigation Environments

    Directory of Open Access Journals (Sweden)

    Youngsun Kim

    2016-10-01

    Full Text Available In order to improve the performance of an inertial navigation system, many aiding sensors can be used. Among these aiding sensors, a vision sensor is of particular note due to its benefits in terms of weight, cost, and power consumption. This paper proposes an inertial and vision integrated navigation method for poor vision navigation environments. The proposed method uses focal plane measurements of landmarks in order to provide position, velocity and attitude outputs even when the number of landmarks on the focal plane is not enough for navigation. In order to verify the proposed method, computer simulations and van tests are carried out. The results show that the proposed method gives accurate and reliable position, velocity and attitude outputs when the number of landmarks is insufficient.

  8. GNSS-based receiver autonomous integrity monitoring for aircraft navigation

    NARCIS (Netherlands)

    Imparato, D.

    2016-01-01

    Nowadays, GNSS-based navigation is moving more and more to critical applications. Global Navigation Satellite Systems (GNSS), which in the past used to be represented by the American GPS and the Russian GLONASS are now growing in number and performance. The European systemGalileo and the Chinese

  9. Ultrasound-Aided Pedestrian Dead Reckoning for Indoor Navigation

    NARCIS (Netherlands)

    Fischer, C.; Kavitha Muthukrishnan, K.; Hazas, M.; Gellersen, H.

    2008-01-01

    Ad hoc solutions for tracking and providing navigation support to emergency response teams is an important and safety-critical challenge. We propose a navigation system based on a combination of foot-mounted inertial sensors and ultrasound beacons. We evaluate experimentally the performance of our

  10. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  11. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Benchmark Framework for Mobile Robots Navigation Algorithms

    Directory of Open Access Journals (Sweden)

    Nelson David Muñoz-Ceballos

    2014-01-01

    Full Text Available Despite the wide variety of studies and research on mobile robot systems, performance metrics are not often examined. This makes difficult to establish an objective comparison of achievements. In this paper, the navigation of an autonomous mobile robot is evaluated. Several metrics are described. These metrics, collectively, provide an indication of navigation quality, useful for comparing and analyzing navigation algorithms of mobile robots. This method is suggested as an educational tool, which allows the student to optimize the algorithms quality, relating to important aspectsof science, technology and engineering teaching, as energy consumption, optimization and design.

  13. A GPS inspired Terrain Referenced Navigation algorithm

    NARCIS (Netherlands)

    Vaman, D.

    2014-01-01

    Terrain Referenced Navigation (TRN) refers to a form of localization in which measurements of distances to the terrain surface are matched with a digital elevation map allowing a vehicle to estimate its own position within the map. The main goal of this dissertation is to improve TRN performance

  14. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    the current position to a desired destination. This thesis presents and experimentally validates solutions for road classification, obstacle avoidance and mission execution. The road classification is based on laser scanner measurements and supported at longer ranges by vision. The road classification...... is sufficiently sensitive to separate the road from flat roadsides, and to distinguish asphalt roads from gravelled roads. The vision-based road detection uses a combination of chromaticity and edge detection to outline the traversable part of the road based on a laser scanner classified sample area....... The perception of these two sensors are utilised by a path planner to allow a number of drive modes, and especially the ability to follow road edges are investigated. The navigation mission is controlled by a script language. The navigation script controls route sequencing, junction detection, junction crossing...

  15. Intelligent navigation to improve obstetrical sonography.

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto

    2016-04-01

    use of software to perform manual navigation of volume datasets. Diagnostic planes and VIS-Assistance videoclips can be transmitted by telemedicine so that expert consultants can evaluate the images to provide an opinion. The end result is a user-friendly, simple, fast and consistent method of obtaining sonographic images with decreased operator dependency. Intelligent navigation is one approach to improve obstetrical sonography. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. 33 CFR 2.36 - Navigable waters of the United States, navigable waters, and territorial waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigable waters of the United States, navigable waters, and territorial waters. 2.36 Section 2.36 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2.36 Navigable waters...

  17. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  18. 76 FR 77939 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Science.gov (United States)

    2011-12-15

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 91, 121, 125, 129, and 135 Proposed Provision of Navigation Services for the Next Generation Air Transportation System (Next...) navigation infrastructure to enable performance-based navigation (PBN) as part of the Next Generation Air...

  19. Software engineering of a navigation and guidance system for commercial aircraft

    Science.gov (United States)

    Lachmann, S. G.; Mckinstry, R. G.

    1975-01-01

    The avionics experimental configuration of the considered system is briefly reviewed, taking into account the concept of an advanced air traffic management system, flight critical and noncritical functions, and display system characteristics. Cockpit displays and the navigation computer are examined. Attention is given to the functions performed in the navigation computer, major programs in the navigation computer, and questions of software development.

  20. Autonomous Vehicles Navigation with Visual Target Tracking: Technical Approaches

    Directory of Open Access Journals (Sweden)

    Zhen Jia

    2008-12-01

    Full Text Available This paper surveys the developments of last 10 years in the area of vision based target tracking for autonomous vehicles navigation. First, the motivations and applications of using vision based target tracking for autonomous vehicles navigation are presented in the introduction section. It can be concluded that it is very necessary to develop robust visual target tracking based navigation algorithms for the broad applications of autonomous vehicles. Then this paper reviews the recent techniques in three different categories: vision based target tracking for the applications of land, underwater and aerial vehicles navigation. Next, the increasing trends of using data fusion for visual target tracking based autonomous vehicles navigation are discussed. Through data fusion the tracking performance is improved and becomes more robust. Based on the review, the remaining research challenges are summarized and future research directions are investigated.

  1. Indoor navigation by image recognition

    Science.gov (United States)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  2. A navigator-based rigid body motion correction for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ullisch, Marcus Goerge

    2012-01-01

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  3. A navigator-based rigid body motion correction for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, Marcus Goerge

    2012-01-24

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  4. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  5. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Yang, Yuanxi; Fan, Shiwei; Yu, Wenxian

    2017-01-01

    These proceedings present selected research papers from CSNC2017, held during 23th-25th May in Shanghai, China. The theme of CSNC2017 is Positioning, Connecting All. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2017, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  6. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  7. A Qualitative Approach to Mobile Robot Navigation Using RFID

    International Nuclear Information System (INIS)

    Hossain, M; Rashid, M M; Bhuiyan, M M I; Ahmed, S; Akhtaruzzaman, M

    2013-01-01

    Radio Frequency Identification (RFID) system allows automatic identification of items with RFID tags using radio-waves. As the RFID tag has its unique identification number, it is also possible to detect a specific region where the RFID tag lies in. Recently it is widely been used in mobile robot navigation, localization, and mapping both in indoor and outdoor environment. This paper represents a navigation strategy for autonomous mobile robot using passive RFID system. Conventional approaches, such as landmark or dead-reckoning with excessive number of sensors, have complexities in establishing the navigation and localization process. The proposed method satisfies less complexity in navigation strategy as well as estimation of not only the position but also the orientation of the autonomous robot. In this research, polar coordinate system is adopted on the navigation surface where RFID tags are places in a grid with constant displacements. This paper also presents the performance comparisons among various grid architectures through simulation to establish a better solution of the navigation system. In addition, some stationary obstacles are introduced in the navigation environment to satisfy the viability of the navigation process of the autonomous mobile robot

  8. Comparative advantage between traditional and smart navigation systems

    Science.gov (United States)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  9. Magnetic navigation in a coronary phantom: experimental results.

    Science.gov (United States)

    García-García, Héctor M; Tsuchida, Keiichi; Meulenbrug, Hans; Ong, Andrew T L; Van der Giessen, Willem J; Serruys, Patrick W

    2005-11-01

    The objective was to investigate the efficacy of a magnetic navigation system (MNS) in a coronary phantom. The number of coronary interventional procedures performed is steadily increasing with the availability of new devices to treat more complex lesions. Vessel tortuosity remains an important limiting factor in percutaneous coronary intervention. The MNS can orient the tip of magnetized wire. The coronary phantom is a representation of the coronary tree. Two operators using both a magnetic wire and a standard wire, measured the procedural time (PT), the fluoroscopic time (FT) and the radiation exposure/area product (DAP) required to navigate through to fourteen segments. Ten wire advancements were performed per segment. In all but two segments, the PT was significantly longer using magnetic navigation than using manual navigation. The median FT in the left main artery (LMA) - first septal segment was 7 seconds vs. 18 seconds, with magnetic and manual navigation respectively, (p=0.05); in the LMA - obtuse marginal segment the median FT was 15 seconds with magnetic navigation vs. 29.5 seconds with manual navigation, (p=0.01); in the segment from proximal right coronary artery (RCA1) to the acute marginal branch, the median FT was 8 seconds with magnetic vs. 11 seconds with manual navigation, (p=0.05); and in the RCA1 -posterior descending segment the median FT was 9.5 seconds with magnetic vs. 15 seconds with manual navigation, (p=0.006). The MNS facilitates wire access to distal segments in a coronary phantom, with a reduction in FT and radiation exposure using magnetic navigation in tortuous segments.

  10. Advancements in Optical Navigation Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The Goddard Image Analysis and Navigation Tool (GIANT) is a tool that was developed for the Origins, Spectral Interpretation, Resource Identification,...

  11. Human-robot collaborative navigation for autonomous maintenance management of nuclear installation

    International Nuclear Information System (INIS)

    Nugroho, Djoko Hari

    2002-01-01

    Development of human and robot collaborative navigation for autonomous maintenance management of nuclear installation has been conducted. The human-robot collaborative system is performed using a switching command between autonomous navigation and manual navigation that incorporate a human intervention. The autonomous navigation path is conducted using a novel algorithm of MLG method based on Lozano-Perez s visibility graph. The MLG optimizes the shortest distance and safe constraints. While the manual navigation is performed using manual robot tele operation tools. Experiment in the MLG autonomous navigation system is conducted for six times with 3-D starting point and destination point coordinate variation. The experiment shows a good performance of autonomous robot maneuver to avoid collision with obstacle. The switching navigation is well interpreted using open or close command to RS-232C constructed using LabVIEW

  12. Learning for Autonomous Navigation

    Science.gov (United States)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  13. Navigation in musculoskeletal oncology: An overview

    Directory of Open Access Journals (Sweden)

    Guy Vernon Morris

    2018-01-01

    Full Text Available Navigation in surgery has increasingly become more commonplace. The use of this technological advancement has enabled ever more complex and detailed surgery to be performed to the benefit of surgeons and patients alike. This is particularly so when applying the use of navigation within the field of orthopedic oncology. The developments in computer processing power coupled with the improvements in scanning technologies have permitted the incorporation of navigational procedures into day-to-day practice. A comprehensive search of PubMed using the search terms “navigation”, “orthopaedic” and “oncology” yielded 97 results. After filtering for English language papers, excluding spinal surgery and review articles, this resulted in 38 clinical studies and case reports. These were analyzed in detail by the authors (GM and JS and the most relevant papers reviewed. We have sought to provide an overview of the main types of navigation systems currently available within orthopedic oncology and to assess some of the evidence behind its use.

  14. Spatial navigation by congenitally blind individuals.

    Science.gov (United States)

    Schinazi, Victor R; Thrash, Tyler; Chebat, Daniel-Robert

    2016-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over-reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  15. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Science.gov (United States)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  16. Integrated INS/GPS Navigation from a Popular Perspective

    Science.gov (United States)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  17. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  18. Dynamic Transportation Navigation

    Science.gov (United States)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  19. Sensory bases of navigation.

    Science.gov (United States)

    Gould, J L

    1998-10-08

    Navigating animals need to know both the bearing of their goal (the 'map' step), and how to determine that direction (the 'compass' step). Compasses are typically arranged in hierarchies, with magnetic backup as a last resort when celestial information is unavailable. Magnetic information is often essential to calibrating celestial cues, though, and repeated recalibration between celestial and magnetic compasses is important in many species. Most magnetic compasses are based on magnetite crystals, but others make use of induction or paramagnetic interactions between short-wavelength light and visual pigments. Though odors may be used in some cases, most if not all long-range maps probably depend on magnetite. Magnetitebased map senses are used to measure only latitude in some species, but provide the distance and direction of the goal in others.

  20. Effects of age on navigation strategy.

    Science.gov (United States)

    Rodgers, M Kirk; Sindone, Joseph A; Moffat, Scott D

    2012-01-01

    Age differences in navigation strategies have been demonstrated in animals, with aged animals more likely to prefer an egocentric (route) strategy and younger animals more likely to prefer an allocentric (place) strategy. Using a novel virtual Y-maze strategy assessment (vYSA), the present study demonstrated substantial age differences in strategy preference in humans. Older adults overwhelmingly preferred an egocentric strategy, while younger adults were equally distributed between egocentric and allocentric preference. A preference for allocentric strategy on the Y-maze strategy assessment was found to benefit performance on an independent assessment (virtual Morris water task) only in younger adults. These results establish baseline age differences in spatial strategies and suggest this may impact performance on other spatial navigation assessments. The results are interpreted within the framework of age differences in hippocampal structure and function. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A SCHEMA FOR EXTRACTION OF INDOOR PEDESTRIAN NAVIGATION GRID NETWORK FROM FLOOR PLANS

    Directory of Open Access Journals (Sweden)

    L. Niu

    2016-06-01

    Full Text Available The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.

  2. a Schema for Extraction of Indoor Pedestrian Navigation Grid Network from Floor Plans

    Science.gov (United States)

    Niu, Lei; Song, Yiquan

    2016-06-01

    The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.

  3. Software-In-the-Loop based Modeling and Simulation of Unmanned Semi-submersible Vehicle for Performance Verification of Autonomous Navigation

    Science.gov (United States)

    Lee, Kwangkook; Jeong, Mijin; Kim, Dong Hun

    2017-12-01

    Since an unmanned semi-submersible is mainly used for the purpose of carrying out dangerous missions in the sea, it is possible to work in a region where it is difficult to access due to safety reasons. In this study, an USV hull design was determined using Myring hull profile, and reinforcement work was performed by designing and implementing inner stiffener member for 3D printing. In order to simulate a sea state 5.0 or more at sea, which is difficult to implement in practice, a regular and irregular wave equation was implemented in Matlab / Simulink. We performed modeling and simulation of semi - submersible simulation based on DMWorks considering the rolling motion in wave. To verify and improve unpredicted errors, we implemented a numeric and physical simulation model of the USV based on software-in-the-loop (SIL) method. This simulation allows shipbuilders to participate in new value-added markets such as engineering, procurement, construction, installation, commissioning, operation, and maintenance for the USV.

  4. Enhancing the care navigation model: potential roles for health sciences librarians

    Science.gov (United States)

    Huber, Jeffrey T.; Shapiro, Robert M.; Burke, Heather J.; Palmer, Aaron

    2014-01-01

    This study analyzed the overlap between roles and activities that health care navigators perform and competencies identified by the Medical Library Association's (MLA's) educational policy statement. Roles and activities that health care navigators perform were gleaned from published literature. Once common roles and activities that health care navigators perform were identified, MLA competencies were mapped against those roles and activities to identify areas of overlap. The greatest extent of correspondence occurred in patient empowerment and support. Further research is warranted to determine the extent to which health sciences librarians might assume responsibility for roles and activities that health care navigators perform. PMID:24415921

  5. Navigation System of Marks Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  6. Topological mapping and navigation in indoor environment with invisible barcode

    International Nuclear Information System (INIS)

    Huh, Jin Wook; Chung, Woong Sik; Chung, Wan Kyun

    2006-01-01

    This paper addresses the localization and navigation problem using invisible two dimensional barcodes on the floor. Compared with other methods using natural/artificial landmark, the proposed localization method has great advantages in cost and appearance, since the location of the robot is perfectly known using the barcode information after the mapping is finished. We also propose a navigation algorithm which uses the topological structure. For the topological information, we define nodes and edges which are suitable for indoor navigation, especially for large area having multiple rooms, many walls and many static obstacles. The proposed algorithm also has an advantage that errors occurred in each node are mutually independent and can be compensated exactly after some navigation using barcode. Simulation and experimental results were performed to verify the algorithm in the barcode environment, and the result showed an excellent performance. After mapping, it is also possible to solve the kidnapped case and generate paths using topological information

  7. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    Science.gov (United States)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  8. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  9. Electrophysiological correlates of mental navigation in blind and sighted people.

    Science.gov (United States)

    Kober, Silvia Erika; Wood, Guilherme; Kampl, Christiane; Neuper, Christa; Ischebeck, Anja

    2014-10-15

    The aim of the present study was to investigate functional reorganization of the occipital cortex for a mental navigation task in blind people. Eight completely blind adults and eight sighted matched controls performed a mental navigation task, in which they mentally imagined to walk along familiar routes of their hometown during a multi-channel EEG measurement. A motor imagery task was used as control condition. Furthermore, electrophysiological activation patterns during a resting measurement with open and closed eyes were compared between blind and sighted participants. During the resting measurement with open eyes, no differences in EEG power were observed between groups, whereas sighted participants showed higher alpha (8-12Hz) activity at occipital sites compared to blind participants during an eyes-closed resting condition. During the mental navigation task, blind participants showed a stronger event-related desynchronization in the alpha band over the visual cortex compared to sighted controls indicating a stronger activation in this brain region in the blind. Furthermore, groups showed differences in functional brain connectivity between fronto-central and parietal-occipital brain networks during mental navigation indicating stronger visuo-spatial processing in sighted than in blind people during mental navigation. Differences in electrophysiological parameters between groups were specific for mental navigation since no group differences were observed during motor imagery. These results indicate that in the absence of vision the visual cortex takes over other functions such as spatial navigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  11. Visual Navigation of Complex Information Spaces

    Directory of Open Access Journals (Sweden)

    Sarah North

    1995-11-01

    Full Text Available The authors lay the foundation for the introduction of visual navigation aid to assist computer users in direct manipulation of the complex information spaces. By exploring present research on scientific data visualisation and creating a case for improved information visualisation tools, they introduce the design of an improved information visualisation interface utilizing dynamic slider, called Visual-X, incorporating icons with bindable attributes (glyphs. Exploring the improvement that these data visualisations, make to a computing environment, the authors conduct an experiment to compare the performance of subjects who use traditional interfaces and Visual-X. Methodology is presented and conclusions reveal that the use of Visual-X appears to be a promising approach in providing users with a navigation tool that does not overload their cognitive processes.

  12. Navigation simulator for the Space Tug vehicle

    Science.gov (United States)

    Colburn, B. K.; Boland, J. S., III; Peters, E. G.

    1977-01-01

    A general simulation program (GSP) for state estimation of a nonlinear space vehicle flight navigation system is developed and used as a basis for evaluating the performance of a Space Tug navigation system. An explanation of the iterative guidance mode (IGM) guidance law, derivation of the dynamics, coordinate frames and state estimation routines are given in order to clarify the assumptions and approximations made. A number of simulation and analytical studies are used to demonstrate the operation of the Tug system. Included in the simulation studies are (1) initial offset vector parameter study; (2) propagation time vs accuracy; (3) measurement noise parametric study and (4) reduction in computational burden of an on-board implementable scheme. From the results of these studies, conclusions and recommendations concerning future areas of practical and theoretical work are presented.

  13. Monitoring Completed Navigation Projects Program

    National Research Council Canada - National Science Library

    Bottin, Jr., Robert R

    2001-01-01

    ... (MCNP) Program. The program was formerly known as the Monitoring Completed Coastal Projects Program, but was modified in the late 1990s to include all navigation projects, inland as well as coastal...

  14. NOAA Electronic Navigational Charts (ENC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Coast Survey (OCS) has been involved in the development of a NOAA Electronic Navigational Chart (NOAA ENC) suite to support the marine transportation...

  15. Improved artificial bee colony algorithm based gravity matching navigation method.

    Science.gov (United States)

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  16. Mars Atmospheric Entry Integrated Navigation with Partial Intermittent Measurements

    Directory of Open Access Journals (Sweden)

    Tai-shan Lou

    2017-01-01

    Full Text Available Signal degradation suffered by the vehicle is a combination brownout and blackout during Mars atmospheric entry. The communications brownout means that signal fades and blackout means that the signal is lost completely. The communications brownout and blackout periods are analyzed and predicted with an altitude and velocity profiles. In the brownout period, the range measurements between the vehicle and the orbiters are modeled as intermittent measurements with the radio signal arrival probabilities, which are distributed as a Rayleigh distribution of the electron number density around the entry vehicle. A new integrated navigation strategy during the Mars atmospheric entry phase is proposed to consider the probabilities of the radio measurements in the communications brownout and blackout periods under the IMU/beacon scenario based on the information filter with intermittent measurements. Numerical navigation simulations are designed to show the performance of the proposed navigation strategy under the integrated navigation scenario.

  17. Survey of computer vision technology for UVA navigation

    Science.gov (United States)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.

  18. Comparing two types of navigational interfaces for Virtual Reality.

    Science.gov (United States)

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  19. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  20. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Science.gov (United States)

    2010-01-01

    ... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil airplanes... flight engineer or flight navigator duties on a civil airplane of U.S. registry, leased to a person not a... certificate holder is performing flight engineer or flight navigator duties on the U.S.-registered civil...

  1. Navigating "Assisted Dying".

    Science.gov (United States)

    Schipper, Harvey

    2016-02-01

    Carter is a bellwether decision, an adjudication on a narrow point of law whose implications are vast across society, and whose impact may not be realized for years. Coupled with Quebec's Act Respecting End-of-life Care it has sharply changed the legal landscape with respect to actively ending a person's life. "Medically assisted dying" will be permitted under circumstances, and through processes, which have yet to be operationally defined. This decision carries with it moral assumptions, which mean that it will be difficult to reach a unifying consensus. For some, the decision and Act reflect a modern acknowledgement of individual autonomy. For others, allowing such acts is morally unspeakable. Having opened the Pandora's Box, the question becomes one of navigating a tolerable societal path. I believe it is possible to achieve a workable solution based on the core principle that "medically assisted dying" should be a very rarely employed last option, subject to transparent ongoing review, specifically as to why it was deemed necessary. My analysis is based on 1. The societal conditions in which have fostered demand for "assisted dying", 2. Actions in other jurisdictions, 3. Carter and Quebec Bill 52, 4. Political considerations, 5. Current medical practice. Leading to a series of recommendations regarding. 1. Legislation and regulation, 2. The role of professional regulatory agencies, 3. Medical professions education and practice, 4. Public education, 5. Health care delivery and palliative care. Given the burden of public opinion, and the legal steps already taken, a process for assisted-dying is required. However, those legal and regulatory steps should only be considered a necessary and defensive first step in a two stage process. The larger goal, the second step, is to drive the improvement of care, and thus minimize assisted-dying.

  2. Sensor-based control with digital maps association for global navigation: a real application for autonomous vehicles

    OpenAIRE

    Alves De Lima , Danilo; Corrêa Victorino , Alessandro

    2015-01-01

    International audience; This paper presents a sensor-based control strategy applied in the global navigation of autonomous vehicles in urban environments. Typically, sensor-based control performs local navigation tasks regarding some features perceived from the environment. However, when there is more than one possibility to go, like in road intersection, the vehicle control fails to accomplish its global navigation. In order to solve this problem, we propose the vehicle global navigation bas...

  3. Fiber optic gyroscopes for vehicle navigation systems

    Science.gov (United States)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  4. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  5. Velocity navigator for motion compensated thermometry.

    Science.gov (United States)

    Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael

    2012-02-01

    Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.

  6. Towards automated visual flexible endoscope navigation.

    Science.gov (United States)

    van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J

    2013-10-01

    The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.

  7. Solar-based navigation for robotic explorers

    Science.gov (United States)

    Shillcutt, Kimberly Jo

    2000-12-01

    This thesis introduces the application of solar position and shadowing information to robotic exploration. Power is a critical resource for robots with remote, long-term missions, so this research focuses on the power generation capabilities of robotic explorers during navigational tasks, in addition to power consumption. Solar power is primarily considered, with the possibility of wind power also contemplated. Information about the environment, including the solar ephemeris, terrain features, time of day, and surface location, is incorporated into a planning structure, allowing robots to accurately predict shadowing and thus potential costs and gains during navigational tasks. By evaluating its potential to generate and expend power, a robot can extend its lifetime and accomplishments. The primary tasks studied are coverage patterns, with a variety of plans developed for this research. The use of sun, terrain and temporal information also enables new capabilities of identifying and following sun-synchronous and sun-seeking paths. Digital elevation maps are combined with an ephemeris algorithm to calculate the altitude and azimuth of the sun from surface locations, and to identify and map shadows. Solar navigation path simulators use this information to perform searches through two-dimensional space, while considering temporal changes. Step by step simulations of coverage patterns also incorporate time in addition to location. Evaluations of solar and wind power generation, power consumption, area coverage, area overlap, and time are generated for sets of coverage patterns, with on-board environmental information linked to the simulations. This research is implemented on the Nomad robot for the Robotic Antarctic Meteorite Search. Simulators have been developed for coverage pattern tests, as well as for sun-synchronous and sun-seeking path searches. Results of field work and simulations are reported and analyzed, with demonstrated improvements in efficiency

  8. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    Science.gov (United States)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  9. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  10. Needle and catheter navigation using electromagnetic tracking for computer-assisted C-arm CT interventions

    Science.gov (United States)

    Nagel, Markus; Hoheisel, Martin; Petzold, Ralf; Kalender, Willi A.; Krause, Ulrich H. W.

    2007-03-01

    Integrated solutions for navigation systems with CT, MR or US systems become more and more popular for medical products. Such solutions improve the medical workflow, reduce hardware, space and costs requirements. The purpose of our project was to develop a new electromagnetic navigation system for interventional radiology which is integrated into C-arm CT systems. The application is focused on minimally invasive percutaneous interventions performed under local anaesthesia. Together with a vacuum-based patient immobilization device and newly developed navigation tools (needles, panels) we developed a safe and fully automatic navigation system. The radiologist can directly start with navigated interventions after loading images without any prior user interaction. The complete system is adapted to the requirements of the radiologist and to the clinical workflow. For evaluation of the navigation system we performed different phantom studies and achieved an average accuracy of better than 2.0 mm.

  11. Image-based path planning for automated virtual colonoscopy navigation

    Science.gov (United States)

    Hong, Wei

    2008-03-01

    Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.

