WorldWideScience

Sample records for percolation universality class

  1. Monopole percolation and the universality class of the chiral transition in four flavor noncompact lattice QED

    CERN Document Server

    Kocic, Aleksandar; Wang, K C

    1993-01-01

    We simulate four flavor noncompact lattice QED using the Hybrid Monte Carlo algorithm on $10^4$ and $16^4$ lattices. Measurements of the monopole susceptibility and the percolation order parameter indicate a transition at $\\beta = {1/e^2} = .205(5)$ with critical behavior in the universality class of four dimensional percolation. We present accurate chiral condensate measurements and monitor finite size effects carefully. The chiral condensate data supports the existence of a power-law transition at $\\beta = .205$ in the same universality class as the chiral transition in the two flavor model. The resulting equation of state predicts the mass ratio $m_\\pi^2/m_\\sigma^2$ in good agreement with spectrum calculations while the hypothesis of a logarithmically improved mean field theory fails qualitatively.

  2. Dimensional crossover in directed percolation

    International Nuclear Information System (INIS)

    Chame, A.M.N.; Queiroz, S.L.A. de; Santos, Raimundo R. dos.

    1984-04-01

    We study the dimensional crossover in directed percolation in three dimensions. Bonds are allowed to have different concentrations along the three cartesian axes of the lattice. Through a Position Space Renormalization Group we obtain the phase-diagrama where non-percolating, 1-D, 2-D and 3-D percolating phases are present. We find that the isotropic fixed points are unstable with respect to anisotropy, thus driving the system into a different universality class. (author) [pt

  3. Bootstrap percolation: a renormalisation group approach

    International Nuclear Information System (INIS)

    Branco, N.S.; Santos, Raimundo R. dos; Queiroz, S.L.A. de.

    1984-02-01

    In bootstrap percolation, sites are occupied at random with probability p, but each site is considered active only if at least m of its neighbours are also active. Within an approximate position-space renormalization group framework on a square lattice we obtain the behaviour of the critical concentration p (sub)c and of the critical exponents ν and β for m = 0 (ordinary percolation), 1,2 and 3. We find that the bootstrap percolation problem can be cast into different universality classes, characterized by the values of m. (author) [pt

  4. Aerodynamics and Percolation: Unfolding Laminar Separation Bubble on Airfoils

    Science.gov (United States)

    Traphan, Dominik; Wester, Tom T. B.; Gülker, Gerd; Peinke, Joachim; Lind, Pedro G.

    2018-04-01

    As a fundamental phenomenon of fluid mechanics, recent studies suggested laminar-turbulent transition belonging to the universality class of directed percolation. Here, the onset of a laminar separation bubble on an airfoil is analyzed in terms of the directed percolation model using particle image velocimetry data. Our findings indicate a clear significance of percolation models in a general flow situation beyond fundamental ones. We show that our results are robust against fluctuations of the parameter, namely, the threshold of turbulence intensity, that maps velocimetry data into binary cells (turbulent or laminar). In particular, this percolation approach enables the precise determination of the transition point of the laminar separation bubble, an important problem in aerodynamics.

  5. Phase transition universality classes of classical, nonequilibrium systems

    CERN Document Server

    Ódor, G

    2004-01-01

    In the first chapter I summarize the most important critical exponents and relations used in this work. In the second chapter I briefly address the question of scaling behavior at first order phase transitions.In chapter three I review dynamical extensions of basic static classes, show the effect of mixing dynamics and percolation behavior. The main body of this work is given in chapter four where genuine, dynamical universality classes specific to nonequilibrium systems are introduced. In chapter five I continue overviewing such nonequilibrium classes but in coupled, multi-component systems. Most of known transitions in low dimensional systems are between active and absorbing states of reaction-diffusion type systems, but I briefly introduce related classes that appear in interface growth models in chapter six. Some of them are related to critical behavior of coupled, multi-component systems. Finally in chapter seven I summarize families of absorbing state system classes, mean-field classes and the most freq...

  6. Directed polymers versus directed percolation

    Science.gov (United States)

    Halpin-Healy, Timothy

    1998-10-01

    Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.

  7. Ising percolation in a three-state majority vote model

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Martínez-Cruz, M.A.; Gayosso Martínez, Felipe [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-05

    Highlights: • Three-state non-consensus majority voter model is introduced. • Phase transition in the absorbing state non-consensus is revealed. • The percolation transition belongs to the universality class of Ising percolation. • The effect of an updating rule for a tie between voter neighbors is highlighted. - Abstract: In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.

  8. Ising percolation in a three-state majority vote model

    International Nuclear Information System (INIS)

    Balankin, Alexander S.; Martínez-Cruz, M.A.; Gayosso Martínez, Felipe; Mena, Baltasar; Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier

    2017-01-01

    Highlights: • Three-state non-consensus majority voter model is introduced. • Phase transition in the absorbing state non-consensus is revealed. • The percolation transition belongs to the universality class of Ising percolation. • The effect of an updating rule for a tie between voter neighbors is highlighted. - Abstract: In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.

  9. Recent advances in percolation theory and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Abbas Ali, E-mail: ab.saberi@ut.ac.ir

    2015-05-24

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin–Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  10. Recent advances in percolation theory and its applications

    Science.gov (United States)

    Saberi, Abbas Ali

    2015-05-01

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  11. Recent advances in percolation theory and its applications

    International Nuclear Information System (INIS)

    Saberi, Abbas Ali

    2015-01-01

    Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model. Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin–Kasteleyn and geometric spin clusters. As an application we will discuss how percolation

  12. Bond percolation on a class of correlated and clustered random graphs

    International Nuclear Information System (INIS)

    Allard, A; Hébert-Dufresne, L; Noël, P-A; Marceau, V; Dubé, L J

    2012-01-01

    We introduce a formalism for computing bond percolation properties of a class of correlated and clustered random graphs. This class of graphs is a generalization of the configuration model where nodes of different types are connected via different types of hyperedges, edges that can link more than two nodes. We argue that the multitype approach coupled with the use of clustered hyperedges can reproduce a wide spectrum of complex patterns, and thus enhances our capability to model real complex networks. As an illustration of this claim, we use our formalism to highlight unusual behaviours of the size and composition of the components (small and giant) in a synthetic, albeit realistic, social network. (paper)

  13. Percolation and epidemics in random clustered networks

    Science.gov (United States)

    Miller, Joel C.

    2009-08-01

    The social networks that infectious diseases spread along are typically clustered. Because of the close relation between percolation and epidemic spread, the behavior of percolation in such networks gives insight into infectious disease dynamics. A number of authors have studied percolation or epidemics in clustered networks, but the networks often contain preferential contacts in high degree nodes. We introduce a class of random clustered networks and a class of random unclustered networks with the same preferential mixing. Percolation in the clustered networks reduces the component sizes and increases the epidemic threshold compared to the unclustered networks.

  14. The field theory approach to percolation processes

    International Nuclear Information System (INIS)

    Janssen, Hans-Karl; Taeuber, Uwe C.

    2005-01-01

    We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features are governed, respectively, by the directed (DP) and dynamic isotropic percolation (dIP) universality classes. We discuss the construction of a field theory representation for these Markovian stochastic processes based on fundamental phenomenological considerations, as well as from a specific microscopic reaction-diffusion model realization. Subsequently we explain how dynamic renormalization group (RG) methods can be applied to obtain the universal properties near the critical point in an expansion about the upper critical dimensions d c = 4 (DP) and 6 (dIP). We provide a detailed overview of results for critical exponents, scaling functions, crossover phenomena, finite-size scaling, and also briefly comment on the influence of long-range spreading, the presence of a boundary, multispecies generalizations, coupling of the order parameter to other conserved modes, and quenched disorder

  15. Cooperation percolation in spatial prisoner's dilemma game

    International Nuclear Information System (INIS)

    Yang, Han-Xin; Rong, Zhihai; Wang, Wen-Xu

    2014-01-01

    The paradox of cooperation among selfish individuals still puzzles scientific communities. Although a large amount of evidence has demonstrated that the cooperator clusters in spatial games are effective in protecting the cooperators against the invasion of defectors, we continue to lack the condition for the formation of a giant cooperator cluster that ensures the prevalence of cooperation in a system. Here, we study the dynamical organization of the cooperator clusters in spatial prisoner's dilemma game to offer the condition for the dominance of cooperation, finding that a phase transition characterized by the emergence of a large spanning cooperator cluster occurs when the initial fraction of the cooperators exceeds a certain threshold. Interestingly, the phase transition belongs to different universality classes of percolation determined by the temptation to defect b. Specifically, on square lattices, 1 < b < 4/3 leads to a phase transition pertaining to the class of regular site percolation, whereas 3/2 < b < 2 gives rise to a phase transition subject to invasion percolation with trapping. Our findings offer a deeper understanding of cooperative behavior in nature and society. (paper)

  16. Percolation, statistical topography, and transport in random media

    International Nuclear Information System (INIS)

    Isichenko, M.B.

    1992-01-01

    A review of classical percolation theory is presented, with an emphasis on novel applications to statistical topography, turbulent diffusion, and heterogeneous media. Statistical topography involves the geometrical properties of the isosets (contour lines or surfaces) of a random potential ψ(x). For rapidly decaying correlations of ψ, the isopotentials fall into the same universality class as the perimeters of percolation clusters. The topography of long-range correlated potentials involves many length scales and is associated either with the correlated percolation problem or with Mandelbrot's fractional Brownian reliefs. In all cases, the concept of fractal dimension is particularly fruitful in characterizing the geometry of random fields. The physical applications of statistical topography include diffusion in random velocity fields, heat and particle transport in turbulent plasmas, quantum Hall effect, magnetoresistance in inhomogeneous conductors with the classical Hall effect, and many others where random isopotentials are relevant. A geometrical approach to studying transport in random media, which captures essential qualitative features of the described phenomena, is advocated

  17. Percolation Analysis as a Tool to Describe the Topology of the Large Scale Structure of the Universe

    Science.gov (United States)

    Yess, Capp D.

    1997-09-01

    Percolation analysis is the study of the properties of clusters. In cosmology, it is the statistics of the size and number of clusters. This thesis presents a refinement of percolation analysis and its application to astronomical data. An overview of the standard model of the universe and the development of large scale structure is presented in order to place the study in historical and scientific context. Then using percolation statistics we, for the first time, demonstrate the universal character of a network pattern in the real space, mass distributions resulting from nonlinear gravitational instability of initial Gaussian fluctuations. We also find that the maximum of the number of clusters statistic in the evolved, nonlinear distributions is determined by the effective slope of the power spectrum. Next, we present percolation analyses of Wiener Reconstructions of the IRAS 1.2 Jy Redshift Survey. There are ten reconstructions of galaxy density fields in real space spanning the range β = 0.1 to 1.0, where β=Ω0.6/b,/ Ω is the present dimensionless density and b is the linear bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius, R≈100h-1 Mpc, percolation analysis reveals a slight 'meatball' topology for the real space, galaxy distribution of the IRAS survey. Finally, we employ a percolation technique developed for pointwise distributions to analyze two-dimensional projections of the three northern and three southern slices in the Las Campanas Redshift Survey and then give consideration to further study of the methodology, errors and application of percolation. We track the growth of the largest cluster as a topological indicator to a depth of 400 h-1 Mpc, and report an unambiguous signal, with high signal-to-noise ratio, indicating a network topology which in

  18. Universality-class crossover by a nonorder field introduced to the pair contact process with diffusion

    Science.gov (United States)

    Park, Su-Chan

    2017-09-01

    The one-dimensional pair contact process with diffusion (PCPD), an interacting particle system with diffusion, pair annihilation, and creation by pairs, has defied consensus about the universality class to which it belongs. An argument by Hinrichsen [Physica A 361, 457 (2006), 10.1016/j.physa.2005.06.101] claims that freely diffusing particles in the PCPD should play the same role as frozen particles when it comes to the critical behavior. Therefore, the PCPD is claimed to have the same critical phenomena as a model with infinitely many absorbing states that belongs to the directed percolation (DP) universality class. To investigate if diffusing particles are really indistinguishable from frozen particles in the sense of the renormalization group, we study numerically a variation of the PCPD by introducing a nonorder field associated with infinitely many absorbing states. We find that a crossover from the PCPD to DP occurs due to the nonorder field. By studying a similar model, we exclude the possibility that the mere introduction of a nonorder field to one model can entail a nontrivial crossover to another model in the same universality class, thus we attribute the observed crossover to the difference of the universality class of the PCPD from the DP class.

  19. Percolation technique for galaxy clustering

    Science.gov (United States)

    Klypin, Anatoly; Shandarin, Sergei F.

    1993-01-01

    We study percolation in mass and galaxy distributions obtained in 3D simulations of the CDM, C + HDM, and the power law (n = -1) models in the Omega = 1 universe. Percolation statistics is used here as a quantitative measure of the degree to which a mass or galaxy distribution is of a filamentary or cellular type. The very fast code used calculates the statistics of clusters along with the direct detection of percolation. We found that the two parameters mu(infinity), characterizing the size of the largest cluster, and mu-squared, characterizing the weighted mean size of all clusters excluding the largest one, are extremely useful for evaluating the percolation threshold. An advantage of using these parameters is their low sensitivity to boundary effects. We show that both the CDM and the C + HDM models are extremely filamentary both in mass and galaxy distribution. The percolation thresholds for the mass distributions are determined.

  20. Percolation with multiple giant clusters

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    We study mean-field percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ('gels') formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F k , of frozen clusters of size k, has a universal tail, F k ∼ k -3 . We propose freezing as a practical mechanism for controlling the gel size. (letter to the editor)

  1. The Beasts' model of percolative transport

    International Nuclear Information System (INIS)

    Dubois, M.A.; Beaufume, P.; Fromont, B.

    1991-12-01

    A class of nonlinear dynamical systems is introduced: it is aimed to be a tool in order to study anomalous transport and percolation phenomena. We study a simple example of this system, and explore different regimes of transport exhibited

  2. Percolation Threshold Parameters of Fluids

    Czech Academy of Sciences Publication Activity Database

    Škvor, J.; Nezbeda, Ivo

    2009-01-01

    Roč. 79, č. 4 (2009), 041141-041147 ISSN 1539-3755 Institutional research plan: CEZ:AV0Z40720504 Keywords : percolation threshold * universality * infinite cluster Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.400, year: 2009

  3. One-dimensional long-range percolation: A numerical study

    Science.gov (United States)

    Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.

    2017-07-01

    In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 values for Cc are compared with a known exact bound, while the critical exponent ν is compared with results from mean-field theory, from an expansion around the point σ =1 and from the ɛ -expansion used with the introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .

  4. Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions.

    Science.gov (United States)

    Loh, Yen Lee; Karki, Pragalv

    2017-10-25

    Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as [Formula: see text] as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as [Formula: see text] below percolation, and as [Formula: see text] above percolation. For models lacking self-capacitances, the electric susceptibility scales as [Formula: see text]. Including a self-capacitance on each node changes the critical behavior to approximately [Formula: see text].

  5. Percolation

    International Nuclear Information System (INIS)

    Fontes, L.R.G.; Sidoravicius, V.

    2004-01-01

    Percolation is the phenomenon of transport of a fluid through a porous medium. For example, oil or gas through rock, or water through coffee powder. The medium consists of microscopic pores and channels through which the fluid might pass. In a simple situation, each channel will be open or closed to the passage of the fluid, depending on several characteristics of the medium which could be summed up in a few parameters. The distribution of open and closed channels could be described probabilistically. In the simplest case, each channel, independently of the others, is open with probability p, the single parameter of the model, and closed with probability 1 - p. We will model the medium microscopically by the d-dimensional hipercubic lattice, Z d , whose sites and (nearest neighbor) bonds represent the pores and channels, respectively. This constitutes what we will call the independent (Bernoulli) bond percolation model (in Z d ). It will be focused on in Part I of these notes. A basic question is the occurrence or not of percolation, that is, the existence of an infinite path, through open bonds only, cutting through the medium. In the next sections of this introduction, we will define the model in detail and show its first non-trivial result, establishing the existence of a phase transition in 2 and higher dimensions, that is, establishing the existence of a critical value for the parameter p, p c is an element of (0, 1), such that the model does not exhibit percolation almost surely for values of p below p c , and does exhibit percolation almost surely for values of p above p c . In Part II, we consider an oriented percolation model in a random environment which is related to several interesting questions in discrete probability. In Part III, we depart further from the initial model, and consider stochastic Ising models at zero temperature, which are not immediately related to the models in the previous parts, but rather to a dynamical percolation model called

  6. Ising percolation in a three-state majority vote model

    Science.gov (United States)

    Balankin, Alexander S.; Martínez-Cruz, M. A.; Gayosso Martínez, Felipe; Mena, Baltasar; Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier

    2017-02-01

    In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the "magnetization" of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.

  7. Marketing percolation

    Science.gov (United States)

    Goldenberg, J.; Libai, B.; Solomon, S.; Jan, N.; Stauffer, D.

    2000-09-01

    A percolation model is presented, with computer simulations for illustrations, to show how the sales of a new product may penetrate the consumer market. We review the traditional approach in the marketing literature, which is based on differential or difference equations similar to the logistic equation (Bass, Manage. Sci. 15 (1969) 215). This mean-field approach is contrasted with the discrete percolation on a lattice, with simulations of "social percolation" (Solomon et al., Physica A 277 (2000) 239) in two to five dimensions giving power laws instead of exponential growth, and strong fluctuations right at the percolation threshold.

  8. Standard and inverse bond percolation of straight rigid rods on square lattices

    Science.gov (United States)

    Ramirez, L. S.; Centres, P. M.; Ramirez-Pastor, A. J.

    2018-04-01

    the highest allowed concentration of removed bonds pj,k i is reached. In terms of network attacks, this striking behavior indicates that random attacks on single nodes (k =1 ) are much more effective than correlated attacks on groups of close nodes (large k 's). Finally, the accurate determination of critical exponents reveals that standard and inverse bond percolation models on square lattices belong to the same universality class as the random percolation, regardless of the size k considered.

  9. Universality for first passage percolation on sparse random graphs

    NARCIS (Netherlands)

    Bhamidi, S.; Van Der Hofstad, R.W.; Hooghiemstra, G.

    2017-01-01

    We consider first passage percolation on the configuration model with n vertices, and general independent and identically distributed edge weights assumed to have a density. Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the

  10. Universality for first passage percolation on sparse random graphs

    NARCIS (Netherlands)

    Bhamidi, S.; Hofstad, van der R.W.; Hooghiemstra, G.

    2014-01-01

    We consider first passage percolation on the conguration model with n vertices, and general independent and identically distributed edge weights assumed to have a density. Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the

  11. Fluid leakage near the percolation threshold

    Science.gov (United States)

    Dapp, Wolf B.; Müser, Martin H.

    2016-02-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.

  12. Experimental percolation studies of random networks

    Science.gov (United States)

    Feinerman, A.; Weddell, J.

    2017-06-01

    This report establishes an experimental method of studying electrically percolating networks at a higher resolution than previously implemented. This method measures the current across a conductive sheet as a function of time as elliptical pores are cut into the sheet. This is done utilizing a Universal Laser System X2-600 100 W CO2 laser system with a 76 × 46 cm2 field and 394 dpc (dots/cm) resolution. This laser can cut a random system of elliptical pores into a conductive sheet with a potential voltage applied across it and measures the current versus time. This allows for experimental verification of a percolation threshold as a function of the ellipse's aspect ratio (minor/major diameter). We show that as an ellipse's aspect ratio approaches zero, the percolation threshold approaches one. The benefit of this method is that it can experimentally measure the effect of removing small pores, as well as pores with complex geometries, such as an asterisk from a conductive sheet.

  13. Walking on fractals: diffusion and self-avoiding walks on percolation clusters

    International Nuclear Information System (INIS)

    Blavatska, V; Janke, W

    2009-01-01

    We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d = 2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs

  14. Breakdown of universality in transitions to spatiotemporal chaos

    DEFF Research Database (Denmark)

    Bohr, Tomas; Hecke, Martin van; Mikkelsen, René

    2001-01-01

    We show that the transition from laminar to active behavior in extended chaotic systems can vary from a continuous transition in the universality class of directed percolation with infinitely many absorbing states to what appears as a first-order transition. The latter occurs when finite lifetime...

  15. New universality class in three dimensions

    DEFF Research Database (Denmark)

    Codello, A.; Safari, M.; Vacca, G. P.

    2017-01-01

    We study the Blume-Capel universality class in d=103-ϵ dimensions. The renormalization group flow is extracted by looking at poles in fractional dimension of three loop diagrams using MS. The theory is the only nontrivial universality class which admits an expansion to three dimensions with ϵ=13<...

  16. Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations

    Science.gov (United States)

    Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul

    2018-01-01

    We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.

  17. Percolation under noise: Detecting explosive percolation using the second-largest component

    Science.gov (United States)

    Viles, Wes; Ginestet, Cedric E.; Tang, Ariana; Kramer, Mark A.; Kolaczyk, Eric D.

    2016-05-01

    We consider the problem of distinguishing between different rates of percolation under noise. A statistical model of percolation is constructed allowing for the birth and death of edges as well as the presence of noise in the observations. This graph-valued stochastic process is composed of a latent and an observed nonstationary process, where the observed graph process is corrupted by type-I and type-II errors. This produces a hidden Markov graph model. We show that for certain choices of parameters controlling the noise, the classical (Erdős-Rényi) percolation is visually indistinguishable from a more rapid form of percolation. In this setting, we compare two different criteria for discriminating between these two percolation models, based on the interquartile range (IQR) of the first component's size, and on the maximal size of the second-largest component. We show through data simulations that this second criterion outperforms the IQR of the first component's size, in terms of discriminatory power. The maximal size of the second component therefore provides a useful statistic for distinguishing between different rates of percolation, under physically motivated conditions for the birth and death of edges, and under noise. The potential application of the proposed criteria for the detection of clinically relevant percolation in the context of applied neuroscience is also discussed.

  18. Unified approach to numerical transfer matrix methods for disordered systems: applications to mixed crystals and to elasticity percolation

    International Nuclear Information System (INIS)

    Lemieux, M.A.; Breton, P.; Tremblay, A.M.S.

    1985-01-01

    It is shown that the Negative Eigenvalue Theorem and transfer matrix methods may be considered within a unified framework and generalized to compute projected densities of states or, more generally, any linear combination of matrix elements of the inverse of large symmetric random matrices. As examples of applications, extensive simulations for one- and two-mode behaviour in the Raman spectrum of one-dimensional mixed crystals and a finite-size analysis of critical exponents for the central force percolation universality class are presented

  19. Universality of Critically Pinned Interfaces in Two-Dimensional Isotropic Random Media

    Science.gov (United States)

    Grassberger, Peter

    2018-05-01

    Based on extensive simulations, we conjecture that critically pinned interfaces in two-dimensional isotropic random media with short-range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in >2 dimensions, there is no distinction between fractal (i.e., percolative) and rough but nonfractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed epidemics. It does not include models with long-range correlations in the randomness and models where overhangs are explicitly forbidden (which would imply nonisotropy of the medium).

  20. Quasiuniversal Connectedness Percolation of Polydisperse Rod Systems

    NARCIS (Netherlands)

    Nigro, B.; Grimaldi, C.; Chatterjee, A.P.; van der Schoot, P. P. A. M.

    2013-01-01

    The connectedness percolation threshold (ηc) and critical coordination number (Zc) of systems of penetrable spherocylinders characterized by a length polydispersity are studied by way of Monte Carlo simulations for several aspect ratio distributions. We find that (i) ηc is a nearly universal

  1. Metastability Thresholds for Anisotropic Bootstrap Percolation in Three Dimensions

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Fey, Anne

    In this paper we analyze several anisotropic bootstrap percolation models in three dimensions. We present the order of magnitude for the metastability thresholds for a fairly general class of models. In our proofs, we use an adaptation of the technique of dimensional reduction. We find that the

  2. Percolation on the institute-enterprise R

    Directory of Open Access Journals (Sweden)

    Li Chenguang

    2015-01-01

    Full Text Available Realistic network-like systems are usually composed of multiple networks with interacting relations such as school-enterprise research and development (R&D collaboration networks. Here, we study the percolation properties of a special class of R&D collaboration network, namely institute-enterprise R&D collaboration networks (IERDCNs. We introduce two actual IERDCNs to show their structural properties, and we present a mathematical framework based on generating functions for analyzing an interacting network with any connection probability. Then,we illustrate the percolation threshold and structural parameter arithmetic in the sub-critical and supercritical regimes.We compare the predictions of our mathematical framework and arithmetic to data for two real R&D collaboration networks and a number of simulations. We find that our predictions are in remarkable agreement with the data. We show applications of the framework to electronics R&D collaboration networks

  3. Strategic Planning towards a World-Class University

    Science.gov (United States)

    Usoh, E. J.; Ratu, D.; Manongko, A.; Taroreh, J.; Preston, G.

    2018-02-01

    Strategic planning with a focus on world-class university status is an option that cannot be avoided by universities today to survive and succeed in competition as a provider of higher education. The objective of this research is to obtain exploratory research results on the strategic plans of universities that are prepared to generate world-class university status. This research utilised exploratory qualitative research method and data was collected by in-depth interviews method. Interview transcripts were analyzed by using thematic content analysis through NVivo software analysis and manual systems. The main finding of interview shows that most interviewees agreed that UNIMA has been engaged in strategic planning. Contribution from faculties and schools are acknowledged and inform the planning process. However, a new model of strategic planning should be adopted by UNIMA due to the shift towards a “corporate university”. The finding results from documents, literature review and interview were the addition of world-class university characteristics and features to current strategic planning of UNIMA and how to upgrade by considering to use the characteristics and features towards world-class university.

  4. Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics

    Science.gov (United States)

    Wang, Min; Wang, Jun

    A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.

  5. Unusual percolation in simple small-world networks.

    Science.gov (United States)

    Cohen, Reuven; Dawid, Daryush Jonathan; Kardar, Mehran; Bar-Yam, Yaneer

    2009-06-01

    We present an exact solution of percolation in a generalized class of Watts-Strogatz graphs defined on a one-dimensional underlying lattice. We find a nonclassical critical point in the limit of the number of long-range bonds in the system going to zero, with a discontinuity in the percolation probability and a divergence in the mean finite-cluster size. We show that the critical behavior falls into one of three regimes depending on the proportion of occupied long-range to unoccupied nearest-neighbor bonds, with each regime being characterized by different critical exponents. The three regimes can be united by a single scaling function around the critical point. These results can be used to identify the number of long-range links necessary to secure connectivity in a communication or transportation chain. As an example, we can resolve the communication problem in a game of "telephone."

  6. Electrical and percolative behavior of Sr2YSbO6-YBa2Cu3O7-δ composites

    International Nuclear Information System (INIS)

    Ortiz-Diaz, O.; Landinez Tellez, D.A.; Perez, F.; Tovar, H.; Roa-Rojas, J.

    2007-01-01

    We found that a mixture of materials Sr 2 YSbO 6 insulator with YBa 2 Cu 3 O 7-δ superconductor is a system where the particles of superconductor and insulator materials are found coexisting in a composite with two well-defined separate phases. Electrical transport properties and percolation behavior have been studied by electrical resistivity measurements at room temperature on several samples of composites with different vol.% of YBa 2 Cu 3 O 7-δ . Resistivity measurements agree with the equation which describes the conductivity in percolation theory. However, critical exponent t=6.65 is greater than universal value t∼2. Furthermore, there is a non-negligible conductivity below percolation threshold while it is expected to be zero in ideal percolative systems. Nevertheless, percolative behavior in this region was found and, critical exponent value s was determined to be s=0.75 in agreement with universal value

  7. Brazil's Exception to the World-Class University Movement

    Science.gov (United States)

    Alperin, Juan Pablo

    2013-01-01

    The continued importance of university rankings has only served to fuel the growth of the "world-class" university movement. There is a growing impression that, in a globalised and interconnected world, no country can do without a world-class university. No country, that is, except Brazil. While Brazil has the resources necessary to…

  8. Percolation of Monte Carlo clusters

    International Nuclear Information System (INIS)

    Wanzeller, W.G.; Krein, G.; Cucchieri, A.; Mendes, T.

    2004-01-01

    Percolation theory is of interest in problems of phase transitions in condensed matter physics, and in biology and chemistry. More recently, concepts of percolation theory have been invoked in studies of color deconfinement at high temperatures in Quantum Chromodynamics. In the present paper we briefly review the basic concept of percolation theory, exemplify its application to the Ising model, and present the arguments for a possible relevance of percolation theory to the problem of color deconfinement. (author)

  9. Integral hierarchies and percolation

    International Nuclear Information System (INIS)

    Klein, W.; Stell, G.

    1985-01-01

    For a variation of the Potts model which has been shown to describe continuum percolation, we derive a hierarchy of integral equations of Kirkwood-Salsburg type. The distribution functions which are the solutions of this hierarchy can be simply related to the connectedness functions in continuum percolation. From this hierarchy a second set of equations is derived from which the connectedness functions can be obtained directly. This approach is extremely useful when investigating properties of systems far from the percolation transition. These hierarchies are solved exactly in the mean-field (Kac-Baker) limit and possible implications for cluster growth are discussed. The relation between the Potts model for continuum percolation and the Widom-Rowlinson model is also noted

  10. Group percolation in interdependent networks

    Science.gov (United States)

    Wang, Zexun; Zhou, Dong; Hu, Yanqing

    2018-03-01

    In many real network systems, nodes usually cooperate with each other and form groups to enhance their robustness to risks. This motivates us to study an alternative type of percolation, group percolation, in interdependent networks under attack. In this model, nodes belonging to the same group survive or fail together. We develop a theoretical framework for this group percolation and find that the formation of groups can improve the resilience of interdependent networks significantly. However, the percolation transition is always of first order, regardless of the distribution of group sizes. As an application, we map the interdependent networks with intersimilarity structures, which have attracted much attention recently, onto the group percolation and confirm the nonexistence of continuous phase transitions.

  11. PERCOLATION TRANSITION AND TOPOLOGY

    Directory of Open Access Journals (Sweden)

    Patricia Jouannot-Chesney

    2017-06-01

    Full Text Available A number of bidimensional random structures with increasing densities are simulated to explore possible links between Euler-Poincaré characteristic (EPC, or connectivity, and percolation threshold. For each structure model, the percolation threshold is compared with a number of typical points (extrema, zero crossings... of the EPC curve. From these exercises, it can be concluded that the percolation threshold cannot be generally predicted using the evolution of the EPC.

  12. Cities and regions in Britain through hierarchical percolation

    Science.gov (United States)

    Arcaute, Elsa; Molinero, Carlos; Hatna, Erez; Murcio, Roberto; Vargas-Ruiz, Camilo; Masucci, A. Paolo; Batty, Michael

    2016-04-01

    Urban systems present hierarchical structures at many different scales. These are observed as administrative regional delimitations which are the outcome of complex geographical, political and historical processes which leave almost indelible footprints on infrastructure such as the street network. In this work, we uncover a set of hierarchies in Britain at different scales using percolation theory on the street network and on its intersections which are the primary points of interaction and urban agglomeration. At the larger scales, the observed hierarchical structures can be interpreted as regional fractures of Britain, observed in various forms, from natural boundaries, such as National Parks, to regional divisions based on social class and wealth such as the well-known North-South divide. At smaller scales, cities are generated through recursive percolations on each of the emerging regional clusters. We examine the evolution of the morphology of the system as a whole, by measuring the fractal dimension of the clusters at each distance threshold in the percolation. We observe that this reaches a maximum plateau at a specific distance. The clusters defined at this distance threshold are in excellent correspondence with the boundaries of cities recovered from satellite images, and from previous methods using population density.

  13. Remarks on the percolation problem in anisotropic systems

    International Nuclear Information System (INIS)

    Chaves, C.M.G.F.; Oliveira, P.M.C. de; Queiroz, S.L.A. de; Riera, R.

    1979-07-01

    The bond percolation problem is discused in an anisotropic square lattice using the position space renormalization group. It is shown that, due to symmetry, this treatment reproduces known exact results for this problem. The phase diagram and the flow lines in parameter space are also shown. Results are in agreement with universality.(Author) [pt

  14. Target-Searching on Percolation

    International Nuclear Information System (INIS)

    Yang Shijie

    2005-01-01

    We study target-searching processes on a percolation, on which a hunter tracks a target by smelling odors it emits. The odor intensity is supposed to be inversely proportional to the distance it propagates. The Monte Carlo simulation is performed on a 2-dimensional bond-percolation above the threshold. Having no idea of the location of the target, the hunter determines its moves only by random attempts in each direction. For lager percolation connectivity p ∼> 0.90, it reveals a scaling law for the searching time versus the distance to the position of the target. The scaling exponent is dependent on the sensitivity of the hunter. For smaller p, the scaling law is broken and the probability of finding out the target significantly reduces. The hunter seems trapped in the cluster of the percolation and can hardly reach the goal.

  15. The internal percolation problem

    International Nuclear Information System (INIS)

    Bezsudnov, I.V.; Snarskii, A.A.

    2010-01-01

    The internal percolation problem (IP) as a new type of the percolation problem is introduced and investigated. In spite of the usual (or external) percolation problem (EP) when the percolation current flows from the top to the bottom of the system, in IP case the voltage is applied through bars which are present in the hole located within the system. The EP problem has two major parameters: M-size of the system and a 0 -size of inclusions, bond size, etc. The IP problem holds one parameter more: size of the hole L. Numerical simulation shows that the critical indexes of conductance for the IP problem are very close to those in the EP problem. On the contrary, the indexes of the relative spectral noise density of 1/f noise and higher moments differ from those in the EP problem. The basics of these facts is discussed.

  16. Disorder-induced quantum bond percolation

    International Nuclear Information System (INIS)

    Nishino, Shinya; Katsuno, Shuji; Goda, Masaki

    2009-01-01

    We investigate the effects of off-diagonal disorder on localization properties in quantum bond percolation networks on cubic lattices, motivated by the finding that the off-diagonal disorder does not always enhance the quantum localization of wavefunctions. We numerically construct a diagram of the 'percolation threshold', distinguishing extended states from localized states as a function of two degrees of disorder, by using the level statistics and finite-size scaling. The percolation threshold increases in a characteristic way on increasing the disorder in the connected bonds, while it gradually decreases on increasing the disorder in the disconnected bonds. Furthermore, the exchange of connected and disconnected bonds induced by the disorder causes a dramatic change of the percolation threshold.

  17. Reversible first-order transition in Pauli percolation

    Science.gov (United States)

    Maksymenko, Mykola; Moessner, Roderich; Shtengel, Kirill

    2015-06-01

    Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric properties in statistical physics. We analyze a new percolation problem in which the first-order nature of an equilibrium percolation transition can be established analytically and verified numerically. The rules for this site percolation model are physical and very simple, requiring only the introduction of a weight W (n )=n +1 for a cluster of size n . This establishes that a discontinuous percolation transition can occur with qualitatively more local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it can be reversible. This greatly extends both the applicability of such percolation models in principle and their reach in practice.

  18. Attacks and infections in percolation processes

    International Nuclear Information System (INIS)

    Janssen, Hans-Karl; Stenull, Olaf

    2017-01-01

    We discuss attacks and infections at propagating fronts of percolation processes based on the extended general epidemic process. The scaling behavior of the number of the attacked and infected sites in the long time limit at the ordinary and tricritical percolation transitions is governed by specific composite operators of the field-theoretic representation of this process. We calculate corresponding critical exponents for tricritical percolation in mean-field theory and for ordinary percolation to 1-loop order. Our results agree well with the available numerical data. (paper)

  19. Explosive percolation on directed networks due to monotonic flow of activity

    Science.gov (United States)

    Waagen, Alex; D'Souza, Raissa M.; Lu, Tsai-Ching

    2017-07-01

    An important class of real-world networks has directed edges, and in addition, some rank ordering on the nodes, for instance the popularity of users in online social networks. Yet, nearly all research related to explosive percolation has been restricted to undirected networks. Furthermore, information on such rank-ordered networks typically flows from higher-ranked to lower-ranked individuals, such as follower relations, replies, and retweets on Twitter. Here we introduce a simple percolation process on an ordered, directed network where edges are added monotonically with respect to the rank ordering. We show with a numerical approach that the emergence of a dominant strongly connected component appears to be discontinuous. Large-scale connectivity occurs at very high density compared with most percolation processes, and this holds not just for the strongly connected component structure but for the weakly connected component structure as well. We present analysis with branching processes, which explains this unusual behavior and gives basic intuition for the underlying mechanisms. We also show that before the emergence of a dominant strongly connected component, multiple giant strongly connected components may exist simultaneously. By adding a competitive percolation rule with a small bias to link uses of similar rank, we show this leads to formation of two distinct components, one of high-ranked users, and one of low-ranked users, with little flow between the two components.

  20. Percolator: Scalable Pattern Discovery in Dynamic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sutanay; Purohit, Sumit; Lin, Peng; Wu, Yinghui; Holder, Lawrence B.; Agarwal, Khushbu

    2018-02-06

    We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walking through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.

  1. Social percolation models

    Science.gov (United States)

    Solomon, Sorin; Weisbuch, Gerard; de Arcangelis, Lucilla; Jan, Naeem; Stauffer, Dietrich

    2000-03-01

    We here relate the occurrence of extreme market shares, close to either 0 or 100%, in the media industry to a percolation phenomenon across the social network of customers. We further discuss the possibility of observing self-organized criticality when customers and cinema producers adjust their preferences and the quality of the produced films according to previous experience. Comprehensive computer simulations on square lattices do indeed exhibit self-organized criticality towards the usual percolation threshold and related scaling behaviour.

  2. Anisotropic Percolation Analysis of Discharge

    Science.gov (United States)

    Matsumoto, Shogo; Odagaki, Takashi

    2014-03-01

    Exploiting a nonlinear resistor network on a square lattice in two dimensions, we investigate discharge when two opposite sides of the lattice are subjected to a constant voltage difference. Each site is ionized randomly with a probability in proportion to the square of the strength of the electric field, and the resistivity between two ionized sites is assumed to be 10-6 times smaller than the original resistivity. Using Monte Carlo simulation, we obtain the current and distribution of clusters of ionized sites as functions of the fraction of ionized sites. It is found that a wall of potential drop is formed as the fraction approaches a critical value, which is followed by discharge. The critical value is much smaller than the critical percolation probability of the standard site percolation on the square lattice. We also find that a singular behavior of the cluster distribution is expected at a critical fraction differently from that for the current, and that the critical exponents characterizing the cluster distribution satisfy the scaling relation known for two-dimensional percolation, while the critical exponent of the percolation probability is close to the value reported for a directed percolation.

  3. Percolation in real multiplex networks

    Science.gov (United States)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  4. Hidden Connectivity in Networks with Vulnerable Classes of Nodes

    Directory of Open Access Journals (Sweden)

    Sebastian M. Krause

    2016-10-01

    Full Text Available In many complex systems representable as networks, nodes can be separated into different classes. Often these classes can be linked to a mutually shared vulnerability. Shared vulnerabilities may be due to a shared eavesdropper or correlated failures. In this paper, we show the impact of shared vulnerabilities on robust connectivity and how the heterogeneity of node classes can be exploited to maintain functionality by utilizing multiple paths. Percolation is the field of statistical physics that is generally used to analyze connectivity in complex networks, but in its existing forms, it cannot treat the heterogeneity of multiple vulnerable classes. To analyze the connectivity under these constraints, we describe each class as a color and develop a “color-avoiding” percolation. We present an analytic theory for random networks and a numerical algorithm for all networks, with which we can determine which nodes are color-avoiding connected and whether the maximal set percolates in the system. We find that the interaction of topology and color distribution implies a rich critical behavior, with critical values and critical exponents depending both on the topology and on the color distribution. Applying our physics-based theory to the Internet, we show how color-avoiding percolation can be used as the basis for new topologically aware secure communication protocols. Beyond applications to cybersecurity, our framework reveals a new layer of hidden structure in a wide range of natural and technological systems.

  5. Universal Cycles of Restricted Classes of Words

    OpenAIRE

    Leitner, Arielle; Godbole, Anant

    2008-01-01

    It is well known that Universal Cycles of $k$-letter words on an $n$-letter alphabet exist for all $k$ and $n$. In this paper, we prove that Universal Cycles exist for restricted classes of words, including: non-bijections, equitable words (under suitable restrictions), ranked permutations, and "passwords".

  6. The NRAO Observing for University Classes Program

    Science.gov (United States)

    Cannon, John M.; Van Moorsel, Gustaaf A.

    2017-01-01

    The NRAO "Observing for University Classes" program is a tremendous resource for instructors of courses in observational astronomy. As a service to the astronomical and educational communities, the NRAO offers small amounts of observing time on the Very Large Array (VLA) and the Very Long Baseline Array to such instructors. The data can be used by students and faculty to demonstrate radio astronomy theory with modern data products. Further, the results may lead to publication; this is a unique opportunity for faculty members to integrate research into the classroom. Previous experience with NRAO facilities is required for instructors; individuals without radio astronomy experience can take advantage of other NRAO educational opportunities (e.g., the Synthesis Imaging Workshop) prior to using the program. No previous experience with radio astronomy data is required for students; this is the primary target audience of the program. To demonstrate concept, this poster describes three different VLA observing programs that have been completed using the "Observing for University Classes" resource at Macalester College; undergraduate students have published the results of all three of these programs. Other recent "Observing for University Classes" programs are also described.

  7. Signature of Thermal Rigidity Percolation

    International Nuclear Information System (INIS)

    Huerta, Adrián

    2013-01-01

    To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter

  8. Long-range correlated percolation

    International Nuclear Information System (INIS)

    Weinrib, A.

    1984-01-01

    This paper is a study of the percolation problem with long-range correlations in the site or bond occupations. An extension of the Harris criterion for the relevance of the correlations is derived for the case that the correlations decay as x/sup -a/ for large distances x. For a d the correlations are relevant if dν-2<0. Applying this criterion to the behavior that results when the correlations are relevant, we argue that the new behavior will have ν/sub long/ = 2/a. It is shown that the correlated bond percolation problem is equivalent to a q-state Potts model with quenched disorder in the limit q→1. With the use of this result, a renormalization-group study of the problem is presented, expanding in epsilon = 6-d and in delta = 4-a. In addition to the normal percolation fixed point, we find a new long-range fixed point. The crossover to this new fixed point follows the extended Harris criterion, and the fixed point has exponents ν/sub long/ = 2/a (as predicted) and eta/sub long/ = (1/11)(delta-epsilon). Finally, several results on the percolation properties of the Ising model at its critical point are shown to be in agreement with the predictions of this paper

  9. Multifragmentation and percolation

    International Nuclear Information System (INIS)

    Campi, X.; Desbois, J.

    1985-01-01

    Percolation theory is applied to the problem of nucleus break-up. A model of nuclear percolation is proposed in which the rules for linkage of nucleons to form a cluster are defined in real and momentum spaces. This model exhibits a rather well defined threshold at rho ≅ 0.6. Analytical expressions for cluster size distributions at fixed concentration rho are given. Decay of excited clusters (by evaporation and fission) to give stable nuclear fragments is incorporated. The distribution law for rho in inclusive reactions is studied and the calculated mass yields are compared to experimental results

  10. Anomalous critical and supercritical phenomena in explosive percolation

    Science.gov (United States)

    D'Souza, Raissa M.; Nagler, Jan

    2015-07-01

    The emergence of large-scale connectivity on an underlying network or lattice, the so-called percolation transition, has a profound impact on the system’s macroscopic behaviours. There is thus great interest in controlling the location of the percolation transition to either enhance or delay its onset and, more generally, in understanding the consequences of such control interventions. Here we review explosive percolation, the sudden emergence of large-scale connectivity that results from repeated, small interventions designed to delay the percolation transition. These transitions exhibit drastic, unanticipated and exciting consequences that make explosive percolation an emerging paradigm for modelling real-world systems ranging from social networks to nanotubes.

