WorldWideScience

Sample records for peptides enhance acid

  1. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Pankratova, Stanislava; Nielsen, Peter E

    2005-01-01

    Cell-penetrating peptides have been widely used to improve cellular delivery of a variety of proteins and antisense agents. However, recent studies indicate that such cationic peptides are predominantly entering cells via an endosomal pathway. We now show that the nuclear antisense effect in He......La cells of a variety of peptide nucleic acid (PNA) peptide conjugates is significantly enhanced by addition of 6 mM Ca(2+) (as well as by the lysosomotrophic agent chloroquine). In particular, the antisense activities of Tat(48-60) and heptaarginine-conjugated PNAs were increased 44-fold and 8.5-fold......, respectively. Evidence is presented that the mechanism involves endosomal release. The present results show that Ca(2+) can be used as an effective enhancer for in vitro cellular delivery of cationic peptide-conjugated PNA oligomers, and also emphasize the significance of the endosomal escape route...

  2. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  3. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    Science.gov (United States)

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  4. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP.

    Science.gov (United States)

    Jia, Fengjing; Wang, Jiayi; Peng, Jinxiu; Zhao, Ping; Kong, Ziqing; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-10-01

    With the increasing emergence of resistant microbes toward conventional antimicrobial agents, there is an urgent need for the development of antimicrobial agents with novel action mode. Antimicrobial peptides (AMPs) are believed to be one kind of ideal alternatives. However, AMPs can be easily degraded by protease, which limited their therapeutic use. In the present study, D-amino acid substitution strategy was employed to enhance the stability of polybia-CP. We investigated the stability of peptides against the degradation of trypsin and chymotrypsin by determining the antimicrobial activity or determining the HPLC profile of peptides after incubation with proteases. Our results showed that both the all D-amino acid derivative (D-CP) and partial D-lysine substitution derivative (D-lys-CP) have an improved stability against trypsin and chymotrypsin. Although D-CP takes left-hand α-helical conformation and D-lys-CP loses some α-helical content, both of the D-amino acid-substituted derivatives maintain their parental peptides' membrane active action mode. In addition, D-lys-CP showed a slight weaker antimicrobial activity than polybia-CP, but the hemolytic activity decreased greatly. These results suggest that D-CP and D-lys-CP can offer strategy to improve the property of AMPs and may be leading compounds for the development of novel antimicrobial agents. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway...... for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...... with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates...

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  10. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  11. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  12. Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin

    Science.gov (United States)

    Mohammed, Yousuf H.; Yamada, Miko; Lin, Lynlee L.; Grice, Jeffrey E.; Roberts, Michael S.; Raphael, Anthony P.; Benson, Heather A. E.; Prow, Tarl W.

    2014-01-01

    Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length) on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides. PMID:25033398

  13. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin.

    Directory of Open Access Journals (Sweden)

    Yousuf H Mohammed

    Full Text Available Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides.

  14. Far UV irradiation of DNA in the presence of proteins, amino acids or peptides

    International Nuclear Information System (INIS)

    Larcom, L.L.; Rains, C.A.

    1985-01-01

    The DNA of bacteriophage SPO2c12 was subjected to 254 nm irradiation in solutions containing lysozyme or histone. The sensitivity of phage DNA to biological inactivation by UV increased as the amount of lysozyme bound per DNA strand increased. Although binding constants could not be measured for the DNA-histone interaction, this protein had a protective effect which was greater under conditions which cause enhanced binding. No crosslinking of either protein could be detected. Irradiation was also performed in the presence of various amino acids and short peptides. These were chosen to include amino acids which: (1) are positively charged, (2) absorb UV of this wavelength or (3) form UV-induced crosslinks to DNA. None of the amino acids tested affected sensitivity of the DNA to biological inactivation. Peptides containing a UV-absorbing amino acid and a positively charged amino acid enhanced sensitivity. For each of these peptides, a mixture of the constituent amino acids had the same effect as the peptide itself. Under the conditions used, no evidence for formation of DNA-amino acid crosslinks was found. The results indicate that proteins and peptides can sensitize DNA to UV inactivation by mechanisms other than covalent crosslink formation. (author)

  15. Structural similarity between β(3)-peptides synthesized from β(3)-homo-amino acids and aspartic acid monomers.

    Science.gov (United States)

    Ahmed, Sahar; Sprules, Tara; Kaur, Kamaljit

    2014-07-01

    Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset for enhanced biological response. Here we show that oligomeric β(3)-hexapeptides synthesized from L-aspartic acid monomers (β(3)-peptides 1, 5a, and 6) or homologated β(3)-amino acids (β(3)-peptide 2), fold into similar stable 14-helical secondary structures in solution, except that the former form right-handed 14-helix and the later form left-handed 14-helix. β(3)-Peptides from L-Asp monomers contain an additional amide bond in the side chains that provides opportunities for more hydrogen bonding. However, based on the NMR solution structures, we found that β(3)-peptide from L-Asp monomers (1) and from homologated amino acids (2) form similar structures with no additional side-chain interactions. These results suggest that the β(3)-peptides derived from L-Asp are promising peptide-mimetics that can be readily synthesized using L-Asp monomers as well as the right-handed 14-helical conformation of these β(3)-peptides (such as 1 and 6) may prove beneficial in the design of mimics for right-handed α-helix of α-peptides. © 2014 Wiley Periodicals, Inc.

  16. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  17. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting...

  18. Synthetic Procedures for Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  19. Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy.

    Science.gov (United States)

    Han, Kai; Zhang, Jin; Zhang, Weiyun; Wang, Shibo; Xu, Luming; Zhang, Chi; Zhang, Xianzheng; Han, Heyou

    2017-03-28

    Geometrical shape of nanoparticles plays an important role in cellular internalization. However, the applicability in tumor selective therapeutics is still scarcely reported. In this article, we designed a tumor extracellular acidity-responsive chimeric peptide with geometrical shape switch for enhanced tumor internalization and photodynamic therapy. This chimeric peptide could self-assemble into spherical nanoparticles at physiological condition. While at tumor extracellular acidic microenvironment, chimeric peptide underwent detachment of acidity-sensitive 2,3-dimethylmaleic anhydride groups. The subsequent recovery of ionic complementarity between chimeric peptides resulted in formation of rod-like nanoparticles. Both in vitro and in vivo studies demonstrated that this acidity-triggered geometrical shape switch endowed chimeric peptide with accelerated internalization in tumor cells, prolonged accumulation in tumor tissue, enhanced photodynamic therapy, and minimal side effects. Our results suggested that fusing tumor microenvironment with geometrical shape switch should be a promising strategy for targeted drug delivery.

  20. Cleaving Double-Stranded DNA with Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1997-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest......, transcription initiation, and site specific cleavage of nucleic acids....

  1. Peptide separation by capillary electrophoresis with ultraviolet detection: Some simple approaches to enhance detection sensitivity and resolution

    International Nuclear Information System (INIS)

    Surugau, Noumie L.

    2011-01-01

    Capillary electrophoresis (CE) is one of the leading separation technologies for analysis of water-soluble analytes. CE has many advantages over the more established methods such as liquid chromatography and gel electrophoresis particularly in rapid analysis, require very little sample, use less or no toxic organic solvent, high peak efficiency and ease of automation. Despite the many attractive advantages of CE, CE users continue to seek improvements particularly on detection sensitivity, resolution and selectivity. This paper presented several simple approaches to improve detection sensitivity using simple sample pre-concentration called field-enhanced sample injection (FESI) and chromatographic-based ZipTip C 18 pre-concentrator. Also, some improvements in the resolution of complex peptides mixture when using two strategies namely, capillary coating and manipulation of the hydrophobicity of peptides using perfluorinated acids as background electrolyte (BGE), which have anionic conjugate base forms with hydrophobic character. As test compounds, standard peptide mixture and proteins digests were used for these studies. The results showed that FESI has significantly enhanced the detection signal of peptide standards and bovine serum albumin (BSA) tryptic digests. As for the use of ZipTip C 18 pre-concentrator, selective enhancement in detection signal was particularly notable on the late migrating peptides. Coating the capillary proved to have little changes on the CE of peptides when used in conjunction with acidic BGE. Electropherograms of BSA tryptic peptides in pentafluoropropionic acid (PFPA) and heptafluorobutyric acid (HFBA) showed interesting profile, with notable resolution improvement for peptides with close similarity in electrophoretic mobilities. (author)

  2. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis.

    Science.gov (United States)

    Ng, Daphne T W; Sarkar, Casim A

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts.

  3. The role of citric acid in oral peptide and protein formulations

    DEFF Research Database (Denmark)

    Welling, Søren H; Hubálek, František; Jacobsen, Jette

    2014-01-01

    not occur significantly at the acidic pH values where it effectively inhibits proteolysis, which is its dominant action in oral peptide formulations. On account of insulin's low basal permeability, inclusion of alternative permeation enhancers is likely to be necessary to achieve sufficient oral...

  4. Structural analysis and taste evaluation of γ-glutamyl peptides comprising sulfur-containing amino acids.

    Science.gov (United States)

    Amino, Yusuke; Wakabayashi, Hidehiko; Akashi, Satoko; Ishiwatari, Yutaka

    2018-03-01

    The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.

  5. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Nauck, Michael A; Pott, Andrea

    2006-01-01

    or placebo during the ingestion of a solid test meal. Gastric emptying was determined using a 13C-sodium-octanote breath test. Plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-2, free fatty acids, free glycerol, and triglycerides were determined. RESULTS: GLP-2 administration led...... (P = .07). GLP-2 administration caused an approximately 15% reduction in pentagastrin-stimulated gastric acid and chloride secretion (P gastric emptying was not affected (P = .99). CONCLUSIONS: GLP-2 reduces gastric acid secretion but does not seem to have an influence on gastric......BACKGROUND & AIMS: The gut-derived peptide glucagon-like peptide 2 (GLP-2) has been suggested as a potential drug candidate for the treatment of various intestinal diseases. However, the acute effects of GLP-2 on gastric functions as well as on glucose and lipid homeostasis in humans are less well...

  6. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  7. d-Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions.

    Science.gov (United States)

    Li, Xiang; Liu, Chao; Chen, Si; Hu, Honggang; Su, Jiacan; Zou, Yan

    2017-10-15

    According to the previously reported potent dual l-peptide PMI of p53-MDM2/MDMX interactions, a series of d-amino acid mutational PMI analogues, PMI-1-4, with enhanced proteolytic resistence and in vitro tumor cell inhibitory activities were reported, of which Liposome-PMI-1 showed a stronger inhibitory activity against the U87 cell lines than Nutlin-3. This d-amino acid mutation strategy may give a hand for enhancing the potential of peptide drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    Science.gov (United States)

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  9. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    Energy Technology Data Exchange (ETDEWEB)

    Amand, Helene L., E-mail: helene.amand@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Norden, Bengt, E-mail: norden@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Fant, Kristina, E-mail: kristina.fant@sp.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide

  10. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Åmand, Helene L.; Nordén, Bengt; Fant, Kristina

    2012-01-01

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  11. Paramagnetic relaxation enhancements in NMR peptide-membrane interaction studies

    International Nuclear Information System (INIS)

    Kosol, S.

    2011-01-01

    Small membrane-bound proteins or peptides are involved in numerous essential biological processes, like cellular recognition, signaling, channel formation, and cytolysis. The secondary structure, orientation, mode of interaction and dynamics of these peptides can be as varied as their functions. Their localization in the membrane, the immersion depth, and their binding mode are factors critical to the function of these peptides. The atomic 3D solution structure of peptides bound to micelles can be determined by NMR spectroscopy. However, by employing paramagnetic relaxation enhancements (PREs) information on the complete topology of peptide bound to a micelle can be obtained. The antimicrobial peptide maximin H6, fst, a bacterial toxin, and the human peptide hormone ghrelin served as membrane-bound model peptides of similar sizes but strongly differing amino acid sequences. Their structures and binding behavior were determined and compared.The measured PREs provided suitable data for determining and distinguishing the different topologies of the investigated peptides bound to micelles. Maximin H6 and fst fold into α-helices upon insertion into a membrane, whereas the unstructured ghrelin is freely mobile in solution and interacts only via a covalently bound octanoyl group with the lipids. Maximin H6 is oriented parallel to the membrane surface, enabling the peptide to aggregate at the membrane water interface. Fst binds in transmembrane orientation with a protruding intrinsically disordered region near the C-terminus. Aside from determining the orientation of the bound peptides from the PREs, the moieties critical for membrane binding could be mapped in ghrelin. If suitable relaxation-edited spectra are acquired, the complete orientation and immersion depth of a peptide bound to a micelle can readily be obtained. (author) [de

  12. Peptide Nucleic Acids Having 2,6-Diaminopurine Nucleobases

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than a corresponding DNA strand, and exhibit increased sequence specificity and binding affinity. The peptide nucleic acids of the invention comprise ligands selected from a group...

  13. Mechanistic studies of a cell-permeant peptide designed to enhance myosin light chain phosphorylation in polarized intestinal epithelia.

    Science.gov (United States)

    Almansour, Khaled; Taverner, Alistair; Eggleston, Ian M; Mrsny, Randall J

    2018-06-10

    Tight junction (TJ) structures restrict the movement of solutes between adjacent epithelial cells to maintain homeostatic conditions. A peptide, termed PIP 640, with the capacity to regulate the transient opening of intestinal TJ structures through an endogenous mechanism involving the induction of myosin light chain (MLC) phosphorylation at serine 19 (MLC-pS 19 ) has provided a promising new method to enhance the in vivo oral bioavailability of peptide therapeutics. PIP 640 is a decapeptide composed of all D-amino acids (rrdykvevrr-NH 2 ) that contains a central sequence designed to emulates a specific domain of C-kinase potentiated protein phosphatase-1 inhibitor-17 kDa (CPI-17) surrounded by positively-charged amino acids that provide a cell penetrating peptide (CPP)-like character. Here, we examine compositional requirements of PIP 640 with regard to its actions on MLC phosphorylation, its intracellular localization to TJ structures, and its interactions with MLC phosphatase (MLCP) elements that correlate with enhanced solute uptake. These studies showed that a glutamic acid and tyrosine within this peptide are critical for PIP 640 to retain its ability to increase MLC-pS 19 levels and enhance the permeability of macromolecular solutes of the size range of therapeutic peptides without detectable cytotoxicity. On the other hand, exchange of the aspartic acid for alanine and then arginine resulted in an increasingly greater bias toward protein phosphatase-1 (PP1) relative to MLCP inhibition, an outcome that resulted in increased paracellular permeability for solutes in the size range of therapeutic peptides, but with a significant increase in cytotoxicity. Together, these data further our understanding of the composition requirements of PIP 640 with respect to the desired goal of transiently altering the intestinal epithelial cell paracellular barrier properties through an endogenous mechanism, providing a novel approach to enhance the oral bioavailability of

  14. Development of a Novel Tetravalent Synthetic Peptide That Binds to Phosphatidic Acid.

    Directory of Open Access Journals (Sweden)

    Rina Ogawa

    Full Text Available We employed a multivalent peptide-library screening technique to identify a peptide motif that binds to phosphatidic acid (PA, but not to other phospholipids such as phosphatidylcholine (PC, phosphatidylethanolamine (PE, and phosphatidylserine (PS. A tetravalent peptide with the sequence motif of MARWHRHHH, designated as PAB-TP (phosphatidic acid-binding tetravalent peptide, was shown to bind as low as 1 mol% of PA in the bilayer membrane composed of PC and cholesterol. Kinetic analysis of the interaction between PAB-TP and the membranes containing 10 mol% of PA showed that PAB-TP associated with PA with a low dissociation constant of KD = 38 ± 5 nM. Coexistence of cholesterol or PE with PA in the membrane enhanced the PAB-TP binding to PA by increasing the ionization of the phosphomonoester head group as well as by changing the microenvironment of PA molecules in the membrane. Amino acid replacement analysis demonstrated that the tryptophan residue at position 4 of PAB-TP was involved in the interaction with PA. Furthermore, a series of amino acid substitutions at positions 5 to 9 of PAB-TP revealed the involvement of consecutive histidine and arginine residues in recognition of the phosphomonoester head group of PA. Our results demonstrate that the recognition of PA by PAB-TP is achieved by a combination of hydrophobic, electrostatic and hydrogen-bond interactions, and that the tetravalent structure of PAB-TP contributes to the high affinity binding to PA in the membrane. The novel PA-binding tetravalent peptide PAB-TP will provide insight into the molecular mechanism underlying the recognition of PA by PA-binding proteins that are involved in various cellular events.

  15. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics

    DEFF Research Database (Denmark)

    Bentin, T; Nielsen, Peter E.

    1996-01-01

    The influence of DNA topology on peptide nucleic acid (PNA) binding was studied. Formation of sequence-specific PNA2/dsDNA (double-stranded DNA) complexes was monitored by a potassium permanganate probing/primer extension assay. At low ionic strengths, the binding of PNA was 2-3 times more...

  16. Identification of 11-amino acid peptides that disrupt Notch-mediated processes in Drosophila

    Directory of Open Access Journals (Sweden)

    Yeh Hsiao-Fong

    2011-06-01

    Full Text Available Abstract Background The conserved Notch signaling pathway regulates cell fate decisions and maintains stem cells in multicellular organisms. Up-regulation of Notch signaling is observed in several types of cancer and is causally involved in proliferation and survival of cancer cells. Thus, it is of great interest to look for anti-Notch reagents for therapeutic purposes. In model animal Drosophila, Notch signaling restricts selection of sensory organ precursors (SOPs during external sensory (ES organ development. To look for novel genes that can suppress Notch signaling, we performed a gain-of-function modifier screen to look for genes that enhance the phenotype of ectopic ES organs induced by overexpression of phyllopod, a gene required for SOP specification. Results From the gain-of-function screen, we discovered that overexpression of polished rice/tarsal-less (pri/tal increases the numbers of ES organs as well as SOPs. pri/tal is a polycistronic gene that contains four short open reading frames encoding three 11-amino acid and one 32-amino acid peptides. Ectopic expression of the 11 amino-acid peptides recapitulates the pri/tal misexpression phenotype in ectopic ES organ formation. In situ hybridization experiment reveals that pri/tal mRNA is expressed in the SOPs of the chemosensory organs and the stretch-sensing chordotonal organs. In Drosophila wing development, the Notch signaling pathway mediates the formation of the dorsal-ventral (DV compartmental boundary and the restriction of the vein width from the primordial veins, the proveins. We also found that pri/tal mRNA is expressed in the DV boundary and the longitudinal proveins, and overexpression of Pri/Tal peptides disrupts the DV boundary formation and helps to expand the width of the wing vein. Genetic analyses further show that a Notch loss-of-function allele strongly enhances these two phenotypes. Cut and E(splmβ are target genes of the Notch pathway in DV boundary formation and

  17. Synthesis and Characterization of a Gd-DOTA-D-Permeation Peptide for Magnetic Resonance Relaxation Enhancement of Intracellular Targets

    Directory of Open Access Journals (Sweden)

    Andrew M. Prantner

    2003-10-01

    Full Text Available Many MR contrast agents have been developed and proven effective for extracellular nontargeted applications, but exploitation of intracellular MR contrast agents has been elusive due to the permeability barrier of the plasma membrane. Peptide transduction domains can circumvent this permeability barrier and deliver cargo molecules to the cell interior. Based upon enhanced cellular uptake of permeation peptides with D-amino acid residues, an all-D Tat basic domain peptide was conjugated to DOTA and chelated to gadolinium. Gd-DOTA-D-Tat peptide in serum at room temperature showed a relaxivity of 7.94 ± 0.11 mM−1 sec−1 at 4.7 T. The peptide complex displayed no significant binding to serum proteins, was efficiently internalized by human Jurkat leukemia cells resulting in intracellular T1 relaxation enhancement, and in preliminary T1-weighted MRI experiments, significantly enhanced liver, kidney, and mesenteric signals.

  18. Sequence, taste and umami-enhancing effect of the peptides separated from soy sauce.

    Science.gov (United States)

    Zhuang, Mingzhu; Lin, Lianzhu; Zhao, Mouming; Dong, Yi; Sun-Waterhouse, Dongxiao; Chen, Huiping; Qiu, Chaoying; Su, Guowan

    2016-09-01

    Five tasty peptides were separated from soy sauce, by sensory-guided fractionation, using macroporous resin, medium-pressure liquid chromatography and reverse phase-high performance liquid chromatography, and identified by ultra-performance liquid chromatography tandem mass-spectrometry as ALPEEV, LPEEV, AQALQAQA, EQQQQ and EAGIQ (which originated from glycinin A1bB2-445, glycinin A1bB2-445, cobyric acid synthase, leucine-tRNA ligase and glycoprotein glucosyltransferase, respectively). LPEEV, AQALQAQA and EQQQQ tasted umami with threshold values of 0.43, 1.25 and 0.76mmol/l, respectively. ALPEEV and EAGIQ had minimal umami taste, but ALPEEV, EAGIQ and LPEEV showed umami-enhancement with a threshold estimated at 1.52, 1.94 and 3.41mmol/l, respectively. In addition, the synthetic peptides showed much better sensory taste than mixtures of their constitutive amino acids. It indicated that peptides might play an important role in the umami taste of soy sauce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Histidine-lysine peptides as carriers of nucleic acids.

    Science.gov (United States)

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  1. An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide 'stapling' technology.

    Science.gov (United States)

    He, Y; Chen, D; Zheng, W

    2015-11-12

    Specific protein-protein interactions (PPIs) constitute a key underlying mechanism for the presence of a multitude of intracellular signaling pathways, which are essential for the survival of normal and cancer cells. Specific molecular blockers for a crucial PPI would therefore be invaluable tools for an enhanced functional interrogation of the signaling pathway harboring this particular PPI. On the other hand, if a particular PPI is essential for the survival of cancer cells but is absent in or dispensable for the survival of normal cells, its specific molecular blockers could potentially be developed into effective anticancer therapeutics. Due to the flat and extended PPI interface, it would be conceivably difficult for small molecules to achieve an effective blockade, a problem which could be potentially circumvented with peptides or proteins. However, the well-documented proteolytic instability and cellular impermeability of peptides and proteins in general would make their developing into effective intracellular PPI blockers quite a challenge. With the advent of the peptide 'stapling' technology which was demonstrated to be able to stabilize the α-helical conformation of a peptide via bridging two neighboring amino-acid side chains with a 'molecular staple', a linear parent peptide could be transformed into a stronger PPI blocker with enhanced proteolytic stability and cellular permeability. This review will furnish an account on the peptide 'stapling' technology and its exploitation in efforts to achieve an enhanced functional interrogation or manipulation of intracellular signaling pathways especially those that are cancer relevant.

  2. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization.Peptides are hydrolyzed, preferably in gas phase, with 6 M...... HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated...... to glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5 % can usually be obtained....

  3. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Science.gov (United States)

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  4. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  5. Mechanistic studies of ocular peptide absorption and its enhancement by various penetration enhancers

    International Nuclear Information System (INIS)

    Rojanasakul, Y.

    1989-01-01

    Two major aspects of corneal peptide absorption, namely the transport mechanisms and the promoting effect of some penetration enhancers, were investigated. Studies on transport mechanisms involve (a) identification of transport pathways of peptides across the cornea, (b) determination of rate-limiting barrier(s) for peptide absorption, and (c) permselective properties of the cornea. To study the transport pathways of peptides, four model peptides differing in molecular size and charge were either fluorescently or radioactively labeled and their movement across the cornea was detected by laser scanning confocal microscopy and autoradiography. Results from these studies indicate that peptides can penetrate the cornea via different pathways, depending on the physicochemical properties and membrane specificity of the peptides. In all cases, the outermost layer of the corneal epithelium presents the rate-limiting barrier for peptide absorption. The results also indicate a charge discrimination effect to transport of negatively charged peptides. In permselectivity studies, it has been shown that the cornea, due to the presence of ionizable charged groups, is amphoteric and exhibits dual selective characteristics to transport of charged molecules. At pH's above the isoelectric point, 3.2, the cornea carries a net negative charge and is selective to positively-charged molecules. Below the isoelectric pH, the reverse is valid. The promoting mechanisms of penetration enhancers were studied microscopically using confocal fluorescence microscopy with the aid of a specific fluorescent membrane probe (3,3'-dioctadecyloxacarbocyanine) and a non-permeating polar tracer. All enhancers, including chelators, non-ionic surfactants, bile salts, and cytoskeleton-active agents, significantly increase membrane permeability depending on concentration and exposure time

  6. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment.

    Science.gov (United States)

    Zhang, Suohui; Qiu, Yuqin; Gao, Yunhua

    2014-02-01

    The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length) in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly-Gln-Pro-Arg [tetrapeptide-3, 456.6 Da], Val-Gly-Val-Ala-Pro-Gly [hexapeptide, 498.6 Da], AC-Glu-Glu-Met-Gln-Arg-Arg-NH2 [acetyl hexapeptide-3, 889 Da] and Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2 [oxytocin, 1007.2 Da]). The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.

  7. Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment

    Directory of Open Access Journals (Sweden)

    Suohui Zhang

    2014-02-01

    Full Text Available The aims of this study were to investigate the utility of solid microneedle arrays (150 µm in length in enhancing transdermal delivery of peptides and to examine the relationship between peptide permeation rates and D2O flux. Four model peptides were used (Gly–Gln–Pro–Arg [tetrapeptide-3, 456.6 Da], Val–Gly–Val–Ala–Pro–Gly [hexapeptide, 498.6 Da], AC–Glu–Glu–Met–Gln–Arg–Arg–NH2 [acetyl hexapeptide-3, 889 Da] and Cys–Tyr–Ile–Gln–Asn–Cys–Pro–Leu–Gly–NH2 [oxytocin, 1007.2 Da]. The influence of microneedle pretreatment on skin permeation was evaluated using porcine ear skin with Franze diffusion cell. Peptide permeation across the skin was significantly enhanced by microneedle pretreatment, and permeation rates were dependent on peptide molecular weights. A positive correlation between D2O flux and acetyl hexapeptide-3 clearances suggests that convective solvent flow contributes to the enhanced transdermal peptide delivery. It is concluded that solid microneedle arrays are effective devices to enhance skin delivery of peptides.

  8. Tetrazine-Containing Amino Acid for Peptide Modification and Live Cell Labeling.

    Directory of Open Access Journals (Sweden)

    Zhongqiu Ni

    Full Text Available A novel amino acid derivative 3-(4-(1, 2, 4, 5-tetrazine-3-yl phenyl-2-aminopropanoic acid was synthesized in this study. The compound possessed better water-solubility and was synthesized more easily compared with the well-known and commercially available 3-(p-benzylamino-1, 2, 4, 5-tetrazine. Tetrazine-containing amino acid showed excellent stability in biological media and might be used for cancer cell labeling. Moreover, the compound remained relatively stable in 50% TFA/DCM with little decomposition after prolonged exposure at room temperature. The compound could be utilized as phenylalanine or tyrosine analogue in peptide modification, and the tetrazine-containing peptide demonstrated more significant biological activity than that of the parent peptide. The combination of tetrazine group and amino acid offered broad development prospects of the bioorthogonal labeling and peptide synthesis.

  9. Role of Cell-Penetrating Peptides in Intracellular Delivery of Peptide Nucleic Acids Targeting Hepadnaviral Replication

    DEFF Research Database (Denmark)

    Ndeboko, Benedicte; Ramamurthy, Narayan; Lemamy, Guy Joseph

    2017-01-01

    Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA...

  10. Stereoselective determination of amino acids in beta-amyloid peptides and senile plaques.

    Science.gov (United States)

    Thorsén, G; Bergquist, J; Westlind-Danielsson, A; Josefsson, B

    2001-06-01

    A novel method for the determination of the enantiomeric composition of peptides is presented. In this paper, the focus has been on beta-amyloid peptides from deceased Alzheimer's disease patients. The peptides are hydrolyzed using mineral acid. The free amino acids are derivatized with the chiral reagent (+)- or (-)-1-(9-anthryl)-2-propyl chloroformate and subsequently separated using micellar electrokinetic chromatography (MEKC) and detected using laser-induced fluorescence (LIF) detection. The high separation efficiency of the MEKC-LIF system, yielding approximately 1 million theoretical plates/m for most amino acids, facilitates the simultaneous chiral determination of nine amino acids. The samples that have been analyzed were standard 1-40 beta-amyloid peptides, in vitro precipitated beta-amyloid fibrils, and human senile plaque samples.

  11. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    Science.gov (United States)

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  12. Amino acid substitutions in the melanoma antigen recognized by T cell 1 peptide modulate cytokine responses in melanoma-specific T cells

    DEFF Research Database (Denmark)

    Nielsen, M B; Kirkin, A F; Loftus, D

    2000-01-01

    enhances the production of mRNA for interleukin (IL)-5, IL-10, IL-13, IL-15, and interferon-gamma and significantly enhances release of IL-13 and IL-10 from anti-MART-1 cytotoxic T cells. Another heteroclitic peptide, 1L, with an A to L substitution in MART-1(27-35), also enhances the tyrosine...... phosphorylation response in anti-MART-1 cytotoxic CD8+ T cells. Yet, 1L does not enhance the production of T helper cell type 2-like cytokines (IL-10 and IL-13). Together these data show that minor amino acid modifications of immunodominant melanoma peptides profoundly influence the cytokine response in melanoma...

  13. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode

    DEFF Research Database (Denmark)

    Castillo, John J.; Svendsen, Winnie Edith; Rozlosnik, Noemi

    2013-01-01

    This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed...... by fluorescence microscopy and atomic force microscopy. The peptide nanotube–folic acid modified graphene electrode was characterized by scanning electron microscopy and cyclic voltammetry. The modification of the graphene electrode with peptide nanotube–folic acid led to an increase in the current signal....... The human cervical cancer cells were bound to the modified electrode through the folic acid–folate receptor interaction. Cyclic voltammograms in the presence of [Fe(CN)6]3/4 as a redox species demonstrated that the binding of the folate receptor from human cervical cancer cells to the peptide nanotube...

  14. pH dependence of MHC class I-restricted peptide presentation

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Romme, T

    1996-01-01

    The function of MHC class I molecules is to bind and present antigenic peptides to cytotoxic T cells. Here, we report that class I-restricted peptide presentation is strongly pH dependent. The presentation of some peptides was enhanced at acidic pH, whereas the presentation of others was inhibited....... Biochemical peptide-MHC class I binding assays demonstrated that peptide-MHC class I complexes are more stable at neutral pH than at acidic pH. We suggest that acid-dependent peptide dissociation can generate empty class I molecules and that the resulting binding potential can be exploited by a subset...

  15. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    Science.gov (United States)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  16. Systems chemistry of α-amino acids and peptides

    Directory of Open Access Journals (Sweden)

    Danger Grégoire

    2014-02-01

    Full Text Available Pathways have been disclosed in the past decade, which support the possibility that α-amino acids could have contributed to self-organization processes leading to the emergence of life. It is proposed that the systems chemistry of these simple building blocks may have led to features of self-organization through the realization of protometabolisms based on unidirectional loops involving both peptide formation and breakdown and additional feedback processes. Potential peptide activating agents have been identified. Scenarios of peptide elongation are proposed to account for peptide elongation both at the N-terminus and the C-terminus and new indications that these processes could be involved in symmetry breaking have been provided.

  17. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Heran Ma

    Full Text Available Recent studies have indicated that protein hydrolysates have broad biological effects. In the current study we describe a novel antioxidative peptide, FDPAL, from soybean protein isolate (SPI. The aim of this study was to purify and characterize an antioxidative peptide from SPI and determine its antioxidative mechanism. LC-MS/MS was used to isolate and identify the peptide from SPI. The sequence of the peptide was determined to be Phe-Asp-Pro-Ala-Leu (FDPAL, 561 Da. FDPAL can cause significant enhancement of resistance to oxidative stress both in cells as well as simple organisms. In Caenorhabditis elegans (C. elegans, FDPAL can up-regulate the expression of certain genes associated with resistance. The antioxidant activity of this peptide can be attributed to the presence of a specific amino acid sequence. Results from our work suggest that FDPAL can facilitate potential applications of proteins carrying this sequence in the nutraceutical, bioactive material and clinical medicine areas, as well as in cosmetics and health care products.

  18. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle

    2011-01-01

    and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared...... to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other...

  19. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.

    Science.gov (United States)

    Cheng, Yuan; Koh, Leng-Duei; Li, Dechang; Ji, Baohua; Zhang, Yingyan; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei

    2015-10-07

    Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications. Our study shows that graphene can have intriguing influences on the structures formed by the peptides with sequences representing different domains of silk fibroin. In general, for protein domains with stable structure and strong intramolecular interaction (e.g., β-sheets), graphene tends to compete with the intramolecular interactions and thus weaken the interchain interaction and reduce the contents of β-sheets. For the silk domains with random or less ordered secondary structures and weak intramolecular interactions, graphene tends to enhance the stability of peptide structures; in particular, it increases the contents of helical structures. Thereafter, tensile simulations were further performed on the representative peptides to investigate how such structure modifications affect their mechanical properties. It was found that the strength and resilience of the peptides are enhanced through their interaction with graphene. The present work reveals interesting insights into the interactions between silk peptides and graphene, and contributes in the efforts to enhance the mechanical properties of silk fibroin.