  12. Navigation through unknown and dynamic open spaces using topological notions

    Science.gov (United States)

    Miguel-Tomé, Sergio

    2018-04-01

    Until now, most algorithms used for navigation have had the purpose of directing system towards one point in space. However, humans communicate tasks by specifying spatial relations among elements or places. In addition, the environments in which humans develop their activities are extremely dynamic. The only option that allows for successful navigation in dynamic and unknown environments is making real-time decisions. Therefore, robots capable of collaborating closely with human beings must be able to make decisions based on the local information registered by the sensors and interpret and express spatial relations. Furthermore, when one person is asked to perform a task in an environment, this task is communicated given a category of goals so the person does not need to be supervised. Thus, two problems appear when one wants to create multifunctional robots: how to navigate in dynamic and unknown environments using spatial relations and how to accomplish this without supervision. In this article, a new architecture to address the two cited problems is presented, called the topological qualitative navigation architecture. In previous works, a qualitative heuristic called the heuristic of topological qualitative semantics (HTQS) has been developed to establish and identify spatial relations. However, that heuristic only allows for establishing one spatial relation with a specific object. In contrast, navigation requires a temporal sequence of goals with different objects. The new architecture attains continuous generation of goals and resolves them using HTQS. Thus, the new architecture achieves autonomous navigation in dynamic or unknown open environments.

  13. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    Directory of Open Access Journals (Sweden)

    Liang Li

    Full Text Available To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery.In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems.The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons.The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  14. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    Science.gov (United States)

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  15. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  16. When gestures show us the way: Co-speech gestures selectively facilitate navigation and spatial memory.

    OpenAIRE

    Galati, Alexia; Weisberg, Steven M.; Newcombe, Nora S.; Avraamides, Marios N.

    2017-01-01

    How does gesturing during route learning relate to subsequent spatial performance? We examined the relationship between gestures produced spontaneously while studying route directions and spatial representations of the navigated environment. Participants studied route directions, then navigated those routes from memory in a virtual environment, and finally had their memory of the environment assessed. We found that, for navigators with low spatial perspective-taking pe...

  17. 33 CFR 401.54 - Interference with navigation aids.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  18. Optimal motion planning using navigation measure

    Science.gov (United States)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  19. Interactive navigation-guided ophthalmic plastic surgery: navigation enabling of telescopes and their use in endoscopic lacrimal surgeries

    Directory of Open Access Journals (Sweden)

    Ali MJ

    2016-11-01

    Full Text Available Mohammad Javed Ali,1 Swati Singh,1 Milind N Naik,1 Swathi Kaliki,2 Tarjani Vivek Dave1 1The Institute of Dacryology, 2The Operation Eyesight Universal Institute for Eye Cancer, L.V. Prasad Eye Institute, Hyderabad, India Purpose: The aims of this study were to report the preliminary experience of using telescopes, which were enabled for navigation guidance, and their utility in complex endoscopic lacrimal surgeries. Methods: Navigation enabling of the telescope was achieved by using the AxiEM™ malleable neuronavigation shunt stylet. Image-guided dacryolocalization was performed in five patients using the intraoperative image-guided StealthStation™ system in the electromagnetic mode. The “look ahead” protocol software was used to assist the surgeon in assessing the intraoperative geometric location of the endoscope and what lies ahead in real time. All patients underwent navigation-guided powered endoscopic dacryocystorhinostomy. The utility of uninterrupted navigation guidance throughout the surgery with the endoscope as the navigating tool was noted. Results: Intraoperative geometric localization of the lacrimal sac and the nasolacrimal duct could be easily deciphered. Constant orientation of the lacrimal drainage system and the peri-lacrimal anatomy was possible without the need for repeated point localizations throughout the surgery. The “look ahead” features could accurately alert the surgeon of anatomical structures that exists at 5, 10 and 15 mm in front of the endoscope. Good securing of the shunt stylet with the telescope was found to be essential for constant and accurate navigation. Conclusion: Navigation-enabled endoscopes provide the surgeon with the advantage of sustained stereotactic anatomical awareness at all times during the surgery. Keywords: telescope, endoscope, image guidance, navigation, lacrimal surgery, powered endoscopic DCR

  20. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  1. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids to...

  2. Current use of navigation system in ACL surgery: a historical review.

    Science.gov (United States)

    Zaffagnini, S; Urrizola, F; Signorelli, C; Grassi, A; Di Sarsina, T Roberti; Lucidi, G A; Marcheggiani Muccioli, G M; Bonanzinga, T; Marcacci, M

    2016-11-01

    The present review aims to analyse the available literature regarding the use of navigation systems in ACL reconstructive surgery underling the evolution during the years. A research of indexed scientific papers was performed on PubMed and Cochrane Library database. The research was performed in December 2015 with no publication year restriction. Only English-written papers and related to the terms ACL, NAVIGATION, CAOS and CAS were considered. Two reviewers independently selected only those manuscripts that presented at least the application of navigation system for ACL reconstructive surgery. One hundred and forty-six of 394 articles were finally selected. In this analysis, it was possible to review the main uses of navigation system in ACL surgery including tunnel positioning for primary and revision surgery and kinematic assessment of knee laxity before and after different surgical procedures. In the early years, until 2006, navigation system was mainly used to improve tunnel positioning, but since the last decade, this tool has been principally used for kinematics evaluation. Increased accuracy of tunnel placement was observed using navigation surgery, especially, regarding femoral, 42 of 146 articles used navigation to guide tunnel positioning. During the following years, 82 of 146 articles have used navigation system to evaluate intraoperative knee kinematic. In particular, the importance of controlling rotatory laxity to achieve better surgical outcomes has been underlined. Several applications have been described and despite the contribution of navigation systems, its potential uses and theoretical advantages, there are still controversies about its clinical benefit. The present papers summarize the most relevant studies that have used navigation system in ACL reconstruction. In particular, the analysis identified four main applications of the navigation systems during ACL reconstructive surgery have been identified: (1) technical assistance for tunnel

  3. Image matching navigation based on fuzzy information

    Institute of Scientific and Technical Information of China (English)

    田玉龙; 吴伟仁; 田金文; 柳健

    2003-01-01

    In conventional image matching methods, the image matching process is mostly based on image statistic information. One aspect neglected by all these methods is that there is much fuzzy information contained in these images. A new fuzzy matching algorithm based on fuzzy similarity for navigation is presented in this paper. Because the fuzzy theory is of the ability of making good description of the fuzzy information contained in images, the image matching method based on fuzzy similarity would look forward to producing good performance results. Experimental results using matching algorithm based on fuzzy information also demonstrate its reliability and practicability.

  4. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  5. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    Science.gov (United States)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  6. Web Page Layout: A Comparison Between Left- and Right-justified Site Navigation Menus

    OpenAIRE

    Kalbach, James; Bosenick, Tim

    2006-01-01

    The usability of two Web page layouts was directly compared: one with the main site navigation menu on the left of the page, and one with the main site navigation menu on the right. Sixty-four participants were divided equally into two groups and assigned to either the left- or the right-hand navigation test condition. Using a stopwatch, the time to complete each of five tasks was measured. The hypothesis that the left-hand navigation would perform significantly faster than the right-hand nav...

  7. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  8. Evaluation of a Hospital-Based Pneumonia Nurse Navigator Program.

    Science.gov (United States)

    Seldon, Lisa E; McDonough, Kelly; Turner, Barbara; Simmons, Leigh Ann

    2016-12-01

    The aim of this study is to evaluate the effectiveness of a hospital-based pneumonia nurse navigator program. This study used a retrospective, formative evaluation. Data of patients admitted from January 2012 through December 2014 to a large community hospital with a primary or secondary diagnosis of pneumonia, excluding aspiration pneumonia, were used. Data included patient demographics, diagnoses, insurance coverage, core measures, average length of stay (ALOS), disposition, readmission rate, financial outcomes, and patient barriers to care were collected. Descriptive statistics and parametric testing were used to analyze data. Core measure performance was sustained at the 90th percentile 2 years after the implementation of the navigator program. The ALOS did not decrease to established benchmarks; however, the SD for ALOS decreased by nearly half after implementation of the navigator program, suggesting the program decreased the number and length of extended stays. Charges per case decreased by 21% from 2012 to 2014. Variable costs decreased by 4% over a 2-year period, which increased net profit per case by 5%. Average readmission payments increased by 8% from 2012 to 2014, and the net revenue per case increased by 8.3%. The pneumonia nurse navigator program may improve core measures, reduce ALOS, and increase net revenue. Future evaluations are necessary to substantiate these findings and optimize the cost and quality performance of navigator programs.

  9. Visual map and instruction-based bicycle navigation: a comparison of effects on behaviour.

    Science.gov (United States)

    de Waard, Dick; Westerhuis, Frank; Joling, Danielle; Weiland, Stella; Stadtbäumer, Ronja; Kaltofen, Leonie

    2017-09-01

    Cycling with a classic paper map was compared with navigating with a moving map displayed on a smartphone, and with auditory, and visual turn-by-turn route guidance. Spatial skills were found to be related to navigation performance, however only when navigating from a paper or electronic map, not with turn-by-turn (instruction based) navigation. While navigating, 25% of the time cyclists fixated at the devices that present visual information. Navigating from a paper map required most mental effort and both young and older cyclists preferred electronic over paper map navigation. In particular a turn-by-turn dedicated guidance device was favoured. Visual maps are in particular useful for cyclists with higher spatial skills. Turn-by-turn information is used by all cyclists, and it is useful to make these directions available in all devices. Practitioner Summary: Electronic navigation devices are preferred over a paper map. People with lower spatial skills benefit most from turn-by-turn guidance information, presented either auditory or on a dedicated device. People with higher spatial skills perform well with all devices. It is advised to keep in mind that all users benefit from turn-by-turn information when developing a navigation device for cyclists.

  10. Navigation in Cross-cultural business relationships

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence......Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence...

  11. An Integrated Approach to Electronic Navigation

    National Research Council Canada - National Science Library

    Shaw, Peter; Pettus, Bill

    2001-01-01

    While the Global Positioning System (GPS) is and will continue to be an excellent navigation system, it is neither flawless nor is it the only system employed in the navigation of today's seagoing warfighters...

  12. Global Positioning System Navigation Algorithms

    Science.gov (United States)

    1977-05-01

    Historical Remarks on Navigation In Greek mythology , Odysseus sailed safely by the Sirens only to encounter the monsters Scylla and Charybdis...TNED 000 00 1(.7 BIBLIOGRAPHY 1. Pinsent, John. Greek Mythology . Paul Hamlyn, London, 1969. 2. Kline, Morris. Mathematical Thought from Ancient to

  13. Conceptual Grounds of Navigation Safety

    Directory of Open Access Journals (Sweden)

    Vladimir Torskiy

    2016-04-01

    Full Text Available The most important global problem being solved by the whole world community nowadays is to provide sustainable mankind development. Recent research in the field of sustainable development states that civilization safety is impossible without transfer sustainable development. At the same time, sustainable development (i.e. preservation of human culture and biosphere is impossible as a system that serves to meet economical, cultural, scientific, recreational and other human needs without safety. Safety plays an important role in sustainable development goals achievement. An essential condition of effective navigation functioning is to provide its safety. The “prescriptive” approach to the navigation safety, which is currently used in the world maritime field, is based on long-term experience and ship accidents investigation results. Thus this approach acted as an the great fact in reduction of number of accidents at sea. Having adopted the International Safety Management Code all the activities connected with navigation safety problems solution were transferred to the higher qualitative level. Search and development of new approaches and methods of ship accidents prevention during their operation have obtained greater importance. However, the maritime safety concept (i.e. the different points on ways, means and methods that should be used to achieve this goal hasn't been formed and described yet. The article contains a brief review of the main provisions of Navigation Safety Conceptions, which contribute to the number of accidents and incidents at sea reduction.

  14. Surgical navigation with QR codes

    Directory of Open Access Journals (Sweden)

    Katanacho Manuel

    2016-09-01

    Full Text Available The presented work is an alternative to established measurement systems in surgical navigation. The system is based on camera based tracking of QR code markers. The application uses a single video camera, integrated in a surgical lamp, that captures the QR markers attached to surgical instruments and to the patient.

  15. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Strassmann, G.; Kolotas, C.; Heyd, R.

    2000-01-01

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  16. Gender differences in navigational memory: pilots vs. nonpilots.

    Science.gov (United States)

    Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico

    2015-02-01

    The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.

  17. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 84 and 115 [Docket No. USCG-2012-0306] RIN 1625-AB86 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments...), the Coast Guard published a final rule entitled ``Navigation and Navigable Waters; Technical...

  18. The Relation between Navigation Strategy and Associative Memory: An Individual Differences Approach

    Science.gov (United States)

    Ngo, Chi T.; Weisberg, Steven M.; Newcombe, Nora S.; Olson, Ingrid R.

    2016-01-01

    Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent…

  19. 32 CFR 644.3 - Navigation Projects.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  20. [Cost analysis for navigation in knee endoprosthetics].

    Science.gov (United States)

    Cerha, O; Kirschner, S; Günther, K-P; Lützner, J

    2009-12-01

    Total knee arthroplasty (TKA) is one of the most frequent procedures in orthopaedic surgery. The outcome depends on a range of factors including alignment of the leg and the positioning of the implant in addition to patient-associated factors. Computer-assisted navigation systems can improve the restoration of a neutral leg alignment. This procedure has been established especially in Europe and North America. The additional expenses are not reimbursed in the German DRG system (Diagnosis Related Groups). In the present study a cost analysis of computer-assisted TKA compared to the conventional technique was performed. The acquisition expenses of various navigation systems (5 and 10 year depreciation), annual costs for maintenance and software updates as well as the accompanying costs per operation (consumables, additional operating time) were considered. The additional operating time was determined on the basis of a meta-analysis according to the current literature. Situations with 25, 50, 100, 200 and 500 computer-assisted TKAs per year were simulated. The amount of the incremental costs of the computer-assisted TKA depends mainly on the annual volume and the additional operating time. A relevant decrease of the incremental costs was detected between 50 and 100 procedures per year. In a model with 100 computer-assisted TKAs per year an additional operating time of 14 mins and a 10 year depreciation of the investment costs, the incremental expenses amount to 300-395 depending on the navigation system. Computer-assisted TKA is associated with additional costs. From an economical point of view an amount of more than 50 procedures per year appears to be favourable. The cost-effectiveness could be estimated if long-term results will show a reduction of revisions or a better clinical outcome.

  1. Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System

    Science.gov (United States)

    2015-03-26

    THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones, Capt, USAF AFIT-ENG-MS-15-M-020 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH...DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones

  2. Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.

    Science.gov (United States)

    Morsy, Ahmed A; Ng, Wai Hoe

    2015-11-01

    We report our institutional experience using an electromagnetic navigation system, without rigid head fixation, for awake craniotomy patients. The StealthStation® S7 AxiEM™ navigation system (Medtronic, Inc.) was used for this technique. Detailed preoperative clinical and neuropsychological evaluations, patient education and contrast-enhanced MRI (thickness 1.5mm) were performed for each patient. The AxiEM Mobile Emitter was typically placed in a holder, which was mounted to the operating room table, and a non-invasive patient tracker was used as the patient reference device. A monitored conscious sedation technique was used in all awake craniotomy patients, and the AxiEM Navigation Pointer was used for navigation during the procedure. This offers the same accuracy as optical navigation, but without head pin fixation or interference with intraoperative neurophysiological techniques and surgical instruments. The application of the electromagnetic neuronavigation technology without rigid head fixation during an awake craniotomy is accurate, and offers superior patient comfort. It is recommended as an effective adjunctive technique for the conduct of awake surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Aging specifically impairs switching to an allocentric navigational strategy.

    Science.gov (United States)

    Harris, Mathew A; Wiener, Jan M; Wolbers, Thomas

    2012-01-01

    Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific "switch-to-place" deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation.

  4. Pilot perception and confidence of location during a simulated helicopter navigation task.

    Science.gov (United States)

    Yang, Ji Hyun; Cowden, Bradley T; Kennedy, Quinn; Schramm, Harrison; Sullivan, Joseph

    2013-09-01

    This paper aims to provide insights into human perception, navigation performance, and confidence in helicopter overland navigation. Helicopter overland navigation is a challenging mission area because it is a complex cognitive task, and failing to recognize when the aircraft is off-course can lead to operational failures and mishaps. A human-in-the-loop experiment to investigate pilot perception during simulated overland navigation by analyzing actual navigation trajectory, pilots' perceived location, and corresponding confidence levels was designed. There were 15 military officers with prior overland navigation experience who completed 4 simulated low-level navigation routes, 2 of which entailed auto-navigation. This route was paused roughly every 30 s for the subject to mark their perceived location on the map and their confidence level using a customized program. Analysis shows that there is no correlation between perceived and actual location of the aircraft, nor between confidence level and actual location. There is, however, some evidence that there is a correlation (rho = -0.60 to approximately 0.65) between perceived location and intended route of flight, suggesting that there is a bias toward believing one is on the intended flight route. If aviation personnel can proactively identify the circumstances in which usual misperceptions occur in navigation, they may reduce mission failure and accident rate. Fleet squadrons and instructional commands can benefit from this study to improve operations that require low-level flight while also improving crew resource management.

  5. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    Science.gov (United States)

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  6. Visual navigation in adolescents with early periventricular lesions: knowing where, but not getting there.

    Science.gov (United States)

    Pavlova, Marina; Sokolov, Alexander; Krägeloh-Mann, Ingeborg

    2007-02-01

    Visual navigation in familiar and unfamiliar surroundings is an essential ingredient of adaptive daily life behavior. Recent brain imaging work helps to recognize that establishing connectivity between brain regions is of importance for successful navigation. Here, we ask whether the ability to navigate is impaired in adolescents who were born premature and suffer congenital bilateral periventricular brain damage that might affect the pathways interconnecting subcortical structures with cortex. Performance on a set of visual labyrinth tasks was significantly worse in patients with periventricular leukomalacia (PVL) as compared with premature-born controls without lesions and term-born adolescents. The ability for visual navigation inversely relates to the severity of motor disability, leg-dominated bilateral spastic cerebral palsy. This agrees with the view that navigation ability substantially improves with practice and might be compromised in individuals with restrictions in active spatial exploration. Visual navigation is negatively linked to the volumetric extent of lesions over the right parietal and frontal periventricular regions. Whereas impairments of visual processing of point-light biological motion are associated in patients with PVL with bilateral parietal periventricular lesions, navigation ability is specifically linked to the frontal lesions in the right hemisphere. We suggest that more anterior periventricular lesions impair the interrelations between the right hippocampus and cortical areas leading to disintegration of neural networks engaged in visual navigation. For the first time, we show that the severity of right frontal periventricular damage and leg-dominated motor disorders can serve as independent predictors of the visual navigation disability.

  7. Navigating a Maze with Balance Board and Wiimote

    Science.gov (United States)

    Fikkert, Wim; Hoeijmakers, Niek; van der Vet, Paul; Nijholt, Anton

    Input from the lower body in human-computer interfaces can be beneficial, enjoyable and even entertaining when users are expected to perform tasks simultaneously. Users can navigate a virtual (game) world or even an (empirical) dataset while having their hands free to issue commands. We compared the Wii Balance Board to a hand-held Wiimote for navigating a maze and found that users completed this task slower with the Balance Board. However, the Balance Board was considered more intuitive, easy to learn and ‘much fun’.

  8. Deep sea AUV navigation using multiple acoustic beacons

    Science.gov (United States)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  9. Spatial and temporal aspects of navigation in two neurological patients.

    Science.gov (United States)

    van der Ham, Ineke J M; van Zandvoort, Martine J E; Meilinger, Tobias; Bosch, Sander E; Kant, Neeltje; Postma, Albert

    2010-07-14

    We present two cases (A.C. and W.J.) with navigation problems resulting from parieto-occipital right hemisphere damage. For both the cases, performance on the neuropsychological tests did not indicate specific impairments in spatial processing, despite severe subjective complaints of spatial disorientation. Various aspects of navigation were tested in a new virtual reality task, the Virtual Tübingen task. A double dissociation between spatial and temporal deficits was found; A.C. was impaired in route ordering, a temporal test, whereas W.J. was impaired in scene recognition and route continuation, which are spatial in nature. These findings offer important insights in the functional and neural architecture of navigation.

  10. Radio/FADS/IMU integrated navigation for Mars entry

    Science.gov (United States)

    Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu

    2018-03-01

    Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.

  11. Navigation in head and neck oncological surgery: an emerging concept.

    Science.gov (United States)

    Gangloff, P; Mastronicola, R; Cortese, S; Phulpin, B; Sergeant, C; Guillemin, F; Eluecque, H; Perrot, C; Dolivet, G

    2011-01-01

    Navigation surgery, initially applied in rhinology, neurosurgery and orthopaedic cases, has been developed over the last twenty years. Surgery based on computed tomography data has become increasingly important in the head and neck region. The technique for hardware fusion between RMI and computed tomography is also becoming more useful. We use such device since 2006 in head and neck carcinologic situation. Navigation allows control of the resection in order to avoid and protect the precise anatomical structures (vessels and nerves). It also guides biopsy and radiofrequency. Therefore, quality of life is much more increased and morbidity is decreased for these patients who undergo major and mutilating head and neck surgery. Here we report the results of 33 navigation procedures performed for 31 patients in our institution.

  12. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  13. Distributed Ship Navigation Control System Based on Dual Network

    Science.gov (United States)

    Yao, Ying; Lv, Wu

    2017-10-01

    Navigation system is very important for ship’s normal running. There are a lot of devices and sensors in the navigation system to guarantee ship’s regular work. In the past, these devices and sensors were usually connected via CAN bus for high performance and reliability. However, as the development of related devices and sensors, the navigation system also needs the ability of high information throughput and remote data sharing. To meet these new requirements, we propose the communication method based on dual network which contains CAN bus and industrial Ethernet. Also, we import multiple distributed control terminals with cooperative strategy based on the idea of synchronizing the status by multicasting UDP message contained operation timestamp to make the system more efficient and reliable.

  14. A full 3D-navigation system in a suitcase.

    Science.gov (United States)

    Freysinger, W; Truppe, M J; Gunkel, A R; Thumfart, W F

    2001-01-01

    To reduce the impact of contemporary 3D-navigation systems on the environment of typical otorhinolaryngologic operating rooms, we demonstrate that a transfer of navigation software to modern high-power notebook computers is feasible and results in a practicable way to provide positional information to a surgeon intraoperatively. The ARTMA Virtual Patient System has been implemented on a Macintosh PowerBook G3 and, in connection with the Polhemus FASTRAK digitizer, provides intraoperative positional information during endoscopic endonasal surgery. Satisfactory intraoperative navigation has been realized in two- and three-dimensional medical image data sets (i.e., X-ray, ultrasound images, CT, and MR) and live video. This proof-of-concept study demonstrates that acceptable ergonomics and excellent performance of the system can be achieved with contemporary high-end notebook computers. Copyright 2001 Wiley-Liss, Inc.

  15. Navigating a Maze with Balance Board and Wiimote

    NARCIS (Netherlands)

    Fikkert, F.W.; Hoeijmakers, Niek; van der Vet, P.E.; Nijholt, A.; Nijholt, Antinus; Reidsma, D.; Reidsma, Dennis; Hondorp, G.H.W.

    2009-01-01

    Input from the lower body in human-computer interfaces can be beneficial, enjoyable and even entertaining when users are expected to perform tasks simultaneously. Users can navigate a virtual (game) world or even an (empirical) dataset while having their hands free to issue commands. We compared the

  16. External Aiding Methods for IMU-Based Navigation

    Science.gov (United States)

    2016-11-26

    Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2.1 Startup Bias...Figure Page 1 Three Distributions Implemented for Error Parameters in SAIMUN . . . . . . . . . . . . 5 2 Accelerometer Output Corrupted by Startup ...external aiding, simulate the error sources encountered in the acquisition of measurement data, emulate the navigation software, and perform a range of

  17. Finding Home: Landmark Ambiguity in Human Navigation

    Directory of Open Access Journals (Sweden)

    Simon Jetzschke

    2017-07-01

    Full Text Available Memories of places often include landmark cues, i.e., information provided by the spatial arrangement of distinct objects with respect to the target location. To study how humans combine landmark information for navigation, we conducted two experiments: To this end, participants were either provided with auditory landmarks while walking in a large sports hall or with visual landmarks while walking on a virtual-reality treadmill setup. We found that participants cannot reliably locate their home position due to ambiguities in the spatial arrangement when only one or two uniform landmarks provide cues with respect to the target. With three visual landmarks that look alike, the task is solved without ambiguity, while audio landmarks need to play three unique sounds for a similar performance. This reduction in ambiguity through integration of landmark information from 1, 2, and 3 landmarks is well modeled using a probabilistic approach based on maximum likelihood estimation. Unlike any deterministic model of human navigation (based e.g., on distance or angle information, this probabilistic model predicted both the precision and accuracy of the human homing performance. To further examine how landmark cues are integrated we introduced systematic conflicts in the visual landmark configuration between training of the home position and tests of the homing performance. The participants integrated the spatial information from each landmark near-optimally to reduce spatial variability. When the conflict becomes big, this integration breaks down and precision is sacrificed for accuracy. That is, participants return again closer to the home position, because they start ignoring the deviant third landmark. Relying on two instead of three landmarks, however, goes along with responses that are scattered over a larger area, thus leading to higher variability. To model the breakdown of integration with increasing conflict, the probabilistic model based on a

  18. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully a...... automatically learn and store visual landmarks, and later recognize these landmarks from arbitrary positions and thus estimate robot position and heading.......The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully...... autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...

  19. Observability during planetary approach navigation

    Science.gov (United States)

    Bishop, Robert H.; Burkhart, P. Daniel; Thurman, Sam W.

    1993-01-01

    The objective of the research is to develop an analytic technique to predict the relative navigation capability of different Earth-based radio navigation measurements. In particular, the problem is to determine the relative ability of geocentric range and Doppler measurements to detect the effects of the target planet gravitational attraction on the spacecraft during the planetary approach and near-encounter mission phases. A complete solution to the two-dimensional problem has been developed. Relatively simple analytic formulas are obtained for range and Doppler measurements which describe the observability content of the measurement data along the approach trajectories. An observability measure is defined which is based on the observability matrix for nonlinear systems. The results show good agreement between the analytic observability analysis and the computational batch processing method.