  11. Integral equation hierarchy for continuum percolation

    International Nuclear Information System (INIS)

    Given, J.A.

    1988-01-01

    In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed

  12. Growth dominates choice in network percolation

    Science.gov (United States)

    Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.

    2013-09-01

    The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.

  13. A special percolation problem in ceramic composites

    International Nuclear Information System (INIS)

    Ang Chen; Xi Dai; Yu Zhi; Yahua Bao

    1993-11-01

    The interface effect is taken into consideration, and a special percolation model is proposed for a two-phases metal/ceramic composite in the present paper. The computer simulation shows that the percolation threshold of this interface-controlled percolation behaviour is 4.5% in the three dimensional f.c.c. lattices, which is in good agreement with the experimental data. (author). 9 refs, 3 figs

  14. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  15. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun; Wang, Feng; Li, Kun; Woo, Katchoi; Wang, Jianfang; Li, Quan; Sun, Ling Dong; Zhang, Xixiang; Lin, Haiqing; YAN, Chunhua

    2012-01-01

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  16. Percolation of overlapping squares or cubes on a lattice

    International Nuclear Information System (INIS)

    Koza, Zbigniew; Kondrat, Grzegorz; Suszczyński, Karol

    2014-01-01

    Porous media are often modeled as systems of overlapping obstacles, which leads to the problem of two percolation thresholds in such systems, one for the porous matrix and the other for the void space. Here we investigate these percolation thresholds in the model of overlapping squares or cubes of linear size k > 1 randomly distributed on a regular lattice. We find that the percolation threshold of obstacles is a nonmonotonic function of k, whereas the percolation threshold of the void space is well approximated by a function linear in 1/k. We propose a generalization of the excluded volume approximation to discrete systems and use it to investigate the transition between continuous and discrete percolation, finding a remarkable agreement between the theory and numerical results. We argue that the continuous percolation threshold of aligned squares on a plane is the same for the solid and void phases and estimate the continuous percolation threshold of the void space around aligned cubes in a 3D space as 0.036(1). We also discuss the connection of the model to the standard site percolation with complex neighborhood. (paper)

  17. Geometric structure of percolation clusters.

    Science.gov (United States)

    Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin

    2014-01-01

    We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).

  18. Finite-size scaling of clique percolation on two-dimensional Moore lattices

    Science.gov (United States)

    Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong

    2018-05-01

    Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.

  19. Micro-foundation using percolation theory of the finite time singular behavior of the crash hazard rate in a class of rational expectation bubbles

    Science.gov (United States)

    Seyrich, Maximilian; Sornette, Didier

    2016-04-01

    We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power sa (with a>1) of the cluster sizes s, similarly to a generalized percolation susceptibility. The power sa of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold pc. Realistic dynamics are generated by modeling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.

  20. Statistical mechanics of high-density bond percolation

    Science.gov (United States)

    Timonin, P. N.

    2018-05-01

    High-density (HD) percolation describes the percolation of specific κ -clusters, which are the compact sets of sites each connected to κ nearest filled sites at least. It takes place in the classical patterns of independently distributed sites or bonds in which the ordinary percolation transition also exists. Hence, the study of series of κ -type HD percolations amounts to the description of classical clusters' structure for which κ -clusters constitute κ -cores nested one into another. Such data are needed for description of a number of physical, biological, and information properties of complex systems on random lattices, graphs, and networks. They range from magnetic properties of semiconductor alloys to anomalies in supercooled water and clustering in biological and social networks. Here we present the statistical mechanics approach to study HD bond percolation on an arbitrary graph. It is shown that the generating function for κ -clusters' size distribution can be obtained from the partition function of the specific q -state Potts-Ising model in the q →1 limit. Using this approach we find exact κ -clusters' size distributions for the Bethe lattice and Erdos-Renyi graph. The application of the method to Euclidean lattices is also discussed.

  1. Percolation Magnetism in Ferroelectric Nanoparticles

    Science.gov (United States)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  2. Percolation Magnetism in Ferroelectric Nanoparticles.

    Science.gov (United States)

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO 3 ) and potassium niobate (KNbO 3 ) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe 3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  3. Reflected Brownian motions in the KPZ universality class

    CERN Document Server

    Weiss, Thomas; Spohn, Herbert

    2017-01-01

    This book presents a detailed study of a system of interacting Brownian motions in one dimension. The interaction is point-like such that the n-th Brownian motion is reflected from the Brownian motion with label n-1. This model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. In fact, because of the singular interaction, many universal properties can be established with rigor. They depend on the choice of initial conditions. Discussion addresses packed and periodic initial conditions (Chapter 5), stationary initial conditions (Chapter 6), and mixtures thereof (Chapter 7). The suitably scaled spatial process will be proven to converge to an Airy process in the long time limit. A chapter on determinantal random fields and another one on Airy processes are added to have the notes self-contained. These notes serve as an introduction to the KPZ universality class, illustrating the main concepts by means of a single model only. The notes will be of interest to readers from interacting diffusion processe...

  4. Students’ motivation to fitness classes at technical university

    Directory of Open Access Journals (Sweden)

    E.P. Balitskaya

    2013-06-01

    Full Text Available The aim of the study is to determine the motives of students to fitness classes at technical university. The results of the survey of students I - II courses motivation for fitness classes in physical education. The survey involved 182 students (173 girls and 9 boys of technical faculties. Found that most of the students have been studying fitness for entry the university. The main motivation for fitness training is to increase the level of physical fitness and self-confidence, as well as the development of special vocational important physical qualities, which in the future will contribute to the professional activities of the students. It is shown that universities are engaged in fitness in 13.82% of the students. Swimming is the clear leader - 18.37% and athletic gymnastics - 17.19%. Also popular are sports games - 26.77% (football, basketball, volleyball, tennis. Also are visited sections in gymnastics, wrestling, boxing, and tourism.

  5. Percolation of polyatomic species on site diluted lattices

    International Nuclear Information System (INIS)

    Cornette, V.; Ramirez-Pastor, A.J.; Nieto, F.

    2006-01-01

    In this Letter, the percolation of (a) linear segments of size k and (b) k-mers (particles occupying k adjacent sites) of different structures and forms deposited on a diluted square lattice have been studied. The diluted lattice is built by randomly selecting a fraction of sites which are considered forbidden for deposition. The analysis of the obtained results is made in the framework of the finite size scaling theory. The characteristic parameters of the percolation problem are dependent not only on the form and structure of the k-mers but also on the properties of the lattice where they are deposited. A phase diagram separating a percolating from a non-percolating region is determined and discussed

  6. A new percolation model for composite solid electrolytes and dispersed ionic conductors

    Science.gov (United States)

    Risyad Hasyim, Muhammad; Lanagan, Michael T.

    2018-02-01

    Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.

  7. Faster universal modeling for two source classes

    NARCIS (Netherlands)

    Nowbakht, A.; Willems, F.M.J.; Macq, B.; Quisquater, J.-J.

    2002-01-01

    The Universal Modeling algorithms proposed in [2] for two general classes of finite-context sources are reviewed. The above methods were constructed by viewing a model structure as a partition of the context space and realizing that a partition can be reached through successive splits. Here we start

  8. The relationship between synchronization and percolation for regular networks

    Science.gov (United States)

    Li, Zhe; Ren, Tao; Xu, Yanjie; Jin, Jianyu

    2018-02-01

    Synchronization and percolation are two essential phenomena in complex dynamical networks. They have been studied widely, but previously treated as unrelated. In this paper, the relationship between synchronization and percolation are revealed for regular networks. Firstly, we discovered a bridge between synchronization and percolation by using the eigenvalues of the Laplacian matrix to describe the synchronizability and using the eigenvalues of the adjacency matrix to describe the percolation threshold. Then, we proposed a method to find the relationship for regular networks based on the topology of networks. Particularly, if the degree distribution of the network is subject to delta function, we show that only the eigenvalues of the adjacency matrix need to be calculated. Finally, several examples are provided to demonstrate how to apply our proposed method to discover the relationship between synchronization and percolation for regular networks.

  9. Percolation Model for the Existence of a Mitochondrial Eve

    CERN Document Server

    Neves, A G M

    2005-01-01

    We look at the process of inheritance of mitochondrial DNA as a percolation model on trees equivalent to the Galton-Watson process. The model is exactly solvable for its percolation threshold $p_c$ and percolation probability critical exponent. In the approximation of small percolation probability, and assuming limited progeny number, we are also able to find the maximum and minimum percolation probabilities over all probability distributions for the progeny number constrained to a given $p_c$. As a consequence, we can relate existence of a mitochondrial Eve to quantitative knowledge about demographic evolution of early mankind. In particular, we show that a mitochondrial Eve may exist even in an exponentially growing population, provided that the average number of children per individual is constrained to a small range depending on the probability $p$ that a newborn child is a female.

  10. Exploring University Teacher Perceptions about Out-of-Class Teamwork

    Science.gov (United States)

    Ruiz-Esparza Barajas, Elizabeth; Medrano Vela, Cecilia Araceli; Zepeda Huerta, Jesús Helbert Karim

    2016-01-01

    This study reports on the first stage of a larger joint research project undertaken by five universities in Mexico to explore university teachers' thinking about out-of-class teamwork. Data from interviews were analyzed using open and axial coding. Although results suggest a positive perception towards teamwork, the study unveiled important…

  11. Charge transport in conjugated polymer-semiconductor nanoparticle composite near the percolation threshold

    Science.gov (United States)

    Cardoso, L. S.; Gonçalves, G. E.; Kanda, D. H. F.; Bianchi, R. F.; Nagashima, H. N.

    2017-12-01

    This paper describes a new statistical model to predict the frequency dependence of the conductivity of conjugated polymer-semiconductor nanoparticle composites. The model considers AC conduction in an inhomogeneous medium represented by a two-dimensional model of resistor network. The conductivity between two neighboring sites in the polymer matrix and the semiconductor particles is assumed to obey the random free energy barrier model and the Drude model, respectively. The real and imaginary parts of the AC conductivity were determined using the transfer-matrix technique, and the statistical model was applied to experimental data of thin films composed of polyaniline (PANI) and indium-tin-oxide (ITO) nanoparticles. The conductivity critical exponent ( s) obtained in two dimensions for PANI/ITO films below the percolation threshold was found to be 2.7, which is greater than the universal value of s described by the classical percolation theory ( s = 1.3). This non-universality is explained by the existence of a local electric field distribution in the bulk of the nanocomposite. Finally, these results are discussed in terms of the distribution of potential barriers that vary according to the concentration of ITO amount in the composite.

  12. Percolating cluster of center vortices and confinement

    International Nuclear Information System (INIS)

    Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo

    2003-01-01

    We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster

  13. Percolation via Combined Electrostatic and Chemical Doping in Complex Oxide Films

    Science.gov (United States)

    Orth, Peter P.; Fernandes, Rafael M.; Walter, Jeff; Leighton, C.; Shklovskii, B. I.

    2017-03-01

    Stimulated by experimental advances in electrolyte gating methods, we investigate theoretically percolation in thin films of inhomogeneous complex oxides, such as La1 -xSrxCoO3 (LSCO), induced by a combination of bulk chemical and surface electrostatic doping. Using numerical and analytical methods, we identify two mechanisms that describe how bulk dopants reduce the amount of electrostatic surface charge required to reach percolation: (i) bulk-assisted surface percolation and (ii) surface-assisted bulk percolation. We show that the critical surface charge strongly depends on the film thickness when the film is close to the chemical percolation threshold. In particular, thin films can be driven across the percolation transition by modest surface charge densities. If percolation is associated with the onset of ferromagnetism, as in LSCO, we further demonstrate that the presence of critical magnetic clusters extending from the film surface into the bulk results in considerable enhancement of the saturation magnetization, with pronounced experimental consequences. These results should significantly guide experimental work seeking to verify gate-induced percolation transitions in such materials.

  14. Estimation of water percolation by different methods using TDR

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    2014-02-01

    Full Text Available Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR in a drainage lysimeter. We used Darcy's law with K(θ functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ predicted by the method of Hillel et al. (1972 provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980, Sisson et al. (1980 and van Genuchten (1980 underestimated water percolation.

  15. Percolation of interdependent network of networks

    International Nuclear Information System (INIS)

    Havlin, Shlomo; Stanley, H. Eugene; Bashan, Amir; Gao, Jianxi; Kenett, Dror Y.

    2015-01-01

    Complex networks appear in almost every aspect of science and technology. Previous work in network theory has focused primarily on analyzing single networks that do not interact with other networks, despite the fact that many real-world networks interact with and depend on each other. Very recently an analytical framework for studying the percolation properties of interacting networks has been introduced. Here we review the analytical framework and the results for percolation laws for a Network Of Networks (NONs) formed by n interdependent random networks. The percolation properties of a network of networks differ greatly from those of single isolated networks. In particular, because the constituent networks of a NON are connected by node dependencies, a NON is subject to cascading failure. When there is strong interdependent coupling between networks, the percolation transition is discontinuous (first-order) phase transition, unlike the well-known continuous second-order transition in single isolated networks. Moreover, although networks with broader degree distributions, e.g., scale-free networks, are more robust when analyzed as single networks, they become more vulnerable in a NON. We also review the effect of space embedding on network vulnerability. It is shown that for spatially embedded networks any finite fraction of dependency nodes will lead to abrupt transition

  16. The Educational Strategies of Danish University Students from Professional and Working-Class Backgrounds

    DEFF Research Database (Denmark)

    Thomsen, Jens Peter; Munk, Martin D.; Eiberg, Misja

    2013-01-01

    This paper deals with the various educational strategies, attitudes and behaviors adopted and displayed by Danish university students from professional class and working-class backgrounds. While access to universities in Denmark remains unequal, certain types of universities and fields of study h...... have wider participation among working-class students than others. At the same time a range of qualitative studies show that working-class students tend to be more risk aversive when it comes to job security and to the economic costs of studying. They tend to lack a sense of belonging...... grants and have no tuition fees, and because the social democratic welfare regime gives a central place to the notion of equality of opportunity in the education system. We ask how and to what extent Danish students’ choice of university program, their educational strategies and attitudes and behaviors...

  17. STRATEGI MENUJU WORLD CLASS UNIVERSITY (WCU PADA UNIVERSITAS SEMARANG

    Directory of Open Access Journals (Sweden)

    S Susanto

    2014-01-01

    Full Text Available University Semarang (USM is now 26 years old (founded in 1987. It stands to USM achievement, both national and international. Although at the regional level in Central Java USM has become the leading private universities, but at the national level has not been fully encouraging, let alone the world level. Academically, USM is not yet in a world university ranking methods, such as: Academic Ranking of World Universities (ARWU, The Times Higher Education Supplement (THES and Webometrics. Only in Webometric lah, world university ranking USM entered electronically although not entirely encouraging. Apparently, we need to work harder in order to reach World Class University category.

  18. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    Science.gov (United States)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  19. Informal Learning: A Lived Experience in a University Musicianship Class

    Science.gov (United States)

    Mok, Annie O.

    2017-01-01

    This study investigates how a class of university music students who engaged in a "lived" experience of informal learning adopted methods and strategies to complete a self-learning "aural copying" performance assignment in a musicianship class in Hong Kong. Data were collected from observations of the performances and the…

  20. Introduction to percolation theory

    CERN Document Server

    Stauffer, Dietrich

    1991-01-01

    Percolation theory deals with clustering, criticallity, diffusion, fractals, phase transitions and disordered systems. This book covers the basic theory for the graduate, and also professionals dealing with it for the first time

  1. Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents

    Science.gov (United States)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-01-01

    An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.

  2. Challenges in Understanding Photosynthesis in a University Introductory Biosciences Class

    Science.gov (United States)

    Södervik, Ilona; Virtanen, Viivi; Mikkilä-Erdmann, Mirjamaija

    2015-01-01

    University students' understanding of photosynthesis was examined in a large introductory biosciences class. The focus of this study was to first examine the conceptions of photosynthesis among students in class and then to investigate how a certain type of text could enhance students' understanding of photosynthesis. The study was based on pre-…

  3. Innovation diffusion in networks : the microeconomics of percolation

    NARCIS (Netherlands)

    Zeppini, P.; Frenken, K.; Izquierdo, L.R.

    2013-01-01

    We implement a diffusion model for an innovative product in a market with a structure of social relationships. Diffusion is described with a percolation approach in the price space. Percolation shows a phase transition from a diffusion to a no-diffusion regime. This has strong implications for

  4. Innovation diffusion in networks: the microeconomics of percolation

    NARCIS (Netherlands)

    Zeppini, P.; Frenken, K.; Izquierdo, L.R.

    2013-01-01

    We implement a diffusion model for an innovative product in a market with a structure of social relationships. Diffusion is described with a percolation approach in the price space. Percolation shows a phase transition from a diffusion to a no-diffusion regime. This has strong implications for

  5. Definition of percolation thresholds on self-affine surfaces

    NARCIS (Netherlands)

    Marrink, S.J.; Paterson, Lincoln; Knackstedt, Mark A.

    2000-01-01

    We study the percolation transition on a two-dimensional substrate with long-range self-affine correlations. We find that the position of the percolation threshold on a correlated lattice is no longer unique and depends on the spanning rule employed. Numerical results are provided for spanning

  6. Physical-depth architectural requirements for generating universal photonic cluster states

    Science.gov (United States)

    Morley-Short, Sam; Bartolucci, Sara; Gimeno-Segovia, Mercedes; Shadbolt, Pete; Cable, Hugo; Rudolph, Terry

    2018-01-01

    Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as a universal resource for measurement-based (one-way) quantum computation. In ballistic approaches to LOQC, cluster states are generated passively from small entangled resource states using so-called fusion operations. Results from percolation theory have previously been used to argue that universal cluster states can be generated in the ballistic approach using schemes which exceed the critical threshold for percolation, but these results consider cluster states with unbounded size. Here we consider how successful percolation can be maintained using a physical architecture with fixed physical depth, assuming that the cluster state is continuously generated and measured, and therefore that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be implemented using a constant-size device with modest physical depth, and that percolation can be exploited using simple pathfinding strategies without the need for high-complexity algorithms.

  7. Progress in high-dimensional percolation and random graphs

    CERN Document Server

    Heydenreich, Markus

    2017-01-01

    This text presents an engaging exposition of the active field of high-dimensional percolation that will likely provide an impetus for future work. With over 90 exercises designed to enhance the reader’s understanding of the material, as well as many open problems, the book is aimed at graduate students and researchers who wish to enter the world of this rich topic.  The text may also be useful in advanced courses and seminars, as well as for reference and individual study. Part I, consisting of 3 chapters, presents a general introduction to percolation, stating the main results, defining the central objects, and proving its main properties. No prior knowledge of percolation is assumed. Part II, consisting of Chapters 4–9, discusses mean-field critical behavior by describing the two main techniques used, namely, differential inequalities and the lace expansion. In Parts I and II, all results are proved, making this the first self-contained text discussing high-dimensiona l percolation.  Part III, consist...

  8. P-Adic Analog of Navier–Stokes Equations: Dynamics of Fluid’s Flow in Percolation Networks (from Discrete Dynamics with Hierarchic Interactions to Continuous Universal Scaling Model

    Directory of Open Access Journals (Sweden)

    Klaudia Oleschko

    2017-04-01

    Full Text Available Recently p-adic (and, more generally, ultrametric spaces representing tree-like networks of percolation, and as a special case of capillary patterns in porous media, started to be used to model the propagation of fluids (e.g., oil, water, oil-in-water, and water-in-oil emulsion. The aim of this note is to derive p-adic dynamics described by fractional differential operators (Vladimirov operators starting with discrete dynamics based on hierarchically-structured interactions between the fluids’ volumes concentrated at different levels of the percolation tree and coming to the multiscale universal topology of the percolating nets. Similar systems of discrete hierarchic equations were widely applied to modeling of turbulence. However, in the present work this similarity is only formal since, in our model, the trees are real physical patterns with a tree-like topology of capillaries (or fractures in random porous media (not cascade trees, as in the case of turbulence, which we will be discussed elsewhere for the spinner flowmeter commonly used in the petroleum industry. By going to the “continuous limit” (with respect to the p-adic topology we represent the dynamics on the tree-like configuration space as an evolutionary nonlinear p-adic fractional (pseudo- differential equation, the tree-like analog of the Navier–Stokes equation. We hope that our work helps to come closer to a nonlinear equation solution, taking into account the scaling, hierarchies, and formal derivations, imprinted from the similar properties of the real physical world. Once this coupling is resolved, the more problematic question of information scaling in industrial applications will be achieved.

  9. Age Differences Explain Social Class Differences in Students' Friendship at University: Implications for Transition and Retention

    Science.gov (United States)

    Rubin, Mark; Wright, Chrysalis L.

    2015-01-01

    The present research tested the hypotheses that (a) working-class students have fewer friends at university than middle-class students and (b) this social class difference occurs because working-class students tend to be older than middle-class students. A sample of 376 first-year undergraduate students from an Australian university completed an…

  10. Quantum walks of two interacting particles on percolation graphs

    Science.gov (United States)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  11. Time and Money Explain Social Class Differences in Students' Social Integration at University

    Science.gov (United States)

    Rubin, Mark; Wright, Chrysalis L.

    2017-01-01

    Working-class students tend to be less socially integrated at university than middle-class students. The present research investigated two potential reasons for this working-class social exclusion effect. First, working-class students may have fewer finances available to participate in social activities. Second, working-class students tend to be…

  12. Analysis of radionuclide transport through fracture networks by percolation theory

    International Nuclear Information System (INIS)

    Ahn, Joonhong; Furuhama, Yutaka; Li, Yadong; Suzuki, Atsuyuki

    1991-01-01

    Presented are results of numerical simulations for radionuclide diffusion through fracture networks in geologic layers. Actual fracture networks are expressed as two-dimensional honeycomb percolation lattices. Random-walk simulations of diffusion on percolation lattices are made by the exact-enumeration method, and compared with those from Fickian diffusion with constant and decreasing diffusion coefficients. Mean-square displacement of a random-walker on percolation lattices increases more slowly with time than that for Fickian diffusion with the constant diffusion coefficient. Though the same relation of mean-square displacement vs. time as for the percolation lattices can be obtained for a continuum with decreasing diffusion coefficients, spatial distribution of probability densities of finding the random-walker on the percolation lattice differs from that on a continuum with the decreasing diffusion coefficient. The percolation model results in slow spreading near the origin and fast spreading in the outer region, whereas the decreasing-diffusion coefficient model shows the reverse because of smaller diffusion coefficient in the outer region. We could derive a general formula that can include both Fickian and anomalous diffusion in terms of fractal and fracton dimensionalities and the anomalous diffusion exponent. (author)

  13. Bounds for percolation thresholds on directed and undirected graphs

    Science.gov (United States)

    Hamilton, Kathleen; Pryadko, Leonid

    2015-03-01

    Percolation theory is an efficient approach to problems with strong disorder, e.g., in quantum or classical transport, composite materials, and diluted magnets. Recently, the growing role of big data in scientific and industrial applications has led to a renewed interest in graph theory as a tool for describing complex connections in various kinds of networks: social, biological, technological, etc. In particular, percolation on graphs has been used to describe internet stability, spread of contagious diseases and computer viruses; related models describe market crashes and viral spread in social networks. We consider site-dependent percolation on directed and undirected graphs, and present several exact bounds for location of the percolation transition in terms of the eigenvalues of matrices associated with graphs, including the adjacency matrix and the Hashimoto matrix used to enumerate non-backtracking walks. These bounds correspond t0 a mean field approximation and become asymptotically exact for graphs with no short cycles. We illustrate this convergence numerically by simulating percolation on several families of graphs with different cycle lengths. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.

  14. Thoughts on the Role of Government in the Development of World-Class Universities in China

    Science.gov (United States)

    Guangcai, Yan

    2011-01-01

    Looking at the rise of world-class universities through history, creating an institutional environment in which universities are relatively autonomous, while also ensuring effective material support from the government is essential for the formation of world-class universities. It is worth examining the deteriorating academic environment in China…

  15. A space standards application to university-class microsatellites: The UNISAT experience

    Science.gov (United States)

    Graziani, Filippo; Piergentili, Fabrizio; Santoni, Fabio

    2010-05-01

    Hands-on education is recognized as an invaluable tool to improve students' skills, to stimulate their enthusiasm and to educate them to teamwork. University class satellite programs should be developed keeping in mind that education is the main goal and that university satellites are a unique opportunity to make involved students familiar with all the phases of space missions. Moreover university budgets for education programs are much lower than for industrial satellites programs. Therefore two main constraints must be respected: a time schedule fitting with the student course duration and a low economic budget. These have an impact on the standard which can be followed in university class satellite programs. In this paper university-class satellite standardization is discussed on the basis of UNISAT program experience, reporting successful project achievements and lessons learned through unsuccessful experiences. The UNISAT program was established at the Scuola di Ingegneria Aerospaziale by the Group of Astrodynamics of the University of Rome "La Sapienza" (GAUSS) as a research and education program in which Ph.D. and graduate students have the opportunity to gain hands-on experience on small space missions. Four university satellites (UNISAT, UNISAT-2, UNISAT-3, UNISAT-4), weighing about 10 kg, have been designed, manufactured, tested and launched every two years since 2000 in the framework of this program In the paper, after a brief overview of new GAUSS programs, an analysis of the UNISAT satellites ground test campaign is carried out, identifying the most critical procedures and requirements to be fulfilled. Moreover a device for low earth orbit low-cost satellite end-of-life disposal is presented; this system (SIRDARIA) complies with the international guidelines on space debris.

  16. Polymer Percolation Threshold in Multi-Component HPMC Matrices Tablets

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-06-01

    Full Text Available Introduction: The percolation theory studies the critical points or percolation thresholds of the system, where onecomponent of the system undergoes a geometrical phase transition, starting to connect the whole system. The application of this theory to study the release rate of hydrophilic matrices allows toexplain the changes in release kinetics of swellable matrix type system and results in a clear improvement of the design of controlled release dosage forms. Methods: In this study, the percolation theory has been applied to multi-component hydroxypropylmethylcellulose (HPMC hydrophilic matrices. Matrix tablets have been prepared using phenobarbital as drug,magnesium stearate as a lubricant employing different amount of lactose and HPMC K4M as a fillerandmatrix forming material, respectively. Ethylcelullose (EC as a polymeric excipient was also examined. Dissolution studies were carried out using the paddle method. In order to estimate the percolation threshold, the behaviour of the kinetic parameters with respect to the volumetric fraction of HPMC at time zero, was studied. Results: In both HPMC/lactose and HPMC/EC/lactose matrices, from the point of view of the percolation theory, the optimum concentration for HPMC, to obtain a hydrophilic matrix system for the controlled release of phenobarbital is higher than 18.1% (v/v HPMC. Above 18.1% (v/v HPMC, an infinite cluster of HPMC would be formed maintaining integrity of the system and controlling the drug release from the matrices. According to results, EC had no significant influence on the HPMC percolation threshold. Conclusion: This may be related to broad functionality of the swelling hydrophilic matrices.

  17. Percolation Systems away from the Critical Point

    OpenAIRE

    Dhar, Deepak

    2001-01-01

    This article reviews some effects of disorder in percolation systems even away from the critical density p_c. For densities below p_c, the statistics of large clusters defines the animals problem. Its relation to the directed animals problem and the Lee-Yang edge singularity problem is described. Rare compact clusters give rise to Griffiths singuraties in the free energy of diluted ferromagnets, and lead to a very slow relaxation of magnetization. In biassed diffusion on percolation clusters,...

  18. Anaerobic Treatment Of Percolate From Faecal Sludge Drying Beds ...

    African Journals Online (AJOL)

    Composite percolate samples, from sludge drying beds of a pilot co-composting plant in Kumasi, Ghana, were characterised and subjected to laboratory scale anaerobic treatment. Two categories of percolate samples were investigated; samples seeded with anaerobic sludge and samples without seeding. The average ...

  19. Factors affecting water balance and percolate production for a landfill in operation.

    Science.gov (United States)

    Poulsen, Tjalfe G; Møoldrup, Per

    2005-02-01

    Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.

  20. Percolation of secret correlations in a network

    OpenAIRE

    Leverrier, Anthony; García-Patrón, Raúl

    2011-01-01

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks, more precisely the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a...

  1. Percolation of secret correlations in a network

    Energy Technology Data Exchange (ETDEWEB)

    Leverrier, Anthony; Garcia-Patron, Raul [ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels (Barcelona) (Spain); Research Laboratory of Electronics, MIT, Cambridge, MA 02139 (United States) and Max-Planck Institut fur Quantenoptik, Hans-Kopfermann Str. 1, D-85748 Garching (Germany)

    2011-09-15

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

  2. Percolation of secret correlations in a network

    International Nuclear Information System (INIS)

    Leverrier, Anthony; Garcia-Patron, Raul

    2011-01-01

    In this work, we explore the analogy between entanglement and secret classical correlations in the context of large networks--more precisely, the question of percolation of secret correlations in a network. It is known that entanglement percolation in quantum networks can display a highly nontrivial behavior depending on the topology of the network and on the presence of entanglement between the nodes. Here we show that this behavior, thought to be of a genuine quantum nature, also occurs in a classical context.

  3. Percolation testing at the F- and H-Area Seepage Basins

    International Nuclear Information System (INIS)

    McHood, M.D.

    1993-01-01

    The design of the F- and H-Area Seepage Basin contaminated groundwater remediation system requires information from multiple well pump tests (Reference 1). Soil percolation rates are needed in order to support the multiple well pump test planning. The objective of this task was to determine characteristic percolation rates for soils in four select areas where infiltration galleries are proposed. These infiltration galleries will be temporary installations built on the ground surface and used to disposes of water from the multiple well pump tests. A procedure defining the specific work process for collecting percolation rate data is contained in Appendix 3. Results from these percolation tests will be used in the design of infiltration galleries for the disposal of well water extracted during the multiple well pump tests

  4. Controlling percolation with limited resources

    Science.gov (United States)

    Schröder, Malte; Araújo, Nuno A. M.; Sornette, Didier; Nagler, Jan

    2017-12-01

    Connectivity, or the lack thereof, is crucial for the function of many man-made systems, from financial and economic networks over epidemic spreading in social networks to technical infrastructure. Often, connections are deliberately established or removed to induce, maintain, or destroy global connectivity. Thus, there has been a great interest in understanding how to control percolation, the transition to large-scale connectivity. Previous work, however, studied control strategies assuming unlimited resources. Here, we depart from this unrealistic assumption and consider the effect of limited resources on the effectiveness of control. We show that, even for scarce resources, percolation can be controlled with an efficient intervention strategy. We derive such an efficient strategy and study its implications, revealing a discontinuous transition as an unintended side effect of optimal control.

  5. The Discovery of a Class of High-Temperature Superconductors.

    Science.gov (United States)

    Muller, K. Alex; Bednorz, J. Georg

    1987-01-01

    Describes the new class of oxide superconductors, the importance of these materials, and the concepts that led to its discovery. Summarizes the discovery itself and its early confirmation. Discusses the observation of a superconductive glass state in percolative samples. (TW)

  6. A generalized model for site percolation with two independent concentrations

    International Nuclear Information System (INIS)

    Lin Jiancheng.

    1987-05-01

    In this paper the usual site percolation problem with single concentration is generalized to the one that contains two independent concentrations. Using the real space renormalization technique we derive an exact transformation for the one dimensional lattice and a cluster transformation for triangle lattice in two dimensions. The critical exponents and the percolation threshold concentrations obtained are the same as those of the usual single concentration percolation problem. Critical line and flow diagram in the two concentration parameters space are also given. (author). 10 refs, 6 figs

  7. Percolation of binary disk systems: Modeling and theory

    International Nuclear Information System (INIS)

    Meeks, Kelsey; Pantoya, Michelle L.

    2017-01-01

    The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and compared to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.

  8. On the axiomatization of some classes of discrete universal integrals

    Czech Academy of Sciences Publication Activity Database

    Klement, E.P.; Mesiar, Radko

    2012-01-01

    Roč. 28, č. 1 (2012), s. 13-18 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional research plan: CEZ:AV0Z10750506 Keywords : Comonotone modularity * Copula * Universal integral Subject RIV: BA - General Mathematics Impact factor: 4.104, year: 2012 http://library.utia.cas.cz/separaty/2012/E/mesiar-on the axiomatization of some classes of discrete universal integrals. pdf

  9. [Interpersonal motivation in a First Year Experience class influences freshmen's university adjustment].

    Science.gov (United States)

    Nakayama, Rumiko; Nakanishi, Yoshifumi; Nagahama, Fumiyo; Nakajima, Makoto

    2015-06-01

    The present study examined the influence of interpersonal motivation on university adjustment in freshman students enrolled in a First Year Experience (FYE) class. An interpersonal motivation scale and a university adjustment (interpersonal adjustment and academic adjustment) scale were administered twice to 116 FYE students; data from the 88 students who completed both surveys were analyzed. Results from structural equation modeling indicated a causal relationship between interpersonal, motivation and university adjustment: interpersonal adjustment served as a mediator between academic adjustment and interpersonal motivation, the latter of which was assessed using the internalized motivation subscale of the Interpersonal Motivation Scale as well as the Relative Autonomy Index, which measures the autonomy in students' interpersonal attitudes. Thus, revising the FYE class curriculum to include approaches to lowering students' feelings of obligation and/or anxiety in their interpersonal interactions might improve their adjustment to university.

  10. Practical Guidelines for Water Percolation Capacity Determination of the Ground

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2011-06-01

    Full Text Available Determination of water infiltration capacity of ground soils and rocks represents important part of design and construction procedures of the facilities for the infiltration of clean precipitation water. With their help percolation capacity of ground as well as response of the infiltration facilities to the inflowing precipitation water is estimated.Comparing to other in situ hydrogeological tests they can be understood as simple. However, in every day’s practiceseveral problems during their on site application and desk interpretation can arise. Paper represents review of existingpractical engineering procedures during the performance of percolation tests. Procedures are described for the borehole and shaft percolation tests execution and calculation theory for stationary and non‑stationary percolation tests are given. Theory is illustrated with practical exercises. Interpretations of typical departures from theoretical presumptions according to Hvorslev test of non-stationary test are illustrated.

  11. Application of percolation leaching in Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Jiang Lang; Wang Haita; He Jiangming

    2006-01-01

    In order to solve these problems such as high cost by conventional agitation leaching, low permeability and low leaching rate by heap leach, a percolation leaching method was developed. Two-year's production results show that leaching rate of uranium is up to 90% by this method. Compared with conventional agitation leaching, the power, sulfuric acid and lime consumption by the percolation leaching decreased by 60%, 27% and 77% respectively. (authors)

  12. Universal Design for Learning in Teaching Large Lecture Classes

    Science.gov (United States)

    Dean, Tereza; Lee-Post, Anita; Hapke, Holly

    2017-01-01

    To augment traditional lecture with instructional tools that provide options for content representation, learner engagement, and learning expression, we followed the Universal Design for Learning (UDL) principles to design and implement a learning environment for teaching and learning in large lecture classes. To this end, we incorporated four…

  13. Social percolation and the influence of mass media

    Science.gov (United States)

    Proykova, Ana; Stauffer, Dietrich

    2002-09-01

    In the marketing model of Solomon and Weisbuch, people buy a product only if their neighbours tell them of its quality, and if this quality is higher than their own quality expectations. Now we introduce additional information from the mass media, which is analogous to the ghost field in percolation theory. The mass media shift the percolative phase transition observed in the model, and decrease the time after which the stationary state is reached.

  14. In the physics class: university physics students' enactment of class and gender in the context of laboratory work

    Science.gov (United States)

    Danielsson, Anna T.

    2014-06-01

    This article explores how the doing of social class and gender can intersect with the learning of science, through case studies of two male, working-class university students' constitutions of identities as physics students. In doing so, I challenge the taken-for-granted notion that male physics students have an unproblematic relation to their chosen discipline, and nuance the picture of how working-class students relate to higher education by the explicit focus on one disciplinary culture. Working from the perspective of situated learning theory, the interviews with the two male students were analysed for how they negotiated the practice of the physics student laboratory and their own classed and gendered participation in this practice. By drawing on the heterogeneity of the practice of physics the two students were able to use the practical and technological aspects of physics as a gateway into the discipline. However, this is not to say that their participation in physics was completely frictionless. The students were both engaged in a continuous negotiation of how skills they had learned to value in the background may or may not be compatible with the ones they perceived to be valued in the university physicist community.

  15. Paddle-wheel versus percolation mechanism for cation transport in some sulphate phases

    DEFF Research Database (Denmark)

    Andersen, N.H.; Bandaranyake, P.W.S.K.; Careem, M.A.

    1992-01-01

    in these phases. A single-crystal neutron diffraction study has been performed for cubic lithium sulphate. The refinement of the data gives a very complex model for the location of the lithium ions. There is definitely a void at and near the octahedral (1/2, 1/2, 1/2) position. 90% of the lithium ions are located...... and interdiffusion, all studied mono- and divalent cations are very mobile in the rotor phases, which lack the pronounced correlation with ionic radii that is characteristic for diffusion in other classes of solid electrolytes. The quoted studies are to be considered as strong evidence against a percolation model...

  16. Logarithmic corrections to scaling in critical percolation and random resistor networks.

    Science.gov (United States)

    Stenull, Olaf; Janssen, Hans-Karl

    2003-09-01

    We study the critical behavior of various geometrical and transport properties of percolation in six dimensions. By employing field theory and renormalization group methods we analyze fluctuation induced logarithmic corrections to scaling up to and including the next-to-leading order correction. Our study comprehends the percolation correlation function, i.e., the probability that two given points are connected, and some of the fractal masses describing percolation clusters. To be specific, we calculate the mass of the backbone, the red bonds, and the shortest path. Moreover, we study key transport properties of percolation as represented by the random resistor network. We investigate the average two-point resistance as well as the entire family of multifractal moments of the current distribution.

  17. Percolation transitions in two dimensions

    NARCIS (Netherlands)

    Feng, X.; Deng, Y.; Blöte, H.W.J.

    2008-01-01

    We investigate bond- and site-percolation models on several two-dimensional lattices numerically, by means of transfer-matrix calculations and Monte Carlo simulations. The lattices include the square, triangular, honeycomb kagome, and diced lattices with nearest-neighbor bonds, and the square

  18. Competencies, Roles and Effective Academic Leadership in World Class University

    OpenAIRE

    Elham Shahmandi; Abu Daud Silong; Ismi Arif Ismail; Bahaman Bin Abu Samah; Jamilah Othman

    2011-01-01

    How an academic leader can become more effective? This research question is examined in the context of middle level leadership in research universities that includes the Deans and Head of Departments. It is based on a review of literature that focuses on the investigation of effective academic leadership. In the present situation of globalization, academic excellence is often related to being World Class University. Leadership effectiveness is more related to situational leadership style in r...

  19. Interplay of universality classes in a three-dimensional Yukawa model

    International Nuclear Information System (INIS)

    Focht, E.; Jersak, J.; Paul, J.

    1996-01-01

    We investigate numerically on the lattice the interplay of universality classes of the three-dimensional Yukawa model with U(1) chiral symmetry, using the Binder method of finite size scaling. At zero Yukawa coupling the scaling related to the magnetic Wilson-Fisher fixed point is confirmed. At sufficiently strong Yukawa coupling the dominance of the chiral fixed point associated with the 3D Gross-Neveu model is observed for various values of the coupling parameters, including infinite scalar self-coupling. In both cases the Binder method works consistently in a broad range of lattice sizes. However, when the Yukawa coupling is decreased the finite size behavior gets complicated and the Binder method gives inconsistent results for different lattice sizes. This signals a crossover between the universality classes of the two fixed points. copyright 1996 The American Physical Society

  20. Long range correlations, event simulation and parton percolation

    International Nuclear Information System (INIS)

    Pajares, C.

    2011-01-01

    We study the RHIC data on long range rapidity correlations, comparing their main trends with different string model simulations. Particular attention is paid to color percolation model and its similarities with color glass condensate. As both approaches corresponds, at high density, to a similar physical picture, both of them give rise to a similar behavior on the energy and the centrality of the main observables. Color percolation explains the transition from low density to high density.

  1. Percolation-enhanced nonlinear scattering from semicontinuous metal films

    Science.gov (United States)

    Breit, M.; von Plessen, G.; Feldmann, J.; Podolskiy, V. A.; Sarychev, A. K.; Shalaev, V. M.; Gresillon, S.; Rivoal, J. C.; Gadenne, P.

    2001-03-01

    Strongly enhanced second-harmonic generation (SHG), which is characterized by nearly isotropic distribution, is observed for gold-glass films near the percolation threshold. The diffuse-like SHG scattering, which can be thought of as nonlinear critical opalescence, is in sharp contrast with highly collimated linear reflection and transmission from these nanostructured semicontinuous metal films. Our observations, which can be explained by giant fluctuations of local nonlinear sources for SHG, verify recent predictions of percolation-enhanced nonlinear scattering.

  2. Effective modelling of percolation at the landscape scale using data-based approaches

    Science.gov (United States)

    Selle, Benny; Lischeid, Gunnar; Huwe, Bernd

    2008-06-01

    Process-based models have been extensively applied to assess the impact of landuse change on water quantity and quality at landscape scales. However, the routine application of those models suffers from large computational efforts, lack of transparency and the requirement of many input parameters. Data-based models such as Feed-Forward Multilayer Perceptrons (MLP) and Classification and Regression Trees (CART) may be used as effective models, i.e. simple approximations of complex process-based models. These data-based approaches can subsequently be applied for scenario analysis and as a transparent management tool provided climatic boundary conditions and the basic model assumptions of the process-based models do not change dramatically. In this study, we apply MLP, CART and Multiple Linear Regression (LR) to model the spatially distributed and spatially aggregated percolation in soils using weather, groundwater and soil data. The percolation data is obtained via numerical experiments with Hydrus1D. Thus, the complex process-based model is approximated using simpler data-based approaches. The MLP model explains most of the percolation variance in time and space without using any soil information. This reflects the effective dimensionality of the process-based model and suggests that percolation in the study area may be modelled much simpler than using Hydrus1D. The CART model shows that soil properties play a negligible role for percolation under wet climatic conditions. However, they become more important if the conditions turn drier. The LR method does not yield satisfactory predictions for the spatially distributed percolation however the spatially aggregated percolation is well approximated. This may indicate that the soils behave simpler (i.e. more linear) when percolation dynamics are upscaled.

  3. Dynamics of bootstrap percolation

    Indian Academy of Sciences (India)

    precise criterion for the occurrence of a mixed transition is not very clear, and has been the subject ... ology, electronic communication, and social networks. It has also acquired a ... percolation theory is to start with a lattice with a fraction p of its sites occupied randomly, and ..... samples of a 104-node network. Probability is ...