  20. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    Science.gov (United States)

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  1. Recent Developments in Peptide-Based Nucleic Acid Delivery

    Directory of Open Access Journals (Sweden)

    Tobias Restle

    2008-07-01

    Full Text Available Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cellpenetrating peptides (CPPs. The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10-30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisenseoligonucleotides, which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls.

  2. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    Science.gov (United States)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  3. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW acids can further affect functional properties of soy proteins. © 2012 Institute of Food Technologists®

  4. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  5. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  6. Human acid β-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site

    International Nuclear Information System (INIS)

    Dinur, T.; Osiecki, K.M.; Legler, G.; Gatt, S.; Desnick, R.J.; Grabowski, G.A.

    1986-01-01

    Human acid β-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) cleaves the glucosidic bonds of glucosylceramide and synthetic β-glucosides. The deficient activity of this hydrolase is the enzymatic defect in the subtypes and variants of Gaucher disease, the most prevalent lysosomal storage disease. To isolate and characterize the catalytic site of the normal enzyme, brominated 3 H-labeled conduritol B epoxide ( 3 H-Br-CBE), which inhibits the enzyme by binding covalently to this site, was used as an affinity label. Under optimal conditions 1 mol of 3 H-Br-CBE bound to 1 mol of pure enzyme protein, indicating the presence of a single catalytic site per enzyme subunit. After V 8 protease digestion of the 3 H-Br-CBE-labeled homogeneous enzyme, three radiolabeled peptides, designated peptide A, B, or C, were resolved by reverse-phase HPLC. The partial amino acid sequence (37 residues) of peptide A (M/sub r/, 5000) was determined. The sequence of this peptide, which contained the catalytic site, had exact homology to the sequence near the carboxyl terminus of the protein, as predicted from the nucleotide sequence of the full-length cDNA encoding acid β-glucosidase

  7. Peptide nucleic acids and their potential applications in biotechnology

    DEFF Research Database (Denmark)

    Buchardt, O.; Egholm, M.; Berg, R.H.

    1993-01-01

    Peptide nucleic acids (PNAs) are novel DNA mimics in which the sugar-phosphate backbone has been replaced with a backbone based on amino acids1-3. PNAs exhibit sequence-specific binding to DNA and RNA with higher affinities and specificities than unmodified DNA. They,are resistant to nuclease...

  8. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization.

    Science.gov (United States)

    Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk

    2017-01-28

    Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.

  9. Investigation of solid-phase hydrogenation of amino acids and peptides

    International Nuclear Information System (INIS)

    Zolotarev, Yu.A.; Myasoedov, N.F.; Zajtsev, D.A.; Lubnin, M.Yu.; Tatur, V.Yu.; Kozik, V.S.; Dorokhova, E.M.; Rozenberg, S.N.

    1990-01-01

    The possibility of synthesizing amino acids and peptides multiply labelled with tritium or deuterium by the method of solid-phase isotopic exchange with gaseous hydrogen isotopes was verified. Establishment of the isotopic hydrogen equilibrium between the gaseous phase and the solid phase formed by the amino acid molecules was found experimentally. The activation energy of the isotopic exchange is 13 kcal/mol. A mathematical model was set up for the isotopic exchange with a probable substitution of hydrogen atoms. Uniformly labelled amino acids were obtained in a high optical purity and with 80 to 90% hydrogen substitution by deuterium and tritium. Tritiated peptides were prepared in high yields at molar activities of 1.5 to 3.7 TBq/mmol. (author). 4 tabs

  10. Effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion

    DEFF Research Database (Denmark)

    Hansen, Morten; Scheltema, Matthijs J; Sonne, David P

    2016-01-01

    AIMS: In patients with type 2 diabetes, rectal administration of bile acids increases glucagon-like peptide-1 (GLP-1) secretion and reduces plasma glucose. In addition, oral bile acid sequestrants (BASs) reduce blood glucose by an unknown mechanism. In this study we evaluated the effects...... of the primary human bile acid, chenodeoxycholic acid (CDCA), and the BAS, colesevelam, instilled into the stomach, on plasma levels of GLP-1, glucose-dependent insulinotropic polypeptide, glucose, insulin, C-peptide, glucagon, cholecystokinin and gastrin as well as gastric emptying, gallbladder volume, appetite......, and delayed gastric emptying. We speculate that bile acid-induced activation of TGR5 on L cells increases GLP-1 secretion, which in turn may result in amplification of glucose-stimulated insulin secretion. Furthermore our data suggest that colesevelam does not have an acute effect on GLP-1 secretion in humans....

  11. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.

    Science.gov (United States)

    Kennedy, Stephen M; Aiken, Erik J; Beres, Kaytlyn A; Hahn, Adam R; Kamin, Samantha J; Hagness, Susan C; Booske, John H; Murphy, William L

    2014-01-01

    The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in

  12. EPDIM peptide-immobilized porous chitosan beads for enhanced wound healing: Preparation, characterizations and in vitro evaluation

    International Nuclear Information System (INIS)

    Bae, Jin Woo; Lee, Joon Hye; Choi, Won Sup; Lee, Dong Sin; Bae, Eun Hee; Park, Ki Dong

    2009-01-01

    EPDIM peptide is known to regulate cellular activities by interacting with α 3 β 1 integrin, which can be contributed to wound healing process. In this study, EPDIM was immobilized onto three-dimensional porous chitosan beads (χtopore) as a scaffold for enhanced wound healing. The significant decrease in contact angle indicates that EPDIM immobilization could lead to the enhanced surface wettability after its immobilization. The immobilized EPDIM was fairly distributed along its surface and the morphology was maintained even after the reaction. The immobilized amount of EPDIM was found to be about 5.68 nmol/mg of χtopore by amino acid analysis. To verify the complete removal of coupling agents after EPDIM immobilization, each coupling agent was quantitatively analyzed by LC-MS. In vitro proliferation rates of both NIH 3T3 and HaCaT showed that EPDIM immobilization onto χtopore could significantly enhance the growth rate of both cells, while the unmodified χtopore did not increase in cell number even after 15 days of culture. Therefore, these results demonstrate that EPDIM peptide-immobilized χtopore can be utilized as an attractive scaffold for enhanced wound healing.

  13. Phospholyl(borane) Amino Acids and Peptides: Stereoselective Synthesis and Fluorescent Properties with Large Stokes Shift.

    Science.gov (United States)

    Arribat, Mathieu; Rémond, Emmanuelle; Clément, Sébastien; Lee, Arie Van Der; Cavelier, Florine

    2018-01-24

    The synthesis of phospholyl(borane) amino acids was stereoselectively achieved by reaction of phospholide anion with iodo α-amino ester derived from l-aspartic acid or l-serine, followed by in situ complexation with borane. Phospholyl(borane) amino acids are easy to store and can be subjected to direct transformation into the corresponding free phospholyl, gold complex, oxide or sulfur derivatives as well as phospholinium salts, thus offering a variety of side chains. After selective deprotection of carboxylic function or amine, C- or N- peptide coupling with an alanine moiety proved the possible incorporation into peptides. Such phospholyl amino acid and peptide derivatives exhibit fluorescent properties with a large Stokes shift (160 nm) and fluorescence up to 535 nm, depending on the phosphole aromaticity and the chemical environment. These phospholyl(borane) amino acids constitute a new class of unnatural amino acids useful for structure-activities relationship studies and appear to be promising fluorophores for the development of labeled peptides.

  14. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  15. Acidic-Basic Properties of Three Alanine-Based Peptides Containing Acidic and Basic Side Chains: Comparison Between Theory and Experiment

    OpenAIRE

    Makowska, Joanna; Bagińska, Katarzyna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A.

    2008-01-01

    The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)7-KK-NH2 (KAK), Ac-OO-(A)7-DD-NH2 (OAD), Ac-KK-(A)7-EE-NH2 (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability ...

  16. Gene Targeting and Expression Modulation by Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Peptide nucleic acids (PNA) are artificial structural mimics of nucleic acids capable of sequence specific hybridization to both RNA and DNA. Thus they have obvious potential as gene targeting agents for drug discovery approaches. An overview with emphasis on recent progress on RNA "interference...

  17. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection.

    Science.gov (United States)

    Ganda, Ingrid S; Zhong, Qian; Hali, Mirabela; Albuquerque, Ricardo L C; Padilha, Francine F; da Rocha, Sandro R P; Whittum-Hudson, Judith A

    2017-07-15

    Peptide-based vaccines have emerged in recent years as promising candidates in the prevention of infectious diseases. However, there are many challenges to maintaining in vivo peptide stability and enhancement of peptide immunogenicity to generate protective immunity which enhances clearance of infections. Here, a dendrimer-based carrier system is proposed for peptide-based vaccine delivery, and shows its anti-microbial feasibility in a mouse model of Chlamydia trachomatis. Chlamydiae are the most prevalent sexually transmitted bacteria worldwide, and also the causal agent of trachoma, the leading cause of preventable infectious blindness. In spite of the prevalence of this infectious agent and the many previous vaccine-related studies, there is no vaccine commercially available. The carrier system proposed consists of generation 4, hydroxyl-terminated, polyamidoamine (PAMAM) dendrimers (G4OH), to which a peptide mimic of a chlamydial glycolipid antigen-Peptide 4 (Pep4, AFPQFRSATLLL) was conjugated through an ester bond. The ester bond between G4OH and Pep4 is expected to break down mainly in the intracellular environment for antigen presentation. Pep4 conjugated to dendrimer induced Chlamydia-specific serum antibodies after subcutaneous immunizations. Further, this new vaccine formulation significantly protected immunized animals from vaginal challenge with infectious Chlamydia trachomatis, and it reduced infectious loads and tissue (genital tract) damage. Pep4 conjugated to G4OH or only mixed with peptide provided enhanced protection compared to Pep4 and adjuvant (i.e. alum), suggesting a potential adjuvant effect of the PAMAM dendrimer. Combined, these results demonstrate that hydroxyl-terminated PAMAM dendrimer is a promising polymeric nanocarrier platform for the delivery of peptide vaccines and this approach has potential to be expanded to other infectious intracellular bacteria and viruses of public health significance. Copyright © 2017 Elsevier B.V. All

  18. T-peptide Enhances the Killing Effects of Cisplatinum on Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hongyi ZHANG

    2017-02-01

    Full Text Available Background and objective T peptide is extensively used in anti-tumor treatment. The aims of this study were to investigate whether T peptide enhances cisplatinum efficiency while reducing its side effects and to identify its effective mechanisms. Methods (1 Human macrophage U937 cells were treated with T peptide and/or cisplatinum. The levels of tumor necrosis factor-α (TNF-α and interferon-γ (IFN-γ of each group were detected by enzyme-linked immunosorbent assay (ELISA; (2 Xenograft mouse models of human lung cancer were treated with T peptide and/or cisplatinum once every five days for three times. Tumor volumes were measured during treatment; (3 The percentages of macrophages in the peripheral blood of the xenograft mouse models were measured by FACS. Results (1 Compared with other groups, the level of TNF-α was significantly higher in the human macrophage U937 cells that were treated with T peptide combined with cisplatinum. The levels of IFN-γ were significantly higher in human macrophage U937 cells that were treated with T peptide alone or T peptide combined with cisplatinum; (2 In the xenograft mouse models, T peptide combined with cisplatinum treatment significantly inhibited tumor growth without weight loss compared with the other groups; (3 The percentages of macrophages in the peripheral blood were significantly higher in the xenograft mouse models that were treated with T peptide combined with cisplatinum compared with in the other groups. Conclusion T peptide promotes macrophage proliferation and increases tumor cell killing factors (TNF-α, IFN-γ in vitro. Moreover, T peptide enhances the efficacy of cisplatin and reduces its toxicity in vivo.

  19. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    Science.gov (United States)

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  20. Thermodynamics of the interactions of some amino acids and peptides with dodecyltrimethylammonium bromide and tetradecyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Talele, Paurnima; Kishore, Nand

    2014-01-01

    Highlights: • Interactions of amino acids and peptides were studied with two cationic surfactants. • Partial molar properties and hydration numbers did not change significantly. • Measured properties indicate balance of polar and non-polar interactions. • Peptide bonds did not strengthen the extent of polar interactions with surfactant. • Results provide quantitative fine details of cationic surfactant–amino acids/peptides interactions. -- Abstract: The values of apparent molar volume V 2,ϕ and apparent molar adiabatic compressibility K S,2,ϕ of amino acids glycine, L-alanine, DL-α-amino-n-butyric acid, L-valine, L-leucine and peptides glycyl-glycine, glycyl-glycyl-glycine and glycyl-leucine have been determined in aqueous solutions of cationic surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) by means of density and sound velocity measurements. The heat evolved or absorbed (q) during the course of interactions of amino acids and peptides with the aqueous solutions of surfactants were determined by isothermal titration calorimetry at T = 298.15 K. The values of standard partial molar volume V 2,m 0 and standard partial molar adiabatic compressibility K s,2,m 0 at infinite dilution were calculated from the values of V 2,ϕ and K S,2,ϕ . Similarly the values of limiting enthalpies of dilution (Δ dil H 0 ) of the amino acids/peptides were calculated from heat evolved or absorbed during calorimetric experiments. The standard partial molar quantities of transfer from water to aqueous surfactant solutions have been used to identify the interactions of amino acids and peptides with surfactants in terms of ionic–ionic, ionic–hydrophobic and hydrophobic–hydrophobic group interactions

  1. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    Science.gov (United States)

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    Science.gov (United States)

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  3. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.

    Science.gov (United States)

    Steinbach, Jill M; Seo, Young-Eun; Saltzman, W Mark

    2016-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. G-CSF receptor-binding cyclic peptides designed with artificial amino-acid linkers

    International Nuclear Information System (INIS)

    Shibata, Kenji; Maruyama-Takahashi, Kumiko; Yamasaki, Motoo; Hirayama, Noriaki

    2006-01-01

    Designing small molecules that mimic the receptor-binding local surface structure of large proteins such as cytokines or growth factors is fascinating and challenging. In this study, we designed cyclic peptides that reproduce the receptor-binding loop structures of G-CSF. We found it is important to select a suitable linker to join two or more discontinuous sequences and both termini of the peptide corresponding to the receptor-binding loop. Structural simulations based on the crystallographic structure of KW-2228, a stable and potent analog of human G-CSF, led us to choose 4-aminobenzoic acid (Abz) as a part of the linker. A combination of 4-Abz with β-alanine or glycine, and disulfide bridges between cysteins or homocysteins, gave a structure suitable for receptor binding. In this structure, the side-chains of several amino acids important for the interactions with the receptor are protruding from one side of the peptide ring. This artificial peptide showed G-CSF antagonistic activity in a cell proliferation assay

  5. Reduction of free fatty acids by acipimox enhances the growth hormone (GH) responses to GH-releasing peptide 2 in elderly men

    NARCIS (Netherlands)

    Smid, HEC; de Vries, WR; Niesink, M; Bolscher, E; Waasdorp, EJ; Dieguez, C; Casanueva, FF; Koppeschaar, HPF

    2000-01-01

    GH release is increased by reducing circulating free fatty acids (FFAs). Aging is associated with decreased plasma GH concentrations. We evaluated GH releasing capacity in nine healthy elderly men after administration of GH-releasing peptide 2 (GHRP-2), with or without pretreatment with the

  6. Enhanced splicing correction effect by an oligo-aspartic acid-PNA conjugate and cationic carrier complexes.

    Science.gov (United States)

    Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig

    2014-02-10

    Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides

    International Nuclear Information System (INIS)

    Xu, Dong; Zhao, Zuo-Quan; Chen, Shu-Ting; Yang, Yong; Fang, Wei; Liu, Shuang

    2017-01-01

    Introduction: In this study, I2P-RGD 2 was used as the example to illustrate a novel approach for dimerization of cyclic RGD peptides. The main objective of this study was to explore the impact of bifunctional linkers (glutamic acid vs. iminodiacetic acid) on tumor-targeting capability and excretion kinetics of the 99m Tc-labeled dimeric cyclic RGD peptides. Methods: HYNIC-I2P-RGD 2 was prepared by reacting I2P-RGD 2 with HYNIC-OSu in the presence of diisopropylethylamine, and was evaluated for its α v β 3 binding affinity against 125 I-echistatin bound to U87MG glioma cells. 99m Tc-I2P-RGD 2 was prepared with high specific activity (~185 GBq/μmol). The athymic nude mice bearing U87MG glioma xenografts were used to evaluate its biodistribution properties and image quality in comparison with those of 99m Tc-3P-RGD 2 . Results: The IC 50 value for HYNIC-I2P-RGD 2 was determined to be 39 ± 6 nM, which was very close to that (IC 50 = 33 ± 5 nM) of HYNIC-3P-RGD 2 . Replacing glutamic acid with iminodiacetic acid had little impact on α v β 3 binding affinity of cyclic RGD peptides. 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 shared similar tumor uptake values over the 2 h period, and its α v β 3 -specificity was demonstrated by a blocking experiment. The uptake of 99m Tc-I2P-RGD 2 was significantly lower than 99m Tc-3P-RGD 2 in the liver and kidneys. The U87MG glioma tumors were visualized by SPECT with excellent contrast using both 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 . Conclusion: Iminodiacetic acid is an excellent bifunctional linker for dimerization of cyclic RGD peptides. Bifunctional linkers have significant impact on the excretion kinetics of 99m Tc radiotracers. Because of its lower liver uptake and better tumor/liver ratios, 99m Tc-I2P-RGD 2 may have advantages over 99m Tc-3P-RGD 2 for diagnosis of tumors in chest region. -- Graphical abstract: This report presents novel approach for dimerization of cyclic RGD peptides using iminodiacetic acid as a

  8. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    Science.gov (United States)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  9. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection*

    Science.gov (United States)

    LoRicco, Josephine G.; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C.; Roan, Nadia R.; Makhatadze, George I.

    2016-01-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248–286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86–107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. PMID:27226574

  10. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection.

    Science.gov (United States)

    LoRicco, Josephine G; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C; Roan, Nadia R; Makhatadze, George I

    2016-07-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  12. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Creating diversity by site-selective peptide modification: a customizable unit affords amino acids with high optical purity.

    Science.gov (United States)

    Romero-Estudillo, Ivan; Boto, Alicia

    2013-11-15

    The development of peptide libraries by site-selective modification of a few parent peptides would save valuable time and materials in discovery processes, but still is a difficult synthetic challenge. Herein natural hydroxyproline is introduced as a "convertible" unit for the production of a variety of optically pure amino acids, including expensive N-alkyl amino acids, and to achieve the mild, efficient, and site-selective modification of peptides.

  14. Influences of conformations of peptides on stereoinversions and/or isomerizations of aspartic acid residues.

    Science.gov (United States)

    Oda, Akifumi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Takahashi, Ohgi

    2018-07-01

    Recently, non-enzymatic stereoinversions of aspartic acid (Asp) residues in proteins and peptides have been reported. Here, we performed replica exchange molecular dynamics (REMD) simulations of model peptides (exon 6, 26A-1, and 26A-2) extracted from elastin to investigate their structural features, thereby revealing the factor that influences stereoinversions. For REMD trajectories, we calculated distances between carboxyl carbon in Asp and amide nitrogen in the (n + 1) residue (CN distances). Because bond formation between carbon and nitrogen is indispensable to the formation of a succinimide intermediate the distance between them seems to play an important role in stereoinversion. Moreover, we calculated polar surface areas (PSAs) for the trajectories, finding that CN distances and PSA were different for each peptide, with the longest CN distance and smallest PSA observed for exon 6 peptide, where stereoinversion of Asp is the slowest. Although the average CN distance was shorter for exon 26A-1 peptide than for exon 26A-2 peptide, the number of conformations with CN distances acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Polyethylene glycol–polylactic acid nanoparticles modified with cysteine–arginine–glutamic acid–lysine–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect

    Directory of Open Access Journals (Sweden)

    Wu J

    2014-11-01

    Full Text Available Junzhu Wu,1,2,* Jingjing Zhao,1,3,* Bo Zhang,1 Yong Qian,1 Huile Gao,1 Yuan Yu,1 Yan Wei,1 Zhi Yang,1 Xinguo Jiang,1 Zhiqing Pang1 1Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 2School of Pharmacy, Dali University, Xiaguan, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: For a nanoparticulate drug-delivery system, crucial challenges in brain-glioblastoma therapy are its poor penetration and retention in the glioblastoma parenchyma. As a prevailing component in the extracellular matrix of many solid tumors, fibrin plays a critical role in the maintenance of glioblastoma morphology and glioblastoma cell differentiation and proliferation. We developed a new drug-delivery system by conjugating polyethylene glycol–polylactic acid nanoparticles (NPs with cysteine–arginine–glutamic acid–lysine–alanine (CREKA; TNPs, a peptide with special affinity for fibrin, to mediate glioblastoma-homing and prolong NP retention at the tumor site. In vitro binding tests indicated that CREKA significantly enhanced specific binding of NPs with fibrin. In vivo fluorescence imaging of glioblastoma-bearing nude mice, ex vivo brain imaging, and glioblastoma distribution demonstrated that TNPs had higher accumulation and longer retention in the glioblastoma site over unmodified NPs. Furthermore, pharmacodynamic results showed that paclitaxel-loaded TNPs significantly prolonged the median survival time of intracranial U87 glioblastoma-bearing nude mice compared with controls, Taxol, and NPs. These findings suggested that TNPs were able to target the glioblastoma and enhance retention, which is a valuable strategy for tumor therapy. Keywords: CREKA peptide, nanoparticles, retention effect, paclitaxel, glioblastoma

  16. Glucagon-like peptide-1 7-36 amide and peptide YY from the L-cell of the ileal mucosa are potent inhibitors of vagally induced gastric acid secretion in man

    DEFF Research Database (Denmark)

    Wettergren, A; Petersen, H; Orskov, C

    1994-01-01

    BACKGROUND: Glucagon-like peptide (GLP-1) 7-36 amide and peptide YY (PYY) from the L-cell of the ileal mucosa are potent inhibitors of gastric acid secretion in man. It is not clear, however, by which mechanism(s) they inhibit acid secretion. In dogs the inhibitory effect of PYY on acid secretion...

  17. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport.

    Science.gov (United States)

    Lee, Jennifer; Koehler, Jacqueline; Yusta, Bernardo; Bahrami, Jasmine; Matthews, Dianne; Rafii, Mahroukh; Pencharz, Paul B; Drucker, Daniel J

    2017-03-01

    Glucagon-like peptide-2 (GLP-2) is co-secreted with GLP-1 from gut endocrine cells, and both peptides act as growth factors to expand the surface area of the mucosal epithelium. Notably, GLP-2 also enhances glucose and lipid transport in enterocytes; however, its actions on control of amino acid (AA) transport remain unclear. Here we examined the mechanisms linking gain and loss of GLP-2 receptor (GLP-2R) signaling to control of intestinal amino acid absorption in mice. Absorption, transport, and clearance of essential AAs, specifically lysine, were measured in vivo by Liquid Chromatography triple quadrupole Mass Spectrometry (LC-MS/MS) and ex vivo with Ussing chambers using intestinal preparations from Glp2 r +/+ and Glp2r - / - mice. Immunoblotting determined jejunal levels of protein components of signaling pathways (PI3K-AKT, and mTORC1-pS6-p4E-BP1) following administration of GLP-2, protein gavage, and rapamycin to fasted Glp2 r +/+ and Glp2r - / - mice. Expression of AA transporters from full thickness jejunum and 4F2hc from brush border membrane vesicles (BBMVs) was measured by real-time PCR and immunoblotting, respectively. Acute administration of GLP-2 increased basal AA absorption in vivo and augmented basal lysine transport ex vivo . GLP-2-stimulated lysine transport was attenuated by co-incubation with wortmannin, rapamycin, or tetrodotoxin ex vivo . Phosphorylation of mTORC1 effector proteins S6 and 4E-BP1 was significantly increased in wild-type mice in response to GLP-2 alone, or when co-administered with protein gavage, and abolished following oral gavage of rapamycin. In contrast, activation of GLP-1R signaling did not enhance S6 phosphorylation. Disruption of GLP-2 action in Glp2r -/- mice reduced lysine transport ex vivo and attenuated the phosphorylation of S6 and 4E-BP1 in response to oral protein. Moreover, the expression of cationic AA transporter slc7a9 in response to refeeding, and the abundance of 4F2hc in BBMVs following protein

  18. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid.

    Science.gov (United States)

    Kennedy, David A; Vembu, Nagarajan; Fronczek, Frank R; Devocelle, Marc

    2011-12-02

    Reported is the synthesis of azo mutual prodrugs of the nonsteroidal anti-inflammatory agents (NSAIDs) 4-aminophenylacetic acid (4-APAA) or 5-aminosalicylic acid (5-ASA) with peptides, including an antibiotic peptide temporin analogue modified at the amino terminal by an α-aminoisobutyric acid (Aib) residue. These prodrugs are designed for colonic delivery of two agents to treat infection and inflammation by the bacterial pathogen Clostridium difficile . © 2011 American Chemical Society

  19. Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC-MS analysis.

    Science.gov (United States)

    Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo

    2018-04-25

    Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.

  20. New peptides players in metabolic disorders

    Directory of Open Access Journals (Sweden)

    Agata Mierzwicka

    2016-08-01

    Full Text Available Among new peptides responsible for the pathogenesis of metabolic disorders and carbohydrate metabolism, adipokines are of great importance. Adipokines are substances of hormonal character, secreted by adipose tissue. Apart from the well-known adipokines, adropin and preptin are relatively newly discovered, hence their function is not fully understood. They are peptides not secreted by adipose tissue but their role in the metabolic regulations seems to be significant. Preptin is a 34-amino acid peptide, a derivative of proinsulin growth factor II (pro-IGF-II, secreted by pancreatic β cells, considered to be a physiological enhancer of insulin secretion. Additionally, preptin has a stimulating effect on osteoblasts, inducing their proliferation, differentiation and survival. Adropin is a 76-amino acid peptide, encoded by the energy homeostasis associated gene (Enho, mainly in liver and brain, and its expression is dependent on a diet. Adropin is believed to play an important role in metabolic homeostasis, fatty acids metabolism control, insulin resistance prevention, dyslipidemia, and impaired glucose tolerance. The results of studies conducted so far show that the diseases resulting from metabolic syndrome, such as obesity, type 2 diabetes mellitus, polycystic ovary syndrome, non-alcoholic fatty liver disease, or cardiovascular disease are accompanied by significant changes in the concentration of these peptides. It is also important to note that preptin has an anabolic effect on bone tissue, which might be preventive in osteoporosis.

  1. Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.

    Science.gov (United States)

    Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang

    2017-01-04

    Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.

  2. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Double quick, double click reversible peptide "stapling".

    Science.gov (United States)

    Grison, Claire M; Burslem, George M; Miles, Jennifer A; Pilsl, Ludwig K A; Yeo, David J; Imani, Zeynab; Warriner, Stuart L; Webb, Michael E; Wilson, Andrew J

    2017-07-01

    The development of constrained peptides for inhibition of protein-protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine ( h Cys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein-protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne-azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.

  4. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    Science.gov (United States)

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  5. Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry.

    Science.gov (United States)

    Ngambenjawong, Chayanon; Pineda, Julio Marco B; Pun, Suzie H

    2016-12-21

    Peptide cyclization is a strategy used to improve stability and activity of peptides. The most commonly used cyclization method is disulfide bridge formation of cysteine-containing peptides, as is typically found in nature. Over the years, an increasing number of alternative chemistries for peptide cyclization with improved efficiency, kinetics, orthogonality, and stability have been reported. However, there has been less appreciation for the opportunity to fine-tune peptide activity via the diverse chemical entities introduced at the site of linkage by different cyclization strategies. Here, we demonstrate how cyclization optimization of an M2 "anti-inflammatory" macrophage-binding peptide (M2pep) resulted in a significant increase in binding affinity of the optimized analog to M2 macrophages while maintaining binding selectivity compared to M1 "pro-inflammatory" macrophages. In this study, we report synthesis and evaluation of four cyclic M2pep(RY) analogs with diverse cyclization strategies: (1) Asp-[amide]-Lys, (2) azido-Lys-[triazole(copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC))]-propargyl-Gly, (3) Cys-[decafluorobiphenyl (DFBP)]-Cys, and (4) Cys-[decafluorobiphenyl sulfone (DFS)]-Cys, whereby the chemical entity or linker at the linkage site is shown in the square bracket and is between the residues involved in cyclization. These peptides are compared to a disulfide-cyclized M2pep(RY) that we previously reported as a serum-stable, affinity-enhanced analog to the original linear M2pep. DFBP-cyclized M2pep(RY) exhibits the highest binding activity to M2 macrophages with apparent dissociation constant (K D ) about 2.03 μM compared to 36.3 μM for the original disulfide-cyclized M2pep(RY) and 220 μM for the original linear peptide. DFS-cyclized M2pep(RY) also binds more strongly than the original cyclized analog, whereas amide- and triazole-cyclized M2pep(RY) analogs bind less strongly. We verified that DFBP alone has negligible binding to M2

  6. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of); Lim, Yun Kyong; Kook, Joong-Ki [Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Cho, Dong-Lyun [School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju (Korea, Republic of); Kim, Byung Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, MRC Center, Chosun University, Gwangju (Korea, Republic of)

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH{sub 2} of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  7. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    Science.gov (United States)

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  8. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall

    2010-01-01

    the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  9. C9/12 Ribbon-Like Structures in Hybrid Peptides Alternating α- and Thiazole-Based γ-Amino Acids.

    Science.gov (United States)

    Bonnel, Clément; Legrand, Baptiste; Simon, Matthieu; Martinez, Jean; Bantignies, Jean-Louis; Kang, Young Kee; Wenger, Emmanuel; Hoh, Francois; Masurier, Nicolas; Maillard, Ludovic T

    2017-12-11

    According to their restricted conformational freedom, heterocyclic γ-amino acids are usually considered to be related to Z-vinylogous γ-amino acids. In this context, oligomers alternating α-amino acids and thiazole-based γ-amino acids (ATCs) were expected to fold into a canonical 12-helical shape as described for α/γ-hybrid peptides composed of cis-α/β-unsaturated γ-amino acids. However, through a combination of X-ray crystallography, NMR spectroscopy, FTIR experiments, and DFT calculations, it was determined that the folding behavior of ATC-containing hybrid peptides is much more complex. The homochiral α/(S)-ATC sequences were unable to adopt a stable conformation, whereas the heterochiral α/(R)-ATC peptides displayed novel ribbon structures stabilized by unusual C 9/12 -bifurcated hydrogen bonds. These ribbon structures could be considered as a succession of pre-organized γ/α dipeptides and may provide the basis for designing original α-helix mimics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label

    Directory of Open Access Journals (Sweden)

    Nattawut Yotapan

    2014-09-01

    Full Text Available DNA or its analogues with an environment-sensitive fluorescent label are potentially useful as a probe for studying the structure and dynamics of nucleic acids. In this work, pyrrolidinyl peptide nucleic acid (acpcPNA was labeled at its backbone with Nile red, a solvatochromic benzophenoxazine dye, by means of click chemistry. The optical properties of the Nile red-labeled acpcPNA were investigated by UV–vis and fluorescence spectroscopy in the absence and in the presence of DNA. In contrast to the usual quenching observed in Nile red-labeled DNA, the hybridization with DNA resulted in blue shifting and an enhanced fluorescence regardless of the neighboring bases. More pronounced blue shifts and fluorescence enhancements were observed when the DNA target carried a base insertion in close proximity to the Nile red label. The results indicate that the Nile red label is located in a more hydrophobic environment in acpcPNA–DNA duplexes than in the single-stranded acpcPNA. The different fluorescence properties of the acpcPNA hybrids of complementary DNA and DNA carrying a base insertion are suggestive of different interactions between the Nile red label and the duplexes.

  11. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased...... the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS...... was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  12. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    Science.gov (United States)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  13. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity.

    Science.gov (United States)

    Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2018-01-01

    Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.

  14. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    Science.gov (United States)

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  15. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs

  16. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins

  17. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  18. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  19. Increased electrical conductivity of peptides through annealing process

    Directory of Open Access Journals (Sweden)

    Seok Daniel Namgung

    2017-08-01

    Full Text Available Biocompatible biologically occurring polymer is suggested as a component of human implantable devices since conventional inorganic materials are apt to trigger inflammation and toxicity problem within human body. Peptides consisting of aromatic amino acid, tyrosine, are chosen, and enhancement on electrical conductivity is studied. Annealing process gives rise to the decrease on resistivity of the peptide films and the growth of the carrier concentration is a plausible reason for such a decrease on resistivity. The annealed peptides are further applied to an active layer of field effect transistor, in which low on/off current ratio (∼10 is obtained.

  20. Sequence-selective targeting of duplex DNA by peptide nucleic acids

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Sequence-selective gene targeting constitutes an attractive drug-discovery approach for genetic therapy, with the aim of reducing or enhancing the activity of specific genes at the transcriptional level, or as part of a methodology for targeted gene repair. The pseudopeptide DNA mimic peptide...