  20. Navigating the Internet of Things

    DEFF Research Database (Denmark)

    Rassia, Stamatina; Steiner, Henriette

    2017-01-01

    Navigating the Internet of Things is an exploration of interconnected objects, functions, and situations in networks created to ease and manage our daily lives. The Internet of Things represents semi-automated interconnections of different objects in a network based on different information...... technologies. Some examples of this are presented here in order to better understand, explain, and discuss the elements that compose the Internet of Things. In this chapter, we provide a theoretical and practical perspective on both the micro- and macro-scales of ‘things’ (objects), small and large (e.......g. computers or interactive maps), that suggest new topographic relationships and challenge our understanding of users’ involvement with a given technology against the semi-automated workings of these systems. We navigate from a philosophical enquiry into the ‘thingness of things’ dating from the 1950s...

  1. Navigation in diagnosis and therapy

    International Nuclear Information System (INIS)

    Vannier, Michael W.; Haller, John W.

    1999-01-01

    Image-guided navigation for surgery and other therapeutic interventions has grown in importance in recent years. During image-guided navigation a target is detected, localized and characterized for diagnosis and therapy. Thus, images are used to select, plan, guide and evaluate therapy, thereby reducing invasiveness and improving outcomes. A shift from traditional open surgery to less-invasive image-guided surgery will continue to impact the surgical marketplace. Increases in the speed and capacity of computers and computer networks have enabled image-guided interventions. Key elements in image navigation systems are pre-operative 3D imaging (or real-time image acquisition), a graphical display and interactive input devices, such as surgical instruments with light emitting diodes (LEDs). CT and MRI, 3D imaging devices, are commonplace today and 3D images are useful in complex interventions such as radiation oncology and surgery. For example, integrated surgical imaging workstations can be used for frameless stereotaxy during neurosurgical interventions. In addition, imaging systems are being expanded to include decision aids in diagnosis and treatment. Electronic atlases, such as Voxel Man or others derived from the Visible Human Project, combine a set of image data with non-image knowledge such as anatomic labels. Robot assistants and magnetic guidance technology are being developed for minimally invasive surgery and other therapeutic interventions. Major progress is expected at the interface between the disciplines of radiology and surgery where imaging, intervention and informatics converge

  2. Mobile Augmented Reality enhances indoor navigation for wheelchair users

    Directory of Open Access Journals (Sweden)

    Luciene Chagas de Oliveira

    Full Text Available Introduction: Individuals with mobility impairments associated with lower limb disabilities often face enormous challenges to participate in routine activities and to move around various environments. For many, the use of wheelchairs is paramount to provide mobility and social inclusion. Nevertheless, they still face a number of challenges to properly function in our society. Among the many difficulties, one in particular stands out: navigating in complex internal environments (indoors. The main objective of this work is to propose an architecture based on Mobile Augmented Reality to support the development of indoor navigation systems dedicated to wheelchair users, that is also capable of recording CAD drawings of the buildings and dealing with accessibility issues for that population. Methods Overall, five main functional requirements are proposed: the ability to allow for indoor navigation by means of Mobile Augmented Reality techniques; the capacity to register and configure building CAD drawings and the position of fiducial markers, points of interest and obstacles to be avoided by the wheelchair user; the capacity to find the best route for wheelchair indoor navigation, taking stairs and other obstacles into account; allow for the visualization of virtual directional arrows in the smartphone displays; and incorporate touch or voice commands to interact with the application. The architecture is proposed as a combination of four layers: User interface; Control; Service; and Infrastructure. A proof-of-concept application was developed and tests were performed with disable volunteers operating manual and electric wheelchairs. Results The application was implemented in Java for the Android operational system. A local database was used to store the test building CAD drawings and the position of fiducial markers and points of interest. The Android Augmented Reality library was used to implement Augmented Reality and the Blender open source

  3. Organizations And Services In The System Of International Aviation Navigation

    Directory of Open Access Journals (Sweden)

    Alexander I. Travnikov

    2015-03-01

    Full Text Available In the present article author reveals the order of creation, structure, aims and objectives of national and international intergovernmental aeronautical organizations, governing procedure for flight operations and providing direct air traffic control over sovereign territory and abroad. In this article, author notes that in the world there are three main organizational and legal forms of air traffic control systems to ensure coordination between civil and military air navigation services (agencies. In the Russian Federation, author notes that air navigation services on behalf of the State are made by the State Corporation for Air Traffic Management that has the legal status of the commercial organization - the Federal State Unitary Enterprise. Author analyzes the work of the Organization for the Civil Air Navigation Services (CANSO, the International Federation of Air Traffic Controllers (IFATCA. During the study author also concludes that in the past decade, there is the steady trend of transferring functions of air navigation from the State to commercial organizations (joint stock companies and limited liability companies, which are financed from the funds received as payment for air traffic services. The responsibility for the improper maintenance of international air navigation, of course, is borne by the State. Author notes that regional and international intergovernmental aeronautical organizations operate in respect of all aircraft (public, civil, experimental, i.e., perform general air navigation, unlike ICAO, which takes standards and recommended practices, rules and procedures for safety and air traffic services only to civil aircraft, that does not ensure the creation of a regulatory framework for the global unification of aeronautical processes.

  4. Brain connectivity during encoding and retrieval of spatial information: individual differences in navigation skills.

    Science.gov (United States)

    Sharma, Greeshma; Gramann, Klaus; Chandra, Sushil; Singh, Vijander; Mittal, Alok Prakash

    2017-09-01

    Emerging evidence suggests that the variations in the ability to navigate through any real or virtual environment are accompanied by distinct underlying cortical activations in multiple regions of the brain. These activations may appear due to the use of different frame of reference (FOR) for representing an environment. The present study investigated the brain dynamics in the good and bad navigators using Graph Theoretical analysis applied to low-density electroencephalography (EEG) data. Individual navigation skills were rated according to the performance in a virtual reality (VR)-based navigation task and the effect of navigator's proclivity towards a particular FOR on the navigation performance was explored. Participants were introduced to a novel virtual environment that they learned from a first-person or an aerial perspective and were subsequently assessed on the basis of efficiency with which they learnt and recalled. The graph theoretical parameters, path length (PL), global efficiency (GE), and clustering coefficient (CC) were computed for the functional connectivity network in the theta and alpha frequency bands. During acquisition of the spatial information, good navigators were distinguished by a lower degree of dispersion in the functional connectivity compared to the bad navigators. Within the groups of good and bad navigators, better performers were characterised by the formation of multiple hubs at various sites and the percentage of connectivity or small world index. The proclivity towards a specific FOR during exploration of a new environment was not found to have any bearing on the spatial learning. These findings may have wider implications for how the functional connectivity in the good and bad navigators differs during spatial information acquisition and retrieval in the domains of rescue operations and defence systems.

  5. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  6. Emergency navigation without an infrastructure.

    Science.gov (United States)

    Gelenbe, Erol; Bi, Huibo

    2014-08-18

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  7. Emergency Navigation without an Infrastructure

    Directory of Open Access Journals (Sweden)

    Erol Gelenbe

    2014-08-01

    Full Text Available Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF and a cognitive packet network (CPN-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  8. Three-dimensional navigation is more accurate than two-dimensional navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum: a randomized multicenter study.

    Science.gov (United States)

    Matityahu, Amir; Kahler, David; Krettek, Christian; Stöckle, Ulrich; Grutzner, Paul Alfred; Messmer, Peter; Ljungqvist, Jan; Gebhard, Florian

    2014-12-01

    To evaluate the accuracy of computer-assisted sacral screw fixation compared with conventional techniques in the dysmorphic versus normal sacrum. Review of a previous study database. Database of a multinational study with 9 participating trauma centers. The reviewed group included 130 patients, 72 from the navigated group and 58 from the conventional group. Of these, 109 were in the nondysmorphic group and 21 in the dysmorphic group. Placement of sacroiliac (SI) screws was performed using standard fluoroscopy for the conventional group and BrainLAB navigation software with either 2-dimensional or 3-dimensional (3D) navigation for the navigated group. Accuracy of SI screw placement by 2-dimensional and 3D navigation versus conventional fluoroscopy in dysmorphic and nondysmorphic patients, as evaluated by 6 observers using postoperative computerized tomography imaging at least 1 year after initial surgery. Intraobserver agreement was also evaluated. There were 11.9% (13/109) of patients with misplaced screws in the nondysmorphic group and 28.6% (6/21) of patients with misplaced screws in the dysmorphic group, none of which were in the 3D navigation group. Raw agreement between the 6 observers regarding misplaced screws was 32%. However, the percent overall agreement was 69.0% (kappa = 0.38, P dysmorphic proximal sacral segment. We recommend the use of 3D navigation, where available, for insertion of SI screws in patients with normal and dysmorphic proximal sacral segments. Therapeutic level I.

  9. Chemical compass for bird navigation

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Hore, Peter J.; Ritz, Thorsten

    2014-01-01

    Migratory birds travel spectacular distances each year, navigating and orienting by a variety of means, most of which are poorly understood. Among them is a remarkable ability to perceive the intensity and direction of the Earth's magnetic field. Biologically credible mechanisms for the detection...... increased interest following the proposal in 2000 that free radical chemistry could occur in the bird's retina initiated by photoexcitation of cryptochrome, a specialized photoreceptor protein. In the present paper we review the important physical and chemical constraints on a possible radical...

  10. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.

    Science.gov (United States)

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-07-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The Magic Carpet (MC) is a new electronic device translating the traditional Corsi Block-tapping Test (CBT) to navigational space. In this study, the MC and the CBT were used to assess spatial memory for navigation and for reaching, respectively. Our hypothesis was that school-age children would not treat MC stimuli as navigational paths, assimilating them to reaching sequences. Ninety-one healthy children aged 6 to 11 years and 18 adults were enrolled. Overall short-term memory performance (span) on both tests, effects of sequence geometry, and error patterns according to a new classification were studied. Span increased with age on both tests, but relatively more in navigational than in reaching space, particularly in males. Sequence geometry specifically influenced navigation, not reaching. The number of body rotations along the path affected MC performance in children more than in adults, and in women more than in men. Error patterns indicated that navigational sequences were increasingly retained as global paths across development, in contrast to separately stored reaching locations. A sequence of spatial locations can be coded as a navigational path only if a cognitive switch from a reaching mode to a navigation mode occurs. This implies the integration of egocentric and allocentric reference frames, of visual and idiothetic cues, and access to long-term memory. This switch is not yet fulfilled at school age due to immature executive functions. © 2014 John Wiley & Sons Ltd.

  11. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure.

    Science.gov (United States)

    Jandl, N M; Sprenger, A; Wojak, J F; Göttlich, M; Münte, T F; Krämer, U M; Helmchen, C

    2015-10-01

    Spatial orientation and navigation depends on information from the vestibular system. Previous work suggested impaired spatial navigation in patients with bilateral vestibular failure (BVF). The aim of this study was to investigate event-related brain activity by functional magnetic resonance imaging (fMRI) during spatial navigation and visual memory tasks in BVF patients. Twenty-three BVF patients and healthy age- and gender matched control subjects performed learning sessions of spatial navigation by watching short films taking them through various streets from a driver's perspective along a route to the Cathedral of Cologne using virtual reality videos (adopted and modified from Google Earth). In the scanner, participants were asked to respond to questions testing for visual memory or spatial navigation while they viewed short video clips. From a similar but not identical perspective depicted video frames of routes were displayed which they had previously seen or which were completely novel to them. Compared with controls, posterior cerebellar activity in BVF patients was higher during spatial navigation than during visual memory tasks, in the absence of performance differences. This cerebellar activity correlated with disease duration. Cerebellar activity during spatial navigation in BVF patients may reflect increased non-vestibular efforts to counteract the development of spatial navigation deficits in BVF. Conceivably, cerebellar activity indicates a change in navigational strategy of BVF patients, i.e. from a more allocentric, landmark or place-based strategy (hippocampus) to a more sequence-based strategy. This interpretation would be in accord with recent evidence for a cerebellar role in sequence-based navigation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Robotics_MobileRobot Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Robots and rovers exploring planets need to autonomously navigate to specified locations. Advanced Scientific Concepts, Inc. (ASC) and the University of Minnesota...

  13. Applications of navigation for orthognathic surgery.

    Science.gov (United States)

    Bobek, Samuel L

    2014-11-01

    Stereotactic surgical navigation has been used in oral and maxillofacial surgery for orbital reconstruction, reduction of facial fractures, localization of foreign bodies, placement of implants, skull base surgery, tumor removal, temporomandibular joint surgery, and orthognathic surgery. The primary goals in adopting intraoperative navigation into these different surgeries were to define and localize operative anatomy, to localize implant position, and to orient the surgical wound. Navigation can optimize the functional and esthetic outcomes in patients with dentofacial deformities by identifying pertinent anatomic structures, transferring the surgical plan to the patient, and verifying the surgical result. This article discusses the principles of navigation-guided orthognathic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Airports and Navigation Aids Database System -

    Data.gov (United States)

    Department of Transportation — Airport and Navigation Aids Database System is the repository of aeronautical data related to airports, runways, lighting, NAVAID and their components, obstacles, no...

  15. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    OpenAIRE

    Krzysztof Bikonis; Jerzy Demkowicz

    2013-01-01

    The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The c...

  16. Influence of anatomic landmarks in the virtual environment on simulated angled laparoscope navigation

    OpenAIRE

    Buzink, S.N.; Christie, L.S.; Goossens, R.H.M.; De Ridder, H.; Jakimowicz, J.J.

    2010-01-01

    Background - The aim of this study is to investigate the influence of the presence of anatomic landmarks on the performance of angled laparoscope navigation on the SimSurgery SEP simulator. Methods - Twenty-eight experienced laparoscopic surgeons (familiar with 30º angled laparoscope, >100 basic laparoscopic procedures, >5 advanced laparoscopic procedures) and 23 novices (no laparoscopy experience) performed the Camera Navigation task in an abstract virtual environment (CN-box) and in a virtu...

  17. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    Science.gov (United States)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  18. Youth Mobilisation as Social Navigation

    DEFF Research Database (Denmark)

    Vigh, Henrik Erdman

    2010-01-01

     ties and options that arise in such situations. Building on the Guinean Creole term of dubriagem, the article proposes the concept of social navigation as an analytical optic able to shed light on praxis in unstable environments. The concept of social navigation makes it possible to focus on the way we move within changing social environments. It is processuality squared, illuminating motion within motion. The article thus advocates an analysis of praxis that takes its point of departure in a Batesonian and intermorphological understanding of action in order to further our understanding of the acts of youth in conflict....

  19. Off the Beaten tracks: Exploring Three Aspects of Web Navigation

    NARCIS (Netherlands)

    Weinreich, H.; Obendorf, H.; Herder, E.; Mayer, M.; Edmonds, H.; Hawkey, K.; Kellar, M.; Turnbull, D.

    2006-01-01

    This paper presents results of a long-term client-side Web usage study, updating previous studies that range in age from five to ten years. We focus on three aspects of Web navigation: changes in the distribution of navigation actions, speed of navigation and within-page navigation. “Navigation

  20. Real-time Risk Assessment for Aids to Navigation Using Fuzzy-FSA on Three-Dimensional Simulation System

    Directory of Open Access Journals (Sweden)

    Jinbiao Chen

    2014-06-01

    Full Text Available The risk level of the Aids to Navigation (AtoNs can reflect the ship navigation safety level in the channel to some extent. In order to appreciate the risk level of the aids to navigation (AtoNs in a navigation channel and to provide some decision-making suggestions for the AtoNs Maintenance and Management Department, the risk assessment index system of the AtoNs was built considering the advanced experience of IALA. Under the Formal Safety Assessment frame, taking the advantages of the fuzzy comprehensive evaluation method, the fuzzy-FSA model of risk assessment for aids to navigation was established. The model was implemented for the assessment of aids to navigation in Shanghai area based on the aids to navigation three-dimensional simulation system. The real-time data were extracted from the existing information system of aids to navigation, and the real-time risk assessment for aids to navigation of the chosen channel was performed on platform of the three-dimensional simulation system, with the risk assessment software. Specifically, the deep-water channel of the Yangtze River estuary was taken as an example to illustrate the general assessment procedure. The method proposed presents practical significance and application prospect on the maintenance and management of the aids to navigation.

  1. Vision enhanced navigation for unmanned systems

    Science.gov (United States)

    Wampler, Brandon Loy

    A vision based simultaneous localization and mapping (SLAM) algorithm is evaluated for use on unmanned systems. SLAM is a technique used by a vehicle to build a map of an environment while concurrently keeping track of its location within the map, without a priori knowledge. The work in this thesis is focused on using SLAM as a navigation solution when global positioning system (GPS) service is degraded or temporarily unavailable. Previous work on unmanned systems that lead up to the determination that a better navigation solution than GPS alone is first presented. This previous work includes control of unmanned systems, simulation, and unmanned vehicle hardware testing. The proposed SLAM algorithm follows the work originally developed by Davidson et al. in which they dub their algorithm MonoSLAM [1--4]. A new approach using the Pyramidal Lucas-Kanade feature tracking algorithm from Intel's OpenCV (open computer vision) library is presented as a means of keeping correct landmark correspondences as the vehicle moves through the scene. Though this landmark tracking method is unusable for long term SLAM due to its inability to recognize revisited landmarks, as opposed to the Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), its computational efficiency makes it a good candidate for short term navigation between GPS position updates. Additional sensor information is then considered by fusing INS and GPS information into the SLAM filter. The SLAM system, in its vision only and vision/IMU form, is tested on a table top, in an open room, and finally in an outdoor environment. For the outdoor environment, a form of the slam algorithm that fuses vision, IMU, and GPS information is tested. The proposed SLAM algorithm, and its several forms, are implemented in C++ using an Extended Kalman Filter (EKF). Experiments utilizing a live video feed from a webcam are performed. The different forms of the filter are compared and conclusions are made on

  2. Isolated core vs. superficial cooling effects on virtual maze navigation.

    Science.gov (United States)

    Payne, Jennifer; Cheung, Stephen S

    2007-07-01

    Cold impairs cognitive performance and is a common occurrence in many survival situations. Altered behavior patterns due to impaired navigation abilities in cold environments are potential problems in lost-person situations. We investigated the separate effects of low core temperature and superficial cooling on a spatially demanding virtual navigation task. There were 12 healthy men who were passively cooled via 15 degrees C water immersion to a core temperature of 36.0 degrees C, then transferred to a warm (40 degrees C) water bath to eliminate superficial shivering while completing a series of 20 virtual computer mazes. In a control condition, subjects rested in a thermoneutral (approximately 35 degrees C) bath for a time-matched period before being transferred to a warm bath for testing. Superficial cooling and distraction were achieved by whole-body immersion in 35 degree water for a time-matched period, followed by lower leg immersion in 10 degree C water for the duration of the navigational tests. Mean completion time and mean error scores for the mazes were not significantly different (p > 0.05) across the core cooling (16.59 +/- 11.54 s, 0.91 +/- 1.86 errors), control (15.40 +/- 8.85 s, 0.82 +/- 1.76 errors), and superficial cooling (15.19 +/- 7.80 s, 0.77 +/- 1.40 errors) conditions. Separately reducing core temperature or increasing cold sensation in the lower extremities did not influence performance on virtual computer mazes, suggesting that navigation is more resistive to cooling than other, simpler cognitive tasks. Further research is warranted to explore navigational ability at progressively lower core and skin temperatures, and in different populations.

  3. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  4. A Behaviour-Based Architecture for Mapless Navigation Using Vision

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Guzel

    2012-04-01

    Full Text Available Autonomous robots operating in an unknown and uncertain environment must be able to cope with dynamic changes to that environment. For a mobile robot in a cluttered environment to navigate successfully to a goal while avoiding obstacles is a challenging problem. This paper presents a new behaviour-based architecture design for mapless navigation. The architecture is composed of several modules and each module generates behaviours. A novel method, inspired from a visual homing strategy, is adapted to a monocular vision-based system to overcome goal-based navigation problems. A neural network-based obstacle avoidance strategy is designed using a 2-D scanning laser. To evaluate the performance of the proposed architecture, the system has been tested using Microsoft Robotics Studio (MRS, which is a very powerful 3D simulation environment. In addition, real experiments to guide a Pioneer 3-DX mobile robot, equipped with a pan-tilt-zoom camera in a cluttered environment are presented. The analysis of the results allows us to validate the proposed behaviour-based navigation strategy.

  5. Neonicotinoids interfere with specific components of navigation in honeybees.

    Directory of Open Access Journals (Sweden)

    Johannes Fischer

    Full Text Available Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory was less compromised than the second phase that leads the animal back to the hive (homing flight. The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection.

  6. Neonicotinoids Interfere with Specific Components of Navigation in Honeybees

    Science.gov (United States)

    Fischer, Johannes; Müller, Teresa; Spatz, Anne-Kathrin; Greggers, Uwe; Grünewald, Bernd; Menzel, Randolf

    2014-01-01

    Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory) was less compromised than the second phase that leads the animal back to the hive (homing flight). The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection. PMID:24646521

  7. Vibrotactile in-vehicle navigation system

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veen, H.J. van

    2004-01-01

    A vibrotactile display, consisting ofeight vibrating elements or tactors mounted in a driver's seat, was tested in a driving simulator. Participants drove with visual, tactile and multimodal navigation displays through a built-up area. Workload and the reaction time to navigation messages were

  8. Parsimonious Ways to Use Vision for Navigation

    Directory of Open Access Journals (Sweden)

    Paul Graham

    2012-05-01

    Full Text Available The use of visual information for navigation appears to be a universal strategy for sighted animals, amongst which, one particular group of expert navigators are the ants. The broad interest in studies of ant navigation is in part due to their small brains, thus biomimetic engineers expect to be impressed by elegant control solutions, and psychologists might hope for a description of the minimal cognitive requirements for complex spatial behaviours. In this spirit, we have been taking an interdisciplinary approach to the visual guided navigation of ants in their natural habitat. Behavioural experiments and natural image statistics show that visual navigation need not depend on the remembering or recognition of objects. Further modelling work suggests how simple behavioural routines might enable navigation using familiarity detection rather than explicit recall, and we present a proof of concept that visual navigation using familiarity can be achieved without specifying when or what to learn, nor separating routes into sequences of waypoints. We suggest that our current model represents the only detailed and complete model of insect route guidance to date. What's more, we believe the suggested mechanisms represent useful parsimonious hypotheses for the visually guided navigation in larger-brain animals.

  9. Sex differences in navigation strategy and efficiency.

    Science.gov (United States)

    Boone, Alexander P; Gong, Xinyi; Hegarty, Mary

    2018-05-22

    Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual's navigation strategy as measured by the dual-solution paradigm.

  10. Navigator. Volume 45, Number 2, Winter 2009

    Science.gov (United States)

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" contains the following reports: (1) A Message from the President: Creating Networks of…

  11. Navigator. Volume 45, Number 3, Spring 2009

    Science.gov (United States)

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" includes the following items: (1) A Message from the President (Brenda Wojnowski); (2) NSELA…

  12. Natural Language Navigation Support in Virtual Reality

    NARCIS (Netherlands)

    van Luin, J.; Nijholt, Antinus; op den Akker, Hendrikus J.A.; Giagourta, V.; Strintzis, M.G.

    2001-01-01

    We describe our work on designing a natural language accessible navigation agent for a virtual reality (VR) environment. The agent is part of an agent framework, which means that it can communicate with other agents. Its navigation task consists of guiding the visitors in the environment and to

  13. Risk management model of winter navigation operations

    International Nuclear Information System (INIS)

    Valdez Banda, Osiris A.; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-01-01

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish–Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. - Highlights: •A model to assess and manage the risk of winter navigation operations is proposed. •The risks of oil spills in winter navigation in the Gulf of Finland are analysed. •The model assesses and prioritizes actions to control the risk of the operations. •The model suggests navigational training as the most efficient risk control option.

  14. The Navigation Metaphor in Security Economics

    DEFF Research Database (Denmark)

    Pieters, Wolter; Barendse, Jeroen; Ford, Margaret

    2016-01-01

    The navigation metaphor for cybersecurity merges security architecture models and security economics. By identifying the most efficient routes for gaining access to assets from an attacker's viewpoint, an organization can optimize its defenses along these routes. The well-understood concept of na...... of navigation makes it easier to motivate and explain security investment to a wide audience, encouraging strategic security decisions....

  15. Evolved Navigation Theory and Horizontal Visual Illusions

    Science.gov (United States)

    Jackson, Russell E.; Willey, Chela R.

    2011-01-01

    Environmental perception is prerequisite to most vertebrate behavior and its modern investigation initiated the founding of experimental psychology. Navigation costs may affect environmental perception, such as overestimating distances while encumbered (Solomon, 1949). However, little is known about how this occurs in real-world navigation or how…

  16. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  17. Individual Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  18. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  19. Motion correction in simultaneous PET/MR brain imaging using sparsely sampled MR navigators

    DEFF Research Database (Denmark)

    Keller, Sune H; Hansen, Casper; Hansen, Christian

    2015-01-01

    BACKGROUND: We present a study performing motion correction (MC) of PET using MR navigators sampled between other protocolled MR sequences during simultaneous PET/MR brain scanning with the purpose of evaluating its clinical feasibility and the potential improvement of image quality. FINDINGS......: Twenty-nine human subjects had a 30-min [(11)C]-PiB PET scan with simultaneous MR including 3D navigators sampled at six time points, which were used to correct the PET image for rigid head motion. Five subjects with motion greater than 4 mm were reconstructed into six frames (one for each navigator...

  20. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle (STV)

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  1. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Zhang Yingjun

    2015-02-01

    Full Text Available In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  2. Design and implementation of an interface supporting information navigation tasks using hyperbolic visualization technique

    International Nuclear Information System (INIS)

    Lee, J. K.; Choi, I. K.; Jun, S. H.; Park, K. O.; Seo, Y. S.; Seo, S. M.; Koo, I. S.; Jang, M. H.