  4. Connectivity percolation in suspensions of attractive square-well spherocylinders.

    Science.gov (United States)

    Dixit, Mohit; Meyer, Hugues; Schilling, Tanja

    2016-01-01

    We have studied the connectivity percolation transition in suspensions of attractive square-well spherocylinders by means of Monte Carlo simulation and connectedness percolation theory. In the 1980s the percolation threshold of slender fibers has been predicted to scale as the fibers' inverse aspect ratio [Phys. Rev. B 30, 3933 (1984)PRBMDO1098-012110.1103/PhysRevB.30.3933]. The main finding of our study is that the attractive spherocylinder system reaches this inverse scaling regime at much lower aspect ratios than found in suspensions of hard spherocylinders. We explain this difference by showing that third virial corrections of the pair connectedness functions, which are responsible for the deviation from the scaling regime, are less important for attractive potentials than for hard particles.

  5. The Global Quest to Build World-Class Universities: Toward a Social Justice Agenda

    Science.gov (United States)

    Rhoads, Robert A.; Li, Shuai; Ilano, Lauren

    2014-01-01

    This chapter provides a critical perspective on the global quest to build world-class universities (WCUs), including global "ranking mania," excessive emphasis on university branding, and the attending threats to the traditional public good mission of the university. Alternatively, we offer suggestions on how rankings may be used to…

  6. On distinguishing different models of a class of emergent Universe ...

    Indian Academy of Sciences (India)

    Souvik Ghose

    2018-02-20

    Feb 20, 2018 ... the same class of EU in light of union compilation data (SNIa) which consists of over a hundred data points, thus ... Dark energy; emergent Universe; observational data. .... μ vs. z curve for different EU models along with the.

  7. Phenomenology of quarkyonic percolation at FAIR

    International Nuclear Information System (INIS)

    Torrieri, Giorgio; Lottini, Stefano

    2013-01-01

    We will give an introduction to the concept of quarkyonic matter, presenting an overview of what is meant by this term in the literature. We will then argue that the quarkyonic phase, as defined in the original paper, is a percolation-type phase transition whose phase transition line is strongly curved in ρ B − N c space, where N C is the number of colors and ρ B the baryon density. With a toy model estimate, we show that it might be possible to obtain a percolating but confined phase at N c = 3, N f = 2 at densities larger than one baryon per one baryon size. We conclude by discussing how this phase can be observed at FAIR.

  8. Inactivation of VHSV by Percolation and Salt Under Experimental Conditions

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Olesen, Niels Jørgen; Jørgensen, Claus

    2012-01-01

    At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by percolation. To evaluate the inactivation effect of percolation on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid l...

  9. Percolation and nucleation approaches to nuclear fragmentation: criticality in very small systems

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, A.J. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Chung, K.C.

    1994-12-01

    Different criteria for criticality in very small systems are discussed in the context of percolation and nucleation approaches to nuclear fragmentation. It is shown that the probability threshold in percolation and interaction radius threshold in nucleation are very strongly dependent upon the adopted criterion. By using Monte Carlo method, similarities and dissimilarities between nucleation and percolation pictures are also pointed out. (author). 17 refs, 5 figs, 2 tabs.

  10. Percolation and nucleation approaches to nuclear fragmentation: criticality in very small systems

    International Nuclear Information System (INIS)

    Santiago, A.J.; Chung, K.C.

    1994-12-01

    Different criteria for criticality in very small systems are discussed in the context of percolation and nucleation approaches to nuclear fragmentation. It is shown that the probability threshold in percolation and interaction radius threshold in nucleation are very strongly dependent upon the adopted criterion. By using Monte Carlo method, similarities and dissimilarities between nucleation and percolation pictures are also pointed out. (author). 17 refs, 5 figs, 2 tabs

  11. Exploring University Teacher Perceptions About Out-of-Class Teamwork

    Directory of Open Access Journals (Sweden)

    Elizabeth Ruiz-Esparza Barajas

    2016-07-01

    Full Text Available This study reports on the first stage of a larger joint research project undertaken by five universities in Mexico to explore university teachers’ thinking about out-of-class teamwork. Data from interviews were analyzed using open and axial coding. Although results suggest a positive perception towards teamwork, the study unveiled important negative opinions. These opinions suggest the lack of success in promoting deep learning and in developing students’ socio-cognitive abilities. Findings were used to develop a survey to be applied to more teachers to gain a broader perspective and to corroborate results.

  12. Controlling electrical percolation in multicomponent carbon nanotube dispersions.

    Science.gov (United States)

    Kyrylyuk, Andriy V; Hermant, Marie Claire; Schilling, Tanja; Klumperman, Bert; Koning, Cor E; van der Schoot, Paul

    2011-04-10

    Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components.

  13. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.

    Science.gov (United States)

    King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N

    2012-02-28

    We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

  14. Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields

    Science.gov (United States)

    Kimura, M.

    2004-12-01

    Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were

  15. Percolation processes

    International Nuclear Information System (INIS)

    Kunz, H.

    1980-01-01

    Percolation is a unifying which appeared to be rather useful in trying to understand some properties of disordered physical systems, or some phase transitions in polymers, like gelation or vulcanisation. Although implicitely used in the pioneering work of Flory in 1941 on the sol-gel transition of polymers, it was first introduced in a well-defined way by the mathematicians Hammersley and Broadbent in 1957, who obtained the first rigorous result. Since then, the subject has seen a variety of new applications and its recent study has largely benefited from the vigorous development of critical phenomena after the introduction of the RG ideas and techniques. (author)

  16. Critical conducting networks in disordered solids: ac universality from topological arguments

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, Jens

    2001-01-01

    This paper advocates an unconventional description of charge transport processes in disordered solids, which brings together the ideas of fractal geometry, percolation theory, and topology of manifolds. We demonstrate that the basic features of ac conductivity in disordered materials as seen...... in various experiments are reproduced with remarkable accuracy by the conduction properties of percolating fractal networks near the threshold of percolation. The universal character of ac conductivity in three embedding dimensions is discussed in connection with the available experimental data. An important...

  17. Percolation behavior of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Takeishi, T. [Faculty of Engineering, Kyushu University, Motooka Nishi-ku, Fukuoka (Japan)

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  18. Percolation behavior of tritiated water into a soil packed bed

    International Nuclear Information System (INIS)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-01-01

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  19. A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.

    Science.gov (United States)

    Halloran, John T; Rocke, David M

    2018-05-04

    Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .

  20. Pseudo-random-number generators and the square site percolation threshold.

    Science.gov (United States)

    Lee, Michael J

    2008-09-01

    Selected pseudo-random-number generators are applied to a Monte Carlo study of the two-dimensional square-lattice site percolation model. A generator suitable for high precision calculations is identified from an application specific test of randomness. After extended computation and analysis, an ostensibly reliable value of p_{c}=0.59274598(4) is obtained for the percolation threshold.

  1. Critical current simulation in granular superconductors above the percolation threshold

    Science.gov (United States)

    Riedinger, Roland

    1992-02-01

    In the phase-coherent regime without applied external magnetic field, the critical superconducting current is limited by intragranular junctions which behave like Josephson junctions. We study the percolation aspects specific to lattices of such junctions and/or the mixing of superconductor with normal grains by averaging over configurations. We illustrate on 2 and 3 dimensional examples. The power laws valid near the percolation threshold are valid well above it, in two and three dimensions. We discuss the other models limiting the superconducting current, the vortex creep and superconducting order parameter fluctuations. Dans la limite de champ magnétique nul et de cohérence de phase du paramètre d'ordre supraconducteur, le courant supraconducteur maximal dans un réseau est limité par les jonctions intergranulaires qui se comportent comme des jonctions Josephson. Nous analysons les problèmes de percolation spécifiques aux réseaux de jonctions et du mélange de grains normaux et supraconducteurs. Nous donnons des exemples bidimensionnels et tridimensionnels ; après moyenne sur les configurations et analyse en taille finie, nous montrons que les lois de puissance valables au voisinage du seuil de percolation s'étendent sur un grand domaine au-delà du seuil de percolation, à deux et trois dimensions. Nous discutons les autres modèles limitant le courant supraconducteur, ancrage de vortex et fluctuations du paramètre d'ordre.

  2. Monte Carlo simulations of electrical percolation in multicomponent thin films with nanofillers

    Science.gov (United States)

    Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Jiang, Wei; Liu, Feng

    2018-02-01

    We developed a 2D disk-stick percolation model to investigate the electrical percolation behavior of an insulating thin film reinforced with 1D and 2D conductive nanofillers via Monte Carlo simulation. Numerical predictions of the percolation threshold in single component thin films showed good agreement with the previous published work, validating our model for investigating the characteristics of the percolation phenomena. Parametric studies of size effect, i.e., length of 1D nanofiller and diameter of 2D nanofiller, were carried out to predict the electrical percolation threshold for hybrid systems. The relationships between the nanofillers in two hybrid systems was established, which showed differences from previous linear assumption. The effective electrical conductance was evaluated through Kirchhoff’s current law by transforming it into a resistor network. The equivalent resistance was obtained from the distribution of nodal voltages by solving a system of linear equations with a Gaussian elimination method. We examined the effects of stick length, relative concentration, and contact patterns of 1D/2D inclusions on electrical performance. One novel aspect of our study is its ability to investigate the effective conductance of nanocomposites as a function of relative concentrations, which shows there is a synergistic effect when nanofillers with different dimensionalities combine properly. Our work provides an important theoretical basis for designing the conductive networks and predicting the percolation properties of multicomponent nanocomposites.

  3. Statistical analysis and Monte Carlo simulation of growing self-avoiding walks on percolation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuxia [Department of Physics, Wuhan University, Wuhan 430072 (China); Sang Jianping [Department of Physics, Wuhan University, Wuhan 430072 (China); Department of Physics, Jianghan University, Wuhan 430056 (China); Zou Xianwu [Department of Physics, Wuhan University, Wuhan 430072 (China)]. E-mail: xwzou@whu.edu.cn; Jin Zhunzhi [Department of Physics, Wuhan University, Wuhan 430072 (China)

    2005-09-26

    The two-dimensional growing self-avoiding walk on percolation was investigated by statistical analysis and Monte Carlo simulation. We obtained the expression of the mean square displacement and effective exponent as functions of time and percolation probability by statistical analysis and made a comparison with simulations. We got a reduced time to scale the motion of walkers in growing self-avoiding walks on regular and percolation lattices.

  4. Sloppy-model universality class and the Vandermonde matrix.

    Science.gov (United States)

    Waterfall, Joshua J; Casey, Fergal P; Gutenkunst, Ryan N; Brown, Kevin S; Myers, Christopher R; Brouwer, Piet W; Elser, Veit; Sethna, James P

    2006-10-13

    In a variety of contexts, physicists study complex, nonlinear models with many unknown or tunable parameters to explain experimental data. We explain why such systems so often are sloppy: the system behavior depends only on a few "stiff" combinations of the parameters and is unchanged as other "sloppy" parameter combinations vary by orders of magnitude. We observe that the eigenvalue spectra for the sensitivity of sloppy models have a striking, characteristic form with a density of logarithms of eigenvalues which is roughly constant over a large range. We suggest that the common features of sloppy models indicate that they may belong to a common universality class. In particular, we motivate focusing on a Vandermonde ensemble of multiparameter nonlinear models and show in one limit that they exhibit the universal features of sloppy models.

  5. Fractional scaling of quantum walks on percolation lattices

    International Nuclear Information System (INIS)

    Kendon, Viv; Knott, Paul; Leung, Godfrey; Bailey, Joe

    2011-01-01

    Quantum walks can be used to model processes such as transport in spin chains and bio-molecules. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections. Using numerical simulation, we study the spreading properties of quantum walks on percolation lattices for both bond and site percolation. The randomly missing edges or sites provide a controlled amount of disorder in the regular Cartesian lattice. In one dimension (the line) we introduce a simple model of quantum tunneling to allow the walk to proceed past the missing edges or sites. This allows the quantum walk to spread faster than a classical random walk for short times, but at longer times the disorder localises the quantum walk. In two dimensions, we observe fractional scaling of the spreading with the number of steps of the walk. For percolation above the 85% level, we obtain faster spreading than classical random walks on the full lattice.

  6. Loopless nontrapping invasion-percolation model for fracking.

    Science.gov (United States)

    Norris, J Quinn; Turcotte, Donald L; Rundle, John B

    2014-02-01

    Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low-permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless nontrapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a two-dimensional square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack.

  7. Percolation and lasing in real 3D crystals with inhomogeneous distributed random pores

    Energy Technology Data Exchange (ETDEWEB)

    Burlak, Gennadiy, E-mail: gburlak@uaem.mx; Calderón-Segura, Yessica

    2014-11-15

    We systematically study the percolation phase transition in real 3D crystals where not only the state of pores but also their radius r and displacement s are random valued numbers. The mean values R=〈r〉 and S=〈s〉 emerge as additional spatial scales in such an extended network. This leads to variations of the threshold (critical) percolation probability p{sub C} and the percolation order parameter P that become to be the intricate functions of R and S. Our numerical simulations have shown that in such extended system the incipient spanning cluster can arise even for situations where for simple periodical system the percolation does not exist. We analyzed the validity of the nearest neighbor's approximation and found that such approximation is not valid for materials with large dispersivity of pores. The lasing of nanoemitters incorporated in such percolating spanning cluster is studied too. This effect can open interesting perspectives in modern nano- and micro-information technologies.

  8. Influence of polyethylene glycol on percolation dynamics of reverse microemulsions

    Science.gov (United States)

    Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.

    2018-04-01

    We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.

  9. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  10. Percolation approach for atomic and molecular cluster formation

    International Nuclear Information System (INIS)

    Knospe, O.; Seifert, G.

    1987-12-01

    We apply a percolation approach for the theoretical analysis of mass spectra of molecular microclusters obtained by adiabatic expansion technique. The evolution of the shape of the experimental size distributions as function of stagnation pressure and stagnation temperature are theoretically reproduced by varying the percolation parameter. Remaining discrepancies between theory and experiment are discussed. In addition, the even-odd alternation as well as the 'magic' shell structure within metallic, secondary ion mass spectra are investigated by introducing statistical weights for the cluster formation probabilities. Shell correction energies of atomic clusters as function of cluster-size are deduced from the experimental data. (orig.)

  11. Percolation and multifragmentation of nuclei

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs

  12. Diffusion of test particles in stochastic magnetic fields in the percolative regime

    International Nuclear Information System (INIS)

    Neuer, Marcus; Spatschek, Karl H.

    2006-01-01

    For stochastic magnetic flux functions with percolative contours the test particle transport is investigated. The calculations make use of the stochastic Liouville approach. They start from the so-called A-Langevin equations, including stochastic magnetic field components and binary collisions. Using the decorrelation trajectory method, a relation between the Lagrangian velocity correlation function and the Eulerian magnetic field correlation is derived and introduced into the Green-Kubo formalism. Finite Larmor radius effects are included. Interesting results are presented in the percolation regime corresponding to high Kubo numbers. Previous results are found to be limiting cases for small Kubo numbers. For different percolative scenarios the diffusion is analyzed and strong influences of the percolative structures on the transport scaling are found. The finite Larmor radius effects are discussed in detail. Numerical simulations of the A-Langevin equation confirm the semianalytical predictions

  13. Universal statistics of vortex lines.

    Science.gov (United States)

    Nahum, Adam; Chalker, J T

    2012-03-01

    We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP(k|k) model (essentially the CP(n-1) model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP(k|k) model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP(2l|2l) model (or the RP(n-1) model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP(k|k) σ model with a θ term.

  14. Renormalization group theory for percolation in time-varying networks.

    Science.gov (United States)

    Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M

    2018-05-22

    Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.

  15. Percolation and spin glass transition

    International Nuclear Information System (INIS)

    Sadiq, A.; Tahir-Kheli, R.A.; Wortis, M.; Bhatti, N.A.

    1980-10-01

    The behaviour of clusters of curved and normal plaquette particles in a bond random, +-J, Ising model is studied in finite square and triangular lattices. Computer results for the concentration of antiferromagnetic bonds when percolating clusters first appears are found to be close to those reported for the occurrence and disappearance of spin glass phases in these systems. (author)

  16. Self-Regulated Learning and Perceived Health among Students Participating in University Physical Activity Classes

    Science.gov (United States)

    McBride, Ron E.; Xiang, Ping

    2013-01-01

    Three hundred and sixty-one students participating in university physical activity classes completed questionnaires assessing perceived health and self-regulated learning. In addition, 20 students (11 men; 9 women) were interviewed about their reasons for enrolling, participation and goals in the class. Results indicated the students endorsed…

  17. In the Shadow of Celebrity? World-Class University Policies and Public Value in Higher Education

    NARCIS (Netherlands)

    Cremonini, Leon; Westerheijden, Donald F.; Benneworth, Paul Stephen; Dauncey, Hugh

    2014-01-01

    The growing popularity of the concept of world-class universities raises the question of whether investing in such universities is a worthwhile use of public resources. Does concentrating public resources on the most excellent universities improve the overall quality of a higher education system,

  18. On the upper critical dimension of Bernoulli percolation

    International Nuclear Information System (INIS)

    Chayes, J.T.; Chayes, L.

    1987-01-01

    Derived is a set of inequalities for the d-dimensional independent percolation problem. Assuming the existence of critical exponents, these inequalities imply: f + nu ≥ 1 + β/sub Q/, μ + nu ≥ 1 + β/sub Q/, zeta ≥ min (1, nu'/nu), where the above exponents are f: the flow constant exponent, nu (nu'): the correlation length exponent below (above) threshold, μ: the surface tension exponent, β/sub Q/: the backbone density exponent and zeta: the chemical distance exponent. Note that all of these inequalities are mean-field bounds, and that they relate the exponent nu defined from below the percolation threshold to exponents defined from above threshold. Furthermore, we combine the strategy of the proofs these inequalities with notions of finite-size scaling to derive: max (d nu, d nu') ≥ 1 + β/sub Q/, where d is the lattice dimension. Since β/sub Q/ ≥ 2β, where β is the percolation density exponent, the final bound implies that, below six dimensions, the standard order parameter and correlation length exponents cannot simultaneously assume their mean-field values; hence an implicit bound on the upper critical dimension: d/sub c/ ≥ 6

  19. Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions

    Directory of Open Access Journals (Sweden)

    M. U. Malakeeva

    2012-01-01

    Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.

  20. Mirrorless lasing from light emitters in percolating clusters

    Science.gov (United States)

    Burlak, Gennadiy; Rubo, Y. G.

    2015-07-01

    We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.

  1. Interlocking-induced stiffness in stochastically microcracked materials beyond the transport percolation threshold

    Science.gov (United States)

    Picu, R. C.; Pal, A.; Lupulescu, M. V.

    2016-04-01

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above, the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold due to topological interlocking of sample subdomains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes nonlinear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks.

  2. Self-Regulated Learning and Perceived Health among University Students Participating in Physical Activity Classes

    Science.gov (United States)

    McBride, Ron E.; Altunsöz, Irmak Hürmeriç; Su, Xiaoxia; Xiang, Ping; Demirhan, Giyasettin

    2016-01-01

    The purpose of this study was to explore motivational indicators of self-regulated learning (SRL) and the relationship between self-regulation (SR) and perceived health among university students enrolled in physical activity (PA) classes. One hundred thirty-one Turkish students participating in physical education activity classes at two…

  3. A new approach for multicriticality in directed and diode percolation

    International Nuclear Information System (INIS)

    Tsallis, C.; Boston Univ., MA; Redner, S.

    1983-01-01

    A new and very simple model for treating directed and more general diode percolation problems is presented, by allowing neighboring sites to be joined by up to two independent bonds of opposite orientations. A generalized 'break-collapse' method is developed to calculate renormalization group recursion relations. On the square lattice, a very symmetric phase diagram is obtained which displays multicritical percolation phenomena, and a variety of interesting conductivity transitions are predicted. (Author) [pt

  4. Percolation temperature and the 'instability' of the effective potential

    International Nuclear Information System (INIS)

    Carvalho, C.A. de; Bazeia Filho, D.; Eboli, O.J.P.; Marques, G.C.; Silva, A.J. da; Ventura, I.

    1984-01-01

    It is shown that in spontaneously broken lambda phi 4 theory the percolation temperature coincides with the temperature at which the semiclassical (loop) expansion of the effective potential (free energy) of the system around a uniform field configuration fails. This allows us to extract the percolation temperature directly from the effective potential. The addition of fermions or gauge fields does not alter the result as long as they are weakly coupled to the scalars. The coincidence holds in the high temperature limit at every order in the loop expansion. (Author) [pt

  5. Generalized bond percolation and statistical mechanics

    International Nuclear Information System (INIS)

    Tsallis, C.

    1978-05-01

    A generalization of traditional bond percolation is performed, in the sens that bonds have now the possibility of partially transmitting the information (a fact which leads to the concept of 'fidelity' of the bond), and also in the sens that, besides the normal tendency to equiprobability, the bonds are allowed to substantially change the information. Furthermore the fidelity is allowed, to become an aleatory variable, and the operational rules concerning the associated distribution laws are determined. Thermally quenched random bonds and the whole body of Statistical Mechanics become particular cases of this formalism, which is in general adapted to the treatment of all problems whose main characteristic is to preserve a part of the information through a long path or array (critical phenomena, regime changements, thermal random models, etc). Operationally it provides a quick method for the calculation of the equivalent probability of complex clusters within the traditional bond percolation problem [pt

  6. Percolation systems away from the critical point

    Indian Academy of Sciences (India)

    DEEPAK DHAR. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ... There is more to percolation theory than the critical exponents. Of course, an experi- .... simple qualitative arguments. In the summation ...

  7. Corrections to scaling in random resistor networks and diluted continuous spin models near the percolation threshold.

    Science.gov (United States)

    Janssen, Hans-Karl; Stenull, Olaf

    2004-02-01

    We investigate corrections to scaling induced by irrelevant operators in randomly diluted systems near the percolation threshold. The specific systems that we consider are the random resistor network and a class of continuous spin systems, such as the x-y model. We focus on a family of least irrelevant operators and determine the corrections to scaling that originate from this family. Our field theoretic analysis carefully takes into account that irrelevant operators mix under renormalization. It turns out that long standing results on corrections to scaling are respectively incorrect (random resistor networks) or incomplete (continuous spin systems).

  8. Deep percolation in greenhouse-cultivated celery using the technique of subsurface film strips placement

    Directory of Open Access Journals (Sweden)

    Zhida Du

    2014-05-01

    Full Text Available To reduce the deep percolation during greenhouse vegetable cultivation, the technique of subsurface film strips placement was tested. Four treatments with two kinds of cross-sections (flat and U-shaped and two different spacings (10 cm and 40 cm of subsurface film strips were arranged in a greenhouse before planting celery. At the same time, a non-film treatment was arranged for comparison. Soil water content was measured and irrigation time was adjusted according to the soil water content. Evapotranspiration of celery during growth was calculated by the method of energy balance and the deep percolation was calculated by the equation of water balance. Deep percolation was reduced in all experimental treatments. Greater reduction in deep percolation was observed when using U-shaped cross-section strips compared with that using the flat cross-section strips. In addition, greater reduction in deep percolation was observed when the spacing between the film strips was smaller. The results of this test showed that the technique of subsurface film strips placement can reduce deep percolation and conserve irrigation water for greenhouse vegetables cultivation. However, the optimal layout variables for the use of the technique of subsurface film strips placement need further experimental and numerical analysis.

  9. Percolation for a model of statistically inhomogeneous random media

    International Nuclear Information System (INIS)

    Quintanilla, J.; Torquato, S.

    1999-01-01

    We study clustering and percolation phenomena for a model of statistically inhomogeneous two-phase random media, including functionally graded materials. This model consists of inhomogeneous fully penetrable (Poisson distributed) disks and can be constructed for any specified variation of volume fraction. We quantify the transition zone in the model, defined by the frontier of the cluster of disks which are connected to the disk-covered portion of the model, by defining the coastline function and correlation functions for the coastline. We find that the behavior of these functions becomes largely independent of the specific choice of grade in volume fraction as the separation of length scales becomes large. We also show that the correlation function behaves in a manner similar to that of fractal Brownian motion. Finally, we study fractal characteristics of the frontier itself and compare to similar properties for two-dimensional percolation on a lattice. In particular, we show that the average location of the frontier appears to be related to the percolation threshold for homogeneous fully penetrable disks. copyright 1999 American Institute of Physics

  10. The selected models of the mesostructure of composites percolation, clusters, and force fields

    CERN Document Server

    Herega, Alexander

    2018-01-01

    This book presents the role of mesostructure on the properties of composite materials. A complex percolation model is developed for the material structure containing percolation clusters of phases and interior boundaries. Modeling of technological cracks and the percolation in the Sierpinski carpet are described. The interaction of mesoscopic interior boundaries of the material, including the fractal nature of interior boundaries, the oscillatory nature of it interaction and also the stochastic model of the interior boundaries’ interaction, the genesis, structure, and properties are discussed. One of part of the book introduces the percolation model of the long-range effect which is based on the notion on the multifractal clusters with transforming elements, and the theorem on the field interaction of multifractals is described. In addition small clusters, their characteristic properties and the criterion of stability are presented.

  11. Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites

    International Nuclear Information System (INIS)

    He Da; Ekere, N N

    2004-01-01

    In this paper, we apply Monte Carlo simulation to investigate the conductive percolation threshold of granular composite of conductive and insulating powders with amorphous structure. We focus on the effect of insulating to conductive particle size ratio λ = d i /d c on the conducting percolation threshold p c (the volume fraction of the conductive powder). Simulation results show that, for λ = 1, the percolation threshold p c lies between simple cubic and body centred cubic site percolation thresholds, and that as λ increases the percolation threshold decreases. We also use the structural information obtained by the simulation to study the nonlinear current-voltage characteristics of composite with solid volume fraction of conductive powder below p c in terms of electron tunnelling for nanoscale powders, dielectric breakdown for microscale or larger powders, and pressing induced conduction for non-rigid insulating powders

  12. Percolation Model of Adhesion at Polymer Interfaces

    Science.gov (United States)

    Wool, Richard P.

    1998-03-01

    Adhesion at polymer interfaces is treated as a percolation problem, where an areal density of chains Σ, of length L, contribute a number of entanglements to the interface of thickness X. The fracture energy G, is determined by the fraction of entanglements P, fractured or disentangled in the deformation zone preceding the crack tip, via G ~ P-P_c, where Pc is the percolation threshold, given by Pc = 1- M_e/Mc . For incompatible A/B interfaces reinforced with Σ diblocks or random A-B copolymers of effective length L'(L' ~ 0 for brushes and strongly adsorbed chains), we obtain P ~ ΣL/X, Pc ~ Σ _cL/X, such that G = K(Σ - Σ _c)+ G_o, where K and Go ~ 1 J/m^2 are constants. Note that Log G vs Log Σ will have an apparent slope of about 2, incorrectly suggesting that G ~ Σ ^2. For cohesive fracture, disentanglement dominates at M M*, G = G*[1-M_c/M]. For fatigue crack propagation da/dN, at welding interfaces, we obtain da/dN ~ M-5/2(t/Tr)-5/4, where t is the welding time and Tr is the reptation time. For polymer-solid interfaces, G ~ (X/R)^2. where X is the conformational width of the first layer of chains of random coil size R. The fractal nature of the percolation process is relevant to the fracture mechanism and fractography.

  13. Fractal properties of percolation clusters in Euclidian neural networks

    International Nuclear Information System (INIS)

    Franovic, Igor; Miljkovic, Vladimir

    2009-01-01

    The process of spike packet propagation is observed in two-dimensional recurrent networks, consisting of locally coupled neuron pools. Local population dynamics is characterized by three key parameters - probability for pool connectedness, synaptic strength and neuron refractoriness. The formation of dynamic attractors in our model, synfire chains, exhibits critical behavior, corresponding to percolation phase transition, with probability for non-zero synaptic strength values representing the critical parameter. Applying the finite-size scaling method, we infer a family of critical lines for various synaptic strengths and refractoriness values, and determine the Hausdorff-Besicovitch fractal dimension of the percolation clusters.

  14. Computer simulation of current percolation in polycrystalline high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zeimetz, B [Department of Materials Science and Interdisciplinary Research Centre in Superconductivity, Cambridge University, Pembroke Street, Cambridge (United Kingdom); Rutter, N A; Glowacki, B A; Evetts, J E [Department of Materials Science and Interdisciplinary Research Centre in Superconductivity, Cambridge University, Pembroke Street, Cambridge (United Kingdom)

    2001-09-01

    YBCO-coated conductors were modelled in a computer simulation using a resistor network concept, with the resistors representing the grain boundaries. Dissipation above the critical current, accompanied by flux penetration into the grain boundaries, was described by a linear (flux-flow) resistivity. The model allowed calculation of the combined percolation of current and magnetic flux. Current-voltage data showed scaling in agreement with percolation theory for two-dimensional systems. The influence of grain alignment and electromagnetic parameters on conductor performance was investigated. (author)

  15. Real-space renormalization group; application to site percolation in square lattice

    International Nuclear Information System (INIS)

    Tsallis, C.; Schwachheim, G.

    1978-05-01

    The real-space renormalization group proposed by Reynolds, Klein and Stanley 1977 to treat the site percolation is analysed and extended . The best among 3 possible definitions of 'percolating' configurations and among 5 possible methods to weight these configurations, are established for percolation in square lattices. The use of n xn square clusters leads, for n = 2 (RKS), n = 3 and n = 4, to √ sub (p) approximately equal to 1.635, √ sub(p) approximately equal to 1.533 and √ sub(p) approximately equal to 1.498, and also to P sub(c) approximately equal to 0.382, P sub(c) approximately equal to 0.388 and P sub(c) approximately equal to 0.398, exhibiting in this way the correct (but slow) tendency towards the best up to date values [pt

  16. The threshold of coexistence and critical behaviour of a predator-prey cellular automaton

    International Nuclear Information System (INIS)

    Arashiro, Everaldo; Tome, Tania

    2007-01-01

    We study a probabilistic cellular automaton to describe two population biology problems: the threshold of species coexistence in a predator-prey system and the spreading of an epidemic in a population. By carrying out mean-field approximations and numerical simulations we obtain the phase boundaries (thresholds) related to the transition between an active state, where prey and predators present a stable coexistence, and a prey absorbing state. The numerical estimates for the critical exponents show that the transition belongs to the directed percolation universality class. In the limit where the cellular automaton maps into a model for the spreading of an epidemic with immunization we observe a crossover from directed percolation class to the dynamic percolation class. Patterns of growing clusters related to species coexistence and spreading of epidemic are shown and discussed

  17. Percolation and cooperation with mobile agents: geometric and strategy clusters.

    Science.gov (United States)

    Vainstein, Mendeli H; Brito, Carolina; Arenzon, Jeferson J

    2014-08-01

    We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius r(P), which accounts for the population viscosity, and an interaction radius r(int), which defines the instantaneous contact network for the game dynamics. We show that, differently from the r(P)=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size.

  18. Do diatoms percolate through soil and can they be used for tracing the origin of runoff?

    Science.gov (United States)

    De Graaf, Lenka; Cammeraat, Erik; Pfister, Laurent; Wetzel, Carlos; Klaus, Julian; Hissler, Christophe

    2015-04-01

    Tracers are widely used to study the movement of water in a catchment. Because of depletion of scientific possibilities with most common tracer types, we proposed the use of diatoms as a natural tracer. Paradoxical results on the contribution of surface runoff to the storm hydrograph were obtained in pioneer research on this idea. Diatom transport via the subsurface flow to the stream would explain this paradox. Prerequisite for this is vertical transport of diatoms through soils, which is the topic of this study. Emphasis is on percolation behavior (speed of percolation, speed of percolation over time, and species distribution) of Pseudostaurosira sp. and Melosira sp. (Bacillariophyceae) through undisturbed soil columns of contrasting substrates. Co-objective is to study the flowpaths of water through the soil columns. Natural undisturbed soil columns were sampled in the Attert basin (Luxembourg) on schist, marl and sandstone substrates. Rain simulation experiments were performed to study vertical diatom transport. Rhodamine dye experiments were carried out to gain insight in the active flowpaths of water, and breakthrough experiments were performed to study the responses of the soil columns to applied water. Diatoms were transported through the soil columns of the three substrates. A vast majority of diatom percolation took place within the first 15 minutes, percolation hereafter was marginal but nevertheless present. Peaks in diatom percolation corresponded with a high flux caused by the addition of the diatom culture, but seepage of diatoms along the sides is unlikely according to the species distribution and the rhodamine dye experiment. Pseudostaurosira sp. percolated significantly better than Melosira sp. Significantly more diatoms percolated through the marl columns compared to the schist columns and variance within the sandstone group was very high. Absolute differences between substrates however, were marginal. Most preferential flowpaths were observed in

  19. Percolation in Heterogeneous Media

    International Nuclear Information System (INIS)

    Vocka, Radim

    1999-01-01

    This work is a theoretical reflection on the problematic of the modeling of heterogeneous media, that is on the way of their simple representation conserving their characteristic features. Two particular problems are addressed in this thesis. Firstly, we study the transport in porous media, that is in a heterogeneous media which structure is quenched. A pore space is represented in a simple way - a pore is symbolized as a tube of a given length and a given diameter. The fact that the correlations in the distribution of pore sizes are taken into account by a construction of a hierarchical network makes possible the modeling of porous media with a porosity distributed over several length scales. The transport in the hierarchical network shows qualitatively different phenomena from those observed in simpler models. A comparison of numerical results with experimental data shows that the hierarchical network gives a good qualitative representation of the structure of real porous media. Secondly, we study a problem of the transport in a heterogeneous media which structure is evolving during the time. The models where the evolution of the structure is not influenced by the transport are studied in detail. These models present a phase transition of the same nature as that observed on the percolation networks. We propose a new theoretical description of this transition, and we express critical exponents describing the evolution of the conductivity as a function of fundamental exponents of percolation theory. (author) [fr

  20. THE TOPOLOGICAL AND DYNAMIC CHARACTERISTICS OF NEURONIC ENSEMBLES IN THE BRAIN AS PERCOLATING FRACTAL SETS

    Directory of Open Access Journals (Sweden)

    Sergey L’vovich Molchatsky

    2017-10-01

    Full Text Available The objective of the research was to determine of neuronic ensembles in the brain. The research was based that neuronic ensembles of a brain are considered as the percolating clusters. In the basic part of the study the main concern was determination of the following parameters: fractal dimension on a passing threshold df; for geodetic lines on a fractal dθ and for trajectories of particles in a turbulence field dw. In the same part of a research the index of a compendency (θ of neuronic ensembles of animals and the human brain is defined. As well as it was supposed has a negative value θ 1. Numerical calculations with use of results of computer analysis frontal section images of a hypothalamus of a brain of animals and human are shown, that the considered objects can be ranked to the special class of fractal objects. Such class of objects is called asymptotically arcwise connected.

  1. Observing golden-mean universality class in the scaling of thermal transport

    Science.gov (United States)

    Xiong, Daxing

    2018-02-01

    We address the issue of whether the golden-mean [ψ =(√{5 }+1 ) /2 ≃1.618 ] universality class, as predicted by several theoretical models, can be observed in the dynamical scaling of thermal transport. Remarkably, we show strong evidence that ψ appears to be the scaling exponent of heat mode correlation in a purely quartic anharmonic chain. This observation seems to somewhat deviate from the previous expectation and we explain it by the unusual slow decay of the cross correlation between heat and sound modes. Whenever the cubic anharmonicity is included, this cross correlation gradually dies out and another universality class with scaling exponent γ =5 /3 , as commonly predicted by theories, seems recovered. However, this recovery is accompanied by two interesting phase transition processes characterized by a change of symmetry of the potential and a clear variation of the dynamic structure factor, respectively. Due to these transitions, an additional exponent close to γ ≃1.580 emerges. All this evidence suggests that, to gain a full prediction of the scaling of thermal transport, more ingredients should be taken into account.

  2. Using a dynamic point-source percolation model to simulate bubble growth

    International Nuclear Information System (INIS)

    Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.

    2004-01-01

    Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined

  3. Can BRICS Build Ivory Towers of Excellence? Giving New Meaning to World-Class Universities

    Science.gov (United States)

    David, Solomon Arulraj; Motala, Shireen

    2017-01-01

    This paper aims to map the landscape of higher education transformation in the BRICS (Brazil, Russia, India, China and South Africa) nations while exploring the status of BRICS nations in some of the global university rankings and analysing their potential to give new meaning to notions such as excellent and world-class universities. The study…

  4. Conformal Field Theory of Percolation (1)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    This series of 5 lectures will describe what is known about the Logarithmic CFT describing the critical point of percolation. The subsequent lectures will take place in TH Conference room on: (2) Wednesday Sep 16 at 10am (3) Thursday Sep 17 at 10am (4) Thursday Sep 17 at 2pm (5) Friday Sep 18 at 10am

  5. The abundance threshold for plague as a critical percolation phenomenon

    DEFF Research Database (Denmark)

    Davis, S; Trapman, P; Leirs, H

    2008-01-01

    . However, no natural examples have been reported. The central question of interest in percolation theory 4 , the possibility of an infinite connected cluster, corresponds in infectious disease to a positive probability of an epidemic. Archived records of plague (infection with Yersinia pestis....... Abundance thresholds are the theoretical basis for attempts to manage infectious disease by reducing the abundance of susceptibles, including vaccination and the culling of wildlife 6, 7, 8 . This first natural example of a percolation threshold in a disease system invites a re-appraisal of other invasion...

  6. Percolation model of excess electrical noise in transition-edge sensors

    International Nuclear Information System (INIS)

    Lindeman, M.A.; Anderson, M.B.; Bandler, S.R.; Bilgri, N.; Chervenak, J.; Gwynne Crowder, S.; Fallows, S.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C.A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K.L.; Porter, F.S.; Rocks, L.E.; Saab, T.; Sadleir, J.; Vidugiris, G.

    2006-01-01

    We present a geometrical model to describe excess electrical noise in transition-edge sensors (TESs). In this model, a network of fluctuating resistors represents the complex dynamics inside a TES. The fluctuations can cause several resistors in series to become superconducting. Such events short out part of the TES and generate noise because much of the current percolates through low resistance paths. The model predicts that excess white noise increases with decreasing TES bias resistance (R/R N ) and that perpendicular zebra stripes reduce noise and alpha of the TES by reducing percolation

  7. Phase transition approach to bursting in neuronal cultures: quorum percolation models

    Science.gov (United States)

    Monceau, P.; Renault, R.; Métens, S.; Bottani, S.; Fardet, T.

    2017-10-01

    The Quorum Percolation model has been designed in the context of neurobiology to describe bursts of activity occurring in neuronal cultures from the point of view of statistical physics rather than from a dynamical synchronization approach. It is based upon information propagation on a directed graph with a threshold activation rule; this leads to a phase diagram which exhibits a giant percolation cluster below some critical value mC of the excitability. We describe the main characteristics of the original model and derive extensions according to additional relevant biological features. Firstly, we investigate the effects of an excitability variability on the phase diagram and show that the percolation transition can be destroyed by a sufficient amount of such a disorder; we stress the weakly averaging character of the order parameter and show that connectivity and excitability can be seen as two overlapping aspects of the same reality. Secondly, we elaborate a discrete time stochastic model taking into account the decay originating from ionic leakage through the membrane of neurons and synaptic depression; we give evidence that the decay softens and shifts the transition, and conjecture than decay destroys the transition in the thermodynamical limit. We were able to develop mean-field theories associated with each of the two effects; we discuss the framework of their agreement with Monte Carlo simulations. It turns out that the the critical point mC from which information on the connectivity of the network can be inferred is affected by each of these additional effects. Lastly, we show how dynamical simulations of bursts with an adaptive exponential integrateand- fire model can be interpreted in terms of Quorum Percolation. Moreover, the usefulness of the percolation model including the set of sophistication we investigated can be extended to many scientific fields involving information propagation, such as the spread of rumors in sociology, ethology, ecology.

  8. Fibrillar organization in tendons: A pattern revealed by percolation characteristics of the respective geometric network

    Directory of Open Access Journals (Sweden)

    Daniel Andres Dos Santos

    2014-06-01

    Full Text Available Since the tendon is composed by collagen fibrils of various sizes connected between them through molecular cross-links, it sounds logical to model it via a heterogeneous network of fibrils. Using cross sectional images, that network is operatively inferred from the respective Gabriel graph of the fibril mass centers. We focus on network percolation characteristics under an ordered activation of fibrils (progressive recruitment going from the smallest to the largest fibril. Analyses of percolation were carried out on a repository of images of digital flexor tendons obtained from samples of lizards and frogs. Observed percolation thresholds were compared against values derived from hypothetical scenarios of random activation of nodes. Strikingly, we found a significant delay for the occurrence of percolation in actual data. We interpret this finding as the consequence of some non-random packing of fibrillar units into a size-constrained geometric pattern. We erect an ideal geometric model of balanced interspersion of polymorphic units that accounts for the delayed percolating instance. We also address the circumstance of being percolation curves mirrored by the empirical curves of stress-strain obtained from the same studied tendons. By virtue of this isomorphism, we hypothesize that the inflection points of both curves are different quantitative manifestations of a common transitional process during mechanical load transference.

  9. Incivility among Group Mates in English Classes at a Japanese Women's University

    Science.gov (United States)

    Jacobs, George M.; Kimura, Harumi; Greliche, Nicolas

    2016-01-01

    Incivilities are words and actions that may be perceived as impolite. This article reports a study of perceptions of and experiences with incivilities during group activities in English class. Participants were 119 students at a women's university in Japan. They completed the Pair/Groupwork Incivility Scale, a Japanese-language instrument, which…

  10. Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations

    Science.gov (United States)

    Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D.

    2018-04-01

    We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c =1 . The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.

  11. Generalized model for k -core percolation and interdependent networks

    Science.gov (United States)

    Panduranga, Nagendra K.; Gao, Jianxi; Yuan, Xin; Stanley, H. Eugene; Havlin, Shlomo

    2017-09-01

    Cascading failures in complex systems have been studied extensively using two different models: k -core percolation and interdependent networks. We combine the two models into a general model, solve it analytically, and validate our theoretical results through extensive simulations. We also study the complete phase diagram of the percolation transition as we tune the average local k -core threshold and the coupling between networks. We find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in the models studying each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage → first-order as the k -core threshold is increased. The analytic equations describing the phase boundaries of the two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.

  12. Universality classes far from equilibrium. From heavy-ion collisions to superfluid Bose systems

    International Nuclear Information System (INIS)

    Boguslavski, Kirill

    2016-01-01

    Quantum many-body systems far from equilibrium can approach a nonthermal fixed point during their real-time evolution. One example is scalar field theory, which occurs in models of cosmological inflation, and similar examples are found for non-Abelian plasmas relevant for heavy-ion collisions and for ultracold Bose gases. Investigating nonthermal fixed points of different microscopic theories, we present two novel universality classes that provide links between these systems. One of them involves nonrelativistic, N-component relativistic and expanding scalar systems. It occurs in the deep infrared regime of very high occupancies and is governed by a self-similar evolution. Its nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The scaling properties of this region can be described by a vertex-resummed kinetic theory that is based on a systematic large-N expansion at next-to-leading order. The other novel universality class encompasses scalar field theories and non-Abelian plasmas in a longitudinally expanding background and corresponds to an early dynamical stage of heavy-ion collisions in the high-energy limit. We show that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Both universality classes are found in separate momentum regions in a longitudinally expanding N-component scalar field theory. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks. Moreover, the observed universality connects different physics disciplines from heavy-ion collisions to ultracold atoms, making a remarkable link between the world's hottest and coldest matter.