  1. Peptide ligands for targeting the extracellular domain of EGFR: Comparison between linear and cyclic peptides.

    Science.gov (United States)

    Williams, Tyrslai M; Sable, Rushikesh; Singh, Sitanshu; Vicente, Maria Graca H; Jois, Seetharama D

    2018-02-01

    Colorectal cancer (CRC) is the third most common solid internal malignancy among cancers. Early detection of cancer is key to increasing the survival rate of colorectal cancer patients. Overexpression of the EGFR protein is associated with CRC. We have designed a series of peptides that are highly specific for the extracellular domain of EGFR, based on our earlier studies on linear peptides. The previously reported linear peptide LARLLT, known to bind to EGFR, was modified with the goals of increasing its stability and its specificity toward EGFR. Peptide modifications, including D-amino acid substitution, cyclization, and chain reversal, were investigated. In addition, to facilitate labeling of the peptide with a fluorescent dye, an additional lysine residue was introduced onto the linear (KLARLLT) and cyclic peptides cyclo(KLARLLT) (Cyclo.L1). The lysine residue was also converted into an azide group in both a linear and reversed cyclic peptide sequences cyclo(K(N3)larllt) (Cyclo.L1.1) to allow for subsequent "click" conjugation. The cyclic peptides showed enhanced binding to EGFR by SPR. NMR and molecular modeling studies suggest that the peptides acquire a β-turn structure in solution. In vitro stability studies in human serum show that the cyclic peptide is more stable than the linear peptide. © 2017 John Wiley & Sons A/S.

  2. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    International Nuclear Information System (INIS)

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-01-01

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images

  3. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  4. Acidic-basic properties of three alanine-based peptides containing acidic and basic side chains: comparison between theory and experiment.

    Science.gov (United States)

    Makowska, Joanna; Bagińska, Katarzyna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A

    2008-01-01

    The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)(7)-KK-NH(2) (KAK), Ac-OO-(A)(7)-DD-NH(2) (OAD), Ac-KK-(A)(7)-EE-NH(2) (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability of these data, the ability of two theoretical methods to simulate pH-metric titration of those peptides was assessed: (i) the electrostatically driven Monte Carlo method with the ECEPP/3 force field and the Poisson-Boltzmann approach to compute solvation energy (EDMC/PB/pH), and (ii) the molecular dynamics method with the AMBER force field and the Generalized Born model (MD/GB/pH). For OAD and KAE, pK(a1) and pK(a2) correspond to the acidic side chains. For all three compounds in both solvents, the pK(a1) value is remarkably lower than the pK(a) of a compound modeling the respective isolated side chain, which can be explained by the influence of the electrostatic field from positively charged ornithine or lysine side chains. The experimental titration curves are reproduced well by the MD/GB/pH approach, the agreement being better if restraints derived from NMR measurements are incorporated in the conformational search. Poorer agreement is achieved by the EDMC/PB/pH method.

  5. Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.

    Science.gov (United States)

    Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S

    2005-01-01

    Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe. Copyright (c) 2005 Wiley Periodicals, Inc.

  6. Multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer: Design, synthesis, and dissolving thrombus.

    Science.gov (United States)

    Zhang, Shao-Fei; Lü, Shaoyu; Gao, Chunmei; Yang, Jiandong; Yan, Xiang; Li, Tao; Wen, Na; Huang, Mengjie; Liu, Mingzhu

    2018-06-01

    Thrombotic events affect many individuals in a number of ways, all of which can cause significant morbidity and mortality. Nattokinase (NK), as a novel thrombolytic drug, has been used for thrombolytic therapy. It not only possesses plasminogen activator activity, but also directly digests fibrin through limited proteolysis. However, it may undergo inactivation and denaturation in the harsh external environment. In this study, a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer was fabricated and used as a carrier for NK protection and delivery. Different arm numbers of polyethylene glycol-polyglutamic acid peptide dendrimers (x-PEG(G 3 ) x , x = 2, 4, 6, 8) were designed, prepared, and characterized by 1 H NMR and FTIR. Then, x-PEG(G 3 ) x were loaded with NK to form nanocomposites. Their size and morphology were determined by dynamic light scattering and transmission electron microscopy. Enzyme activity was evaluated via UV-Vis absorbance spectra, fluorescence spectra, circular dichroism spectra, and zeta potential measurements. The study reveals that the obtained x-PEG(G 3 ) x /NK nanocomposites possess high enzyme activity. In addition, the nanocomposites show increased viability of rat macrophage cells, and excellent thrombolysis ability in vitro and in vivo. This work establishes a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer with potential application in NK carrier and thrombolytic therapy. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1687-1696, 2018. © 2018 Wiley Periodicals, Inc.

  7. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva.

    Science.gov (United States)

    Schlesinger, D H; Hay, D I

    1977-03-10

    The complete amino acid sequence of human salivary statherin, a peptide which strongly inhibits precipitation from supersaturated calcium phosphate solutions, and therefore stabilizes supersaturated saliva, has been determined. The NH2-terminal half of this Mr=5380 (43 amino acids) polypeptide was determined by automated Edman degradations (liquid phase) on native statherin. The peptide was digested separately with trypsin, chymotrypsin, and Staphylococcus aureus protease, and the resulting peptides were purified by gel filtration. Manual Edman degradations on purified peptide fragments yielded peptides that completed the amino acid sequence through the penultimate COOH-terminal residue. These analyses, together with carboxypeptidase digestion of native statherin and of peptide fragments of statherin, established the complete sequence of the molecule. The 2 serine residues (positions 2 and 3) in statherin were identified as phosphoserine. The amino acid sequence of human salivary statherin is striking in a number of ways. The NH2-terminal one-third is highly polar and includes three polar dipeptides: H2PO3-Ser-Ser-H2PO3-Arg-Arg-, and Glu-Glu-. The COOH-terminal two-thirds of the molecule is hydrophobic, containing several repeating dipeptides: four of -Gn-Pro-, three of -Tyr-Gln-, two of -Gly-Tyr-, two of-Gln-Tyr-, and two of the tetrapeptide sequence -Pro-Tyr-Gln-Pro-. Unusual cleavage sites in the statherin sequence obtained with chymotrypsin and S. aureus protease were also noted.

  8. Introduction of an 8-aminooctanoic acid linker enhances uptake of 99mTc-labeled lactam bridge-cyclized α-MSH peptide in melanoma.

    Science.gov (United States)

    Guo, Haixun; Miao, Yubin

    2014-12-01

    The purpose of this study was to examine the effects of amino acid, hydrocarbon, and polyethylene glycol (PEG) linkers on the melanoma targeting and imaging properties of (99m)Tc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex (hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2) peptides. Four novel peptides (HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex) were designed and synthesized. The melanocortin-1 receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of (99m)Tc(ethylenediaminediacetic acid [EDDA])-HYNIC-GGGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-GSGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-PEG2Nle-CycMSHhex, and (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h after injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. The inhibitory concentrations of 50% (IC50) for HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM, respectively, in B16/F1 melanoma cells. Among these four (99m)Tc-labeled peptides, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72 percentage injected dose/g) at 2 h after injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor-to-normal-organ uptake ratios except for the kidneys. The tumor-to-kidney uptake ratios of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63, and 6.78 at 2, 4, and 24 h, respectively, after injection. The melanoma lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h after injection. High melanoma uptake and fast urinary clearance of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its

  9. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    Science.gov (United States)

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  10. Highly selective enrichment of phosphorylated peptides using titanium dioxide

    DEFF Research Database (Denmark)

    Thingholm, Tine; Jørgensen, Thomas J D; Jensen, Ole N

    2006-01-01

    -column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline...... a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro...... solution (pH > or = 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass...

  11. Cell-penetrating peptides as tools to enhance non-injectable delivery of biopharmaceuticals

    DEFF Research Database (Denmark)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2016-01-01

    Non-injectable delivery of peptide and protein drugs is hampered by their labile nature, hydrophilicity, and large molecular size; thus limiting their permeation across mucosae, which represent major biochemical and physical barriers to drugs administered via e.g. the oral, nasal, and pulmonary...... routes. However, in recent years cell-penetrating peptides (CPP) have emerged as promising tools to enhance mucosal delivery of co-administered or conjugated peptide and protein cargo and more advanced CPP-cargo formulations are emerging. CPPs act as transepithelial delivery vectors, but the mechanism...... understanding, documentation of CPP-mediated delivery in higher animal species than rodent as well as extensive toxicological studies are necessary for CPP-containing non-injectable DDSs to reach the clinic....

  12. Piezoelectric peptide-based nanogenerator enhanced by single-electrode triboelectric nanogenerator

    Directory of Open Access Journals (Sweden)

    Vu Nguyen

    2017-07-01

    Full Text Available Peptide has recently been demonstrated as a sustainable and smart material for piezoelectric energy conversion. Although the power output was improved compared to other biomaterials, the use of a piezoelectric device alone can only capture the energy from the minute deformation in materials. In comparison, the triboelectric effect can convert mechanical energy from large motion. Consequently, utilizing both piezoelectric and triboelectric effects is of significant research interest due to their complementary energy conversion mechanisms. Here we demonstrated a hybrid nanogenerator that combined a peptide-based piezoelectric nanogenerator with a single-electrode triboelectric nanogenerator. Our device structure enabled the voltage and current outputs of each individual type of nanogenerator to be superposed in the hybrid nanogenerator, producing overall constructive outputs. The design of our device also enabled a simplified configuration of hybrid nanogenerator. This study is important not only for the enhancement of peptide-based piezoelectric device but also for the future design of hybrid piezoelectric and triboelectric nanogenerators.

  13. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    DEFF Research Database (Denmark)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo

    2017-01-01

    and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation....... The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots...

  14. Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry.

    Science.gov (United States)

    Zheng, Xueyun; Deng, Liulin; Baker, Erin S; Ibrahim, Yehia M; Petyuk, Vladislav A; Smith, Richard D

    2017-07-11

    While α-linked amino acids in the l-form are exclusively utilized in mammalian protein building, β-linked and d-form amino acids also have important biological roles. Unfortunately, the structural elucidation and separation of these different amino acid types in peptides has been analytically challenging to date due to the numerous isomers present, limiting our knowledge about their existence and biological roles. Here, we utilized an ultrahigh resolution ion mobility spectrometry platform coupled with mass spectrometry (IMS-MS) to separate amyloid β (Aβ) peptides containing l-aspartic acid, d-aspartic acid, l-isoaspartic acid, and d-isoaspartic acid residues which span α- and β-linked amino acids in both d- and l-forms. The results illustrate how IMS-MS could be used to better understand age-related diseases or protein folding disorders resulting from amino acid modifications.

  15. Efficacy of peptide nucleic acid and selected conjugates against specific cellular pathologies of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Browne, Elisse C; Parakh, Sonam; Duncan, Luke F; Langford, Steven J; Atkin, Julie D; Abbott, Belinda M

    2016-04-01

    Cellular studies have been undertaken on a nonamer peptide nucleic acid (PNA) sequence, which binds to mRNA encoding superoxide dismutase 1, and a series of peptide nucleic acids conjugated to synthetic lipophilic vitamin analogs including a recently prepared menadione (vitamin K) analog. Reduction of both mutant superoxide dismutase 1 inclusion formation and endoplasmic reticulum stress, two of the key cellular pathological hallmarks in amyotrophic lateral sclerosis, by two of the prepared PNA oligomers is reported for the first time. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    DEFF Research Database (Denmark)

    Ipharraguerre, Ignacio R; Tedó, Gemma; Menoyo, David

    2013-01-01

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve.......05) but did not affect plasma GLP-1 and feed intake. The intestinal expression of glucagon-like peptide 2 receptor, sodium-dependent bile acid transporter, farnesoid X receptor, and guanosine protein-coupled bile acid receptor genes were not affected by CDC treatment. The intragastric administration of CDC...

  17. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  18. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP.

    Science.gov (United States)

    Lisy, Ondrej; Huntley, Brenda K; McCormick, Daniel J; Kurlansky, Paul A; Burnett, John C

    2008-07-01

    Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides.

  19. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells.

    Science.gov (United States)

    Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  1. Systemic co-delivery of doxorubicin and siRNA using nanoparticles conjugated with EGFR-specific targeting peptide to enhance chemotherapy in ovarian tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. W.; Lin, W. J., E-mail: wjlin@ntu.edu.tw [National Taiwan University, Graduate Institute of Pharmaceutical Sciences, School of Pharmacy (China)

    2013-10-15

    This aim of this study was to develop peptide-conjugated nanoparticles (NPs) for systemic co-delivery of siRNA and doxorubicin to enhance chemotherapy in epidermal growth factor receptor (EGFR) high-expressed ovarian tumor bearing mice. The active targeting NPs were prepared using heptapeptide-conjugated poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol). The particle sizes of peptide-free and peptide-conjugated NPs were 159.3 {+-} 32.5 and 184.0 {+-} 52.9 nm, respectively, with zeta potential -21.3 {+-} 3.8 and -15.3 {+-} 2.8 mV. The peptide-conjugated NPs uptake were more efficient in EGFR high-expressed SKOV3 cells than in EGFR low-expressed HepG2 cells due to heptapeptide specificity. The NPs were used to deliver small molecule anticancer drug (e.g., doxorubicin) and large molecule genetic agent (e.g., siRNA). The IC{sub 50} of doxorubicin-loaded peptide-conjugated NPs (0.09 {+-} 0.06 {mu}M) was significantly lower than peptide-free NPs (5.72 {+-} 2.64 {mu}M). The similar result was observed in siRNA-loaded NPs. The peptide-conjugated NPs not only served as a nanocarrier to efficiently deliver doxorubicin and siRNA to EGFR high-expressed ovarian cancer cells but also increased the intracellular accumulation of the therapeutic agents to induce assured anti-tumor growth effect in vivo.

  2. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    Science.gov (United States)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  3. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  4. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  5. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2018-06-01

    Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.

  6. The C-Terminal O-S Acyl Shift Pathway under Acidic Condition to Propose Peptide-Thioesters

    Directory of Open Access Journals (Sweden)

    Bo Mi Kim

    2016-11-01

    Full Text Available Peptide-thioester is a pivotal intermediate for peptide ligation and N-, C-terminal cyclization. In this study, desired pathway and the side products of two C-terminal handles, hydroxyethylthiol (HET and hydroxypropylthiol (HPT are described in different conditions as well as kinetic studies. In addition, a new mechanism of C-terminal residue racemization is proposed on the basis of differentiation of products derived from the two C-terminal handles in preparing peptide thioesters through an acid-catalyzed tandem thiol switch, first by an intramolecular O-S acyl shift, and then by an intermolecular S-S exchange.

  7. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Directory of Open Access Journals (Sweden)

    Mouhssin Oufir

    2011-01-01

    Full Text Available An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  8. Enhancement of mouse sperm motility by trophinin-binding peptide

    Directory of Open Access Journals (Sweden)

    Park Seong

    2012-11-01

    Full Text Available Abstract Background Trophinin is an intrinsic membrane protein that forms a complex in the cytoplasm with bystin and tastin, linking it microtubule-associated motor dynein (ATPase in some cell types. Previously, we found that human sperm tails contain trophinin, bystin and tastin proteins, and that trophinin-binding GWRQ (glycine, tryptophan, arginine, glutamine peptide enhanced motility of human sperm. Methods Immunohistochemistry was employed to determine trophinin protein in mouse spermatozoa from wild type mouse, by using spermatozoa from trophinin null mutant mice as a negative control. Multivalent 8-branched GWRQ (glycine, tryptophan, arginine, glutamine peptide or GWRQ-MAPS, was chemically synthesized, purified by HPLC and its structure was confirmed by MALDI-TOF mass spectrometry. Effect of GWRQ-MAPS on mouse spermatozoa from wild type and trophinin null mutant was assessed by a computer-assisted semen analyzer (CASA. Results Anti-trophinin antibody stained the principal (central piece of the tail of wild type mouse sperm, whereas the antibody showed no staining on trophinin null sperm. Phage particles displaying GWRQ bound to the principal piece of sperm tail from wild type but not trophinin null mice. GWRQ-MAPS enhanced motility of spermatozoa from wild type but not trophinin null mice. CASA showed that GWRQ-MAPS enhanced both progressive motility and rapid motility in wild type mouse sperm. Conclusions Present study established the expression of trophinin in the mouse sperm tail and trophinin-dependent effect of GWRQ-MAPS on sperm motility. GWRQ causes a significant increase in sperm motility.

  9. Investigating the inclusion properties of aromatic amino acids complexing beta-cyclodextrins in model peptides.

    Science.gov (United States)

    Caso, Jolanda Valentina; Russo, Luigi; Palmieri, Maddalena; Malgieri, Gaetano; Galdiero, Stefania; Falanga, Annarita; Isernia, Carla; Iacovino, Rosa

    2015-10-01

    Cyclodextrins are commonly used as complexing agents in biological, pharmaceutical, and industrial applications since they have an effect on protein thermal and proteolytic stability, refolding yields, solubility, and taste masking. β-cyclodextrins (β-CD), because of their cavity size are a perfectly suited complexing agent for many common guest moieties. In the case of peptide-cyclodextrin and protein-cyclodextrin host-guest complexes the aromatic amino acids are reported to be the principal responsible of the interaction. For these reasons, we have investigated the inclusion properties of nine designed tripeptides, obtained permuting the position of two L-alanines (Ala, A) with that of one L-tryptophan (Trp, W), L-phenylalanine (Phe, F), or L-tyrosine (Tyr, Y), respectively. Interestingly, the position of the aromatic side-chain in the sequence appears to modulate the β-CD:peptide binding constants, determined via UV-Vis and NMR spectroscopy, which in turn assumes values higher than those reported for the single amino acid. The tripeptides containing a tyrosine showed the highest binding constants, with the central position in the Ac-AYA-NH2 peptide becoming the most favorite for the interaction. A combined NMR and Molecular Docking approach permitted to build detailed complex models, highlighting the stabilizing interactions of the neighboring amino acids backbone atoms with the upper rim of the β-CD.

  10. Reaction of hypochlorite with amino acids and peptides : EPR evidence for rapid rearrangement and fragmentation of nitrogen-centred radicals

    International Nuclear Information System (INIS)

    Hawkins, C.L.; Davies, M.J.

    1998-01-01

    Various amino acid side chains have been shown to be particularly susceptible to attack and modification by hypochlorite (HOCl). It is known that tyrosine is readily chlorinated by HOCl to give 3-chlorotyrosine and this product has been employed as a marker of HOCl-mediated damage to proteins. Cysteine and methionine react rapidly with HOCl to give oxy acids and cystine (from cysteine) and sulphoxides (from methionine). Lysine and amino acids which lack the above functional groups also react with HOCl via the free amino group which results in the generation of unstable chloramine intermediates; subsequent decomposition of these species gives NH 3 , CO 2 and aldehydes. While the products of reaction of HOCl with amino acids and peptides are reasonably well characterised, the mechanism(s) by which these products arise is less well understood. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping and UV/visible spectroscopy has been employed to examine the reaction of HOCl with amino acids and some small peptides. Reaction of HOCl with N-acetyl amino acids or small peptides gives radicals predominantly at α-carbon sites via reaction at N-terminal free amino groups or amide (peptide) bonds. It is proposed that these carbon-centred radicals are produced as a result of the rearrangement of initial nitrogen-centred radicals formed on cleavage of the N-CI bond of the chloramine/chloramide species by a 1,2-shift reaction

  11. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis.

    Science.gov (United States)

    Shin, Byung-Sik; Katoh, Takayuki; Gutierrez, Erik; Kim, Joo-Ran; Suga, Hiroaki; Dever, Thomas E

    2017-08-21

    Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  12. Enhancement of colposcopic image by sulphosalicylic acid.

    Directory of Open Access Journals (Sweden)

    Khilnani P

    1993-01-01

    Full Text Available Acetic acid is used conventionally for enhancement of the colposcopic image. We used sulphosalicylic acid instead of acetic acid in 50 normal cases. The normal appearance was enhanced in all cases. The image was also enhanced in 70% cases of cervical intraepithelial neoplasia and 90% cases of cervical condyloma accuminata. The image was not inferior to that with acetic acid in any of the cases.

  13. Synthetic Cationic Peptide IDR-1002 Provides Protection against Bacterial Infections through Chemokine Induction and Enhanced Leukocyte Recruitment

    DEFF Research Database (Denmark)

    Nijnik, Anastasia; Madera, Laurence; Ma, Shuhua

    2010-01-01

    and the PI3K, NF-κB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host...... defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity....

  14. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Young Chon Choi

    2006-06-01

    Full Text Available Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. The fractions obtained from gel filtration chromatography was analyzed by using SDS-PAGE and propionic acid/urea polyacrylamide gel electrophoresis. The melittin obtained from the gel filtration contained residual amount of phospholipase A2 and a protein with molecular weight of 6,000. The contaminating proteins were removed by the second gel filtration chromatography. Conclusion : Gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis are useful to separate peptide components including melittin from bee venom.

  15. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    Science.gov (United States)

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  16. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    Science.gov (United States)

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  17. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Science.gov (United States)

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  18. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    Directory of Open Access Journals (Sweden)

    Yuji Miyahara

    2013-02-01

    Full Text Available Peptide nucleic acid (PNA has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  19. Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection

    Science.gov (United States)

    Liu, Haichuan; Usmani, Shariq M.; Neidleman, Jason; Müller, Janis A.; Avila-Herrera, Aram; Gawanbacht, Ali; Zirafi, Onofrio; Chu, Simon; Dong, Ming; Kumar, Senthil T.; Smith, James F.; Pollard, Katherine S.; Fändrich, Marcus; Kirchhoff, Frank; Münch, Jan; Witkowska, H. Ewa; Greene, Warner C.

    2014-01-01

    ABSTRACT Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. IMPORTANCE Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen

  20. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    Science.gov (United States)

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    Science.gov (United States)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  2. Effect of sequence and stereochemistry reversal on p53 peptide mimicry.

    Directory of Open Access Journals (Sweden)

    Alessio Atzori

    Full Text Available Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29 using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29 result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids and side-chain orientation (for reversed sequences. A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.

  3. Efficacious intestinal permeation enhancement induced by the sodium salt of 10-undecylenic acid, a medium chain fatty acid derivative.

    Science.gov (United States)

    Brayden, David J; Walsh, Edwin

    2014-09-01

    10-undecylenic acid (UA) is an OTC antifungal therapy and a nutritional supplement. It is an unsaturated medium chain fatty acid (MCFA) derivative, so our hypothesis was that its 11-mer sodium salt, uC11, would improve intestinal permeation similar to the established enhancer, sodium caprate (C10), but without the toxicity of the parent saturated MCFA, decylenic acid (C11). MTT assay and high-content screening (HCS) confirmed a cytotoxicity ranking in Caco-2 cells: C11 > C10 = uC11. Five to ten millimolars of the three agents reduced TEER and increased the Papp of [(14)C]-mannitol across Caco-2 monolayers and rat intestinal mucosae, a concentration that matched increases in plasma membrane permeability seen in HCS. Although C11 was the most efficacious enhancer in vitro, it damaged monolayers and tissue mucosae more than the other two agents at similar concentrations and exposure times and was therefore not pursued further. Rat jejunal and colonic in situ intestinal instillations of 100 mM C10 or uC11 with FITC-dextran 4000 (FD4) solutions yielded comparable regional enhancement ratios of ~10 and 30%, respectively, for each agent with acceptable tissue histology. Mini-tablets of uC11 and FD4 however delivered more FD4 compared to C10-FD-4 mini-tablets in both regions, as reflected by a statistically higher AUC, and with no evidence of membrane perturbation. The unsaturated bond in uC11 therefore confers a reduction in lipophilicity and cytotoxicity compared to C11, and the resulting permeation enhancement is on a par with or superior to that of C10, a key component of formulations in current phase II oral peptide clinical trials.

  4. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt.

    Science.gov (United States)

    Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N

    2014-08-01

    Search for bioactive peptides is intensifying because of the risks associated with the use of synthetic therapeutics, thus peptide liberation by lactic acid bacteria and probiotics has received a great focus. However, proteolytic capacity of these bacteria is strain specific. The study was conducted to establish proteolytic activity of Lactobacillus acidophilus (ATCC® 4356™), Lactobacillus casei (ATCC® 393™) and Lactobacillus paracasei subsp. paracasei (ATCC® BAA52™) in yogurt. Crude peptides were separated by high-speed centrifugation and tested for antioxidant and antimutagenic activities. The degree of proteolysis highly correlated with these bioactivities, and its value (11.91%) for samples containing all the cultures was double that of the control. Liberated peptides showed high radical scavenging activities with 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), IC50 1.51 and 1.63mg/ml, respectively and strong antimutagenicity (26.35%). These probiotics enhanced the generation of bioactive peptides and could possibly be commercially applied in new products, or production of novel anticancer peptides. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  5. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    DEFF Research Database (Denmark)

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E

    2010-01-01

    Peptide nucleic acid (PNA) is potentially an attractive antisense and antigene agent for which more efficient cellular delivery systems are still warranted. The cationic polymer polyethylenimine (PEI) is commonly used for cellular transfection of DNA and RNA complexes, but is not readily applicable...... moiety) and further reacted this with a cysteine PNA. The level of modification was determined spectrophotometrically with high accuracy, and the PNA transfection efficiency of the conjugates was evaluated in an antisense luciferase splice-correction assay using HeLa pLuc705 cells. We find that PEI...... is an efficient vector for PNA delivery yielding significantly higher (up to 10-fold) antisense activity than an analogous PNA-octaarginine conjugate, even in the presence of chloroquine, which only slightly enhances the PEI-PNA activity. The PEI-PEG conjugates are preferred due to lower acute cellular toxicity...

  6. Promotion of double-duplex invasion of peptide nucleic acids through conjugation with nuclear localization signal peptide.

    Science.gov (United States)

    Aiba, Yuichiro; Honda, Yuta; Komiyama, Makoto

    2015-03-02

    Pseudo-complementary peptide nucleic acid (pcPNA), as one of the most widely used synthetic DNA analogues, invades double-stranded DNA according to Watson-Crick rules to form invasion complexes. This unique mode of DNA recognition induces structural changes at the invasion site and can be used for a range of applications. In this paper, pcPNA is conjugated with a nuclear localization signal (NLS) peptide, and its invading activity is notably promoted both thermodynamically and kinetically. Thus, the double-duplex invasion complex is formed promptly at low pcPNA concentrations under high salt conditions, where the invasion otherwise never occurs. Furthermore, NLS-modified pcPNA is successfully employed for site-selective DNA scission, and the targeted DNA is selectively cleaved under conditions that are not conducive for DNA cutters using unmodified pcPNAs. This strategy of pcPNA modification is expected to be advantageous and promising for a range of in vitro and in vivo applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli.

    Science.gov (United States)

    Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung

    2006-09-01

    Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.

  8. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    cellular uptake is predominantly via an unproductive endosomal pathway. Therefore, the biological effect is very limited, as the compounds are trapped in these compartments and cannot reach their biological targets in the cytoplasm or the nucleus. Mechanisms that promote endosomal escape or avoid endosomal route are required for improving bioavailability. Highly cationic CPPs preferentially interact with particular cell types, have limited plasma half-life, show toxicity, do not cross multicellular barriers such as vasculature epithelia or the blood-brain barrier, and efficient cargo delivery requires 9-15 arginine residues. Highly cationic CPPs are, therefore not ideal small molecule drug delivery vehicles. Linear CPPs are susceptible to hydrolysis by endogenous peptidases. Conjugation to cationic CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the cellular uptake occurs predominantly via an unproductive endosomal pathway. Therefore, the biological effect is very limited, as the compounds are trapped in these compartments and cannot reach their biological targets in the cytoplasm or the nucleus. Mechanisms that promote endosomal escape or avoid endosomal route are required for improving bioavailability. Highly cationic CPPs preferentially interact with particular cell types, have limited plasma half-life, show toxicity, do not cross multicellular barriers such as vasculature epithelia or the blood-brain barrier, and efficient cargo delivery requires 9-15 arginine residues. Highly cationic linear CPPs are, therefore, have not become optimized as small molecule drug delivery vehicles. On the other hand, cyclic peptides containing hydrophilic and hydrophobic amino acids have shown greater potential as drug delivery tools due to their enhanced chemical and enzymatic stability. Parang's laboratory has reported that Amphiphilic Cyclic Peptides (ACPs) containing positively charged arginine and

  9. A Peptide Derived from the HIV-1 gp120 Coreceptor-Binding Region Promotes Formation of PAP248-286 Amyloid Fibrils to Enhance HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Jinquan Chen

    Full Text Available Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils.Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding region, designated enhancing peptide 2 (EP2, can rapidly self-assemble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT and Congo red assays. The amyloid fibrils presented similar morphology, assessed via transmission electron microscopy (TEM, in the presence or absence of EP2. Circular dichroism (CD spectroscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87 cells by promoting the binding of HIV-1 virions to target cells.Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and enhance HIV-1 infection.

  10. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    Science.gov (United States)

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  11. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic Acid post-translational modifications

    DEFF Research Database (Denmark)

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper

    2015-01-01

    ) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post...

  12. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger

    NARCIS (Netherlands)

    Oude Blenke, E.; Sleszynska, M.; Evers, M. J W; Storm, G.; Martin, N. I.; Mastrobattista, E.

    2017-01-01

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high

  13. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Meng [Tsinghua University, Department of Chemical Engineering (China); Kang, Yoon Joong [Jungwon University, Department of Biomedical Science (Korea, Republic of); Sohn, Youngjoo [Kyung Hee University, Department of Anatomy, College of Korean Medicine (Korea, Republic of); Kim, Do Kyung, E-mail: eurokorean@gmail.com, E-mail: dokyung@konyang.ac.kr [Konyang University, Industry Cooperation Foundation (Korea, Republic of)

    2015-06-15

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[(N-isopropylacrylamide-r-acrylamide)-b-l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  14. Designing Antibacterial Peptides with Enhanced Killing Kinetics

    Directory of Open Access Journals (Sweden)

    Faiza H. Waghu

    2018-02-01

    Full Text Available Antimicrobial peptides (AMPs are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide.

  15. Interaction study of amino acids and the peptide aspartame with lanthanide (III) ions

    International Nuclear Information System (INIS)

    Carubelli, C.R.

    1990-01-01

    The interactions between the Nd(III) ion with the amino acids L-aspartic acid, L-glutamic acid and L-histidine and the peptide aspartame in aqueous solution were studied. The study was conducted by means of electronic spectroscopy with the Judd-Ofelt formalism for transition intensity parameters calculations. Several coordination compounds involving Nd(III), Eu(III), and Tb(III) and the ligands L-histidine and aspartame were synthesized and characterized in the solid state. Mixed compounds involving Eu(III) and Tb(III) with the same ligands were synthesized and characterized also. The characterization were achieved by chemical analysis, melting points, vibrational spectroscopy (IR) and powder X-ray diffractometry. (author)

  16. Oostatic peptides containing d-amino acids: synthesis, oostatic activity, degradation, accumulation in ovaries and NMR study

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Tykva, Richard; Holík, Josef; Bennettová, Blanka; Buděšínský, Miloš; Vlasáková, Věra; Černý, Bohuslav; Slaninová, Jiřina

    2012-01-01

    Roč. 42, č. 5 (2012), s. 1715-1725 ISSN 0939-4451 R&D Projects: GA ČR GA203/06/1272 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511; CEZ:AV0Z50070508 Keywords : D-amino acids * oostatic peptide synthesis * H-3 labeling * oostatic activity in Neobellieria bullata * H-3 incorporation * Peptide degradation * NMR study Subject RIV: CC - Organic Chemistry Impact factor: 3.914, year: 2012

  17. Peptides containing internal residues of pyroglutamic acid: proton NMR characteristics

    International Nuclear Information System (INIS)

    Khan, S.A.

    1986-01-01

    The proton NMR characteristics of internal pyroglutamic acid (Glp; 5-oxoproline) residues in seven tripeptides of the general structure Boc-Xxx-Glp-Yyy-NH 2 were studied. In general, the chemical shifts of several diagnostic protons moved downfield on going from the Glu-containing peptides (Boc-Xxx-Glu-Yyy-NH 2 ) to the corresponding Glp-containing peptides. The C-2 proton of the Xxx residue was shifted by about 1.1 ppm. The N-2 proton of the Yyy residue was shifted by about 0.5 ppm. The C-2 proton of the Glx residue itself was shifted by about 0.5 ppm. One of the Glx C-3 protons was also shifted by about 0.5 ppm, but the other remained essentially unchanged. Finally, the Glx C-4 protons were shifted by about 0.3 ppm. Internal Glu residues are readily converted chemically into internal Glp residues. This conversion also occurs as a side reaction during HP cleavage of the protecting group from Glu(OBzl) residues. The spontaneous fragmentation of serum proteins C3, C4 and λ 2 -macroglobulin under denaturing conditions is probably due to regioselective hydrolysis of an internal Glp residue formed in each of these proteins upon denaturation. These proton NMR characteristics may be useful in establishing the presence of internal Glp residues in synthetic and natural peptides

  18. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins.