    2001-01-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchially structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance, in this thesis, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks

  3. Ethical Navigation in Leadership Training

    Directory of Open Access Journals (Sweden)

    Øyvind Kvalnes

    2012-05-01

    Full Text Available Business leaders frequently face dilemmas, circumstances where whatever course of action they choose, something of important value will be offended. How can an organisation prepare its decision makers for such situations? This article presents a pedagogical approach to dilemma training for business leaders and managers. It has evolved through ten years of experience with human resource development, where ethics has been an integral part of programs designed to help individuals to become excellent in their professional roles. The core element in our approach is The Navigation Wheel, a figure used to keep track of relevant decision factors. Feedback from participants indicates that dilemma training has helped them to recognise the ethical dimension of leadership. They respond that the tools and concepts are highly relevant in relation to the challenges that occur in the working environment they return to after leadership training.http://dx.doi.org/10.5324/eip.v6i1.1778

  4. Autonomous navigation system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  5. An alternative ionospheric correction model for global navigation satellite systems

    Science.gov (United States)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  6. Necessary conditions for cartographic communication and navigation with guide maps

    OpenAIRE

    Wakabayashi, Yoshiki

    2007-01-01

    The aim of this study was to examine the necessary conditions for the communication of geographic information and navigation with guide maps by conducting two experiments. The results of the first experiment showed that not only local landmarks but also the names of well-known places were necessary to identify the location indicated by the map. The spatial abilities of the subject also affected the performance of the identification task when the map indicated unfamiliar places. The second exp...

  7. Adaptation of spatial navigation tests to virtual reality.

    OpenAIRE

    Šupalová, Ivana

    2009-01-01

    At the Department of Neurophysiology of Memory in the Academy of Sciences in Czech Republic are recently performed tests of spatial navigation of people in experimental real enviroment called Blue Velvet Arena. In introdution of this thesis is described importancy of these tests for medical purposes and the recent solution. The main aim is to adapt this real enviroment to virtual reality, allow it's configuration and enable to collect data retieved during experiment's execution. Resulting sys...

  8. Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task.

    Science.gov (United States)

    Korthauer, L E; Nowak, N T; Frahmand, M; Driscoll, I

    2017-01-15

    Although effective spatial navigation requires memory for objects and locations, navigating a novel environment may also require considerable executive resources. The present study investigated associations between performance on the virtual Morris Water Task (vMWT), an analog version of a nonhuman spatial navigation task, and neuropsychological tests of executive functioning and spatial performance in 75 healthy young adults. More effective vMWT performance (e.g., lower latency and distance to reach hidden platform, greater distance in goal quadrant on a probe trial, fewer path intersections) was associated with better verbal fluency, set switching, response inhibition, and ability to mentally rotate objects. Findings also support a male advantage in spatial navigation, with sex moderating several associations between vMWT performance and executive abilities. Overall, we report a robust relationship between executive functioning and navigational skill, with some evidence that men and women may differentially recruit cognitive abilities when navigating a novel environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Navigation Strategy by Contact Sensing Interaction for a Biped Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2008-11-01

    Full Text Available This report presents a basic contact interaction-based navigation strategy for a biped humanoid robot to support current visual-based navigation. The robot's arms were equipped with force sensors to detect physical contact with objects. We proposed a motion algorithm consisting of searching tasks, self-localization tasks, correction of locomotion direction tasks and obstacle avoidance tasks. Priority was given to right-side direction to navigate the robot locomotion. Analysis of trajectory generation, biped gait pattern, and biped walking characteristics was performed to define an efficient navigation strategy in a biped walking humanoid robot. The proposed algorithm is evaluated in an experiment with a 21-dofs humanoid robot operating in a room with walls and obstacles. The experimental results reveal good robot performance when recognizing objects by touching, grasping, and continuously generating suitable trajectories to correct direction and avoid collisions.

  10. A Software Defined Radio Based Airplane Communication Navigation Simulation System

    Science.gov (United States)

    He, L.; Zhong, H. T.; Song, D.

    2018-01-01

    Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.

  11. Automated Functional Testing based on the Navigation of Web Applications

    Directory of Open Access Journals (Sweden)

    Boni García

    2011-08-01

    Full Text Available Web applications are becoming more and more complex. Testing such applications is an intricate hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practitioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach to perform automated software testing for web applications based on its navigation. On the one hand, web navigation is the process of traversing a web application using a browser. On the other hand, functional requirements are actions that an application must do. Therefore, the evaluation of the correct navigation of web applications results in the assessment of the specified functional requirements. The proposed method to perform the automation is done in four levels: test case generation, test data derivation, test case execution, and test case reporting. This method is driven by three kinds of inputs: i UML models; ii Selenium scripts; iii XML files. We have implemented our approach in an open-source testing framework named Automatic Testing Platform. The validation of this work has been carried out by means of a case study, in which the target is a real invoice management system developed using a model-driven approach.

  12. A model of ant route navigation driven by scene familiarity.

    Directory of Open Access Journals (Sweden)

    Bart Baddeley

    2012-01-01

    Full Text Available In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that do not specify when or what to learn, nor separate routes into sequences of waypoints.

  13. 3D-navigation for interstitial stereotactic brachytherapy; 3D-Navigation in der interstitiellen stereotaktischen Brachytherapie

    Energy Technology Data Exchange (ETDEWEB)

    Auer, T.; Hensler, E.; Eichberger, P.; Bluhm, A.; Lukas, P. [Innsbruck Univ. (Austria). Klinik fuer Strahlentherapie und Radioonkologie; Gunkel, A.; Freysinger, W.; Bale, R.; Thumfart, W.F. [Innsbruck Univ. (Austria). Klinik fuer HNO-Krankheiten; Gaber, O. [Innsbruck Univ. (Austria). Inst. fuer Anatomie

    1998-02-01

    The aim of this paper is to describe the adaption of 3D-navigation for interstitial brachytherapy. The new method leads to prospective and therefore improved planning of the therapy (position of the needle and dose distribution) and to the possibility of a virtual simulation (control if vessels or nerves are on the pathway of the needle). The EasyGuide Neuro {sup trademark} navigation system (Philips) was adapted in the way, that needles for interstitial bracachytherapy were made connectable to the pointer and correctly displayed on the screen. To determine the positioning accuracy, several attempts were performed to hit defined targets on phantoms. Two methods were used: `Free navigation`, where the needle was under control of the navigation system, and the `guided navigation` where an aligned template was used additionally to lead the needle to the target. In addition a mask system was tested, whether it met the requirements of stable and reproducible positioning. The potential of applying this method is clinical practice was tested with an anatomical specimen. About 91% of all attempts lied within 5 mm. There were even better results on the more rigid table (94%<4 mm). No difference could be seen between both application methods (`free navigation` and `navigation with template`), they showed the same accuracy. (orig./MG) [Deutsch] Es war das Ziel dieser Arbeit, ein 3D-Infrarotnavigationssystem fuer die Anforderungen der interstitiellen stereotaktischen Brachytherapie zu adaptieren. Damit wird die Planung der Therapie verbessert (prospektive Planung der Nadelpositionen und der Dosisverteilung), und eine virtuelle Simulation wird realisierbar (Kontrolle des vorgeplanten Zugangs bezueglich Verletzungsmoeglichkeit von Gefaessen oder Nerven). Das EasyGuide-Neuro {sup trademark} -Navigagationssystem (Philips) wurde so veraendert, dass Nadeln, die in der Brachytherapie Verwendung finden, am Pointer befestigt werden konnten und am Bildschirm angezeigt wurden. Um die

  14. Easy rider: monkeys learn to drive a wheelchair to navigate through a complex maze.

    Science.gov (United States)

    Etienne, Stephanie; Guthrie, Martin; Goillandeau, Michel; Nguyen, Tho Hai; Orignac, Hugues; Gross, Christian; Boraud, Thomas

    2014-01-01

    The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.

  15. Urban, Indoor and Subterranean Navigation Sensors and Systems (Capteurs et systemes de navigation urbains, interieurs et souterrains)

    Science.gov (United States)

    2010-11-01

    3-10 Multiple Images of an Image Sequence Figure 3-10 A Digital Magnetic Compass from KVH Industries 3-11 Figure 3-11 Earth’s Magnetic Field 3-11...ARINO SENER – Ingenieria y Sistemas S.A Aerospace Division Parque Tecnologico de Madrid Calle Severo Ocho 4 28760 Tres Cantos Madrid Email...experts from government, academia, industry and the military produced an analysis of future navigation sensors and systems whose performance

  16. Error Analysis and Calibration Method of a Multiple Field-of-View Navigation System

    OpenAIRE

    Shi, Shuai; Zhao, Kaichun; You, Zheng; Ouyang, Chenguang; Cao, Yongkui; Wang, Zhenzhou

    2017-01-01

    The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a n...

  17. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    OpenAIRE

    Kia, Chua; Arshad, Mohd Rizal

    2006-01-01

    This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs) operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system ...

  18. Using Inertial Sensors in Smartphones for Curriculum Experiments of Inertial Navigation Technology

    OpenAIRE

    Niu, Xiaoji; Wang, Qingjiang; Li, You; Li, Qingli; Liu, Jingnan

    2015-01-01

    Inertial technology has been used in a wide range of applications such as guidance, navigation, and motion tracking. However, there are few undergraduate courses that focus on the inertial technology. Traditional inertial navigation systems (INS) and relevant testing facilities are expensive and complicated in operation, which makes it inconvenient and risky to perform teaching experiments with such systems. To solve this issue, this paper proposes the idea of using smartphones, which are ubi...

  19. A Navigation/Positioning Service Based on Pseudolites Installed on Stratospheric Airships

    OpenAIRE

    辻井, 利昭; TSUJII, Toshiaki; 張替, 正敏; HARIGAE, Masatoshi

    2002-01-01

    Transmitters of GPS-like signals, called pseudolites (PL) or "pseudo-satellites" have been widely investigated as an additional ranging source for performance enhancement of GPS. Ground-based GPS augmentation systems using pseudolites have been investigated for several applications such as vehicle navigation in downtown urban canyons, positioning in deep open-cut pits and mines and precision landing of aircraft. The concept of an innovative GPS navigation/ positioning system augmented by airs...

  20. Development of a prototype real-time automated filter for operational deep space navigation

    Science.gov (United States)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  1. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review.

    Science.gov (United States)

    Cogné, M; Taillade, M; N'Kaoua, B; Tarruella, A; Klinger, E; Larrue, F; Sauzéon, H; Joseph, P-A; Sorita, E

    2017-06-01

    Spatial navigation, which involves higher cognitive functions, is frequently implemented in daily activities, and is critical to the participation of human beings in mainstream environments. Virtual reality is an expanding tool, which enables on one hand the assessment of the cognitive functions involved in spatial navigation, and on the other the rehabilitation of patients with spatial navigation difficulties. Topographical disorientation is a frequent deficit among patients suffering from neurological diseases. The use of virtual environments enables the information incorporated into the virtual environment to be manipulated empirically. But the impact of manipulations seems differ according to their nature (quantity, occurrence, and characteristics of the stimuli) and the target population. We performed a systematic review of research on virtual spatial navigation covering the period from 2005 to 2015. We focused first on the contribution of virtual spatial navigation for patients with brain injury or schizophrenia, or in the context of ageing and dementia, and then on the impact of visual or auditory stimuli on virtual spatial navigation. On the basis of 6521 abstracts identified in 2 databases (Pubmed and Scopus) with the keywords « navigation » and « virtual », 1103 abstracts were selected by adding the keywords "ageing", "dementia", "brain injury", "stroke", "schizophrenia", "aid", "help", "stimulus" and "cue"; Among these, 63 articles were included in the present qualitative analysis. Unlike pencil-and-paper tests, virtual reality is useful to assess large-scale navigation strategies in patients with brain injury or schizophrenia, or in the context of ageing and dementia. Better knowledge about both the impact of the different aids and the cognitive processes involved is essential for the use of aids in neurorehabilitation. Copyright © 2016. Published by Elsevier Masson SAS.

  2. Accelerating navigation in the VecGeom geometry modeller

    Science.gov (United States)

    Wenzel, Sandro; Zhang, Yang; pre="for the"> VecGeom Developers,

    2017-10-01

    The VecGeom geometry library is a relatively recent effort aiming to provide a modern and high performance geometry service for particle detector simulation in hierarchical detector geometries common to HEP experiments. One of its principal targets is the efficient use of vector SIMD hardware instructions to accelerate geometry calculations for single track as well as multi-track queries. Previously, excellent performance improvements compared to Geant4/ROOT could be reported for elementary geometry algorithms at the level of single shape queries. In this contribution, we will focus on the higher level navigation algorithms in VecGeom, which are the most important components as seen from the simulation engines. We will first report on our R&D effort and developments to implement SIMD enhanced data structures to speed up the well-known “voxelised” navigation algorithms, ubiquitously used for particle tracing in complex detector modules consisting of many daughter parts. Second, we will discuss complementary new approaches to improve navigation algorithms in HEP. These ideas are based on a systematic exploitation of static properties of the detector layout as well as automatic code generation and specialisation of the C++ navigator classes. Such specialisations reduce the overhead of generic- or virtual function based algorithms and enhance the effectiveness of the SIMD vector units. These novel approaches go well beyond the existing solutions available in Geant4 or TGeo/ROOT, achieve a significantly superior performance, and might be of interest for a wide range of simulation backends (GeantV, Geant4). We exemplify this with concrete benchmarks for the CMS and ALICE detectors.

  3. Navigating nuclear science: Enhancing analysis through visualization

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  4. Computer navigation experience in hip resurfacing improves femoral component alignment using a conventional jig.

    Science.gov (United States)

    Morison, Zachary; Mehra, Akshay; Olsen, Michael; Donnelly, Michael; Schemitsch, Emil

    2013-11-01

    The use of computer navigation has been shown to improve the accuracy of femoral component placement compared to conventional instrumentation in hip resurfacing. Whether exposure to computer navigation improves accuracy when the procedure is subsequently performed with conventional instrumentation without navigation has not been explored. We examined whether femoral component alignment utilizing a conventional jig improves following experience with the use of imageless computer navigation for hip resurfacing. Between December 2004 and December 2008, 213 consecutive hip resurfacings were performed by a single surgeon. The first 17 (Cohort 1) and the last 9 (Cohort 2) hip resurfacings were performed using a conventional guidewire alignment jig. In 187 cases, the femoral component was implanted using the imageless computer navigation. Cohorts 1 and 2 were compared for femoral component alignment accuracy. All components in Cohort 2 achieved the position determined by the preoperative plan. The mean deviation of the stem-shaft angle (SSA) from the preoperatively planned target position was 2.2° in Cohort 2 and 5.6° in Cohort 1 (P = 0.01). Four implants in Cohort 1 were positioned at least 10° varus compared to the target SSA position and another four were retroverted. Femoral component placement utilizing conventional instrumentation may be more accurate following experience using imageless computer navigation.

  5. Computer navigation experience in hip resurfacing improves femoral component alignment using a conventional jig

    Directory of Open Access Journals (Sweden)

    Zachary Morison

    2013-01-01

    Full Text Available Background:The use of computer navigation has been shown to improve the accuracy of femoral component placement compared to conventional instrumentation in hip resurfacing. Whether exposure to computer navigation improves accuracy when the procedure is subsequently performed with conventional instrumentation without navigation has not been explored. We examined whether femoral component alignment utilizing a conventional jig improves following experience with the use of imageless computer navigation for hip resurfacing. Materials and Methods:Between December 2004 and December 2008, 213 consecutive hip resurfacings were performed by a single surgeon. The first 17 (Cohort 1 and the last 9 (Cohort 2 hip resurfacings were performed using a conventional guidewire alignment jig. In 187 cases, the femoral component was implanted using the imageless computer navigation. Cohorts 1 and 2 were compared for femoral component alignment accuracy. Results:All components in Cohort 2 achieved the position determined by the preoperative plan. The mean deviation of the stem-shaft angle (SSA from the preoperatively planned target position was 2.2° in Cohort 2 and 5.6° in Cohort 1 ( P = 0.01. Four implants in Cohort 1 were positioned at least 10° varus compared to the target SSA position and another four were retroverted. Conclusions: Femoral component placement utilizing conventional instrumentation may be more accurate following experience using imageless computer navigation.

  6. A Visual-Aided Inertial Navigation and Mapping System

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-05-01

    Full Text Available State estimation is a fundamental necessity for any application involving autonomous robots. This paper describes a visual-aided inertial navigation and mapping system for application to autonomous robots. The system, which relies on Kalman filtering, is designed to fuse the measurements obtained from a monocular camera, an inertial measurement unit (IMU and a position sensor (GPS. The estimated state consists of the full state of the vehicle: the position, orientation, their first derivatives and the parameter errors of the inertial sensors (i.e., the bias of gyroscopes and accelerometers. The system also provides the spatial locations of the visual features observed by the camera. The proposed scheme was designed by considering the limited resources commonly available in small mobile robots, while it is intended to be applied to cluttered environments in order to perform fully vision-based navigation in periods where the position sensor is not available. Moreover, the estimated map of visual features would be suitable for multiple tasks: i terrain analysis; ii three-dimensional (3D scene reconstruction; iii localization, detection or perception of obstacles and generating trajectories to navigate around these obstacles; and iv autonomous exploration. In this work, simulations and experiments with real data are presented in order to validate and demonstrate the performance of the proposal.

  7. Situated navigational working memory: the role of positive mood.

    Science.gov (United States)

    Palmiero, Massimiliano; Nori, Raffaella; Rogolino, Carmelo; D'Amico, Simonetta; Piccardi, Laura

    2015-09-01

    The perspective of situated cognition assumes that cognition is not separated from the context. In the present study, the issue if visuospatial memory and navigational working memory are situated was explored by manipulating participants' mood (positive, negative and neutral) while performing two different tasks. College students were randomly assigned to the group of positive, negative or neutral music. Participants filled out the positive and negative affect schedule (PANAS) before and after carrying out the Corsi Test and the Walking Corsi Test. Both tasks were performed forward and backward. Music was played throughout the memory tasks. Firstly, comparing pre-mood induction PANAS scores to post-mood induction PANAS scores, results showed that only positive affects were manipulated: After mood induction, the Positive Music Group produced higher scores, whereas the Negative Music Group produced lower scores than before mood induction; the Neutral Music Group produced no effect. Secondly, the Positive Music Group produced higher scores than Negative and Neutral Music Groups both at the Corsi Test and at the Walking Corsi Test. These results show that situational contexts that induce a specific mood can affect visuospatial memory and navigational working memory, and open to the idea that positive emotions may play a crucial role in enhancing navigational strategies.

  8. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  9. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  10. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  11. Image Based Solution to Occlusion Problem for Multiple Robots Navigation

    Directory of Open Access Journals (Sweden)

    Taj Mohammad Khan

    2012-04-01

    Full Text Available In machine vision, occlusions problem is always a challenging issue in image based mapping and navigation tasks. This paper presents a multiple view vision based algorithm for the development of occlusion-free map of the indoor environment. The map is assumed to be utilized by the mobile robots within the workspace. It has wide range of applications, including mobile robot path planning and navigation, access control in restricted areas, and surveillance systems. We used wall mounted fixed camera system. After intensity adjustment and background subtraction of the synchronously captured images, the image registration was performed. We applied our algorithm on the registered images to resolve the occlusion problem. This technique works well even in the existence of total occlusion for a longer period.

  12. Guidance and navigation for rendezvous with an uncooperative target

    Science.gov (United States)

    Telaar, J.; Schlaile, C.; Sommer, J.

    2018-06-01

    This paper presents a guidance strategy for a rendezvous with an uncooperative target. In the applied design reference mission, a spiral approach is commanded ensuring a collision-free relative orbit due to e/i-vector separation. The dimensions of the relative orbit are successively reduced by Δv commands which at the same time improve the observability of the relative state. The navigation is based on line-of-sight measurements. The relative state is estimated by an extended Kalman filter (EKF). The performance of this guidance and navigation strategy is demonstrated by extensive Monte Carlo simulations taking into account all major uncertainties like measurement errors, Δv execution errors, and differential drag.

  13. Navigation with a sensory substitution device in congenitally blind individuals.

    Science.gov (United States)

    Chebat, Daniel-Robert; Schneider, Fabien C; Kupers, Ron; Ptito, Maurice

    2011-05-11

    Vision allows for obstacle detection and avoidance. The compensatory mechanisms involved in maintaining these functions in blind people using their remaining intact senses are poorly understood. We investigated the ability of congenitally blind participants to detect and avoid obstacles using the tongue display unit, a sensory substitution device that uses the tongue as a portal to the brain. We found that congenitally blind were better than sighted control participants in detecting and avoiding obstacles using the tongue display unit. Obstacles size and avoidance strategy had a significant effect on performance: large obstacles were better detected than small ones and step-around obstacles were better avoided than step-over ones. These data extend our earlier findings that when using a sensory substitution device, blind participants outperform sighted controls not only in a virtual navigation task but also during effective navigation within a human-sized obstacle course.

  14. Application of GIS tools in determining the navigability of waterways

    Science.gov (United States)

    Nadolny, Grzegorz; Rabant, Hubert; Szatten, Dawid

    2017-11-01

    This article presents the results of a research conducted on Lower Noteć river for the application of geographic information system (GIS) tools. The study consisted of longitudinal profile soundings of navigable route combined with statistical analysis of water levels. GIS software - ArcMap v. 10.0 was used to perform analysis of changes in waterway depth depending on hydrological conditions. A mileage of waterway sections was specified depending on whether they met or did not meet classification requirements in accordance with Polish law. The application of spatial data of Lower Noteć river developed for the purpose of the article is presented. Conducted analyses and obtained results demonstrate the importance of GIS tools in inland navigation studies.

  15. The PPP Precision Analysis Based on BDS Regional Navigation System

    Directory of Open Access Journals (Sweden)

    ZHU Yongxing

    2015-04-01

    Full Text Available BeiDou navigation satellite system(BDS has opened service in most of the Asia-Pacific region, it offers the possibility to break the technological monopoly of GPS in the field of high-precision applications, so its performance of precise point positioning (PPP has been a great concern. Firstly, the constellation of BeiDou regional navigation system and BDS/GPS tracking network is introduced. Secondly, the precise ephemeris and clock offset accuracy of BeiDou satellite based on domestic tracking network is analyzed. Finally, the static and kinematic PPP accuracy is studied, and compared with the GPS. The actual measured numerical example shows that the static and kinematic PPP based on BDS can achieve centimeter-level and decimeter-level respectively, reaching the current level of GPS precise point positioning.

  16. Parametric Covariance Model for Horizon-Based Optical Navigation

    Science.gov (United States)

    Hikes, Jacob; Liounis, Andrew J.; Christian, John A.

    2016-01-01

    This Note presents an entirely parametric version of the covariance for horizon-based optical navigation measurements. The covariance can be written as a function of only the spacecraft position, two sensor design parameters, the illumination direction, the size of the observed planet, the size of the lit arc to be used, and the total number of observed horizon points. As a result, one may now more clearly understand the sensitivity of horizon-based optical navigation performance as a function of these key design parameters, which is insight that was obscured in previous (and nonparametric) versions of the covariance. Finally, the new parametric covariance is shown to agree with both the nonparametric analytic covariance and results from a Monte Carlo analysis.

  17. GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles

    Science.gov (United States)

    Khanafseh, Samer Mahmoud

    Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted

  18. Venous catheterization with ultrasound navigation

    International Nuclear Information System (INIS)

    Kasatkin, A. A.; Nigmatullina, A. R.; Urakov, A. L.

    2015-01-01

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures

  19. Venous catheterization with ultrasound navigation

    Energy Technology Data Exchange (ETDEWEB)

    Kasatkin, A. A., E-mail: ant-kasatkin@yandex.ru; Nigmatullina, A. R. [Izhevsk State Medical Academy, Kommunarov street, 281, Izhevsk, Russia, 426034 (Russian Federation); Urakov, A. L., E-mail: ant-kasatkin@yandex.ru [Institute of Mechanics Ural Branch of Russian Academy of Sciences, T.Baramzinoy street 34, Izhevsk, Russia, 426067, Izhevsk (Russian Federation); Izhevsk State Medical Academy, Kommunarov street, 281, Izhevsk, Russia, 426034 (Russian Federation)

    2015-11-17

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.

  20. Qatari Women Navigating Gendered Space

    Directory of Open Access Journals (Sweden)

    Krystyna Golkowska

    2017-10-01

    Full Text Available ADespite growing interest in the lived experience of Muslim women in Arab countries, there is still a dearth of studies on the Gulf region. This article focuses on Qatar, a Gulf Corporation Council (GCC country, to explore its changing sociocultural landscape and reflect on Qatari women’s agency within the framework of the traditional gendered space model. Applying Grounded Theory methodology to data collected from a variety of scholarly and non-scholarly sources, the author offers a themed overview of factors that facilitate and constrain Qatari women’s mobility. The findings testify to a significant increase in female presence and visibility in the public sphere—specifically in the spaces of education, employment, and sports. They also show that young Qatari women exercise agency through navigating the existing systems rather than question traditional socio-cultural norms. The paper identifies this search for a middle ground between tradition and modernity and its ideological underpinnings as the area of future research that should be led by Qatari women themselves.

  1. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    OpenAIRE

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  2. Smart parking management and navigation system

    KAUST Repository

    Saadeldin, Mohamed

    2017-01-01

    Various examples are provided for smart parking management, which can include navigation. In one example, a system includes a base station controller configured to: receive a wireless signal from a parking controller located at a parking space

  3. Challenges in navigational strategies for flexible endoscopy

    NARCIS (Netherlands)

    van der Stap, N.; van der Heijden, Ferdinand; Broeders, Ivo Adriaan Maria Johannes

    Automating flexible endoscope navigation could lead to an increase in patient safety for endoluminal therapeutic procedures. Additionally, it may decrease the costs of diagnostic flexible endoscope procedures by shortening the learning curve and increasing the efficiency of insertion. Earlier

  4. From Navigation to Star Hopping: Forgotten Formulae

    Indian Academy of Sciences (India)

    IAS Admin

    Mathematics and wrote a book Navigation and Nautical Astronomy for Sea-men in 1821 with tables ... and arcseconds. The reference ... Roger W Sinnott, an astronomy graduate from Harvard, served on the editorial board of the monthly ...

  5. Comprehension and navigation of networked hypertexts

    NARCIS (Netherlands)

    Blom, Helen; Segers, Eliane; Knoors, Harry; Hermans, Daan; Verhoeven, Ludo

    2018-01-01

    This study aims to investigate secondary school students' reading comprehension and navigation of networked hypertexts with and without a graphic overview compared to linear digital texts. Additionally, it was studied whether prior knowledge, vocabulary, verbal, and visual working memory moderated

  6. 78 FR 68077 - Navigation Safety Advisory Council

    Science.gov (United States)

    2013-11-13

    ... Privacy Act notice regarding our public dockets in the January 17, 2008, issue of the Federal Register (73... commence in calendar year 2014. (4) Navigation Rules Regulatory Project. The Council will receive an update...