  13. Universality classes far from equilibrium. From heavy-ion collisions to superfluid Bose systems

    Energy Technology Data Exchange (ETDEWEB)

    Boguslavski, Kirill

    2016-07-27

    Quantum many-body systems far from equilibrium can approach a nonthermal fixed point during their real-time evolution. One example is scalar field theory, which occurs in models of cosmological inflation, and similar examples are found for non-Abelian plasmas relevant for heavy-ion collisions and for ultracold Bose gases. Investigating nonthermal fixed points of different microscopic theories, we present two novel universality classes that provide links between these systems. One of them involves nonrelativistic, N-component relativistic and expanding scalar systems. It occurs in the deep infrared regime of very high occupancies and is governed by a self-similar evolution. Its nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The scaling properties of this region can be described by a vertex-resummed kinetic theory that is based on a systematic large-N expansion at next-to-leading order. The other novel universality class encompasses scalar field theories and non-Abelian plasmas in a longitudinally expanding background and corresponds to an early dynamical stage of heavy-ion collisions in the high-energy limit. We show that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Both universality classes are found in separate momentum regions in a longitudinally expanding N-component scalar field theory. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks. Moreover, the observed universality connects different physics disciplines from heavy-ion collisions to ultracold atoms, making a remarkable link between the world's hottest and coldest matter.

  14. Percolation picture of disintegration of nuclei in the proton-nucleus interaction

    International Nuclear Information System (INIS)

    Botvina, A.S.; Lanin, L.V.

    1992-01-01

    Breakup of nuclei into fragments in the proton-nucleus interaction is studied. It is assumed that breakup occurs in two stages. During the first stage the incident particle interacts with individual nucleons of the nucleus, and high-energy reaction products are emitted from the nucleus. This stage is described by means of the intranuclear-cascade model. During the second stage some of the nuclei, whose excitation energy is high, or whose density is very inhomogeneous, break up. This breakup is described by means of a percolation model which takes into account the spatial distribution of nucleons in the nucleus and which generalizes the percolation description of the 'liquid-gas' phase transition for finite nuclei. Features of this breakup mechanism are studied. The analysis of the experimental data indicates that it is not sufficient to consider percolation only in the coordinate space, and that the momentum distribution of the nucleons in the nucleus must be taken into account

  15. Influence of the growth process on some laws deduced from percolation theory

    International Nuclear Information System (INIS)

    Hachi, M.; Olivier, G.

    1985-09-01

    A brutal application of the percolation theory to some physical problems can lead to erroneous interpretation of the experimental results. Among these problems, the influence of the growth process on the percolation laws is studied. The behaviour of nsub(s)(t), the number of clusters of size s, at time t, is analyzed and linked to a macroscopic property of the system for a comparison to experimental laws. (author)

  16. First-passage percolation on the random graph

    NARCIS (Netherlands)

    Hofstad, van der R.W.; Hooghiemstra, G.; Van Mieghem, P.

    2001-01-01

    We study first-passage percolation on the random graph Gp(N) with exponentially distributed weights on the links. For the special case of the complete graph, this problem can be described in terms of a continuous-time Markov chain and recursive trees. The Markov chain X(t) describes the number of

  17. Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films

    Energy Technology Data Exchange (ETDEWEB)

    Nehm, Frederik, E-mail: frederik.nehm@iapp.de; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl

    2014-04-01

    The growth behavior of thin silver films on organic layers is investigated during deposition by means of simultaneous in-situ monitoring of sheet resistance and transmittance. Thermally evaporated films up to 11 nm show a distinct percolation behavior with strong resistance drop at the percolation thickness. Additionally, evaporations are divided into a sequence of one nanometer steps. In the deposition breaks, the films exhibit a ripening effect with an inversion at the percolation thickness, by changing from an increasing to decreasing sheet resistance over time. Scanning electron micrographs suggest same ripening mechanisms for islands below the percolation thickness as for holes above. - Highlights: • Fundamental understanding of metal thin film growth is presented. • Optical and electrical in-situ measurements used for optimizing transparent electrodes • Stepwise Ag deposition reveals extraordinary ripening effects. • Feature ripening inversion is discovered at the percolation threshold.

  18. Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films

    International Nuclear Information System (INIS)

    Nehm, Frederik; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl

    2014-01-01

    The growth behavior of thin silver films on organic layers is investigated during deposition by means of simultaneous in-situ monitoring of sheet resistance and transmittance. Thermally evaporated films up to 11 nm show a distinct percolation behavior with strong resistance drop at the percolation thickness. Additionally, evaporations are divided into a sequence of one nanometer steps. In the deposition breaks, the films exhibit a ripening effect with an inversion at the percolation thickness, by changing from an increasing to decreasing sheet resistance over time. Scanning electron micrographs suggest same ripening mechanisms for islands below the percolation thickness as for holes above. - Highlights: • Fundamental understanding of metal thin film growth is presented. • Optical and electrical in-situ measurements used for optimizing transparent electrodes • Stepwise Ag deposition reveals extraordinary ripening effects. • Feature ripening inversion is discovered at the percolation threshold

  19. Spin dynamics on percolating networks

    International Nuclear Information System (INIS)

    Aeppli, G.; Guggenheim, H.; Uemura, Y.J.

    1985-01-01

    We have used inelastic neutron scattering to measure the order parameter relaxation rate GAMMA in the dilute, two-dimensional Ising antiferromagnet Rb 2 CoMg/sub 1-c/F 4 with c very close to the magnetic percolation threshold. Where kappa is the inverse magnetic correlation length, GAMMA approx. kappa/sup z/ with z = 2.4/sub -0.1//sup +0.2/. Our results are discussed in terms of current ideas about spin relaxation on fractals. 13 refs., 1 fig

  20. Application of Percolation Theory to Complex Interconnected Networks in Advanced Functional Composites

    Science.gov (United States)

    Hing, P.

    2011-11-01

    Percolation theory deals with the behaviour of connected clusters in a system. Originally developed for studying the flow of liquid in a porous body, the percolation theory has been extended to quantum computation and communication, entanglement percolation in quantum networks, cosmology, chaotic situations, properties of disordered solids, pandemics, petroleum industry, finance, control of traffic and so on. In this paper, the application of various models of the percolation theory to predict and explain the properties of a specially developed family of dense sintered and highly refractory Al2O3-W composites for potential application in high intensity discharge light sources such as high pressure sodium lamps and ceramic metal halide lamps are presented and discussed. The low cost, core-shell concept can be extended to develop functional composite materials with unusual dielectric, electrical, magnetic, superconducting, and piezoelectric properties starting from a classical insulator. The core shell concept can also be applied to develop catalysts with high specific surface areas with minimal amount of expensive platinium, palladium or rare earth nano structured materials for light harvesting, replicating natural photosynthesis, in synthetic zeolite composites for the cracking and separation of crude oil. There is also possibility of developing micron and nanosize Faraday cages for quantum devices, nano electronics and spintronics. The possibilities are limitless.

  1. Influence of fractal substructures of the percolating cluster on transferring processes in macroscopically disordered environments

    Science.gov (United States)

    Kolesnikov, B. P.

    2017-11-01

    The presented work belongs to the issue of searching for the effective kinetic properties of macroscopically disordered environments (MDE). These properties characterize MDE in general on the sizes which significantly exceed the sizes of macro inhomogeneity. The structure of MDE is considered as a complex of interpenetrating percolating and finite clusters consolidated from homonymous components, topological characteristics of which influence on the properties of the whole environment. The influence of percolating clusters’ fractal substructures (backbone, skeleton of backbone, red bonds) on the transfer processes during crossover (a structure transition from fractal to homogeneous condition) is investigated based on the offered mathematical approach for finding the effective conductivity of MDEs and on the percolating cluster model. The nature of the change of the critical conductivity index t during crossover from the characteristic value for the area close to percolation threshold to the value corresponded to homogeneous condition is demonstrated. The offered model describes the transfer processes in MDE with the finite conductivity relation of «conductive» and «low conductive» phases above and below percolation threshold and in smearing area (an analogue of a blur area of the second-order phase transfer).

  2. Chiral Tricritical Point: A New Universality Class in Dirac Systems

    Science.gov (United States)

    Yin, Shuai; Jian, Shao-Kai; Yao, Hong

    2018-05-01

    Tricriticality, as a sister of criticality, is a fundamental and absorbing issue in condensed-matter physics. It has been verified that the bosonic Wilson-Fisher universality class can be changed by gapless fermionic modes at criticality. However, the counterpart phenomena at tricriticality have rarely been explored. In this Letter, we study a model in which a tricritical Ising model is coupled to massless Dirac fermions. We find that the massless Dirac fermions result in the emergence of a new tricritical point, which we refer to as the chiral tricritical point (CTP), at the phase boundary between the Dirac semimetal and the charge-density wave insulator. From functional renormalization group analysis of the effective action, we obtain the critical behaviors of the CTP, which are qualitatively distinct from both the tricritical Ising universality and the chiral Ising universality. We further extend the calculations of the chiral tricritical behaviors of Ising spins to the case of Heisenberg spins. The experimental relevance of the CTP in two-dimensional Dirac semimetals is also discussed.

  3. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    Science.gov (United States)

    Tzioufas, Achillefs

    2018-04-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  4. Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions

    NARCIS (Netherlands)

    Hofstad, van der R.W.; Sakai, A.

    2005-01-01

    We consider self-avoiding walk and percolation in d, oriented percolation in d×+, and the contact process in d, with p D(·) being the coupling function whose range is proportional to L. For percolation, for example, each bond is independently occupied with probability p D(y–x). The above models are

  5. Assessing Factors That Influence the Recruitment of Majors from Introductory Geology Classes at Northern Arizona University

    Science.gov (United States)

    Hoisch, Thomas D.; Bowie, James I.

    2010-01-01

    In order to guide the formulation of strategies for recruiting undergraduates into the geology program at Northern Arizona University, we surveyed 783 students in introductory geology classes and 23 geology majors in their junior and senior years. Our analysis shows that ~7% of students in the introductory classes are possible candidates for…

  6. Emergent Percolation Length and Localization in Random Elastic Networks

    Directory of Open Access Journals (Sweden)

    Ariel Amir

    2013-06-01

    Full Text Available We study, theoretically and numerically, a minimal model for phonons in a disordered system. For sufficient disorder, the vibrational modes of this classical system can become Anderson localized, yet this problem has received significantly less attention than its electronic counterpart. We find rich behavior in the localization properties of the phonons as a function of the density, frequency, and spatial dimension. We use a percolation analysis to argue for a Debye spectrum at low frequencies for dimensions higher than one, and for a localization-delocalization transition (at a critical frequency above two dimensions. We show that in contrast to the behavior in electronic systems, the transition exists for arbitrarily large disorder, albeit with an exponentially small critical frequency. The structure of the modes reflects a divergent percolation length that arises from the disorder in the springs without being explicitly present in the definition of our model. Within the percolation approach, we calculate the speed of sound of the delocalized modes (phonons, which we corroborate with numerics. We find the critical frequency of the localization transition at a given density and find good agreement of these predictions with numerical results using a recursive Green-function method that was adapted for this problem. The connection of our results to recent experiments on amorphous solids is discussed.

  7. Percolation bounds for decoding thresholds with correlated erasures in quantum LDPC codes

    Science.gov (United States)

    Hamilton, Kathleen; Pryadko, Leonid

    Correlations between errors can dramatically affect decoding thresholds, in some cases eliminating the threshold altogether. We analyze the existence of a threshold for quantum low-density parity-check (LDPC) codes in the case of correlated erasures. When erasures are positively correlated, the corresponding multi-variate Bernoulli distribution can be modeled in terms of cluster errors, where qubits in clusters of various size can be marked all at once. In a code family with distance scaling as a power law of the code length, erasures can be always corrected below percolation on a qubit adjacency graph associated with the code. We bound this correlated percolation transition by weighted (uncorrelated) percolation on a specially constructed cluster connectivity graph, and apply our recent results to construct several bounds for the latter. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-14-1-0272.

  8. Density of phonon-fracton states of disordered solids in the vicinity of percolation phase transitions

    International Nuclear Information System (INIS)

    Korzhenevskii, A.L.; Luzhkov, A.A.

    1991-01-01

    The development of a theory of phase transitions in disordered materials is still one of the central problems in solid-state physics. The model of a percolation phase transition plays the same role among the models put forward to account for phase transitions in disordered media as does the Ising model for second-order phase transitions in ideal crystals. In addition to the clear picture of the processes occurring in the course of a percolation phase transition, a scaling theory has been developed and various techniques have been used to calculate the critical exponents describing the thermodynamics of a medium in the vicinity of the percolation threshold. The authors adopt a field-theoretic approach in a study of acoustic properties of disordered solids undergoing percolation phase transitions characterized by h ∼ 1. Among these transitions they concentrate on the case with the simplest type of striction interaction when the solution of a stochastic vector differential equation of motion describing the behavior of an elastic medium in the critical region can be reduced to a scalar equation. The results of their calculations by the field renormalization group method confirmed the existence of the scaling relationships between the critical exponents and also the conclusion on the nature of short- and long-wavelength vibrations near the percolation threshold, which follow from phenomenological considerations of the scaling theory. The values of the upper critical dimensionality and of the critical exponents of the problem are shown to differ from the values applicable to percolation phase transitions characterized by h much-lt 1

  9. Complex dynamic behaviors of oriented percolation-based financial time series and Hang Seng index

    International Nuclear Information System (INIS)

    Niu, Hongli; Wang, Jun

    2013-01-01

    Highlights: • We develop a financial time series model by two-dimensional oriented percolation system. • We investigate the statistical behaviors of returns for HSI and the financial model by chaos-exploring methods. • We forecast the phase point of reconstructed phase space by RBF neural network. -- Abstract: We develop a financial price model by the two-dimensional oriented (directed) percolation system. The oriented percolation model is a directed variant of ordinary (isotropic) percolation, and it is applied to describe the fluctuations of stock prices. In this work, we assume that the price fluctuations result from the participants’ investment attitudes toward the market, and we investigate the information spreading among the traders and the corresponding effect on the price fluctuations. We study the complex dynamic behaviors of return time series of the model by using the multiaspect chaos-exploring methods. And we also explore the corresponding behaviors of the actual market index (Hang Seng Index) for comparison. Further, we introduce the radial basic function (RBF) neural network to train and forecast the phase point of reconstructed phase space

  10. Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size

    Science.gov (United States)

    Barbero, Ever J.; Bedard, Antoine Joseph

    2018-04-01

    Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.

  11. Universality Classes of Interaction Structures for NK Fitness Landscapes

    Science.gov (United States)

    Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim

    2018-02-01

    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.

  12. Topological interlocking provides stiffness to stochastically micro-cracked materials beyond the transport percolation limit

    Science.gov (United States)

    Pal, Anirban; Picu, Catalin; Lupulescu, Marian V.

    We study the mechanical behavior of two-dimensional, stochastically microcracked continua in the range of crack densities close to, and above the transport percolation threshold. We show that these materials retain stiffness up to crack densities much larger than the transport percolation threshold, due to topological interlocking of sample sub-domains. Even with a linear constitutive law for the continuum, the mechanical behavior becomes non-linear in the range of crack densities bounded by the transport and stiffness percolation thresholds. The effect is due to the fractal nature of the fragmentation process and is not linked to the roughness of individual cracks. We associate this behavior to that of itacolumite, a sandstone that exhibits unusual flexibility.

  13. Universality in a Neutral Evolution Model

    Science.gov (United States)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2013-03-01

    Agent-based models are ideal for investigating the complex problems of biodiversity and speciation because they allow for complex interactions between individuals and between individuals and the environment. Presented here is a ``null'' model that investigates three mating types - assortative, bacterial, and random - in phenotype space, as a function of the percentage of random death δ. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (submitted), on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here, in order to achieve an appropriate ``null'' hypothesis, the random death process was changed so each individual, in each generation, has the same probability of death. Results show a continuous nonequilibrium phase transition for the order parameters of the population size and the number of clusters (analogue of species) as δ is varied for three different mutation sizes of the system. The system shows increasing robustness as μ increases. Universality classes and percolation properties of this system are also explored. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation

  14. Labour Universities: Physical Education and the indoctrination of the working class

    OpenAIRE

    Delgado Granados, Patricia; Ramírez Macías, Gonzalo

    2014-01-01

    This paper explores the role of Physical Education in Labour Universities (1955-1978) during Franco's regime as an instrument of indoctrination and declassing of the working class. The conclusions obtained after the study and the analysis of various primary sources indicate that, initially, Physical Education was used as an instrument of indoctrination for the purposes of achieving the social and ideological model of Franco's regime after the Fascist uprising (1936-1939). However, this initia...

  15. White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Frydendahl, Christian; Beermann, Jonas

    2017-01-01

    in vanishingly small gaps between gold islands in thin films near the electrically determined percolation threshold. Optical explorations using two-photon luminescence (TPL) and near-field microscopies reveals supercubic TPL power dependencies with white-light spectra, establishing unequivocally...... that the strongest TPL signals are generated close to the percolation threshold films, and occurrence of extremely confined (similar to 30 nm) and strongly enhanced (similar to 100 times) fields at the illumination wavelength. For linearly polarized and sufficiently powerful light, we observe pronounced optical...

  16. Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metal films

    Science.gov (United States)

    Breit, M.; Podolskiy, V. A.; Grésillon, S.; von Plessen, G.; Feldmann, J.; Rivoal, J. C.; Gadenne, P.; Sarychev, Andrey K.; Shalaev, Vladimir M.

    2001-09-01

    Strongly enhanced second-harmonic generation (SHG), which is characterized by a nearly isotropic intensity distribution, is observed for gold-glass films near the percolation threshold. The diffuselike SHG scattering, which can be thought of as nonlinear critical opalescence, is in sharp contrast with highly collimated linear reflection and transmission from these nanostructured semicontinuous metal films. Our observations, which can be explained by giant fluctuations of local nonlinear sources for SHG due to plasmon localization, verify recent predictions of percolation-enhanced nonlinear scattering.

  17. Weak link behaviour in YBa2Cu3O7-δ system studied by a site percolation model

    International Nuclear Information System (INIS)

    Arulgnanam, A.; Balasubramanian, A.

    1992-01-01

    The superconductivity in the YBaCuO system can be explained in terms of the superconducting percolation of 90 K orthorhombic microdomain. Kubo et al. have studied the percolation behaviour of the 123 system and estimated the total critical oxygen occupancy P c to be 0.75 for the orthorhombic I structure using at 150x180 lattice model. In this paper, we report our work on the percolative behaviour of the 123 system, using a Monte Carlo method. We have studied the effect on P c of increasing the lattice dimension up to 500x500. For P c ≤0.60 no percolative behaviour was observed, suggesting the tetragonal phase. Few times percolation was observed for 0.60≤P≤0.65 indicating the phase transformation from tetragonal to orthorhombic. For 0.65≤P≤0.77 (or 0.230≤δ≤0.35) weak percolative behaviour was observed suggesting the formation of orthorhombic II structure, which is in good agreement with the value observed by Cava et al. For 0.77≤P≤1.0 strong percolation was exhibited indicating the formation of orthorhombic I phase. We have explained the weak link region observed for 0.60≤P≤0.77. We estimated the total critical oxygen occupancy P c =0.766 for an orthorhombic I structure for the lattice. (orig.)

  18. On Equivalence between Critical Probabilities of Dynamic Gossip Protocol and Static Site Percolation

    Science.gov (United States)

    Ishikawa, Tetsuya; Hayakawa, Tomohisa

    The relationship between the critical probability of gossip protocol on the square lattice and the critical probability of site percolation on the square lattice is discussed. Specifically, these two critical probabilities are analytically shown to be equal to each other. Furthermore, we present a way of evaluating the critical probability of site percolation by approximating the saturation of gossip protocol. Finally, we provide numerical results which support the theoretical analysis.

  19. Finite-Size Effects for Some Bootstrap Percolation Models

    NARCIS (Netherlands)

    Enter, A.C.D. van; Adler, Joan; Duarte, J.A.M.S.

    The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling

  20. Electrical percolation in the presence of attractive interactions: An effective medium lattice approach applied to microemulsion systems

    Science.gov (United States)

    Hattori, Y.; Ushiki, H.; Engl, W.; Courbin, L.; Panizza, P.

    2005-08-01

    Within the framework of an effective medium approach and a mean-field approximation, we present a simple lattice model to treat electrical percolation in the presence of attractive interactions. We show that the percolation line depends on the magnitude of interactions. In 2 dimensions, the percolation line meets the binodal line at the critical point. A good qualitative agreement is observed with experimental results on a ternary AOT-based water-in-oil microemulsion system.

  1. Percolation Diffusion into Self-Assembled Mesoporous Silica Microfibres

    Directory of Open Access Journals (Sweden)

    John Canning

    2014-03-01

    Full Text Available Percolation diffusion into long (11.5 cm self-assembled, ordered mesoporous microfibres is studied using optical transmission and laser ablation inductive coupled mass spectrometry (LA-ICP-MS. Optical transmission based diffusion studies reveal rapid penetration (<5 s, D > 80 μm2∙s−1 of Rhodamine B with very little percolation of larger molecules such as zinc tetraphenylporphyrin (ZnTPP observed under similar loading conditions. The failure of ZnTPP to enter the microfibre was confirmed, in higher resolution, using LA-ICP-MS. In the latter case, LA-ICP-MS was used to determine the diffusion of zinc acetate dihydrate, D~3 × 10−4 nm2∙s−1. The large differences between the molecules are accounted for by proposing ordered solvent and structure assisted accelerated diffusion of the Rhodamine B based on its hydrophilicity relative to the zinc compounds. The broader implications and applications for filtration, molecular sieves and a range of devices and uses are described.

  2. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring

    Directory of Open Access Journals (Sweden)

    Matias Soto

    2015-09-01

    Full Text Available A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  3. Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kota, Arun K; Cipriano, Bani H; Powell, Dan; Raghavan, Srinivasa R; Bruck, Hugh A

    2007-01-01

    For the first time, an interpenetrating phase polymer nanocomposite formed by the percolation of multiwalled carbon nanotubes (MWCNTs) in polystyrene (PS) has been quantitatively characterized through electrical conductivity measurements and melt rheology. Both sets of measurements, in conjunction with scanning electron microscopy (SEM) images, indicate the presence of a continuous phase of percolated MWCNTs appearing at particle concentrations exceeding 2 vol% MWCNTs in PS. To quantify the amount of this continuous phase present in the PS/MWCNT composite, electrical conductivity data at various MWCNT concentrations, β, are correlated with a proposed degree of percolation, C-bar(β), developed using a conventional power-law formula with and without a percolation threshold. To quantify the properties of the interpenetrating phase polymer nanocomposite, the PS/MWCNT composite is treated as a combination of two phases: a continuous phase consisting of a pseudo-solid-like network of percolated MWCNTs, and a continuous PS phase reinforced by non-interacting MWCNTs. The proposed degree of percolation is used to quantify the distribution of MWCNTs among the phases, and is then used in a rule-of-mixtures formulation for the storage modulus, G'(β, C-bar(β), ω), and the loss modulus, G''(β, C-bar(β), ω), to quantify the properties of the continuous phase consisting of percolated MWCNTs and the continuous PS phase reinforced by non-interacting MWCNTs from the experimental melt rheology data. The properties of the continuous phase of percolated MWCNTs are indicative of a scaffold-like microstructure exhibiting an elastic behavior with a complex modulus of 360 kPa at lower frequencies and viscoplastic behavior with a complex viscosity of 6 kPa s rad -1 at higher frequencies, most likely due to a stick-slip friction mechanism at the interface of the percolated MWCNTs. Additional evidence of this microstructure was obtained via scanning electron microscopy. This research

  4. Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Paulo Henrique da Silva Leite; Marchesin, Marcel Silva; Morales, Ana Rita; Bartoli, Julio Roberto, E-mail: piyke.coelho@gmail.com [Universidade de Campinas (UNICAMP), SP (Brazil). Escola de Engenharia Quimica

    2014-08-15

    Nanocomposites of poly (methyl methacrylate) (PMMA) and carbon nanotubes have a high potential for applications where conductivity and low specific weight are required. This piece of work concerns investigations of the level of dispersion and morphology on the electrical properties of in situ polymerized nanocomposites in different concentrations of multi-walled carbon nanotubes (MWCNT) in a PMMA matrix. The electrical conductivity was measured by the four point probe. The morphology and dispersion was analyzed by Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). The correlation between electrical conductivity and the MWCNT amount, presented a typical percolation behavior, whose electrical percolation threshold determined by power law relationship was 0.2 vol. (%) The exponent t from the percolation power law indicated the formation of a 3D network of randomly arranged MWCNT. SAXS detected that the structures are intermediate to disks or spheres indicating fractal geometry for the MWCNT aggregates instead of isolated rods. HR-TEM images allowed us to observe the MWCNT individually dispersed into the matrix, revealing their distribution without preferential space orientation and absence of significant damage to the walls. The combined results of SAXS and HR-TEM suggest that MWCNT into the polymeric matrix might present interconnected aggregates and some dispersed single structures. (author)

  5. Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites

    International Nuclear Information System (INIS)

    Coelho, Paulo Henrique da Silva Leite; Marchesin, Marcel Silva; Morales, Ana Rita; Bartoli, Julio Roberto

    2014-01-01

    Nanocomposites of poly (methyl methacrylate) (PMMA) and carbon nanotubes have a high potential for applications where conductivity and low specific weight are required. This piece of work concerns investigations of the level of dispersion and morphology on the electrical properties of in situ polymerized nanocomposites in different concentrations of multi-walled carbon nanotubes (MWCNT) in a PMMA matrix. The electrical conductivity was measured by the four point probe. The morphology and dispersion was analyzed by Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). The correlation between electrical conductivity and the MWCNT amount, presented a typical percolation behavior, whose electrical percolation threshold determined by power law relationship was 0.2 vol. (%) The exponent t from the percolation power law indicated the formation of a 3D network of randomly arranged MWCNT. SAXS detected that the structures are intermediate to disks or spheres indicating fractal geometry for the MWCNT aggregates instead of isolated rods. HR-TEM images allowed us to observe the MWCNT individually dispersed into the matrix, revealing their distribution without preferential space orientation and absence of significant damage to the walls. The combined results of SAXS and HR-TEM suggest that MWCNT into the polymeric matrix might present interconnected aggregates and some dispersed single structures. (author)

  6. A nonsteady-state firn-densification model for the percolation zone of a glacier

    DEFF Research Database (Denmark)

    Reeh, Niels

    2008-01-01

    A simple steady state firn-densification model is modified to account for short-term time variations of accumulation rate and surface temperature. The temporal surface-elevation- and mass changes at two sites in the percolation zone of an ice sheet in response to various climate histories...... are determined. It is shown that a straight-forward translation of observed short-term ice-sheet surface-elevation variations into mass changes may be completely misleading, particularly for the percolation zone of the ice sheet, where temperature driven variations of melting/re-freezing rates have a strong...... impact on near surface density. In the lower percolation zone, the mass change associated with a temperature anomaly in respect to the mean climate may for example amount to as little as 10 percent of the observed, simultaneous surface elevation change. Moreover, significant surface elevation change may...

  7. Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    1996-01-01

    A phenomenological picture of ac hopping in the symmetric hopping model (regular lattice, equal site energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is dominated by essentially one-dimensional "percolation paths." Modeling a percolation path...... as strictly one dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits computer simulations in two and three dimensions better than the effective medium approximation....

  8. Universality of anomalous diffusion in extremely disordered systems

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Jacobsen, Jacob M.

    1996-01-01

    The universal time-dependence of the mean-square displacement for motion in a random energy landscape with equal minima is evaluated analytically and numerically in the percolation path approximation (PPA), which was recently shown by extensive computer simulations in two and three dimensions [Dy...

  9. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0

    Science.gov (United States)

    The, Matthew; MacCoss, Michael J.; Noble, William S.; Käll, Lukas

    2016-11-01

    Percolator is a widely used software tool that increases yield in shotgun proteomics experiments and assigns reliable statistical confidence measures, such as q values and posterior error probabilities, to peptides and peptide-spectrum matches (PSMs) from such experiments. Percolator's processing speed has been sufficient for typical data sets consisting of hundreds of thousands of PSMs. With our new scalable approach, we can now also analyze millions of PSMs in a matter of minutes on a commodity computer. Furthermore, with the increasing awareness for the need for reliable statistics on the protein level, we compared several easy-to-understand protein inference methods and implemented the best-performing method—grouping proteins by their corresponding sets of theoretical peptides and then considering only the best-scoring peptide for each protein—in the Percolator package. We used Percolator 3.0 to analyze the data from a recent study of the draft human proteome containing 25 million spectra (PM:24870542). The source code and Ubuntu, Windows, MacOS, and Fedora binary packages are available from http://percolator.ms/ under an Apache 2.0 license.

  10. Leaders of neuronal cultures in a quorum percolation model

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Eckmann

    2010-09-01

    Full Text Available We present a theoretical framework using quorum-percolation for describing the initiation of activity in a neural culture. The cultures are modeled as random graphs, whose nodes are neurons with $kin$ inputs and $kout$ outputs, and whose input degrees $kin=k$ obey given distribution functions $p_k$. We examine the firing activity of the population of neurons according to their input degree ($k$ classes and calculate for each class its firing probability $Phi_k(t$ as a function of $t$. The probability of a node to fire is found to be determined by its in-degree $k$, and the first-to-fire neurons are those that have a high $k$. A small minority of high-$k$ classes may be called ``Leaders,'' as they form an inter-connected subnetwork that consistently fires much before the rest of the culture. Once initiated, the activity spreads from the Leaders to the less connected majority of the culture. We then use the distribution of in-degree of the Leaders to study the growth rate of the number of neurons active in a burst, which was experimentally measured to be initially exponential. We find that this kind of growth rate is best described by a population that has an in-degree distribution that is a Gaussian centered around $k=75$ with width $sigma=31$ for the majority of the neurons, but also has a power law tail with exponent $-2$ for ten percent of the population. Neurons in the tail may have as many as $k=4,700$ inputs. We explore and discuss the correspondence between the degree distribution and a dynamic neuronal threshold, showing that from the functional point of view, structure and elementary dynamics are interchangeable. We discuss possible geometric origins of this distribution, and comment on the importance of size, or of having a large number of neurons, in the culture.

  11. Seeking a Roadmap to Becoming World Class: Strategic Planning at Peking University. Research & Occasional Paper Series: CSHE.11.13

    Science.gov (United States)

    Guangkuan, Xie

    2013-01-01

    Strategic planning plays an important but sometimes controversial role in higher education. This paper examines how strategic planning works in Chinese universities, using Peking University as a case study. This essay discusses the rationale for why Peking University (PKU) decided to pursue status as a world-class university along with objectives…

  12. Effect of micellar collisions and polyvinylpyrrolidone confinement on the electrical conductivity percolation parameters of water/AOT/isooctane reverse micelles

    Science.gov (United States)

    Guettari, Moez; Aferni, Ahmed E. L.; Tajouri, Tahar

    2017-12-01

    The main aim of this paper is the analysis of micellar collisions and polymer confinement effects on the electrical conductivity percolative behavior of water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles. Firstly, we have performed conductance measurements of the system for three AOT to isooctane volume ratio, φm = 0.1 , 0.15 and 0.2 to examine the influence of micellar collisions on the percolation parameters. All the measurements were carried out over the 298.15 K-333.15 K temperature range at a fixed water to AOT molar ratio, W0 = 45 . We have assessed that the rise of micellar collisions frequency enhances the conductance percolation. Secondly, the confinement effect of a water-soluble polymer, polyvinylpyrrolidone (PVP), on the reverse micelles conductance behavior was investigated. Temperature-induced percolation, Tp , have shown a dependence on the polymer concentration, CPVP . It was also observed that for various PVP concentrations, the activation energy of percolation decreases. Finally, the values of the critical exponents determined in the presence and absence of PVP prove that the polymer affects the dynamic of percolation.

  13. Universality class of the two-dimensional polymer collapse transition

    Science.gov (United States)

    Nahum, Adam

    2016-05-01

    The nature of the θ point for a polymer in two dimensions has long been debated, with a variety of candidates put forward for the critical exponents. This includes those derived by Duplantier and Saleur for an exactly solvable model. We use a representation of the problem via the CPN -1σ model in the limit N →1 to determine the stability of this critical point. First we prove that the Duplantier-Saleur (DS) critical exponents are robust, so long as the polymer does not cross itself: They can arise in a generic lattice model and do not require fine-tuning. This resolves a longstanding theoretical question. We also address an apparent paradox: Two different lattice models, apparently both in the DS universality class, show different numbers of relevant perturbations, apparently leading to contradictory conclusions about the stability of the DS exponents. We explain this in terms of subtle differences between the two models, one of which is fine-tuned (and not strictly in the DS universality class). Next we allow the polymer to cross itself, as appropriate, e.g., to the quasi-two-dimensional case. This introduces an additional independent relevant perturbation, so we do not expect the DS exponents to apply. The exponents in the case with crossings will be those of the generic tricritical O (n ) model at n =0 and different from the case without crossings. We also discuss interesting features of the operator content of the CPN -1 model. Simple geometrical arguments show that two operators in this field theory, with very different symmetry properties, have the same scaling dimension for any value of N (or, equivalently, any value of the loop fugacity). Also we argue that for any value of N the CPN -1 model has a marginal odd-parity operator that is related to the winding angle.

  14. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo; Jiang, Qiu; Zhang, Xixiang; Alshareef, Husam N.

    2018-01-01

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene

  15. Degree product rule tempers explosive percolation in the absence of global information

    Science.gov (United States)

    Trevelyan, Alexander J.; Tsekenis, Georgios; Corwin, Eric I.

    2018-02-01

    We introduce a guided network growth model, which we call the degree product rule process, that uses solely local information when adding new edges. For small numbers of candidate edges our process gives rise to a second-order phase transition, but becomes first order in the limit of global choice. We provide the set of critical exponents required to characterize the nature of this percolation transition. Such a process permits interventions which can delay the onset of percolation while tempering the explosiveness caused by cluster product rule processes.

  16. Pilot test of bacterial percolation leaching at Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Fan Baotuan; Liu Jian; Jiang Yngqiong; Cai Chunhui; Jiang Lang; Zhou Renhua; Tong Changning; Zhang Hongli

    2006-01-01

    Total 18 t uranium ores of Fuzhou Uranium Mine packed in three or four columns in series were leached by bacterial percolation. The results show that without adding any other chemical oxidant such as sodium chlorate, the leaching rate measured by residue is 91.45%-94.48%, leaching time is 50-60 d, acid consumption is 6.17%-7.75%, and residue grade is 0.0149%-0.0208%. Compared with conventional percolation leaching process, the leaching rate is improved by 3%, leaching time is shorted by 26%, and acid consumption is saved by 34%. Accumulation pattern of ΣFe and F - in the process of leaching is discussed. Influence of F - on bacterial growth, regeneration of barren solution as well as correlative techniques are reviewed. (authors)

  17. Conductivity percolation in loosely compacted microcrystalline cellulose: An in situ study by dielectric spectroscopy during densification.

    Science.gov (United States)

    Nilsson, Martin; Frenning, Göran; Gråsjö, Johan; Alderborn, Göran; Strømme, Maria

    2006-10-19

    The present study aims at contributing to a complete understanding of the water-induced ionic charge transport in cellulose. The behavior of this transport in loosely compacted microcrystalline cellulose (MCC) powder was investigated as a function of density utilizing a new type of measurement setup, allowing for dielectric spectroscopy measurement in situ during compaction. The ionic conductivity in MCC was found to increase with increasing density until a leveling-out was observed for densities above approximately 0.7 g/cm3. Further, it was shown that the ionic conductivity vs density followed a percolation type behavior signifying the percolation of conductive paths in a 3D conducting network. The density percolation threshold was found to be between approximately 0.2 and 0.4 g/cm3, depending strongly on the cellulose moisture content. The observed percolation behavior was attributed to the forming of interparticulate bonds in the MCC and the percolation threshold dependence on moisture was linked to the moisture dependence of particle rearrangement and plastic deformation in MCC during compaction. The obtained results add to the understanding of the density-dependent water-induced ionic transport in cellulose showing that, at given moisture content, the two major parameters determining the magnitude of the conductivity are the connectedness of the interparticluate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. At densities between approximately 0.7 and 1.2 g/cm3 both the bond and the pore networks have percolated, facilitating charge transport through the MCC compact.

  18. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  19. Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections

    NARCIS (Netherlands)

    Enter, van A.C.D.; Hulshof, T.

    2007-01-01

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  20. Rigidity percolation in dispersions with a structured viscoelastic matrix

    NARCIS (Netherlands)

    Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle

  1. Numerical calculation of the conductivity of percolation clusters and the use of special purpose computers

    International Nuclear Information System (INIS)

    Herrmann, H.J.

    1989-01-01

    Electrical conductivity diffusion or phonons, have an anomalous behaviour on percolation clusters at the percolation threshold due to the fractality of these clusters. The results that have been found numerically for this anomalous behaviour are reviewed. A special purpose computer built for this purpose is described and the evaluation of the data from this machine is discussed

  2. A Percolation Perspective for Gutenburg-Richter Scaling and b-values for Fracking Assocated Seismicity

    Science.gov (United States)

    Norris, J. Q.

    2016-12-01

    Published 60 years ago, the Gutenburg-Richter law provides a universal frequency-magnitude distribution for natural and induced seismicity. The GR law is a two parameter power-law with the b-value specifying the relative frequency of small and large events. For large catalogs of natural seismicity, the observed b-values are near one, while fracking associated seismicity has observed b-values near two, indicating relatively fewer large events. We have developed a computationally inexpensive percolation model for fracking that allows us to generate large catalogs of fracking associated seismicity. Using these catalogs, we show that different power-law fitting procedures produce different b-values for the same data set. This shows that care must be taken when determining and comparing b-values for fracking associated seismicity.

  3. Percolation analysis for cosmic web with discrete points

    Science.gov (United States)

    Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung

    2018-01-01

    Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.

  4. The Work of Ideology: Examining Class, Language Use, and Attitudes among Moroccan University Students

    Science.gov (United States)

    Chakrani, Brahim; Huang, Jason L.

    2014-01-01

    This article investigates overt language attitudes and linguistic practices among French-taught university students in Morocco, showing the relationship between language behavior and attitudes. The results reveal a class-based divide in respondents' patterns of language use, in their support of the French monolingual sanitized classroom, and in…

  5. Effect of percolation rate on water-travel time in deep, partially saturated zones

    International Nuclear Information System (INIS)

    Peters, R.R.; Gauthier, J.H.; Dudley, A.L.

    1986-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating Yucca Mountain, Nye County, Nevada, as a prospective site for a radioactive-waste repository. The Yucca Mountain site is unique among those currently being investigated by the US Department of Energy (DOE) in that the prospective repository location is in the unsaturated zone, approximately 300 m above the water table. A composite-porosity, continuum model was developed to model flow in a fractured, porous medium. Simulations using data from the Yucca Mountain site and this model in the one-dimensional code TOSPAC indicate that current estimates of the percolation rate result in water movement confined to the matrix and that the water-travel time from the repository to the water table in on the order of hundreds of thousands of years. This result is sensitive to the percolation rate; an increase in percolation rate of a factor of 10 may initiate water movement in the fractures, reducing the travel time significantly

  6. Knowledge and practices about hospital waste disposal and universal safety precautions in class IV employee.

    Science.gov (United States)

    Megha, Khobragade; Daksha, Pandit

    2013-01-01

    Norms and guidelines are formed for safe disposal of hospital waste but question is whether these guidelines are being followed and if so, to what extent. Hence, this study was conducted with objective to study the knowledge and practices about hospital waste disposal and universal safety precautions in class IV employee and to study its relationship with education, occupation and training. A cross-sectional study was carried out in a teaching hospital in Mumbai using semi-structured questionnaire in which Class IV employee were included. Questionnaire was filled by face to face interview. Data were analyzed using SPSS. 48.7% Class IV employee were not trained. More than 40% were following correct practices about disinfection of infectious waste. None of the respondents were using protective footwear while handling hospital waste. Only 25.5% were vaccinated for hepatitis B. 16% had done HIV testing due to contact with blood, body fluid, needle stick injury. Knowledge and practices about hospital waste disposal and universal precaution were statistically significant in trained respondents. Training of employees should be given top priority; those already in service should be given on the job training at the earliest.

  7. Reproducibility of up-flow column percolation tests for contaminated soils.

    Directory of Open Access Journals (Sweden)

    Tetsuo Yasutaka

    Full Text Available Up-flow column percolation tests are used at laboratory scale to assess the leaching behavior of hazardous substance from contaminated soils in a specific condition as a function of time. Monitoring the quality of these test results inter or within laboratory is crucial, especially if used for Environment-related legal policy or for routine testing purposes. We tested three different sandy loam type soils (Soils I, II and III to determine the reproducibility (variability inter laboratory of test results and to evaluate the difference in the test results within laboratory. Up-flow column percolation tests were performed following the procedure described in the ISO/TS 21268-3. This procedure consists of percolating solution (calcium chloride 1 mM from bottom to top at a flow rate of 12 mL/h through softly compacted soil contained in a column of 5 cm diameter and 30 ± 5 cm height. Eluate samples were collected at liquid-to-solid ratio of 0.1, 0.2, 0.5, 1, 2, 5 and 10 L/kg and analyzed for quantification of the target elements (Cu, As, Se, Cl, Ca, F, Mg, DOC and B in this research. For Soil I, 17 institutions in Japan joined this validation test. The up-flow column experiments were conducted in duplicate, after 48 h of equilibration time and at a flow rate of 12 mL/h. Column percolation test results from Soils II and III were used to evaluate the difference in test results from the experiments conducted in duplicate in a single laboratory, after 16 h of equilibration time and at a flow rate of 36 mL/h. Overall results showed good reproducibility (expressed in terms of the coefficient of variation, CV, calculated by dividing the standard deviation by the mean, as the CV was lower than 30% in more than 90% of the test results associated with Soil I. Moreover, low variability (expressed in terms of difference between the two test results divided by the mean was observed in the test results related to Soils II and III, with a variability lower than 30

  8. Improving the performance of flexibility and coordination abilities university girls-students in the process of hatha-yoga classes during the university year

    Directory of Open Access Journals (Sweden)

    Ganna Tolchieva

    2015-02-01

    Full Text Available Purpose: to determine the results of changes in terms of flexibility and coordination abilities of university students in the process of hatha-yoga developed by the program during the year. Material and methods: a pedagogical experiment was attended by 60 students of the university at the age of 17–20 years. Conducted pedagogical experiment and educational testing, the results were processed by methods of mathematical statistics. Results: the control group students only attended university studies in physical education, experimental – three times a week, hour and a half fitness classes on hatha-yoga. Conclusions: in the pedagogical experiment proved the effectiveness of the developed program on hatha-yoga in extracurricular work of students of the university; the average results recorded characteristics of flexibility and coordination abilities of university students and calculated at the end of the university year, the percentage improvement in these indicators.