    Science.gov (United States)

    Amiche, M; Ducancel, F; Mor, A; Boulain, J C; Menez, A; Nicolas, P

    1994-07-08

    The dermaseptins are a family of broad spectrum antimicrobial peptides, 27-34 amino acids long, involved in the defense of the naked skin of frogs against microbial invasion. They are the first vertebrate peptides to show lethal effects against the filamentous fungi responsible for severe opportunistic infections accompanying immunodeficiency syndrome and the use of immunosuppressive agents. A cDNA library was constructed from skin poly(A+) RNA of the arboreal frog Phyllomedusa bicolor and screened with an oligonucleotide probe complementary to the COOH terminus of dermaseptin b. Several clones contained a full-length DNA copy of a 443-nucleotide mRNA that encoded a 78-residue dermaseptin b precursor protein. The deduced precursor contained a putative signal sequence at the NH2 terminus, a 20-residue spacer sequence extremely rich (60%) in glutamic and aspartic acids, and a single copy of a dermaseptin b progenitor sequence at the COOH terminus. One clone contained a complete copy of adenoregulin, a 33-residue peptide reported to enhance the binding of agonists to the A1 adenosine receptor. The mRNAs encoding adenoregulin and dermaseptin b were very similar: 70 and 75% nucleotide identities between the 5'- and 3'-untranslated regions, respectively; 91% amino acid identity between the signal peptides; 82% identity between the acidic spacer sequences; and 38% identity between adenoregulin and dermaseptin b. Because adenoregulin and dermaseptin b have similar precursor designs and antimicrobial spectra, adenoregulin should be considered as a new member of the dermaseptin family and alternatively named dermaseptin b II. Preprodermaseptin b and preproadenoregulin have considerable sequence identities to the precursors encoding the opioid heptapeptides dermorphin, dermenkephalin, and deltorphins. This similarity extended into the 5'-untranslated regions of the mRNAs. These findings suggest that the genes encoding the four preproproteins are all members of the same family

  19. Skin Delivery of EGCG and Silibinin: Potential of Peptide Dendrimers for Enhanced Skin Permeation and Deposition.

    Science.gov (United States)

    Shetty, Pallavi Krishna; Manikkath, Jyothsna; Tupally, Karnaker; Kokil, Ganesh; Hegde, Aswathi R; Raut, Sushil Y; Parekh, Harendra S; Mutalik, Srinivas

    2017-08-01

    The aim of the present study was to evaluate the ability of the peptide dendrimers to facilitate transdermal delivery of antioxidants, silibinin, and epigallocatechin-3-gallate (EGCG). Drug-peptide dendrimer complexes were prepared and evaluated for their ability to permeate across the skin. The data revealed the ready formation of complexes between drug and peptide dendrimer in a molar ratio of 1:1. In vitro permeation studies using excised rat skin and drug-peptide dendrimer complexes showed highest values for cumulative drug permeation at the end of 12 h (Q 12 ), with corresponding permeability coefficient (Kp) and enhancement ratio values also determined at this time point. With silibinin, 3.96-, 1.81-, and 1.06-fold increase in skin permeation was observed from silibinin-peptide dendrimer complex, simultaneous application of silibinin + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. With EGCG, 9.82-, 2.04-, and 1.72-fold increase in skin permeation was observed from EGCG-peptide dendrimer complex, simultaneous application of EGCG + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. The present study demonstrates the application of peptide dendrimers in effectively delivering antioxidants such as EGCG and silibinin into the skin, thus offering the potential to provide antioxidant effects when delivered via appropriately formulated topical preparations.

  20. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    Science.gov (United States)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  1. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing.

    Science.gov (United States)

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J W; Patolsky, Fernando; Gazit, Ehud

    2015-04-01

    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

  2. Metal-Free, Site-Selective Peptide Modification by Conversion of "Customizable" Units into β-Substituted Dehydroamino Acids.

    Science.gov (United States)

    Saavedra, Carlos J; Hernández, Dácil; Boto, Alicia

    2018-01-12

    Our site-selective modification of serine or threonine units in peptides allows the generation of β-substituted dehydroamino acids, which increase peptide resistance to hydrolysis and may improve their biological properties. Both the terminal and internal positions can be modified, and different customizable units can be activated separately. Remarkably, high Z selectivity is achieved, even at internal positions. The conversion involves a one-pot oxidative radical scission/phosphorylation process by using the low-toxicity (diacetoxyiodo)benzene/iodine system as the scission reagent. The resulting α-amino phosphonates undergo a Horner-Wadsworth-Emmons reaction to produce the dehydroamino acid derivatives (in a Z/E ratio of usually >98:2) under mild and metal-free conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives.

    Directory of Open Access Journals (Sweden)

    Brian Healy

    Full Text Available Nisin A is the most extensively studied lantibiotic and has been used as a preservative by the food industry since 1953. This 34 amino acid peptide contains three dehydrated amino acids and five thioether rings. These rings, resulting from one lanthionine and four methyllanthionine bridges, confer the peptide with its unique structure. Nisin A has two mechanisms of action, with the N-terminal domain of the peptide inhibiting cell wall synthesis through lipid II binding and the C-terminal domain responsible for pore-formation. The focus of this study is the three amino acid 'hinge' region (N 20, M 21 and K 22 which separates these two domains and allows for conformational flexibility. As all lantibiotics are gene encoded, novel variants can be generated through manipulation of the corresponding gene. A number of derivatives in which the hinge region was altered have previously been shown to possess enhanced antimicrobial activity. Here we take this approach further by employing simultaneous, indiscriminate site-saturation mutagenesis of all three hinge residues to create a novel bank of nisin derivative producers. Screening of this bank revealed that producers of peptides with hinge regions consisting of AAK, NAI and SLS displayed enhanced bioactivity against a variety of targets. These and other results suggested a preference for small, chiral amino acids within the hinge region, leading to the design and creation of producers of peptides with hinges consisting of AAA and SAA. These producers, and the corresponding peptides, exhibited enhanced bioactivity against Lactococcus lactis HP, Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and Staphylococcus aureus RF122 and thus represent the first example of nisin derivatives that possess enhanced activity as a consequence of rational design.

  4. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments

    International Nuclear Information System (INIS)

    Imai, Masaki; Baranyi, Lajos; Okada, Noriko; Okada, Hidechika

    2007-01-01

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1 IIIB infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent

  5. A Possible Role of Peptides in the Growth Enhancement of an Industrial Strain of Saccharomyces sp.

    Directory of Open Access Journals (Sweden)

    Dino Paolo Cortes

    2005-06-01

    Full Text Available Individual addition of a commercially available nutritional supplement and a methanol extract from an industrial Saccharomyces sp. strain SMC resulted in the enhanced growth of Saccharomyces sp. strain SMC in minimal medium. Isolation of the growth enhancing components from aqueous extracts of the supplement and the cellular extract was performed using reversed-phase, gel filtration, and ion exchange chromatography. Reversed-phase chromatography using Sep-Pak® vac C18 yielded aqueous washes which elicited increased yeast growth. Gel filtration chromatography of the aqueous washes in a group separation mode using Sephadex G25 gave three distinct groups for the nutritional supplement, and four distinct groups for the cellular extract. Fraction groups that exhibited growth enhancing activity also exhibited high absorbances at all three wavelengths of 214, 260, and 280 nm. Two major fractions which tested positive for growth enhancing activity in succeeding experiments were obtained after passing each of the active GFC groups through a Toyopearl SP 550C cation exchanger column. The active component from the cellular extract did not bind to the cation exchanger. The absorbance data at 214 nm (peptide bond experimental absorbance maximum wavelength, the Bradford assay (showing the presence of proteinaceous matter, and the active component’s inclusion in the Sephadex G25 fractionation range of 1-5 kDa (characteristic of small peptides suggest that the growth enhancing components of the nutritional supplement and methanol cell extracts are peptides.

  6. 2-Aminobenzamide and 2-Aminobenzoic Acid as New MALDI Matrices Inducing Radical Mediated In-Source Decay of Peptides and Proteins

    Science.gov (United States)

    Smargiasso, Nicolas; Quinton, Loic; de Pauw, Edwin

    2012-03-01

    One of the mechanisms leading to MALDI in-source decay (MALDI ISD) is the transfer of hydrogen radicals to analytes upon laser irradiation. Analytes such as peptides or proteins may undergo ISD and this method can therefore be exploited for top-down sequencing. When performed on peptides, radical-induced ISD results in production of c- and z-ions, as also found in ETD and ECD activation. Here, we describe two new compounds which, when used as MALDI matrices, are able to efficiently induce ISD of peptides and proteins: 2-aminobenzamide and 2-aminobenzoic acid. In-source reduction of the disulfide bridge containing peptide Calcitonin further confirmed the radicalar mechanism of the ISD process. ISD of peptides led, in addition to c- and z-ions, to the generation of a-, x-, and y-ions both in positive and in negative ion modes. Finally, good sequence coverage was obtained for the sequencing of myoglobin (17 kDa protein), confirming the effectiveness of both 2-aminobenzamide and 2-aminobenzoic acid as MALDI ISD matrices.

  7. OK, thanks! A new mutualism between Chlamydomonas and methylobacteria facilitates growth on amino acids and peptides.

    Science.gov (United States)

    Calatrava, Victoria; Hom, Erik F Y; Llamas, Ángel; Fernández, Emilio; Galván, Aurora

    2018-04-01

    Nitrogen is a key nutrient for land plants and phytoplankton in terrestrial and aquatic ecosystems. The model alga Chlamydomonas reinhardtii can grow efficiently on several inorganic nitrogen sources (e.g. ammonium, nitrate, nitrite) as well as many amino acids. In this study, we show that Chlamydomonas is unable to use proline, hydroxyproline and peptides that contain these amino acids. However, we discovered that algal growth on these substrates is supported in association with Methylobacterium spp., and that a mutualistic carbon-nitrogen metabolic exchange between Chlamydomonas and Methylobacterium spp. is established. Specifically, the mineralization of these amino acids and peptides by Methylobacterium spp. produces ammonium that can be assimilated by Chlamydomonas, and CO2 photosynthetically fixed by Chlamydomonas yields glycerol that can be assimilated by Methylobacterium. As Chlamydomonas is an algal ancestor to land plants and Methylobacterium is a plant growth-promoting bacterium, this new model of mutualism may facilitate insights into the ecology and evolution of plant-bacterial interactions and design principles of synthetic ecology.

  8. Enhanced Peptide Detection Toward Single-Neuron Proteomics by Reversed-Phase Fractionation Capillary Electrophoresis Mass Spectrometry

    Science.gov (United States)

    Choi, Sam B.; Lombard-Banek, Camille; Muñoz-LLancao, Pablo; Manzini, M. Chiara; Nemes, Peter

    2018-05-01

    The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An 1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates 274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to 57%. From 1 ng of protein digest (organization. [Figure not available: see fulltext.

  9. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-06-17

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.

  10. Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides*

    Science.gov (United States)

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-01-01

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687

  11. Hydroxamic acid derivatives as potent peptide deformylase inhibitors and antibacterial agents.

    Science.gov (United States)

    Apfel, C; Banner, D W; Bur, D; Dietz, M; Hirata, T; Hubschwerlen, C; Locher, H; Page, M G; Pirson, W; Rossé, G; Specklin, J L

    2000-06-15

    Low-molecular-weight beta-sulfonyl- and beta-sulfinylhydroxamic acid derivatives have been synthesized and found to be potent inhibitors of Escherichia coli peptide deformylase (PDF). Most of the compounds synthesized and tested displayed antibacterial activities that cover several pathogens found in respiratory tract infections, including Chlamydia pneumoniae, Mycoplasma pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. The potential of these compounds as antibacterial agents is discussed with respect to selectivity, intracellular concentrations in bacteria, and potential for resistance development.

  12. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    Science.gov (United States)

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  13. Multifunctional hybrid networks based on self assembling peptide sequences

    Science.gov (United States)

    Sathaye, Sameer

    loose packing can be attributed to the designed wedge and trough shapes of the peptides disturbing formation of a uniform bilayer type structure proposed in the case of MAX1 with each hairpin having a flat hydrophobic surface. Although designed changes in hydrophobic shape of the peptide nanofibril core in the new peptides were found to significantly influence the self-assembled nanostructure and network rheological behavior, a lack of direct morphological and rheological evidence to prove shape specific hydrophobic interactions between wedge and trough shaped beta-hairpins was encountered. In the second approach, peptides with established differences in assembly kinetics and bulk mechanical properties of assembled peptide hydrogels were used to develop composite materials with diverse morphological and mechanical properties by blending with the biopolymer hyaluronic acid. The diverse properties of the composites have been correlated to the specific peptide hydrogels used to develop the composite and the different stages of peptide assembly at which blending with hyaluronic acid was carried out. Finally along with overall conclusions, the new area of co-assembly of peptides in solution has been explored and discussed as potential future work following the research discussed in this dissertation. Strategies such as construction of composite hydrogels from blends of MAX1/MAX8 peptide hydrogels and biologically important anionic species such as heparin biopolymer and DNA have been discussed. Another area of future work discussed is the design and study of peptides that can incorporate chemically crosslinkable functional groups in their hydrophobic amino acid side chains that can be covalently crosslinked after peptide assembly into fibrils. Such covalent crosslinking can potentially lead to stiffer individual peptide fibrils due to additional bond formation at the fibrillar core and therefore much stiffer hydrogels due to a synergistic effect. These enhanced stiffness

  14. Development of novel ligands for peptide GPCRs.

    Science.gov (United States)

    Moran, Brian M; McKillop, Aine M; O'Harte, Finbarr Pm

    2016-12-01

    Incretin based glucagon-like peptide-1 receptor (GLP-1R) agonists which target a G-protein coupled receptor (GPCR) are currently used in the treatment of type 2 diabetes. This review focuses on GPCRs from pancreatic β-cells, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon, somatostatin, pancreatic polypeptide (PP), cholecystokinin (CCK), peptide YY (PYY), oxyntomodulin (OXM) and ghrelin receptors. In addition, fatty acids GPCRs are thought to have an increasing role in regulating peptide secretions namely short fatty acids GPCR (GPR41, GPR43), medium chain fatty acid GPCR (GPR84), long chain fatty acid GPCR (GPR40, GPR120) and cannabinoid-like GPCR (GPR55, GPR119). Several pre-clinical and clinical trials are currently ongoing in peptide GPCR based therapies, including dual and triple agonist peptides which activate two or more GPCRs simultaneously. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  16. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many...... or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  17. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins.

    Science.gov (United States)

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea

    2011-10-19

    The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Tůmová, Tereza; Monincová, Lenka; Čeřovský, Václav; Kašička, Václav

    2016-01-01

    Roč. 37, 23/24 (2016), s. 3186-3195 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : acid dissociation constant * antimicrobial peptides * capillary electrophoresis * charge * mobility * Pka Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.744, year: 2016

  19. Determination of acidity constants and ionic mobilities of polyprotic peptide hormones by CZE

    Czech Academy of Sciences Publication Activity Database

    Šolínová, Veronika; Kašička, Václav

    2013-01-01

    Roč. 34, č. 18 (2013), s. 2655-2665 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 Keywords : acid dissociation constant * gonadotropin-releasing hormones * ionization constant * peptides * pK(a) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  20. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.

    Science.gov (United States)

    Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P

    2003-01-01

    Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.

  1. Control of phospholipid flip-flop by transmembrane peptides

    International Nuclear Information System (INIS)

    Kaihara, Masanori; Nakao, Hiroyuki; Yokoyama, Hirokazu; Endo, Hitoshi; Ishihama, Yasushi; Handa, Tetsurou; Nakano, Minoru

    2013-01-01

    Highlights: ► Phospholipid flip-flop in transmembrane peptide-containing vesicles was investigated. ► Peptides that contained polar residues in the center of the transmembrane region promoted phospholipid flip-flop. ► A bioinformatics approach revealed the presence of polar residues in the transmembrane region of ER membrane proteins. ► Polar residues in ER membrane proteins possibly provide flippase-like activity. - Abstract: We designed three types of transmembrane model peptides whose sequence originates from a frequently used model peptide KALP23, and we investigated their effects on phospholipid flip-flop. Time-resolved small-angle neutron scattering and a dithionite fluorescent quenching assay demonstrated that TMP-L, which has a fully hydrophobic transmembrane region, did not enhance phospholipid flip-flop, whereas TMP-K and TMP-E, which have Lys and Glu, respectively, in the center of their transmembrane regions, enhanced phospholipid flip-flop. Introduction of polar residues in the membrane-spanning helices is considered to produce a locally polar region and enable the lipid head group to interact with the polar side-chain inside the bilayers, thereby reducing the activation energy for the flip-flop. A bioinformatics approach revealed that acidic and basic residues account for 4.5% of the central region of the transmembrane domain in human ER membrane proteins. Therefore, polar residues in ER membrane proteins are considered to provide flippase-like activity

  2. Introduction of an 8-Aminooctanoic Acid Linker Enhances the melanoma uptake of Tc-99m-labeled Lactam Bridge-Cyclized Alpha-MSH Peptide

    Science.gov (United States)

    Guo, Haixun; Miao, Yubin

    2015-01-01

    The purpose of this study was to examine the effects of amino acid, hydrocarbon and polyethylene glycol (PEG) linkers on melanoma targeting and imaging properties of 99mTc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex {hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} peptides. Methods four novel peptides {HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex and HYNIC-AocNle-CycMSHhex} were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of 99mTc(EDDA)-HYNIC-GGGNle-CycMSHhex, 99mTc(EDDA)-HYNIC-GSGNle-CycMSHhex, 99mTc(EDDA)-HYNIC-PEG2Nle-CycMSHhex and 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h post-injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. Results The IC50 values of HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM in B16/F1 melanoma cells, respectively. Among these four 99mTc-labeled peptides, 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72% ID/g) at 2 h post-injection. 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor to normal organ uptake ratios except for the kidneys. The tumor/kidney uptake ratios of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63 and 6.78 at 2, 4 and 24 h post-injection. The melanoma lesions were clearly visualized by single photon emission computed tomography (SPECT)/CT using 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h post-injection. Conclusion High melanoma uptake and fast urinary clearance of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its potential for metastatic melanoma detection in the future

  3. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles

    Directory of Open Access Journals (Sweden)

    Fukumori Yoshinobu

    2011-08-01

    Full Text Available Abstract Due to the vast importance of peptides in biological processes, there is an escalating need for synthetic peptides to be used in a wide variety of applications. However, the consumption of organic solvent is extremely large in chemical peptide syntheses because of the multiple condensation steps in organic solvents. That is, the current synthesis method is not environmentally friendly. From the viewpoint of green sustainable chemistry, we focused on developing an organic solvent-free synthetic method using water, an environmentally friendly solvent. Here we described in-water synthesis technology using water-dispersible protected amino acids.

  4. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...

  5. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  6. Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity

    International Nuclear Information System (INIS)

    Midorikawa, Kaoru; Murata, Mariko; Kawanishi, Shosuke

    2005-01-01

    Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H 2 O 2 , leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH 3 CO-AKRHRK-CONH 2 , which has a metal-binding site. This histone peptide enhanced DNA damage induced by H 2 O 2 and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H 2 O 2 and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H 2 O 2 , may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition

  7. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence

    Directory of Open Access Journals (Sweden)

    Leitner Dietmar

    2005-04-01

    Full Text Available Abstract Background A reliable prediction of the Xaa-Pro peptide bond conformation would be a useful tool for many protein structure calculation methods. We have analyzed the Protein Data Bank and show that the combined use of sequential and structural information has a predictive value for the assessment of the cis versus trans peptide bond conformation of Xaa-Pro within proteins. For the analysis of the data sets different statistical methods such as the calculation of the Chou-Fasman parameters and occurrence matrices were used. Furthermore we analyzed the relationship between the relative solvent accessibility and the relative occurrence of prolines in the cis and in the trans conformation. Results One of the main results of the statistical investigations is the ranking of the secondary structure and sequence information with respect to the prediction of the Xaa-Pro peptide bond conformation. We observed a significant impact of secondary structure information on the occurrence of the Xaa-Pro peptide bond conformation, while the sequence information of amino acids neighboring proline is of little predictive value for the conformation of this bond. Conclusion In this work, we present an extensive analysis of the occurrence of the cis and trans proline conformation in proteins. Based on the data set, we derived patterns and rules for a possible prediction of the proline conformation. Upon adoption of the Chou-Fasman parameters, we are able to derive statistically relevant correlations between the secondary structure of amino acid fragments and the Xaa-Pro peptide bond conformation.

  8. Chenodeoxycholic acid stimulates glucagon-like peptide-1 secretion in patients after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Nielsen, Signe; Svane, Maria S; Kuhre, Rune E

    2017-01-01

    (BMI 29.1 ± 1.2, age 37.0 ± 3.2 years, time from RYGB 32.3 ± 1.1 months, weight loss after RYGB 37.0 ± 3.1 kg) were studied in a placebo-controlled, crossover-study. On three different days, participants ingested (1) placebo (water), (2) UDCA 750 mg, (3) CDCA 1250 mg (highest recommended doses). Oral...... intake of CDCA increased plasma concentrations of GLP-1, C-peptide, glucagon, peptide YY, neurotensin, total bile acids, and fibroblast growth factor 19 significantly compared with placebo (all P

  9. Peptide design using alpha,beta-dehydro amino acids: from beta-turns to helical hairpins.

    Science.gov (United States)

    Mathur, Puniti; Ramakumar, S; Chauhan, V S

    2004-01-01

    Incorporation of alpha,beta-dehydrophenylalanine (DeltaPhe) residue in peptides induces folded conformations: beta-turns in short peptides and 3(10)-helices in larger ones. A few exceptions-namely, alpha-helix or flat beta-bend ribbon structures-have also been reported in a few cases. The most favorable conformation of DeltaPhe residues are (phi,psi) approximately (-60 degrees, -30 degrees ), (-60 degrees, 150 degrees ), (80 degrees, 0 degrees ) or their enantiomers. DeltaPhe is an achiral and planar residue. These features have been exploited in designing DeltaPhe zippers and helix-turn-helix motifs. DeltaPhe can be incorporated in both right and left-handed helices. In fact, consecutive occurrence of three or more DeltaPhe amino acids induce left-handed screw sense in peptides containing L-amino acids. Weak interactions involving the DeltaPhe residue play an important role in molecular association. The C--H.O==C hydrogen bond between the DeltaPhe side-chain and backbone carboxyl moiety, pi-pi stacking interactions between DeltaPhe side chains belonging to enantiomeric helices have shown to stabilize folding. The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.pi and C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  10. Cancer therapy with alpha-emitters labeled peptides.

    Science.gov (United States)

    Dadachova, Ekaterina

    2010-05-01

    Actively targeted alpha-particles offer specific tumor cell killing action with less collateral damage to surrounding normal tissues than beta-emitters. During the last decade, radiolabeled peptides that bind to different receptors on the tumors have been investigated as potential therapeutic agents both in the preclinical and clinical settings. Advantages of radiolabeled peptides over antibodies include relatively straightforward chemical synthesis, versatility, easier radiolabeling, rapid clearance from the circulation, faster penetration and more uniform distribution into tissues, and less immunogenicity. Rapid internalization of the radiolabeled peptides with equally rapid re-expression of the cell surface target is a highly desirable property that enhances the total delivery of these radionuclides into malignant sites. Peptides, such as octreotide, alpha-melanocyte-stimulating hormone analogues, arginine-glycine-aspartic acid-containing peptides, bombesin derivatives, and others may all be feasible for use with alpha-emitters. The on-going preclinical work has primarily concentrated on octreotide and octreotate analogues labeled with Bismuth-213 and Astatine-211. In addition, alpha-melanocyte-stimulating hormone analogue has been labeled with Lead-212/Bismuth-212 in vivo generator and demonstrated the encouraging therapeutic efficacy in treatment of experimental melanoma. Obstacles that continue to obstruct widespread acceptance of alpha-emitter-labeled peptides are primarily the supply of these radionuclides and concerns about potential kidney toxicity. New sources and methods for production of these medically valuable radionuclides and better understanding of mechanisms related to the peptide renal uptake and clearance should speed up the introduction of alpha-emitter-labeled peptides into the clinic. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  12. Study of the peptide length and amino acid specific substitution in the antigenic activity of the chimeric synthetic peptides, containing the p19 core and gp46 envelope proteins of the HTLV-I virus.

    Science.gov (United States)

    Marin, Milenen Hernández; Rodríguez-Tanty, Chryslaine; Higginson-Clarke, David; Bocalandro, Yadaris Márquez; Peña, Lilliam Pozo

    2005-10-28

    Four chimeric synthetic peptides (Q5, Q6, Q7(multiply sign in circle), and Q8(multiply sign in circle)), incorporating immunodominant epitopes of the core p19 (105-124 a.a.) and envelope gp46 proteins (175-205 a.a.), of HTLV-I were obtained. Also, two gp46 monomeric peptides M4 and M5(multiply sign in circle) (Ser at position 192) were synthesized. The analysis of the influence of the peptide lengths and the proline to serine substitution on the chimeric and monomeric peptides' antigenicity, with regard to the chimeric peptides Q1, Q2, Q3(multiply sign in circle), and Q4(multiply sign in circle), reported previously, for HTLV-I was carried out. The peptides' antigenicity was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of HTLV-I/II. The peptides' antigenicity was affected appreciably by the change of the peptide length and amino acid substitutions into the immunodominant sequence of gp46 peptide.

  13. Toward Peptide Nucleic Acid (PNA) Directed Peptide Translation Using Ester Based Aminoacyl Transfer

    DEFF Research Database (Denmark)

    Singhal, Abhishek; Bagnacani, Valentina; Corradini, Roberto

    2014-01-01

    Peptide synthesis is a fundamental feature of life. However, it still remains unclear how the contemporary translation apparatus evolved from primitive prebiotic systems and at which stage of the evolution peptide synthesis emerged. Using simple molecular architectures, in which aminoacyl transfe...

  14. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    Science.gov (United States)

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  15. Identification of CJC-1295, a growth-hormone-releasing peptide, in an unknown pharmaceutical preparation.

    Science.gov (United States)

    Henninge, John; Pepaj, Milaim; Hullstein, Ingunn; Hemmersbach, Peter

    2010-01-01

    Several peptide drugs are being manufactured illicitly, and in some cases they are being made available to the public before entering or completing clinical trials. At the request of Norwegian police and customs authorities, unknown pharmaceutical preparations suspected to contain peptide drugs are regularly subjected to analysis. In 2009, an unknown pharmaceutical preparation was submitted for analysis by liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS). The preparation was found to contain a 29 amino acid peptide with a C-terminal amide function. Based on the interpretation of mass spectrometric data, an amino acid sequence was proposed. The sequence is consistent with a peptide currently marketed under the name CJC-1295. CJC-1295 is a releasing factor for growth hormone and is therefore considered a Prohibited Substance under Section S2 of the WADA Prohibited List. This substance has potential performance-enhancing effects, it is readily available, and there is reason to believe that it is being used within the bodybuilding community. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor.

    Science.gov (United States)

    Daly, J W; Caceres, J; Moni, R W; Gusovsky, F; Moos, M; Seamon, K B; Milton, K; Myers, C W

    1992-11-15

    A frog used for "hunting magic" by several groups of Panoan-speaking Indians in the borderline between Brazil and Peru is identified as Phyllomedusa bicolor. This frog's skin secretion, which the Indians introduce into the body through fresh burns, is rich in peptides. These include vasoactive peptides, opioid peptides, and a peptide that we have named adenoregulin, with the sequence GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV as determined from mass spectrometry and Edman degradation. The natural peptide may contain a D amino acid residue, since it is not identical in chromatographic properties to the synthetic peptide. Adenoregulin enhances binding of agonists to A1 adenosine receptors; it is accompanied in the skin secretion by peptides that inhibit binding. The vasoactive peptide sauvagine, the opioid peptides, and adenoregulin and related peptides affect behavior in mice and presumably contribute to the behavioral sequelae observed in humans.

  17. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides.

    Science.gov (United States)

    Bolscher, Jan G M; Adão, Regina; Nazmi, Kamran; van den Keybus, Petra A M; van 't Hof, Wim; Nieuw Amerongen, Arie V; Bastos, Margarida; Veerman, Enno C I

    2009-01-01

    The innate immunity factor lactoferrin harbours two antimicrobial moieties, lactoferricin and lactoferrampin, situated in close proximity in the N1 domain of the molecule. Most likely they cooperate in many of the beneficial activities of lactoferrin. To investigate whether chimerization of both peptides forms a functional unit we designed a chimerical structure containing lactoferricin amino acids 17-30 and lactoferrampin amino acids 265-284. The bactericidal activity of this LFchimera was found to be drastically stronger than that of the constituent peptides, as was demonstrated by the need for lower dose, shorter incubation time and less ionic strength dependency. Likewise, strongly enhanced interaction with negatively charged model membranes was found for the LFchimera relative to the constituent peptides. Thus, chimerization of the two antimicrobial peptides resembling their structural orientation in the native molecule strikingly improves their biological activity.

  18. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  19. Enhanced recombinant factor VII expression in Chinese hamster ovary cells by optimizing signal peptides and fed-batch medium.

    Science.gov (United States)

    Peng, Lin; Yu, Xiao; Li, Chengyuan; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2016-04-01

    Signal peptides play an important role in directing and efficiently transporting secretory proteins to their proper locations in the endoplasmic reticulum of mammalian cells. The aim of this study was to enhance the expression of recombinant coagulation factor VII (rFVII) in CHO cells by optimizing the signal peptides and type of fed-batch culture medium used. Five sub-clones (O2, I3, H3, G2 and M3) with different signal peptide were selected by western blot (WB) analysis and used for suspension culture. We compared rFVII expression levels of 5 sub-clones and found that the highest rFVII expression level was obtained with the IgK signal peptide instead of Ori, the native signal peptide of rFVII. The high protein expression of rFVII with signal peptide IgK was mirrored by a high transcription level during suspension culture. After analyzing culture and feed media, the combination of M4 and F4 media yielded the highest rFVII expression of 20 mg/L during a 10-day suspension culture. After analyzing cell density and cell cycle, CHO cells feeding by F4 had a similar percentage of cells in G0/G1 and a higher cell density compared to F2 and F3. This may be the reason for high rFVII expression in M4+F4. In summary, rFVII expression was successfully enhanced by optimizing the signal peptide and fed-batch medium used in CHO suspension culture. Our data may be used to improve the production of other therapeutic proteins in fed-batch culture.

  20. Targeted correction of a thalassemia-associated beta-globin mutation induced by pseudo-complementary peptide nucleic acids

    DEFF Research Database (Denmark)

    Lonkar, Pallavi; Kim, Ki-Hyun; Kuan, Jean Y

    2009-01-01

    Beta-thalassemia is a genetic disorder caused by mutations in the beta-globin gene. Triplex-forming oligonucleotides and triplex-forming peptide nucleic acids (PNAs) have been shown to stimulate recombination in mammalian cells via site-specific binding and creation of altered helical structures...

  1. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  2. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1979-03-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and pathogenic toxins. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  3. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  4. Effects of the substitution of amino acid residues, through chemical synthesis, on the conformation and activity of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Regina C. Adão

    2012-06-01

    Full Text Available Antimicrobial peptides make up an assorted group of molecules which contain from 12 to 50 amino acid residues and which may be produced by microorganisms, plants and animals. From the discovery that these biomolecules are lethal to bacteria, inhibiting the pathogenic organism’s growth, and are also related to innate and adapted defense mechanisms, the investigation of such molecules came to be an emergent research field, in which more than 1800 antimicrobial peptides have so far been discovered throughout the last three decades. These molecules are potential representatives of a new generation of antibiotic agents and the main motivation for such use is their activity against a wide variety of pathogens, including Gram-positive and Gram-negative bacteria as well as fungi and viruses. An important class of comprising some of these peptides may be found in anurans, from which it has been isolated, a considerable number of antimicrobial peptides with diverse sequences and structures, including linear and dimeric ones. In this work monomeric chains (CH1 e CH2 of the heterodimeric antimicrobial peptide distinctin (isolated in 1999 from Phyllomedusa distincta anurans, as well as its mutated monomers (CH1-S and CH2-S and the heterodimer itself were synthesized. The distinctin is the peptide with two chains of different sequences (Table 1 bound each other by disulfide bond from the cystein residues constituting the heterodimer. To investigate the effects on the biological activity by amino acids substitution at normal distinctin CH1 and CH2 chains, both were synthesized as well as their similar chains (CH1-S and CH2-S in which the cystein (Fig.1 a residues of each chain were changed by serin residues (Fig. 1 b. The new chains were named mutants. The synthesis was carried out in solid phase, using Fmoc strategy. The heterodimer distinctin was obtained from CH1 and CH2 chains coupling through cystein residues air oxidation. The results from HPLC

  5. The Role Of Milk Peptide As Antimicrobial Agent In Supporting Health Status

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2013-06-01

    Full Text Available Antimicrobial peptide is commonly present in all species as a component of their innate immune defense against infection. Antimicrobial peptides derived from milk such as isracidin, casocidin, casecidin and other fragments with variety of amino acid sequence are released upon enzymatic hydrolysis from milk protein К-casein, α-casein, β-casein, α-lactalbumin and β- lactoglobulin. These peptides were produced by the activity of digestive or microbial protease such as trypsin, pepsin, chymosin or alcalase. The mode of action of these peptides is by interaction of their positive with negative charge of target cell membrane leading to disruption of membrane associated with physiological event such as cell division or translocation of peptide across the membrane to interact with cytoplasmic target. Modification of charged or nonpolar aliphatic residues within peptides can enhance or reduce the activities of the peptides against a number of microbial strains and it seems to be strain dependent. Several peptides act not only as an antimicrobial but also as an angiotensin-converting enzyme inhibitor, antioxidant, immunomodulator, antiinflamation, food and feed preservative. Although the commercial production of these peptides is still limited due to lack of suitable large-scale technologies, fast development of some methods for peptide production will hopefully increase the possibility for mass production.