  7. Navigation with a passive brain based interface

    NARCIS (Netherlands)

    Erp, J.B.F. van; Werkhoven, P.J.; Thurlings, M.E.; Brouwer, A.-M.

    2009-01-01

    In this paper, we describe a Brain Computer Interface (BCI) for navigation. The system is based on detecting brain signals that are elicited by tactile stimulation on the torso indicating the desired direction.

  8. Mars rover local navigation and hazard avoidance

    Science.gov (United States)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  9. Onboard Optical Navigation Measurement Processing in GEONS

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Navigation (OpNav) measurements derived from spacecraft-based images are a powerful data type in the precision orbit determination process.  OpNav...

  10. NOAA Seamless Raster Navigational Charts (RNC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Seamless Raster Chart Server provides a seamless collarless mosaic of the NOAA Raster Navigational Charts (RNC). The RNC are a collection of approximately...

  11. Simulation-based camera navigation training in laparoscopy-a randomized trial

    DEFF Research Database (Denmark)

    Nilsson, Cecilia; Sørensen, Jette Led; Konge, Lars

    2017-01-01

    patient safety. The objectives of this trial were to examine how to train laparoscopic camera navigation and to explore the transfer of skills to the operating room. MATERIALS AND METHODS: A randomized, single-center superiority trial with three groups: The first group practiced simulation-based camera...... navigation tasks (camera group), the second group practiced performing a simulation-based cholecystectomy (procedure group), and the third group received no training (control group). Participants were surgical novices without prior laparoscopic experience. The primary outcome was assessment of camera.......033), had a higher score. CONCLUSIONS: Simulation-based training improves the technical skills required for camera navigation, regardless of practicing camera navigation or the procedure itself. Transfer to the clinical setting could, however, not be demonstrated. The control group demonstrated higher...

  12. The use of virtual surgical planning and navigation in the treatment of orbital trauma

    Directory of Open Access Journals (Sweden)

    Alan Scott Herford

    2017-02-01

    Full Text Available Virtual surgical planning (VSP has recently been introduced in craniomaxillofacial surgery with the goal of improving efficiency and precision for complex surgical operations. Among many indications, VSP can also be applied for the treatment of congenital and acquired craniofacial defects, including orbital fractures. VSP permits the surgeon to visualize the complex anatomy of craniofacial region, showing the relationship between bone and neurovascular structures. It can be used to design and print using three-dimensional (3D printing technology and customized surgical models. Additionally, intraoperative navigation may be useful as an aid in performing the surgery. Navigation is useful for both the surgical dissection as well as to confirm the placement of the implant. Navigation has been found to be especially useful for orbit and sinus surgery. The present paper reports a case describing the use of VSP and computerized navigation for the reconstruction of a large orbital floor defect with a custom implant.

  13. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    Science.gov (United States)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  14. Development of navigational working memory: evidence from 6- to 10-year-old children.

    Science.gov (United States)

    Piccardi, Laura; Leonzi, Marina; D'Amico, Simonetta; Marano, Assunta; Guariglia, Cecilia

    2014-06-01

    The ability to learn complex environments may require the contribution of different types of working memory. Therefore, we investigated the development of different types of working memory (navigational, reaching, and verbal) in 129 typically developing children. We aimed to determine whether navigational working memory develops at the same rate as other types of working memory and whether the gender differences reported in adults are already present during development. We found that navigational working memory is less developed than both verbal and reaching working memory and that gender predicts performance only for navigational working memory. Our results are in line with reports that children made significantly more errors in far space than adults, showing that near space representation develops before far space representation. © 2014 The British Psychological Society.

  15. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  16. Unraveling navigational strategies in migratory insects

    OpenAIRE

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M.

    2011-01-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied d...

  17. Magnetic navigation and tracking of underwater vehicles

    Digital Repository Service at National Institute of Oceanography (India)

    Teixeira, F.C.; Pascoal, A.M.

    for the navigation of AUVs has been proposed many years ago but the concept still requires practical demonstration. Implementation issues One of the advantages of mag- netic navigation consists in being passive and economical in terms of energy. Magnetic sensors do... like the present one, that require magnetic measurements with very high precision. A typical solution to this problem consists in the placement of magnetic sensors as far away as possible from the sources of noise but this may not be practical...

  18. Navigational Strategies of Migrating Monarch Butterflies

    Science.gov (United States)

    2014-11-10

    AFRL-OSR-VA-TR-2014-0339 NAVIGATIONAL STRATEGIES OF MIGRATING MONARCH BUTTERFLIES Steven Reppert UNIVERSITY OF MASSACHUSETTS Final Report 11/10/2014...Final Progress Statement to (Dr. Patrick Bradshaw) Contract/Grant Title: Navigational Strategies of Migrating Monarch Butterflies Contract...Grant #: FA9550-10-1-0480 Reporting Period: 01-Sept-10 to 31-Aug-14 Overview of accomplishments: Migrating monarch butterflies (Danaus

  19. Shape Perception and Navigation in Blind Adults

    Science.gov (United States)

    Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara

    2017-01-01

    Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development. PMID:28144226

  20. Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations

    Science.gov (United States)

    Getzandanner, Kenneth M.

    2011-01-01

    A wealth of scientific knowledge regarding the composition and evolution of the solar system can be gained through reconnaissance missions to primitive solar system bodies. This paper presents analysis of a baseline navigation strategy designed to address the unique challenges of primitive body navigation. Linear covariance and Monte Carlo error analysis was performed on a baseline navigation strategy using simulated data from a· design reference mission (DRM). The objective of the DRM is to approach, rendezvous, and maintain a stable orbit about the near-Earth asteroid 4660 Nereus. The outlined navigation strategy and resulting analyses, however, are not necessarily limited to this specific target asteroid as they may he applicable to a diverse range of mission scenarios. The baseline navigation strategy included simulated data from Deep Space Network (DSN) radiometric tracking and optical image processing (OpNav). Results from the linear covariance and Monte Carlo analyses suggest the DRM navigation strategy is sufficient to approach and perform proximity operations in the vicinity of the target asteroid with meter-level accuracy.

  1. Hybrid extended particle filter (HEPF) for integrated inertial navigation and global positioning systems

    International Nuclear Information System (INIS)

    Aggarwal, Priyanka; Syed, Zainab; El-Sheimy, Naser

    2009-01-01

    Navigation includes the integration of methodologies and systems for estimating time-varying position, velocity and attitude of moving objects. Navigation incorporating the integrated inertial navigation system (INS) and global positioning system (GPS) generally requires extensive evaluations of nonlinear equations involving double integration. Currently, integrated navigation systems are commonly implemented using the extended Kalman filter (EKF). The EKF assumes a linearized process, measurement models and Gaussian noise distributions. These assumptions are unrealistic for highly nonlinear systems like land vehicle navigation and may cause filter divergence. A particle filter (PF) is developed to enhance integrated INS/GPS system performance as it can easily deal with nonlinearity and non-Gaussian noises. In this paper, a hybrid extended particle filter (HEPF) is developed as an alternative to the well-known EKF to achieve better navigation data accuracy for low-cost microelectromechanical system sensors. The results show that the HEPF performs better than the EKF during GPS outages, especially when simulated outages are located in periods with high vehicle dynamics

  2. GPS Navigation Above 76,000 km for the MMS Mission

    Science.gov (United States)

    Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2016-01-01

    NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  3. Navigation integrity monitoring and obstacle detection for enhanced-vision systems

    Science.gov (United States)

    Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter

    2001-08-01

    Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our

  4. The effect of navigational expertise on wayfinding in new environments.

    Science.gov (United States)

    Woollett, Katherine; Maguire, Eleanor A

    2010-12-01

    Becoming proficient at navigation in urban environments is something that we all aspire to. Here we asked whether being an expert at wayfinding in one environment has any effect on learning new spatial layouts. Licensed London taxi drivers are among the most proficient urban navigators, training for many years to find their way around a complex and irregularly-laid out city. We first tested how well they could learn the layout of an unfamiliar town compared with a group of non-taxi drivers. Second, we investigated how effectively taxi drivers could integrate a new district into their existing spatial representation of London. We found that taxi drivers were significantly better than control participants at executing routes through the new town, and representing it at a map-like survey level. However, the benefits of navigational expertise were not universal. Compared with their performance in the new town, taxi drivers were significantly poorer at learning the layout of a new area that had to be integrated with their existing knowledge of London. We consider reasons for this picture of facilitation and limitation, in particular drawing parallels with how knowledge acquisition occurs in the context of expertise in general.

  5. A projective surgical navigation system for cancer resection

    Science.gov (United States)

    Gan, Qi; Shao, Pengfei; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Xu, Ronald

    2016-03-01

    Near infrared (NIR) fluorescence imaging technique can provide precise and real-time information about tumor location during a cancer resection surgery. However, many intraoperative fluorescence imaging systems are based on wearable devices or stand-alone displays, leading to distraction of the surgeons and suboptimal outcome. To overcome these limitations, we design a projective fluorescence imaging system for surgical navigation. The system consists of a LED excitation light source, a monochromatic CCD camera, a host computer, a mini projector and a CMOS camera. A software program is written by C++ to call OpenCV functions for calibrating and correcting fluorescence images captured by the CCD camera upon excitation illumination of the LED source. The images are projected back to the surgical field by the mini projector. Imaging performance of this projective navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex-vivo chicken tissue model. In all the experiments, the projected images by the projector match well with the locations of fluorescence emission. Our experimental results indicate that the proposed projective navigation system can be a powerful tool for pre-operative surgical planning, intraoperative surgical guidance, and postoperative assessment of surgical outcome. We have integrated the optoelectronic elements into a compact and miniaturized system in preparation for further clinical validation.

  6. Fully autonomous navigation for the NASA cargo transfer vehicle

    Science.gov (United States)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  7. Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2018-03-01

    Full Text Available In order to autonomously transfer from one point of the environment to the other, Autonomous Underwater Vehicles (AUV need a navigational system. While navigating underwater the vehicles usually use a dead reckoning method which calculates vehicle movement on the basis of the information about velocity (sometimes also acceleration and course (heading provided by on-board devicesl ike Doppler Velocity Logs and Fibre Optical Gyroscopes. Due to inaccuracies of the devices and the influence of environmental forces, the position generated by the dead reckoning navigational system (DRNS is not free from errors, moreover the errors grow exponentially in time. The problem becomes even more serious when we deal with small AUVs which do not have any speedometer on board and whose course measurement device is inaccurate. To improve indications of the DRNS the vehicle can emerge onto the surface from time to time, record its GPS position, and measure position error which can be further used to estimate environmental influence and inaccuracies caused by mechanisms of the vehicle. This paper reports simulation tests which were performed to determine the most effective method for correction of DRNS designed for a real Biomimetic AUV.

  8. Motion-guided attention promotes adaptive communications during social navigation.

    Science.gov (United States)

    Lemasson, B H; Anderson, J J; Goodwin, R A

    2013-03-07

    Animals are capable of enhanced decision making through cooperation, whereby accurate decisions can occur quickly through decentralized consensus. These interactions often depend upon reliable social cues, which can result in highly coordinated activities in uncertain environments. Yet information within a crowd may be lost in translation, generating confusion and enhancing individual risk. As quantitative data detailing animal social interactions accumulate, the mechanisms enabling individuals to rapidly and accurately process competing social cues remain unresolved. Here, we model how motion-guided attention influences the exchange of visual information during social navigation. We also compare the performance of this mechanism to the hypothesis that robust social coordination requires individuals to numerically limit their attention to a set of n-nearest neighbours. While we find that such numerically limited attention does not generate robust social navigation across ecological contexts, several notable qualities arise from selective attention to motion cues. First, individuals can instantly become a local information hub when startled into action, without requiring changes in neighbour attention level. Second, individuals can circumvent speed-accuracy trade-offs by tuning their motion thresholds. In turn, these properties enable groups to collectively dampen or amplify social information. Lastly, the minority required to sway a group's short-term directional decisions can change substantially with social context. Our findings suggest that motion-guided attention is a fundamental and efficient mechanism underlying collaborative decision making during social navigation.

  9. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    Science.gov (United States)

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  10. Telecommunications and navigation systems design for manned Mars exploration missions

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  11. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Chien-Hao Tseng

    2016-07-01

    Full Text Available This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF and fuzzy logic adaptive system (FLAS for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF, unscented Kalman filter (UKF, and CKF approaches.

  12. A localized navigation algorithm for Radiation Evasion for nuclear facilities. Part II: Optimizing the “Nearest Exit” Criterion

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Mohammed A., E-mail: mkha@ieee.org [Department of Electrical Engineering, Jordan University of Science and Technology (Jordan); Al-Shboul, Zeina Aman M., E-mail: xeinaaman@gmail.com [Department of Electrical Engineering, Jordan University of Science and Technology (Jordan); Jaradat, Mohammad A., E-mail: majaradat@just.edu.jo [Department of Mechanical Engineering, Jordan University of Science and Technology (Jordan); Malkawi, Mohammad I., E-mail: mmalkawi@aimws.com [College of Engineering, Jadara University, Irbid 221 10 (Jordan)

    2013-06-15

    Highlights: ► A new navigation algorithm for Radiation Evasion around nuclear facilities. ► An optimization criteria minimized under algorithm operation. ► A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. ► Benefits of using localized navigation as opposed to global navigation schemas. ► A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. -- Abstract: In this extension from part I (Khasawneh et al., in press), we modify the navigation algorithm which was presented with the objective of optimizing the “Radiation Evasion” Criterion so that navigation would optimize the criterion of “Nearest Exit”. Under this modification, algorithm would yield navigation paths that would guide occupational workers towards Nearest Exit points. Again, under this optimization criterion, algorithm leverages the use of localized information acquired through a well designed and distributed wireless sensor network, as it averts the need for any long-haul communication links or centralized decision and monitoring facility thereby achieving a more reliable performance under dynamic environments. As was done in part I, the proposed algorithm under the “Nearest Exit” Criterion is designed to leverage nearest neighbor information coming in through the sensory network overhead, in computing successful navigational paths from one point to another. For comparison purposes, the proposed algorithm is tested under the two optimization criteria: “Radiation Evasion” and “Nearest Exit”, for different numbers of step look-ahead. We verify the performance of the algorithm by means of simulations, whereby navigational paths are calculated for different radiation fields. We, via simulations, also, verify the performance of the algorithm in comparison with a well-known global navigation algorithm upon which we draw our conclusions.

  13. A localized navigation algorithm for Radiation Evasion for nuclear facilities. Part II: Optimizing the “Nearest Exit” Criterion

    International Nuclear Information System (INIS)

    Khasawneh, Mohammed A.; Al-Shboul, Zeina Aman M.; Jaradat, Mohammad A.; Malkawi, Mohammad I.

    2013-01-01

    Highlights: ► A new navigation algorithm for Radiation Evasion around nuclear facilities. ► An optimization criteria minimized under algorithm operation. ► A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. ► Benefits of using localized navigation as opposed to global navigation schemas. ► A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. -- Abstract: In this extension from part I (Khasawneh et al., in press), we modify the navigation algorithm which was presented with the objective of optimizing the “Radiation Evasion” Criterion so that navigation would optimize the criterion of “Nearest Exit”. Under this modification, algorithm would yield navigation paths that would guide occupational workers towards Nearest Exit points. Again, under this optimization criterion, algorithm leverages the use of localized information acquired through a well designed and distributed wireless sensor network, as it averts the need for any long-haul communication links or centralized decision and monitoring facility thereby achieving a more reliable performance under dynamic environments. As was done in part I, the proposed algorithm under the “Nearest Exit” Criterion is designed to leverage nearest neighbor information coming in through the sensory network overhead, in computing successful navigational paths from one point to another. For comparison purposes, the proposed algorithm is tested under the two optimization criteria: “Radiation Evasion” and “Nearest Exit”, for different numbers of step look-ahead. We verify the performance of the algorithm by means of simulations, whereby navigational paths are calculated for different radiation fields. We, via simulations, also, verify the performance of the algorithm in comparison with a well-known global navigation algorithm upon which we draw our conclusions

  14. Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.

    Science.gov (United States)

    Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain

    2013-02-01

    Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.

  15. Markovian robots: Minimal navigation strategies for active particles

    Science.gov (United States)

    Nava, Luis Gómez; Großmann, Robert; Peruani, Fernando

    2018-04-01

    We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to navigate through complex information landscapes with such a simple NCS whose internal state can be stored in one bit. These ideas may prove useful for the engineering of miniaturized robots.

  16. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.

    Science.gov (United States)

    Vergnieux, Victor; Macé, Marc J-M; Jouffrais, Christophe

    2017-09-01

    Visual neuroprostheses are still limited and simulated prosthetic vision (SPV) is used to evaluate potential and forthcoming functionality of these implants. SPV has been used to evaluate the minimum requirement on visual neuroprosthetic characteristics to restore various functions such as reading, objects and face recognition, object grasping, etc. Some of these studies focused on obstacle avoidance but only a few investigated orientation or navigation abilities with prosthetic vision. The resolution of current arrays of electrodes is not sufficient to allow navigation tasks without additional processing of the visual input. In this study, we simulated a low resolution array (15 × 18 electrodes, similar to a forthcoming generation of arrays) and evaluated the navigation abilities restored when visual information was processed with various computer vision algorithms to enhance the visual rendering. Three main visual rendering strategies were compared to a control rendering in a wayfinding task within an unknown environment. The control rendering corresponded to a resizing of the original image onto the electrode array size, according to the average brightness of the pixels. In the first rendering strategy, vision distance was limited to 3, 6, or 9 m, respectively. In the second strategy, the rendering was not based on the brightness of the image pixels, but on the distance between the user and the elements in the field of view. In the last rendering strategy, only the edges of the environments were displayed, similar to a wireframe rendering. All the tested renderings, except the 3 m limitation of the viewing distance, improved navigation performance and decreased cognitive load. Interestingly, the distance-based and wireframe renderings also improved the cognitive mapping of the unknown environment. These results show that low resolution implants are usable for wayfinding if specific computer vision algorithms are used to select and display appropriate

  17. Deep imitation learning for 3D navigation tasks.

    Science.gov (United States)

    Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina

    2018-01-01

    Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.

  18. 78 FR 41304 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Correction

    Science.gov (United States)

    2013-07-10

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 105 [Docket No. USCG-2013-0397] RIN 1625-AC06 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Correction AGENCY: Coast Guard, DHS. ACTION: Final rule; correction. SUMMARY: The Coast Guard published a final rule...

  19. 75 FR 48564 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Science.gov (United States)

    2010-08-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 3 and 165 [Docket No. USCG-2010-0351] RIN 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River, WA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: This rule makes non-substantive...

  20. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    International Nuclear Information System (INIS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-01-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved. (paper)

  1. 75 FR 50884 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Science.gov (United States)

    2010-08-18

    ... 3 and 165 to reflect changes in Coast Guard internal organizational structure. Sector Portland and... 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector... Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River.'' 2. On page 48564...

  2. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    Science.gov (United States)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  3. Instrument-mounted displays for reducing cognitive load during surgical navigation.

    Science.gov (United States)

    Herrlich, Marc; Tavakol, Parnian; Black, David; Wenig, Dirk; Rieder, Christian; Malaka, Rainer; Kikinis, Ron

    2017-09-01

    Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator's field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.

  4. A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum

    Science.gov (United States)

    Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.

    2013-11-01

    3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.

  5. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  6. Laparoscopic Navigated Liver Resection: Technical Aspects and Clinical Practice in Benign Liver Tumors

    Directory of Open Access Journals (Sweden)

    Markus Kleemann

    2012-01-01

    Full Text Available Laparoscopic liver resection has been performed mostly in centers with an extended expertise in both hepatobiliary and laparoscopic surgery and only in highly selected patients. In order to overcome the obstacles of this technique through improved intraoperative visualization we developed a laparoscopic navigation system (LapAssistent to register pre-operatively reconstructed three-dimensional CT or MRI scans within the intra-operative field. After experimental development of the navigation system, we commenced with the clinical use of navigation-assisted laparoscopic liver surgery in January 2010. In this paper we report the technical aspects of the navigation system and the clinical use in one patient with a large benign adenoma. Preoperative planning data were calculated by Fraunhofer MeVis Bremen, Germany. After calibration of the system including camera, laparoscopic instruments, and the intraoperative ultrasound scanner we registered the surface of the liver. Applying the navigated ultrasound the preoperatively planned resection plane was then overlain with the patient's liver. The laparoscopic navigation system could be used under sterile conditions and it was possible to register and visualize the preoperatively planned resection plane. These first results now have to be validated and certified in a larger patient collective. A nationwide prospective multicenter study (ProNavic I has been conducted and launched.

  7. Efficacy of navigation may be influenced by retrosplenial cortex-mediated learning of landmark stability.

    Science.gov (United States)

    Auger, Stephen D; Zeidman, Peter; Maguire, Eleanor A

    2017-09-01

    Human beings differ considerably in their ability to orient and navigate within the environment, but it has been difficult to determine specific causes of these individual differences. Permanent, stable landmarks are thought to be crucial for building a mental representation of an environment. Poor, compared to good, navigators have been shown to have difficulty identifying permanent landmarks, with a concomitant reduction in functional MRI (fMRI) activity in the retrosplenial cortex. However, a clear association between navigation ability and the learning of permanent landmarks has not been established. Here we tested for such a link. We had participants learn a virtual reality environment by repeatedly moving through it during fMRI scanning. The environment contained landmarks of which participants had no prior experience, some of which remained fixed in their locations while others changed position each time they were seen. After the fMRI learning phase, we divided participants into good and poor navigators based on their ability to find their way in the environment. The groups were closely matched on a range of cognitive and structural brain measures. Examination of the learning phase during scanning revealed that, while good and poor navigators learned to recognise the environment's landmarks at a similar rate, poor navigators were impaired at registering whether landmarks were stable or transient, and this was associated with reduced engagement of the retrosplenial cortex. Moreover, a mediation analysis showed that there was a significant effect of landmark permanence learning on navigation performance mediated through retrosplenial cortex activity. We conclude that a diminished ability to process landmark permanence may be a contributory factor to sub-optimal navigation, and could be related to the level of retrosplenial cortex engagement. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  9. Etude expérimentale de l'évolution des stratégies de navigation et de l'apprentissage dans un cours en ligne

    OpenAIRE

    Foucault , Béatrice; Coulet , Jean-Claude

    2001-01-01

    Regarding the multiple studies in the field of educational hypermedia, we suggest a study of user’s activity taking into account their navigation strategies. Thus, in this study, we try to analyze and to classify the navigation strategies mobilized by subjects in learning situation, through a task of exhaustive investigation, in an on-line course on kinematics. At the same time, we observe which relations these navigation strategies maintain with the subject’s performance by using an evaluati...

  10. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  11. Does intraoperative navigation improve the accuracy of mandibular angle osteotomy: Comparison between augmented reality navigation, individualised templates and free-hand techniques.

    Science.gov (United States)

    Zhu, Ming; Liu, Fei; Zhou, Chaozheng; Lin, Li; Zhang, Yan; Chai, Gang; Xie, Le; Qi, Fazhi; Li, Qingfeng

    2018-04-11

    Augmented reality (AR)-based navigation surgery has evolved to be an advanced assisted technology. The aim of this study is to manifest the accuracy of AR navigation for the intraoperative mandibular angle osteotomy by comparing the navigation with other interventional techniques. A retrospective study was conducted with 93 post-surgical patients with mandibular angle hypertrophy admitted at our plastic and reconstructive surgery department between September 2011 and June 2016. Thirty-one patients received osteotomy conducted using a navigation system based on augmented reality (AR group), 28 patients received osteotomy conducted using individualised templates (IT group) and the remaining 34 patients received osteotomy performed by free hand (free-hand group). The post-operative computed tomography (CT) images were reviewed and analysed by comparing with pre-surgical planning generated by three-dimensional (3D) software. The preparation time, cutting time, whole operating time and discrepancy in osteotomy lines were measured. The preparation time was much shorter for the free-hand group than that for the AR group and the IT group (P  0.05). In addition, the discrepancy in osteotomy lines was lower for the AR group and in the IT group than for the free-hand group (P < 0.01). The navigation system based on AR has a higher accuracy, more reliability and better user friendliness for some particular clinical procedures than for other techniques, which has a promising clinical prospect. Copyright © 2018. Published by Elsevier Ltd.

  12. Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Adel Al-Jumaily

    2005-06-01

    Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.

  13. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  14. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  15. Navigation of robotic system using cricket motes

    Science.gov (United States)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  16. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review.

    Science.gov (United States)

    Ewers, R; Schicho, K; Undt, G; Wanschitz, F; Truppe, M; Seemann, R; Wagner, A

    2005-01-01

    Computer-aided surgical navigation technology is commonly used in craniomaxillofacial surgery. It offers substantial improvement regarding esthetic and functional aspects in a range of surgical procedures. Based on augmented reality principles, where the real operative site is merged with computer generated graphic information, computer-aided navigation systems were employed, among other procedures, in dental implantology, arthroscopy of the temporomandibular joint, osteotomies, distraction osteogenesis, image guided biopsies and removals of foreign bodies. The decision to perform a procedure with or without computer-aided intraoperative navigation depends on the expected benefit to the procedure as well as on the technical expenditure necessary to achieve that goal. This paper comprises the experience gained in 12 years of research, development and routine clinical application. One hundred and fifty-eight operations with successful application of surgical navigation technology--divided into five groups--are evaluated regarding the criteria "medical benefit" and "technical expenditure" necessary to perform these procedures. Our results indicate that the medical benefit is likely to outweight the expenditure of technology with few exceptions (calvaria transplant, resection of the temporal bone, reconstruction of the orbital floor). Especially in dental implantology, specialized software reduces time and additional costs necessary to plan and perform procedures with computer-aided surgical navigation.

  17. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  18. Conventional versus computer-navigated TKA: a prospective randomized study.