  9. Multifractal properties of resistor diode percolation.

    Science.gov (United States)

    Stenull, Olaf; Janssen, Hans-Karl

    2002-03-01

    Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the phase transition between the nonpercolating and the directed percolating phase. Building on first principles such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of the current distribution that are governed by a family of critical exponents [psi(l)]. We calculate the family [psi(l)] to two-loop order in a diagrammatic perturbation calculation augmented by renormalization group methods.

  10. Percolation Theory and Modern Hydraulic Fracturing

    Science.gov (United States)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  11. New scaling results in quantum percolation

    International Nuclear Information System (INIS)

    Srivastava, V.; Chaturvedi, M.

    1983-06-01

    Scaling arguments for distribution of cluster size and size of localized states have been developed to calculate average number of lattice sites falling under a localized wave function as a function of concentration for a model binary system with ''infinite disorder''. We find distinct features near classical and quantum percolation thresholds. Analytical results are compared with computer-experiment results and the predicted features are found to be confirmed. Possibility of appearance of extended states in two-dimensional binary systems even at infinite disorder is pointed out. (author)

  12. Self Healing Percolation

    Science.gov (United States)

    Scala, Antonio

    2015-03-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.

  13. Kajian Budaya Organisasi Bina Nusantara University Menuju “A World Class University”

    Directory of Open Access Journals (Sweden)

    Amia Luthfia

    2013-10-01

    Full Text Available University is an important institution that would form the nation culture and responsible for the culture transmission. The assessment of a good organizational culture is an important part in the study of organizational culture. The research objective is to analyze organizational culture of Bina Nusantara University comprehensively, the strengths and weaknesses of its effort to become “The World Class University". The research methodology is qualitative with method combination of FGD, in-depth interviews and covert observation. The research outcome shows that Bina Nusantara University has had elements of modern organization characteristic such as innovative management (centralized non-academic function and decentralize academic function; transparent and results-oriented management system with clear and measurable target; detail operational procedure. It has been able to create healthy working environment that supports high integrity, working ethics, dedication, loyalty, opened communication and high sense of belonging. It utilizes information and communications technology through a comprehensive and integrated system called Binusmaya as its ikon and identity.As an educational institution, Bina Nusantara University should develop 3 other elements which are role model, spirit and character building. Former rector (the founder was an inspired role model that provided a profound influence to the attitudes and behaviors of its members. 

  14. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  15. Percolation effect in thick film superconductors

    International Nuclear Information System (INIS)

    Sali, R.; Harsanyi, G.

    1994-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T c and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm 2 . The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed

  16. Initiatives for Change in Korean Higher Education: Quest for Excellence of World-Class Universities

    Science.gov (United States)

    Kang, Jean S.

    2015-01-01

    The establishment of World-Class Universities (WCUs) is noted as a paramount development in the realm of international higher education. The integration of higher education into a more international scheme has enabled for higher education institutions (HEIs) to have a broader impact on the states and their respective citizens. This study examines…

  17. The Privilege of Ease: Social Class and Campus Life at Highly Selective, Private Universities

    Science.gov (United States)

    Martin, Nathan D.

    2012-01-01

    Active involvement in college activities is linked to a host of student development outcomes, including personal growth, achievement and satisfaction. Yet, to date there has been too little attention to how social class shapes campus involvement. Through an analysis of survey data of students attending a single elite university and a national…

  18. Modified Invasion Percolation Models for Multiphase Processes

    Energy Technology Data Exchange (ETDEWEB)

    Karpyn, Zuleima [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  19. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold

    Science.gov (United States)

    Nuzhnyy, D.; Savinov, M.; Bovtun, V.; Kempa, M.; Petzelt, J.; Mayoral, B.; McNally, T.

    2013-02-01

    Composites of multiwalled carbon nanotubes with poly(ethylene terephthalate) (PET-MWCNT) with up to 3 vol% MWCNTs were prepared and characterized by broad-band AC conductivity and dielectric spectroscopy up to the infrared range using several techniques. A very low electrical percolation threshold of 0.07 vol% MWCNTs was revealed from the low-frequency conductivity plateau as well as from DC conductivity, whose values show the same critical power dependence on MWCNT concentration with the exponent t = 4.3. Above the plateau, the AC conductivity increases with frequency up to the THz range, where it becomes overlapped with the absorption of vibrational modes. The temperature dependence down to ˜5 K has shown semiconductor behaviour with a concentration-independent but weakly temperature-dependent small activation energy of ˜3 meV. The behaviour is compatible with the previously suggested fluctuation-induced tunnelling conductivity model through a thin (˜1 nm) polymer contact layer among the adjacent MWCNTs within percolated clusters. At higher frequencies, deviations from the simple universal conductivity behaviour are observed, indicating some distribution of energy barriers for an electron hopping mechanism.

  20. Cluster concentrations in correlated and non-correlated continuum percolation problems

    International Nuclear Information System (INIS)

    Borstnik, B.; Jesudason, C.G.; Lukman, D.

    1996-01-01

    The methodologies are developed how to evaluate properties of clusters of correlated and non-correlated particles. As an example of correlated particles, the two dimensional hard core disks with attractive square well potential are taken. Narrow and deep square well potential is used in order to mimic the adhesive potential, suitable for modeling of colloidal systems. Permeable disks in two dimensions are taken as an example of non-correlated systems. In both cases the dependence of cluster concentrations upon the density of particles is studied. Percolation threshold densities and critical exponents which govern the zeroth, first and second moments of cluster distributions are evaluated. It is found that the calculation of density dependence of cluster concentrations gives enough information to evaluate the percolation threshold density, some critical exponents, as well as to reproduce the Rushbrooke scaling law

  1. Damage percolation during stretch flange forming of aluminum alloy sheet

    Science.gov (United States)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  2. Percolative Theory of Organic Magnetoresistance and Fringe-Field Magnetoresistance

    Science.gov (United States)

    Flatté, Michael E.

    2013-03-01

    A recently-introduced percolation theory for spin transport and magnetoresistance in organic semiconductors describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Increases in the spin-flip rate open up ``spin-blocked'' pathways to become viable conduction channels and hence, as the spin-flip rate changes with magnetic field, produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with measurements of the shape and saturation of measured magnetoresistance curves. We find that the threshold hopping distance is analogous to the branching parameter of a phenomenological two-site model, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance. Regimes of slow and fast hopping magnetoresistance are uniquely characterized by their line shapes. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory. Extensions to this theory also describe fringe-field magnetoresistance, which is the influence of fringe magnetic fields from a nearby unsaturated magnetic electrode on the conductance of an organic film. This theory agrees with several key features of the experimental fringe-field magnetoresistance, including the applied fields where the magnetoresistance reaches extrema, the applied field range of large magnetoresistance effects from the fringe fields, and the sign of the effect. All work done in collaboration with N. J. Harmon, and fringe-field magnetoresistance work in collaboration also with F. Macià, F. Wang, M. Wohlgenannt and A. D. Kent. This work was supported by an ARO MURI.

  3. Research and Teaching: A New Tool for Measuring Student Behavioral Engagement in Large University Classes

    Science.gov (United States)

    Lane, Erin S.; Harris, Sara E.

    2015-01-01

    The authors developed a classroom observation protocol for quantitatively measuring student engagement in large university classes. The Behavioral Engagement Related to instruction (BERI) protocol can be used to provide timely feedback to instructors as to how they can improve student engagement in their classrooms.

  4. Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models

    NARCIS (Netherlands)

    Hara, T.; Hofstad, van der R.W.; Slade, G.

    2003-01-01

    We consider spread-out models of self-avoiding walk, bond percolation, lattice trees and bond lattice animals on ${\\mathbb{Z}^d}$, having long finite-range connections, above their upper critical dimensions $d=4$ (self-avoiding walk), $d=6$ (percolation) and $d=8$ (trees and animals). The two-point

  5. Overland flow connectivity on planar patchy hillslopes - modified percolation theory approaches and combinatorial model of urns

    Science.gov (United States)

    Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal

    2017-04-01

    Source-sink systems are very common in hydrology; in particular, some land cover types often generate runoff (e.g. embedded rocks, bare soil) , while other obstruct it (e.g. vegetation, cracked soil). Surface runoff coefficients of patchy slopes/plots covered by runoff generating and obstructing covers (e.g., bare soil and vegetation) depend critically on the percentage cover (i.e. sources/sinks abundance) and decrease strongly with observation scale. The classic mathematical percolation theory provides a powerful apparatus for describing the runoff connectivity on patchy hillslopes, but it ignores strong effect of the overland flow directionality. To overcome this and other difficulties, modified percolation theory approaches can be considered, such as straight percolation (for the planar slopes), quasi-straight percolation and models with limited obstruction. These approaches may explain both the observed critical dependence of runoff coefficients on percentage cover and their scale decrease in systems with strong flow directionality (e.g. planar slopes). The contributing area increases sharply when the runoff generating percentage cover approaches the straight percolation threshold. This explains the strong increase of the surface runoff and erosion for relatively low values (normally less than 35%) of the obstructing cover (e.g., vegetation). Combinatorial models of urns with restricted occupancy can be applied for the analytic evaluation of meaningful straight percolation quantities, such as NOGA's (Non-Obstructed Generating Area) expected value and straight percolation probability. It is shown that the nature of the cover-related runoff scale decrease is combinatorial - the probability for the generated runoff to avoid obstruction in unit area decreases with scale for the non-trivial percentage cover values. The magnitude of the scale effect is found to be a skewed non-monotonous function of the percentage cover. It is shown that the cover-related scale

  6. Percolative ionic conduction in the LiAlSiO4 glass-ceramic system

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Pike, G.E.; Johnson, R.T. Jr.

    1977-01-01

    The effect f crystallinity on the lithium ion conductivity in LiAlSiO 4 glass and glass-ceramic solid electrolytes has been determined. The ionic conductivity is thermally activated with an activation energy and pre-exponential factor that change in a marked and nonsimple manner as the volume fraction of crystallinity changes. These results are explained by using a continuum percolation model (effective-medium approximation) which assumes that ionic conduction in the glass-ceramic is almost entirely within the glass phase until the crystalline volume fraction rises above approx. 55%. The LiAlSiO 4 system would seem to be nearly ideal for application of percolation theory since the crystalline phase, β eucryptite, has nearly the same composition as the glass phase. Hence, as the crystallite volume fraction increases in the glass ceramic, the residual glass composition and conductivity remain the same. This is the first application of percolation theory to ionic transport in glass-ceramics and excellent agreement is obtained between theory and experiment for the LiAlSiO 4 system

  7. Exploring the Heterogeneity of Class in Higher Education: Social and Cultural Differentiation in Danish University Programmes

    DEFF Research Database (Denmark)

    Thomsen, Jens Peter

    2012-01-01

    education demands a closer examination of the hidden heterogeneity in the students’ social origin and educational strategies. Using a mixed-method approach (register data and ethnographic observations and interviews) the paper focuses on the students’ class origins and on different cultural practices......This paper examines the relationship between social background, choice of university programme and academic culture among Danish university students. Statistically and sociologically, university students are often treated as a homogeneous group, but the ever-increasing number of students in higher...... in three Danish university programmes. It is shown that the Danish university field is characterized by a significant variation in social selectivity from programme to programme, and it is argued that these different social profiles correspond with distinctively different cultural practices...

  8. (No) Harm in Asking: Class, Acquired Cultural Capital, and Academic Engagement at an Elite University

    Science.gov (United States)

    Jack, Anthony Abraham

    2016-01-01

    How do undergraduates engage authority figures in college? Existing explanations predict class-based engagement strategies. Using in-depth interviews with 89 undergraduates at an elite university, I show how undergraduates with disparate precollege experiences differ in their orientations toward and strategies for engaging authority figures in…

  9. Ultrathin percolated WO{sub 3} cluster film and its resistive response to H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Meng [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Wong, Man Hon; Huang, Jian Xing [Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Ong, Chung Wo, E-mail: c.w.ong@polyu.edu.hk [Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2014-11-05

    Highlights: • Ultrathin percolated network of WO{sub 3} clusters was fabricated. • The WO{sub 3} clusters are modeled by spherical caps connected by ultrafine linkages. • The ultrathin percolated network of WO{sub 3} clusters shows fast response rate to H{sub 2}. • The fast response is attributed to the rapid electrical switching of the linkages. • Improved H{sub 2} sensing properties may be achieved if narrower linkages are used. - Abstract: Thin films composed of tungsten oxide (WO{sub 3}) nanoclusters were fabricated by oxidizing supersonic cluster beam deposited tungsten films at various temperatures. Oxidation at 700 °C resulted in aggregation of the deposits, forming a percolated network of WO{sub 3} spherical caps connected by fine links. The resistance response of the palladium-(Pd-) coated film sample to hydrogen (H{sub 2}) was investigated. The response rate was faster than those of other samples oxidized at lower temperatures. This is the result of the rapid electrical switching of the intercluster links between the highly resistive depleted state and conducting hydrogenated state. The possibility of improving the H{sub 2} sensing response rate with the use of the percolated WO{sub 3} film structure is illustrated.

  10. Advantages of using webquests in EFL Classes in A Technical University

    Directory of Open Access Journals (Sweden)

    Marina Valeryevna Kuimova

    2015-12-01

    Full Text Available The main purpose of foreign language teaching is to learn to communicate and overcome the language barrier. The article studies the theoretical background of WebQuest as a valuable tool and proves that it helps learners to acquire linguistic and extra-linguistic knowledge. WebQuests ensure a context-based learning environment, help to broaden learners’ perspectives by widening ideas and concepts on different topics and acquiring creative, critical and problem-solving skills. The authors demonstrate positive outcomes of the work with WebQuest in foreign language classes at the Institute of Non-Destructive Testing, National Research Tomsk Polytechnic University.

  11. Temporal percolation of the susceptible network in an epidemic spreading.

    Science.gov (United States)

    Valdez, Lucas Daniel; Macri, Pablo Alejandro; Braunstein, Lidia Adriana

    2012-01-01

    In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity ΦS(t), namely, the probability that a given neighbor of a node is susceptible at time t, is the control parameter of a node void percolation process involving those nodes on the network not-reached by the disease. We show that there exists a critical time t(c) above which the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be implemented before this critical time t(c). Our theoretical results are confirmed by extensive simulations of the SIR process.

  12. Percolation pond as a method of managed aquifer recharge in a ...

    Indian Academy of Sciences (India)

    Raicy Mani Christy

    2017-07-17

    Jul 17, 2017 ... Percolation ponds have become very popular methods of managed aquifer recharge due to their low ... effect of recharge structures by some researchers .... qualitative comparison of observed responses of .... Two types of.

  13. Estimating filtration coefficients for straining from percolation and random walk theories

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; You, Zhenjiang

    2012-01-01

    In this paper, laboratory challenge tests are carried out under unfavorable attachment conditions, so that size exclusion or straining is the only particle capture mechanism. The experimental results show that far above the percolation threshold the filtration coefficients are not proportional...... size exclusion theory or the model of parallel tubes with mixing chambers, where the filtration coefficients are proportional to the flux through smaller pores, and the predicted penetration depths are much lower. A special capture mechanism is proposed, which makes it possible to explain...... the experimentally observed power law dependencies of filtration coefficients and large penetration depths of particles. Such a capture mechanism is realized in a 2D pore network model with periodical boundaries with the random walk of particles on the percolation lattice. Geometries of infinite and finite clusters...

  14. Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method

    Science.gov (United States)

    Wiyantoko, Bayu; Rahmah, Nafisa

    2017-12-01

    The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.

  15. On the universality class of certain string theory hadrons

    International Nuclear Information System (INIS)

    Bertoldi, G.; Bigazzi, F.; Cotrone, A.L.; Nunez, C.; Pando Zayas, L.A.

    2003-12-01

    Exploiting the gauge/gravity correspondence we d the spectrum of hadronic-like bound states of adjoint particles with a large global charge in several confining theories. In particular, we consider an embedding of four-dimensional N = 1 supersymmetric Yang-Mills into IIA string theory, two classes of three-dimensional gauge theories and the softly broken version of one of them. In all cases we describe the low energy excitations of a heavy hadron with mass proportional to its global charge. These excitations include: the hadron's nonrelativistic motion, its stringy excitations and excitations corresponding to the addition of massive constituents. Our analysis provides ample evidence for the universality of such hadronic states in con ing theories admitting supergravity duals. Besides, we d numerically a new smooth solution that can be thought of as a non-supersymmetric deformation of G 2 holonomy manifolds. (author)

  16. Rubber elasticity for percolation network consisting of Gaussian chains

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Kengo, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp; Noguchi, Hiroshi; Shibayama, Mitsuhiro, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Sakai, Takamasa, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  17. Rubber elasticity for percolation network consisting of Gaussian chains

    International Nuclear Information System (INIS)

    Nishi, Kengo; Noguchi, Hiroshi; Shibayama, Mitsuhiro; Sakai, Takamasa

    2015-01-01

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G 0 , must be equal to G/G 0 = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels

  18. Students’ oral involvement in the Chinese university classroom: A comparison between classes of Chinese and international students

    OpenAIRE

    Muhammad Abid Malik; Guoyuan Sang

    2017-01-01

    The current research investigates the notion that Chinese students are orally less involved in the classroom as compared to international students. Most of the previous research on this topic focuses on the Chinese students in English language classes or those studying in other countries where the language barrier and foreign culture might influence such behaviour. Using observations, this research compares two Chinese and two international classes in a Chinese university to investigate this ...

  19. Electrical Properties of Zinc-Kaolin Composites below its Percolation ...

    African Journals Online (AJOL)

    In this paper, we present some electrical properties of the zinc-kaolin cermet resistors with zinc metal fillers below the percolation threshold. Rectangular cermet rods of dimensions 65 mm by 6.5 mm by 3.2 mm were produced in a mould with semi-dry the zinc/kaolin powder mixture which is compressed with a force of about ...

  20. Probing the energy barriers and magnetization reversal processes of nanoperforated membrane based percolated media

    International Nuclear Information System (INIS)

    Neu, V; Schultz, L; Schulze, C; Makarov, D; Albrecht, M; Faustini, M; Grosso, D; Lee, J; Kim, S-K; Suess, D

    2013-01-01

    Magnetization reversal processes in Co/Pt multilayers prepared on nanoperforated templates are probed by magnetization relaxation measurements. The signature of pinning controlled domain wall movement as expected for percolated media is identified. This contrasts with the nucleation-type reversal mechanism of a Co/Pt reference film prepared on a smooth substrate. A zero field energy barrier of 93k B T is determined by fluctuation field measurements and is elucidated by micromagnetic calculations using the nudged elastic band method. This value is sufficiently large to qualify the material as a promising percolated medium. (paper)

  1. A trial map and GIS class on junior high school with university collaboration in Yokohama, Japan

    Science.gov (United States)

    Tabe, Toshimitsu; Ohnishi, Koji

    2018-05-01

    On the new curriculum of high school in Japan, geography will be compulsory subject in Japan from 2022. The indexes of new high school geography as compulsory subject will be 1. Using of maps and GIS, 2. Understanding of the world and International collaboration: Life and culture, issues of world, 3. Disaster prevention and ESD: natural environment and disaster, and construction of ideal society. The instruction of the GIS will be one of the issues for social studies teachers in the new curriculum. The aim of this study is to make the utilize map and GIS education content through trial class in junior high school. Trial class was done on Tsurugamine junior high school in Yokohama city with university and Yokohama city school board collaboration. In the trial class, the teacher indicated the old and new topographical maps to students and asked them to consider the characteristics of the area and the land use change. Transparent sheets overlaying is useful this activity. Transparent usage indicated the GIS function of overlay. It is good activity for students to understand the function of GIS. After the considering land use changes, they considered the future of their town. The several unused lands are spread in this area. Students present their opinions how to develop them. The important thing to carry out map and GIS class through neighborhood area is preparation of adequate maps. For this preparation, collaboration with university geography stuffs or undergraduate students are effective.

  2. Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water.

    Science.gov (United States)

    Carey, Manus; Jiujin, Xiao; Gomes Farias, Júlia; Meharg, Andrew A

    2015-01-01

    A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery.

  3. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    Science.gov (United States)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  4. Percolation simulation of laser-guided electrical discharges.

    Science.gov (United States)

    Sasaki, Akira; Kishimoto, Yasuaki; Takahashi, Eiichi; Kato, Susumu; Fujii, Takashi; Kanazawa, Seiji

    2010-08-13

    A three-dimensional simulation of laser-guided discharges based on percolation is presented. The model includes both local growth of a streamer due to the enhanced electric field at the streamer's tip and propagation of a leader by remote ionization such as that caused by runaway electrons. The stochastic behavior of the discharge through a preformed plasma channel is reproduced by the calculation, which shows complex path with detouring and bifurcation. The probability of guiding is investigated with respect to the ionized, conductive fraction along the channel.

  5. Note: Optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems

    Energy Technology Data Exchange (ETDEWEB)

    Moscicki, J. K.; Sokolowska, D.; Dziob, D.; Nowak, J. [Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Kwiatkowski, L. [Department of Econometrics and Operations Research, Cracow University of Economics, Rakowicka 27, 31-510 Krakow (Poland)

    2014-02-15

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  6. When interflow also percolates: downslope travel distances and hillslope process zones.

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, C. Rhett [Warnell School of Forestry and Natural Resources, University of Georgia, GA 30602 Athens USA; Bitew, Menberu [Warnell School of Forestry and Natural Resources, University of Georgia, GA 30602 Athens USA; Du, Enhao [Climate Science Department, Lawrence Berkeley National Laboratory, CA 94720 Berkeley USA

    2014-02-17

    In hillslopes with soils characterized by deep regoliths, such as Ultisols,Oxisols, and Alfisols, interflow occurs episodically over impeding layers near and parallel to the soil surface such as low-conductivity B horizons (e.g.Newman et al., 1998; Buttle andMcDonald, 2002; Du et al., In Review), till layers (McGlynn et al., 1999; Bishop et al., 2004), hardpans (McDaniel et al., 2008), C horizons (Detty and McGuire, 2010), and permeable bedrock (Tromp van Meerveld et al., 2007). As perched saturation develops within and above these impeding but permeable horizons, flow moves laterally downslope, but the perched water also continues to percolate through the impeding horizon to the unsaturated soils and saprolite below. Perched water and solutes will eventually traverse the zone of perched saturation above the impeding horizon and then enter and percolate through the impeding horizon. In such flow situations, only lower hillslope segments with sufficient downslope travel distance will deliver water to the riparian zone within the time scale of a storm.farther up the slope, lateral flow within the zone of perched saturation. will act mainly to shift the point of percolation (location where a water packet leaves the downslope flow zone in the upper soil layer and enters the impeding layer) down the hillslope from the point of infiltration. In flatter parts of the hillslope or in areas with little contrast between the conductivities of the upper and impeding soil layers, lateral flow distances will be negligible.

  7. Influence maximization in complex networks through optimal percolation

    Science.gov (United States)

    Morone, Flaviano; Makse, Hernán A.

    2015-08-01

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.

  8. Factors Related to In-Class Spiritual Experience: Relationship between Pre-Class Scripture Reading, In-Class Note-Taking, and Perceived In-Class Spiritual Experiences

    Science.gov (United States)

    Hilton, John, III; Sweat, Anthony R.; Plummer, Kenneth

    2015-01-01

    The purpose of this study is to examine the relationship between student in-class note-taking and pre-class reading with perceived in-class spiritual and religious outcomes. This study surveyed 620 students enrolled in six different sections of an introductory religion course at a private religious university. Full-time religious faculty members…

  9. Teaching Language and Content: Instructor Strategies in a Bilingual Science Class at a Chinese University

    Science.gov (United States)

    Liang, Xiaoping; Smith, Sara W.

    2012-01-01

    The present research analyzes instructional strategies used to integrate the learning of content and English as a foreign language in a bilingual physics class at a university in Shanghai, China. It examines how the instructor handles meaning and form of new English science vocabulary in concept-focused physics lectures and the strategies he used…

  10. Predicting deep percolation with eddy covariance under mulch drip irrigation

    Science.gov (United States)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  11. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black

    Directory of Open Access Journals (Sweden)

    Yuli Chen

    2014-01-01

    Full Text Available The electrical percolation of polymer-matrix composites (PMCs containing hybrid fillers of carbon nanotubes (CNTs and carbon black (CB is estimated by studying the connection possibility of the fillers using Monte Carlo simulation. The 3D simulation model of CB-CNT hybrid filler is established, in which CNTs are modeled by slender capped cylinders and CB groups are modeled by hypothetical spheres with interspaces because CB particles are always agglomerated. The observation on the effects of CB and CNT volume fractions and dimensions on the electrical percolation threshold of hybrid filled composites is then carried out. It is found that the composite electrical percolation threshold can be reduced by increasing CNT aspect ratio, as well as increasing the diameter ratio of CB groups to CNTs. And adding CB into CNT composites can decrease the CNT volume needed to convert the composite conductivity, especially when the CNT volume fraction is close to the threshold of PMCs with only CNT filler. Different from previous linear assumption, the nonlinear relation between CB and CNT volume fractions at composite percolation threshold is revealed, which is consistent with the synergistic effect observed in experiments. Based on the nonlinear relation, the estimating equation for the electrical percolation threshold of the PMCs containing CB-CNT hybrid fillers is established.

  12. Spatial and temporal dynamics of deep percolation, lag time and recharge in an irrigated semi-arid region

    Science.gov (United States)

    Nazarieh, F.; Ansari, H.; Ziaei, A. N.; Izady, A.; Davari, K.; Brunner, P.

    2018-05-01

    The time required for deep percolating water to reach the water table can be considerable in areas with a thick vadose zone. Sustainable groundwater management, therefore, has to consider the spatial and temporal dynamics of groundwater recharge. The key parameters that control the lag time have been widely examined in soil physics using small-scale lysimeters and modeling studies. However, only a small number of studies have analyzed how deep-percolation rates affect groundwater recharge dynamics over large spatial scales. This study examined how the parameters influencing lag time affect groundwater recharge in a semi-arid catchment under irrigation (in northeastern Iran) using a numerical modeling approach. Flow simulations were performed by the MODFLOW-NWT code with the Vadose-Zone Flow (UZF) Package. Calibration of the groundwater model was based on data from 48 observation wells. Flow simulations showed that lag times vary from 1 to more than 100 months. A sensitivity analysis demonstrated that during drought conditions, the lag time was highly sensitive to the rate of deep percolation. The study illustrated two critical points: (1) the importance of providing estimates of the lag time as a basis for sustainable groundwater management, and (2) lag time not only depends on factors such as soil hydraulic conductivity or vadose zone depth but also depends on the deep-percolation rates and the antecedent soil-moisture condition. Therefore, estimates of the lag time have to be associated with specific percolation rates, in addition to depth to groundwater and soil properties.

  13. Electron percolation in realistic models of carbon nanotube networks

    International Nuclear Information System (INIS)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-01-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models

  14. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  15. Nonlinear Analysis on Cross-Correlation of Financial Time Series by Continuum Percolation System

    Science.gov (United States)

    Niu, Hongli; Wang, Jun

    We establish a financial price process by continuum percolation system, in which we attribute price fluctuations to the investors’ attitudes towards the financial market, and consider the clusters in continuum percolation as the investors share the same investment opinion. We investigate the cross-correlations in two return time series, and analyze the multifractal behaviors in this relationship. Further, we study the corresponding behaviors for the real stock indexes of SSE and HSI as well as the liquid stocks pair of SPD and PAB by comparison. To quantify the multifractality in cross-correlation relationship, we employ multifractal detrended cross-correlation analysis method to perform an empirical research for the simulation data and the real markets data.

  16. Double site-bond percolation model for biomaterial implants

    OpenAIRE

    Mely, H.; Mathiot, J. -F.

    2011-01-01

    9 figures - 10 pages; We present a double site-bond percolation model to account, on the one hand, for the vascularization and/or resorption of biomaterial implant in bones, and on the other hand, for its mechanical continuity. The transformation of the implant into osseous material, and the dynamical formation/destruction of this osseous material is accounted for by creation and destruction of links and sites in two, entangled, networks. We identify the relevant parameters to describe the im...

  17. Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator

    Science.gov (United States)

    Watters, Arianna L.; Palmese, Giuseppe R.

    2014-09-01

    Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.

  18. The influence of percolation rate on the weathering rates of silicates in an E horizon of an Umbric Albaqualf

    NARCIS (Netherlands)

    Salm, van der C.; Verstraten, J.M.; Tiktak, A.

    1996-01-01

    Weathering rates from laboratory experiments are generally one or two orders of magnitude larger than field weathering rates. To obtain more information on this gap a large undisturbed soil column was percolated with a hydrochloric/sulphuric acid solution at rates of 0.15-0.89 cm/d. The percolate

  19. Nonlinear random resistor diode networks and fractal dimensions of directed percolation clusters.

    Science.gov (United States)

    Stenull, O; Janssen, H K

    2001-07-01

    We study nonlinear random resistor diode networks at the transition from the nonpercolating to the directed percolating phase. The resistor-like bonds and the diode-like bonds under forward bias voltage obey a generalized Ohm's law V approximately I(r). Based on general grounds such as symmetries and relevance we develop a field theoretic model. We focus on the average two-port resistance, which is governed at the transition by the resistance exponent straight phi(r). By employing renormalization group methods we calculate straight phi(r) for arbitrary r to one-loop order. Then we address the fractal dimensions characterizing directed percolation clusters. Via considering distinct values of the nonlinearity r, we determine the dimension of the red bonds, the chemical path, and the backbone to two-loop order.

  20. High Efficiency, Transparent, Reusable, and Active PM2.5 Filters by Hierarchical Ag Nanowire Percolation Network.

    Science.gov (United States)

    Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan

    2017-07-12

    Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.

  1. Nuclear fragmentation with secondary decay in the context of conventional percolation model

    International Nuclear Information System (INIS)

    Santiago, A.J.

    1989-09-01

    Mass and energy spectra arising from proton-nucleus collisions at energies between 80 and 350 GeV were studied, using the conventional percolation model coupled with secondary decay of the clusters. (L.C.J.A.)

  2. Powder keg divisions in the critical state regime: transition from continuous to explosive percolation

    Directory of Open Access Journals (Sweden)

    Zhou Zongzheng

    2017-01-01

    Full Text Available The underlying microstructure and dynamics of a dense granular material as it evolves towards the “critical state”, a limit state in which the system deforms with an essentially constant volume and stress ratio, remains widely debated in the micromechanics of granular media community. Strain localization, a common mechanism in the large strain regime, further complicates the characterization of this limit state. Here we revisit the evolution to this limit state within the framework of modern percolation theory. Attention is paid to motion transfer: in this context, percolation translates to the emergence of a large-scale connectivity in graphs that embody information on individual grain displacements. We construct each graph G(r by connecting nodes, representing the grains, within a distance r in the displacement-state-space. As r increases, we observe a percolation transition on G(r. The size of the jump discontinuity increases in the lead up to failure, indicating that the nature of percolation transition changes from continuous to explosive. We attribute this to the emergence of collective motion, which manifests in increasingly isolated communities in G(r. At the limit state, where the jump discontinuity is highest and invariant across the different unjamming cycles (drops in stress ratio, G(r encapsulates multiple kinematically distinct communities that are mediated by nodes corresponding to those grains in the shear band. This finding casts light on the dual and opposing roles of the shear band: a mechanism that creates powder keg divisions in the sample, while simultaneously acting as a mechanical link that transfers motion through such subdivisions moving in relative rigid-body motion.

  3. Powder keg divisions in the critical state regime: transition from continuous to explosive percolation

    Science.gov (United States)

    Zhou, Zongzheng; Tordesillas, Antoinette

    2017-06-01

    The underlying microstructure and dynamics of a dense granular material as it evolves towards the "critical state", a limit state in which the system deforms with an essentially constant volume and stress ratio, remains widely debated in the micromechanics of granular media community. Strain localization, a common mechanism in the large strain regime, further complicates the characterization of this limit state. Here we revisit the evolution to this limit state within the framework of modern percolation theory. Attention is paid to motion transfer: in this context, percolation translates to the emergence of a large-scale connectivity in graphs that embody information on individual grain displacements. We construct each graph G(r) by connecting nodes, representing the grains, within a distance r in the displacement-state-space. As r increases, we observe a percolation transition on G(r). The size of the jump discontinuity increases in the lead up to failure, indicating that the nature of percolation transition changes from continuous to explosive. We attribute this to the emergence of collective motion, which manifests in increasingly isolated communities in G(r). At the limit state, where the jump discontinuity is highest and invariant across the different unjamming cycles (drops in stress ratio), G(r) encapsulates multiple kinematically distinct communities that are mediated by nodes corresponding to those grains in the shear band. This finding casts light on the dual and opposing roles of the shear band: a mechanism that creates powder keg divisions in the sample, while simultaneously acting as a mechanical link that transfers motion through such subdivisions moving in relative rigid-body motion.

  4. Three-year randomized controlled clinical study of a one step universal adhesive and a two-step self-etch adhesive in Class II resin composite restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2017-01-01

    Purpose: To evaluate in a randomized clinical evaluation the 3-year clinical durability of a one-step universal adhesive bonding system and compare it intraindividually with a 2-step self-etch adhesive in Class II restorations. Materials and Methods: Each of 57 participants (mean age 58.3 yr......) received at least two, as similar as possible, extended Class II restorations. The cavities in each of the 60 individual pairs of cavities were randomly distributed to the 1-step universal adhesive (All Bond Universal: AU) and the control 2-step self-etch adhesive (Optibond XTR: OX). A low shrinkage resin......) success rates (p>0.05). Annual failure rates were 1.8% and 2.6%, respectively.The main reason for failure was resin composite fracture. Conclusion: Class II resin composite restorations placed with a one-step universal adhesive showed good short time effectiveness....

  5. Criticality of Parasitic Disease Transmission in a Diffusive Population

    International Nuclear Information System (INIS)

    He Minhua; Zhang Duanming; Yin Yanping; Chen Zhiyuan; Pan Guijun

    2008-01-01

    Through using the methods of finite-size effect and short time dynamic scaling, we study the critical behavior of parasitic disease spreading process in a diffusive population mediated by a static vector environment. Through comprehensive analysis of parasitic disease spreading we find that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. We determine the critical population density, above which the system reaches an epidemic spreading stationary state. We also perform a scaling analysis to determine the order parameter and critical relaxation exponents. The results show that the model does not belong to the usual directed percolation universality class and is compatible with the class of directed percolation with diffusive and conserved fields

  6. Effects of surfaces on resistor percolation.

    Science.gov (United States)

    Stenull, O; Janssen, H K; Oerding, K

    2001-05-01

    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization-group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents phiS and phiS(infinity) for the special and the ordinary transition, respectively, to one-loop order.

  7. Percolation Analysis of a Wiener Reconstruction of the IRAS 1.2 Jy Redshift Catalog

    Science.gov (United States)

    Yess, Capp; Shandarin, Sergei F.; Fisher, Karl B.

    1997-01-01

    We present percolation analyses of Wiener reconstructions of the IRAS 1.2 Jy redshift survey. There are 10 reconstructions of galaxy density fields in real space spanning the range β = 0.1-1.0, where β = Ω0.6/b, Ω is the present dimensionless density, and b is the bias factor. Our method uses the growth of the largest cluster statistic to characterize the topology of a density field, where Gaussian randomized versions of the reconstructions are used as standards for analysis. For the reconstruction volume of radius R ~ 100 h-1 Mpc, percolation analysis reveals a slight ``meatball'' topology for the real space, galaxy distribution of the IRAS survey.

  8. Ultralow percolation threshold of single walled carbon nanotube-epoxy composites synthesized via an ionic liquid dispersant/initiator

    International Nuclear Information System (INIS)

    Watters, Arianna L; Palmese, Giuseppe R

    2014-01-01

    Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10 −5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing. (paper)

  9. Non-criticality of interaction network over system's crises: A percolation analysis.

    Science.gov (United States)

    Shirazi, Amir Hossein; Saberi, Abbas Ali; Hosseiny, Ali; Amirzadeh, Ehsan; Toranj Simin, Pourya

    2017-11-20

    Extraction of interaction networks from multi-variate time-series is one of the topics of broad interest in complex systems. Although this method has a wide range of applications, most of the previous analyses have focused on the pairwise relations. Here we establish the potential of such a method to elicit aggregated behavior of the system by making a connection with the concepts from percolation theory. We study the dynamical interaction networks of a financial market extracted from the correlation network of indices, and build a weighted network. In correspondence with the percolation model, we find that away from financial crises the interaction network behaves like a critical random network of Erdős-Rényi, while close to a financial crisis, our model deviates from the critical random network and behaves differently at different size scales. We perform further analysis to clarify that our observation is not a simple consequence of the growth in correlations over the crises.

  10. A cross-sectional investigation of parenting style and friendship as mediators of the relation between social class and mental health in a university community.

    Science.gov (United States)

    Rubin, Mark; Kelly, Benjamin M

    2015-10-05

    This study tested a novel explanation for the positive relation between social class and mental health among university students. Students with a higher social class were expected to have experienced more authoritative and less authoritarian parenting styles; these parenting styles were expected to lead to greater friendship and social integration at university; and greater friendship and integration were expected to lead to better mental health. To test this model, the researchers asked 397 Australian undergraduate students to complete an online survey. The research used a cross-sectional correlational design, and the data was analysed using bootstrapped multiple serial mediation tests. Consistent with predictions, parenting style, general friendship and support, and social integration at university mediated the relation between social class and mental health. The present results suggest that working-class parenting styles may inhibit the development of socially-supportive friendships that protect against mental health problems. The potential effectiveness of interventions based on (a) social integration and (b) parenting style is discussed. Future research in this area should employ a longitudinal research design in order to arrive at clearer causal conclusions about the relations between social class, parenting styles, friendship, social integration, and mental health.

  11. Universality of ac conduction in disordered solids

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2000-01-01

    The striking similarity of ac conduction in quite different disordered solids is discussed in terms of experimental results, modeling, and computer simulations. After giving an overview of experiment, a macroscopic and a microscopic model are reviewed. For both models the normalized ac conductivity...... as a function of a suitably scaled frequency becomes independent of details of the disorder in the extreme disorder limit, i.e., when the local randomly varying mobilities cover many orders of magnitude. The two universal ac conductivities are similar, but not identical; both are examples of unusual non......-power-law universalities. It is argued that ac universality reflects an underlying percolation determining dc as well as ac conductivity in the extreme disorder limit. Three analytical approximations to the universal ac conductivities are presented and compared to computer simulations. Finally, model predictions...

  12. Transport processes in macroscopically disordered media from mean field theory to percolation

    CERN Document Server

    Snarskii, Andrei A; Sevryukov, Vladimir A; Morozovskiy, Alexander; Malinsky, Joseph

    2016-01-01

    This book reflects on recent advances in the understanding of percolation systems to present a wide range of transport phenomena in inhomogeneous disordered systems. Further developments in the theory of macroscopically inhomogeneous media are also addressed. These developments include galvano-electric, thermoelectric, elastic properties, 1/f noise and higher current momenta, Anderson localization, and harmonic generation in composites in the vicinity of the percolation threshold. The book describes how one can find effective characteristics, such as conductivity, dielectric permittivity, magnetic permeability, with knowledge of the distribution of different components constituting an inhomogeneous medium. Considered are a wide range of recent studies dedicated to the elucidation of physical properties of macroscopically disordered systems. Aimed at researchers and advanced students, it contains a straightforward set of useful tools which will allow the reader to derive the basic physical properties of compli...

  13. Finding influential nodes for integration in brain networks using optimal percolation theory.

    Science.gov (United States)

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  14. Use of Invasion Percolation Models To Study the Secondary Migration of Oil and Related Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1997-09-01

    In oil reservoir engineering, multi-phase displacement processes are important. This doctoral thesis describes simulations of the slow displacement of a wetting fluid by a non-wetting fluid in a complex, random porous medium and in a single fracture. The study is restricted to two-phase flow in the quasi-static limit in which viscous forces can be neglected. The secondary migration of oil takes place in this regime, however, the discussion is broader in scope. The thesis connects the problem of slow two-phase flow to percolation theory and discusses the mechanisms that control immiscible displacements. A new, modified version of the invasion percolation model is used to simulate an imbibition process in a porous medium and the migration of a cluster of non-wetting fluid through a porous medium saturated with a wetting fluid. The simulations include the secondary migration of oil through porous homogeneous rock. Fluid migration through heterogeneous porous media is simulated qualitatively. Slow displacement of a wetting fluid by a non-wetting fluid in a single rock fracture is simulated by using the standard invasion percolation model. Experiments and simulations are performed to study the fragmentation of invasion percolation-like structures of non-wetting fluid in a porous medium saturated with a wetting fluid. A scenario is studied in which a cluster of non-wettable fluid migrates through a porous medium that is saturated with a wetting fluid, the migration being driven by continuously increasing buoyancy forces. There is a simulation of the secondary migration of oil in both two- and three-dimensional media. 361 refs., 115 figs.

  15. Cell percolation model for electrical conduction of granular superconducting composites. 2

    International Nuclear Information System (INIS)

    Horvath, G.; Bankuti, J.

    1990-01-01

    The percolation of the electrical conductivity of the uniform cells is studied in an in-situ elongated granular superconducting composite on the basis of the uniform cell model improved previously. The critical temperatures are determined in the macroscopic superconducting state of the two- and the three-dimensional composites. (author)

  16. Seleção em gradiente de Percoll® sobre os parâmetros espermáticos do sêmen bovino congelado Selection bovine frozen semen in Percoll® gradient on spermatic parameters

    Directory of Open Access Journals (Sweden)

    Charles Kiefer

    2008-06-01

    Full Text Available Na produção in vitro de embriões, técnicas de seleção espermática são usadas, dentre elas, o gradiente descontínuo de Percoll®. O objetivo foi avaliar a integridade da membrana plasmática (eosina-nigrosina, do acrossomo (trypan blue- Giemsa – TBG, lecitina do amendoim conjugada ao isotiocianato de fluoresceína associado ao iodeto de propídeo - Fitc-PNA/PI e da cromatina (azul de toluidina, em espermatozóide bovino congelado. Vinte e nove amostras foram analisadas nos momentos pós-descongelação (PD e pós-Percoll® (PP. As variáveis expressas em porcentagem foram submetidas à análise de variância e foi empregado o teste de Tuckey para a comparação entre médias. O estudo da associação entre variáveis foi feito pelo teste de correlação de Pearson. Constataram-se, entre os momentos PD e PP, diferenças significativas (p<0,05 para a motilidade, integridade de membrana plasmática e número de espermatozóides vivos com acrossomo íntegro (TBG e Fitc-PNA/PI, com maiores valores obtidos PP. O percentual de células com alteração na condensação da cromatina não diferiu entre os momentos estudados. Conclui-se que o gradiente descontínuo de Percoll® foi eficaz na seleção de uma maior população de células móveis, com membranas plasmática e acrossomal íntegras, sem haver alteração na condensação da cromatina nuclear.At in vitro embryo production sperm selection techniques are used, one of them is Percoll® density-gradient. The aim with this study was to evaluate the plasmatic membrane (eosin-nigrosin, acrosomal (trypan blue-Giemsa; fluorescein isothiocyanate conjugated peanut agglutinin lecitin/propidium iodide (FITC-PNA/PI and chromatin (toluidine blue integrity, in frozen bovine spermatozoa. Twenty nine samples were analysed at post-thaw (PD and post-Percoll® moments. Variable expressed in percentage were submitted to ANOVA and used Tuckey’s test for mean comparison. The association between variables

  17. Ac hopping conduction at extreme disorder takes place on the percolating cluster

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, J. C.