  6. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    Science.gov (United States)

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  7. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    Directory of Open Access Journals (Sweden)

    Jagadish Hiremath

    Full Text Available Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV. Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA nanoparticle (PLGA-NP based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2 chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  8. Family of pH-Low-Insertion-Peptides (pHLIPs)

    Science.gov (United States)

    Weerakkody, Dhammika; Moshnikova, Anna; Moshnikova, Valentina; Thakur, Mak; Rossi, Bethany; Engelman, Donald; Andreev, Oleg; Reshetnyak, Yana

    2012-02-01

    pHLIP (pH (Low) Insertion Peptide) is a novel delivery system for targeting of acidic diseased tissue such as solid tumors, sites of inflammation, arthritis and other pathological states. The molecular mechanism of pHLIP action is based on pH-dependent insertion and folding of pHLIP in membrane. We performed sequence variation and investigated 16 pHLIP variants with main goals of understanding the main principles of peptide-lipid interactions and tune delivery capability of pHLIP. The biophysical studies including thermodynamics and kinetics of the peptides interaction with a lipid bilayer of liposomes and cellular membranes were carried out. We found that peptides association to membrane at neutral and low pH could be modulated by 3-4 times. The apparent pK of transition from surface bound to membrane-inserted state could be tuned from 6.5 to 4.5. The rate of peptide's insertion across a bilayer could be enhanced 100 times compared to parent pHLIP. As a result, blood clearance and tumor targeting were modulated in a significant degree. The work is supported by NIH grants CA133890 to OAA, DME, YRK.

  9. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C.

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and 20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  11. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis.

    Science.gov (United States)

    Athanasiou, Evita; Agallou, Maria; Tastsoglou, Spyros; Kammona, Olga; Hatzigeorgiou, Artemis; Kiparissides, Costas; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis, caused by Leishmania ( L .) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4 + T H1 and CD8 + T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic- co -glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4 + and CD8 + T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8 + T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that

  12. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Hanna E. [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands); Koning, Peter E. de; Wouter Drijfhout, Jan [Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion (Netherlands); Venezia, Brigida; Ubbink, Marcellus [Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories (Netherlands)], E-mail: m.ubbink@chem.leidenuniv.nl

    2008-07-15

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints.

  13. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR

    International Nuclear Information System (INIS)

    Lindfors, Hanna E.; Koning, Peter E. de; Wouter Drijfhout, Jan; Venezia, Brigida; Ubbink, Marcellus

    2008-01-01

    Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints

  14. Exploring Alternative Radiolabeling Strategies for Sialic Acid-Binding Immunoglobulin-Like Lectin 9 Peptide: [68Ga]Ga- and [18F]AlF-NOTA-Siglec-9

    Directory of Open Access Journals (Sweden)

    Olli Moisio

    2018-01-01

    Full Text Available Amino acid residues 283–297 from sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9 form a cyclic peptide ligand targeting vascular adhesion protein-1 (VAP-1. VAP-1 is associated with the transfer of leukocytes from blood to tissues upon inflammation. Therefore, analogs of Siglec-9 peptide are good candidates for visualizing inflammation non-invasively using positron emission tomography (PET. Gallium-68-labeled 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid (DOTA-conjugated Siglec-9 has been evaluated extensively for this purpose. Here, we explored two alternative strategies for radiolabeling Siglec-9 peptide using a 1,4,7-triazacyclononane-triacetic acid (NOTA-chelator to bind [68Ga]Ga or [18F]AlF. The radioligands were evaluated by in vivo PET imaging and ex vivo γ-counting of turpentine-induced sterile skin/muscle inflammation in Sprague-Dawley rats. Both tracers showed clear accumulation in the inflamed tissues. The whole-body biodistribution patterns of the tracers were similar.

  15. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides

    Directory of Open Access Journals (Sweden)

    Yarong Liu

    2014-01-01

    Full Text Available Adeno-associated virus type 2 (AAV2 is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs. We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy.

  16. Photochemical addition of amino acids and peptides to homopolyribonucleotides of the major DNA bases

    International Nuclear Information System (INIS)

    Shetlar, M.D.; Hom, K.; Carbone, J.; Moy, D.; Steady, E.; Watanabe, M.

    1984-01-01

    The photochemical quantum yields for addition of glycine and the L-amino acids commonly occurring in proteins to polyadenylic acid, polycytidylic acid, polyguanylic acid and polyribothymidylic acid have been determined in deoxygenated phosphate buffer using a fluorescamine assay technique. Polyadenylic acid was reactive with eleven of the twenty amino acids tested, with phenylalanine, tyrosine, glutamine, lysine and asparagine having the highest quantum yields. Polyguanylic acid reacted with sixteen amino acids; phenylalanine, arginine, cysteine, tyrosine, and lysine displayed the largest quantum yields. Polycytidylic acid showed reactivity with fifteen amino acids with lysine, phenylalanine, cysteine, tyrosine and arginine having the greatest quantum yields. Polyribothymidylic acid, reactive with fifteen of nineteen amino acids surveyed, showed the highest quantum yields for cysteine, phenylalanine, tyrosine, lysine and asparagine. None of the polynucleotides were reactive with aspartic acid or glutamic acid. The quantum yields for photoaddition of eighteen dipeptides of the form gycyl X (X being an amino acid), and of L-alanyl-L-tryptophan, L-seryl-L-seryl-L-serine, L-threonyl-L-threonyl-L-threonine, L-cystine-bis-glycine, and Nsup(α)-acetyllysine to polyadenylic acid, polycytidylic acid and polyguanylic acid were measured. All were found to add photochemically to each of these polymers. Polyribothymidylic acid, tested with eleven peptides and with Nsup(α)-acetyllysine, was found to be reactive with all. (author)

  17. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules.

    Science.gov (United States)

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2014-06-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release

    International Nuclear Information System (INIS)

    Schwartz, Ann; Ort, Tatiana; Kajekar, Radhika; Hornby, Pamela J; Wade, Paul R

    2010-01-01

    The release of small intestinal hormones by constituents of ingested food, such as fatty acids, is integral to post-prandial responses that reduce food intake. Recent evidence suggests that small intestinal electrical stimulation reduces food intake, although the mechanism of action is debated. To test the hypothesis that intestinal stimulation directly alters hormone release locally we used isolated rat distal ileum and measured glucagon-like peptide-1 (GLP-1) released in the presence or absence of linoleic acid (LA) and electrical field stimulation (EFS). Intact segments were oriented longitudinally between bipolar stimulating electrodes in organ bath chambers containing modified Krebs–Ringers bicarbonate (KRB) buffer including protease inhibitors. Incubation in LA (3 mg ml −1 ) for 45 min increased GLP-1 concentration (21.9 ± 2.6 pM versus KRB buffer alone 3.6 ± 0.1 pM). Eleven electrical stimulation conditions were tested. In the presence of LA none of the stimulation conditions inhibited LA-evoked GLP-1 release, whereas two high frequency short pulse widths (14 V, 20 Hz, 5 ms and 14 V, 40 Hz, 5 ms) and one low frequency long pulse width (14 V, 0.4 Hz, 300 ms) EFS conditions enhanced LA-evoked GLP-1 release by >250%. These results are consistent with a local effect of intestinal electrical stimulation to enhance GLP-1 release in response to luminal nutrients in the intestines. Enhancing hormone release could improve the efficacy of intestinal electrical stimulation and provide a potential treatment for obesity and metabolic conditions

  19. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.

    Science.gov (United States)

    Upadhya, Archana; Sangave, Preeti C

    2016-10-01

    Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa-arginine (R 8 ) and CHK 6 HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep-3, flanked with CH 3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide-plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non-covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide-plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  20. Non-natural and photo-reactive amino acids as biochemical probes of immune function.

    Directory of Open Access Journals (Sweden)

    Marta Gómez-Nuñez

    Full Text Available Wilms tumor protein (WT1 is a transcription factor selectively overexpressed in leukemias and cancers; clinical trials are underway that use altered WT1 peptide sequences as vaccines. Here we report a strategy to study peptide-MHC interactions by incorporating non-natural and photo-reactive amino acids into the sequence of WT1 peptides. Thirteen WT1 peptides sequences were synthesized with chemically modified amino acids (via fluorination and photo-reactive group additions at MHC and T cell receptor binding positions. Certain new non-natural peptide analogs could stabilize MHC class I molecules better than the native sequences and were also able to elicit specific T-cell responses and sometimes cytotoxicity to leukemia cells. Two photo-reactive peptides, also modified with a biotin handle for pull-down studies, formed covalent interactions with MHC molecules on live cells and provided kinetic data showing the rapid clearance of the peptide-MHC complex. Despite "infinite affinity" provided by the covalent peptide bonding to the MHC, immunogenicity was not enhanced by these peptides because the peptide presentation on the surface was dominated by catabolism of the complex and only a small percentage of peptide molecules covalently bound to the MHC molecules. This study shows that non-natural amino acids can be successfully incorporated into T cell epitopes to provide novel immunological, biochemical and kinetic information.

  1. Enzyme active site mimics based on TriAzaCyclophane (TAC)-scaffolded peptides and amino acid residues

    NARCIS (Netherlands)

    Albada, H.B.

    2009-01-01

    This thesis describes the scope and limitations of the application of TriAzaCyclophane (TAC)-scaffolded peptides or amino acid residues as enzyme active site mimics, as ligands in asymmetric catalysis and as hydrolysis catalysts attached to vancomycin. For the mimicry of functional group enzymes, of

  2. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.

    Science.gov (United States)

    Tobias, Fernando; Keiderling, Timothy A

    2016-05-10

    Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.

  3. Bioactive dietary peptides and amino acids in inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Hua; Hu, Chien-An A; Kovacs-Nolan, Jennifer; Mine, Yoshinori

    2015-10-01

    Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.

  4. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels

    OpenAIRE

    Conovaloff, Aaron W.; Beier, Brooke L.; Irazoqui, Pedro P.; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. F...

  5. Implementation of antimicrobial peptides for sample preparation prior to nucleic acid amplification in point-of-care settings.

    Science.gov (United States)

    Krõlov, Katrin; Uusna, Julia; Grellier, Tiia; Andresen, Liis; Jevtuševskaja, Jekaterina; Tulp, Indrek; Langel, Ülo

    2017-12-01

    A variety of sample preparation techniques are used prior to nucleic acid amplification. However, their efficiency is not always sufficient and nucleic acid purification remains the preferred method for template preparation. Purification is difficult and costly to apply in point-of-care (POC) settings and there is a strong need for more robust, rapid, and efficient biological sample preparation techniques in molecular diagnostics. Here, the authors applied antimicrobial peptides (AMPs) for urine sample preparation prior to isothermal loop-mediated amplification (LAMP). AMPs bind to many microorganisms such as bacteria, fungi, protozoa and viruses causing disruption of their membrane integrity and facilitate nucleic acid release. The authors show that incubation of E. coli with antimicrobial peptide cecropin P1 for 5 min had a significant effect on the availability of template DNA compared with untreated or even heat treated samples resulting in up to six times increase of the amplification efficiency. These results show that AMPs treatment is a very efficient sample preparation technique that is suitable for application prior to nucleic acid amplification directly within biological samples. Furthermore, the entire process of AMPs treatment was performed at room temperature for 5 min thereby making it a good candidate for use in POC applications.

  6. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  7. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin.

    Science.gov (United States)

    Mor, A; Amiche, M; Nicolas, P

    1994-05-31

    A novel antimicrobial peptide, designated dermaseptin b, was isolated from the skin of the arboreal frog Phyllomedusa bicolor. This 27-residue peptide amide is basic, containing 3 lysine residues that punctuate an alternating hydrophobic and hydrophilic sequence. In helix-inducing solvent, dermaseptin b adopts an amphipathic alpha-helical conformation that most closely resembles class L amphipathic helixes, with all lysine residues on the polar face of the helix. The peptide exhibits growth inhibition activity in vitro against a broad spectrum of pathogenic microorganisms including yeast and bacteria as well as various filamentous fungi that are responsible for severe opportunistic infections accompanying acquired immunodeficiency syndrome and the use of immunosuppressive agents. Maximized pairwise sequence alignment of dermaseptin b and dermaseptin s, a 34-residue antimicrobial peptide previously isolated from Phyllomedusa sauvagii, reveals 81% amino acid identity. No other significant similarity was found between dermaseptin b and any prokaryotic or eukaryotic protein, but similarity was found with adenoregulin (38% amino acid postional identity), a 33-residue peptide that enhances binding of agonists to the A1 adenosine receptor. The synthetic replicates of dermaseptin b and adenoregulin displayed similar but nonidentical spectra of antimicrobial activity, and both peptides were devoid of lytic effect on mammalian cells. Accordingly, the observation that adenoregulin enhances binding of agonists to the adenosine receptor may in fact be a consequence of its ability to alter the structure of biological membranes and to produce signal transduction via interactions with the lipid bilayer, bypassing cell surface receptor interactions.

  8. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    Directory of Open Access Journals (Sweden)

    Lopez-Abarrategui C

    2016-08-01

    studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli or Gram-positive bacteria (Staphylococcus aureus. Finally, an antifungal peptide (Cm-p5 from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. Keywords: nanoparticles, conjugation, antifungal, Cm-p5 peptide

  9. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins

    Directory of Open Access Journals (Sweden)

    Marwa Yousr

    2015-12-01

    Full Text Available Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF. Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y and tryptophan (W, in sequences identified by LC-MS as WYGPD (EYGF-23 and KLSDW (EYGF-33, contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56 was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69% and IC50 value (3.35 mg/mL. The SDNRNQGY peptide (10 mg/mL had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL. In addition, YPSPV in (EYGF-33 (10 mg/mL had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  10. Antioxidant and ACE Inhibitory Bioactive Peptides Purified from Egg Yolk Proteins.

    Science.gov (United States)

    Yousr, Marwa; Howell, Nazlin

    2015-12-07

    Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.

  11. Improved Spectra for MALDI MSI of Peptides Using Ammonium Phosphate Monobasic in MALDI Matrix.

    Science.gov (United States)

    Ucal, Yasemin; Ozpinar, Aysel

    2018-05-10

    MALDI mass spectrometry imaging (MSI) enables analysis of peptides along with histology. However, there are several critical steps in MALDI MSI of peptides, one of which is spectral quality. Suppression of MALDI matrix clusters by the aid of ammonium salts in MALDI experiments is well-known. It is asserted that addition of ammonium salts dissociates potential matrix adducts and thereafter decreases matrix cluster formation. Consequently, MALDI MS sensitivity and mass accuracy increases. Up to our knowledge, a limited number of MALDI MSI studies used ammonium salts as matrix additives to suppress matrix clusters and enhance peptide signals. In this work, we investigated the effect of ammonium phosphate monobasic (AmP) as alpha-cyano-4-hydroxycinnamic acid (α-CHCA) matrix additive in MALDI MSI of peptides. Prior to MALDI MSI, the effect of varying concentrations of AmP in α-CHCA were assessed in bovine serum albumin (BSA) tryptic digests and compared with the control (α-CHCA without AmP). Based on our data, the addition of AmP as matrix additive decreased matrix cluster formation regardless of its concentration and, specifically 8 mM AmP and 10 mM AmP increased BSA peptide signal intensities. In MALDI MSI of peptides, both 8 mM, and 10 mM AmP in α-CHCA improved peptide signals especially in the mass range of m/z 2000 to 3000. In particular, 9 peptide signals were found to have differential intensities within the tissues deposited with AmP in α-CHCA (AUC>0.60). To the best of our knowledge, this is the first MALDI MSI of peptides work investigating different concentrations of AmP as α-CHCA matrix additive in order to enhance peptide signals in formalin fixed paraffin embedded (FFPE) tissues. Further, AmP as part of α-CHCA matrix could enhance protein identifications and support MALDI MSI based proteomic approaches. This article is protected by copyright. All rights reserved.

  12. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    Science.gov (United States)

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  13. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects

    Directory of Open Access Journals (Sweden)

    Zhao SJ

    2017-03-01

    Full Text Available Shao-Jun Zhao,1,2,* De-Hua Wang,1,2 Yan-Wei Li,1,2 Lei Han,1,2 Xing Xiao,1,2 Min Ma,3,* David Chi-Cheong Wan,4 An Hong,1,2 Yi Ma1,2 1Institute of Biomedicine, Department of Cellular Biology, Jinan University, 2National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, 3College of traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangdong, 4School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People’s Republic of China *These authors contributed equally to this work Abstract: A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP, was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD, comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4- and 7.1-fold longer than wild PACAP (~5 min and DBAYL (~1.98 h, respectively. SCD (10 nmol/L significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H2O2-injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug

  14. Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: coupling cytosolic peptide stability to antigen presentation

    NARCIS (Netherlands)

    Herberts, Carla A.; Neijssen, Joost J.; de Haan, Jolanda; Janssen, Lennert; Drijfhout, Jan Wouter; Reits, Eric A.; Neefjes, Jacques J.

    2006-01-01

    Ag presentation by MHC class I is a highly inefficient process because cytosolic peptidases destroy most peptides after proteasomal generation. Various mechanisms shape the MHC class I peptidome. We define a new one: intracellular peptide stability. Peptides with two N-terminal basic amino acids are

  15. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library

    Science.gov (United States)

    Sahin, Deniz; Taflan, Sevket Onur; Yartas, Gizem; Ashktorab, Hassan; Smoot, Duane T

    2018-04-25

    Background: Gastric cancer is the second most common cancer among the malign cancer types. Inefficiency of traditional techniques both in diagnosis and therapy of the disease makes the development of alternative and novel techniques indispensable. As an alternative to traditional methods, tumor specific targeting small peptides can be used to increase the efficiency of the treatment and reduce the side effects related to traditional techniques. The aim of this study is screening and identification of individual peptides specifically targeted to human gastric cancer cells using a phage-displayed peptide library and designing specific peptide sequences by using experimentally-eluted peptide sequences. Methods: Here, MKN-45 human gastric cancer cells and HFE-145 human normal gastric epithelial cells were used as the target and control cells, respectively. 5 rounds of biopannning with a phage display 12-peptide library were applied following subtraction biopanning with HFE-145 control cells. The selected phage clones were established by enzyme-linked immunosorbent assay and immunofluorescence detection. We first obtain random phage clones after five biopanning rounds, determine the binding levels of each individual clone. Then, we analyze the frequencies of each amino acid in best binding clones to determine positively overexpressed amino acids for designing novel peptide sequences. Results: DE532 (VETSQYFRGTLS) phage clone was screened positive, showing specific binding on MKN-45 gastric cancer cells. DE-Obs (HNDLFPSWYHNY) peptide, which was designed by using amino acid frequencies of experimentally selected peptides in the 5th round of biopanning, showed specific binding in MKN-45 cells. Conclusion: Selection and characterization of individual clones may give us specifically binding peptides, but more importantly, data extracted from eluted phage clones may be used to design theoretical peptides with better binding properties than even experimentally selected ones

  16. Antimicrobial peptides design by evolutionary multiobjective optimization.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maccari

    Full Text Available Antimicrobial peptides (AMPs are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18 was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues.

  17. Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures.

    Science.gov (United States)

    Masum, Shah Md; Li, Shu Jie; Awad, Tarek S; Yamazaki, Masahito

    2005-06-07

    To elucidate the stability and phase transition of cubic phases of biomembranes with infinite periodic minimal surface is indispensable from biological and physicochemical aspects. In this report, we investigated the effect of positively charged peptide-3K (LLKKK) and poly(L-lysine) on the phase stability of monoolein (MO) membranes containing negatively charged dioleoylphosphatidic acid (DOPA) (i.e., DOPA/MO membranes) using small-angle X-ray scattering. At first, the effect of peptide-3K on 10% DOPA/90% MO membrane in excess water, which is in the Q229 phase, was investigated. At 3.4 mM peptide-3K, a Q229 to Q230 phase transition occurred, and at >3.4 mM peptide-3K, the membrane was in the Q230 phase. Poly(L-lysine) (M(w) 1K-4K) also induced the Q230 phase, but peptide-2K (LLKK) could not induce it in the same membrane. We also investigated the effect of peptide-3K on the multilamellar vesicle (MLV) of 25% DOPA/75% MO membrane, which is in L(alpha) phase. In the absence of peptide, the spacing of MLV was very large (11.3 nm), but at > or = 8 mM peptide-3K, it greatly decreased to a constant value (5.2 nm), irrespective of the peptide concentration, indicating that peptide-3K and the membranes form an electrostatically stabilized aggregation with low water content. Poly(L-lysine) also decreased greatly the spacing of the 25% DOPA/75% MO MLV, indicating the formation of a similar aggregation. To compare the effects of peptide-3K and poly(L-lysine) with that of osmotic stress on stability of the cubic phase, we investigated the effect of poly(ethylene glycol) with molecular weight 7500 (PEG-6K) on the phase stability of 10% DOPA/90% MO membrane. With an increase in PEG-6K concentration, i.e., with an increase in osmotic stress, the most stable phase changed as follows; Q229 (Schwartz's P surface) --> Q224 (D) --> Q230 (G). On the basis of these results, we discuss the mechanism of the effects of the positively charged short peptides (peptide-3K) and poly

  18. Antibacterial Peptide Nucleic Acid-Antimicrobial Peptide (PNA-AMP) Conjugates

    DEFF Research Database (Denmark)

    Hansen, Anna Mette; Bonke, Gitte; Larsen, Camilla Josephine

    2016-01-01

    . In the present study we show that antimicrobial peptides (AMPs) with an intracellular mode of action can be efficient vehicles for bacterial delivery of an antibacterial PNA targeting the essential acpP gene. The results demonstrate that buforin 2-A (BF2-A), drosocin, oncocin 10, Pep-1-K, KLW-9,13-a, (P59→W59...

  19. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger.

    Science.gov (United States)

    Oude Blenke, E; Sleszynska, M; Evers, M J W; Storm, G; Martin, N I; Mastrobattista, E

    2017-02-15

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high membranolytic activity. However, such lytic peptides also impose a significant safety risk when applied in vivo as they often have similar activity against red blood cells and other nontarget cell membranes. Our aim is to control the membrane-disrupting capacity of these peptides in time and space by physically constraining them to a nanocarrier surface in such a way that they only become activated when delivered inside acidic endosomes. To this end, a variety of chemical approaches for the coupling of lytic peptides to liposomes via functionalized PEG-lipids were explored, including maleimide-thiol chemistry, click-chemistry, and aldehyde-hydrazide chemistry. The latter enables reversible conjugation via a hydrazone bond, allowing for release of the peptide under endosomal conditions. By carefully choosing the conjugation site and by using a pH activated analog of the melittin peptide, lytic activity toward a model membrane is completely inhibited at physiological pH. At endosomal pH the activity is restored by hydrolysis of the acid-labile hydrazone bond, releasing the peptide in its most active, free form. Furthermore, using an analogue containing a nonhydrolyzable bond as a control, it was shown that the activity observed can be completely attributed to release of the peptide, validating dynamic covalent conjugation as a suitable strategy to maintain safety during circulation.

  20. Recurrent Neural Network Model for Constructive Peptide Design.

    Science.gov (United States)

    Müller, Alex T; Hiss, Jan A; Schneider, Gisbert

    2018-02-26

    We present a generative long short-term memory (LSTM) recurrent neural network (RNN) for combinatorial de novo peptide design. RNN models capture patterns in sequential data and generate new data instances from the learned context. Amino acid sequences represent a suitable input for these machine-learning models. Generative models trained on peptide sequences could therefore facilitate the design of bespoke peptide libraries. We trained RNNs with LSTM units on pattern recognition of helical antimicrobial peptides and used the resulting model for de novo sequence generation. Of these sequences, 82% were predicted to be active antimicrobial peptides compared to 65% of randomly sampled sequences with the same amino acid distribution as the training set. The generated sequences also lie closer to the training data than manually designed amphipathic helices. The results of this study showcase the ability of LSTM RNNs to construct new amino acid sequences within the applicability domain of the model and motivate their prospective application to peptide and protein design without the need for the exhaustive enumeration of sequence libraries.

  1. End-labeling of peptide nucleic acid with osmium complex. Voltammetry at carbon and mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Trefulka, Mojmír; Fojta, Miroslav

    2009-01-01

    Roč. 11, č. 2 (2009), s. 359-362 ISSN 1388-2481 R&D Projects: GA AV ČR(CZ) KAN400310651; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : peptide nucleic acid end-labeling * osmium tetroxide complexes * electroactive labels Subject RIV: BO - Biophysics Impact factor: 4.243, year: 2009

  2. Hydroxyapatite-binding peptides for bone growth and inhibition

    Science.gov (United States)

    Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  3. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  4. Characterization of peptide-oligonucleotide heteroconjugates by mass spectrometry.

    OpenAIRE

    Jensen, O N; Kulkarni, S; Aldrich, J V; Barofsky, D F

    1996-01-01

    Two peptide-oligothymidylic acids, prepared by joining an 11 residue synthetic peptide containing one internal carboxyl group (Asp side chain) to amino-linker-5'pdT6 and amino-linker-5'pdT10 oligonucleotides, were analyzed by matrix-assisted laser desorption/ionization (MALDI) on a linear time-of-flight mass spectrometer and by electrospray ionization (ESI) on a triple-quadrupole system. These synthetic compounds model peptide-nucleic acid heteroconjugates encountered in antisense research an...

  5. Escherichia coli Peptide Binding Protein OppA Has a Preference for Positively Charged Peptides

    NARCIS (Netherlands)

    Klepsch, M. M.; Kovermann, M.; Löw, C.; Balbach, J.; Permentier, H. P.; Fusetti, F.; de Gier, J. W.; Gier, Jan-Willem de; Slotboom, D. J.; Berntsson, R. P. -A.

    2011-01-01

    The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity.

  6. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    International Nuclear Information System (INIS)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-01-01

    E2, along with E rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, 818 CPIGWTGVIEC 828 , containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP 818 CPIGWTGVIEC 828 indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion

  7. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Sainz, I.J. [Plum Island Animal Disease Center, ARS, USDA (United States); Largo, E. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Gladue, D.P.; Fletcher, P. [Plum Island Animal Disease Center, ARS, USDA (United States); O’Donnell, V. [Plum Island Animal Disease Center, ARS, USDA (United States); Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Holinka, L.G. [Plum Island Animal Disease Center, ARS, USDA (United States); Carey, L.B. [Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), E-08003 Barcelona (Spain); Lu, X. [Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Nieva, J.L. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Borca, M.V., E-mail: manuel.borca@ars.usda.gov [Plum Island Animal Disease Center, ARS, USDA (United States)

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  8. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium

    DEFF Research Database (Denmark)

    Portero, Ana; Remuñán-López, Carmen; Nielsen, Hanne Mørck

    2002-01-01

    To investigate the potential of chitosan (CS) to enhance buccal peptide and protein absorption, the TR146 cell culture model, a model of the buccal epithelium, was used.......To investigate the potential of chitosan (CS) to enhance buccal peptide and protein absorption, the TR146 cell culture model, a model of the buccal epithelium, was used....

  9. A single-layer peptide nanofiber for enhancing the cytotoxicity of trastuzumab (anti-HER)

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Ruchi; Wagh, Anil; Qian, Steven; Law, Benedict, E-mail: Shek.law@ndsu.edu [College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Department of Pharmaceutical Sciences (United States)

    2013-06-15

    A multivalent system is often employed to enhance the effectiveness of a targeted therapy. In the present study, we report a single-layer peptide nanofiber (NFP) as a multivalent targeting platform to improve the cytotoxicity of trastuzumab (anti-HER), a monoclonal antibody targeting the human epidermal growth factor receptor 2 (HER-2) in approximately 20 % of breast cancer patients. The trastuzumab-conjugated nanofiber (anti-HER/NFP) was 100 Multiplication-Sign 4 nm in size and was assembled from multiple peptide units (mPEG-BK(FITC)SGASNRA-kldlkldlkldl-CONH{sub 2}). The optimized preparation was attached with approximately 10 antibodies at the surface. Because of an increase in the multivalency, anti-HER/NFP was able to truncate more cell surface HER-2 and, thus, showed an enhanced cytotoxicity toward HER-2 positive SKBr-3 human breast cancer as compared to the free anti-HER. Western blot analysis and fluorescence microscopic studies confirmed that there was a significant downregulation of the HER-2 level and also inhibition of the cell survival cell signaling pathways including the phosphatidylinositol 3-kinase (PI3K) and the mitogen activated protein kinase (MAPK) pathway. Our data suggested that NFP can be useful as a multivalent platform for immunotherapy, especially in combination with other chemotherapeutic agents in the future.

  10. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    Science.gov (United States)

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion.

    Science.gov (United States)

    Jin, Yan; Yu, Yang; Qi, Yanxia; Wang, Fangjun; Yan, Jiaze; Zou, Hanfa

    2016-06-01

    This study investigated the relationship between peptide profiles and the bioactivity character of yogurt in simulated gastrointestinal trials. A total of 250, 434 and 466 peptides were identified by LC-MS/MS analyses of yogurt, gastric digest and pancreatic digest. Forty peptides of yogurt survived in gastrointestinal digestion. κ-CN and β-CN contributed the diversity of peptides during the fermentation process and gastrointestinal digestion, respectively. The favorite of κ-CN by lactic acid bacteria complemented gut digestion by hydrolyzing κ-CN, the low abundance milk proteins. The potential bioactivities were evaluated by in vitro ACE and DPP-IV inhibition assays. The ACE inhibition rate of the pancreatic digests was ~4 - and ~2 - fold greater than that of yogurt and the gastric digests. The ACE inhibitory peptides generated during gastrointestinal digestion improved the ACE inhibitory activity of the gastric and pancreatic digests. The DPP-IV inhibition rate of the pancreatic digest was ~6 - and ~3 - fold greater than that of yogurt and the gastric digest. The numbers of potential DPP-IV inhibitory peptides were positively correlated to the DPP-IV inhibitory activity of the gastric and pancreatic digests. The present study describes the characters and bioactivities of peptides from yogurt in a simulated gastrointestinal digestion. The number of peptides identified from yogurt and gastrointestinal digests by LC-MS/MS increased in the simulated gastrointestinal trials. The in vitro ACE and DPP-IV inhibition bioactivities revealed that the bioactivity of yogurt was enhanced during gastrointestinal digestion. The correlation between peptides and bioactivity in vitro indicated that not only the peptides amount but also the proportion of peptides with high bioactivities contributed to increased bioactivity during gastrointestinal digestion. The study of peptides identified from yogurt and digests revealed that the number of released peptides was not determined

  12. Chlorination of tyrosyl residues in peptides and proteins by hypochlorous acid

    International Nuclear Information System (INIS)

    Kettle, A.J.; Chapman, A.L.P.; Senthilmohan, R.; Vile, G.F.; Chai, L.L.

    1998-01-01

    Full text: Hypochlorous acid (HOCI) is the major strong oxidant produced by neutrophils. These granulocytic cells use HOCI to kill bacteria and it is also proposed to promote inflammation. Previously, it was shown that HOCI converts tyrosyl residues in proteins to 3-chlorotyrosine. This chlorinated molecule is an ideal biomarker for determining the precise roles HOCI plays in bacterial killing and inflammatory tissue damage. We have investigated the reaction of HOCI with tyrosyl residues in peptides and proteins to establish whether or not chlorinated products in addition to 3-chlorotyrosine are formed. When 200μM HOCI was added to 500μg/ml of bovine serum albumin both 3-chlorotyrosine and 3,5-dichlorotyrosine were formed. The monochlorinated amino acid was the predominant product and its formation was complete by 20 minutes whereas levels of 3,5-dichlorotyrosine continued to increase for up to an hour. Amounts of both chlorinated products increased with increasing concentrations of HOCI until a plateau was reached at about 800μM. At all concentrations of HOCI a substantial amount of the tyrosine that had reacted was unaccounted for as either 3-chlorotyrosine or 3,5-dichlorotyrosine. Similar results were obtained with small peptides containing tyrosine. Sub-stoichiometric concentrations of HOCI converted tyrosyl residues in GGYR to 3-chlorotyrosine. At higher concentrations of HOCI, chlorination was rapid and both 3-chlorotyrosine and 3,5-dichlorotyrosine were produced but they accounted for less than 50% of the products. To identify the additional products of the reaction, we reacted HOCI with tyrosine analogues including N-acetyltyrosine, phydroxyphenylacetic acid, and 4-propylphenol. Separation of the reaction mixture by HPLC revealed that numerous products were formed besides mono and dichlorinated derivatives of the parent compounds. Analysis of the products by gas chromatography/mass spectrometry strongly indicated that mono and dichlorinated

  13. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide.