    Science.gov (United States)

    Todesca, Alessandro; Garro, Luca; Penna, Massimo; Bejui-Hugues, Jacques

    2017-06-01

    The purpose of this study was to assess the midterm results of total knee arthroplasty (TKA) implanted with a specific computer navigation system in a group of patients (NAV) and to assess the same prosthesis implanted with the conventional technique in another group (CON); we hypothesized that computer navigation surgery would improve implant alignment, functional scores and survival of the implant compared to the conventional technique. From 2008 to 2009, 225 patients were enrolled in the study and randomly assigned in CON and NAV groups; 240 consecutive mobile-bearing ultra-congruent score (Amplitude, Valence, France) TKAs were performed by a single surgeon, 117 using the conventional method and 123 using the computer-navigated approach. Clinical outcome assessment was based on the Knee Society Score (KSS), the Hospital for Special Surgery Knee Score and the Western Ontario Mac Master University Index score. Component survival was calculated by Kaplan-Meier analysis. Median follow-up was 6.4 years (range 6-7 years). Two patients were lost to follow-up. No differences were seen between the two groups in age, sex, BMI and side of implantation. Three patients of CON group referred feelings of instability during walking, but clinical tests were all negative. NAV group showed statistical significant better KSS Score and wider ROM and fewer outliers from neutral mechanical axis, lateral distal femoral angle, medial proximal tibial angle and tibial slope in post-operative radiographic assessment. There was one case of early post-operative superficial infection (caused by Staph. Aureus) successfully treated with antibiotics. No mechanical loosening, mobile-bearing dislocation or patellofemoral complication was seen. At 7 years of follow-up, component survival in relation to the risk of aseptic loosening or other complications was 100 %. There were no implant revisions. This study demonstrates superior accuracy in implant positioning and statistical significant

  19. A clinical study of navigation accuracy during surgery

    International Nuclear Information System (INIS)

    Hirabayashi, Hidehiro; Uchiyama, Yoshitomo; Hoshida, Toru; Nakase, Hiroyuki; Morimoto, Tetsuya; Sakaki, Toshisuke

    2000-01-01

    It is essential to implement image-guided surgery or neuronavigation technologies that can be applied during functional surgery to localize targets accurately in the surgical field. Various navigation systems have been developed, such as the optical system and mechanical-arm-based system, to localize targets in the operative field. However, either the reference system, in optical systems, or the arm joint, in mechanical-arm-based systems, can sometimes interfere with surgical maneuvers. Therefore, we used the magnetic-force-based Computed Assisted Neurosurgery system (CANS system, Shimadzu, Co. Ltd., Kyoto, Japan) for neuronavigation. The purpose of this study was to evaluate the accuracy of the CANS navigation system. Ten patients with medically refractory epilepsy underwent implantation of subdural electrode grids to detect the epilepsy focus, and then lobectomy or multiple subpial transection was performed after informed consent was obtained. The male/female ratio was 6:4 and the mean age was 30.7 years. The CANS navigator system consists mainly of a magnetic source, a localizer probe with magnetic sensor, a three-dimensional locating measuring instrument (digitizer), an image scanner, and a personal computer. To determine the localization accuracy, the probe was moved on the subdural electrode grid which typically consists of 64 or 16 platinum-iridium electrode contacts (3 mm in the diameter) embedded in a Silastic sheet. The array of electrodes was 8 x 8 cm or 2 x 8 cm and the center-to-center inter-electrode distance was 10 mm. We evaluated the inter-electrode distances and spatial relationships among the electrodes to quantitate the precision of the probe tip localization and assumed the nasion origin reference system to assess the distribution of target coordinates. The measurement errors of each component derived from different planes for the same targets were evaluated in ten patients. The error in X-dimension ranged from 0.38 mm to 7.8 mm, the error in Y

  20. Geographos asteroid flyby and autonomous navigation study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, L.C.; Pines, D.J. [Lawrence Livermore National Lab., CA (United States); Patz, B.J.; Perron, D.C. [Coleman Research Corp., Orlando, FL (United States)

    1993-02-22

    Deep Space Program Science Experiment (DSPSE), also known as Clementine, is a collection of science experiments conducted in near-earth with the goal of demonstrating Strategic Defense Initiative Office (SDIO) developed technologies. The 785 lb (fully fueled) spacecraft will be launched into low Earth orbit in February 1994 together with a Star 37 solid kick motor and interstage. After orbit circulation using Clementine`s 110 lb Delta-V thruster, the Star 37 will execute a trans-lunar injection burn that will send the spacecraft toward lunar obit. The 110-lb will then be used in a sequence of burns to insert Clementine into a trimmed, polar orbit around the moon. After a two month moon mapping mission, Clementine will execute burns to leave lunar orbit, sling-shot around Earth, and flyby the moon on a 9.4 million km journey toward the asteroid Geographos. After about three months in transit, Clementine will attempt a flyby with a closest point of approach of 100 km from the asteroid on August 31, 1994. During its approach to Geographos, Clementine will be tracked by the Deep Space Network (DSN) and receive guidance updates. The last update and correction burn will occur about one day out of the flyby. Multiple experiments will be performed at key events during the mission that utilize Clementine`s SDIO-derived resources, including its Star Trackers, UV/Vis camera, infrared sensors (NWIR and LWIR), and high resolution laser radar (HIRes/LIDAR). In addition to the evaluation of SDIO algorithms and sensors, high resolution imagery will be obtained while the spacecraft is in Earth orbit, lunar obit and during the Geographos flyby. This paper describes the results of a study on the precision guidance, navigation, and intercept strategy for the flyby mission.

  1. Lucy: Navigating a Jupiter Trojan Tour

    Science.gov (United States)

    Stanbridge, Dale; Williams, Ken; Williams, Bobby; Jackman, Coralie; Weaver, Hal; Berry, Kevin; Sutter, Brian; Englander, Jacob

    2017-01-01

    In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. These six bodies, remnants of the primordial material that formed the outer planets, were captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system formation. These particular bodies were chosen because of their diverse spectral properties and the chance to observe up close for the first time two orbiting approximately equal mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier for the Lucy mission. This paper describes preliminary navigation analyses of the approach phase for each Trojan encounter.

  2. BOREAS Level-0 ER-2 Navigation Data

    Science.gov (United States)

    Strub, Richard; Dominguez, Roseanne; Newcomer, Jeffrey A.; Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS Staff Science effort covered those activities that were BOREAS community-level activities or required uniform data collection procedures across sites and time. These activities included the acquisition, processing, and archiving of aircraft navigation/attitude data to complement the digital image data. The level-0 ER-2 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions. Temporally, the data were acquired from April to September 1994. Data were recorded at intervals of 5 seconds. The data are stored in tabular ASCII files.

  3. Navigation: bat orientation using Earth's magnetic field.

    Science.gov (United States)

    Holland, Richard A; Thorup, Kasper; Vonhof, Maarten J; Cochran, William W; Wikelski, Martin

    2006-12-07

    Bats famously orientate at night by echolocation, but this works over only a short range, and little is known about how they navigate over longer distances. Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark.

  4. Navigation: Bat orientation using Earth's magnetic field

    DEFF Research Database (Denmark)

    Holland, Richard A.; Thorup, Kasper; Vonhof, Maarten J.

    2006-01-01

    Bats famously orientate at night by echolocation 1 , but this works over only a short range, and little is known about how they navigate over longer distances 2 . Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Ea...... the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark....

  5. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    Science.gov (United States)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  6. Application of Real-Time 3D Navigation System in CT-Guided Percutaneous Interventional Procedures: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Priya Bhattacharji

    2017-01-01

    Full Text Available Introduction. To evaluate the accuracy of a quantitative 3D navigation system for CT-guided interventional procedures in a two-part study. Materials and Methods. Twenty-two procedures were performed in abdominal and thoracic phantoms. Accuracies of the 3D anatomy map registration and navigation were evaluated. Time used for the navigated procedures was recorded. In the IRB approved clinical evaluation, 21 patients scheduled for CT-guided thoracic and hepatic biopsy and ablations were recruited. CT-guided procedures were performed without following the 3D navigation display. Accuracy of navigation as well as workflow fitness of the system was evaluated. Results. In phantoms, the average 3D anatomy map registration error was 1.79 mm. The average navigated needle placement accuracy for one-pass and two-pass procedures, respectively, was 2.0±0.7 mm and 2.8±1.1 mm in the liver and 2.7±1.7 mm and 3.0±1.4 mm in the lung. The average accuracy of the 3D navigation system in human subjects was 4.6 mm ± 3.1 for all procedures. The system fits the existing workflow of CT-guided interventions with minimum impact. Conclusion. A 3D navigation system can be performed along the existing workflow and has the potential to navigate precision needle placement in CT-guided interventional procedures.

  7. The utilization of cranial models created using rapid prototyping techniques in the development of models for navigation training.

    Science.gov (United States)

    Waran, V; Pancharatnam, Devaraj; Thambinayagam, Hari Chandran; Raman, Rajagopal; Rathinam, Alwin Kumar; Balakrishnan, Yuwaraj Kumar; Tung, Tan Su; Rahman, Z A

    2014-01-01

    Navigation in neurosurgery has expanded rapidly; however, suitable models to train end users to use the myriad software and hardware that come with these systems are lacking. Utilizing three-dimensional (3D) industrial rapid prototyping processes, we have been able to create models using actual computed tomography (CT) data from patients with pathology and use these models to simulate a variety of commonly performed neurosurgical procedures with navigation systems. To assess the possibility of utilizing models created from CT scan dataset obtained from patients with cranial pathology to simulate common neurosurgical procedures using navigation systems. Three patients with pathology were selected (hydrocephalus, right frontal cortical lesion, and midline clival meningioma). CT scan data following an image-guidance surgery protocol in DIACOM format and a Rapid Prototyping Machine were taken to create the necessary printed model with the corresponding pathology embedded. The ability in registration, planning, and navigation of two navigation systems using a variety of software and hardware provided by these platforms was assessed. We were able to register all models accurately using both navigation systems and perform the necessary simulations as planned. Models with pathology utilizing 3D rapid prototyping techniques accurately reflect data of actual patients and can be used in the simulation of neurosurgical operations using navigation systems. Georg Thieme Verlag KG Stuttgart · New York.

  8. Navigation Problems in Blind-to-Blind Pedestrians Tele-assistance Navigation

    OpenAIRE

    Balata , Jan; Mikovec , Zdenek; Maly , Ivo

    2015-01-01

    International audience; We raise a question whether it is possible to build a large-scale navigation system for blind pedestrians where a blind person navigates another blind person remotely by mobile phone. We have conducted an experiment, in which we observed blind people navigating each other in a city center in 19 sessions. We focused on problems in the navigator’s attempts to direct the traveler to the destination. We observed 96 problems in total, classified them on the basis of the typ...

  9. Introduction to the Navigation Team: Johnson Space Center EG6 Internship

    Science.gov (United States)

    Gualdoni, Matthew

    2017-01-01

    The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.

  10. The Application of Surgical Navigation in the Treatment of Temporomandibular Joint Ankylosis.

    Science.gov (United States)

    Sun, Guowen; Lu, Mingxing; Hu, Qingang

    2015-11-01

    The purpose of this study was to assess the safety and the accuracy of surgical navigation technology in the resection of severe ankylosis of the mandibular condyle with the middle cranial fossa. The computed tomography scan data were transferred to a Windows-based computer workstation, and the patient's individual anatomy was assessed in multiplanar views at the workstation. In the operation, the patient and the virtual image were matched by individual registration with the reference points which were set on the skull bone surface and the teeth. Then, the real-time navigation can be performed. The acquisition of the data sets was uncomplicated, and image quality was sufficient to assess the operative result in 2 cases. Both of the operations were performed successfully with the guidance of real-time navigation. The application of surgical navigation has enhanced the safety and the accuracy of the surgery for bony ankylosis of temporomandibular joint. The use of surgical navigation resulted in the promotion of accurate and safe surgical excision of the ankylosed skull base tissue.

  11. Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume.

    Science.gov (United States)

    Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali

    2015-09-01

    Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component.

    Science.gov (United States)

    Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki

    2018-02-01

    Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P image-free navigation systems decreased the number of rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.

  13. GRIP DC-8 NAVIGATION AND HOUSEKEEPING DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP DC-8 Navigation and Housekeeping Data contains aircraft navigational data obtained during the GRIP campaign (15 Aug 2010 - 30 Sep 2010). The major goal was...

  14. GRIP DC-8 NAVIGATION AND HOUSEKEEPING DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains aircraft navigational data obtained during the GRIP campaign (15 Aug 2010 - 30 Sep 2010). The NASA DC-8 is outfitted with a navigational...

  15. Issues in symbol design for electronic displays of navigation information

    Science.gov (United States)

    2004-10-24

    An increasing number of electronic displays, ranging from small hand-held displays for general aviation to installed displays for air transport, are showing navigation information, such as symbols representing navigational aids. The wide range of dis...

  16. GPM Ground Validation Navigation Data ER-2 OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA ER-2 Navigation Data OLYMPEX dataset supplies navigation data collected by the NASA ER-2 aircraft for flights that occurred during...

  17. Enabling Autonomous Navigation for Affordable Scooters

    Directory of Open Access Journals (Sweden)

    Kaikai Liu

    2018-06-01

    Full Text Available Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  18. Enabling Autonomous Navigation for Affordable Scooters.

    Science.gov (United States)

    Liu, Kaikai; Mulky, Rajathswaroop

    2018-06-05

    Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  19. Gamifying Navigation in Location-Based Applications

    DEFF Research Database (Denmark)

    Nadarajah, Stephanie Githa; Overgaard, Benjamin Nicholas; Pedersen, Peder Walz

    2017-01-01

    Location-based games entertain players usually by interactions at points of interest (POIs). Navigation between POIs often involve the use of either a physical or digital map, not taking advantage of the opportunity available to engage users in activities between POIs. The paper presents riddle s...

  20. Ohio River Navigation: Past-Present-Future

    Science.gov (United States)

    1979-10-01

    navigation structures had been built: the auxillary 56- by 360-foot lock at dam 41 (Louisville), 1930; Montgomery Locks and Dam, 1936; and Gallipolis...Mile 974.2. This project was approved in 1963, but substantial ’ delay is anticipated ina decision concerning its execu- tion. For this reason a

  1. Mobile Screens: The Visual Regime of Navigation

    NARCIS (Netherlands)

    Verhoeff, N.

    2012-01-01

    In this book on screen media, space, and mobility I compare synchronically, as well as diachronically, diverse and variegated screen media - their technologies and practices – as sites for virtual mobility and navigation. Mobility as a central trope can be found on the multiple levels that are

  2. The "Set Map" Method of Navigation.

    Science.gov (United States)

    Tippett, Julian

    1998-01-01

    Explains the "set map" method of using the baseplate compass to solve walkers' navigational needs as opposed to the 1-2-3 method for taking a bearing. The map, with the compass permanently clipped to it, is rotated to the position in which its features have the same orientation as their counterparts on the ground. Includes directions and…

  3. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  4. 77 FR 67658 - Navigation Safety Advisory Council

    Science.gov (United States)

    2012-11-13

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0212] Navigation Safety Advisory.../en/hotels/florida/embassy-suites-tampa-downtown-convention-center-TPAESES/index.html . For... possible. To facilitate public participation, we are inviting public comment on the issues to be considered...

  5. Orchard navigation using derivative free Kalman filtering

    DEFF Research Database (Denmark)

    Hansen, Søren; Bayramoglu, Enis; Andersen, Jens Christian

    2011-01-01

    This paper describes the use of derivative free filters for mobile robot localization and navigation in an orchard. The localization algorithm fuses odometry and gyro measurements with line features representing the surrounding fruit trees of the orchard. The line features are created on basis of 2...

  6. Cloud-Induced Uncertainty for Visual Navigation

    Science.gov (United States)

    2014-12-26

    can occur due to interference, jamming, or signal blockage in urban canyons. In GPS-denied environments, a GP- S/INS navigation system is forced to rely...physics-based approaches use equations that model fluid flow, thermodynamics, water condensation , and evapora- tion to generate clouds [4]. The drawback

  7. Requirements for e-Navigation Architectures

    Directory of Open Access Journals (Sweden)

    Axel Hahn

    2016-12-01

    Full Text Available Technology is changing the way of navigation. New technologies for communication and navigation can be found on virtually every vessel. System architectures define structure and cooperation of components and subsystems. IMO, IALA, costal authorities, technology provider and many more actually propose new architectures for e-Navigation. This paper looks at other transportation domains and technical as normative requirements for e-Navigation architectures. With the aim of identifying possible synergies in the research, development, certification and standardization, this paper sets out to compare requirements and approaches of these two domains with respect to safety and security aspects. Since from an autonomy perspective, the automotive domain has started earlier and therefore has achieved a higher degree of technical progress, we will start with an overview of the developments in this domain. After that, the paper discusses the requirements on automation and assistance systems in the maritime domain and gives an overview of the developments into this direction within the maritime domain. This then allows us to compare developments in both domains and to derive recommendations for further developments in the maritime domain at the end of this paper.

  8. 'Outsmarting Traffic, Together': Driving as Social Navigation

    Directory of Open Access Journals (Sweden)

    Sam Hind

    2014-04-01

    Full Text Available The automotive world is evolving. Ten years ago Nigel Thrift (2004: 41 made the claim that the experience of driving was slipping into our 'technological unconscious'. Only recently the New York Times suggested that with the rise of automated driving, standalone navigation tools as we know them would cease to exist, instead being 'fully absorbed into the machine' (Fisher, 2013. But in order to bridge the gap between past and future driving worlds, another technological evolution is emerging. This short, critical piece charts the rise of what has been called 'social navigation' in the industry; the development of digital mapping platforms designed to foster automotive sociality. It makes two provisional points. Firstly, that 'ludic' conceptualisations can shed light on the ongoing reconfiguration of drivers, vehicles, roads and technological aids such as touch-screen satellite navigation platforms. And secondly, that as a result of this, there is a coming-into-being of a new kind of driving politics; a 'casual politicking' centred on an engagement with digital interfaces. We explicate both by turning our attention towards Waze; a social navigation application that encourages users to interact with various driving dynamics.

  9. Celestial Navigation on the Surface of Mars

    Science.gov (United States)

    Malay, Benjamin P.

    2001-05-01

    A simple, accurate, and autonomous method of finding position on the surface of Mars currently does not exist. The goal of this project is to develop a celestial navigation process that will fix a position on Mars with 100-meter accuracy. This method requires knowing the position of the stars and planets referenced to the Martian surface with one arcsecond accuracy. This information is contained in an ephemeris known as the Aeronautical Almanac (from Ares, the god of war) . Naval Observatory Vector Astrometry Subroutines (NOVAS) form the basis of the code used to generate the almanac. Planetary position data come the JPL DE405 Planetary Ephemeris. The theoretical accuracy of the almanac is determined mathematically and compared with the Ephemeris for Physical Observations of Mars contained in the Astronautical Almanac. A preliminary design of an autonomous celestial navigation system is presented. Recommendations of how to integrate celestial navigation into NASA=s current Mars exploration program are also discussed. This project is a useful and much-needed first step towards establishing celestial navigation as a practical way to find position on the surface of Mars.

  10. Autonomous Rule Based Robot Navigation In Orchards

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Ravn, Ole; Andersen, Nils Axel

    2010-01-01

    Orchard navigation using sensor-based localization and exible mission management facilitates successful missions independent of the Global Positioning System (GPS). This is especially important while driving between tight tree rows where the GPS coverage is poor. This paper suggests localization ...

  11. Navigating Transitions: Challenges for Engineering Students

    Science.gov (United States)

    Moore-Russo, Deborah; Wilsey, Jillian N.; Parthum, Michael J., Sr.; Lewis, Kemper

    2017-01-01

    As college students enter engineering, they face challenges when they navigate across various transitions. These challenges impact whether a student can successfully adapt to the rigorous curricular requirements of an engineering degree and to the norms and expectations that are particular to engineering. This article focuses on the transitions…

  12. Navigable windows of the Northwest Passage

    Science.gov (United States)

    Liu, Xing-he; Ma, Long; Wang, Jia-yue; Wang, Ye; Wang, Li-na

    2017-09-01

    Artic sea ice loss trends support a greater potential for Arctic shipping. The information of sea ice conditions is important for utilizing Arctic passages. Based on the shipping routes given by ;Arctic Marine Shipping Assessment 2009 Report;, the navigable windows of these routes and the constituent legs were calculated by using sea ice concentration product data from 2006 to 2015, by which a comprehensive knowledge of the sea ice condition of the Northwest Passage was achieved. The results showed that Route 4 (Lancaster Sound - Barrow Strait - Prince Regent Inlet and Bellot Strait - Franklin Strait - Larsen Sound - Victoria Strait - Queen Maud Gulf - Dease Strait - Coronation Gulf - Dolphin and Union Strait - Amundsen Gulf) had the best navigable expectation, Route 2 (Parry Channel - M'Clure Strait) had the worst, and the critical legs affecting the navigation of Northwest Passage were Viscount Melville Sound, Franklin Strait, Victoria Strait, Bellot Strait, M'Clure Strait and Prince of Wales Strait. The shortest navigable period of the routes of Northwest Passage was up to 69 days. The methods used and the results of the study can help the selection and evaluation of Arctic commercial routes.

  13. The Navigation Metaphor in Security Economics

    NARCIS (Netherlands)

    Pieters, W.; Barendse, Jeroen; Ford, Margaret; Heath, Claude P R; Probst, Christian W.; Verbij, Ruud

    2016-01-01

    The navigation metaphor for cybersecurity merges security architecture models and security economics. By identifying the most efficient routes for gaining access to assets from an attacker's viewpoint, an organization can optimize its defenses along these routes. The well-understood concept of

  14. The navigation metaphor in security economics

    NARCIS (Netherlands)

    Pieters, Wolter; Barendse, Jeroen; Ford, Margaret; Heath, Claude P.R.; Probst, Christian W.; Verbij, Ruud

    2016-01-01

    The navigation metaphor for cybersecurity merges security architecture models and security economics. By identifying the most efficient routes for gaining access to assets from an attacker's viewpoint, an organization can optimize its defenses along these routes. The well-understood concept of

  15. Robust Pedestrian Navigation for Challenging Applications

    OpenAIRE

    Gilliéron, PY; Renaudin, V

    2009-01-01

    Presentation of a concept for robust indoor navigation. The concept is based on three key elements: - the use of an absolute geographical reference - the hybridisation of complementary technologies - specific motion models. This concept is illustrated by the means of two applications: the urban displacement of blind people and the indoor guidance of fire-fighters

  16. From translation to navigation of different discourses

    DEFF Research Database (Denmark)

    Livonen, Mirja; Sonnenwald, Diane H.

    1998-01-01

    ' own search experience. Data further suggest that searchers navigate these discourses dynamically and have preferences for certain discourses. Conceptualizing the selection of search terms as a meeting place of different discourses provides new insights into the complex nature of the search term...

  17. Navigating the Bio-Politics of Childhood

    Science.gov (United States)

    Lee, Nick; Motzkau, Johanna

    2011-01-01

    Childhood research has long shared a bio-political terrain with state agencies in which children figure primarily as "human futures". In the 20th century bio-social dualism helped to make that terrain navigable by researchers, but, as life processes increasingly become key sites of bio-political action, bio-social dualism is becoming…

  18. Navigated Waterways of Louisiana, Geographic NAD83, LOSCO (1999) [navigated_waterways_LOSCO_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a line dataset of navigated waterways fitting the LOSCO definition: it has been traveled by vessels transporting 10,000 gallons of oil or fuel as determined...

  19. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will use existing hardware and software from related programs to create a prototype Lunar Navigation Sensor (LNS) early in Phase II, such that most of the...

  20. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm proposes to design and develop a fully autonomous Lunar Navigator based on our MicroMak miniature star sensor and a gravity gradiometer similar to one on a...

  1. Hazard Map for Autonomous Navigation

    DEFF Research Database (Denmark)

    Riis, Troels

    This dissertation describes the work performed in the area of using image analysis in the process of landing a spacecraft autonomously and safely on the surface of the Moon. This is suggested to be done using a Hazard Map. The correspondence problem between several Hazard Maps are investigated...

  2. Evaluation of navigation interfaces in virtual environments

    Science.gov (United States)

    Mestre, Daniel R.

    2014-02-01

    When users are immersed in cave-like virtual reality systems, navigational interfaces have to be used when the size of the virtual environment becomes larger than the physical extent of the cave floor. However, using navigation interfaces, physically static users experience self-motion (visually-induced vection). As a consequence, sensorial incoherence between vision (indicating self-motion) and other proprioceptive inputs (indicating immobility) can make them feel dizzy and disoriented. We tested, in two experimental studies, different locomotion interfaces. The objective was twofold: testing spatial learning and cybersickness. In a first experiment, using first-person navigation with a flystick ®, we tested the effect of sensorial aids, a spatialized sound or guiding arrows on the ground, attracting the user toward the goal of the navigation task. Results revealed that sensorial aids tended to impact negatively spatial learning. Moreover, subjects reported significant levels of cybersickness. In a second experiment, we tested whether such negative effects could be due to poorly controlled rotational motion during simulated self-motion. Subjects used a gamepad, in which rotational and translational displacements were independently controlled by two joysticks. Furthermore, we tested first- versus third-person navigation. No significant difference was observed between these two conditions. Overall, cybersickness tended to be lower, as compared to experiment 1, but the difference was not significant. Future research should evaluate further the hypothesis of the role of passively perceived optical flow in cybersickness, but manipulating the virtual environment'sperrot structure. It also seems that video-gaming experience might be involved in the user's sensitivity to cybersickness.

  3. Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions.

    Science.gov (United States)

    Shahin, Osama; Beširević, Armin; Kleemann, Markus; Schlaefer, Alexander

    2014-05-01

    Image-guided navigation aims to provide better orientation and accuracy in laparoscopic interventions. However, the ability of the navigation system to reflect anatomical changes and maintain high accuracy during the procedure is crucial. This is particularly challenging in soft organs such as the liver, where surgical manipulation causes significant tumor movements. We propose a fast approach to obtain an accurate estimation of the tumor position throughout the procedure. Initially, a three-dimensional (3D) ultrasound image is reconstructed and the tumor is segmented. During surgery, the position of the tumor is updated based on newly acquired tracked ultrasound images. The initial segmentation of the tumor is used to automatically detect the tumor and update its position in the navigation system. Two experiments were conducted. First, a controlled phantom motion using a robot was performed to validate the tracking accuracy. Second, a needle navigation scenario based on pseudotumors injected into ex vivo porcine liver was studied. In the robot-based evaluation, the approach estimated the target location with an accuracy of 0.4 ± 0.3 mm. The mean navigation error in the needle experiment was 1.2 ± 0.6 mm, and the algorithm compensated for tumor shifts up to 38 mm in an average time of 1 s. We demonstrated a navigation approach based on tracked laparoscopic ultrasound (LUS), and focused on the neighborhood of the tumor. Our experimental results indicate that this approach can be used to quickly and accurately compensate for tumor movements caused by surgical manipulation during laparoscopic interventions. The proposed approach has the advantage of being based on the routinely used LUS; however, it upgrades its functionality to estimate the tumor position in 3D. Hence, the approach is repeatable throughout surgery, and enables high navigation accuracy to be maintained.