    2008-01-01

    Simulations of the random barrier model show that ac currents at extreme disorder are carried almost entirely by the percolating cluster slightly above threshold; thus contributions from isolated low activation-energy clusters are negligible. The effective medium approximation in conjunction...

  18. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes.

    Science.gov (United States)

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-02-18

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors.

  19. Commercial test on uranium ore percolation leaching in Fuzhou uranium mine

    International Nuclear Information System (INIS)

    Cai Chunhui

    2002-01-01

    Commercial test on uranium ore percolation leaching was carried out according to ore characteristics of Fuzhou Uranium Mine and results from small test. Technological and economic indexes, such as leaching rate, acid consumption, leaching cycle, etc. are discussed. The general idea applying the test results to commercial production is presented, too

  20. Effect of percolation rate on water-travel time in deep, partially saturated zones

    International Nuclear Information System (INIS)

    Peters, R.R.; Gauthier, J.H.; Dudley, A.L.

    1986-02-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating Yucca Mountain, Nye county, Nevada, as a prospective site for a radioactive-waste repository. The Yucca Mountain site is unique among those currently being investigated by the US Department of Energy (DOE) in that the prospective repository location is in the unsaturated zone, approximately 300 m above the water table. The rock units at Yucca Mountain can be grouped into three types: (1) vitric tuffs with high matrix conductivity and few fractures; (2) zeolitized tuffs with low matrix conductivity and few fractures; and (3) densely welded tuffs with low matrix conductivities and many fractures. The prospective repository zone is in densely welded tuff; the units between it and the water table are of types 1 and 2. Current percolation rates through Yucca Mountain, and those that are currently postulated under future climatic conditions, are thought to be of the order of the saturated matrix conductivity of some of the units. Although it is probable that there is now little or no water movement in fracture, it is necessary to investigate the potential for fracture flow, especially that which could be initiated under future climatic conditions. Significant fracture flow, if present, could reduce the water travel time between the repository and the water table. A composite-porosity, continuum model was developed to model flow in a fractured, porous medium. Simulations using data from the Yucca Mountain site and this model in the one-dimensional code TOSPAC indicate that current estimates of the percolation rate result in water movement confined to the matrix and that the water-travel time from the repository to the water table is on the order of hundreds of thousands of years. this result is sensitive to the percolation rate; an increase in percolation rate of a factor of 10 many initiate water movement in the fractures, reducing the travel time significantly

  1. A cross-sectional investigation of parenting style and friendship as mediators of the relation between social class and mental health in a university community

    OpenAIRE

    Rubin, Mark; Kelly, Benjamin M.

    2015-01-01

    Introduction This study tested a novel explanation for the positive relation between social class and mental health among university students. Students with a higher social class were expected to have experienced more authoritative and less authoritarian parenting styles; these parenting styles were expected to lead to greater friendship and social integration at university; and greater friendship and integration were expected to lead to better mental health. Method To test this model, the re...

  2. Idiotypic networks incorporating T-B cell co-operation. The conditions for percolation

    NARCIS (Netherlands)

    Boer, R.J. de; Hogeweg, P.

    1989-01-01

    Previous work was concerned with symmetric immune networks of idiotypic interactions amongst B cell clones. The behaviour of these networks was contrary to expectations. This was caused by an extensive percolation of idiotypic signals. Idiotypic activation was thus expected to affect almost all

  3. Polymer collapse, protein folding, and the percolation threshold.

    Science.gov (United States)

    Meirovitch, Hagai

    2002-01-15

    We study the transition of polymers in the dilute regime from a swollen shape at high temperatures to their low-temperature structures. The polymers are modeled by a single self-avoiding walk (SAW) on a lattice for which l of the monomers (the H monomers) are self-attracting, i.e., if two nonbonded H monomers become nearest neighbors on the lattice they gain energy of interaction (epsilon = -/epsilon/); the second type of monomers, denoted P, are neutral. This HP model was suggested by Lau and Dill (Macromolecules 1989, 22, 3986-3997) to study protein folding, where H and P are the hydrophobic and polar amino acid residues, respectively. The model is simulated on the square and simple cubic (SC) lattices using the scanning method. We show that the ground state and the sharpness of the transition depend on the lattice, the fraction g of the H monomers, as well as on their arrangement along the chain. In particular, if the H monomers are distributed at random and g is larger than the site percolation threshold of the lattice, a collapsed transition is very likely to occur. This conclusion, drawn for the lattice models, is also applicable to proteins where an effective lattice with coordination number between that of the SC lattice and the body centered cubic lattice is defined. Thus, the average fraction of hydrophobic amino acid residues in globular proteins is found to be close to the percolation threshold of the effective lattice.

  4. Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d≥2

    Science.gov (United States)

    Bonzom, Valentin

    2016-07-01

    We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d≥ 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo-manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality classes of colored triangulations. We present three existing strategies to find those universality classes. The first two strategies consist in building new bubbles from old ones for which the problem can be solved. The third strategy is a bijection between those colored triangulations and stuffed, edge-colored maps, which are some sort of hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the present approach can lead to enumeration results and identification of universality classes, by working out the example of quartic tensor models. They feature a tree-like phase, a planar phase similar to two-dimensional quantum gravity and a phase transition between them which is interpreted as a proliferation of baby universes. While this work is written in the context of random tensors, it is almost exclusively of combinatorial nature and we hope it is accessible to interested readers who are not familiar with random matrices, tensors and quantum

  5. The importance of stress percolation patterns in rocks and other polycrystalline materials.

    Science.gov (United States)

    Burnley, P C

    2013-01-01

    A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties.

  6. Critical percolation in the slow cooling of the bi-dimensional ferromagnetic Ising model

    Science.gov (United States)

    Ricateau, Hugo; Cugliandolo, Leticia F.; Picco, Marco

    2018-01-01

    We study, with numerical methods, the fractal properties of the domain walls found in slow quenches of the kinetic Ising model to its critical temperature. We show that the equilibrium interfaces in the disordered phase have critical percolation fractal dimension over a wide range of length scales. We confirm that the system falls out of equilibrium at a temperature that depends on the cooling rate as predicted by the Kibble-Zurek argument and we prove that the dynamic growing length once the cooling reaches the critical point satisfies the same scaling. We determine the dynamic scaling properties of the interface winding angle variance and we show that the crossover between critical Ising and critical percolation properties is determined by the growing length reached when the system fell out of equilibrium.

  7. The percolation effect and optimization of soft magnetic properties of FeSiAl magnetic powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ruru [College of Material Science and Engineering, Nanchang University, Nanchang 330031, Jiangxi (China); Zhu, Zhenghou, E-mail: z00708@sina.com [College of Material Science and Engineering, Nanchang University, Nanchang 330031, Jiangxi (China); Zhao, Hui, E-mail: candyzhaohui@126.com [College of Material Science and Engineering, Nanchang University, Nanchang 330031, Jiangxi (China); Institute of Space Science and Technology, Nanchang University, Nanchang 330031, Jiangxi (China); Mao, Shenghua [Jiangxi Aite magnetic materials Co. Ltd., Yichun 336000, Jiangxi (China); Zhong, Qi [College of Material Science and Engineering, Nanchang University, Nanchang 330031, Jiangxi (China)

    2017-07-01

    Highlights: • A new magnetic percolation phenomenon of ρ-μe in MPCs was discovered. • The soft magnetic properties of FeSiAl MPCs were studied. • The comprehensive magnetic properties of MPCs were optimized. • The formation mechanism of magnetic conductive path was explained. - Abstract: In this paper, a new magnetic percolation phenomenon between the green compact density ρ and effective permeability μe in FeSi{sub 9.6}Al{sub 6.5} magnetic powder cores, was discovered. The Magnetic Percolation Area of ρ is the range of 5.6 g/cm{sup 3} ∼ 5.78 g/cm{sup 3}, and the percolation threshold is 5.78 g/cm{sup 3}. As a result of the guidance of the percolation theory, the best comprehensive magnetic properties have been optimized through adjusting the distribution of powders. The special distribution of the magnetic powder cores with the best comprehensive magnetic properties was as follows: the content 60% with the particle size distribution of 100–200 mesh, the content 20% with the particle size distribution of 200–325 mesh and the content 20% with the particle size distribution of ≥400 mesh. When the green compact density ρ of cores was 5.79 g/cm{sup 3}, and the frequency was in the range of 1 kHz ∼ 100 kHz, the best comprehensive magnetic properties were as follows: μe = 91, ∆μ = 0.61%, μe(H80 Oe) = 43, μe(H100 Oe) = 33, μe(H120 Oe) = 26, Pc(50 mT/20 kHz) = 30.58 kW/m{sup 3}, Pc(50 mT/50 kHz) = 76.85 kW/m{sup 3}, Pc(50 mT/100 kHz) = 178 kW/m{sup 3}. Not only have those cores the excellent constant magnetic properties with frequency, the excellent DC superposition characteristic and the lower loss at high frequency, but also the effective permeability outstandingly goes up, which has important significance for the miniaturization of inductance components.

  8. Fragmentation of percolation cluster perimeters

    Science.gov (United States)

    Debierre, Jean-Marc; Bradley, R. Mark

    1996-05-01

    We introduce a model for the fragmentation of porous random solids under the action of an external agent. In our model, the solid is represented by a bond percolation cluster on the square lattice and bonds are removed only at the external perimeter (or `hull') of the cluster. This model is shown to be related to the self-avoiding walk on the Manhattan lattice and to the disconnection events at a diffusion front. These correspondences are used to predict the leading and the first correction-to-scaling exponents for several quantities defined for hull fragmentation. Our numerical results support these predictions. In addition, the algorithm used to construct the perimeters reveals itself to be a very efficient tool for detecting subtle correlations in the pseudo-random number generator used. We present a quantitative test of two generators which supports recent results reported in more systematic studies.

  9. SEPARATION OF X-BEARING BOVINE SPERM BY CENTRIFUGATION IN CONTINUOUS PERCOLL AND OPTIPREP DENSITY GRADIENT: EFFECT IN SPERM VIABILITY AND IN VITRO EMBRYO PRODUCTION SEPARAÇÃO DE ESPERMATOZOIDES PORTADORES DO CROMOSSOMO X BOVINO POR CENTRIFUGAÇÃO EM GRADIENTE DE DENSIDADE CONTÍNUO DE PERCOLL E OPTIPREP: EFEITO SOBRE A VIABILIDADE ESPERMÁTICA E NA PRODUÇÃO IN VITRO DE EMBRIÕES

    Directory of Open Access Journals (Sweden)

    Aline Costa Lucio

    2009-07-01

    Full Text Available

    class="MsoNormal" style="margin: 0cm 0cm 0pt; line-height: 150%; text-align: justify">The aim of this study was to separate X-bearing bovine sperm by continuous Percoll and OptiPrep density gradients and to validate the sexing of resultant in vitro produced embryos by Polimerase Chain Reaction (PCR. Frozen/thawed sperm was layered on density gradients which were previously prepared in polystyrene tubes, 24 h before procedures and maintained at 4 °C. The tubes were centrifuged at 500 x g for 15 min at 22 °C. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Viability and integrity of sperm were evaluated by Trypan Blue/Giemsa stain. Cleavage and blastocyst rates were determined by in vitro production of embryos and PCR was performed for identification of the embryos’ genetic sex. No damage in viability and acrossomal integrity and in cleavage and blastocyst rates was found in the Percoll and OptiPrep treatment compared to the non-centrifuged group (P>0.05. The percentage of female embryos in the Percoll and OptiPrep group was 63.0 and 47.6%, respectively. The female embryos in control group were 48.7%. A sexual deviation in the Percoll density gradient was achieved without reduction of sperm viability and in vitro production rates.

    KEY WORDS: Bovine, centrifugation, in vitro production of embryos, PCR, X-bearing sperm.

    O objetivo deste estudo foi separar espermatozoides bovinos portadores do cromossomo X pela centrifugação em gradiente de densidade contínuo de Percoll e OptiPrep, e validar a sexagem pela reação em cadeia da polimerase (PCR, dos embriões produzidos in vitro. Para a sexagem, espermatozoides descongelados foram depositados nos gradientes de densidade, previamente preparados, em tubos de poliestireno, 24 horas antes da sexagem e mantidos a 4°C. Centrifugou-se a 500 x g por quinze minutos a 22°C. Os sobrenadantes foram aspirados, e os espermatozoides recuperados do

  10. Capillary condensation, invasion percolation, hysteresis, and discrete memory

    International Nuclear Information System (INIS)

    Guyer, R.A.; McCall, K.R.

    1996-01-01

    A model of the capillary condensation process, i.e., of adsorption-desorption isotherms, having only pore-pore interactions is constructed. The model yields (1) hysteretic isotherms, (2) invasion percolation on desorption, and (3) hysteresis with discrete memory for interior chemical potential loops. All of these features are seen in experiment. The model is compared to a model with no pore-pore interactions (the Preisach model) and to a related model of interacting pore systems (the random field Ising model). The capillary condensation model differs from both. copyright 1996 The American Physical Society

  11. Influence of Tableting on Enzymatic Activity of Papain along with Determination of Its Percolation Threshold with Microcrystalline Cellulose

    Science.gov (United States)

    Sharma, Manu; Sharma, Vinay; Majumdar, Dipak K.

    2014-01-01

    The binary mixture tablets of papain and microcrystalline cellulose (MCC), dicalcium phosphate dihydrate (DCP), carrageenan, tragacanth, and agar were prepared by direct compression. Carrageenan, tragacanth, and agar provided maximum protection to enzyme activity compared to MCC and DCP. However, stability studies indicated highest loss of enzyme activity with carrageenan, tragacanth, and agar. Therefore, compression behaviour of different binary mixtures of papain with MCC at different compaction pressures, that is, 40–280 MPa, was studied according to Heckel equation. The compressibility studies of binary mixtures indicated brittle behavior of papain. The application of percolation theory on the relationship between critical density as a function of enzyme activity and mixture composition revealed the presence of percolation threshold for binary mixture. Papain-MCC mixture composition showed significant percolation threshold at 18.48% (w/w) papain loading. Microcrystalline cellulose provided higher protection during stability study. However, higher concentrations of microcrystalline cellulose, probably as dominant particles, do not protect the enzyme with their plastic deformation. Below the percolation threshold, that is, 18.48% (w/w) papain amount in mixture with plastic excipient, activity loss increases strongly because of higher shearing forces during compaction due to system dominance of plastic particles. This mixture range should therefore be avoided to get robust formulation of papain. PMID:27350972

  12. An Untrodden Path: Versatile Fabrication of Self-Supporting Polymer-Stabilized Percolation Membranes (PSPMs) for Gas Separation.

    Science.gov (United States)

    Friebe, Sebastian; Mundstock, Alexander; Schneider, Daniel; Caro, Jürgen

    2017-05-11

    The preparation and scalability of zeolite or metal organic framework (MOF) membranes remains a major challenge, and thus prevents the application of these materials in large-scale gas separation. Additionally, several zeolite or MOF materials are quite difficult or nearly impossible to grow as defect-free layers, and require expensive macroporous ceramic or polymer supports. Here, we present new self-supporting zeolite and MOF composite membranes, called Polymer-Stabilized Percolation Membranes (PSPMs), consisting of a pressed gas selective percolation network (in our case ZIF-8, NaX and MIL-140) and a gas-impermeable infiltrated epoxy resin for cohesion. We demonstrate the performance of these PSPMs by separating binary mixtures of H 2 /CO 2 and H 2 /CH 4 . We report the brickwork-like architecture featuring selective percolation pathways and the polymer as a stabilizer, compare the mechanical stability of said membranes with competing materials, and give an outlook on how economic these membranes may become. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.

    Science.gov (United States)

    Simoes, Ricardo; Silva, Jaime; Vaia, Richard; Sencadas, Vítor; Costa, Pedro; Gomes, João; Lanceros-Méndez, Senentxu

    2009-01-21

    The low concentration behaviour and the increase of the dielectric constant in carbon nanotubes/polymer nanocomposites near the percolation threshold are still not well understood. In this work, a numerical model has been developed which focuses on the effect of the inclusion of conductive fillers in a dielectric polymer matrix on the dielectric constant and the dielectric strength. Experiments have been carried out in carbon nanotubes/poly(vinylidene fluoride) nanocomposites in order to compare to the simulation results. This work shows how the critical concentration is related to the formation of capacitor networks and that these networks give rise to high variations in the electrical properties of the composites. Based on numerical studies, the dependence of the percolation transition on the preparation of the nanocomposite is discussed. Finally, based on numerical and experimental results, both ours and from other authors, the causes of anomalous percolation behaviour of the dielectric constant are identified.

  14. Percolation Line, Response Functions, and Voronoi Polyhedra Analysis in Supercritical Water

    Czech Academy of Sciences Publication Activity Database

    Škvor, J.; Nezbeda, Ivo

    2012-01-01

    Roč. 15, č. 2 (2012), s. 23301 ISSN 1607-324X R&D Projects: GA AV ČR IAA200760905 Grant - others:GA UJEP(CZ) 53223–15–0010–01 Institutional support: RVO:67985858 Keywords : percolation line * response functions * widom lines Subject RIV: BJ - Thermodynamics Impact factor: 0.757, year: 2012

  15. PRETREATMENT AND FRACTIONATION OF CORN STOVER BY AMMONIA RECYCLE PERCOLATION PROCESS. (R831645)

    Science.gov (United States)

    Corn stover was pretreated with aqueous ammonia in a flow-through column reactor,a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causesswelling and efficient delignification of biomass at high temperatures. The ARPprocess solubilizes abou...

  16. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    Science.gov (United States)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  17. The national education plan as articulator of the democratization of access to university and empowerment of the working class

    Directory of Open Access Journals (Sweden)

    Hildegard Susana Jung

    2016-09-01

    Full Text Available The purpose of this essay, theoretical and documental, is to reflect on the concept(s of empowerment of the working class, in which it invests itself in power, but with an important caveat: this process cannot be individual but collective, through the cooperative dialogue, in which education – especially higher education – is the great protagonist, as articulator of the process. On this track, shows a comparison between the National Education Plan (PNE 2001-2010 and the PNE 2014-2024 regarding the goals aimed to the democratization of the access to university, finding that, in this moment, what can be affirmed in fact is that there were not many advances in Higher Education. Still, the PNE is an important legal instrument for the democratization of access to university, which may serve as an articulator of the empowerment of the working class. Rethinking education means rethinking the entire State, since education policy suffers injunctions of political, economic and social spheres. Enhancing the Brazilian State, means moving towards a broader concept, which will translate a correlation of forces between civil society and politics, which means a greater social participation, increased democratization of access to university and consequently, greater empowerment of the working class through (why not? Higher Education. Therefore, it lies the important role of the academy to prepare educators who disseminate the reflexive practice, which will lead to autonomy and emancipation.

  18. A New Middle Class on Old Academic Grounds: Law Students of the Cluj University in the 1930s

    Directory of Open Access Journals (Sweden)

    Pálffy Zoltán

    2015-06-01

    Full Text Available One of the main tasks of universities of Central and Eastern Europe is that of forming loyal and reliable citizens ready to fill in the ranks of public service. Educational credentials make for social elevation into the ranks of this peculiarly state-dependent middle class. Law students make the relative majority of those engaged in higher learning in the region all through the first half of the 20th century. Where and when there is an acute need for a new middle class under a new state sovereignty, it is law studies that are notoriously perceived as meant to producing the bulk of it. The University of Cluj in the inter-war period is a case in point. The paper shall put forward a selection of data (from an ample statistical survey of elite formation via upper-level education in Central Europe on this segment of the student population in the 1930s, setting it against a dramatically changed background (the general one and the local one, as traced in secondary sources: how do Romanians cope with the task of producing this new middle class on old grounds, and what are the unwanted side-effects of such state-related social emancipation mechanisms? And how non-Romanians behave in the new situation?

  19. Effect of electrostatic Interactions on the Percolation Concentration of Fibrillar ß-Lactoglobuline Gels

    NARCIS (Netherlands)

    Veerman, C.; Ruis, H.G.M.; Sagis, L.M.C.; Linden, van der E.

    2002-01-01

    The effect of electrostatic interactions on the critical percolation concentration (cp) of fibrillar -lactoglobulin gels at pH 2 was investigated using rheological measurements, transmission electron microscopy (TEM), and performing conversion experiments. A decreasing cp with increasing ionic

  20. Order parameter fluctuations at a critical point - an exact result about percolation -

    International Nuclear Information System (INIS)

    Botet, Robert

    2011-01-01

    The order parameter of the system in the critical state, is expected to undergo large non-Gaussian fluctuations. However, almost nothing is known about the mathematical forms of the possible probability distributions of the order parameter. A remarkable exception is the site-percolation on the Bethe lattice, for which the complete order-parameter distribution has been recently derived at the critical point. Surprisingly, it appears to be the Kolmogorov-Smirnov distribution, well known in very different areas of mathematical statistics. In the present paper, we explain first how this special distribution could appear naturally in the context of the critical systems, under the assumption (still virtually unstudied) of the exponential distribution of the number of domains of a given size. In a second part, we present for the first time the complete derivation of the order-parameter distribution for the critical percolation model on the Bethe lattice, thus completing a recent publication announcing this result.

  1. Link overlap, viability, and mutual percolation in multiplex networks

    International Nuclear Information System (INIS)

    Min, Byungjoon; Lee, Sangchul; Lee, Kyu-Min; Goh, K.-I.

    2015-01-01

    Many real-world complex systems are best modeled by multiplex networks. The multiplexity has proved to have broad impact on the system’s structure and function. Most theoretical studies on multiplex networks to date, however, have largely ignored the effect of the link overlap across layers despite strong empirical evidences for its significance. In this article, we investigate the effect of the link overlap in the viability of multiplex networks, both analytically and numerically. After a short recap of the original multiplex viability study, the distinctive role of overlapping links in viability and mutual connectivity is emphasized and exploited for setting up a proper analytic framework. A rich phase diagram for viability is obtained and greatly diversified patterns of hysteretic behavior in viability are observed in the presence of link overlap. Mutual percolation with link overlap is revisited as a limit of multiplex viability problem, and the controversy between existing results is clarified. The distinctive role of overlapping links is further demonstrated by the different responses of networks under random removals of overlapping and non-overlapping links, respectively, as well as under several link-removal strategies. Our results show that the link overlap facilitates the viability and mutual percolation; at the same time, the presence of link overlap poses a challenge in analytical approaches to the problem

  2. Porous media: Analysis, reconstruction and percolation

    DEFF Research Database (Denmark)

    Rogon, Thomas Alexander

    1995-01-01

    functions of Gaussian fields and spatial autocorrelation functions of binary fields. An enhanced approach which embodies semi-analytical solutions for the conversions has been made. The scope and limitations of the method have been analysed in terms of realizability of different model correlation functions...... stereological methods. The measured sample autocorrelations are modeled by analytical correlation functions. A method for simulating porous networks from their porosity and spatial correlation originally developed by Joshi (14) is presented. This method is based on a conversion between spatial autocorrelation...... in binary fields. Percolation threshold of reconstructed porous media has been determined for different discretizations of a selected model correlation function. Also critical exponents such as the correlation length exponent v, the strength of the infinite network and the mean size of finite clusters have...

  3. Opinion formation models on a gradient.

    Directory of Open Access Journals (Sweden)

    Michael T Gastner

    Full Text Available Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales proportional g(-1/4, not proportional g(-4/7 as in independent percolation, and the cluster size distribution is consistent with first-order percolation.

  4. Inequality for the infinite-cluster density in Bernoulli percolation

    International Nuclear Information System (INIS)

    Chayes, J.T.; Chayes, L.

    1986-01-01

    Under a certain assumption (which is satisfied whenever there is a dense infinite cluster in the half-space), we prove a differential inequality for the infinite-cluster density, P/sub infinity/(p), in Bernoulli percolation. The principal implication of this result is that if P/sub infinity/(p) vanishes with critical exponent β, then β obeys the mean-field bound β< or =1. As a corollary, we also derive an inequality relating the backbone density, the truncated susceptibility, and the infinite-cluster density

  5. Electrical characteristics of silicon percolating nanonet-based field effect transistors in the presence of dispersion

    Science.gov (United States)

    Cazimajou, T.; Legallais, M.; Mouis, M.; Ternon, C.; Salem, B.; Ghibaudo, G.

    2018-05-01

    We studied the current-voltage characteristics of percolating networks of silicon nanowires (nanonets), operated in back-gated transistor mode, for future use as gas or biosensors. These devices featured P-type field-effect characteristics. It was found that a Lambert W function-based compact model could be used for parameter extraction of electrical parameters such as apparent low field mobility, threshold voltage and subthreshold slope ideality factor. Their variation with channel length and nanowire density was related to the change of conduction regime from direct source/drain connection by parallel nanowires to percolating channels. Experimental results could be related in part to an influence of the threshold voltage dispersion of individual nanowires.

  6. Percolation modelling for highly aligned polycrystalline superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, N A; Glowacki, B A; Evetts, J E [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); IRC in Superconductivity, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2000-11-01

    Surface and bulk texture measurements have been carried out on highly aligned NiFe tapes, suitable for use as coated conductor substrates. Data from small-area electron backscatter diffraction measurements are compared with those from bulk x-ray analysis in the development of a two-dimensional percolation model, and the two are shown to give very similar results. No evidence of grain-to-grain correlation is found. The model is then developed to assess how the properties of a superconducting layer grown epitaxially on buffered tapes will depend on parameters such as sample size, grain size and the extent of grain alignment. (author)

  7. Numerical analysis of a proposed percolation experiment at the Pena Blanca natural analog site

    International Nuclear Information System (INIS)

    Green, R.T.; Rice, G.

    1995-01-01

    A field-scale percolation test is proposed for the Pena Blanca natural analog site near Chihuahua, MX. To aid in design of the field test, the V-TOUGH two-phase flow simulator was applied to model percolation of water through 8 to 10 m of partially saturated fractured tuff. The rock was characterized as a composite medium using measured hydraulic properties for the rock matrix and estimated values for the fractures. Measured matrix permeability varied over four orders of magnitude and fracture apertures were estimated to range from 10 to 1,000 μm. Water arrival times were predicted to vary between one day to 10,000 yr. The utility of the composite model and other representations of flow through fractured porous media can be tested using results from the field scale infiltration test data

  8. Charge percolation pathways in polymer blend photovoltaic diodes with sub-mesoscopic two-phase microstructures

    Science.gov (United States)

    Dou, Fei; Silva, Carlos; Zhang, Xinping

    2013-05-01

    We find that the external quantum efficiency of photovoltaic diodes based on finely mixed blends of poly-9,9’-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-l,4-phenylenediamine (PFB) and poly-9,9’- dioctylfluorene-co-benzothiadiazole (F8BT) depends strongly on the blend ratio. The peak external quantum efficiency is optimum for a PFB:F8BT ratio of 3:1. The difference of peak efficiency for this composition and a 1:1 ratio is significantly higher than the reported yield of charge-transfer excitons. From a surface topography analysis, we believe that charge percolation plays a crucial role in photocurrent efficiency in PFB:F8BT diodes. Furthermore, we present a qualitative model for different charge percolation pathways in diodes of different blend ratios.

  9. Field-theoretic approach to fluctuation effects in neural networks

    International Nuclear Information System (INIS)

    Buice, Michael A.; Cowan, Jack D.

    2007-01-01

    A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governed by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience

  10. Description of vibrational properties of random alloy ZnTe1-xSex within the percolation model

    International Nuclear Information System (INIS)

    Souhabi, Jihane; Chafi, Allal; Kassem, Mohammed; Nassour, Ayoub; Gleize, Jerome; Postnikov, A.V.; Hugel, J.; Pages, Olivier

    2009-01-01

    We discuss the classification of the phonon type behavior of semiconductor alloys as apparent in the Raman and infrared spectra, i.e. in terms of types (i) 1-bond→1-mode and (ii) 2-bond→1-mode (both covered by the Modified Random Element Isodisplacement model, operating at the macroscopic scale), and also (iii) the modified 2-mode type (exceptional), in the framework of the recent 1-bond→2-mode percolation model based on a description of the alloy disorder at the mesoscopic scale. The leading systems of types (i) and (iii), i.e., InGaAs and InGaP, respectively, were earlier shown to obey the percolation model. The aim of this work is to investigate whether the percolation model further extends to the leading system of the last type (ii), i.e. ZnTeSe. With this end in view, we perform a careful re-examination of the Raman and infrared spectra of this alloy, as available in the literature. Special attention is awarded to the discussion and modeling of the puzzling multi-mode infrared reflectivity spectra. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Percolation transition in carbon composite on the basis of fullerenes and exfoliated graphite

    Science.gov (United States)

    Berezkin, V. I.; Popov, V. V.

    2018-01-01

    The electrical conductivity of a carbon composite on the basis of C60 fullerenes and exfoliated graphite is investigated in the range of relative contents of components from 0 to 100%. The samples are obtained by the thermal treatment of the initial dispersed mixtures in vacuum in the diffusion-adsorption process and their further cold pressing. The resistivity of the samples gradually increases with an increase in the fraction of fullerenes, and a sharp transition from the conductive state to the dielectric one is observed after achieving certain concentrations of C60. The interpretation of the results within the percolation theory makes it possible to evaluate the percolation threshold (expressed as a relative content of graphite) as equal to 4.45 wt % and the critical conductivity index as equal to 1.85 (which is typical for three-dimensional twocomponent disordered media including those having pores).

  12. Conduction in rectangular quasi-one-dimensional and two-dimensional random resistor networks away from the percolation threshold.

    Science.gov (United States)

    Kiefer, Thomas; Villanueva, Guillermo; Brugger, Jürgen

    2009-08-01

    In this study we investigate electrical conduction in finite rectangular random resistor networks in quasione and two dimensions far away from the percolation threshold p(c) by the use of a bond percolation model. Various topologies such as parallel linear chains in one dimension, as well as square and triangular lattices in two dimensions, are compared as a function of the geometrical aspect ratio. In particular we propose a linear approximation for conduction in two-dimensional systems far from p(c), which is useful for engineering purposes. We find that the same scaling function, which can be used for finite-size scaling of percolation thresholds, also applies to describe conduction away from p(c). This is in contrast to the quasi-one-dimensional case, which is highly nonlinear. The qualitative analysis of the range within which the linear approximation is legitimate is given. A brief link to real applications is made by taking into account a statistical distribution of the resistors in the network. Our results are of potential interest in fields such as nanostructured or composite materials and sensing applications.

  13. Inward Cationic Diffusion and Percolation Transition in Glass-Ceramics

    DEFF Research Database (Denmark)

    Smedsklaer, Morten Mattrup; Yue, Yuanzheng; Mørup, Steen

    2010-01-01

    We show the quantitative correlation between the degree of crystallization and the cationic diffusion extent in iron-containing diopside glass–ceramics at the glass transition temperature. We find a critical degree of crystallization, above which the diffusion extent sharply drops with the degree...... of crystallization. Below the critical value, the diffusion extent decreases only slightly with the degree of crystallization. No cationic diffusion is observed in the fully crystalline materials. The critical value might be associated with a percolation transition from an interconnected to a disconnected glass...

  14. Prediction of the percolation threshold and electrical conductivity of self-assembled antimony-doped tin oxide nanoparticles into ordered structures in PMMA/ATO nanocomposites.

    Science.gov (United States)

    Jin, Youngho; Gerhardt, Rosario A

    2014-12-24

    Electrical percolation in nanocomposites consisting of poly(methyl methacrylate) (PMMA) and antimony tin oxide (ATO) nanoparticles was investigated experimentally using monosize and polydisperse polymer particles. The nanocomposites were fabricated by compression molding at 170 °C. The matrix PMMA was transformed into space filling polyhedra while the ATO nanoparticles distributed along the sharp edges of the matrix, forming a 3D interconnected network. The measured electrical resistivity showed that percolation was achieved in these materials at a very low ATO content of 0.99 wt % ATO when monosize PMMA was used, whereas 1.48 wt % ATO was needed to achieve percolation when the PMMA was polydispersed. A parametric finite element approach was chosen to model this unique microstructure-driven self-assembling percolation behavior. COMSOL Multiphysics was used to solve the effects of phase segregation between the matrix and the filler using a 2D simplified model in the frequency domain of the AC/DC module. It was found that the percolation threshold (pc) is affected by the size ratio between the matrix and the filler in a systematic way. Furthermore, simulations indicate that small deviations from perfect interconnection result mostly in changes in the electrical resistivity while the minimum DC resistivity achievable in any given composite is governed by the electrical conductivity of the filler, which must be accurately known in order to obtain an accurate prediction. The model is quite general and is able to predict percolation behavior in a number of other similarly processed segregated network nanocomposites.

  15. Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films

    NARCIS (Netherlands)

    Ramakrishnan, G.; Planken, P.C.M.

    2011-01-01

    Emission of pulses of electromagnetic radiation in the terahertz range is observed when ultrathin gold films on glass are illuminated with femtosecond near-IR laser pulses. A distinct maximum is observed in the emitted terahertz amplitude from films of average thickness just above the percolation

  16. Simulation of Water Percolation in a FEBEX Bentonite Block using TOUGH2 Program

    International Nuclear Information System (INIS)

    Bru, A.

    2001-01-01

    We use Tough2 program to simulate the water percolation in a Febex bentonite Block. From obtained results, we conclude that mean field approximation does not describe this process because the heterogeneity of the medium it is not include in mathematical formalism. (Author) 17 refs

  17. Study of the influence of class construction on the 90s undergraduate’s employability – Taking one university in Wuhan as an example

    Directory of Open Access Journals (Sweden)

    Mujia Chang

    2017-02-01

    Full Text Available Undergraduate’s employability is an important factor that leads to difficult employment situation for undergraduates. However, there’s close connection between the cultivation of undergraduate’s employability and class construction. This thesis takes 500 90s undergraduates from one university in Wuhan as examples. It reveals the relations of class teacher’s function, class leader’s function, and class atmosphere in class construction with the 90s undergraduate’s employability. The study shows that effective play of class teacher’s function can leave positive influence on the 90s undergraduate’s basic inherent quality, basic working ability, emotion control ability, planning and self-examination. Good class atmosphere can also leave positive influence on the 90s undergraduate’s basic internal quality, basic working ability, emotion control ability, planning and self-examination.

  18. The relationship between structural evolution and electrical percolation of the initial stages of tungsten chemical vapor deposition on polycrystalline TiN

    International Nuclear Information System (INIS)

    Rozenblat, A.; Haimson, S.; Shacham-Diamand, Y.; Horvitz, D.

    2012-01-01

    This paper presents experimental results and a geometric model of the evolution of sheet resistance and surface morphology during the transition from nucleation to percolation of tungsten chemical vapor deposition over ultrathin polycrystalline titanium nitride (TiN). We observed two mechanisms of reduction in sheet resistance. At deposition temperatures higher than 310 deg. C, percolation effect is formed at ∼35% of surface coverage, θ, and characterized with a sharp drop in resistance. At temperature below 310 deg. C, a reduction in resistance occurs in two steps. The first step occurs when θ = 35% and the second step at θ = 85%. We suggest a geometric model in which the electrical percolation pass is modulated by the thickness threshold of the islands at the instant of collision.

  19. On the genre-fication of music: a percolation approach

    Science.gov (United States)

    Lambiotte, R.; Ausloos, M.

    2006-03-01

    We analyze web-downloaded data on people sharing their music library. By attributing to each music group usual music genres (Rock, Pop ...), and analysing correlations between music groups of different genres with percolation-idea based methods, we probe the reality of these subdivisions and construct a music genre cartography, with a tree representation. We also discuss an alternative objective way to classify music, that is based on the complex structure of the groups audience. Finally, a link is drawn with the theory of hidden variables in complex networks.

  20. Volatility Behaviors of Financial Time Series by Percolation System on Sierpinski Carpet Lattice

    Science.gov (United States)

    Pei, Anqi; Wang, Jun

    2015-01-01

    The financial time series is simulated and investigated by the percolation system on the Sierpinski carpet lattice, where percolation is usually employed to describe the behavior of connected clusters in a random graph, and the Sierpinski carpet lattice is a graph which corresponds the fractal — Sierpinski carpet. To study the fluctuation behavior of returns for the financial model and the Shanghai Composite Index, we establish a daily volatility measure — multifractal volatility (MFV) measure to obtain MFV series, which have long-range cross-correlations with squared daily return series. The autoregressive fractionally integrated moving average (ARFIMA) model is used to analyze the MFV series, which performs better when compared to other volatility series. By a comparative study of the multifractality and volatility analysis of the data, the simulation data of the proposed model exhibits very similar behaviors to those of the real stock index, which indicates somewhat rationality of the model to the market application.

  1. Novel scaling of the multiplicity distributions in the sequential fragmentation process and in the percolation

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    A novel scaling of the multiplicity distributions is found in the shattering phase of the sequential fragmentation process with inhibition. The same scaling law is shown to hold in the percolation process. (author)

  2. Extreme value theory, Poisson-Dirichlet distributions, and first passage percolation on random networks

    NARCIS (Netherlands)

    Bhamidi, S.; Van der Hofstad, R.; Hooghiemstra, G.

    2010-01-01

    We study first passage percolation (FPP) on the configuration model (CM) having power-law degrees with exponent ? ? [1, 2) and exponential edge weights. We derive the distributional limit of the minimal weight of a path between typical vertices in the network and the number of edges on the

  3. Deep Percolation in Arid Piedmont Slopes: Multiple Lines of Evidence Show How Land Use Change and Ecohydrological Properties Affect Groundwater Recharge

    Science.gov (United States)

    Schreiner-McGraw, A.; Vivoni, E. R.; Browning, D. M.

    2017-12-01

    A critical hydrologic process in arid regions is the contribution of episodic streamflow in ephemeral channels to groundwater recharge. This process has traditionally been studied in channels that drain large watersheds (10s to 100s km2). In this study, we aim to characterize the provision of the ecosystem services of surface and groundwater supply in a first-order watershed (4.6 ha) in an arid piedmont slope of the Jornada Experimental Range (JER). We use an observational and modeling approach to estimate deep percolation. During a 6 year study period, we observed 428 mm of percolation (P) and 39 mm of runoff (Q); ratios of P to rainfall (R) of P/R = 0.27 and Q/R = 0.02. Utilizing an instrument network and site measurements, we determine that percolation occurs primarily inside channel reaches when these receive runoff from upland hillslopes and find that a monthly rainfall threshold of 62 mm is needed for significant percolation to be generated. In order to quantify the mechanisms leading to this threshold response, we develop a channel transmission loss module for the TIN-based Real-time Integrated Basin Simulator (tRIBS) and test the model thoroughly against the available observations over the study period. For these purposes, we make use of image classifications from Unmanned Aerial Vehicle flights, a ground-based phenocam, and species-level measurements to parameterize vegetation processes in the model. We then conduct an extensive set of sensitivity experiments to determine the relative roles of channel, soil, and vegetation properties on modifying the relation between monthly rainfall and percolation. Additionally, we test how the observed vegetation transitions in the JER over the last 150 years affect the deep percolation and runoff estimates. By quantifying mechanisms through which vegetation changes affect water resource provision, this work provides new insights on the ecohydrological controls on the water yield of arid piedmont slopes.

  4. Evolution of excitonic states in two-phase systems with quantum dots of II-VI semiconductors near the percolation threshold

    Science.gov (United States)

    Bondar, N. V.; Brodyn, M. S.

    2010-03-01

    In two-phase disordered media composed of borosilicate glass with ZnSe or CdS quantum dots, the formation of a phase percolation transition of carriers for near-threshold concentrations that are manifested in optical spectra has been observed. Microscopic fluctuations of the quantum-dot density near the percolation threshold were found that resembled the phenomenon of critical opalescence, where similar fluctuations of the density of a pure substance appear near to a phase transition. It is proposed that the dielectric mismatch between a matrix and ZnSe or CdS quantum dots plays a significant role in the carrier (exciton) delocalization, resulting in the appearance of a “dielectric Coulomb trap” beyond the QD border and the formation of surface states of excitons. The spatial overlapping of excitonic states at the critical density of quantum dots results in a tunneling of carriers and the formation of a phase percolation transition in such media.

  5. Percolation versus microcanonical fragmentation - comparison of fragment size distribution: Where is the liquid-gas transition in nuclei?

    International Nuclear Information System (INIS)

    Jaqaman, H.R.; Birzeit Univ.; Papp, G.; Eoetvoes Lorand Tudomanyegyetem, Budapest; Gross, D.H.E.; Freie Univ. Berlin

    1990-01-01

    The distributions of fragments produced by microcanonical multifragmentation of hot nuclei are compared with the cluster distributions predicted by a bond percolation model on a finite lattice. The conditional moments of these distributions are used together with the correlations between the largest three fragments in each event. Whereas percolation and statistical nuclear fragmentation agree in many details as in the usual plots of the averaged moments of the fragment distributions which yield the critical exponents, they turn out to be essentially different when less averaged quantities or correlations are considered. The differences between the predictions of the two models are mainly due to the particularities of the nuclear problem, especially the effect of the long-range Coulomb force which favours the break-up of the highly excited nucleus into two large fragments (pseudo-fission) and, to a somewhat lesser extent, enhances the possibility for the cracking of the nucleus into more than two large fragments. The fission events are, however, clearly separated from a second branch of critical correlations which shows up clearly in both nuclear fragmentation and percolation. We think that this critical correlation branch is due to the liquid-gas phase transition in finite nuclei. (orig.)

  6. Establishment of an isolation method of Nostoc commune cells free from extracellular polysaccharides (EPS using Percoll centrifugation

    Directory of Open Access Journals (Sweden)

    Makiko Kosugi

    2012-11-01

    Full Text Available The terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault occurs worldwide, including in Japan and Antarctica. N. commune has a large amount of extracellular polysaccharides (EPS that hold moisture and protect the cells and at the same time accumulate light-blocking substances which is believed to play an important part in adaptation to a severe environment. To evaluate the photoadaptation processes in N. commune and clarify the role(s of EPS under ambient environmental condition at Antarctica, separation of cells from EPS is necessary. High yield is a prerequisite for the use of only small amount of natural N. commune from Antarctica. For this purpose, we developed a separation method by improving the Percoll density gradient centrifugation method using an EPS-coated field-grown Nostoc population. We established the most suitable condition to separate naked cells from EPS at high yield retaining high photosynthetic activity. The method is composed of centrifugation of cell homogenated N. commune in 10% (v/v Percoll to separate cells efficiently from EPS followed by fractionating centrifugation to remove impurities using the gradient of Percoll (80% and 50%, v/v.

  7. Assessing clogging development in infiltration-percolation systems for wastewater treatment by electrical resistivity and induced polarisation methods

    Science.gov (United States)

    Tapias, Josefina C.; Himi, Mahjoub; Lovera, Raúl; de la Rocha, Angelica; Foch, Montserrat; Salvadó, Humbert; Casas, Albert

    2013-04-01

    Infiltration-percolation is a low technology process used to treat primary and secondary effluents. It consists in the intermittent application of sewage on buried sand filters where the infiltrated water percolates through unsaturated porous medium. The advantages over conventional mechanical sanitation systems are: low energy requirements, operation and maintenance that may be conducted by unskilled staff, and low sludge production because their simplicity and low operation costs. Nevertheless, clogging is a major operational and maintenance issue associated with the use of infiltration-percolation systems for wastewater treatment, and can ultimately limit the lifetime of the system. The clogging development causes decrease of hydraulic conductivity, reduced oxygen supply and further leads to a rapid decrease of the treatment performance. For this reason it is essential to assess in advance the evolution of clogging process and detect potential failures in the system. The preliminary results of this research conducted at the Hostalets de Pierola wastewater treatment plant (near Barcelona, Spain) show that electrical resistivity and induced polarisation geophysical methods can be very useful for delineating the clogging expansion. Then, this non-destructive metodology can help take the preventive measures for enlarge the lifetime of the treatment system.