    Science.gov (United States)

    Matsubara, Teruhiko; Ujie, Michiko; Yamamoto, Takashi; Akahori, Miku; Einaga, Yasuaki; Sato, Toshinori

    2016-08-09

    The progression of influenza varies according to age and the presence of an underlying disease; appropriate treatment is therefore required to prevent severe disease. Anti-influenza therapy, such as with neuraminidase inhibitors, is effective, but diagnosis at an early phase of infection before viral propagation is critical. Here, we show that several dozen plaque-forming units (pfu) of influenza virus (IFV) can be detected using a boron-doped diamond (BDD) electrode terminated with a sialic acid-mimic peptide. The peptide was used instead of the sialyloligosaccharide receptor, which is the common receptor of influenza A and B viruses required during the early phase of infection, to capture IFV particles. The peptide, which was previously identified by phage-display technology, was immobilized by click chemistry on the BDD electrode, which has excellent electrochemical characteristics such as low background current and weak adsorption of biomolecules. Electrochemical impedance spectroscopy revealed that H1N1 and H3N2 IFVs were detectable in the range of 20-500 pfu by using the peptide-terminated BDD electrode. Our results demonstrate that the BDD device integrated with the receptor-mimic peptide has high sensitivity for detection of a low number of virus particles in the early phase of infection.

  14. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Tatiana Radchenko

    Full Text Available Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids. This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The

  15. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  16. Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Proks, Vladimír; Karabiyik, Ö.; Calikoglu Koyuncu, A. C.; Köse, G. T.; Rypáček, František; Studenovská, Hana

    2017-01-01

    Roč. 11, č. 3 (2017), s. 831-842 ISSN 1932-6254 R&D Projects: GA ČR GAP108/12/1629; GA ČR GAP108/12/1538 Grant - others:AV ČR, TUBITAK(CZ) 111M031 Institutional support: RVO:61389013 Keywords : poly(amino acid) * fibrous scaffolds * adhesion peptide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.989, year: 2016

  17. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.

    Science.gov (United States)

    Elkhtab, Ebrahim; El-Alfy, Mohamed; Shenana, Mohamed; Mohamed, Abdelaty; Yousef, Ahmed E

    2017-12-01

    Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography-mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway.

    Science.gov (United States)

    Roblet, Cyril; Doyen, Alain; Amiot, Jean; Pilon, Geneviève; Marette, André; Bazinet, Laurent

    2014-03-15

    Soy peptides consumption has been associated with beneficial effects in type 2 diabetes patients. However, the peptide fractions responsible for these effects, and their mechanisms of action, have not been identified yet. In this study, we have isolated soybean peptides by electrodialysis with an ultrafiltration membrane (EDUF) at 50 V/100 kDa, and tested them for their capacity to improve glucose uptake in L6 muscle cells. We observed that these fractions were able to significantly enhance glucose uptake in the presence of insulin. The reported bioactivity would be due to the low molecular weight peptides (300-500 Da) recovered. Moreover, we observed that an enhancement of glucose uptake was correlated to the activation of the AMPK enzyme, well known for its capacity to increase glucose uptake in muscle cells. To our knowledge, this is the first time that bioactive peptides with glucose uptake activity have been isolated from a complex soy matrix, and that the implication of AMPK in it is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds

    Directory of Open Access Journals (Sweden)

    Adina-Elena Segneanu

    2015-12-01

    Full Text Available There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy and chromatographic techniques (RP-HPLC and GC-MS. The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  20. Helleborus purpurascens-Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds.

    Science.gov (United States)

    Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea

    2015-12-11

    There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  1. Statistical Characterization of the Charge State and Residue Dependence of Low-Energy CID Peptide Dissociation Patterns

    International Nuclear Information System (INIS)

    Huang, Yingying; Triscari, Joseph M.; Tseng, George C.; Pasa-Tolic, Ljiljana; Lipton, Mary S.; Smith, Richard D.; Wysocki, Vicki H.

    2005-01-01

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s). Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and should be useful in algorithm development that employs improved models to predict fragment ion

  2. Novel angiotensin-converting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat.

    Science.gov (United States)

    Terashima, Masaaki; Baba, Takako; Ikemoto, Narumi; Katayama, Midori; Morimoto, Tomoko; Matsumura, Saki

    2010-06-23

    Four peptides that inhibit angiotensin-converting enzyme (ACE) were separated from the hydorlysate of boneless chicken leg meat digested with artificial gastric juice (pepsin). Two peptides were identified as the peptides encrypted in myosin heavy chain. The peptide P1 (MNVKHWPWMK) corresponds to the amino acid sequence from amino acids 825 to 834 of myosin heavy chain, and the peptide P4 (VTVNPYKWLP) corresponds to the amino acid sequence from amino acids 125 to 135 of myosin heavy chain. They are novel ACE inhibitory peptides derived from chicken, and IC(50) values of P1 and P4 were determined as 228 and 5.5 microM, respectively. Although these values were much larger than 0.022 microM for captopril, a typical synthetic ACE inhibitor, they are comparable to IC(50) values reported for various ACE inhibitory peptides derived from foods. Because the peptide P4 has a relatively low IC(50) value, it is a good starting substance for designing food supplements for hypertensive patients.

  3. Facilitating protein solubility by use of peptide extensions

    Science.gov (United States)

    Freimuth, Paul I; Zhang, Yian-Biao; Howitt, Jason

    2013-09-17

    Expression vectors for expression of a protein or polypeptide of interest as a fusion product composed of the protein or polypeptide of interest fused at one terminus to a solubility enhancing peptide extension are provided. Sequences encoding the peptide extensions are provided. The invention further comprises antibodies which bind specifically to one or more of the solubility enhancing peptide extensions.

  4. Synthesis of peptide .alpha.-thioesters

    Science.gov (United States)

    Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  5. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    Science.gov (United States)

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  6. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...... and sequence specificity. In an E. coli cell extract, efficient inhibition is observed when using PNA concentrations in the nanomolar range, whereas micromolar concentrations are required for inhibition in growing cells. A mutant strain of E. coli that is more permeable to antibiotics also is more susceptible...... to antisense PNAs than the wild type. This chapter details methods for testing the antisense activities of PNA in E. coli. As an example of the specific antisense inhibition possible, we show the effects of an anti-beta-galactosidase PNA in comparison to control PNAs. With improvements in cell uptake...

  7. Thalassospiramide G, a New γ-Amino-Acid-Bearing Peptide from the Marine Bacterium Thalassospira sp.

    Directory of Open Access Journals (Sweden)

    Sang Kook Lee

    2013-02-01

    Full Text Available In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1, along with thalassospiramides A and D (2–3, was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA, 4-amino-3,5-dihydroxy-pentanoic acid (ADPA, and unique 2-amino-1-(1H-indol-3-yl ethanone (AIEN, was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3, including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA, was rigorously determined by 1H–1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (2–3 inhibited nitric oxide (NO production in lipopolysaccharide (LPS-stimulated mouse macrophage RAW 264.7 cells, with IC50 values of 16.4 and 4.8 μM, respectively.

  8. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  9. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats☆

    Science.gov (United States)

    Gradauer, K.; Barthelmes, J.; Vonach, C.; Almer, G.; Mangge, H.; Teubl, B.; Roblegg, E.; Dünnhaupt, S.; Fröhlich, E.; Bernkop-Schnürch, A.; Prassl, R.

    2013-01-01

    The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan–thioglycolic acid (CS–TGA) or an S-protected version of the same polymer (CS–TGA–MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately − 40 mV to a maximum value of about + 44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS–TGA–MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS–TGA-coated liposomes or CS–TGA–MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24 h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6 h, was achieved for CS–TGA–MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS–TGA–MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin. PMID:24140721

  10. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats.

    Science.gov (United States)

    Gradauer, K; Barthelmes, J; Vonach, C; Almer, G; Mangge, H; Teubl, B; Roblegg, E; Dünnhaupt, S; Fröhlich, E; Bernkop-Schnürch, A; Prassl, R

    2013-12-28

    The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan-thioglycolic acid (CS-TGA) or an S-protected version of the same polymer (CS-TGA-MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately -40 mV to a maximum value of about +44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS-TGA-MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS-TGA-coated liposomes or CS-TGA-MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6h, was achieved for CS-TGA-MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS-TGA-MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin. © 2013. Published by Elsevier B.V. All rights reserved.

  11. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta......-amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area...

  12. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.; Jong, Marion de

    2010-01-01

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111 In-albumin, 111 In-minigastrin, 111 In-exendin and 111 In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111 In-albumin, 111 In-exendin and 111 In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111 In-minigastrin, by 88%. Uptake of 111 In-exendin and 111 In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  13. Method for predicting peptide detection in mass spectrometry

    Science.gov (United States)

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  14. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  15. Interactions of AsCy3 with cysteine-rich peptides.

    Science.gov (United States)

    Alexander, Seth C; Schepartz, Alanna

    2014-07-18

    There is great interest in fluorogenic compounds that tag biomolecules within cells. Biarsenicals are fluorogenic compounds that become fluorescent upon binding four proximal Cys thiols, a tetracysteine (Cys(4)) motif. This work details interactions between the biarsenical AsCy3 and Cys(4) peptides. Maximal affinity was observed when two Cys-Cys pairs were separated by at least 8 amino acids; the highest affinity ligand bound in the nanomolar concentration range (K(app) = 43 nM) and with a significant (3.2-fold) fluorescence enhancement.

  16. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    Directory of Open Access Journals (Sweden)

    Charlotte A.E. Hauser

    2011-09-01

    Full Text Available In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures.

  17. Peptides, proteins and peptide/protein-polymer conjugates as drug delivery system.

    Science.gov (United States)

    Mukherjee, Biswajit; Karmakar, Swapna D; Hossain, Chowdhury M; Bhattacharya, Sanchari

    2014-01-01

    In the last few decades, novel drug delivery strategies have been a big priority to the formulation scientists. Peptides and proteins have drawn a special attention for their wide scope in the area. Serum albumin, transferrin, recom- binant proteins, virus capsids etc. are used as carrier for drug and biomolecules. Conjugates of polymers with proteins have also shown strong potency in the field of drug delivery. Polyethylene glycol is one of the most successful polymers that has been used extensively to develop protein conjugated formulations. Besides, polyvinyl pyrrolidone, polylactic-co- glycolic acid, N-(2-hydroxypropyl) methacrylamide copolymer, polyglutamic acid have also been investigated. In this re- view, we will highlight on the most recent overview of various advantages, limitations and marketed products of proteins, peptides and protein/peptide-polymer conjugates as drug carriers, such products in clinical trials and their various uses in the field of modern drug delivery. Understanding the key features of these materials and the vigorous research in this field will develop new drug formulations that will combat various types of life-threatening diseases.

  18. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  19. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    Science.gov (United States)

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  20. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods. [106 references

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W.M.

    1979-03-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and pathogenic toxins. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  1. Enhancement of the Enterocin CRL35 Activity by a Synthetic Peptide Derived from the NH2-Terminal Sequence

    Science.gov (United States)

    Saavedra, Lucila; Minahk, Carlos; de Ruiz Holgado, Aída P.; Sesma, Fernando

    2004-01-01

    The enterocin CRL35 biosynthetic gene cluster was cloned and sequenced. The sequence was revealed to be highly identical to that of the mundticin KS gene cluster (S. Kawamoto, J. Shima, R. Sato, T. Eguchi, S. Ohmomo, J. Shibato, N. Horikoshi, K. Takeshita, and T. Sameshima, Appl. Environ. Microbiol. 68:3830-3840, 2002). Short synthetic peptides were designed based on the bacteriocin sequence and were evaluated in antimicrobial competitive assays. The peptide KYYGNGVSCNKKGCS produced an enhancement of enterocin CRL35 antimicrobial activity in a buffer system. PMID:15215149

  2. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation.

    Science.gov (United States)

    Yang, Huirong; Zong, Xuyan; Cui, Chun; Mu, Lixia; Zhao, Haifeng

    2017-12-22

    Lys and Leu were generally considered as the key amino acids for brewer's yeast during beer brewing. In the present study, peptide Lys-Leu and a free amino acid (FAA) mixture of Lys and Leu (Lys + Leu) were supplemented in 24 °P wort to examine their effects on physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation. Results showed that although both peptide Lys-Leu and their FAA mixture supplementations could increase the growth and viability, intracellular trehalose and glycerol content, wort fermentability, and ethanol content for brewer's yeast during VHG wort fermentation, and peptide was better than their FAA mixture at promoting growth and fermentation for brewer's yeast when the same dose was kept. Moreover, peptide Lys-Leu supplementation significantly increased the assimilation of Asp, but decreased the assimilation of Gly, Ala, Val, (Cys)2, Ile, Leu, Tyr, Phe, Lys, Arg, and Pro. However, the FAA mixture supplementation only promoted the assimilation of Lys and Leu, while reduced the absorption of total amino acids to a greater extent. Thus, the peptide Lys-Leu was more effective than their FAA mixture on the improvement of physiological activity, fermentation performance, and nitrogen metabolism of brewer's yeast during VHG wort fermentation. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  3. D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions.

    Science.gov (United States)

    Di Grazia, Antonio; Cappiello, Floriana; Cohen, Hadar; Casciaro, Bruno; Luca, Vincenzo; Pini, Alessandro; Di, Y Peter; Shai, Yechiel; Mangoni, Maria Luisa

    2015-12-01

    Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.

  4. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides.

    Science.gov (United States)

    Abdualrahman, Mohammed Adam Y; Ma, Haile; Zhou, Cunshan; Yagoub, Abu ElGasim A; Hu, Jiali; Yang, Xue

    2016-12-01

    Due to the disadvantages of traditional enzymolysis, pretreatments are crucial to enhance protein enzymolysis. Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution, fluorescence spectroscopy and antioxidant activity of thermal (HT) and single frequency counter-current ultrasound (SCFU) pretreated sodium caseinate (NaCas) were studied. Enzymolysis of untreated NaCas (control) improved significantly (P < 0.05) by SFCU and followed by HT. Values of the Michaelis-Menten constant (K M ) of SFCU and HT were 0.0212 and 0.0250, respectively. HT and SFCU increased (P < 0.05) the reaction rate constant (k) by 38.64 and 90.91%, respectively at 298 K. k values decreased with increasing temperature. The initial activation energy (46.39 kJ mol -1 ) reduced (P < 0.05) by HT (39.66 kJ mol -1 ) and further by SFCU (33.42 kJ mol -1 ). SFCU-pretreated NaCas hydrolysates had the highest contents of hydrophobic, aromatic, positively and negatively charged amino acids. Medium-sized peptides (5000-1000 Da) are higher in SFCU (78.11%) than HT and the control. SFCU induced molecular unfolding of NaCas proteins. Accordingly, SFCU-pretreated NaCas hydrolysate exhibited the highest scavenging activity on DPPH and hydroxyl radicals, reducing power, and iron chelating ability. SFCU pretreatment would be a useful tool for production of bioactive peptides from NaCas hydrolysate. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Prediction of Molar Extinction Coefficients of Proteins and Peptides Using UV Absorption of the Constituent Amino Acids at 214 nm To Enable Quantitative Reverse Phase High-Performance Liquid Chromatography-Mass Spectrometry Analysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2007-01-01

    The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry

  6. Dinosaur peptides suggest mechanisms of protein survival.

    Science.gov (United States)

    San Antonio, James D; Schweitzer, Mary H; Jensen, Shane T; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P R O

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  7. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    Energy Technology Data Exchange (ETDEWEB)

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O. (Harvard-Med); (IIT); (NCSU); (UPENN); (Manchester); (Orthovita)

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  8. Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus

    International Nuclear Information System (INIS)

    Rowland, Raymond R.R.; Schneider, Paula; Fang Ying; Wootton, Sarah; Yoo, Dongwan; Benfield, David A.

    2003-01-01

    The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is the principal component of the viral nucleocapsid and localizes to the nucleolus. Peptide sequence analysis of the N protein of several North American isolates identified two potential nuclear localization signal (NLS) sequences located at amino acids 10-13 and 41-42, which were labeled NLS-1 and NLS-2, respectively. Peptides containing NLS-1 or NLS-2 were sufficient to accumulate enhanced green fluorescent protein (EGFP) in the nucleus. The inactivation of NLS-1 by site-directed mutagenesis or the deletion of the first 14 amino acids did not affect N protein localization to the nucleolus. The substitution of key lysine residues with uncharged amino acids in NLS-2 blocked nuclear/nucleolar localization. Site-directed mutagenesis within NLS-2 identified the sequence, KKNKK, as forming the core localization domain within NLS-2. Using an in vitro pull-down assay, the N protein was able to bind importin-α, importin-β nuclear transport proteins. The localization pattern of N-EGFP fusion peptides represented by a series of deletions from the C- and N-terminal ends of the N protein identified a region covering amino acids 41-72, which contained a nucleolar localization signal (NoLS) sequence. The 41-72 N peptide when fused to EGFP mimicked the nucleolar-cytoplasmic distribution of native N. These results identify a single NLS involved in the transport of N from the cytoplasm and into nucleus. An additional peptide sequence, overlapping NLS-2, is involved in the further targeting of N to the nucleolus

  9. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  10. Tidbits for the synthesis of bis(2-sulfanylethyl)amido (SEA) polystyrene resin, SEA peptides and peptide thioesters.

    Science.gov (United States)

    Ollivier, Nathalie; Raibaut, Laurent; Blanpain, Annick; Desmet, Rémi; Dheur, Julien; Mhidia, Reda; Boll, Emmanuelle; Drobecq, Hervé; Pira, Silvain L; Melnyk, Oleg

    2014-02-01

    Protein total chemical synthesis enables the atom-by-atom control of the protein structure and therefore has a great potential for studying protein function. Native chemical ligation of C-terminal peptide thioesters with N-terminal cysteinyl peptides and related methodologies are central to the field of protein total synthesis. Consequently, methods enabling the facile synthesis of peptide thioesters using Fmoc-SPPS are of great value. Herein, we provide a detailed protocol for the preparation of bis(2-sulfanylethyl)amino polystyrene resin as a starting point for the synthesis of C-terminal bis(2-sulfanylethyl)amido peptides and of peptide thioesters derived from 3-mercaptopropionic acid. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  11. PEPTIDE SOLUBILITY, STRUCTURE AND CHARGE POSITION EFFECT ON ADSORPTION BY ALUMINIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Mary Trujillo

    2008-04-01

    Full Text Available Solubility, structure and position of charges in a peptide antigen sequence can be mentioned as being amongst the basic features of adsorption. In order to study their effect on adsorption, seven analogue series were synthesized from a MSP-1 peptide sequence by systematically replacing each one of the positions in the peptide sequence by aspartic acid, glutamic acid, serine, alanine, asparagine, glutamine or lysine. Such modifications in analogue peptide sequences showed a non-regular tendency regarding solubility and adsorption data. Aspartic acid and Glutamic acid analogue series showed great improvements in adsorption, especially in peptides where Lysine in position 6 and Arginine in position 13 were replaced. Solubility of position 5 analogue was greater than the position 6 analogue in Aspartic acid series; however, the position 6 analogue showed best adsorption results whilst the Aspartic acid in position 5 analogue showed no adsorption in the same conditions. Nuclear Magnetic Resonance structural analysis revealed differences in the -helical structureextension between these analogues. The Aspartic acid in position 6, located in the polar side of the helix, may allow this analogueto fit better onto the adsorption regions suggesting that the local electrostatic charge is responsible for this behavior.

  12. Characterizing Peptide Neutral Losses Induced by Negative Electron-Transfer Dissociation (NETD)

    Science.gov (United States)

    Rumachik, Neil G.; McAlister, Graeme C.; Russell, Jason D.; Bailey, Derek J.; Wenger, Craig D.; Coon, Joshua J.

    2012-01-01

    We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome. PMID:22290482

  13. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.

    Science.gov (United States)

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel

    2016-02-01

    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Self-Assembling Multifunctional Peptide Dimers for Gene Delivery Systems

    Directory of Open Access Journals (Sweden)

    Kitae Ryu

    2015-01-01

    Full Text Available Self-assembling multifunctional peptide was designed for gene delivery systems. The multifunctional peptide (MP consists of cellular penetrating peptide moiety (R8, matrix metalloproteinase-2 (MMP-2 specific sequence (GPLGV, pH-responsive moiety (H5, and hydrophobic moiety (palmitic acid (CR8GPLGVH5-Pal. MP was oxidized to form multifunctional peptide dimer (MPD by DMSO oxidation of thiols in terminal cysteine residues. MPD could condense pDNA successfully at a weight ratio of 5. MPD itself could self-assemble into submicron micelle particles via hydrophobic interaction, of which critical micelle concentration is about 0.01 mM. MPD showed concentration-dependent but low cytotoxicity in comparison with PEI25k. MPD polyplexes showed low transfection efficiency in HEK293 cells expressing low level of MMP-2 but high transfection efficiency in A549 and C2C12 cells expressing high level of MMP-2, meaning the enhanced transfection efficiency probably due to MMP-induced structural change of polyplexes. Bafilomycin A1-treated transfection results suggest that the transfection of MPD is mediated via endosomal escape by endosome buffering ability. These results show the potential of MPD for MMP-2 targeted gene delivery systems due to its multifunctionality.

  15. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  16. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    Science.gov (United States)

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.

    Science.gov (United States)

    Sato, Kenji

    2018-03-28

    Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.

  18. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  19. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgä rde, Noomi; Svedhem, Sofia; Nordé n, Bengt

    2014-01-01

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  20. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.

    Science.gov (United States)

    Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei

    2017-12-05

    In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.

  1. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement

    DEFF Research Database (Denmark)

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon

    2015-01-01

    hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate...... to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may decrease the permeability. In conclusion, acylated sCT acts as its own in vitro intestinal permeation enhancer, with reversible effects...... on Caco-2 cells, indicating that acylation of sCT may represent a promising tool to increase intestinal permeability without adding oral permeation enhancers....

  2. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  3. Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo

    International Nuclear Information System (INIS)

    Grossmann, Michael E.; Madden, Benjamin J.; Gao, Fan; Pang, Yuan-Ping; Carpenter, John E.; McCormick, Daniel; Young, Charles Y.F.

    2004-01-01

    Heat shock protein 70 (Hsp70) binds peptide and has several functions that include protein folding, protein trafficking, and involvement with immune function. However, endogenous Hsp70-binding peptides had not previously been identified. Therefore, we eluted and identified several hundred endogenously bound peptides from Hsp70 using liquid chromatography ion trap mass spectrophotometry (LC-ITMS). Our work shows that the peptides are capable of binding Hsp70 as previously described. They are generally 8-26 amino acids in length and correspond to specific regions of many proteins. Through computationally assisted analysis of peptides eluted from Hsp70 we determined variable amino acid sequences, including a 5 amino acid core sequence that Hsp70 favorably binds. We also developed a computer algorithm that predicts Hsp70 binding within proteins. This work helps to define what peptides are bound by Hsp70 in vivo and suggests that Hsp70 facilitates peptide selection by aiding a funneling mechanism that is flexible but allows only a limited number of peptides to be processed

  4. Three-Dimensional Graphene–RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ee-Seul Kang

    2018-02-01

    Full Text Available Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs. Amine-modified silica nanoparticles (SiNPs were uniformly coated onto an indium tin oxide electrode (ITO, followed by graphene oxide (GO encapsulation and electrochemical deposition of gold nanoparticles. A RGD–MAP–C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene–RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle–RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP, runt-related transcription factor 2, enzyme activity (ALP, and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14–21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene–RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.

  5. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Cai-Xia Zhuo

    2016-11-01

    Full Text Available Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to DNA-stabilized silver nanoclusters (DNA-AgNCs by Ag-S bonding to enhance fluorescence. The peptide probe can also be adsorbed to the surface of graphene oxide (GO, thus resulting in the fluorescence quenching of DNA-AgNCs-peptide conjugate because of Förster resonance energy transfer. Once trypsin had degraded the peptide probe into amino acid residues, the DNA-AgNCs were released from the surface of GO, and the enhanced fluorescence of DNA-AgNCs was restored. Trypsin can be determined with a linear range of 0.0–50.0 ng/mL with a concentration as low as 1 ng/mL. This label-free method is simple and sensitive and has been successfully used for the determination of trypsin in serum. The method can also be modified to detect other proteases.

  6. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models.

    Science.gov (United States)

    Kwon, Ae Jeong; Moon, Ja Young; Kim, Won Kyong; Kim, Suk; Hur, Jin

    2016-11-01

    Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile PBS, group B mice were intraperitoneally (ip) immunized with 3 × 10 8 colony-forming units (CFUs) of B. abortus strain RB51, group C mice were immunized ip with 3 × 10 8 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 × 10 9 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) were significantly higher in groups B-D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice from systemic infection with virulent B. abortus.

  7. Morintides: cargo-free chitin-binding peptides from Moringa oleifera.

    Science.gov (United States)

    Kini, Shruthi G; Wong, Ka H; Tan, Wei Liang; Xiao, Tianshu; Tam, James P

    2017-03-31

    Hevein-like peptides are a family of cysteine-rich and chitin-binding peptides consisting of 29-45 amino acids. Their chitin-binding property is essential for plant defense against fungi. Based on the number of cysteine residues in their sequences, they are divided into three sub-families: 6C-, 8C- and 10C-hevein-like peptides. All three subfamilies contain a three-domain precursor comprising a signal peptide, a mature hevein-like peptide and a C-terminal domain comprising a hinge region with protein cargo in 8C- and 10C-hevein-like peptides. Here we report the isolation and characterization of two novel 8C-hevein-like peptides, designated morintides (mO1 and mO2), from the drumstick tree Moringa oleifera, a drought-resistant tree belonging to the Moringaceae family. Proteomic analysis revealed that morintides comprise 44 amino acid residues and are rich in cysteine, glycine and hydrophilic amino acid residues such as asparagine and glutamine. Morintides are resistant to thermal and enzymatic degradation, able to bind to chitin and inhibit the growth of phyto-pathogenic fungi. Transcriptomic analysis showed that they contain a three-domain precursor comprising an endoplasmic reticulum (ER) signal sequence, a mature peptide domain and a C-terminal domain. A striking feature distinguishing morintides from other 8C-hevein-like peptides is a short and protein-cargo-free C-terminal domain. Previously, a similar protein-cargo-free C-terminal domain has been observed only in ginkgotides, the 8C-hevein-like peptides from a gymnosperm Ginkgo biloba. Thus, morintides, with a cargo-free C-terminal domain, are a stand-alone class of 8C-hevein-like peptides from angiosperms. Our results expand the existing library of hevein-like peptides and shed light on molecular diversity within the hevein-like peptide family. Our work also sheds light on the anti-fungal activity and stability of 8C-hevein-like peptides.

  8. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Souvik [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Nguyen, Thuy-Ai D. [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Gan, Lu [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Jones, Anne K. [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA

    2015-01-01

    Peptide based models for [FeFe]-hydrogenase were synthesized utilizing unnatural phosphine-amino acids and their electrocatalytic properties were investigated in mixed aqueous-organic solvents.

  9. Peptide array-based screening of human mesenchymal stem cell-adhesive peptides derived from fibronectin type III domain

    International Nuclear Information System (INIS)

    Okochi, Mina; Nomura, Shigeyuki; Kaga, Chiaki; Honda, Hiroyuki

    2008-01-01

    Human mesenchymal stem cell-adhesive peptides were screened based on the amino acid sequence of fibronectin type III domain 8-11 (FN-III 8-11 ) using a peptide array synthesized by the Fmoc-chemistry. Using hexameric peptide library of FN-III 8-11 scan, we identified the ALNGR (Ala-Leu-Asn-Gly-Arg) peptide that induced cell adhesion as well as RGDS (Arg-Gly-Asp-Ser) peptide. After incubation for 2 h, approximately 68% of inoculated cells adhere to the ALNGR peptide disk. Adhesion inhibition assay with integrin antibodies showed that the ALNGR peptide interacts with integrin β1 but not with αvβ3, indicating that the receptors for ALNGR are different from RGDS. Additionally, the ALNGR peptide expressed cell specificities for adhesion: cell adhesion was promoted for fibroblasts but not for keratinocytes or endotherial cells. The ALNGR peptide induced cell adhesion and promoted cell proliferation without changing its property. It is therefore useful for the construction of functional biomaterials

  10. Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.

    Science.gov (United States)

    Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E

    2015-07-20

    Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. C-terminal peptide extension via gas-phase ion/ion reactions

    Science.gov (United States)

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  12. RAId_DbS: mass-spectrometry based peptide identification web server with knowledge integration

    Directory of Open Access Journals (Sweden)

    Ogurtsov Aleksey Y

    2008-10-01

    Full Text Available Abstract Background Existing scientific literature is a rich source of biological information such as disease markers. Integration of this information with data analysis may help researchers to identify possible controversies and to form useful hypotheses for further validations. In the context of proteomics studies, individualized proteomics era may be approached through consideration of amino acid substitutions/modifications as well as information from disease studies. Integration of such information with peptide searches facilitates speedy, dynamic information retrieval that may significantly benefit clinical laboratory studies. Description We have integrated from various sources annotated single amino acid polymorphisms, post-translational modifications, and their documented disease associations (if they exist into one enhanced database per organism. We have also augmented our peptide identification software RAId_DbS to take into account this information while analyzing a tandem mass spectrum. In principle, one may choose to respect or ignore the correlation of amino acid polymorphisms/modifications within each protein. The former leads to targeted searches and avoids scoring of unnecessary polymorphism/modification combinations; the latter explores possible polymorphisms in a controlled fashion. To facilitate new discoveries, RAId_DbS also allows users to conduct searches permitting novel polymorphisms as well as to search a knowledge database created by the users. Conclusion We have finished constructing enhanced databases for 17 organisms. The web link to RAId_DbS and the enhanced databases is http://www.ncbi.nlm.nih.gov/CBBResearch/qmbp/RAId_DbS/index.html. The relevant databases and binaries of RAId_DbS for Linux, Windows, and Mac OS X are available for download from the same web page.

  13. Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system

    Directory of Open Access Journals (Sweden)

    Xiang B

    2017-03-01

    Full Text Available Bai Xiang,1,* Xue-Li Jia,1,* Jin-Long Qi,2 Li-Ping Yang,1 Wei-Hong Sun,1 Xiao Yan,1 Shao-Kun Yang,1 De-Ying Cao,1 Qing Du,1 Xian-Rong Qi3 1Department of Pharmaceutics, School of Pharmaceutical Sciences, 2Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, 3School of Pharmaceutical Sciences, Peking University, Beijing, China *These authors contributed equally to this work Abstract: As a potent therapeutic agent, small interfering RNA (siRNA has been exploited to silence critical genes involved in tumor initiation and progression. However, development of a desirable delivery system is required to overcome the unfavorable properties of siRNA such as its high degradability, molecular size, and negative charge to help increase its accumulation in tumor tissues and promote efficient cellular uptake and endosomal/lysosomal escape of the nucleic acids. In this study, we developed a new activatable cell-penetrating peptide (ACPP that is responsive to an acidic tumor microenvironment, which was then used to modify the surfaces of siRNA-loaded liposomes. The ACPP is composed of a cell-penetrating peptide (CPP, an acid-labile linker (hydrazone, and a polyanionic domain, including glutamic acid and histidine. In the systemic circulation (pH 7.4, the surface polycationic moieties of the CPP (polyarginine are “shielded” by the intramolecular electrostatic interaction of the inhibitory domain. When exposed to a lower pH, a common property of solid tumors, the ACPP undergoes acid-catalyzed breakage at the hydrazone site, and the consequent protonation of histidine residues promotes detachment of the inhibitory peptide. Subsequently, the unshielded CPP would facilitate the cellular membrane penetration and efficient endosomal/lysosomal evasion of liposomal siRNA. A series of investigations demonstrated that once exposed to an acidic pH, the ACPP-modified liposomes showed elevated cellular uptake, downregulated expression of polo

  14. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    International Nuclear Information System (INIS)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Seok, Heon; Choi, Hyemin; Lee, Dong Gun; Kim, Jae Il; Kim, Ho

    2014-01-01

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH 2 -RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27 Kip1 protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27 Kip1 significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27 Kip1 degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin

  15. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Seok, Heon [Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Choi, Hyemin; Lee, Dong Gun [School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701 (Korea, Republic of); Kim, Jae Il [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2014-06-06

    Highlights: • 11-mer peptide Lumbricusin, a defensin like peptide, is isolated from earthworm. • We here demonstrated that Lumbricusin has neurotropic and neuroprotective effects. • p27 degradation by Lumbricusin mediates effects of Lumbricusin on neuronal cells. - Abstract: We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH{sub 2}-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson’s disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27{sup Kip1} protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27{sup Kip1} significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27{sup Kip1} degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  16. Enterocin A mutants identified by saturation mutagenesis enhance potency towards vancomycin-resistant Enterococci.

    Science.gov (United States)

    McClintock, Maria K; Kaznessis, Yiannis N; Hackel, Benjamin J

    2016-02-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. © 2015 Wiley Periodicals, Inc.

  17. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.