  4. WAYS OF NAVIGATION SYSTEMS DEVELOPMENT WITHIN THE IMPLEMENTATION OF THE CNS/ATM CONCEPT

    Directory of Open Access Journals (Sweden)

    Igor A. Chekhov

    2017-01-01

    Full Text Available The general development principles of the civil aviation air navigation systems for the next years according to the concept of International Civil Aviation Organization (IСAO CNS/ATM are stated in the article. It was reflected in the Global air navigation plan of IСAO accepted in 2013. The author considered the structure of block modernization of aviation system directed to optimization according to four main characteristics, such as: operations at the airports; systems and data interoperable on a global scale; optimum capacity and flexible flight routes, and also effective trajectories of flight. At the same time the main attention in the plan is paid to questions of the performance based navigation (PBN, the basic theses of which lean on four main units that make the concept of PBN. The possible ways of the specified blocks implementation taking into account features of the Russian Federation airspace use are considered in this paper. On the basis of the carried-out analysis conclusions are drawn on gradual transition from the RNAV navigation specifications to the RNP specifications, on increase in accuracy of navigation by modernization of ground radio navigational aids, both on a flight route and airspace of airfield area, on need of continuing the development of inexact calling schemes, using GNSS, with the subsequent transition to schemes of exact landing approaches by means of functional additions to GLONASS – GBAS and SBAS, also on the need of opportunities research in the domestic system SBAS (SDKM for the increase in accuracy of navigation at various stages of flight. At the same time, standard instrument routes of arrival and departure (SID/STAR have to be carried out in the mode of constant climb or continuous descent.

  5. Biologically inspired autonomous agent navigation using an integrated polarization analyzing CMOS image sensor

    NARCIS (Netherlands)

    Sarkaer, M.; San Segundo Bello, D.; Van Hoof, C.; Theuwissen, A.

    2010-01-01

    The navigational strategies of insects using skylight polarization are interesting for applications in autonomous agent navigation because they rely on very little information for navigation. A polarization navigation sensor using the Stokes parameters to determine the orientation is presented. The

  6. 22 CFR 401.25 - Government brief regarding navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Government brief regarding navigable waters. 401... PROCEDURE Applications § 401.25 Government brief regarding navigable waters. When in the opinion of the Commission it is desirable that a decision should be rendered which affects navigable waters in a manner or...

  7. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  8. 76 FR 27337 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2011-05-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-1116] Houston/Galveston Navigation Safety...: The Houston/Galveston Navigation Safety Advisory Committee postponed its originally scheduled February... Houston Ship Channel, and various other navigation safety matters in the Galveston Bay area. The meeting...

  9. Benefits of multisensory presentation on perception, memory and navigation

    NARCIS (Netherlands)

    Philippi, T.G.|info:eu-repo/dai/nl/313711577

    2012-01-01

    Navigation is the process of planning and following routes to travel from the current location to a target location. In comparison with real world navigation, we have considerable difficulty with navigation in virtual environments. An important cause is that less information is presented in a

  10. 76 FR 58105 - Regulated Navigation Area; Saugus River, Lynn, MA

    Science.gov (United States)

    2011-09-20

    ... final rule. SUMMARY: The Coast Guard is establishing a Regulated Navigation Area (RNA) on the navigable... INFORMATION: Regulatory Information The Coast Guard is issuing this temporary rule without prior notice and... Pipeline bridge poses to the navigational channel necessitates that all mariners comply with this RNA...

  11. Navigating oceans and cultures: Polynesian and European navigation systems in the late eighteenth century

    Science.gov (United States)

    Walker, M.

    2012-05-01

    Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.

  12. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Science.gov (United States)

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  13. Navigation using sensory substitution in real and virtual mazes.

    Directory of Open Access Journals (Sweden)

    Daniel-Robert Chebat

    Full Text Available Under certain specific conditions people who are blind have a perception of space that is equivalent to that of sighted individuals. However, in most cases their spatial perception is impaired. Is this simply due to their current lack of access to visual information or does the lack of visual information throughout development prevent the proper integration of the neural systems underlying spatial cognition? Sensory Substitution devices (SSDs can transfer visual information via other senses and provide a unique tool to examine this question. We hypothesize that the use of our SSD (The EyeCane: a device that translates distance information into sounds and vibrations can enable blind people to attain a similar performance level as the sighted in a spatial navigation task. We gave fifty-six participants training with the EyeCane. They navigated in real life-size mazes using the EyeCane SSD and in virtual renditions of the same mazes using a virtual-EyeCane. The participants were divided into four groups according to visual experience: congenitally blind, low vision & late blind, blindfolded sighted and sighted visual controls. We found that with the EyeCane participants made fewer errors in the maze, had fewer collisions, and completed the maze in less time on the last session compared to the first. By the third session, participants improved to the point where individual trials were no longer significantly different from the initial performance of the sighted visual group in terms of errors, time and collision.

  14. Navigation using sensory substitution in real and virtual mazes.

    Science.gov (United States)

    Chebat, Daniel-Robert; Maidenbaum, Shachar; Amedi, Amir

    2015-01-01

    Under certain specific conditions people who are blind have a perception of space that is equivalent to that of sighted individuals. However, in most cases their spatial perception is impaired. Is this simply due to their current lack of access to visual information or does the lack of visual information throughout development prevent the proper integration of the neural systems underlying spatial cognition? Sensory Substitution devices (SSDs) can transfer visual information via other senses and provide a unique tool to examine this question. We hypothesize that the use of our SSD (The EyeCane: a device that translates distance information into sounds and vibrations) can enable blind people to attain a similar performance level as the sighted in a spatial navigation task. We gave fifty-six participants training with the EyeCane. They navigated in real life-size mazes using the EyeCane SSD and in virtual renditions of the same mazes using a virtual-EyeCane. The participants were divided into four groups according to visual experience: congenitally blind, low vision & late blind, blindfolded sighted and sighted visual controls. We found that with the EyeCane participants made fewer errors in the maze, had fewer collisions, and completed the maze in less time on the last session compared to the first. By the third session, participants improved to the point where individual trials were no longer significantly different from the initial performance of the sighted visual group in terms of errors, time and collision.

  15. Design and Application of a Novel Virtual Reality Navigational Technology (VRNChair).

    Science.gov (United States)

    Byagowi, Ahmad; Mohaddes, Danyal; Moussavi, Zahra

    2014-01-01

    This paper presents a novel virtual reality navigation (VRN) input device, called the VRNChair, offering an intuitive and natural way to interact with virtual reality (VR) environments. Traditionally, VR navigation tests are performed using stationary input devices such as keyboards or joysticks. However, in case of immersive VR environment experiments, such as our recent VRN assessment, the user may feel kinetosis (motion sickness) as a result of the disagreement between vestibular response and the optical flow. In addition, experience in using a joystick or any of the existing computer input devices may cause a bias in the accuracy of participant performance in VR environment experiments. Therefore, we have designed a VR navigational environment that is operated using a wheelchair (VRNChair). The VRNChair translates the movement of a manual wheelchair to feed any VR environment. We evaluated the VRNChair by testing on 34 young individuals in two groups performing the same navigational task with either the VRNChair or a joystick; also one older individual (55 years) performed the same experiment with both a joystick and the VRNChair. The results indicate that the VRNChair does not change the accuracy of the performance; thus removing the plausible bias of having experience using a joystick. More importantly, it significantly reduces the effect of kinetosis. While we developed VRNChair for our spatial cognition study, its application can be in many other studies involving neuroscience, neurorehabilitation, physiotherapy, and/or simply the gaming industry.

  16. Design and Application of a Novel Virtual Reality Navigational Technology (VRNChair

    Directory of Open Access Journals (Sweden)

    Ahmad Byagowi

    2014-01-01

    Full Text Available This paper presents a novel virtual reality navigation (VRN input device, called the VRNChair, offering an intuitive and natural way to interact with virtual reality (VR environments. Traditionally, VR navigation tests are performed using stationary input devices such as keyboards or joysticks. However, in case of immersive VR environment experiments, such as our recent VRN assessment, the user may feel kinetosis (motion sickness as a result of the disagreement between vestibular response and the optical flow. In addition, experience in using a joystick or any of the existing computer input devices may cause a bias in the accuracy of participant performance in VR environment experiments. Therefore, we have designed a VR navigational environment that is operated using a wheelchair (VRNChair. The VRNChair translates the movement of a manual wheelchair to feed any VR environment. We evaluated the VRNChair by testing on 34 young individuals in two groups performing the same navigational task with either the VRNChair or a joystick; also one older individual (55 years performed the same experiment with both a joystick and the VRNChair. The results indicate that the VRNChair does not change the accuracy of the performance; thus removing the plausible bias of having experience using a joystick. More importantly, it significantly reduces the effect of kinetosis. While we developed VRNChair for our spatial cognition study, its application can be in many other studies involving neuroscience, neurorehabilitation, physiotherapy, and/or simply the gaming industry.

  17. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    Science.gov (United States)

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  18. 14 CFR 121.349 - Communication and navigation equipment for operations under VFR over routes not navigated by...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment for... § 121.349 Communication and navigation equipment for operations under VFR over routes not navigated by... receiver providing visual and aural signals; and (iii) One ILS receiver; and (3) Any RNAV system used to...

  19. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    Science.gov (United States)

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  20. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Jian Tang

    2015-07-01

    Full Text Available A new scan that matches an aided Inertial Navigation System (INS with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR and Simultaneous Localization and Mapping (SLAM technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  1. Conceptual Design of Haptic-Feedback Navigation Device for Individuals with Alzheimer's Disease.

    Science.gov (United States)

    Che Me, Rosalam; Biamonti, Alessandro; Mohd Saad, Mohd Rashid

    2015-01-01

    Wayfinding ability in older adults with Alzheimer's disease (AD) is progressively impaired due to ageing and deterioration of cognitive domains. Usually, the sense of direction is deteriorated as visuospatial and spatial cognition are associated with the sensory acuity. Therefore, navigation systems that support only visual interactions may not be appropriate in case of AD. This paper presents a concept of wearable navigation device that integrates the haptic-feedback technology to facilitate the wayfinding of individuals with AD. The system provides the simplest instructions; left/right using haptic signals, as to avoid users' distraction during navigation. The advantages of haptic/tactile modality for wayfinding purpose based on several significant studies are presented. As preliminary assessment, a survey is conducted to understand the potential of this design concept in terms of (1) acceptability, (2) practicality, (3) wearability, and (4) environmental settings. Results indicate that the concept is highly acceptable and commercially implementable. A working prototype will be developed based on the results of the preliminary assessment. Introducing a new method of navigation should be followed by continuous practices for familiarization purpose. Improved navigability allows the good performance of activities of daily living (ADLs) hence maintain the good quality of life in older adults with AD.

  2. Efficient Reactive Navigation with Exact Collision Determination for 3D Robot Shapes

    Directory of Open Access Journals (Sweden)

    Mariano Jaimez

    2015-05-01

    Full Text Available This paper presents a reactive navigator for wheeled mobile robots moving on a flat surface which takes into account both the actual 3D shape of the robot and the 3D surrounding obstacles. The robot volume is modelled by a number of prisms consecutive in height, and the detected obstacles, which can be provided by different kinds of range sensor, are segmented into these heights. Then, the reactive navigation problem is tackled by a number of concurrent 2D navigators, one for each prism, which are consistently and efficiently combined to yield an overall solution. Our proposal for each 2D navigator is based on the concept of the “Parameterized Trajectory Generator” which models the robot shape as a polygon and embeds its kinematic constraints into different motion models. Extensive testing has been conducted in office-like and real house environments, covering a total distance of 18.5 km, to demonstrate the reliability and effectiveness of the proposed method. Moreover, additional experiments are performed to highlight the advantages of a 3D-aware reactive navigator. The implemented code is available under an open-source licence.

  3. A Navigation Analysis Tool (NAT) to assess spatial behavior in open-field and structured mazes.

    Science.gov (United States)

    Jarlier, Frédéric; Arleo, Angelo; Petit, Géraldine H; Lefort, Julie M; Fouquet, Céline; Burguière, Eric; Rondi-Reig, Laure

    2013-05-15

    Spatial navigation calls upon mnemonic capabilities (e.g. remembering the location of a rewarding site) as well as adaptive motor control (e.g. fine tuning of the trajectory according to the ongoing sensory context). To study this complex process by means of behavioral measurements it is necessary to quantify a large set of meaningful parameters on multiple time scales (from milliseconds to several minutes), and to compare them across different paradigms. Moreover, the issue of automating the behavioral analysis is critical to cope with the consequent computational load and the sophistication of the measurements. We developed a general purpose Navigation Analysis Tool (NAT) that provides an integrated architecture consisting of a data management system (implemented in MySQL), a core analysis toolbox (in MATLAB), and a graphical user interface (in JAVA). Its extensive characterization of trajectories over time, from exploratory behavior to goal-oriented navigation with decision points using a wide range of parameters, makes NAT a powerful analysis tool. In particular, NAT supplies a new set of specific measurements assessing performances in multiple intersection mazes and allowing navigation strategies to be discriminated (e.g. in the starmaze). Its user interface enables easy use while its modular organization provides many opportunities of extension and customization. Importantly, the portability of NAT to any type of maze and environment extends its exploitation far beyond the field of spatial navigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions.

    Science.gov (United States)

    van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B

    2018-03-01

    To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.

  5. Displays mounted on cutting blocks reduce the learning curve in navigated total knee arthroplasty.

    Science.gov (United States)

    Schnurr, Christoph; Eysel, Peer; König, Dietmar Pierre

    2011-01-01

    The use of computer navigation in total knee arthroplasty (TKA) improves the implant alignment but increases the operation time. Studies have shown that the operation time is further prolonged due to the surgeon's learning curve, and longer operation times have been associated with higher morbidity risks. It has been our hypothesis that an improvement in the human-machine interface might reduce the time required during the learning curve. Accordingly, we asked whether the use of navigation devices with a display fixed on the surgical instruments would reduce the operation time in navigated TKAs performed by navigation beginners. Thirty medical students were randomized and used two navigation devices in rotation: these were the Kolibri® device with an external display and the Dash® device with a display that was fixed on the cutting blocks. The time for adjustment of the tibial and femoral cutting blocks on knee models while using these devices was measured. A significant time reduction was demonstration when the Dash® device was used: The time reduction was 21% for the tibial block (p = 0.007), 40% for the femoral block (p learning curve may be diminished.

  6. Hybrid Map-Based Navigation Method for Unmanned Ground Vehicle in Urban Scenario

    Directory of Open Access Journals (Sweden)

    Huiyan Chen

    2013-07-01

    Full Text Available To reduce the data size of metric map and map matching computational cost in unmanned ground vehicle self-driving navigation in urban scenarios, a metric-topological hybrid map navigation system is proposed in this paper. According to the different positioning accuracy requirements, urban areas are divided into strong constraint (SC areas, such as roads with lanes, and loose constraint (LC areas, such as intersections and open areas. As direction of the self-driving vehicle is provided by traffic lanes and global waypoints in the road network, a simple topological map is fit for the navigation in the SC areas. While in the LC areas, the navigation of the self-driving vehicle mainly relies on the positioning information. Simultaneous localization and mapping technology is used to provide a detailed metric map in the LC areas, and a window constraint Markov localization algorithm is introduced to achieve accurate position using laser scanner. Furthermore, the real-time performance of the Markov algorithm is enhanced by using a constraint window to restrict the size of the state space. By registering the metric maps into the road network, a hybrid map of the urban scenario can be constructed. Real unmanned vehicle mapping and navigation tests demonstrated the capabilities of the proposed method.

  7. Computer-aided navigation in dental implantology: 7 years of clinical experience.

    Science.gov (United States)

    Ewers, Rolf; Schicho, Kurt; Truppe, Michael; Seemann, Rudolf; Reichwein, Astrid; Figl, Michael; Wagner, Arne

    2004-03-01

    This long-term study gives a review over 7 years of research, development, and routine clinical application of computer-aided navigation technology in dental implantology. Benefits and disadvantages of up-to-date technologies are discussed. In the course of the current advancement, various hardware and software configurations are used. In the initial phase, universally applicable navigation software is adapted for implantology. Since 2001, a special software module for dental implantology is available. Preoperative planning is performed on the basis of prosthetic aspects and requirements. In clinical routine use, patient and drill positions are intraoperatively registered by means of optoelectronic tracking systems; during preclinical tests, electromagnetic trackers are also used. In 7 years (1995 to 2002), 55 patients with 327 dental implants were successfully positioned with computer-aided navigation technology. The mean number of implants per patient was 6 (minimum, 1; maximum, 11). No complications were observed; the preoperative planning could be exactly realized. The average expenditure of time for the preparation of a surgical intervention with navigation decreased from 2 to 3 days in the initial phase to one-half day in clinical routine use with software that is optimized for dental implantology. The use of computer-aided navigation technology can contribute to considerable quality improvement. Preoperative planning is exactly realized and intraoperative safety is increased, because damage to nerves or neighboring teeth can be avoided.

  8. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    International Nuclear Information System (INIS)

    Kraats, Everine B van de; Carelsen, Bart; Fokkens, Wytske J; Boon, Sjirk N; Noordhoek, Niels; Niessen, Wiro J; Walsum, Theo van

    2005-01-01

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon

  9. 33 CFR 209.170 - Violations of laws protecting navigable waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Violations of laws protecting navigable waters. 209.170 Section 209.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... navigable waters. (a) [Reserved] (b) Injuries to Government works. Section 14 of the River and Harbor Act of...

  10. 33 CFR 64.16 - Duration of marking on sunken vessels in navigable waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duration of marking on sunken vessels in navigable waters. 64.16 Section 64.16 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sunken Vessels and Other Obstructions § 64.16 Duration of marking on sunken vessels in navigable waters...

  11. 33 CFR 117.458 - Inner Harbor Navigation Canal, New Orleans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Inner Harbor Navigation Canal, New Orleans. 117.458 Section 117.458 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Harbor Navigation Canal, New Orleans. (a) The draws of the SR 46 (St. Claude Avenue) bridge, mile 0.5...

  12. 33 CFR 207.600 - Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation. 207.600 Section 207.600 Navigation and Navigable Waters CORPS OF... (Charlotte) Harbor, N.Y.; use, administration, and navigation. (a)-(b) [Reserved] (c) No vessel shall moor or...

  13. 33 CFR 207.580 - Buffalo Harbor, N.Y.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y.; use, administration, and navigation. 207.580 Section 207.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.580 Buffalo Harbor, N.Y.; use...

  14. An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis

    Science.gov (United States)

    Chien, T. T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.

  15. Optical surgical navigation system causes pulse oximeter malfunction.

    Science.gov (United States)

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  16. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    Directory of Open Access Journals (Sweden)

    Euiho Kim

    2017-09-01

    Full Text Available In the Federal Aviation Administration’s (FAA performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  17. Accuracy of navigated pedicle screw insertion by a junior spine surgeon without spinal surgery experience

    International Nuclear Information System (INIS)

    Yamazaki, Hironori; Kotani, Toshiaki; Motegi, Hiroyuki; Nemoto, Tetsuharu; Koshi, Takana; Nagahara, Ken; Minami, Syohei

    2010-01-01

    The purpose of this study was to investigate pedicle screw placement accuracy during navigated surgery by a junior spine surgeon who had no spinal surgery experience. A junior spine surgeon with no spinal surgery experience implanted a total of 137 pedicle screws by using a navigation system. Postoperative computerized tomography was performed to evaluate screw placement, and the pedicle perforation rate was 2.2%. There were no neurologic or vascular complications related to the pedicle screws. The results demonstrated that pedicle screws can be placed safely and effectively by a junior spine surgeon who has no spinal surgery experience when instructed by a senior spine surgeon. The results of this study suggest that navigation can be used as a surgical training tool for junior spine surgeons. (author)

  18. Golf cart prototype development and navigation simulation using ROS and Gazebo

    Directory of Open Access Journals (Sweden)

    Shimchik Ilya

    2016-01-01

    Full Text Available This paper presents our approach to development of an autonomous golf cart, which will navigate in inaccessible by regular vehicles private areas. For this purpose, we have built a virtual golf course terrain and golf cart model in Gazebo, selected and modernized ROS-based packages in order to use them with Ackermann steering vehicle simulation. To verify our simulation and algorithms, we navigated the golf cart model from one golf hole to another within a virtual 3D golf course. For the real world algorithms’ verification, we developed a small-size vehicle prototype based on Traxxas radio-controlled car model, which is equipped with an on-board controller and sensors. The autonomous navigation of Traxxas-based vehicle prototype has been tested in indoor environment, where it utilized sensory data about environment and vehicle states, and performed localization, optimal trajectory computation and dynamic obstacles’ recognition with adjusting the route in real time.

  19. Navigating the field of temporally framed care in the Danish home care sector

    DEFF Research Database (Denmark)

    Tufte, Pernille Juul; Dahl, Hanne Marlene

    2016-01-01

    this framing: how care workers approach the services specified in their rotas, and navigate between needs, demands and opportunities in the daily performance of their duties. Applying feminist theory on time and anthropological theory on social navigation, it examines the practice of home care work in two......The organisational and temporal framing of elderly care in Europe has changed in the wake of new public management reforms and standardised care services, strict time measurements and work schedules have become central aspects of care work. The article investigates the crafting of care within...... workers respond to these dilemmas in practice, the article identifies various navigation tactics, including ‘leaving time outside’, individualised routinisation, working on different paths simultaneously and postponing tasks. These insights provide an additional perspective on the feminist literature...

  20. Adaptive Iterated Extended Kalman Filter and Its Application to Autonomous Integrated Navigation for Indoor Robot

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-01-01

    Full Text Available As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF which used the noise statistics estimator in the iterated extended Kalman (IEKF, and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS/wireless sensors networks (WSNs-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF.

  1. 78 FR 52941 - Cooperative Research and Development Agreement: Next Generation Arctic Navigational Safety...

    Science.gov (United States)

    2013-08-27

    ... advantages, disadvantages, required technology enhancements, performance, costs, and other issues associated... technology approach to the ``Next Generation Arctic Maritime Navigational Safety Information System,'' which... Federal Technology Transfer Act of 1986 (Pub. L. 99-502, codified at 15 U.S.C. 3710(a)). A CRADA [[Page...

  2. 77 FR 50420 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Science.gov (United States)

    2012-08-21

    ... Air Transportation System (NextGen) Transition to Performance-Based Navigation (PBN); Disposition of... safety, minimize economic impacts from GPS outages within the NAS and support air transportation's timing... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 91, 97, 121, 125, 129...

  3. Orion Optical Navigation Progress Toward Exploration: Mission 1

    Science.gov (United States)

    Holt, Greg N.; D'Souza, Christopher N.; Saley, David

    2018-01-01

    /Camera interlock angles. Accurate attitude information is provided by the star trackers during each pass. Figure 1 shows the various phases of lunar return navigation when the vehicle is in autonomous operation with lost ground communication. The midcourse maneuvers are placed to control the entry interface conditions to the desired corridor for safe landing. The general form of optical navigation on Orion is where still images of the Moon or Earth are processed to find the apparent angular diameter and centroid in the camera focal plane. This raw data is transformed into range and bearing angle measurements using planetary data and precise star tracker inertial attitude. The measurements are then sent to the main flight computer's Kalman filter to update the onboard state vector. The images are, of course, collected over an arc to converge the state and estimate velocity. The same basic technique was used by Apollo to satisfy loss-of-comm, but Apollo used manual crew sightings with a vehicle-integral sextant instead of autonomously processing optical imagery. The software development is past its Critical Design Review, and is progressing through test and certification for human rating. In support of this, a hardware-in-the-loop test rig was developed in the Johnson Space Center Electro-Optics Lab to exercise the OpNav system prior to integrated testing on the Orion vehicle. Figure 2 shows the rig, which the test team has dubbed OCILOT (Orion Camera In the Loop Optical Testbed). Analysis performed to date shows a delivery that satisfies an allowable entry corridor as shown in Figure 3.

  4. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    Science.gov (United States)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  5. Intraoperative computed tomography with integrated navigation system in spinal stabilizations.

    Science.gov (United States)

    Zausinger, Stefan; Scheder, Ben; Uhl, Eberhard; Heigl, Thomas; Morhard, Dominik; Tonn, Joerg-Christian

    2009-12-15

    STUDY DESIGN.: A prospective interventional case-series study plus a retrospective analysis of historical patients for comparison of data. OBJECTIVE.: To evaluate workflow, feasibility, and clinical outcome of navigated stabilization procedures with data acquisition by intraoperative computed tomography. SUMMARY OF BACKGROUND DATA.: Routine fluoroscopy to assess pedicle screw placement is not consistently reliable. Our hypothesis was that image-guided spinal navigation using an intraoperative CT-scanner can improve the safety and precision of spinal stabilization surgery. METHODS.: CT data of 94 patients (thoracolumbar [n = 66], C1/2 [n = 12], cervicothoracic instability [n = 16]) were acquired after positioning the patient in the final surgical position. A sliding gantry 40-slice CT was used for image acquisition. Data were imported to a frameless infrared-based neuronavigation workstation. Intraoperative CT was obtained to assess the accuracy of instrumentation and, if necessary, the extent of decompression. All patients were clinically evaluated by Odom-criteria after surgery and after 3 months. RESULTS.: Computed accuracy of the navigation system reached /=2 mm without persistent neurologic or vascular damage in 20/414 screws (4.8%) leading to immediate correction of 10 screws (2.4%). Control-iCT changed the course of surgery in 8 cases (8.5% of all patients). The overall revision rate was 8.5% (4 wound revisions, 2 CSF fistulas, and 2 epidural hematomas). There was no reoperation due to implant malposition. According to Odom-criteria all patients experienced a clinical improvement. A retrospective analysis of 182 patients with navigated thoracolumbar transpedicular stabilizations in the preiCT era revealed an overall revision rate of 10.4% with 4.4% of patients requiring screw revision. CONCLUSION.: Intraoperative CT in combination with neuronavigation provides high accuracy of screw placement and thus safety for patients undergoing spinal stabilization

  6. Design of all-weather celestial navigation system

    Science.gov (United States)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  7. Testing Two Tools for Multimodal Navigation

    Directory of Open Access Journals (Sweden)

    Mats Liljedahl

    2012-01-01

    Full Text Available The latest smartphones with GPS, electronic compasses, directional audio, touch screens, and so forth, hold a potential for location-based services that are easier to use and that let users focus on their activities and the environment around them. Rather than interpreting maps, users can search for information by pointing in a direction and database queries can be created from GPS location and compass data. Users can also get guidance to locations through point and sweep gestures, spatial sound, and simple graphics. This paper describes two studies testing two applications with multimodal user interfaces for navigation and information retrieval. The applications allow users to search for information and get navigation support using combinations of point and sweep gestures, nonspeech audio, graphics, and text. Tests show that users appreciated both applications for their ease of use and for allowing users to interact directly with the surrounding environment.