  8. Levitation and percolation in quantum Hall systems with correlated disorder

    OpenAIRE

    Song, Hui; Maruyama, Isao; Hatsugai, Yasuhiro

    2007-01-01

    We investigate the integer quantum Hall system in a two dimensional lattice model with spatially correlated disorder by using the efficient method to calculate the Chern number proposed by Fukui et al. [J. Phys. Soc. Jpn. 74, 1674 (2005)]. Distribution of charge density indicates that the extended states at the center of each Landau band have percolating current paths, which are topologically equivalent to the edge states that exist in a system with boundaries. As increasing the strength of d...

  9. Choice of sample size for high transport critical current density in a granular superconductor: percolation versus self-field effects

    International Nuclear Information System (INIS)

    Mulet, R.; Diaz, O.; Altshuler, E.

    1997-01-01

    The percolative character of the current paths and the self-field effects were considered to estimate optimal sample dimensions for the transport current of a granular superconductor by means of a Monte Carlo algorithm and critical-state model calculations. We showed that, under certain conditions, self-field effects are negligible and the J c dependence on sample dimensions is determined by the percolative character of the current. Optimal dimensions are demonstrated to be a function of the fraction of superconducting phase in the sample. (author)

  10. Is there a delocalization transition in a two-dimensional model for quantum percolation

    International Nuclear Information System (INIS)

    Dasgupta, I.; Saha, T.; Mookerjee, A.; Chakrabarti, B.K.

    1992-01-01

    In this paper, the authors estimate the transmittance of the quantum percolation model of Eggarter and Kirkpatrick on the square lattice of various sizes using the vector recursion method. The authors note from finite size scaling that there is no delocalization transition for any degree of disorder in two dimensions

  11. Boundary rules and breaking of self-organized criticality in 2D frozen percolation

    NARCIS (Netherlands)

    J. van den Berg (Rob); P. Nolin (Pierre)

    2016-01-01

    htmlabstractWe study frozen percolation on the (planar) triangular lattice, where connected components stop growing ("freeze") as soon as their "size" becomes at least N, for some parameter N ≥ 1. The size of a connected component can be measured in several natural ways, and we

  12. A self-organized system of smart preys and predators

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Alejandro F. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina); Albano, Ezequiel V. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina)]. E-mail: ealbano@inifta.unlp.edu.ar

    2004-11-22

    Based on the fact that, a standard prey-predator model (SPPM), exhibits irreversible phase transitions, belonging to the universality class of directed percolation (DP), between prey-predator coexistence and predator extinction [Phys. Lett. A 280 (2001) 45], a self-organized prey-predator model (SOPPM) is formulated and studied by means of extensive Monte Carlo simulations. The SOPPM is achieved defining the parameters of the SPPM as functions of the density of species. It is shown that the SOPPM self-organizes into an active state close the absorbing phase of the SPPM, and consequently their avalanche exponents also belong to the universality class of DP.

  13. Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix under simulated sintering conditions

    Science.gov (United States)

    Bedard, Antoine Joseph; Barbero, Ever J.

    2018-03-01

    Magnetoelectric (ME) composites can be produced by embedding magnetostrictive H particles in a piezoelectric E matrix derived from a piezoelectric powder precursor. Previously, using a bi-disperse hard-shell model (Barbero and Bedard in Comput Part Mech, 2018. https://doi.org/10.1007/s40571-017-0165-4), it has been shown that the electrical percolation threshold of the conductive H phase can be increased by decreasing the piezoelectric E particle size, relative to the H phase particle size, and by increasing short-range affinity between the E and H particles. This study builds on our previous study by exploring what happens during sintering of the ME composite when either the H or E particles undergo deformation. It was found that deformation of the H particles reduces the percolation threshold, and that deformation of E particles increases inter-phase H-E mechanical coupling, thus contributing to enhancing of ME coupling.

  14. Strategies for Teaching and Managing Large Classes in University ...

    African Journals Online (AJOL)

    Followed by 'automate assessment tasks where possible (e.g. online quizzes)' with (Mean 3.0, SD = .899) (effective assessment practices) and 'evaluating student understanding regularly through Mini quizzes, short test, class work or True/False responses' with (Mean 2.8, SD = .752) (managing and teaching large classes).

  15. Boundary rules and breaking of self-organized criticality in 2D frozen percolation

    NARCIS (Netherlands)

    J. van den Berg (Rob); P. Nolin (Pierre)

    2017-01-01

    htmlabstractWe study frozen percolation on the (planar) triangular lattice, where connected components stop growing (“freeze”) as soon as their “size” becomes at least N, for some parameter N ≥ 1. The size of a connected component can be measured in several natural ways, and we

  16. 50 years of first-passage percolation

    CERN Document Server

    Auffinger, Antonio; Hanson, Jack

    2017-01-01

    First-passage percolation (FPP) is a fundamental model in probability theory that has a wide range of applications to other scientific areas (growth and infection in biology, optimization in computer science, disordered media in physics), as well as other areas of mathematics, including analysis and geometry. FPP was introduced in the 1960s as a random metric space. Although it is simple to define, and despite years of work by leading researchers, many of its central problems remain unsolved. In this book, the authors describe the main results of FPP, with two purposes in mind. First, they give self-contained proofs of seminal results obtained until the 1990s on limit shapes and geodesics. Second, they discuss recent perspectives and directions including (1) tools from metric geometry, (2) applications of concentration of measure, and (3) related growth and competition models. The authors also provide a collection of old and new open questions. This book is intended as a textbook for a graduate course or as a...

  17. Estimation of percolating water dynamics through the vadose zone of the Postojna cave on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janja Kogovšek

    2007-12-01

    Full Text Available Within the scope of monitoring water percolation through the 100-m thick vadose zone in the area of Postojnska jama continuous measurements of precipitation were carried out on the surface, and continuous measurements of water flowandphysicalandchemicalparametersof selected water trickles were performed under the surface. Occasional samples of percolating waters were taken for the analysis of water oxygen isotope composition. An exponential model of groundwater flowwaselaborated,bymeansofwhichtheretentiontime of water in individual trickles was estimated. Modelled retention times of groundwater range from 2.5 months to over one year.

  18. Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites

    KAUST Repository

    Elshurafa, Amro M.

    2013-06-14

    We show that graphene-percolated polymer composites exhibit fractional capacitance response in the frequency range of 50 kHz–2 MHz. In addition, it is shown that by varying the loading of graphene within the matrix from 2.5% to 12%, the phase can be controllably tuned from −67° to −31°, respectively. The electrostatic fractional capacitors proposed herein are easy to fabricate and offer integration capability on electronic printed circuit boards.

  19. Criticality of the bond-diluted Ising ferromagnet in a semi-infinite simple cubic lattice

    International Nuclear Information System (INIS)

    Silva, L.R. da; Tsallis, C.; Sarmento, E.F.

    1987-01-01

    We study the phase diagram and universality classes of the quenched bond-diluted spin 1/2 Ising ferromagnetic in a semi-infinite simple cubic lattice with a (0,0,1) free surface. We observe that surface ferromagnetism persists below the d=2 percolation threshold p c 2D = 1/2, in fact down to pc∼0,42. (M.W.O.) [pt

  20. Interpretation of the spin glass behaviour of diluted magnetic semiconductors below the nearest-neighbour percolation threshold via realistic Monte Carlo simulations

    CERN Document Server

    Karaoulanis, D; Bacalis, N C

    2000-01-01

    We have performed Monte Carlo simulations of magnetic semiconductors above and below the nearest-neighbour percolation threshold (NNPT) using a classical Heisenberg Hamiltonian with up to third nearest-neighbour (nn) interactions. Large clusters were created allowing use of realistically low magnetic fields (10 G). Above NNPT our results, apart from confirming the existing picture of this class of materials, also show that the inclusion of the second and third (nn) interactions increases the frustration, thus making the transition temperature smaller and closer to experiment than calculated via the first nn interactions only. A physically plausible explanation is given. Below NNPT our results strongly support the validity of the hypothesis (D. Karaoulanis, J.P. Xanthakis, C. Papatriantafillou, J. Magn. Magn. Mater. 161 (1996) 231), that the experimentally observed susceptibility is the sum of two contributions: a paramagnetic one due to isolated magnetic clusters, and a spin-glass contribution due to an 'infi...

  1. Indicators of Achievement in EFL Classes at a Taiwanese University

    Directory of Open Access Journals (Sweden)

    Brent Allan Kelsen

    2012-01-01

    Full Text Available Understanding the factors that contribute to student success is crucial for educators. This study estimated the indicators of success in the context of student achievement in university EFL courses in Taiwan. Data was collected from two classes of sophomore students and various student assessment aspects served as dependent variables: overall final grade, final exam score, oral test performance, and scores received on the listening, reading, and writing sections of the final exam. Explanatory variables included: years of English study, gender, part-time work, total hours studying English, participation in English-taught program, English language aptitude, first language ability, intrinsic motivation, extrinsic motivation, language anxiety, attendance, reading English for pleasure, and socioeconomic status. Pearson product-moment correlations were calculated and stepwise multiple regression analyses identified selections of variables that explained the dependent variables. Multiple regressions using the selected variables suggested that hours spent studying English, participation in the English taught program, first language ability, attendance and reading for pleasure were the most significant indicators of achievement. All models provided statistically significant moderate to strong explanatory power. Finally, this paper offers pedagogical considerations based on the results, as well as suggestions for future research.

  2. On a random area variable arising in discrete-time queues and compact directed percolation

    International Nuclear Information System (INIS)

    Kearney, Michael J

    2004-01-01

    A well-known discrete-time, single-server queueing system with mean arrival rate λ and mean departure rate μ is considered from the perspective of the area, A, swept out by the queue occupation process during a busy period. We determine the exact form of the tail of the distribution, Pr(A > x); in particular, we show that Pr(A > x) ∼ Cx -1/4 exp(-Dx 1/2 ) for all ρ ≠ 1, where ρ ≡ λ/μ, and expressions for C and D are given. For the critical case ρ = 1 we show that Pr(A > x) ∼ C'x -1/3 , with C' also given. A simple mapping, used in the derivation, establishes a connection with compact directed percolation on a square lattice. As a corollary, therefore, we are also able to specify the large-area asymptotic behaviour of this model at all points in the phase diagram. This extends previous scaling results, which are only valid close to the percolation threshold

  3. Effective Adoption of Tablets in Post-Secondary Education: Recommendations Based on a Trial of iPads in University Classes

    Science.gov (United States)

    Mang, Colin F.; Wardley, Leslie J.

    2012-01-01

    This paper explores the integration of tablets, such as the Apple iPad, in university classes and provides recommendations for other instructors to consider when adopting tablet technology. During the trial conducted in the summer of 2011 using iPads, we found that tablets had both academic and social uses, which should be considered when using…

  4. University and E-Learning Classes in Italy

    Science.gov (United States)

    Capogna, Stefania

    2012-01-01

    The article explores the use of e-learning in Italian universities. The aim is to understand how the university system has faced this problem or opportunity to date and what weaknesses or developing perspectives may result from multimedia technologies applied to academic teaching management. After a brief review of the current position of Italian…

  5. Effect of diffusion on percolation threshold in thick-film resistors

    International Nuclear Information System (INIS)

    Abdurakhmanov, G.

    2009-01-01

    Resistivity ρ(C) of thick-film resistors doped by metal oxides is simulated as a function of volume content C of the ligature, firing temperature T f and firing time τ. It is proved that the doping of a glass during firing of the thick film resistor is rather uniform. It is shown also, that conductance takes place in the whole volume of the sample, but not through the sole infinite cluster only, even the content of a conductive phase is below than the theoretical percolation threshold value.

  6. A contribution from dielectric analysis to the study of the formation of multi-wall carbon nanotubes percolated networks in epoxy resin under an electric field

    International Nuclear Information System (INIS)

    Risi, Celso L.S.; Hattenhauer, Irineu; Ramos, Airton; Coelho, Luiz A.F.; Pezzin, Sérgio H.

    2015-01-01

    The formation of percolation networks in epoxy matrix nanocomposites reinforced with multi-wall carbon nanotubes (MWNT) during the curing process, at different MWNT contents, was studied by using a parallel plate cell subjected to a 300 V/cm AC electric field at 1 kHz. The percolation was verified by the electrical current output measured during and after the resin curing. The behavior of electric dipoles was characterized by impedance spectroscopy and followed the Debye first order dispersion model, by which an average relaxation time of 6.0 × 10 −4 s and a cut-off frequency of 1.7 kHz were experimentally found. By applying the theory of percolation, a critical probability, p c , equal to 0.038 vol% and an exponent of conductivity of 2.0 were found. Both aligned and random samples showed dipole relaxation times typical of interfacial and/or charge-hopping polarization, while the permittivity exhibited an exponential decrease with frequency. This behavior can be related to the increased ability to trap electrical charges due to the formation of the carbon nanotubes network. Optical and electron microscopies confirm the theoretical prediction that the application of an electric field during cure helps the process of MWNT debundling in epoxy resin. - Highlights: • We report the formation of percolating networks of MWNTs under AC electric field. • MWNT/epoxy dielectric properties were measured by impedance spectroscopy. • Lower percolation thresholds were obtained for composites with aligned CNTs. • Application of AC electric field helps the debundling of CNTs. • CNT/Epoxy with percolated networks presents interfacial and hopping polarizations

  7. Scaling and percolation in the small-world network model

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M. E. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States); Watts, D. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States)

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society.

  8. Scaling and percolation in the small-world network model

    International Nuclear Information System (INIS)

    Newman, M. E. J.; Watts, D. J.

    1999-01-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society

  9. Clustering and percolation threshold in diphase systems of random centered quantum dots of ZnSe

    International Nuclear Information System (INIS)

    Bondar', N.V.

    2009-01-01

    A characteristic feature due to the formation of a percolation phase transition of carriers has been observed in a two-phase system consisting of borosilicate glass with ZnSe quantum dots. For near-threshold quantum-dot concentrations, changes due to microscopic fluctuations of the quantum-dot density have been observed in the intensities of radiation emission bands. This phenomenon is reminiscent of critical opalescence, where similar fluctuations of the density of a pure substance arise near a phase transition. It is proposed that the dielectric mismatch between the matrix and ZnSe plays a large role in the carrier (exciton) delocalization, resulting in the appearance of a 'dielectric trap' on the interface and the formation there of surface states of excitons. The spatial overlapping of states which occurs at the critical concentration of quantum dots results in carrier tunneling and the appearance of a percolation transition in such a system

  10. Two percolation thresholds due to geometrical effects: experimental and simulated results

    International Nuclear Information System (INIS)

    Nettelblad, B; Martensson, E; Oenneby, C; Gaefvert, U; Gustafsson, A

    2003-01-01

    The electrical properties of a mixture of ethylene-propylene-diene monomer rubber and silicon carbide (SiC) have been measured as a function of filler concentration. It was found that mixtures containing angular SiC grains have a conductivity that displays not one, but two percolation thresholds. Different types of contacts between the conducting particles, being represented by edge and face connections, respectively, can explain the phenomenon. The two percolation thresholds are obtained at volume fractions of about 0.25 and 0.40, respectively. These values are higher than those predicted by theory, which can be explained by dispersion effects with only one phase being granular and the other being continuous. The value of the conductivity at the central plateau was found to be close to the geometric mean of the limiting conductivities at low and high concentrations. This is in good agreement with theory. With rounded SiC grains only one threshold is obtained, which is consistent with only one type of contact. The concentration dependence of the conductivity was simulated using a three-dimensional impedance network model that incorporates both edge and face contacts. The double-threshold behaviour also appears in the calculations. By dispersing the conducting particles more evenly than random, the thresholds are shifted towards higher concentrations as observed in the experiments

  11. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    Science.gov (United States)

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  12. Comparing a Yoga Class with a Resistance Exercise Class: Effects on Body Satisfaction and Social Physique Anxiety in University Women.

    Science.gov (United States)

    Gammage, Kimberley L; Drouin, Breanne; Lamarche, Larkin

    2016-11-01

    The current study compared a single yoga group exercise class and a resistance group exercise class for their effects on state body satisfaction and social physique anxiety in women. A pretest-posttest design was used. Participants (N = 46) completed both a resistance exercise class and yoga class in a counterbalanced order. Measures of body satisfaction and social physique anxiety were completed immediately before and after each class. A 2 (time) × 2 (class type) repeatedmeasures multiple analysis of variance showed a significant overall Time × Class Type interaction (F 2,44 = 5.69, P class. After both classes, there was a significant decrease in social physique anxiety, but the magnitude of the change was larger after the yoga class than after the resistance class. Both types of exercise class were associated with improvements in body image, but there were greater improvements after the yoga class. This study provided evidence of the positive effects of yoga for reducing state social physique anxiety and increasing state body satisfaction, adding to correlational evidence suggesting that yoga is particularly beneficial for improving body image-related outcomes in women.

  13. A solid-on-solid invasion percolation model for self-affine interfaces

    International Nuclear Information System (INIS)

    Arizmendi, C.M.; Martin, H.O.; Sanchez, J.R.

    1993-08-01

    The scaling properties of the interface of a new growth model are studied. The model is based on the standard invasion percolation without trapping in which the solid-on-solid condition is imposed. The local correlation between points of the interface can be controlled through a parameter. The self-affine properties of the interface show strong dependence on the existence of the local correlation. The dependence of the relevant exponents of the interface with the correlation is analysed. (author). 8 refs, 4 figs

  14. New universality class for superconducting order parameter

    International Nuclear Information System (INIS)

    Dobroliubov, M.I.; Khlebnikov, S.Yu.

    1991-04-01

    We present a model of superconductivity with pairing due to Aharonov-Bohm forces. The gap is proportional to the first power of the small parameter (in which the self-consistent perturbation scheme is developed), as opposed to the BCS class of models where the gap is exponentially suppressed with the small parameter. (orig.)

  15. Effects of inhibitory neurons on the quorum percolation model and dynamical extension with the Brette-Gerstner model

    Science.gov (United States)

    Fardet, Tanguy; Bottani, Samuel; Métens, Stéphane; Monceau, Pascal

    2018-06-01

    The Quorum Percolation model (QP) has been designed in the context of neurobiology to describe the initiation of activity bursts occurring in neuronal cultures from the point of view of statistical physics rather than from a dynamical synchronization approach. This paper aims at investigating an extension of the original QP model by taking into account the presence of inhibitory neurons in the cultures (IQP model). The first part of this paper is focused on an equivalence between the presence of inhibitory neurons and a reduction of the network connectivity. By relying on a simple topological argument, we show that the mean activation behavior of networks containing a fraction η of inhibitory neurons can be mapped onto purely excitatory networks with an appropriately modified wiring, provided that η remains in the range usually observed in neuronal cultures, namely η ⪅ 20%. As a striking result, we show that such a mapping enables to predict the evolution of the critical point of the IQP model with the fraction of inhibitory neurons. In a second part, we bridge the gap between the description of bursts in the framework of percolation and the temporal description of neural networks activity by showing how dynamical simulations of bursts with an adaptive exponential integrate-and-fire model lead to a mean description of bursts activation which is captured by Quorum Percolation.

  16. Description of vibrational properties of random alloy ZnTe{sub 1-x}Se{sub x} within the percolation model

    Energy Technology Data Exchange (ETDEWEB)

    Souhabi, Jihane; Chafi, Allal; Kassem, Mohammed; Nassour, Ayoub; Gleize, Jerome; Postnikov, A.V.; Hugel, J.; Pages, Olivier [Laboratoire de Physique des Milieux Denses, Universite Paul Verlaine - Metz, 1 Bd Arago, 57070 Metz (France)

    2009-05-15

    We discuss the classification of the phonon type behavior of semiconductor alloys as apparent in the Raman and infrared spectra, i.e. in terms of types (i) 1-bond{yields}1-mode and (ii) 2-bond{yields}1-mode (both covered by the Modified Random Element Isodisplacement model, operating at the macroscopic scale), and also (iii) the modified 2-mode type (exceptional), in the framework of the recent 1-bond{yields}2-mode percolation model based on a description of the alloy disorder at the mesoscopic scale. The leading systems of types (i) and (iii), i.e., InGaAs and InGaP, respectively, were earlier shown to obey the percolation model. The aim of this work is to investigate whether the percolation model further extends to the leading system of the last type (ii), i.e. ZnTeSe. With this end in view, we perform a careful re-examination of the Raman and infrared spectra of this alloy, as available in the literature. Special attention is awarded to the discussion and modeling of the puzzling multi-mode infrared reflectivity spectra. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Features of the Percolation Scheme of Vibrational Spectrum Reconstruction in the Ga1 - x Al x P Alloy

    Science.gov (United States)

    Kozyrev, S. P.

    2018-04-01

    Specific features of the properties of Ga-P lattice vibrations have been investigated using the percolation model of a mixed Ga1 - x Al x P crystal (alloy) with zero lattice mismatch between binary components of the alloy. In contrast to other two-mode alloy systems, in Ga1 - x Al x P a percolation splitting of δ 13 cm-1 is observed for the low-frequency mode of GaP-like vibrations. An additional GaP mode (one of the percolation doublet components) split from the fundamental mode is observed for the GaP-rich alloy, which coincides in frequency with the gap corresponding to the zero density of one-phonon states of the GaP crystal. The vibrational spectrum of impurity Al in the GaP crystal has been calculated using the theory of crystal lattice dynamics. Upon substitution of lighter Al for the Ga atom, the calculated spectrum includes, along with the local mode, a singularity near the gap with the zero density of phonon states of the GaP crystal, which coincides with the mode observed experimentally at a frequency of 378 cm-1 in the Ga1 - x Al x P ( x < 0.4) alloy.

  18. Effect of degree correlations above the first shell on the percolation transition

    OpenAIRE

    Valdez, L. D.; Buono, C.; Braunstein, L. A.; Macri, P. A.

    2011-01-01

    The use of degree-degree correlations to model realistic networks which are characterized by their Pearson's coefficient, has become widespread. However the effect on how different correlation algorithms produce different results on processes on top of them, has not yet been discussed. In this letter, using different correlation algorithms to generate assortative networks, we show that for very assortative networks the behavior of the main observables in percolation processes depends on the a...

  19. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    Science.gov (United States)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2018-03-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  20. Current flow in random resistor networks: the role of percolation in weak and strong disorder.

    Science.gov (United States)

    Wu, Zhenhua; López, Eduardo; Buldyrev, Sergey V; Braunstein, Lidia A; Havlin, Shlomo; Stanley, H Eugene

    2005-04-01

    We study the current flow paths between two edges in a random resistor network on a L X L square lattice. Each resistor has resistance e(ax) , where x is a uniformly distributed random variable and a controls the broadness of the distribution. We find that: (a) The scaled variable u identical with u congruent to L/a(nu) , where nu is the percolation connectedness exponent, fully determines the distribution of the current path length l for all values of u . For u > 1, the behavior corresponds to the weak disorder limit and l scales as l approximately L, while for u < 1 , the behavior corresponds to the strong disorder limit with l approximately L(d(opt) ), where d(opt) =1.22+/-0.01 is the optimal path exponent. (b) In the weak disorder regime, there is a length scale xi approximately a(nu), below which strong disorder and critical percolation characterize the current path.

  1. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  2. Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets

    Science.gov (United States)

    Zeng, Yayun; Wang, Jun; Xu, Kaixuan

    2017-04-01

    A new financial agent-based time series model is developed and investigated by multiscale-continuum percolation system, which can be viewed as an extended version of continuum percolation system. In this financial model, for different parameters of proportion and density, two Poisson point processes (where the radii of points represent the ability of receiving or transmitting information among investors) are applied to model a random stock price process, in an attempt to investigate the fluctuation dynamics of the financial market. To validate its effectiveness and rationality, we compare the statistical behaviors and the multifractal behaviors of the simulated data derived from the proposed model with those of the real stock markets. Further, the multiscale sample entropy analysis is employed to study the complexity of the returns, and the cross-sample entropy analysis is applied to measure the degree of asynchrony of return autocorrelation time series. The empirical results indicate that the proposed financial model can simulate and reproduce some significant characteristics of the real stock markets to a certain extent.

  3. Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation

    Science.gov (United States)

    Wang, M.; Wang, J.; Wang, B. T.

    2018-02-01

    Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.

  4. Percolation Effects in Very-High-Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Dias de Deus, J.; Santo, M.C. Espirito; Pimenta, M.; Pajares, C.

    2006-01-01

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E∼10 20 eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum X max with the primary energy shows a change in slope (E∼10 17 eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E≅10 17 eV

  5. Building World Class Universities in China: Exploring Faculty's Perceptions, Interpretations of and Struggles with Global Forces in Higher Education

    Science.gov (United States)

    Kim, Dongbin; Song, Quirong; Liu, Ji; Liu, Qingqin; Grimm, Adam

    2018-01-01

    Employing a glonacal (global, national and local) heuristic as a theoretical lens, and a qualitative analysis with interview data, this study highlights how Chinese faculty members interpret the definitions and implications of pursuing world class universities (WCUs) and struggle with the multiple dimensions of their academic lives across global,…

  6. Simple method to calculate percolation, Ising and Potts clusters

    International Nuclear Information System (INIS)

    Tsallis, C.

    1981-01-01

    A procedure ('break-collapse method') is introduced which considerably simplifies the calculation of two - or multirooted clusters like those commonly appearing in real space renormalization group (RG) treatments of bond-percolation, and pure and random Ising and Potts problems. The method is illustrated through two applications for the q-state Potts ferromagnet. The first of them concerns a RG calculation of the critical exponent ν for the isotropic square lattice: numerical consistence is obtained (particularly for q→0) with den Nijs conjecture. The second application is a compact reformulation of the standard star-triangle and duality transformations which provide the exact critical temperature for the anisotropic triangular and honeycomb lattices. (Author) [pt

  7. Pretreatment Characteristics of Waste Oak Wood by Ammonia Percolation

    Science.gov (United States)

    Kim, Jun-Seok; Kim, Hyunjoon; Lee, Jin-Suk; Lee, Joon-Pyo; Park, Soon-Chul

    A log of waste oak wood collected from a Korean mushroom farm has been tested for ammonia percolation pretreatment. The waste log has different physical characteristics from that of virgin oak wood. The density of the waste wood was 30% lower than that of virgin oak wood. However, there is little difference in the chemical compositions between the woods. Due to the difference in physical characteristics, the optimal pretreatment conditions were also quite different. While for waste oak the optimum temperature was determined to be 130°C, for virgin oak wood the optimum pretreatment was only achieved at 170°C. Presoaking for 12 h with ammonia solution before pretreatment was helpful to increase the delignification efficiency.

  8. Percolation-induced plasmonic state and double negative electromagnetic properties of Ni-Zn Ferrite/Cu granular composite materials

    Science.gov (United States)

    Massango, Herieta; Kono, Koji; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2018-05-01

    Complex permeability and permittivity spectra of Ni-Zn Ferrite/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. The electrical conductivity σ shows insulating properties in the volume fraction of Cu particles below φ = 0.14. A large jump in conductivity was observed between φ = 0.14 and 0.24 indicating that the Cu particles make metallic conduction between this interval. Hence, the percolation threshold φC, was estimated to be 0.14. A percolation-induced low frequency plasmonic state with negative permittivity spectrum was observed from φ = 0.14-0.24. Meanwhile the negative permeability was observed at φ = 0.16, 0.19 and 0.24. Hence the DNG characteristic was realized in these Cu volume content in the frequency range from 105 MHz to 2 GHz.

  9. Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling

    Science.gov (United States)

    Heilig, Achim; Eisen, Olaf; MacFerrin, Michael; Tedesco, Marco; Fettweis, Xavier

    2018-06-01

    Increasing melt over the Greenland Ice Sheet (GrIS) recorded over the past several years has resulted in significant changes of the percolation regime of the ice sheet. It remains unclear whether Greenland's percolation zone will act as a meltwater buffer in the near future through gradually filling all pore space or if near-surface refreezing causes the formation of impermeable layers, which provoke lateral runoff. Homogeneous ice layers within perennial firn, as well as near-surface ice layers of several meter thickness have been observed in firn cores. Because firn coring is a destructive method, deriving stratigraphic changes in firn and allocation of summer melt events is challenging. To overcome this deficit and provide continuous data for model evaluations on snow and firn density, temporal changes in liquid water content and depths of water infiltration, we installed an upward-looking radar system (upGPR) 3.4 m below the snow surface in May 2016 close to Camp Raven (66.4779° N, 46.2856° W) at 2120 m a.s.l. The radar is capable of quasi-continuously monitoring changes in snow and firn stratigraphy, which occur above the antennas. For summer 2016, we observed four major melt events, which routed liquid water into various depths beneath the surface. The last event in mid-August resulted in the deepest percolation down to about 2.3 m beneath the surface. Comparisons with simulations from the regional climate model MAR are in very good agreement in terms of seasonal changes in accumulation and timing of onset of melt. However, neither bulk density of near-surface layers nor the amounts of liquid water and percolation depths predicted by MAR correspond with upGPR data. Radar data and records of a nearby thermistor string, in contrast, matched very well for both timing and depth of temperature changes and observed water percolations. All four melt events transferred a cumulative mass of 56 kg m-2 into firn beneath the summer surface of 2015. We find that

  10. Construction and operation of a pilot percolator installation for the processing of biological wastes; Bau und Betrieb einer Perkolationsanlage im Pilotmasstab zur Aufbereitung von Bioabfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Schober, G.; Wellinger, A. [Nova Energie GmbH, Aadorf (Switzerland); Widmer, Ch. [AFAG Engineering, Binningen (Switzerland)

    2004-07-01

    This final report presents a review of the results of work done on behalf of the Swiss Federal Office of Energy (SFOE) on the development of a new two-step, two-phase system for waste treatment with biogas generation. The report describes the main components of the system - the percolator itself and the anaerobic digester. In the one-cubic-metre pilot batch percolator, followed by a four-cubic-metre hybrid anaerobic filter, source-separated household and green waste was percolated. The report deals with the optimisation of physicochemical, biological and process parameters in order to improve COD (Chemical Oxygen Demand) removal rates and, consequently, gas yield. Figures are presented on tests made with varying washing-water and aeration rates in order to optimise COD removal.

  11. Percolation theory for flow in porous media

    CERN Document Server

    Hunt, Allen; Ghanbarian, Behzad

    2014-01-01

    This monograph presents, for the first time, a unified and comprehensive introduction to some of the basic transport properties of porous media, such as electrical and hydraulic conductivity, air permeability and diffusion. The approach is based on critical path analysis and the scaling of transport properties, which are individually described as functions of saturation. At the same time, the book supplies a tutorial on percolation theory for hydrologists, providing them with the tools for solving actual problems. In turn, a separate chapter serves to introduce physicists to some of the language and complications of groundwater hydrology necessary for successful modeling. The end-of-chapter problems often indicate open questions, which young researchers entering the field can readily start working on. This significantly revised and expanded third edition includes in particular two new chapters: one on advanced fractal-based models, and one devoted to the discussion of various open issues such as the role of d...

  12. The PAD Class: a new paradigm for university classroom teaching

    Science.gov (United States)

    Zhang, Xuexin

    2017-08-01

    The PAD Class (Presentation-Assimilation-Discussion) is a new paradigm for classroom teaching combining strengths of lecture and discussion. With half class time allocated for teacher's presentation and the other half for students' discussion, an assimilation stage was inserted between presentation and discussion for independent and individualized learning. Since its first success in 2014, the PAD method has gained national popularity in China and been successfully put into practice by thousands of college teachers in nearly all subjects, e.g., science, engineering, medical sciences, social sciences, humanities and arts. This paper analyzed the psychological and pedagogical rationales underlying the PAD Class to explicate its effectiveness in enhancing active learning.

  13. Percolation Model of Nuclear Multifragmentation in High Energy Nucleus-Nucleus Interactions

    International Nuclear Information System (INIS)

    Abdel-Waged, Kh.

    1994-01-01

    A hybrid model based on Reggeon theory inspired model of nuclear distribution, which was successful in explaining the cascading of particles in high energy nucleus-nucleus interactions, and percolation model is proposed. In the framework of this model the yield of the fragment in p + Ag, Au at 350 GeV and C + Ag, Au at 3.6 GeV/nucleon as well as the charge distribution of fragments in Kr, Xe and U interactions with emulsion at ∼ 1 GeV/nucleon is correctly described. 32 refs., 3 figs

  14. Race and Class on Campus

    Science.gov (United States)

    Perez, Angel B.

    2016-01-01

    Colleges and universities have a significant role to play in shaping the future of race and class relations in America. As exhibited in this year's presidential election, race and class continue to divide. Black Lives Matter movements, campus protests, and police shootings are just a few examples of the proliferation of intolerance, and higher…

  15. Universal, class-specific and drug-specific reversal agents for the new oral anticoagulants.

    Science.gov (United States)

    Ansell, Jack E

    2016-02-01

    Although there is controversy about the absolute need for a reversal agent for the new direct oral anticoagulants (DOACs), the absence of such an agent is a barrier to more widespread use of these agents. For the management of major life-threatening bleeding with the DOACs, most authorities recommend the use of four factor prothrombin complex concentrates, although the evidence to support their use in terms of improving outcomes is meager. At the present time, there are three antidotes in development and poised to enter the market. Idarucizumab is a drug-specific antidote targeted to reverse the direct thrombin inhibitor, dabigatran. Andexanet alfa is a class-specific antidote targeted to reverse the oral direct factor Xa inhibitors as well as the indirect inhibitor, enoxaparin. Ciraparantag is a universal antidote targeted to reverse the direct thrombin and factor Xa inhibitors as well as the indirect inhibitor, enoxaparin.

  16. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  17. Clustering/anticlustering effects on the GeSi Raman spectra at moderate (Ge,Si) contents: Percolation scheme vs. ab initio calculations

    Science.gov (United States)

    Torres, V. J. B.; Hajj Hussein, R.; Pagès, O.; Rayson, M. J.

    2017-02-01

    We test a presumed ability behind the phenomenological percolation scheme used for the basic description of the multi-mode Raman spectra of mixed crystals at one dimension along the linear chain approximation, to determine, via the Raman intensities, the nature of the atom substitution, as to whether this is random or due to local clustering/anticlustering. For doing so, we focus on the model percolation-type GeySi1-y system characterized by six oscillators { 1 × ( G e - G e ) , 3 × ( G e - S i ) , 2 × ( S i - S i ) } and place the study around the critical compositions y ˜ (0.16, 0.71, and 0.84) corresponding to nearly matching of intensities between the like Raman modes from a given multiplet ( G e - S i triplet or S i - S i doublet). The interplay between the GeySi1-y Raman intensities predicted by the percolation scheme depending on a suitable order parameter κ of local clustering/anticlustering is found to be consistent with ab initio calculations of the GeySi1-y Raman spectra done with the Ab Initio Modeling PROgram code using large (64-, 216-, and 512-atoms) disordered cubic supercells matching the required ( y , κ ) values. The actual "percolation vs. ab initio" comparative insight at moderate/dilute-(Ge,Si) limits, with an emphasis on the κ -induced intra-bond transfer of oscillator strength, extends a pioneering one earlier achieved at an intermediate composition ( y ˜ 0.50) by using small (32-atom) supercells [O. Pagès et al., J. Appl. Phys. 114, 033513 (2013)], mainly concerned with the inter-bond transfer of oscillator strength, providing altogether a complete picture.

  18. Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.

    Science.gov (United States)

    Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P

    2012-01-01

    The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.

  19. To Speak or Not to Speak in the New Taiwanese University: Class Participation and Identity Construction in Linguistically and Culturally Diverse Graduate Classrooms

    Science.gov (United States)

    Lin, Shumin

    2018-01-01

    In order to internationalize higher education, universities across Asia have engaged in aggressive recruitment of international students and increased provision of English-medium instruction (EMI). While many studies have examined Asian international students' intercultural interactions during class discussions in Western/English-speaking…

  20. Percolation leaching and uranium recovery of El erediya granitic rocks, eastern desert, Egypt

    International Nuclear Information System (INIS)

    Abdel Monem, H.M.; Ali, M.M.; Hassan, M.A.

    1998-01-01

    El erediya uranium occurrence is located in the vicinity of qena-safaga road, central eastern desert. A bulk head sample of about 50 kg was prepared for this study. mineralogically, uranophane is the essential uranium mineral identified in the studied bulk head sample. It occurs as yellow flakes and acicular grains filling fractures, whereas the gangue minerals are mainly composed of quartz, altered potash feldspar, and minor plagioclase. The head sample assays as 74.36% SiO 2 , 13.81% Al 2 O 3 and 0.091% U. Percolation leaching utilizing H 2 SO 4 was performed at a fairly low Ph value. The examined factors include Ph of the leach solution, the grain size beside the duration time. More than 97% leaching of the uranium was reported after percolating the leach solution for 6 weeks at ph 1.4. Thus it could be possible to produce a pregnant leach solution assaying more than 1.2 g U/L by using a multi-stage leaching system. For recovering uranium, tri-octyl-phosphine oxide (TOPO) in kerosene was found to be the most powerful U-extractant. Good U-distribution coefficient (E) of 103 has been obtained with 0.1 M TOPO in the presence of 0.1 M HNO 3

  1. A new class of scale free solutions to linear ordinary differential equations and the universality of the golden mean (Radical radicand 5 -1)/2=0.618033.

    International Nuclear Information System (INIS)

    Datta, Dhurjati Prasad

    2003-01-01

    A new class of finitely differentiable scale free solutions to the simplest class of ordinary differential equations is presented. Consequently, the real number set gets replaced by an extended physical set, each element of which is endowed with an equivalence class of infinitesimally separated neighbours in the form of random fluctuations. We show how a sense of time and evolution is intrinsically defined by the infinite continued fraction of the golden mean irrational number (Radical radicand 5 -1)/2, which plays a key role in this extended SL(2,R) formalism of calculus analogous to El Naschie's theory of E (∞) spacetime manifold. Time may thereby undergo random inversions generating well defined random scales, thus allowing a dynamical system to evolve self similarly over the set of multiple scales. The late time stochastic fluctuations of a dynamical system enjoys the generic 1/f spectrum. A universal form of the related probability density is also derived. We prove that the golden mean number is intrinsically random, letting all measurements in the physical universe fundamentally uncertain. The present analysis offers an explanation of the universal occurrence of the golden mean in diverse natural and biological processes as well as the mass spectrum of high energy particle physics

  2. The Chemical Percolation Devolatilization Model Applied to the Devolatilization of Coal in High Intensity Acoustic Fields

    Directory of Open Access Journals (Sweden)

    Veras Carlos A. G.

    2002-01-01

    Full Text Available The chemical percolation devolatilization model (CPD was extended for the prediction of drying and devolatilization of coal particles in high intensity acoustic fields found in Rijke tube reactors. The acoustic oscillations enhance the heat and mass transfer processes in the fuel bed as well as in the freeboard, above the grate. The results from simulations in a Rijke tube combustor have shown an increase in the rate of water evaporation and thermal degradation of the particles. The devolatilization model, based on chemical percolation, applied in pulsating regime allowed the dynamic prediction on the yields of CO, CO2, CH4, H2O, other light gases as well as tar which are important on ignition and stabilization of flames. The model predicted the quantity and form of nitrogen containing species generated during devolatilization, for which knowledge is strategically indispensable for reducing pollutant emissions (NOx in flames under acoustic excitation .

  3. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  4. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    Science.gov (United States)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  5. What Types of Instructional Shifts Do Students Experience? Investigating Active Learning in Science, Technology, Engineering, and Math Classes across Key Transition Points from Middle School to the University Level

    Directory of Open Access Journals (Sweden)

    Kenneth Akiha

    2018-01-01

    Full Text Available Despite the need for a strong Science, Technology, Engineering, and Math (STEM workforce, there is a high attrition rate for students who intend to complete undergraduate majors in these disciplines. Students who leave STEM degree programs often cite uninspiring instruction in introductory courses, including traditional lecturing, as a reason. While undergraduate courses play a critical role in STEM retention, little is understood about the instructional transitions students encounter upon moving from secondary to post-secondary STEM courses. This study compares classroom observation data collected using the Classroom Observation Protocol for Undergraduate STEM from over 450 middle school, high school, introductory-level university, and advanced-level university classes across STEM disciplines. We find similarities between middle school and high school classroom instruction, which are characterized by a large proportion of time spent on active-learning instructional strategies, such as small-group activities and peer discussion. By contrast, introductory and advanced university instructors devote more time to instructor-centered teaching strategies, such as lecturing. These instructor-centered teaching strategies are present in classes regardless of class enrollment size, class period length, or whether or not the class includes a separate laboratory section. Middle school, high school, and university instructors were also surveyed about their views of what STEM instructional practices are most common at each educational level and asked to provide an explanation of those perceptions. Instructors from all levels struggled to predict the level of lecturing practices and often expressed uncertainty about what instruction looks like at levels other than their own. These findings suggest that more opportunities need to be created for instructors across multiple levels of the education system to share their active-learning teaching practices and

  6. Infiltration/percolation and wetlands as soft sewage purification treatments; Infiltracion/percolacion y humedades como tratamientos blandos en la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Pigem, J.; Marzo, R.; Pea, de la, J. L.; Llagostera, R.; Verges, C.; Salgot, M.; Folch, M.; Pauelas, G.; Pujol, A. [Barcelona. (Spain)

    1999-06-01

    Soft technologies, such as modified infiltration/percolation and wetlands are useful solution for treating sewage and an ideal alternative in areas with a large land surface and an appropriate climate. Modified infiltration/percolation is employed in Spain in tertiary treatment (after secondary treatment). It is most suitable for flows of 3,000-5,000 m``3/day. Another possibility is to use it as a secondary treatment, as in France, for flows of <2,000 m``3/day. Wetlands are suitable for population of <2,000 inhabitants. This article describes an experiment in the village of Els Hostalets de Pierola, in the province of Barcelona (Spain) on a previously decanted sewage flow of 500 m``3/day. The modified infiltration/percolation process is performed by two 875 m``2 filters with a filtering mass consisting of two different grades of sand. The wetlands, with a surface area of 400 m``2 is made up of gravel to which water is applied by means of pipe and croy. A community of Phragmites australes (common reed) has been planted in the gravel. (Author) 5 refs.

  7. Effect of sorbic acid doping on flux pinning in bulk MgB2 with the percolation model

    International Nuclear Information System (INIS)

    Yang, Y.; Cheng, C.H.; Wang, L.; Sun, H.H.; Zhao, Y.