    Science.gov (United States)

    Lee, Hye-Eun; Ahn, Hyo-Yong; Mun, Jungho; Lee, Yoon Young; Kim, Minkyung; Cho, Nam Heon; Chang, Kiseok; Kim, Wook Sung; Rho, Junsuk; Nam, Ki Tae

    2018-04-01

    Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control 2-4 , a negative refractive index 5 and chiral sensing 6 . Chiral nanostructures have been produced using nanofabrication techniques such as lithography 7 and molecular self-assembly 8-11 , but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology 12-18 . Although a few studies 18,19 have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h ≠ k ≠ l ≠ 0) that are intrinsically chiral, owing to the presence of 'kink' sites 20-22 in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dis-symmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct

  18. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

    Science.gov (United States)

    Akishiba, Misao; Takeuchi, Toshihide; Kawaguchi, Yoshimasa; Sakamoto, Kentarou; Yu, Hao-Hsin; Nakase, Ikuhiko; Takatani-Nakase, Tomoka; Madani, Fatemeh; Gräslund, Astrid; Futaki, Shiroh

    2017-08-01

    One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

  19. Mass spectrometric differentiation of linear peptides composed of L-amino acids from isomers containing one D-amino acid residue.

    Science.gov (United States)

    Serafin, Scott V; Maranan, Rhonda; Zhang, Kangling; Morton, Thomas Hellman

    2005-09-01

    MS/MS of electrosprayed ions is shown to have the capacity to discriminate between peptides that differ by configuration about their alpha-carbons. It is not necessary for the peptides to possess tertiary structures that are affected by stereochemistry, since five epimers of the pentapeptide, H2N-Gly-Leu-Ser-Phe-Ala-OH (GLSFA) all display different collisionally activated dissociation (CAD) patterns of their protonated parent ions. The figure of merit, r, is a ratio of ratios of fragment ion abundances between stereoisomers, where r = 1 corresponds to no stereochemical effect. Values of r as high as 3.8 are seen for diastereomer pairs. Stereochemical effects are also seen for the diprotonated dodecapeptide H2N-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-OH (LVFFAEDVGSNK), a tryptic fragment from the amyloid beta-protein. Triply charged complexes of the protonated dodecapeptide with cobalt(II) ions undergo CAD at lower collision energies than do doubly protonated LVFFAEDVGSNK ions. Statistically significant (p < 0.01) differences between the all-L-dodecapeptide and the ones containing a d-serine or a D-aspartic acid are observed.

  20. Comprehensive computational design of ordered peptide macrocycles

    Science.gov (United States)

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fátima; Rettie, Stephen A.; Kim, David E.; Silva, Daniel-Adriano; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David

    2018-01-01

    Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods. PMID:29242347

  1. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    Science.gov (United States)

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  2. Molecular cloning of a cDNA encoding the precursor of adenoregulin from frog skin. Relationships with the vertebrate defensive peptides, dermaseptins.

    Science.gov (United States)

    Amiche, M; Ducancel, F; Lajeunesse, E; Boulain, J C; Ménez, A; Nicolas, P

    1993-03-31

    Adenoregulin has recently been isolated from Phyllomedusa skin as a 33 amino acid residues peptide which enhanced binding of agonists to the A1 adenosine receptor. In order to study the structure of the precursor of adenoregulin we constructed a cDNA library from mRNAs extracted from the skin of Phyllomedusa bicolor. We detected the complete nucleotide sequence of a cDNA encoding the adenoregulin biosynthetic precursor. The deduced sequence of the precursor is 81 amino acids long, exhibits a putative signal sequence at the NH2 terminus and contains a single copy of the biologically active peptide at the COOH terminus. Structural and conformational homologies that are observed between adenoregulin and the dermaseptins, antimicrobial peptides exhibiting strong membranolytic activities against various pathogenic agents, suggest that adenoregulin is an additional member of the growing family of cytotropic antimicrobial peptides that allow vertebrate animals to defend themselves against microorganisms. As such, the adenosine receptor regulating activity of adenoregulin could be due to its ability to interact with and disrupt membranes lipid bilayers.

  3. Acquisition and Assimilation of Nitrogen as Peptide-Bound and D-Enantiomers of Amino Acids by Wheat

    Science.gov (United States)

    Hill, Paul W.; Quilliam, Richard S.; DeLuca, Thomas H.; Farrar, John; Farrell, Mark; Roberts, Paula; Newsham, Kevin K.; Hopkins, David W.; Bardgett, Richard D.; Jones, David L.

    2011-01-01

    Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH4 + and NO3 -) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants were exposed to solutions containing either 14C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration likely to be found in soil solution (10 µM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.9±0.3, 0.3±0.06 and 0.3±0.04 µmol g−1 root DW h−1, respectively. The rate of N uptake as L-trialanine was the same as that as L-alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%) of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was ca.5-fold faster than as NO3 -, but slower than as L-alanine, L-trialanine and NH4 +. Plants showed a limited capacity to take up D-trialanine (0.04±0.03 µmol g−1 root DW h−1), but did not appear to be able to metabolise it. We conclude that wheat is able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the terrestrial N cycle. PMID:21541281

  4. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E

    2012-01-01

    have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA......Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we...

  5. Antimicrobial Peptides for Therapeutic Applications: A Review

    Directory of Open Access Journals (Sweden)

    Tsogbadrakh Mishig-Ochir

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.

  6. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA–protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 mM, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly inhibit EZH2

  7. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA-protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 [Formula: see text]M, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly

  8. Anxiolytic-Like Effect of a Salmon Phospholipopeptidic Complex Composed of Polyunsaturated Fatty Acids and Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Nabila Belhaj

    2013-10-01

    Full Text Available A phospholipopeptidic complex obtained by the enzymatic hydrolysis of salmon heads in green conditions; exert anxiolytic-like effects in a time and dose-dependent manner, with no affection of locomotor activity. This study focused on the physico-chemical properties of the lipidic and peptidic fractions from this natural product. The characterization of mineral composition, amino acid and fatty acids was carried out. Stability of nanoemulsions allowed us to realize a behavioral study conducted with four different tests on 80 mice. This work highlighted the dose dependent effects of the natural complex and its various fractions over a period of 14 days compared to a conventional anxiolytic. The intracellular redox status of neural cells was evaluated in order to determine the free radicals scavenging potential of these products in the central nervous system (CNS, after mice sacrifice. The complex peptidic fraction showed a strong scavenging property and similar results were found for the complex as well as its lipidic fraction. For the first time, the results of this study showed the anxiolytic-like and neuroprotective properties of a phospholipopeptidic complex extracted from salmon head. The applications on anxiety disorders might be relevant, depending on the doses, the fraction used and the chronicity of the supplementation.

  9. Use of synthetic peptide libraries for the H-2Kd binding motif identification.

    Science.gov (United States)

    Quesnel, A; Casrouge, A; Kourilsky, P; Abastado, J P; Trudelle, Y

    1995-01-01

    To identify Kd-binding peptides, an approach based on small peptide libraries has been developed. These peptide libraries correspond to all possible single-amino acid variants of a particular Kd-binding peptide, SYIPSAEYI, an analog of the Plasmodium berghei 252-260 antigenic peptide SYIPSAEKI. In the parent sequence, each position is replaced by all the genetically encoded amino acids (except cysteine). The multiple analog syntheses are performed either by the Divide Couple and Recombine method or by the Single Resin method and generate mixtures containing 19 peptides. The present report deals with the synthesis, the purification, the chemical characterization by amino acid analysis and electrospray mass spectrometry (ES-MS), and the application of such mixtures in binding tests with a soluble, functionally empty, single-chain H-2Kd molecule denoted SC-Kd. For each mixture, bound peptides were eluted and analyzed by sequencing. Since the binding tests were realized in noncompetitive conditions, our results show that a much broader set of peptides bind to Kd than expected from previous studies. This may be of practical importance when looking for low affinity peptides such as tumor peptides capable of eliciting protective immune response.

  10. Improving cardiac gap junction communication as a new antiarrhythmic mechanism: the action of antiarrhythmic peptides.

    Science.gov (United States)

    Dhein, Stefan; Hagen, Anja; Jozwiak, Joanna; Dietze, Anna; Garbade, Jens; Barten, Markus; Kostelka, Martin; Mohr, Friedrich-Wilhelm

    2010-03-01

    Co-ordinated electrical activation of the heart is maintained by intercellular coupling of cardiomyocytes via gap junctional channels located in the intercalated disks. These channels consist of two hexameric hemichannels, docked to each other, provided by either of the adjacent cells. Thus, a complete gap junction channel is made from 12 protein subunits, the connexins. While 21 isoforms of connexins are presently known, cardiomyocytes typically are coupled by Cx43 (most abundant), Cx40 or Cx45. Some years ago, antiarrhythmic peptides were discovered and synthesised, which were shown to increase macroscopic gap junction conductance (electrical coupling) and enhance dye transfer (metabolic coupling). The lead substance of these peptides is AAP10 (H-Gly-Ala-Gly-Hyp-Pro-Tyr-CONH(2)), a peptide with a horseshoe-like spatial structure as became evident from two-dimensional nuclear magnetic resonance studies. A stable D: -amino-acid derivative of AAP10, rotigaptide, as well as a non-peptide analogue, gap-134, has been developed in recent years. Antiarrhythmic peptides act on Cx43 and Cx45 gap junctions but not on Cx40 channels. AAP10 has been shown to enhance intercellular communication in rat, rabbit and human cardiomyocytes. Antiarrhythmic peptides are effective against ventricular tachyarrhythmias, such as late ischaemic (type IB) ventricular fibrillation, CaCl(2) or aconitine-induced arrhythmia. Interestingly, the effect of antiarrhythmic peptides is higher in partially uncoupled cells and was shown to be related to maintained Cx43 phosphorylation, while arrhythmogenic conditions like ischaemia result in Cx43 dephosphorylation and intercellular decoupling. It is still a matter of debate whether these drugs also act against atrial fibrillation. The present review outlines the development of this group of peptides and derivatives, their mode of action and molecular mechanisms, and discusses their possible therapeutic potential.

  11. Exploitation of the Ornithine Effect Enhances Characterization of Stapled and Cyclic Peptides

    Science.gov (United States)

    Crittenden, Christopher M.; Parker, W. Ryan; Jenner, Zachary B.; Bruns, Kerry A.; Akin, Lucas D.; McGee, William M.; Ciccimaro, Eugene; Brodbelt, Jennifer S.

    2016-05-01

    A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.

  12. Molecular architecture with carbohydrate functionalized β-peptides adopting 314-helical conformation

    Directory of Open Access Journals (Sweden)

    Nitin J. Pawar

    2014-04-01

    Full Text Available Carbohydrate recognition is essential in cellular interactions and biological processes. It is characterized by structural diversity, multivalency and cooperative effects. To evaluate carbohydrate interaction and recognition, the structurally defined attachment of sugar units to a rigid template is highly desired. β-Peptide helices offer conformationally stable templates for the linear presentation of sugar units in defined distances. The synthesis and β-peptide incorporation of sugar-β-amino acids are described providing the saccharide units as amino acid side chain. The respective sugar-β-amino acids are accessible by Michael addition of ammonia to sugar units derivatized as α,β-unsaturated esters. Three sugar units were incorporated in β-peptide oligomers varying the sugar (glucose, galactose, xylose and sugar protecting groups. The influence of sugar units and the configuration of sugar-β-amino acids on β-peptide secondary structure were investigated by CD spectroscopy.

  13. Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement.

    Science.gov (United States)

    Guo, Jinhui; Chang, Li; Zhang, Xin; Pei, Sujuan; Yu, Meishuang; Gao, Jianlian

    2014-10-01

    The aim of the present study was to investigate the effect of ginsenoside compound K on β-amyloid (Aβ) peptide clearance in primary astrocytes. Aβ degradation in primary astrocytes was determined using an intracellular Aβ clearance assay. Aggregated LC3 in astrocyte cells, which is a marker for the level of autophagy, was detected using laser scanning confocal microscope. The effect of compound K on the mammalian target of rapamycin (mTOR)/autophagy pathway was determined using western blot analysis, and an enzyme-linked immunosorbent assay was used for Aβ detection. The results demonstrated that compound K promoted the clearance of Aβ and enhanced autophagy in primary astrocytes. In addition, it was found that phosphorylation of mTOR was inhibited by compound K, which may have contributed to the enhanced autophagy. In conclusion, compound K promotes Aβ clearance by enhancing autophagy via the mTOR signaling pathway in primary astrocytes.

  14. Post-translational amino acid racemization in the frog skin peptide deltorphin I in the secretion granules of cutaneous serous glands.

    Science.gov (United States)

    Auvynet, Constance; Seddiki, Nabila; Dunia, Irene; Nicolas, Pierre; Amiche, Mohamed; Lacombe, Claire

    2006-01-01

    The dermal glands of the South American hylid frog Phyllomedusa bicolor synthesize and expel huge amounts of cationic, alpha-helical, 24- to 33-residue antimicrobial peptides, the dermaseptins B. These glands also produce a wide array of peptides that are similar to mammalian hormones and neuropeptides, including a heptapeptide opioid containing a D-amino acid, deltorphin I (Tyr-DAla-Phe-Asp-Val-Val-Gly NH2). Its biological activity is due to the racemization of L-Ala2 to D-Ala. The dermaseptins B and deltorphins are all derived from a single family of precursor polypeptides that have an N-terminal preprosequence that is remarkably well conserved, although the progenitor sequences giving rise to mature opioid or antimicrobial peptides are markedly different. Monoclonal and polyclonal antibodies were used to examine the cellular and ultrastructural distributions of deltorphin I and dermaseptin B in the serous glands by immunofluoresence confocal microscopy and immunogold-electron microscopy. Preprodeltorphin I and preprodermaseptins B are sorted into the regulated pathway of secretion, where they are processed to give the mature products. Deltorphin I, [l-Ala2]-deltorphin I and dermaseptin B are all stored together in secretion granules which accumulate in the cytoplasm of all serous glands. We conclude that the L- to D-amino acid isomerization of the deltorphin I occurs in the secretory granules as a post-translational event. Thus the specificity of isomerization depends on the presence of structural and/or conformational determinants in the peptide N-terminus surrounding the isomerization site.

  15. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting......-PNA (cPNA1(7)-(D-Arg)8) and hexamer carrier decanoyl-CPP-PNA (Deca-cPNA1(6)-(D-Arg)8), respectively, without showing significant additional cellular toxicity. Most interestingly, the activity reached the same level obtained by enhancement with endosomolytic chloroquine (CQ) treatment, suggesting...... that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP...

  16. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    Science.gov (United States)

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. δ-Peptides from RuAAC-Derived 1,5-Disubstituted Triazole Units

    KAUST Repository

    Johansson, Johan R.

    2014-02-14

    Non-natural peptides with structures and functions similar to natural peptides have emerged lately in biomedical as well as nanotechnological contexts. They are interesting for pharmaceutical applications since they can adopt structures with new targeting potentials and because they are generally not prone to degradation by proteases. We report here a new set of peptidomimetics derived from δ-peptides, consisting of n units of a 1,5-disubstituted 1,2,3-triazole amino acid (5Tzl). The monomer was prepared using ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) chemistry using [RuCl2Cp]x as the catalyst, allowing for simpler purification and resulting in excellent yields. This achiral monomer was used to prepare peptide oligomers that are water soluble independent of peptide chain length. Conformational analysis and structural investigations of the oligomers were performed by 2D NOESY NMR experiments, and by quantum chemical calculations using the ωB97X-D functional. These data indicate that several conformations may co-exist with slight energetic differences. Together with their increased hydrophilicity, this feature of homo-5Tzl may prove essential for mimicking natural peptides composed of α-amino acids, where the various secondary structures are achieved by side chain effects and not by the rigidity of the peptide backbone. The improved synthetic method allows for facile variation of the 5Tzl amino acid side chains, further increasing the versatility of these compounds. A new set of non-natural peptides composed of 1,5-disubstituted 1,2,3-triazole amino acids is presented. These peptides benefit from: a) modular synthesis of the monomers, allowing variation of the side chains; b) increased solubility of the oligomers in water, irrespective of peptide length; c) flexibility of the backbone allowing these foldamers to adopt several conformations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes.

    Science.gov (United States)

    Büchau, Amanda S; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Gallo, Richard L

    2008-11-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human beta-defensin-2 and beta-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureus and decreased TLR2/6-induced expression of IL-10 and IL-1beta. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-kappaB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense.

  19. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency.

    Science.gov (United States)

    Yin, Haifang; Boisguerin, Prisca; Moulton, Hong M; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew Ja

    2013-09-24

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO) and control peptide 3 (B-3-PMO and 3-B-PMO) were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO), further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO) was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG), indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.Molecular Therapy-Nucleic Acids (2013) 2, e124; doi:10.1038/mtna.2013

  20. Optimization of Reversed-Phase Peptide Liquid Chromatography Ultraviolet Mass Spectrometry Analyses Using an Automated Blending Methodology

    Science.gov (United States)

    Chakraborty, Asish B.; Berger, Scott J.

    2005-01-01

    The balance between chromatographic performance and mass spectrometric response has been evaluated using an automated series of experiments where separations are produced by the real-time automated blending of water with organic and acidic modifiers. In this work, the concentration effects of two acidic modifiers (formic acid and trifluoroacetic acid) were studied on the separation selectivity, ultraviolet, and mass spectrometry detector response, using a complex peptide mixture. Peptide retention selectivity differences were apparent between the two modifiers, and under the conditions studied, trifluoroacetic acid produced slightly narrower (more concentrated) peaks, but significantly higher electrospray mass spectrometry suppression. Trifluoroacetic acid suppression of electrospray signal and influence on peptide retention and selectivity was dominant when mixtures of the two modifiers were analyzed. Our experimental results indicate that in analyses where the analyzed components are roughly equimolar (e.g., a peptide map of a recombinant protein), the selectivity of peptide separations can be optimized by choice and concentration of acidic modifier, without compromising the ability to obtain effective sequence coverage of a protein. In some cases, these selectivity differences were explored further, and a rational basis for differentiating acidic modifier effects from the underlying peptide sequences is described. PMID:16522853

  1. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    Science.gov (United States)

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  2. Structure-function characterization and optimization of a plant-derived antibacterial peptide.

    Science.gov (United States)

    Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas

    2005-09-01

    Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.

  3. Lipid-peptide-polymer conjugates and nanoparticles thereof

    Science.gov (United States)

    Xu, Ting; Dong, He; Shu, Jessica

    2015-06-02

    The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.

  4. AaeAP1 and AaeAP2: Novel Antimicrobial Peptides from the Venom of the Scorpion, Androctonus aeneas: Structural Characterisation, Molecular Cloning of Biosynthetic Precursor-Encoding cDNAs and Engineering of Analogues with Enhanced Antimicrobial and Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Qiang Du

    2015-01-01

    Full Text Available The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation.

  5. AaeAP1 and AaeAP2: novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: structural characterisation, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities.

    Science.gov (United States)

    Du, Qiang; Hou, Xiaojuan; Wang, Lei; Zhang, Yingqi; Xi, Xinping; Wang, Hui; Zhou, Mei; Duan, Jinao; Wei, Minjie; Chen, Tianbao; Shaw, Chris

    2015-01-23

    The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation.

  6. Chemo-enzymatic peptide synthesis : bioprocess engineering aspects

    NARCIS (Netherlands)

    Vossenberg, P.

    2012-01-01

    Peptides, in particular oligopeptides, play an important role in the fields of health care, nutrition and cosmetics. Chemical synthesis is currently the most mature technique for the synthesis of peptides that range in length from 5 to 80 amino acids. Chemical synthesis is, however,

  7. Cloning of precursors for two MIH/VIH-related peptides in the prawn, Macrobrachium rosenbergii.

    Science.gov (United States)

    Yang, W J; Rao, K R

    2001-11-30

    Two cDNA clones (634 and 1366 bp) encoding MIH/VIH (molt-inhibiting hormone/vitellogenesis-inhibiting hormone)-related peptides were isolated and sequenced from a Macrobrachium rosenbergii eyestalk ganglia cDNA library. The clones contain a 360 and 339 bp open-reading frame, and their conceptually translated peptides consist of a 41 and 34 amino acid signal peptide, respectively, and a 78 amino acid residue mature peptide hormone. The amino acid sequences of the peptides exhibit higher identities with other known MIHs and VIH (44-69%) than with CHHs (28-33%). This is the first report describing the cloning and sequencing of two MIH/VIH-related peptides in a single crustacean species. Transcription of these mRNAs was detected in the eyestalk ganglia, but not in the thoracic ganglia, hepatopancreas, gut, gill, heart, or muscle.

  8. Atrial natriuretic-like peptide and its prohormone within metasequoia.

    Science.gov (United States)

    Yang, Q; Gower, W R; Li, C; Chen, P; Vesely, D L

    1999-07-01

    Metasequoia glyptostroboides was one of the dominant conifers in North America, Asia, and Europe for more than 100 million years since the late Cretaceous Albian Age, but Quaternary glaciations drove the Metasequoia population to apparent extinction. A small pocket of Metasequoia, however, was found in central China in the 1940s representing the only surviving population of this "living fossil" species. Atrial natriuretic peptide, a 28-amino-acid peptide hormone that causes sodium and water excretion in animals, has been found to be part of the first peptide hormonal system in lower plants. The existence of this hormonal system has never been examined within trees of any genus. High-performance gel permeation chromatography of the leaves and stems (i.e., branches) of Metasequoia followed by atrial natriuretic peptide radioimmunoassay revealed an ANP-like peptide and its prohormone (i.e., approximately 13,000 mol wt) were present in both leaves and stems of this conifer. The elution profile of ANP-like peptide in stems of Metasequoia had a shoulder to the left of where pure synthetic ANP elutes suggesting the possibility of a slightly larger peptide eluting within this shoulder secondary to alternate processing of the ANP-like prohormone and similar to what occurs with the kidney of animals. The elution profile of ANP-like peptide in the leaves of Metasequoia revealed two peaks; one where ANP elutes and a second peak suggesting a smaller peptide that has been metabolically processed. The presence of the ANP-like prohormone strongly suggests that ANP-like gene expression is occurring in both leaves and stems of Metasequoia since this prohormone is the gene product of this hormonal system. The presence of the ANP-like hormonal system in trees implies that this hormonal system may have been present early in land plant evolution to allow trees to reach heights of greater than 30 feet where a water flow-enhancing substance is absolutely necessary for water flow to occur

  9. Low dose radiation enhancing inhibitory effect of tumor-associated antigen peptide extract on H-22 hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuyue, Sun; Jingyi, Fu; Yong, Zhao [Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Inst. of Zoology, Chinese Academy of Sciences, Beijing (China); Jianxiang, Liu; Zhibo, Fu; Xiuyi, Li; Shuzheng, Liu; Shouliang, Gong

    2005-06-15

    Objective: To determine whether there is synergically inhibitory effect of low dose radiation (LDR) and tumor-associated antigen peptides (TAP) on tumor growth in vivo, which may provide experimental basis for potential clinical co-application of these two approaches to treat cancers. Methods: TAP extract (MW {<=}3x10{sup 6}) from tumor cell membrane was prepared with mild acid elution method , as reported. The mice were whole-bodily irradiated with 75 mGy X-rays 12 h before immunization with TAP extract. After immunization , the levels of CD3, CD69, TCR{alpha}{beta} cells and T cell subsets in the spleen were detected with FACS. The tumor growth rate was estimated, and the responses to Con A, the cytokine productions and CTL activities of splenocytes were also analyzed 7 d after immunization with TAP. Results: The present experimental results showed that the TAP extract significantly reduced the incidence of the transplanted tumor, delayed the average appearing time and decreased the growth speed of the tumor. The response of splenocytes from mice immunized with TAP extract to Con A increased significantly compared with that in the control group. Irradiation with 75 mGy X-rays 12 h before immunization further enhanced the inhibitory effect of TAP extract on tumor growth, and increased the percentage of CD8{sup +} splenocytes. Conclusion: These results suggest that whole-body irradiation with LDR exerts a synergic inhibitory effect with TAP on tumor growth in vivo, in which enhanced cellular immune responses may be involved. (authors)

  10. Radiation chemistry of amino acids and peptides in aqueous solutions

    International Nuclear Information System (INIS)

    Simic, M.G.

    1978-01-01

    Radiation chemistry relevant to radiation preservation of high protein foods is reviewed. Some conclusions concerning the chemistry of irradiated amino acids, peptides, and proteins have been derived from product analysis of γ-irradiated solutions while the main mechanistic considerations result from the chemistry and kinetics of free radical intermediates observed by pulse radiolysis. The precursors of chemistry in not too concentrated solutions ( - , OH, and H. Their reactivity with molecules and their preference for characteristic groups within the molecule are discussed. The reviewed reactions of the model systems are accountable for a variety of radiolytic products found in irradiated foods. From detailed understanding of radiation chemistry in aqueous and frozen systems formation of many classes of compounds can be predicted or entirely eliminated in order to corroborate and extend the conclusions reached from the animal feeding experiments concerning the formation of toxic, mutagenic, and carcinogenic compounds and/or reduction of the nutritional value of foods

  11. Role of SbmA in the Uptake of Peptide Nucleic Acid (PNA)-Peptide Conjugates in E. coli

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Vitali, Ally; Stach, James E M

    2013-01-01

    Antisense PNA oligomers targeting essential genes (acpP or ftsZ) and conjugated to the delivery peptide L((KFF)(3)K) show complete growth inhibition of wild type E. coli strain (MG1655) with submicromolar MIC. In this study we show that resistant mutants generated against such PNA......-peptide conjugates had disruptions in the region of sbmA, a gene encoding an inner membrane peptide transporter. The wild type sensitivity to the PNA conjugates was re-established in the resistance mutants by complementation with sbmA. Furthermore, deletion of sbmA in E. coli AS19, a strain that is sensitive...

  12. What peptides these deltorphins be.

    Science.gov (United States)

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  13. TfR Binding Peptide Screened by Phage Display Technology ...

    African Journals Online (AJOL)

    Purpose: To screen an hTfR affinity peptide and investigate its activity in vitro. Methods: hTfR ... Keywords: Peptide, hTfR, Transferrin receptor, Phage display technology, Enhanced green ..... mediated uptake of peptides that bind the human.

  14. Lewis acid enhanced switching of the 1,1-dicyanodihydroazulene/vinylheptafulvene photo/thermoswitch

    DEFF Research Database (Denmark)

    Parker, Christian Richard; Tortzen, Christian Gregers; Broman, Søren Lindbæk

    2011-01-01

    Mild Lewis acids enhance the rate of the thermal conversion of vinylheptafulvene (VHF) to dihydroazulene (DHA). In the absence of light, stronger Lewis acids promote the otherwise photoinduced DHA to VHF conversion.......Mild Lewis acids enhance the rate of the thermal conversion of vinylheptafulvene (VHF) to dihydroazulene (DHA). In the absence of light, stronger Lewis acids promote the otherwise photoinduced DHA to VHF conversion....

  15. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  16. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    Science.gov (United States)

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  17. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells.

    Science.gov (United States)

    Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2018-02-07

    We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.

  18. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  19. Incorporating TiO2 nanotubes with a peptide of D-amino K122-4 (D) for enhanced mechanical and photocatalytic properties

    Science.gov (United States)

    Guo, L. Q.; Hu, Y. W.; Yu, B.; Davis, E.; Irvin, R.; Yan, X. G.; Li, D. Y.

    2016-02-01

    Titanium dioxide (TiO2) nanotubes are promising for a wide variety of potential applications in energy, biomedical and environmental sectors. However, their low mechanical strength and wide band gap limit their widespread technological use. This article reports our recent efforts to increase the mechanical strength of TiO2 nanotubes with lowered band gap by immobilizing a peptide of D-amino K122-4 (D) onto the nanotubes. Topographies and chemical compositions of the peptide-coated and uncoated TiO2 nanotubular arrays were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). Properties of the peptide-coated and uncoated TiO2 nanotubular arrays, including hardness, elastic modulus, electron work function and photocurrent, were evaluated using micromechanical probe, Kelvin Probe and electrochemical system. Effect of the peptide on surface conductivity was also investigated through current mapping and I-V curve analysis with conductive atomic force microscopy. It is demonstrated that the peptide coating simultaneously enhances the mechanical strength, photocatalytic and electrical properties of TiO2 nanotubes.

  20. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  1. Expression of a novel antimicrobial peptide Penaeidin4-1 in creeping bentgrass (Agrostis stolonifera L. enhances plant fungal disease resistance.

    Directory of Open Access Journals (Sweden)

    Man Zhou

    Full Text Available BACKGROUND: Turfgrass species are agriculturally and economically important perennial crops. Turfgrass species are highly susceptible to a wide range of fungal pathogens. Dollar spot and brown patch, two important diseases caused by fungal pathogens Sclerotinia homoecarpa and Rhizoctonia solani, respectively, are among the most severe turfgrass diseases. Currently, turf fungal disease control mainly relies on fungicide treatments, which raises many concerns for human health and the environment. Antimicrobial peptides found in various organisms play an important role in innate immune response. METHODOLOGY/PRINCIPAL FINDINGS: The antimicrobial peptide - Penaeidin4-1 (Pen4-1 from the shrimp, Litopenaeus setiferus has been reported to possess in vitro antifungal and antibacterial activities against various economically important fungal and bacterial pathogens. In this study, we have studied the feasibility of using this novel peptide for engineering enhanced disease resistance into creeping bentgrass plants (Agrostis stolonifera L., cv. Penn A-4. Two DNA constructs were prepared containing either the coding sequence of a single peptide, Pen4-1 or the DNA sequence coding for the transit signal peptide of the secreted tobacco AP24 protein translationally fused to the Pen4-1 coding sequence. A maize ubiquitin promoter was used in both constructs to drive gene expression. Transgenic turfgrass plants containing different DNA constructs were generated by Agrobacterium-mediated transformation and analyzed for transgene insertion and expression. In replicated in vitro and in vivo experiments under controlled environments, transgenic plants exhibited significantly enhanced resistance to dollar spot and brown patch, the two major fungal diseases in turfgrass. The targeting of Pen4-1 to endoplasmic reticulum by the transit peptide of AP24 protein did not significantly impact disease resistance in transgenic plants. CONCLUSION/SIGNIFICANCE: Our results

  2. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers.

    Directory of Open Access Journals (Sweden)

    Kazuma Ogawa

    Full Text Available (68Ga (T 1/2 = 68 min, a generator-produced nuclide has great potential as a radionuclide for clinical positron emission tomography (PET. Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting (68Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Aspn (n = 2, 5, 8, 11, or 14 with easy-to-handle (67Ga, with the previously described (67Ga-DOTA complex conjugated bisphosphonate, (67Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Aspn by a Fmoc-based solid-phase method, complexes were formed with (67Ga, resulting in (67Ga-DOTA-(Aspn with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of (67Ga-DOTA-(Aspn increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, (67Ga-DOTA-(Asp8, (67Ga-DOTA-(Asp11, and (67Ga-DOTA-(Asp14 showed high accumulation in bone (10.5 ± 1.5, 15.1 ± 2.6, and 12.8 ± 1.7% ID/g, respectively but were barely observed in other tissues at 60 min after injection. Although bone accumulation of (67Ga-DOTA-(Aspn was lower than that of (67Ga-DOTA-Bn-SCN-HBP, blood clearance of (67Ga-DOTA-(Aspn was more rapid. Accordingly, the bone/blood ratios of (67Ga-DOTA-(Asp11 and (67Ga-DOTA-(Asp14 were comparable with those of (67Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of (68Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases.

  3. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  4. Novel phosphine-peptide hybrids as selective catalysts

    DEFF Research Database (Denmark)

    Nygaard, David

    (His(Trt), Gln, Gln(Trt), Cys(tBu), Thr(OtBu), azido- Dab, Asp(OtBu), Arg(Pmc))) yielding a range of novel modified peptides. Peptides containing one secondary amine were phosphinylated and captured as either phosphine-boranes or oxides. Both borane and oxide protection of phosphine-peptide hybrids...... was discovered and the compounds were structurally elucidated via NMR and mass spectroscopy. Two of these compounds were incorporated into peptides. An existing method of obtaining peptides containing secondary amines in the peptide backbone have been expanded for incorporation of functional amino acids as well...... palladium chloride dimer did not yield an observable phosphine-palladium complex. A peptide containing two secondary amine sites was synthesized, phosphinylated and complexed to respectively palladium and copper. The palladium complex was utilized successfully as a palladium catalyst in a model Sonogashira...

  5. Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles.

    Science.gov (United States)

    Ghasemy, Somaye; García-Pindado, Júlia; Aboutalebi, Fatemeh; Dormiani, Kianoush; Teixidó, Meritxell; Malakoutikhah, Morteza

    2018-05-01

    N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe) 4 -CONH 2 , was more lipophilic than its non-methylated analog Ac-(Phe) 4 -CONH 2 . In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe) 4 -CONH 2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood-brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit......Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length...... than 5 amino acids showed binding and a clear correlation with hydrophobicity was demonstrated for oligomers of different hydrophobic amino acids. Insertion of hydrophilic amino acids in a hydrophobic sequence diminished or abolished binding. In conclusion our results show that calreticulin has...