  8. Unraveling navigational strategies in migratory insects.

    Science.gov (United States)

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M

    2012-04-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Automatic document navigation for digital content remastering

    Science.gov (United States)

    Lin, Xiaofan; Simske, Steven J.

    2003-12-01

    This paper presents a novel method of automatically adding navigation capabilities to re-mastered electronic books. We first analyze the need for a generic and robust system to automatically construct navigation links into re-mastered books. We then introduce the core algorithm based on text matching for building the links. The proposed method utilizes the tree-structured dictionary and directional graph of the table of contents to efficiently conduct the text matching. Information fusion further increases the robustness of the algorithm. The experimental results on the MIT Press digital library project are discussed and the key functional features of the system are illustrated. We have also investigated how the quality of the OCR engine affects the linking algorithm. In addition, the analogy between this work and Web link mining has been pointed out.

  10. Indoor integrated navigation and synchronous data acquisition method for Android smartphone

    Science.gov (United States)

    Hu, Chunsheng; Wei, Wenjian; Qin, Shiqiao; Wang, Xingshu; Habib, Ayman; Wang, Ruisheng

    2015-08-01

    Smartphones are widely used at present. Most smartphones have cameras and kinds of sensors, such as gyroscope, accelerometer and magnet meter. Indoor navigation based on smartphone is very important and valuable. According to the features of the smartphone and indoor navigation, a new indoor integrated navigation method is proposed, which uses MEMS (Micro-Electro-Mechanical Systems) IMU (Inertial Measurement Unit), camera and magnet meter of smartphone. The proposed navigation method mainly involves data acquisition, camera calibration, image measurement, IMU calibration, initial alignment, strapdown integral, zero velocity update and integrated navigation. Synchronous data acquisition of the sensors (gyroscope, accelerometer and magnet meter) and the camera is the base of the indoor navigation on the smartphone. A camera data acquisition method is introduced, which uses the camera class of Android to record images and time of smartphone camera. Two kinds of sensor data acquisition methods are introduced and compared. The first method records sensor data and time with the SensorManager of Android. The second method realizes open, close, data receiving and saving functions in C language, and calls the sensor functions in Java language with JNI interface. A data acquisition software is developed with JDK (Java Development Kit), Android ADT (Android Development Tools) and NDK (Native Development Kit). The software can record camera data, sensor data and time at the same time. Data acquisition experiments have been done with the developed software and Sumsang Note 2 smartphone. The experimental results show that the first method of sensor data acquisition is convenient but lost the sensor data sometimes, the second method is much better in real-time performance and much less in data losing. A checkerboard image is recorded, and the corner points of the checkerboard are detected with the Harris method. The sensor data of gyroscope, accelerometer and magnet meter have

  11. Heading-vector navigation based on head-direction cells and path integration.

    Science.gov (United States)

    Kubie, John L; Fenton, André A

    2009-05-01

    Insect navigation is guided by heading vectors that are computed by path integration. Mammalian navigation models, on the other hand, are typically based on map-like place representations provided by hippocampal place cells. Such models compute optimal routes as a continuous series of locations that connect the current location to a goal. We propose a "heading-vector" model in which head-direction cells or their derivatives serve both as key elements in constructing the optimal route and as the straight-line guidance during route execution. The model is based on a memory structure termed the "shortcut matrix," which is constructed during the initial exploration of an environment when a set of shortcut vectors between sequential pairs of visited waypoint locations is stored. A mechanism is proposed for calculating and storing these vectors that relies on a hypothesized cell type termed an "accumulating head-direction cell." Following exploration, shortcut vectors connecting all pairs of waypoint locations are computed by vector arithmetic and stored in the shortcut matrix. On re-entry, when local view or place representations query the shortcut matrix with a current waypoint and goal, a shortcut trajectory is retrieved. Since the trajectory direction is in head-direction compass coordinates, navigation is accomplished by tracking the firing of head-direction cells that are tuned to the heading angle. Section 1 of the manuscript describes the properties of accumulating head-direction cells. It then shows how accumulating head-direction cells can store local vectors and perform vector arithmetic to perform path-integration-based homing. Section 2 describes the construction and use of the shortcut matrix for computing direct paths between any pair of locations that have been registered in the shortcut matrix. In the discussion, we analyze the advantages of heading-based navigation over map-based navigation. Finally, we survey behavioral evidence that nonhippocampal

  12. Internet-Based Indoor Navigation Services

    OpenAIRE

    Zeinalipour-Yazti, Demetrios; Laoudias, Christos; Georgiou, Kyriakos

    2017-01-01

    Smartphone advances are leading to a class of Internet-based Indoor Navigation services. IIN services rely on geolocation databases that store indoor models, comprising floor maps and points of interest, along with wireless, light, and magnetic signals for localizing users. Developing IIN services creates new information management challenges - such as crowdsourcing indoor models, acquiring and fusing big data velocity signals, localization algorithms, and custodians' location privacy. Here, ...

  13. Spatial navigation by congenitally blind individuals

    OpenAIRE

    Schinazi, Victor R.; Thrash, Tyler; Chebat, Daniel?Robert

    2015-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergen...

  14. Celestial Navigation in the USA, Fiji, and Tunisia

    Science.gov (United States)

    Holbrook, Jarita C.

    2015-05-01

    Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.

  15. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  16. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2017-12-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  17. Development of an advanced intelligent robot navigation system

    International Nuclear Information System (INIS)

    Hai Quan Dai; Dalton, G.R.; Tulenko, J.; Crane, C.C. III

    1992-01-01

    As part of the US Department of Energy's Robotics for Advanced Reactors Project, the authors are in the process of assembling an advanced intelligent robotic navigation and control system based on previous work performed on this project in the areas of computer control, database access, graphical interfaces, shared data and computations, computer vision for positions determination, and sonar-based computer navigation systems. The system will feature three levels of goals: (1) high-level system for management of lower level functions to achieve specific functional goals; (2) intermediate level of goals such as position determination, obstacle avoidance, and discovering unexpected objects; and (3) other supplementary low-level functions such as reading and recording sonar or video camera data. In its current phase, the Cybermotion K2A mobile robot is not equipped with an onboard computer system, which will be included in the final phase. By that time, the onboard system will play important roles in vision processing and in robotic control communication

  18. Autonomous Navigation with Constrained Consistency for C-Ranger

    Directory of Open Access Journals (Sweden)

    Shujing Zhang

    2014-06-01

    Full Text Available Autonomous underwater vehicles (AUVs have become the most widely used tools for undertaking complex exploration tasks in marine environments. Their synthetic ability to carry out localization autonomously and build an environmental map concurrently, in other words, simultaneous localization and mapping (SLAM, are considered to be pivotal requirements for AUVs to have truly autonomous navigation. However, the consistency problem of the SLAM system has been greatly ignored during the past decades. In this paper, a consistency constrained extended Kalman filter (EKF SLAM algorithm, applying the idea of local consistency, is proposed and applied to the autonomous navigation of the C-Ranger AUV, which is developed as our experimental platform. The concept of local consistency (LC is introduced after an explicit theoretical derivation of the EKF-SLAM system. Then, we present a locally consistency-constrained EKF-SLAM design, LC-EKF, in which the landmark estimates used for linearization are fixed at the beginning of each local time period, rather than evaluated at the latest landmark estimates. Finally, our proposed LC-EKF algorithm is experimentally verified, both in simulations and sea trials. The experimental results show that the LC-EKF performs well with regard to consistency, accuracy and computational efficiency.

  19. IMPROVING CAR NAVIGATION WITH A VISION-BASED SYSTEM

    Directory of Open Access Journals (Sweden)

    H. Kim

    2015-08-01

    Full Text Available The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  20. Improving Car Navigation with a Vision-Based System

    Science.gov (United States)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  1. Context-Aided Sensor Fusion for Enhanced Urban Navigation

    Directory of Open Access Journals (Sweden)

    Enrique David Martí

    2012-12-01

    Full Text Available  The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments.

  2. Context-Aided Sensor Fusion for Enhanced Urban Navigation

    Science.gov (United States)

    Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María

    2012-01-01

    The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments. PMID:23223080

  3. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2018-06-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  4. Intraoperative CT with integrated navigation system in spinal neurosurgery

    International Nuclear Information System (INIS)

    Zausinger, S.; Heigl, T.; Scheder, B.; Schnell, O.; Tonn, J.C.; Uhl, E.; Morhard, D.

    2007-01-01

    For spinal surgery navigational system images are usually acquired before surgery with patients positioned supine. The aim of this study was to evaluate prospectively navigated procedures in spinal surgery with data acquisition by intraoperative computed tomography (iCT). CT data of 38 patients [thoracolumbar instability (n = 24), C1/2 instability (n = 6), cervicothoracic stabilization (n = 7), disk herniation (n = 1)] were acquired after positioning the patient in prone position. A sliding gantry 24 detector row CT was used for image acquisition. Data were imported to the frameless infrared-based neuronavigation station. A postprocedural CT was obtained to assess the extent of decompression and the accuracy of instrumentation. Intraoperative registration revealed computed accuracy 2 mm in 9/158 screws (5.6%), allowing immediate correction in five screws without any damage to vessels or nerves. There were three transient complications with clinical improvement in all patients. Intraoperative CT in combination with neuronavigation provides high accuracy of screw placement and thus safety for patients undergoing spinal stabilization. The procedure is rapid and easy to perform and - by replacing pre- and postoperative imaging-is not associated with additional exposure to radiation. (orig.)

  5. 3rd CEAS Specialist Conference on Guidance, Navigation and Control

    CERN Document Server

    Drouin, Antoine; Roos, Clément

    2015-01-01

    The two first CEAS (Council of European Aerospace Societies) Specialist Conferences on Guidance, Navigation and Control (CEAS EuroGNC) were held in Munich, Germany in 2011 and in Delft, The Netherlands in 2013. ONERA The French Aerospace Lab, ISAE (Institut Supérieur de l’Aéronautique et de l’Espace) and ENAC (Ecole Nationale de l’Aviation Civile) accepted the challenge of jointly organizing the 3rd edition. The conference aims at promoting new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems. It represents a unique forum for communication and information exchange between specialists in the fields of GNC systems design and operation, including air traffic management. This book contains the forty best papers and gives an interesting snapshot of the latest advances over the following topics: l  Control theory, analysis, and design l  Novel navigation, estimation, and tracking methods l  Aircr...

  6. AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation

    Directory of Open Access Journals (Sweden)

    Xin Yuan

    2017-05-01

    Full Text Available In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs. Therefore, we present a new method called AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF-based SLAM algorithm. The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector, while estimating the state parameters via a recursive and iterative estimation-update process. Hereby, the prediction and update state (which exist as well in the conventional EKF are complemented by a newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop mapping and line mapping experiments, it shows much better performances in map management with respect to landmark addition and removal, which avoid the long-term accumulation of errors and clutters in the created map. Additionally, the underwater robot achieves more precise and efficient self-localization and a mapping of the surrounding landmarks with much lower processing times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent map upgrading on loop closure.

  7. Prefrontal-hippocampal interactions for spatial navigation.

    Science.gov (United States)

    Ito, Hiroshi T

    2018-04-01

    Animals have the ability to navigate to a desired location by making use of information about environmental landmarks and their own movements. While decades of neuroscience research have identified neurons in the hippocampus and parahippocampal structures that represent an animal's position in space, it is still largely unclear how an animal can choose the next movement direction to reach a desired goal. As the goal destination is typically located somewhere outside of the range of sensory perception, the animal is required to rely on the internal metric of space to estimate the direction and distance of the destination to plan a next action. Therefore, the hippocampal spatial map should interact with action-planning systems in other cortical regions. In accordance with this idea, several recent studies have indicated the importance of functional interactions between the hippocampus and the prefrontal cortex for goal-directed navigation. In this paper, I will review these studies and discuss how an animal can estimate its future positions correspond to a next movement. Investigation of the navigation problem may further provide general insights into internal models of the brain for action planning. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  8. Laboratory experiments in mobile robot navigation

    International Nuclear Information System (INIS)

    Kar, Asim; Pal, Prabir K.

    1997-01-01

    Mobile robots have potential applications in remote surveillance and operation in hazardous areas. To be effective, they must have the ability to navigate on their own to desired locations. Several experimental navigational runs of a mobile robot developed have been conducted. The robot has three wheels of which the front wheel is steered and the hind wheels are driven. The robot is equipped with an ultrasonic range sensor, which is turned around to get range data in all directions. The range data is fed to the input of a neural net, whose output steers the robot towards the goal. The robot is powered by batteries (12V 10Ah). It has an onboard stepper motor controller for driving the wheels and the ultrasonic setup. It also has an onboard computer which runs the navigation program NAV. This program sends the range data and configuration parameters to the operator''s console program OCP, running on a stationary PC, through radio communication on a serial line. Through OCP, an operator can monitor the progress of the robot from a distant control room and intervene if necessary. In this paper the control modules of the mobile robot, its ways of operation and also results of some of the experimental runs recorded are reported. It is seen that the trained net guides the mobile robot through gaps of 1m and above to its destination with about 84% success measured over a small sample of 38 runs

  9. Detecting allocentric and egocentric navigation deficits in patients with schizophrenia and bipolar disorder using virtual reality.

    Science.gov (United States)

    Mohammadi, Alireza; Hesami, Ehsan; Kargar, Mahmoud; Shams, Jamal

    2018-04-01

    Present evidence suggests that the use of virtual reality has great advantages in evaluating visuospatial navigation and memory for the diagnosis of psychiatric or other neurological disorders. There are a few virtual reality studies on allocentric and egocentric memories in schizophrenia, but studies on both memories in bipolar disorder are lacking. The objective of this study was to compare the performance of allocentric and egocentric memories in patients with schizophrenia and bipolar disorder. For this resolve, an advanced virtual reality navigation task (VRNT) was presented to distinguish the navigational performances of these patients. Twenty subjects with schizophrenia and 20 bipolar disorder patients were compared with 20 healthy-matched controls on the newly developed VRNT consisting of a virtual neighbourhood (allocentric memory) and a virtual maze (egocentric memory). The results demonstrated that schizophrenia patients were significantly impaired on all allocentric, egocentric, visual, and verbal memory tasks compared with patients with bipolar disorder and normal subjects. Dissimilarly, the performance of patients with bipolar disorder was slightly lower than that of control subjects in all these abilities, but no significant differences were observed. It was concluded that allocentric and egocentric navigation deficits are detectable in patients with schizophrenia and bipolar disorder using VRNT, and this task along with RAVLT and ROCFT can be used as a valid clinical tool for distinguishing these patients from normal subjects.

  10. Evolutionary Fuzzy Control and Navigation for Two Wheeled Robots Cooperatively Carrying an Object in Unknown Environments.

    Science.gov (United States)

    Juang, Chia-Feng; Lai, Min-Ge; Zeng, Wan-Ting

    2015-09-01

    This paper presents a method that allows two wheeled, mobile robots to navigate unknown environments while cooperatively carrying an object. In the navigation method, a leader robot and a follower robot cooperatively perform either obstacle boundary following (OBF) or target seeking (TS) to reach a destination. The two robots are controlled by fuzzy controllers (FC) whose rules are learned through an adaptive fusion of continuous ant colony optimization and particle swarm optimization (AF-CACPSO), which avoids the time-consuming task of manually designing the controllers. The AF-CACPSO-based evolutionary fuzzy control approach is first applied to the control of a single robot to perform OBF. The learning approach is then applied to achieve cooperative OBF with two robots, where an auxiliary FC designed with the AF-CACPSO is used to control the follower robot. For cooperative TS, a rule for coordination of the two robots is developed. To navigate cooperatively, a cooperative behavior supervisor is introduced to select between cooperative OBF and cooperative TS. The performance of the AF-CACPSO is verified through comparisons with various population-based optimization algorithms for the OBF learning problem. Simulations and experiments verify the effectiveness of the approach for cooperative navigation of two robots.

  11. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind.

    Science.gov (United States)

    Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments.

  12. Action Video Game Play and Transfer of Navigation and Spatial Cognition Skills in Adolescents who are Blind

    Directory of Open Access Journals (Sweden)

    Erin eConnors

    2014-03-01

    Full Text Available For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired from recent developments in accessible technology and the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. We investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a virtual indoor environment using this ludic approach to learning. Following game play, participants were then assessed on their ability to transfer and mentally manipulate acquired spatial information in a set of navigation tasks carried out in the real environment represented in the game. The transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this novel software and learning by a gaming approach can facilitate the transfer of spatial knowledge and can be used by individuals who are blind for the purposes of navigation in real-world environments.

  13. Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees

    Directory of Open Access Journals (Sweden)

    Yamamoto Yuji

    2010-11-01

    Full Text Available Abstract Background The latest version of the navigation system for anterior cruciate ligament (ACL reconstruction has the supplementary ability to assess knee stability before and after ACL reconstruction. In this study, we compared navigation data between clinical grades in ACL-deficient knees and also analyzed correlation between clinical grading and navigation data. Methods 150 ACL deficient knees that received primary ACL reconstruction using an image-free navigation system were included. For clinical evaluation, the Lachman, anterior drawer, and pivot shift tests were performed under general anesthesia and were graded by an examiner. For the assessment of knee stability using the navigation system, manual tests were performed again before ACL reconstruction. Navigation data were recorded as anteroposterior (AP displacement of the tibia for the Lachman and anterior drawer tests, and both AP displacement and tibial rotation for the pivot shift test. Results Navigation data of each clinical grade were as follows; Lachman test grade 1+: 10.0 mm, grade 2+: 13.2 ± 3.1 mm, grade 3+: 14.5 ± 3.3 mm, anterior drawer test grade 1+: 6.8 ± 1.4 mm, grade 2+: 7.4 ± 1.8 mm, grade 3+: 9.1 ± 2.3 mm, pivot shift test grade 1+: 3.9 ± 1.8 mm/21.5° ± 7.8°, grade 2+: 4.8 ± 2.1 mm/21.8° ± 7.1°, and grade 3+: 6.0 ± 3.2 mm/21.1° ± 7.1°. There were positive correlations between clinical grading and AP displacement in the Lachman, and anterior drawer tests. Although positive correlations between clinical grading and AP displacement in pivot shift test were found, there were no correlations between clinical grading and tibial rotation in pivot shift test. Conclusions In response to AP force, the navigation system can provide the surgeon with correct objective data for knee laxity in ACL deficient knees. During the pivot shift test, physicians may grade according to the displacement of the tibia, rather than rotation.

  14. Ecological validity of virtual environments to assess human navigation ability

    Directory of Open Access Journals (Sweden)

    Ineke eVan Der Ham

    2015-05-01

    Full Text Available Route memory is frequently assessed in virtual environments. These environments can be presented in a fully controlled manner and are easy to use. Yet they lack the physical involvement that participants have when navigating real environments. For some aspects of route memory this may result in reduced performance in virtual environments. We assessed route memory performance in four different environments: real, virtual, virtual with directional information (compass, and hybrid. In the hybrid environment, participants walked the route outside on an open field, while all route information (i.e. path, landmarks was shown simultaneously on a handheld tablet computer. Results indicate that performance in the real life environment was better than in the virtual conditions for tasks relying on survey knowledge, like pointing to start and end point, and map drawing. Performance in the hybrid condition however, hardly differed from real life performance. Performance in the virtual environment did not benefit from directional information. Given these findings, the hybrid condition may offer the best of both worlds: the performance level is comparable to that of real life for route memory, yet it offers full control of visual input during route learning.

  15. A new image navigation system for MR-guided cryosurgery

    International Nuclear Information System (INIS)

    Mogami, Takuji; Dohi, Michiko; Harada, Junta

    2002-01-01

    The purpose of this study was to evaluate the feasibility of Interactive Scan Control (ISC), a new MR image navigation system, during percutaneous puncture in cryosurgery. With the ISC system in place, percutaneous MR-guided cryosurgery was performed in 26 cases, with the ISC system being used in 11 cases (five renal tumors, three uterine fibroids and three metastatic liver tumors). The ISC system comprised infrared cameras and an MR-compatible optical tracking tool that was directly connected to a cryoprobe. Tumor sizes ranged from 1.2 cm (metastatic liver tumor) to 9.0 cm (uterine fibroid), for a mean size of 3.9 cm. With ISC, one to three cryoprobes with a diameter of 2 mm or 3 mm were advanced into the tumors with the guidance of an MR fluoroscopic image. Two freeze-thaw cycles were used for cryosurgery. During the cryosurgery, the formation of iceballs was monitored on MR images. Follow-up dynamic CT or MRI as well as physical examinations were conducted after two weeks and six weeks. Placement of probes was successfully performed under the control of the ISC system. During cryosurgery, engulfment of the tumors by iceballs was carefully monitored by MRI. Necrosis of the cryoablated area was confirmed in all renal tumors by follow-up dynamic CT. The size regression of the uterine fibroids was observed through follow-up MRI. Two of the three cases of metastatic liver tumor were ablated completely. Additional therapy for a residual tumor was performed on one patient with a metastatic liver tumor. A small amount of pneumothorax was the only complication found in a patient with a metastatic liver tumor. MR-guided cryosurgery with this new navigation system was feasible with low morbidity and allowed for safe and accurate puncture with a cryoprobe. (author)

  16. How do students navigate and learn from nonlinear science texts: Can metanavigation support promote science learning?

    Science.gov (United States)

    Stylianou, Agni

    2003-06-01

    Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.

  17. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.

    Science.gov (United States)

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.

  18. Comparison of accuracy and safety of the SEVEN and the Navigator continuous glucose monitoring systems.

    Science.gov (United States)

    Garg, Satish K; Smith, James; Beatson, Christie; Lopez-Baca, Benita; Voelmle, Mary; Gottlieb, Peter A

    2009-02-01

    This study evaluated the accuracy and safety of two continuous glucose monitoring (CGM) systems, the SEVEN (DexCom, San Diego, CA) and the Navigator (Abbott Diabetes Care, Alameda, CA), with the YSI laboratory measurements of blood glucose (blood glucose meter manufactured by YSI, Yellow Springs, OH), when worn concurrently in adults with type 1 diabetes. Fourteen subjects with type 1 diabetes, 33 +/- 6 (mean +/- SD) years old, were enrolled in this study. All subjects wore both sensors concurrently over three consecutive 5-day CGM sessions (15-day wear). On Days 5, 10, and 15, subjects participated in an 8-h in-clinic session where measurements from the CGM systems were collected and compared with YSI measurements every 15 min. At the end of Day 5 and 10 in-clinic sessions, the sensors were removed, and new sensors were inserted for the following CGM session despite the SEVEN system's recommended use for up to 7 days. The mean absolute relative difference (ARD) for the two CGM devices versus YSI was not different: 16.8% and 16.1% for SEVEN and Navigator, respectively (P = 0.38). In the hypoglycemic region (YSI value blood glucose (SMBG) values. Thirteen additional Navigator replacement devices were issued compared to two for the SEVEN. A total of three versus 14 skin reactions were reported with the SEVEN and Navigator insertion area, respectively. Glucose measurements with the SEVEN and Navigator were found to be similar compared with YSI and SMBG measurements, with the exception of the hypoglycemic range where the SEVEN performed better. However, the Navigator caused more skin area reactions.

  19. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    Science.gov (United States)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll

  20. Postoperative Care Navigation for Total Knee Arthroplasty Patients: A Randomized Controlled Trial.

    Science.gov (United States)

    Losina, Elena; Collins, Jamie E; Wright, John; Daigle, Meghan E; Donnell-Fink, Laurel A; Strnad, Doris; Usiskin, Ilana M; Yang, Heidi Y; Lerner, Vladislav; Katz, Jeffrey N

    2016-09-01

    To establish the efficacy of motivational interviewing-based postoperative care navigation in improving functional status after total knee arthroplasty (TKA) and to identify subgroups likely to benefit from the intervention. We conducted a parallel randomized controlled trial in TKA recipients with 2 arms: postoperative care with frequent followup by a care navigator or usual care. The primary outcome was the difference between the arms in Western Ontario and McMaster Universities Osteoarthritis Index function score change, over 6 months postsurgery. We performed a preplanned subgroup analysis of differential efficacy by obesity and exploratory subgroup analyses on sex and pain catastrophizing. We enrolled 308 subjects undergoing TKA for osteoarthritis. Mean ± SD preoperative function score was 41 ± 17 (0-100 scale, where 100 = worst function). At 6 months, subjects in the navigation arm improved by mean ± SD 30 ± 16 points compared to 27 ± 18 points in the usual-care arm (P = 0.148). Participants with moderate to high levels of pain catastrophizing were unlikely to benefit from navigation compared to those with lower levels of pain catastrophizing (P = 0.013 for interaction). Subjects assigned to the navigation intervention did not demonstrate greater functional improvement compared to those in the control group. The negative overall result could be explained by the large effect on functional improvement of TKA itself compared to the smaller, additional benefit from care navigation, as well as by potential differential effects for subjects with moderate to high degrees of pain catastrophizing. Greater focus on developing programs for reducing pain catastrophizing could lead to better functional outcomes following TKA. © 2016, American College of Rheumatology.