    2010-01-01

    In this paper, we study the doping effect of sorbic acid (C 6 H 8 O 2 ), from 0 to 20 wt.% of the total MgB 2 , on critical temperature (T c ), critical current density (J c ), irreversibility field (H irr ) and crystalline structure. The XRD patterns of samples show a slightly decrease in a-axis lattice parameter for doped samples, due to the partial substitution of carbon at boron site. On the other hand, we investigate the influence of doping on the behavior of flux pinning and J c (B) in the framework of percolation theory and it is found that the J c (B) behavior could be well fitted in high field region. The two key parameters, anisotropy and percolation threshold, play very important roles. It is believed that the enhancement of J c is due to the reduction of anisotropy in high field region.

  8. Petrophysical and transport parameters evolution during acid percolation through structurally different limestones

    Science.gov (United States)

    Martinez Perez, Laura; Luquot, Linda

    2017-04-01

    Processes affecting geological media often show complex and unpredictable behavior due to the presence of heterogeneities. This remains problematic when facing contaminant transport problems, in the CO2 storage industry or dealing with the mechanisms underneath natural processes where chemical reactions can be observed during the percolation of rock non-equilibrated fluid (e.g. karst formation, seawater intrusion). To understand the mechanisms taking place in a porous medium as a result of this water-rock interaction, we need to know the flow parameters that control them, and how they evolve with time as a result of that concurrence. This is fundamental to ensure realistic predictions of the behavior of natural systems in response of reactive transport processes. We investigate the coupled influence of structural and hydrodynamic heterogeneities in limestone rock samples tracking its variations during chemical reactions. To do so we use laboratory petrophysical techniques such as helium porosimetry, gas permeability, centrifugue, electrical resistivity and sonic waves measurements to obtain the parameters that characterize flow within rock matrix (porosity, permeability, retention curve and pore size distribution, electrical conductivity, formation factor, cementation index and tortuosity) before and after percolation experiments. We built an experimental setup that allows injection of acid brine into core samples under well controlled conditions, monitor changes in hydrodynamic properties and obtain the chemical composition of the injected solution at different stages. 3D rock images were also acquired before and after the experiments using a micro-CT to locate the alteration processes and perform an acurate analysis of the structural changes. Two limestones with distinct textural classification and thus contrasting transport properties have been used in the laboratory experiments: a crinoid limestone and an oolithic limestone. Core samples dimensions were 1 inch

  9. Patterns of multiple health risk-behaviours in university students and their association with mental health: application of latent class analysis.

    Science.gov (United States)

    Kwan, M Y; Arbour-Nicitopoulos, K P; Duku, E; Faulkner, G

    2016-08-01

    University and college campuses may be the last setting where it is possible to comprehensively address the health of a large proportion of the young adult population. It is important that health promoters understand the collective challenges students are facing, and to better understand the broader lifestyle behavioural patterning evident during this life stage. The purpose of this study was to examine the clustering of modifiable health-risk behaviours and to explore the relationship between these identified clusters and mental health outcomes among a large Canadian university sample. Undergraduate students (n = 837; mean age = 21 years) from the University of Toronto completed the National College Health Assessment survey. The survey consists of approximately 300 items, including assessments of student health status, mental health and health-risk behaviours. Latent class analysis was used to identify patterning based on eight salient health-risk behaviours (marijuana use, other illicit drug use, risky sex, smoking, binge drinking, poor diet, physical inactivity, and insufficient sleep). A three-class model based on student behavioural patterns emerged: "typical," "high-risk" and "moderately healthy." Results also found high-risk students reporting significantly higher levels of stress than typical students (χ2(1671) = 7.26, p Students with the highest likelihood of engaging in multiple health-risk behaviours reported poorer mental health, particularly as it relates to stress. Although these findings should be interpreted with caution due to the 28% response rate, they do suggest that interventions targeting specific student groups with similar patterning of multiple health-risk behaviours may be needed.

  10. Patterns of multiple health risk-behaviours in university students and their association with mental health: application of latent class analysis

    Directory of Open Access Journals (Sweden)

    M. Y. Kwan

    2016-08-01

    Full Text Available University and college campuses may be the last setting where it is possible to comprehensively address the health of a large proportion of the young adult population. It is important that health promoters understand the collective challenges students are facing, and to better understand the broader lifestyle behavioural patterning evident during this life stage. The purpose of this study was to examine the clustering of modifiable health-risk behaviours and to explore the relationship between these identified clusters and mental health outcomes among a large Canadian university sample. Methods: Undergraduate students (n = 837; mean age = 21 years from the University of Toronto completed the National College Health Assessment survey. The survey consists of approximately 300 items, including assessments of student health status, mental health and health-risk behaviours. Latent class analysis was used to identify patterning based on eight salient health-risk behaviours (marijuana use, other illicit drug use, risky sex, smoking, binge drinking, poor diet, physical inactivity, and insufficient sleep. Results: A three-class model based on student behavioural patterns emerged: "typical," "high-risk" and "moderately healthy." Results also found high-risk students reporting significantly higher levels of stress than typical students (χ2(1671 = 7.26, p < .01. Conclusion: Students with the highest likelihood of engaging in multiple health-risk behaviours reported poorer mental health, particularly as it relates to stress. Although these findings should be interpreted with caution due to the 28% response rate, they do suggest that interventions targeting specific student groups with similar patterning of multiple health-risk behaviours may be needed.

  11. Dielectric response and percolation behavior of Ni–P(VDF–TrFE nanocomposites

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2017-06-01

    Full Text Available Conductor–dielectric 0–3 nanocomposites using spherical nickel nanoparticles as filler and poly(vinylidene fluoride–trifluoroethylene 70/30mol.% as matrix are prepared using a newly developed process that combines a solution cast and a hot-pressing method with a unique configuration and creates a uniform microstructure in the composites. The uniform microstructure results in a high percolation threshold φc (>55 vol.%. The dielectric properties of the nanocomposites at different frequencies over a temperature range from −70∘C to 135∘C are studied. The results indicate that the composites exhibit a lower electrical conductivity than the polymer matrix. It is found that the nanocomposites can exhibit an ultra-high dielectric constant, more than 1500 with a loss of about 1.0 at 1kHz, when the Ni content (53 vol.% is close to percolation threshold. For the nanocomposites with 50 vol.% Ni particles, a dielectric constant more than 600 with a loss less than 0.2 is achieved. It is concluded that the loss including high loss is dominated by polarization process rather than the electrical conductivity. It is also found that the appearance of Ni particles has a strong influence on the crystallization process in the polymer matrix so that the polymer is converted from a typical ferroelectric to a relaxor ferroelectric. It is also demonstrated that the widely used relationship between the dielectric constant and the composition of the composites may not be valid.

  12. University Students' Problem Posing Abilities and Attitudes towards Mathematics.

    Science.gov (United States)

    Grundmeier, Todd A.

    2002-01-01

    Explores the problem posing abilities and attitudes towards mathematics of students in a university pre-calculus class and a university mathematical proof class. Reports a significant difference in numeric posing versus non-numeric posing ability in both classes. (Author/MM)

  13. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents

    Science.gov (United States)

    Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B.

    2016-01-01

    Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2 power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.

  14. Magnetic and transport properties of Ni2MnGa-BaTiO3 metal-insulator particulate composite with percolation threshold

    International Nuclear Information System (INIS)

    Won, C.J.; Kambale, R.C.; Hur, N.

    2011-01-01

    Highlights: → The Ni 2 MnGa-BaTiO 3 type composites were first time prepared by solid state reaction. → Temperature dependent magnetic properties reveal two kinds of transitions in these composite. → The present materials show negative magnetoresistance effect. → The present studies on magnetic and electrical transport of metal/insulator (NMG/BTO) composites shows the resistivity change associated to filamentary conducting path at percolation threshold. - Abstract: Here we report the magnetic and transport properties of the metal/insulator (f NMG )Ni 2 MnGa/(1 - f NMG )BaTiO 3 composites. The X-ray diffraction study confirms the formation of both the phases in composite. The microstructure reveals that the conducting Ni 2 MnGa particles are well dispersed in an insulating BaTiO 3 matrix. Temperature dependent magnetization shows two transitions one above 300 K and other below 150 K. The temperature dependence resistivity near the percolation threshold f NMG = 0.4 had drastic changes which is higher than the f NMG = 0.5. Also the negative magnetoresistance effect was observed for the studied materials. We suggest that magnetic and transport properties at the percolation threshold can be adjusted by the strain from the surrounding insulator particle.

  15. Local thermal equilibrium and ideal gas Stephani universes

    OpenAIRE

    Coll, Bartolomé; Ferrando, Joan Josep

    2004-01-01

    The Stephani universes that can be interpreted as an ideal gas evolving in local thermal equilibrium are determined. Five classes of thermodynamic schemes are admissible, which give rise to five classes of regular models and three classes of singular models. No Stephani universes exist representing an exact solution to a classical ideal gas (one for which the internal energy is proportional to the temperature). But some Stephani universes may approximate a classical ideal gas at first order i...

  16. Optimizing UML Class Diagrams

    Directory of Open Access Journals (Sweden)

    Sergievskiy Maxim

    2018-01-01

    Full Text Available Most of object-oriented development technologies rely on the use of the universal modeling language UML; class diagrams play a very important role in the design process play, used to build a software system model. Modern CASE tools, which are the basic tools for object-oriented development, can’t be used to optimize UML diagrams. In this manuscript we will explain how, based on the use of design patterns and anti-patterns, class diagrams could be verified and optimized. Certain transformations can be carried out automatically; in other cases, potential inefficiencies will be indicated and recommendations given. This study also discusses additional CASE tools for validating and optimizing of UML class diagrams. For this purpose, a plugin has been developed that analyzes an XMI file containing a description of class diagrams.

  17. Entanglement percolation on a quantum internet with scale-free and clustering characters

    Energy Technology Data Exchange (ETDEWEB)

    Wu Liang; Zhu Shiqun [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China)

    2011-11-15

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  18. Entanglement percolation on a quantum internet with scale-free and clustering characters

    International Nuclear Information System (INIS)

    Wu Liang; Zhu Shiqun

    2011-01-01

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  19. Georgetown University and Hampton University Prostate Cancer Undergraduate Fellowship Program

    Science.gov (United States)

    2018-01-01

    goals. The first goal was to integrate upper level undergraduate students from Hampton University into the Georgetown Lombardi Comprehensive Cancer...upper level undergraduate Biology and Biochemistry Majors from Hampton University to work throughout the summer participating in prostate cancer...Dominican Republic summer 2017 Marissa Willis HU-GU Fellow Summer 2016 (Notario lab) Biology Major Hampton University, class of 2018, Math and

  20. PREDICTING ATTENUATION OF VIRUSES DURING PERCOLATION IN SOILS: 2. USER'S GUIDE TO THE VIRULO 1.0 COMPUTER MODEL

    Science.gov (United States)

    In the EPA document Predicting Attenuation of Viruses During Percolation in Soils 1. Probabilistic Model the conceptual, theoretical, and mathematical foundations for a predictive screening model were presented. In this current volume we present a User's Guide for the computer mo...

  1. Novel phthalocyanine crystals as a conductive filler in crosslinked epoxy materials: Fractal particle networks and low percolation thresholds

    NARCIS (Netherlands)

    Chen, Zhe; Brokken-Zijp, J.C.M.; Michels, M.A.J.

    2006-01-01

    Novel nanosized crystals of aquocyanophthalocyaninatocobalt (III) (Phthalcon 11) were used as a conductive filler in crosslinked epoxy materials. The crosslinked composite materials had a very low percolation threshold (c 0.9 vol %). The relationship between the volume conductivity and the filler

  2. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Beiley, Zach M.; Hoke, Eric T.; Mateker, William R.; Douglas, Jessica D.; Collins, Brian A.; Tumbleston, John R.; Graham, Kenneth; Amassian, Aram; Ade, Harald W.; Frechet, Jean; Toney, Michael F.; McGehee, Michael D.

    2012-01-01

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b ' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  3. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2012-10-26

    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer\\'s band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b \\' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.

  4. Benefits of current percolation in superconducting coated conductors

    International Nuclear Information System (INIS)

    Rutter, N.A.; Durrell, J.H.; Blamire, M.G.; MacManus-Driscoll, J.L.; Wang, H.; Foltyn, S.R.

    2005-01-01

    The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca

  5. Influence maximization in complex networks through optimal percolation

    Science.gov (United States)

    Morone, Flaviano; Makse, Hernan; CUNY Collaboration; CUNY Collaboration

    The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. Reference: F. Morone, H. A. Makse, Nature 524,65-68 (2015)

  6. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media

    Science.gov (United States)

    Morone, Flaviano; Min, Byungjoon; Bo, Lin; Mari, Romain; Makse, Hernán A.

    2016-07-01

    We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP) variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little room for improvement for random graphs. However, the small augmented performance comes at the expense of increasing running time to O(N2), rendering BP prohibitive for modern-day big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500 million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP and BDP) would take more than 3,000 years to accomplish the same task.

  7. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media

    Science.gov (United States)

    Morone, Flaviano; Min, Byungjoon; Bo, Lin; Mari, Romain; Makse, Hernán A.

    2016-01-01

    We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made possible through an appropriate data structure to process CI. We introduce two Belief-Propagation (BP) variants of CI that consider global optimization via message-passing: CI propagation (CIP) and Collective-Immunization-Belief-Propagation algorithm (CIBP) based on optimal immunization. Both identify a slightly smaller fraction of influencers than CI and, remarkably, reproduce the exact analytical optimal percolation threshold obtained in Random Struct. Alg. 21, 397 (2002) for cubic random regular graphs, leaving little room for improvement for random graphs. However, the small augmented performance comes at the expense of increasing running time to O(N2), rendering BP prohibitive for modern-day big-data. For instance, for big-data social networks of 200 million users (e.g., Twitter users sending 500 million tweets/day), CI finds influencers in 2.5 hours on a single CPU, while all BP algorithms (CIP, CIBP and BDP) would take more than 3,000 years to accomplish the same task. PMID:27455878

  8. Teaching Citizenship in Science Classes at the University of Arizona

    Science.gov (United States)

    Thompson, R. M.; Mangin, K.

    2008-12-01

    Science classes for non-science majors present unique opportunities to create lifelong science aficionados and teach citizenship skills. Because no specific content is needed for future courses, subject matter can be selected to maximize interest and assignments can be focused on life skills such as science literacy instead of discipline-specific content mastery. Dinosaurs! is a very successful non-major science class with a minimum enrollment of 150 that is intended for sophomores. One of the goals of this class is to increase students' awareness of social issues, the political process, and opportunities for keeping up with science later in life. The main theme of this class is evolution. The bird-dinosaur link is the perfect vehicle for illustrating the process of science because the lines of evidence are many, convincing, and based on discoveries made throughout the last half-century and continuing to the present day. The course is also about evolution the social issue. The second writing assignment is an in-class affective writing based on a newspaper article about the Dover, PA court case. The primary purpose of this assignment is to create a comfort zone for those students with strong ideological biases against evolution by allowing them to express their views without being judged, and to instill tolerance and understanding in students at the other end of the spectrum. Another homework uses thomas.loc.gov, the government's public website providing information about all legislation introduced since the 93rd Congress and much more. The assignment highlights the difficulty of passing legislation and the factors that contribute to a given bill's legislative success or failure using the Paleontological Resources Preservation Act, S320. Details of these assignments and others designed to achieve the goals stated above will be presented. A very different undergraduate program, Marine Discovery, offers science majors the opportunity to earn upper division science

  9. SmBa2NbO6 Nanopowders, an Effective Percolation Network Medium for YBCO Superconductors

    Directory of Open Access Journals (Sweden)

    S. Vidya

    2013-01-01

    Full Text Available The percolation behavior of superconductor-insulator composite, YBa2Cu3O7–δ, and nano SmBa2NbO2 synthesized by modified combustion technique was studied. Particle size of nano SmBa2NBO6 was determined using transmission electron microscopy. The chemical nonreactivity of nano SmBa2NbO6 with YBCO is evident from the X-Ray diffraction study which makes it a suitable nanoceramic substrate material for high temperature superconducting films. A systematic increase in the sintered density, approaching the optimum value of the insulating nanophase is clearly observed, as the vol.% of YBCO in the composite decreases. SEM micrograph showed uniform distribution of nanopowder among the large clusters of YBCO. The obtained percolation threshold is ~26 vol% of YBCO in the composite. All the composites below the threshold value showed TC(0~92 K even though the room resistivity increases with increase in vol.% of nano SmBa2NbO6. The values of critical exponents obtained matches well with the theoretically expected ones for an ideal superconductor-insulator system.

  10. Technical Note: Mesocosm approach to quantify dissolved inorganic carbon percolation fluxes

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, S.; Ambus, Per

    2014-01-01

    unplanted soil. Carbon dioxide partial pressure (pCO(2)), alkalinity, soil moisture and temperature were measured with depth and time, and DIC in the percolate was quantified using a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms. The pCO(2) varied between 0.......2 and 1.1 %, and the alkalinity was 0.1-0.6 meq L-1. The measured cumulative effluent DIC flux over the 78-day experimental period was 185-196 mg L-1 m(-2) and in the same range as estimates derived from pCO(2) and alkalinity in samples extracted from the side of the mesocosm column and the drainage flux...

  11. Fracture of Polymers and Interfaces: A Universal Molecular Approach

    Science.gov (United States)

    Wool, Richard

    2003-03-01

    Fracture of polymers, linear or crosslinked, can be viewed as a breaking of molecular connectivity via disentanglement or bond rupture. When treated as a vector percolation phenomenon, we find that it captures the essential physics of fracture and makes broad accurate predictions for strength S, and fracture energy G, of polymers and their interfaces. In the bulk, we find that G ˜ [p-pc], and S ˜ [p-pc]^1/2, where p is the local normalized entanglement density and pc is the percolation threshold. For interfaces, p = nL/w, where n is the areal density of chains of length L ˜M (mol wt) in an interface of width w. For incompatible interfaces of width w, G ˜ [w-wc]; when reinforced with n compatibilizers, G ˜ (n - nc]. For welding, p ˜ L, the welding time tw ˜ L. For adhesion with sticker group X on the polymer and receptor groups Y on the solid, the strength first increases with X, Y and X-Y strength and then decreases after a predictable maximum. For thermosets, the modulus E ˜ [p-pc]^3 and the strength S ˜ [p-pc]^2. Numerous experimental examples are given to support the above universal relations for fracture.

  12. The electrical resistivity and percolation threshold of MWCNTs/polymer composites filled with a few aligned carbonyl iron particles

    Science.gov (United States)

    Dong, Shuai; Wang, Xiaojie

    2018-03-01

    Conductive polymer composites (CPCs) consist of multi-walled carbon nanotubes (MWCNTs), a few carbonyl iron particles (CIPs) and polydimethylsiloxane (PDMS) are fabricated under a moderate magnetic field. The alignment of CIPs will change the structure of MWCNT network, and consequently the electrical properties of CPCs. The volume fraction of CIPs is fixed at 0.08 vol% at which CIPs will not directly participate in electric conduction. The electrical resistivity of CPCs and the changes of resistance versus strain are evaluated at various MWCNT volume fractions. The testing results show that a percolation threshold as low as 0.19 vol% is obtained due to the effect of aligned CIPs, comparing with 0.39 vol% of isotropic MWCNT/CIP/PDMS (prepared without magnetic field). Meanwhile, the anisotropic structure reduces the electrical resistivity by more than 80% when the MWCNT volume fractions is over the percolation threshold.

  13. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film

    KAUST Repository

    Lai, K.; Nakamura, M.; Kundhikanjana, W.; Kawasaki, M.; Tokura, Y.; Kelly, M. A.; Shen, Z.-X.

    2010-01-01

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  14. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film

    KAUST Repository

    Lai, K.

    2010-07-08

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  15. Mesoscopic percolating resistance network in a strained manganite thin film.

    Science.gov (United States)

    Lai, Keji; Nakamura, Masao; Kundhikanjana, Worasom; Kawasaki, Masashi; Tokura, Yoshinori; Kelly, Michael A; Shen, Zhi-Xun

    2010-07-09

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd(1/2)Sr(1/2)MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  16. Patterns of multiple health risk–behaviours in university students and their association with mental health: application of latent class analysis

    Science.gov (United States)

    Kwan, M. Y.; Arbour-Nicitopoulos, K. P.; Duku, E.; Faulkner, G.

    2016-01-01

    Abstract Introduction: University and college campuses may be the last setting where it is possible to comprehensively address the health of a large proportion of the young adult population. It is important that health promoters understand the collective challenges students are facing, and to better understand the broader lifestyle behavioural patterning evident during this life stage. The purpose of this study was to examine the clustering of modifiable health-risk behaviours and to explore the relationship between these identified clusters and mental health outcomes among a large Canadian university sample. Methods: Undergraduate students (n = 837; mean age = 21 years) from the University of Toronto completed the National College Health Assessment survey. The survey consists of approximately 300 items, including assessments of student health status, mental health and health-risk behaviours. Latent class analysis was used to identify patterning based on eight salient health-risk behaviours (marijuana use, other illicit drug use, risky sex, smoking, binge drinking, poor diet, physical inactivity, and insufficient sleep). Results: A three-class model based on student behavioural patterns emerged: “typical,” “high-risk” and “moderately healthy.” Results also found high-risk students reporting significantly higher levels of stress than typical students (χ2(1671) = 7.26, p Students with the highest likelihood of engaging in multiple health-risk behaviours reported poorer mental health, particularly as it relates to stress. Although these findings should be interpreted with caution due to the 28% response rate, they do suggest that interventions targeting specific student groups with similar patterning of multiple health-risk behaviours may be needed. PMID:27556920

  17. A Latent Class Analysis of Gambling Activity Patterns in a Canadian University Sample of Emerging Adults: Socio-demographic, Motivational, and Mental Health Correlates.

    Science.gov (United States)

    Sanscartier, Matthew D; Edgerton, Jason D; Roberts, Lance W

    2017-12-02

    This analysis of gambling habits of Canadian university students (ages 18-25) dovetails two recent developments in the field of gambling studies. First, the popularity of latent class analysis to identify heterogeneous classes of gambling patterns in different populations; second, the validation of the Gambling Motives Questionnaire (with financial motives) among university students-specifically to understand both how and why emerging adults gamble. Our results support a four-class model of gambling activity patterns, consisting of female-preponderant casual and chance-based gambling groups, and male-preponderant skill-based and extensive gambling groups. Each class shows a specific combination of motives, underscoring the necessity for nuanced responses to problem gambling among emerging adults. More specifically, gambling for the skill-based group appears primarily to be a source of thrill and a way to cope; for the chance-based group, gambling appears but one symptom of a set of wider issues involving depression, anxiety, substance use, and low self-esteem; while extensive gamblers seem to seek excitement, sociality, and coping, in that order. Only the chance-based group was significantly more likely than casual gamblers to be motivated by financial reasons. Situating our analysis in the literature, we suggest that interventions for the predominantly male subtypes should address gambling directly (e.g. re-focusing excitement seeking into other activities, instilling more productive coping mechanisms) while interventions for predominantly female subtypes should address low self-esteem in conjunction with depression, substance abuse, and problematic levels of gambling. We conclude future research should focus on links between self-esteem, depression, substance abuse, and financial motives for gambling among female emerging adults.

  18. FORMATION OF CALCITE AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Paces, J.B.; Whelan, J.F.; Peterman, Z.E.; Marshall, B.D.

    2000-01-01

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  19. Design and implementation of an e-class about continuous dynamical systems

    NARCIS (Netherlands)

    Heck, A.; Houwing, H.; Val, J.; Ekimova, L.; Papageorgiou, G.

    2009-01-01

    In 2008, a small team of university and secondary school teachers in the Netherlands jointly developed an e-class for students in their final pre-university year (age: 17-18 yrs) about continuous dynamical systems. The e-class is an innovative way of teaching and learning mathematics and science by

  20. A Mutually Beneficial Relationship: University of the Third Age and a regional university campus

    Directory of Open Access Journals (Sweden)

    Bronwyn Ellis

    2011-11-01

    Full Text Available A mutually beneficial relationship has developed over the past 15 years between a regional South Australian branch of the University of the Third Age (U3A and the local university campus. Arising from the initiative of a community member, the group sought assistance from the university, and has now become integrated into campus life. The university has provided a venue for meetings and access to other facilities, and university staff have contributed to the program of classes. The U3A has undoubtedly benefited from these inputs. However, the university has also benefited from these opportunities to engage with the wider community, the presence of willing volunteers to contribute in various ways to university classes and other activities, and favourable word-of-mouth marketing. Beginning with background information on U3A, the local branch and its setting, we reflect on the sustainability of this relationship with the university and the factors that have contributed to this. We draw on our U3A experience and on two qualitative research projects in which U3A members have taken part: projects which have investigated their motivation for participation in U3A classes and activities, and the contributions of U3A to the university and vice versa. Not only has the relationship itself been sustained thus far, it has also contributed to sustaining U3A members in their active involvement in learning and community activities, and has been a significant part of community engagement activities of the campus. Keywords University of the Third Age; university-community engagement; mutual benefit; lifelong learning; retirement; productive ageing

  1. Lacute evy diffusion and classes of universal parametric correlations

    International Nuclear Information System (INIS)

    Kusnezov, D.; Lewenkopf, C.H.

    1996-01-01

    A general formulation of translationally invariant, parametrically correlated random matrix ensembles, is used to classify universality in correlation functions. Surprisingly, the range of possible physical systems is bounded, and can be labeled by a parameter α element-of(0,2), in a manner analogous to Lacute evy diffusion. Universality is obtained after scaling by the (anomalous) diffusion constant D α (the usual scaling is divergent for α<2). For each α, correlation functions are universal, and distinct. The previous results in the literature correspond to the limiting case of superdiffusion, α=2. copyright 1996 The American Physical Society

  2. A Percolation Study of Wettability Effect on the Electrical Properties of Reservoir Rocks

    DEFF Research Database (Denmark)

    Zhou, Dengen; Arbabi, Sepehr; Stenby, Erling Halfdan

    1997-01-01

    Measurements of the electrical resistivity of oil reservoirs are commonly used to estimate other properties of reservoirs, such as porosity and hydrocarbon reserves. However, the interpretation of the measurements is based on empirical correlations, because the underlying mechanisms that control...... the electrical properties of oil bearing rocks have not been well understood. In this paper, we employ percolation concepts to investigate the effect of wettability on the electrical conductivity of a reservoir formation. A three-dimensional simple cubic network is used to represent an ideal reservoir formation...

  3. Phase transitions in scale-free neural networks: Departure from the standard mean-field universality class

    International Nuclear Information System (INIS)

    Aldana, Maximino; Larralde, Hernan

    2004-01-01

    We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family of neural network models with noise. These models are closely related to the majority voter model, where a ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the network topology, which is determined by the probability distribution of the number of incoming links. We show that for homogeneous random topologies, the phase transition belongs to the standard mean-field universality class, characterized by the order parameter exponent β=1/2. However, for scale-free networks we obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase transition even for values of the scale-free exponent in the interval (1.5,2], where the average network connectivity diverges

  4. Inducing conductivity in immiscible PS/PP blends by a percolated polyaniline/PA filler selectively localised by specific interactions

    NARCIS (Netherlands)

    Bharatia, A.; Hejmady, P.; Cardinaels, R.; Seo, Jin Won; Moldenaers, P.; Maazouz, A.

    2017-01-01

    We describe an approach to develop conducting immiscible blends of polystyrene (PS) and polypropylene (PP) with a percolated polyaniline/polyamide (PANI/PA) filler in the presence of a SEBS-g-MA compatibilizer. The underlying principle of the work is the ability of the compatibilizer to concurrently

  5. Effect of sorbic acid doping on flux pinning in bulk MgB{sub 2} with the percolation model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Key Laboratory of Magnetic Levitation and Maglev Train (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Wang, L.; Sun, H.H. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Key Laboratory of Magnetic Levitation and Maglev Train (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Key Laboratory of Magnetic Levitation and Maglev Train (Ministry of Education of China), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)

    2010-11-01

    In this paper, we study the doping effect of sorbic acid (C{sub 6}H{sub 8}O{sub 2}), from 0 to 20 wt.% of the total MgB{sub 2}, on critical temperature (T{sub c}), critical current density (J{sub c}), irreversibility field (H{sub irr}) and crystalline structure. The XRD patterns of samples show a slightly decrease in a-axis lattice parameter for doped samples, due to the partial substitution of carbon at boron site. On the other hand, we investigate the influence of doping on the behavior of flux pinning and J{sub c}(B) in the framework of percolation theory and it is found that the J{sub c}(B) behavior could be well fitted in high field region. The two key parameters, anisotropy and percolation threshold, play very important roles. It is believed that the enhancement of J{sub c} is due to the reduction of anisotropy in high field region.

  6. Universality classes for models of inflation

    CERN Document Server

    Binetruy, P.; Mabillard, J.; Pieroni, M.; Rosset, C.

    2015-01-01

    We show that the cosmological evolution of a scalar field in a potential can be obtained from a renormalisation group equation. The slow roll regime of inflation models is understood in this context as the slow evolution close to a fixed point, described by the methods of renormalisation group. This explains in part the universality observed in the predictions of a certain number of inflation models. We illustrate this behavior on a certain number of examples and discuss it in the context of the AdS/CFT correspondence.

  7. Multicentric genesis of material structure: Development of the percolation model and some applications

    Science.gov (United States)

    Herega, Alexander; Sukhanov, Volodymyr; Vyrovoy, Valery

    2016-11-01

    The multiplicative measure and estimation method of ordering of the nearest neighborhood at the multiscale "site" percolation problem are considered. In the report also is shown the possibility of quantifying a relative degree of order of two nearest neighborhoods, which is based on the algorithm proposed by one of the authors. Moreover, the model of the oscillatory component of interaction of inner boundaries of different scales is proposed. In the context of our report, the concept of lacunarity and effective dimension (introduced by B. Mandelbrot) is discussed as effective tools of mathematical modeling.

  8. Ring-Shaped Potential and a Class of Relevant Integrals Involved Universal Associated Legendre Polynomials with Complicated Arguments

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available We find that the solution of the polar angular differential equation can be written as the universal associated Legendre polynomials. Its generating function is applied to obtain an analytical result for a class of interesting integrals involving complicated argument, that is, ∫-11Pl′m′xt-1/1+t2-2xtPk′m′(x/(1+t2-2tx(l′+1/2dx, where t∈(0,1. The present method can in principle be generalizable to the integrals involving other special functions. As an illustration we also study a typical Bessel integral with a complicated argument ∫0∞Jn(αx2+z2/(x2+z2nx2m+1dx.

  9. Gibbs Measures Over Locally Tree-Like Graphs and Percolative Entropy Over Infinite Regular Trees

    Science.gov (United States)

    Austin, Tim; Podder, Moumanti

    2018-03-01

    Consider a statistical physical model on the d-regular infinite tree Td described by a set of interactions Φ . Let Gn be a sequence of finite graphs with vertex sets V_n that locally converge to Td. From Φ one can construct a sequence of corresponding models on the graphs G_n. Let μ_n be the resulting Gibbs measures. Here we assume that μ n converges to some limiting Gibbs measure μ on Td in the local weak^* sense, and study the consequences of this convergence for the specific entropies |V_n|^{-1}H(μ _n). We show that the limit supremum of |V_n|^{-1}H(μ _n) is bounded above by the percolative entropy H_{it{perc}}(μ ), a function of μ itself, and that |V_n|^{-1}H(μ _n) actually converges to H_{it{perc}}(μ ) in case Φ exhibits strong spatial mixing on T_d. When it is known to exist, the limit of |V_n|^{-1}H(μ _n) is most commonly shown to be given by the Bethe ansatz. Percolative entropy gives a different formula, and we do not know how to connect it to the Bethe ansatz directly. We discuss a few examples of well-known models for which the latter result holds in the high temperature regime.

  10. Tritium sorption behavior on the percolation of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Furuichi, Kazuya, E-mail: kfuruichi@aees.kyushu-u.ac.jp [Department of Advanced Energy Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari; Date, Hiroyuki [Department of Advanced Energy Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Takeishi, Toshiharu [Factory of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Fukada, Satoshi [Department of Advanced Energy Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2016-11-01

    Highlights: • We establish the permeation model of tritiated water in the soil layer. • Saturated hydraulic conductivity of water in soil was gained by using the model. • The isotope exchange reaction coefficient was good agreement with experimental data. - Abstract: Development of tritium transport model in natural soil is an important issue from a viewpoint of safety of fusion reactors. The spill of a large amount of tritiated water to the environment is a concern accident because huge tritiated water is handled in a fusion plant. In this work, a simple tritium transport model was proposed based on the tritium transport model in porous materials. The overall mass transfer coefficient representing isotope exchange reaction between tritiated water and structural water in soil particles was obtained by numerically analyzing the result of the percolation experiment of tritiated water into the soil packed bed. Saturated hydraulic conductivity in the natural soil packed bed was obtained to be 0.033 mm/s. By using this value, the overall mass transfer capacity coefficients representing the isotope exchange reaction between tritiated water percolating through the packed bed and overall structural water on soil particles was determined to be 6.0 × 10{sup −4} 1/s. This value is much smaller than the mass transfer capacity coefficient between tritiated water vapor and water on concrete material and metals.

  11. Evaluation of percolation rate of bedrock aquifer in coastal area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hwan; Jung, Hae Ryong; Park, Joo Wan; Yoon, Jeong Hyoun; Cheong, Jae Yeol [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Park, Sun Ju [NEXGEO Co. Ltd, Seoul (Korea, Republic of); Jun, Seong Chun [GeoGreen21 Co. Ltd, Seoul (Korea, Republic of)

    2016-03-15

    Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff.

  12. Evaluation of percolation rate of bedrock aquifer in coastal area

    International Nuclear Information System (INIS)

    Lee, Jeong Hwan; Jung, Hae Ryong; Park, Joo Wan; Yoon, Jeong Hyoun; Cheong, Jae Yeol; Park, Sun Ju; Jun, Seong Chun

    2016-01-01

    Estimation of groundwater hydrologic cycle pattern is one of the most critical issues in sustainable management of groundwater resources in coastal area. This study estimated groundwater percolation by using the water balance methodology and hydrogeological characteristics of land use and soil. Evapotranspiration was computed by using the Thornthwaite method, and surface runoff was determined by using the SCS-CN technique. Groundwater storage change was obtained as 229 mm/a (17.8% of the average annual rainfall, 1286 mm/a), with 693 mm/a (60.1%) of evapotranspiration and 124 mm/a (9.6%) of surface runoff. Rainfall and groundwater storage change was highly correlated, comparing with the relationships between rainfall and evapotranspiration, and between rainfall and surface runoff. This result indicates that groundwater storage change responds more sensitively to precipitation than evapotranspiration and surface runoff

  13. A escolarização das classes abastadas The schooling of the affluent classes

    Directory of Open Access Journals (Sweden)

    Antonio David Cattani

    2007-12-01

    Full Text Available Após indicar a inadequação do termo elite ou burguesia para designar os detentores de grandes fortunas, este artigo sustenta que as classes dominantes se constroem continuamente e se mobilizam de todas as formas para assegurar sua reprodução ampliada, sua existência cotidiana com vistas à preservação e à transmissão das posições dominantes para seus descendentes. A formação ideológica na família e o período de formação nas instituições escolares são parte importantes do processo de construção de classe. O artigo considera que os estudos sobre a escolarização das classes dedicam-se, de modo geral, à formação universal, com ênfase nos problemas que acometem a população menos privilegiada. Os estudos sobre a formação da classe dominante são recentes e apresentam resultados inusitados tais como a relação instrumental com a educação o que distinguiria o caso brasileiro das estratégias das classes abastadas dos países economicamente mais avançados. Entretanto, como as classes dominantes são heterogêneas elas podem se valer de outras estratégias de escolarização para garantir suas posições e a reprodução de classe.After pointing out the inadequacy of the terms elite or bourgeoisie to label those in possession of great wealth, this article maintains that the dominant classes are constantly constructing and mobilizing themselves in every way to assure their extended reproduction and their everyday coexistence with the aim of preserving and transmitting dominant positions to their descendents. Ideological development within the family and the school years are important elements in the process of class construction. Studies on schooling of class generally address universal education, stressing the problems that afflict the underprivileged population. The education of the dominant class is not often explored as a topic and the few studies available present original results, such as the instrumental

  14. Microstructural study by XPS and GISAXS of surface layers formed via phase separation and percolation in polystyren/tetrabutyl titanate/alumina composite films

    International Nuclear Information System (INIS)

    Zeng Yanwei; Tian Changan; Liu Junliang

    2006-01-01

    The XPS and GISAXS have been employed as useful tools to probe the chemical compositional and microstructural evolutions in the surface layers formed via phase separation and percolation in polystyren/Ti(OBut) 4 /alumina composite thick films. The surface enrichment of Ti species due to the migration of Ti(OBut) 4 molecules in the films was found to show an incubation period of ∼15 h while the samples were treated at 100 deg. C before a remarkable progress can be identified. According to the XPS and GISAXS data, Key mechanism to govern this surface process is phenomenologically considered to be the specific phase separation behavior in Ti(OBut) 4 /PS blend and the subsequent percolating process. The extended thermal treatment was found to make the surface layer microstructure evolve from local phase separation featured with an increasing population of individual microbeads of Ti(OBut) 4 (∼1.5 nm in radius) to the formation of large size clusters of microbeads due to their interconnections, accompanied by the growth of every microbead itself to ∼10 nm on the average, which provokes and then enhances the surface enrichment of Ti(OBut) 4 since these clusters act as a fast diffusion network due to percolation effect

  15. Percolation on shopping and cashback electronic commerce networks

    Science.gov (United States)

    Fu, Tao; Chen, Yini; Qin, Zhen; Guo, Liping

    2013-06-01

    Many realistic networks live in the form of multiple networks, including interacting networks and interdependent networks. Here we study percolation properties of a special kind of interacting networks, namely Shopping and Cashback Electronic Commerce Networks (SCECNs). We investigate two actual SCECNs to extract their structural properties, and develop a mathematical framework based on generating functions for analyzing directed interacting networks. Then we derive the necessary and sufficient condition for the absence of the system-wide giant in- and out- component, and propose arithmetic to calculate the corresponding structural measures in the sub-critical and supercritical regimes. We apply our mathematical framework and arithmetic to those two actual SCECNs to observe its accuracy, and give some explanations on the discrepancies. We show those structural measures based on our mathematical framework and arithmetic are useful to appraise the status of SCECNs. We also find that the supercritical regime of the whole network is maintained mainly by hyperlinks between different kinds of websites, while those hyperlinks between the same kinds of websites can only enlarge the sizes of in-components and out-components.

  16. Realization of the mean-field universality class in spin-crossover materials

    Science.gov (United States)

    Miyashita, Seiji; Konishi, Yusuké; Nishino, Masamichi; Tokoro, Hiroko; Rikvold, Per Arne

    2008-01-01

    In spin-crossover materials, the volume of a molecule changes depending on whether it is in the high-spin (HS) or low-spin (LS) state. This change causes distortion of the lattice. Elastic interactions among these distortions play an important role for the cooperative properties of spin-transition phenomena. We find that the critical behavior caused by this elastic interaction belongs to the mean-field universality class, in which the critical exponents for the spontaneous magnetization and the susceptibility are β=1/2 and γ=1 , respectively. Furthermore, the spin-spin correlation function is a constant at long distances, and it does not show an exponential decay in contrast to short-range models. The value of the correlation function at long distances shows different size dependences: O(1/N) , O(1/N) , and constant for temperatures above, at, and below the critical temperature, respectively. The model does not exhibit clusters, even near the critical point. We also found that cluster growth is suppressed in the present model and that there is no critical opalescence in the coexistence region. During the relaxation process from a metastable state at the end of a hysteresis loop, nucleation phenomena are not observed, and spatially uniform configurations are maintained during the change of the fraction of HS and LS. These characteristics of the mean-field model are expected to be found not only in spin-crossover materials, but also generally in systems where elastic distortion mediates the interaction among local states.

  17. Students' Participation Styles in Two University Weight Training Classes.

    Science.gov (United States)

    Bennett, Gregg

    2000-01-01

    Described the participation styles of college students enrolled in two basic weight training classes. Participation styles fell onto a continuum between slackin' and sweatin'. Observation and interview data indicated that there were four participation styles in the slackin' category and two in the sweatin' category. The transtheoretical model for…

  18. Teaching Science in Engineering Freshman Class in Private University in Jordan

    Science.gov (United States)

    Hawarey, M. M.; Malkawi, M. I.

    2012-04-01

    A United Nations initiative for the Arab region that established and calculated National Intellectual Capital Index has shown that Jordan is the wealthiest Arab country in its National Human Capital Index (i.e. metrics: literacy rate, number of tertiary schools per capita, percentage of primary teachers with required qualifications, number of tertiary students per capita, cumulative tertiary graduates per capita, percentage of male grade 1 net intake, percentage of female grade 1 net intake) and National Market Capital Index (i.e. metrics: high-technology exports as a percentage of GDP, number of patents granted by USPTO per capita, number of meetings hosted per capita) despite its low ranking when it comes to National Financial Capital (i.e. metric: GDP per capita). The societal fabric in Jordan fully justifies this: the attention paid to education is extreme and sometimes is considered fanatic (e.g. marriage of a lot of couples needs to wait until both graduate from the university). Also, the low financial capital has forced a lot of people to become resourceful in order to provide decent living standard to their beloved ones. This reality is partially manifested in the sharp increase in the number of universities (i.e. 10 public and 20 private ones) relative to a population of around 6.5 million. Once in an engineering freshman classroom, it is totally up to the lecturers teaching science in private Jordanian universities to excel in their performance and find a way to inject the needed scientific concepts into the students' brains. For that, clips from movies that are relevant to the topics and truthful in their scientific essence have been tested (e.g. to explain the pressure on humans due to rapidly increasing "g" force, a clip from the movie "Armageddon" proved very helpful to Physics 101 students, and entertaining at the same time), plastic toys have also been tested to illustrate simple physical concepts to the same students (e.g. a set called The Junior

  19. Bond percolation in a square lattice in presence of a 'magnetic field'

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de; Queiroz, S.L.A. de; Riera, R.; Chaves, C.M.G.F.

    1979-10-01

    A calculation of the bond percolation problem in a square lattice in presence of a magnetic field is presented using the position space renormalization group and cells of dimension b x b, where b runs from 2 up to 5. Due to symmetry, the calculation splits into two parts, one determining the 'thermal' exponent ν and the other, the magnetic exponent eta. For the largest cell in each case, we get ν = 1.355 (b=5) and eta = 0.244 (b=4), in good agreement with series results of Dunn et al. Comments are made on the extrapolation of the results to b = infinity. (Author) [pt

  20. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites

    KAUST Repository

    Tu, Shao Bo

    2018-04-06

    near the percolation limit of about 15.0 wt % MXene loading, which surpasses all previously reported composites made of carbon-based fillers in the same polymer. With up to 10 wt % MXene loading, the dielectric loss of the MXene/P(VDF-TrFE-CFE) composite indicates only an approximately 5-fold increase (from 0.06 to 0.35), while the dielectric constant increased by 25 times over the same composition range. Furthermore, the ratio of permittivity to loss factor of the MXene-polymer composite is superior to that of all previously reported fillers in this same polymer. The dielectric constant enhancement effect is demonstrated to exist in other polymers as well when loaded with MXene. We show that the dielectric constant enhancement is largely due to the charge accumulation caused by the formation of microscopic dipoles at the surfaces between the MXene sheets and the polymer matrix under an external applied electric field.