  7. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease

    NARCIS (Netherlands)

    Bana, Laura; Minniti, Stefania; Salvati, Elisa; Sesana, Silvia; Zambelli, Vanessa; Cagnotto, Alfredo; Orlando, Antonina; Cazzaniga, Emanuela; Zwart, Rob; Scheper, Wiep; Masserini, Massimo; Re, Francesca

    2014-01-01

    Targeting amyloid-β peptide (Aβ) within the brain is a strategy actively sought for therapy of Alzheimer's disease (AD). We investigated the ability of liposomes bi-functionalized with phosphatidic acid and with a modified ApoE-derived peptide (mApoE-PA-LIP) to affect Aβ aggregation/disaggregation

  8. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling

    Science.gov (United States)

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, Jongone; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic `fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.

  9. The Suzuki–Miyaura Cross-Coupling as a Versatile Tool for Peptide Diversification and Cyclization

    Directory of Open Access Journals (Sweden)

    Tom Willemse

    2017-02-01

    Full Text Available The (site-selective derivatization of amino acids and peptides represents an attractive field with potential applications in the establishment of structure–activity relationships and labeling of bioactive compounds. In this respect, bioorthogonal cross-coupling reactions provide valuable means for ready access to peptide analogues with diversified structure and function. Due to the complex and chiral nature of peptides, mild reaction conditions are preferred; hence, a suitable cross-coupling reaction is required for the chemical modification of these challenging substrates. The Suzuki reaction, involving organoboron species, is appropriate given the stability and environmentally benign nature of these reactants and their amenability to be applied in (partial aqueous reaction conditions, an expected requirement upon the derivatization of peptides. Concerning the halogenated reaction partner, residues bearing halogen moieties can either be introduced directly as halogenated amino acids during solid-phase peptide synthesis (SPPS or genetically encoded into larger proteins. A reversed approach building in boron in the peptidic backbone is also possible. Furthermore, based on this complementarity, cyclic peptides can be prepared by halogenation, and borylation of two amino acid side chains present within the same peptidic substrate. Here, the Suzuki–Miyaura reaction is a tool to induce the desired cyclization. In this review, we discuss diverse amino acid and peptide-based applications explored by means of this extremely versatile cross-coupling reaction. With the advent of peptide-based drugs, versatile bioorthogonal conversions on these substrates have become highly valuable.

  10. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    Science.gov (United States)

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  11. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    Science.gov (United States)

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  12. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  13. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    Science.gov (United States)

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  14. A Novel Soluble Peptide with pH-Responsive Membrane Insertion.

    Science.gov (United States)

    Nguyen, Vanessa P; Alves, Daiane S; Scott, Haden L; Davis, Forrest L; Barrera, Francisco N

    2015-11-03

    Several diseases, such as cancer, are characterized by acidification of the extracellular environment. Acidosis can be employed as a target to specifically direct therapies to the diseased tissue. We have used first principles to design an acidity-triggered rational membrane (ATRAM) peptide with high solubility in solution that is able to interact with lipid membranes in a pH-dependent fashion. Biophysical studies show that the ATRAM peptide binds to the surface of lipid membranes at pH 8.0. However, acidification leads to the peptide inserting into the lipid bilayer as a transmembrane α-helix. The insertion of ATRAM into membranes occurs at a moderately acidic pH (with a pK of 6.5), similar to the extracellular pH found in solid tumors. Studies with human cell lines showed a highly efficient pH-dependent membrane targeting, without causing toxicity. Here we show that it is possible to rationally design a soluble peptide that selectively targets cell membranes in acidic environments.

  15. Effects of Rice Bran, Flax Seed, and Sunflower Seed on Growth Performance, Carcass Characteristics, Fatty Acid Composition, Free Amino Acid and Peptide Contents, and Sensory Evaluations of Native Korean Cattle (Hanwoo

    Directory of Open Access Journals (Sweden)

    Chang Bon Choi

    2016-02-01

    Full Text Available This study was conducted to evaluate the effect of dietary supplementation with rice bran, flax seed, or sunflower seed to finishing native Korean cattle (Hanwoo on growth performances, carcass characteristics, fatty acid composition, free amino acid and peptide contents, and sensory evaluations of Longissimus muscle (LM. A total of 39 Hanwoo steers (average age of 22.2 mo and average body weight (BW of 552.2 kg were randomly divided into Control, rice bran (RB, flax seed (FS, or Sunflower seed (SS groups. The steers were group fed for 273 d until they reached an average age of 31.2 mo. Final BW was 768.2, 785.8, 786.2, and 789.0 kg, and average daily gain was 0.79, 0.85, 0.82, and 0.84 kg for the Control, RS, FS, and SS groups, respectively (p>0.05. Fat thickness of the FS group (19.8 mm was greater (p0.05 scores for flavor, umami, and overall palatability in sensory evaluations. In conclusion, supplementation of flax seed to diets of finishing Hanwoo steers improved sensory evaluations which might have been caused by increases in flavor related amino acids such as methionine, glutamic acid and α-AAA and peptides, anserine and carnosine, and their complex reactions.

  16. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  17. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Eysturskard, Jonhard; Nielsen, Peter E

    2010-01-01

    ABSTRACT: BACKGROUND: Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human ca...

  18. Metabolism and pharmacokinetic of cyclo-peptides and peptides. Use of radioelement and stable isotopes

    International Nuclear Information System (INIS)

    Aninat, C.

    2003-10-01

    More and more peptides and proteins are used in therapeutic. Three mainly techniques are used for pharmacokinetic and metabolism studies: immunoassay, radioactively labeled molecules and mass spectrometry. In the first part of this work, we have used uniformly labelled peptides (C-peptide and insulin) with stables ( 13 C, 15 N, and 13 C/ 15 N) or radioactive ( 14 C) isotopes to investigated these kind of studies. These works are based on isotope dilution mass spectrometry assay. In a second time we have investigated the metabolism of a particular cyclo-peptides families composed of two amino acids: the diketo-piperazine. These compounds are found in mammals and in microorganisms. There are not recognized by proteolytic enzymes. We have estimated if the main enzymes implicated in the metabolism of xenobiotics, the P450 cytochrome mono-oxygenases, were able to recognized them

  19. Structures of peptide families by nuclear magnetic resonance spectroscopy and distance geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.

    1989-12-01

    The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometry calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.

  20. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen Jen, E-mail: wjlin@ntu.edu.tw; Chien, Wei Hsuan [National Taiwan University, School of Pharmacy, Graduate Institute of Pharmaceutical Sciences (China)

    2015-09-15

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  1. Amino acid sequence preferences to control cell-specific organization of endothelial cells, smooth muscle cells, and fibroblasts.

    Science.gov (United States)

    Kanie, Kei; Kato, Ryuji; Zhao, Yingzi; Narita, Yuji; Okochi, Mina; Honda, Hiroyuki

    2011-06-01

    Effective surface modification with biocompatible molecules is known to be effective in reducing the life-threatening risks related to artificial cardiovascular implants. In recent strategies in regenerative medicine, the enhancement and support of natural repair systems at the site of injury by designed biocompatible molecules have succeeded in rapid and effective injury repair. Therefore, such a strategy could also be effective for rapid endothelialization of cardiovascular implants to lower the risk of thrombosis and stenosis. To achieve this enhancement of the natural repair system, a biomimetic molecule that mimics proper cellular organization at the implant location is required. In spite of the fact that many reported peptides have cell-attracting properties on material surfaces, there have been few peptides that could control cell-specific adhesion. For the advanced cardiovascular implants, peptides that can mimic the natural mechanism that controls cell-specific organization have been strongly anticipated. To obtain such peptides, we hypothesized the cellular bias toward certain varieties of amino acids and examined the cell preference (in terms of adhesion, proliferation, and protein attraction) of varieties and of repeat length on SPOT peptide arrays. To investigate the role of specific peptides in controlling the organization of various cardiovascular-related cells, we compared endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs). A clear, cell-specific preference was found for amino acids (longer than 5-mer) using three types of cells, and the combinational effect of the physicochemical properties of the residues was analyzed to interpret the mechanism. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  2. Novel ZnO-binding peptides obtained by the screening of a phage display peptide library

    Energy Technology Data Exchange (ETDEWEB)

    Golec, Piotr [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology (affiliated with the University of Gdansk) (Poland); Karczewska-Golec, Joanna [University of Gdansk and Medical University of Gdansk, Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology (Poland); Los, Marcin; Wegrzyn, Grzegorz, E-mail: wegrzyn@biotech.univ.gda.pl [University of Gdansk, Department of Molecular Biology (Poland)

    2012-11-15

    Zinc oxide (ZnO) is a semiconductor compound with a potential for wide use in various applications, including biomaterials and biosensors, particularly as nanoparticles (the size range of ZnO nanoparticles is from 2 to 100 nm, with an average of about 35 nm). Here, we report isolation of novel ZnO-binding peptides, by screening of a phage display library. Interestingly, amino acid sequences of the ZnO-binding peptides reported in this paper and those described previously are significantly different. This suggests that there is a high variability in sequences of peptides which can bind particular inorganic molecules, indicating that different approaches may lead to discovery of different peptides of generally the same activity (e.g., binding of ZnO) but having various detailed properties, perhaps crucial under specific conditions of different applications.

  3. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique

    Directory of Open Access Journals (Sweden)

    Marina Gallarate

    2011-01-01

    Full Text Available Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can act in vitro as a sustained release system for peptide.

  4. High-throughput sequencing enhanced phage display identifies peptides that bind mycobacteria

    CSIR Research Space (South Africa)

    Ngubane, NAC

    2013-11-01

    Full Text Available . The displayed peptides are flanked by two cysteine residues, which are oxidized during phage assembly to a disulfide bond, resulting in a loop constrained peptide. We initially used the traditional clone picking method to identify the enriched clones... of the library, 1.236109 heptapeptides, it represented sufficient depth to measure the quantitative enrich- ment of relevant peptides. To confirm successful enrichment during selection, we characterized the reduction in diversity of the pool in the consecutive...

  5. Rapid identification of Staphylococcus aureus and methicillin resistance by flow cytometry using a peptide nucleic acid probe.

    Science.gov (United States)

    Shrestha, Nabin K; Scalera, Nikole M; Wilson, Deborah A; Brehm-Stecher, Byron; Procop, Gary W

    2011-09-01

    A total of 56 Staphylococcus aureus isolates incubated for 2 h in the presence or absence of oxacillin were analyzed by flow cytometry after labeling with an S. aureus-specific peptide nucleic acid (PNA) probe. Two defined ratios, the paired signal count ratio (PSCR) and the gate signal count ratio (GSCR), differentiated methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) with sensitivities of 100% each and specificities of 96% and 100%, respectively.

  6. Reactions of Hydroxyalkyl Radicals with Cysteinyl Peptides in a NanoESI Plume

    Science.gov (United States)

    Stinson, Craig A.; Xia, Yu

    2014-07-01

    In biological systems, carbon-centered small molecule radicals are primarily formed via external radiation or internal radical reactions. These radical species can react with a variety of biomolecules, most notably nucleic acids, the consequence of which has possible links to gene mutation and cancer. Sulfur-containing peptides and proteins are reactive toward a variety of radical species and many of them behave as radical scavengers. In this study, the reactions between alkyl alcohol carbon-centered radicals (e.g., •CH2OH for methanol) and cysteinyl peptides within a nanoelectrospray ionization (nanoESI) plume were explored. The reaction system involved ultraviolet (UV) irradiation of a nanoESI plume using a low pressure mercury lamp consisting of 185 and 254 nm emission bands. The alkyl alcohol was added as solvent into the nanoESI solution and served as the precursor of hydroxyalkyl radicals upon UV irradiation. The hydroxyalkyl radicals subsequently reacted with cysteinyl peptides either containing a disulfide linkage or free thiol, which led to the formation of peptide- S-hydroxyalkyl product. This radical reaction coupled with subsequent MS/MS was shown to have analytical potential by cleaving intrachain disulfide linked peptides prior to CID to enhance sequence information. Tandem mass spectrometry via collision-induced dissociation (CID), stable isotope labeling, and accurate mass measurement were employed to verify the identities of the reaction products.

  7. In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery.

    Science.gov (United States)

    Liu, Dongyun; Kobayashi, Taku; Russo, Steven; Li, Fengling; Plevy, Scott E; Gambling, Todd M; Carson, Johnny L; Mumper, Russell J

    2013-01-01

    Peptide and protein drugs have become the new generation of therapeutics, yet most of them are only available as injections, and reports on oral local intestinal delivery of peptides and proteins are quite limited. The aim of this work was to develop and evaluate a water-in-oil (w/o) microemulsion system in vitro and in vivo for local intestinal delivery of water-soluble peptides after oral administration. A fluorescent labeled peptide, 5-(and-6)-carboxytetramethylrhodamine labeled HIV transactivator protein TAT (TAMRA-TAT), was used as a model peptide. Water-in-oil microemulsions consisting of Miglyol 812, Capmul MCM, Tween 80, and water were developed and characterized in terms of appearance, viscosity, conductivity, morphology, and particle size analysis. TAMRA-TAT was loaded and its enzymatic stability was assessed in modified simulated intestinal fluid (MSIF) in vitro. In in vivo studies, TAMRA-TAT intestinal distribution was evaluated using fluorescence microscopy after TAMRA-TAT microemulsion, TAMRA-TAT solution, and placebo microemulsion were orally gavaged to mice. The half-life of TAMRA-TAT in microemulsion was enhanced nearly three-fold compared to that in the water solution when challenged by MSIF. The treatment with TAMRA-TAT microemulsion after oral administration resulted in greater fluorescence intensity in all intestine sections (duodenum, jejunum, ileum, and colon) compared to TAMRA-TAT solution or placebo microemulsion. The in vitro and in vivo studies together suggested TAMRA-TAT was better protected in the w/o microemulsion in an enzyme-containing environment, suggesting that the w/o microemulsions developed in this study may serve as a potential delivery vehicle for local intestinal delivery of peptides or proteins after oral administration.

  8. Purification and Characterization of Antioxidant Peptide from Sunflower Protein Hydrolysate

    Directory of Open Access Journals (Sweden)

    Xi-Qun Zheng

    2010-01-01

    Full Text Available Sunflower proteins were hydrolyzed with Flavourzyme for the production of antioxidant peptide. DEAE-Sepharose Fast Flow, Sephadex G-25 gel filtration chromatography and reversed-phase HPLC were consecutively employed to purify a novel sunflower antioxidant peptide, and the ability to inhibit the autoxidation of pyrogallol was expressed as the antioxidative activity of the peptide. The amino acid sequence was identified as Ala-Cys-Ala-His-Asp-Lys-Val by a Q-Tof2 mass spectrometer. This novel peptide exhibited a high antioxidative activity of 79.42 U/mL, which is expected to protect against oxidative damage in living systems in relation to aging and carcinogenesis. Higher antioxidative activities were presumed mainly due to the presence of hydrophobic amino acids in its sequence.

  9. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Alessandra Bianchin

    Full Text Available The purpose of this study was to investigate the blood stage of the malaria causing parasite, Plasmodium falciparum, to predict potential protein interactions between the parasite merozoite and the host erythrocyte and design peptides that could interrupt these predicted interactions. We screened the P. falciparum and human proteomes for computationally predicted short linear motifs (SLiMs in cytoplasmic portions of transmembrane proteins that could play roles in the invasion of the erythrocyte by the merozoite, an essential step in malarial pathogenesis. We tested thirteen peptides predicted to contain SLiMs, twelve of them palmitoylated to enhance membrane targeting, and found three that blocked parasite growth in culture by inhibiting the initiation of new infections in erythrocytes. Scrambled peptides for two of the most promising peptides suggested that their activity may be reflective of amino acid properties, in particular, positive charge. However, one peptide showed effects which were stronger than those of scrambled peptides. This was derived from human red blood cell glycophorin-B. We concluded that proteome-wide computational screening of the intracellular regions of both host and pathogen adhesion proteins provides potential lead peptides for the development of anti-malarial compounds.

  10. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Christopher J Arnusch

    Full Text Available Many cationic antimicrobial peptides (AMPs target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted.

  11. Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation

    International Nuclear Information System (INIS)

    Isenman, L.D.; Dice, J.F.

    1989-01-01

    We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes. We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed [3H]ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected [ 3 H]ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides

  12. Solvent polarity controls the helical conformation of short peptides rich in Calpha-tetrasubstituted amino acids.

    Science.gov (United States)

    Bellanda, Massimo; Mammi, Stefano; Geremia, Silvano; Demitri, Nicola; Randaccio, Lucio; Broxterman, Quirinus B; Kaptein, Bernard; Pengo, Paolo; Pasquato, Lucia; Scrimin, Paolo

    2007-01-01

    The two peptides, rich in C(alpha)-tetrasubstituted amino acids, Ac-[Aib-L-(alphaMe)Val-Aib](2)-L-His-NH(2) (1) and Ac-[Aib-L-(alphaMe)Val-Aib](2)-O-tBu (2 a) are prevalently helical. They present the unique property of changing their conformation from the alpha- to the 3(10)-helix as a function of the polarity of the solvent: alpha in more polar solvents, 3(10) in less polar ones. Conclusive evidence of this reversible change of conformation is reported on the basis of the circular dichroism (CD) spectra and a detailed two-dimensional NMR analysis in two solvents (trifluoroethanol and methanol) refined with molecular dynamics calculations. The X-ray diffractometric analysis of the crystals of both peptides reveals that they assume a prevalent 3(10)-helix conformation in the solid state. This conformation is practically superimposable on that obtained from the NMR analysis of 1 in methanol. The NMR results further validate the reported CD signature of the 3(10)-helix and the use of the CD technique for its assessment.

  13. Design, synthesis and DNA interactions of a chimera between a platinum complex and an IHF mimicking peptide.

    Science.gov (United States)

    Rao, Harita; Damian, Mariana S; Alshiekh, Alak; Elmroth, Sofi K C; Diederichsen, Ulf

    2015-12-28

    Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues.

  14. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Science.gov (United States)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2018-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575

  15. UV laser-induced cross-linking in peptides

    Science.gov (United States)

    Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

    2013-01-01

    RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

  16. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth

    Science.gov (United States)

    Konstantinov, Konstantin K.; Konstantinova, Alisa F.

    2018-03-01

    Chiral symmetry breaking in complex chemical systems with a large number of amino acids and a large number of similar reactions was considered. It was shown that effective averaging over similar reaction channels may result in very weak effective enantioselectivity of forward reactions, which does not allow most of the known models to result in chiral symmetry breaking during formation of life on Earth. Models with simple and catalytic synthesis of a single amino acid, formation of peptides up to length five, and sedimentation of insoluble pair of substances were considered. It was shown that depending on the model and the values of the parameters, chiral symmetry breaking may occur in up to about 10% out of all possible unique insoluble pair combinations even in the absence of any catalytic synthesis and that minimum total number of amino acids in the pair is 5. If weak enantioselective forward catalytic synthesis of amino acids is present, then the number of possible variants, in which chiral symmetry breaking may occur, increases substantially. It was shown that that the most interesting catalysts have zero or one amino acid of "incorrect" chirality. If the parameters of the model are adjusted in such a way to result in an increase of concentration of longer peptides, then catalysts with two amino acids of incorrect chirality start to appear at peptides of length five. Models of chiral symmetry breaking in the presence of epimerization were considered for peptides up to length three. It was shown that the range of parameters in which chiral symmetry breaking could occur significantly shrinks in comparison to previously considered models with peptides up to length two. An experiment of chiral symmetry breaking was proposed. The experiment consists of a three-step cycle: reversible catalytic synthesis of amino acids, reversible synthesis of peptides, and irreversible sedimentation of insoluble substances.

  17. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid-polyethylene glycol nanoparticles improves ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Vasconcelos A

    2015-01-01

    Full Text Available Aimee Vasconcelos,1 Estefania Vega,2 Yolanda Pérez,3 María J Gómara,1 María Luisa García,2 Isabel Haro1 1Unit of Synthesis and Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC, 2Department of Physical Chemistry, Institute of Nanoscience and Nanotechnology, Faculty of Pharmacy, University of Barcelona, 3Nuclear Magnetic Resonance Unit, IQAC-CSIC, Barcelona, Spain Abstract: In this work, a peptide for ocular delivery (POD and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid (PGLA–polyethylene glycol (PEG-nanoparticles (NPs in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide; the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation

  18. 2D-QSAR in hydroxamic acid derivatives as peptide deformylase inhibitors and antibacterial agents.

    Science.gov (United States)

    Gupta, Manish K; Mishra, Pradeep; Prathipati, Philip; Saxena, Anil K

    2002-12-01

    Peptide deformylase catalyzes the removal of N-formyl group from the N-formylmethionine of ribosome synthesized polypeptide in eubacteria. Quantitative structure-activity relationship (QSAR) studies have been carried out in a series of beta-sulfonyl and beta-sulfinyl hydroxamic acid derivatives for their PDF enzyme inhibitory and antibacterial activities against Escherichia coli DC2 and Moraxella catarrhalis RA21 which demonstrate that the PDF inhibitory activity in cell free and whole cell system increases with increase in molar refractivity and hydrophobicity. The comparison of the QSARs between the cell free and whole cell system indicate that the active binding sites in PDF isolated from E. coli and in M. catarrhalis RA21 are similar and the whole cell antibacterial activity is mainly due to the inhibition of PDF. Apart from this the QSARs on some matrixmetelloproteins (COL-1, COL-3, MAT and HME) and natural endopeptidase (NEP) indicate the possibilities of introducing selectivity in these hydroxamic acid derivatives for their PDF inhibitory activity.

  19. Gastrin-releasing peptide in the porcine pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    1987-01-01

    to consist of one main form, namely the 27-amino acid peptide originally extracted from porcine stomach, and small amounts of a C-terminal fragment identical with the C-terminal 10-amino acid peptide. Gastrin-releasing peptide-like immunoreactivity released from the isolated perfused porcine pancreas during...... electrical vagal stimulation was shown by gel filtration to consist of the same two forms. By use of immunocytochemical techniques employing an antiserum directed against its N terminus, GRP was localized to varicose nerve fibers in close association with the exocrine tissue of the porcine pancreas...... in particular. Some fibers were found penetrating into pancreatic islets also. Immunoreactive nerve cell bodies as well as fibers were found within intrapancreatic ganglia. The potency of GRP in stimulating exocrine as well as endocrine secretion from the porcine pancreas, its presence in close contact...

  20. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  1. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  2. Cloning of cDNAs encoding new peptides of the dermaseptin-family.

    Science.gov (United States)

    Wechselberger, C

    1998-10-14

    Dermaseptins are a group of basic (lysine-rich) peptides, 27-34 amino acids in length and involved in the defense of frog skin against microbial invasion. By using a degenerated oligonucleotide primer binding to the 5'-untranslated region of previously characterized cDNAs of these peptides, it was possible to identify new members of the dermaseptin family in the South American frogs Agalychnis annae and Pachymedusa dacnicolor. Amino acid alignment and secondary structure prediction reveals, that only five of the deduced peptides can be supposed to be also functional homologs to the known dermaseptins from Phyllomedusa bicolor and Phyllomedusa sauvagei. The remaining six peptides described in this paper have not been isolated and characterized yet.

  3. Antimicrobial peptides from the skins of North American frogs.

    Science.gov (United States)

    Conlon, J Michael; Kolodziejek, Jolanta; Nowotny, Norbert

    2009-08-01

    North America is home to anuran species belonging to the families Bufonidae, Eleutherodactylidae, Hylidae, Leiopelmatidae, Ranidae, and Scaphiopodidae but antimicrobial peptides have been identified only in skin secretions and/or skin extracts of frogs belonging to the Leiopelmatidae ("tailed frogs") and Ranidae ("true frogs"). Eight structurally-related cationic alpha-helical peptides with broad-spectrum antibacterial activity, termed ascaphins, have been isolated from specimens of Ascaphus truei (Leiopelmatidae) occupying a coastal range. Characterization of orthologous antimicrobial peptides from Ascaphus specimens occupying an inland range supports the proposal that this population should be regarded as a separate species A. montanus. Ascaphin-8 shows potential for development into a therapeutically valuable anti-infective agent. Peptides belonging to the brevinin-1, esculentin-1, esculentin-2, palustrin-1, palustrin-2, ranacyclin, ranatuerin-1, ranatuerin-2, and temporin families have been isolated from North American ranids. It is proposed that "ranalexins" represent brevinin-1 peptides that have undergone a four amino acid residue internal deletion. Current taxonomic recommendations divide North American frogs from the family Ranidae into two genera: Lithobates and Rana. Cladistic analysis based upon the amino acid sequences of the brevinin-1 peptides provides strong support for this assignment.

  4. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach.

    Science.gov (United States)

    Zhou, Peng; Yang, Chao; Ren, Yanrong; Wang, Congcong; Tian, Feifei

    2013-12-01

    Peptides with antihypertensive potency have long been attractive to the medical and food communities. However, serving as food additives, rather than therapeutic agents, peptides should have a good taste. In the present study, we explore the intrinsic relationship between the angiotensin I-converting enzyme (ACE) inhibition and bitterness of short peptides in the framework of computational peptidology, attempting to find out the appropriate properties for functional food peptides with satisfactory bioactivities. As might be expected, quantitative structure-activity relationship modeling reveals a significant positive correlation between the ACE inhibition and bitterness of dipeptides, but this correlation is quite modest for tripeptides and, particularly, tetrapeptides. Moreover, quantum mechanics/molecular mechanics analysis of the structural basis and energetic profile involved in ACE-peptide complexes unravels that peptides of up to 4 amino acids long are sufficient to have efficient binding to ACE, and more additional residues do not bring with substantial enhance in their ACE-binding affinity and, thus, antihypertensive capability. All of above, it is coming together to suggest that the tripeptides and tetrapeptides could be considered as ideal candidates for seeking potential functional food additives with both high antihypertensive activity and low bitterness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Microneedle-Mediated Delivery of Copper Peptide Through Skin.

    Science.gov (United States)

    Li, Hairui; Low, Yong Sheng Jason; Chong, Hui Ping; Zin, Melvin T; Lee, Chi-Ying; Li, Bo; Leolukman, Melvina; Kang, Lifeng

    2015-08-01

    Copper peptide (GHK-Cu) plays an important role in skin regeneration and wound healing. However, its skin absorption remains challenging due to its hydrophilicity. Here we use polymeric microneedle array to pre-treat skin to enhance GHK-Cu skin penetration. Two in vitro skin models were used to assess the capability of microneedles in facilitating skin delivery of GHK-Cu. Histological assay and confocal laser scanning microscopy were performed to characterize and quantify the microconduits created by the microneedles inside skin. Cellular and porcine models were used to evaluate the safety of microneedle-assisted copper peptide delivery. The depth and percentage of microneedle penetration were correlated with application forces, which in turn influenced the extent of enhancement in the skin permeability of GHK-Cu. In 9 h, 134 ± 12 nanomoles of peptide and 705 ± 84 nanomoles of copper permeated though the microneedle treated human skin, while almost no peptide or copper permeated through intact human skin. No obvious signs of skin irritation were observed with the use of GHK-Cu after microneedle pretreatment. It is effective and safe to enhance the skin permeation of GHK-Cu by using microneedles. This approach may be useful to deliver similar peptides or minerals through skin.

  6. Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities.

    Science.gov (United States)

    Vouille, V; Amiche, M; Nicolas, P

    1997-09-01

    We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.

  7. Chemical methods for peptide and protein production.

    Science.gov (United States)

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  8. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    Science.gov (United States)

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  9. Contribution of crosslinking products in the flavour enhancer processing: the new concept of Maillard peptide in sensory characteristics of Maillard reaction systems.

    Science.gov (United States)

    Karangwa, Eric; Murekatete, Nicole; Habimana, Jean de Dieu; Masamba, Kingsley; Duhoranimana, Emmanuel; Muhoza, Bertrand; Zhang, Xiaoming

    2016-06-01

    In this study, the flavour-enhancing properties of the Maillard reaction products (MRPs) for different systems consisted of different peptides (sunflower, SFP; corn, CP and soyabean SP) with, xylose and cysteine were investigated. Maillard systems from peptides of sunflower, corn and soyabean with xylose and cysteine were designated as PXC, MCP and MSP, respectively. The Maillard systems were prepared at pH of 7.4 using temperature of 120C for 2 h. Results showed that all systems were significantly different in all sensory attributes. The highest scores for mouthfulness and continuity were observed for MCP with the lowest peptides distribution between 1000 and 5000 Da, known as Maillard peptide. This revealed that the MCP with the lowest Maillard peptide content had the strongest "Kokumi" effect compared to the other MRPsand demonstrated that "kokumi effect" of MRPs was contributed by not only the "Maillard peptide" defined by the molecular weight (1000-5000 Da). Results on sensory evaluation after fractionation of PXC followed by enzymatic hydrolysis showed no significant differences between PXC, P-PXC and their hydrolysates. This observation therefore confirmed that the presence of other contributors attributed to the "Kokumi" effect rather than the Maillard peptide. It can be deduced that the unhydrolyzed crosslinking products might have contributed to the "Kokumi" effect of MRPs. The structures of four probable crosslinking compounds were proposed and the findings have provided new insights in the sensory characteristics of xylose, cysteine and sunflower peptide MRPs.

  10. Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources.

    Science.gov (United States)

    De Loof, A; Schoofs, L

    1990-01-01

    1. The 4K-prothoracicotropic hormone (PTTH) or bombyxin and the melanization-reddish coloration hormone of the silkworm Bombyx mori resemble insulin and insulin-like growth factors. 2. The family of adipokinetic/red pigment concentrating hormones has some similarity with glucagon. 3. Members of the FMRFamide family are found in vertebrates as well as in invertebrates. 4. In Locusta, a molecule immunologically and biologically related to amphibian melanophore stimulating hormone has been partially characterized. 5. Enkephalins and enkephalin-related peptides occur in insects and other invertebrates. 6. Peptides belonging to the tachykinin family have been isolated from molluscan (Octopus) salivary glands and from insect nervous tissue (Locusta migratoria). 7. Invertebrate arginine-vasotocin homologs have been isolated from an insect (Locusta migratoria) and from a mollusc (Conus). 8. In Leucophaea, Locusta and Drosophila, peptides resembling those of the vertebrate gastrin/cholecystokinin family have been identified. 9. As the number of different neuro-/gut peptides with possible function(s) as hormone, neurotransmitter or neuromodulator is now estimated to be of the order of a few hundred, more similarities will probably show up in the near future.

  11. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Science.gov (United States)

    Himaya, S. W. A.

    2018-01-01

    Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads. PMID:29522462

  12. Venomics-Accelerated Cone Snail Venom Peptide Discovery

    Directory of Open Access Journals (Sweden)

    S. W. A. Himaya

    2018-03-01

    Full Text Available Cone snail venoms are considered a treasure trove of bioactive peptides. Despite over 800 species of cone snails being known, each producing over 1000 venom peptides, only about 150 unique venom peptides are structurally and functionally characterized. To overcome the limitations of the traditional low-throughput bio-discovery approaches, multi-omics systems approaches have been introduced to accelerate venom peptide discovery and characterisation. This “venomic” approach is starting to unravel the full complexity of cone snail venoms and to provide new insights into their biology and evolution. The main challenge for venomics is the effective integration of transcriptomics, proteomics, and pharmacological data and the efficient analysis of big datasets. Novel database search tools and visualisation techniques are now being introduced that facilitate data exploration, with ongoing advances in related omics fields being expected to further enhance venomics studies. Despite these challenges and future opportunities, cone snail venomics has already exponentially expanded the number of novel venom peptide sequences identified from the species investigated, although most novel conotoxins remain to be pharmacologically characterised. Therefore, efficient high-throughput peptide production systems and/or banks of miniaturized discovery assays are required to overcome this bottleneck and thus enhance cone snail venom bioprospecting and accelerate the identification of novel drug leads.

  13. B-Type Natriuretic Peptide: From Posttranslational Processing to Clinical Measurement

    DEFF Research Database (Denmark)

    Goetze, Jens P

    2012-01-01

    BACKGROUND:Plasma cardiac natriuretic peptides and peptide fragments from their molecular precursors are markers of heart disease. Clinical studies have defined the current diagnostic utility of these markers, whereas biochemical elucidation of peptide structure and posttranslational processing has...... revealed new plasma peptide forms of potential clinical use.CONTENT:Natriuretic propeptide structures undergo variable degrees of endo- and exoproteolytic cleavages as well as amino acid modifications, which leave the plasma phase of the peptides highly heterogeneous and dependent on cardiac......-atrial natriuretic peptide and pro-B-type natriuretic peptide are useful plasma markers in heart failure. New data have defined cardiac myocytes as competent endocrine cells in posttranslational processing and cellular secretion....

  14. Synergistic tumor microenvironment targeting and blood-brain barrier penetration via a pH-responsive dual-ligand strategy for enhanced breast cancer and brain metastasis therapy.

    Science.gov (United States)

    Li, Man; Shi, Kairong; Tang, Xian; Wei, Jiaojie; Cun, Xingli; Long, Yang; Zhang, Zhirong; He, Qin

    2018-05-22

    Cancer associated fibroblasts (CAFs) which shape the tumor microenvironment (TME) and the presence of blood brain barrier (BBB) remain great challenges in targeting breast cancer and its brain metastasis. Herein, we reported a strategy using PTX-loaded liposome co-modified with acid-cleavable folic acid (FA) and BBB transmigrating cell penetrating peptide dNP2 peptide (cFd-Lip/PTX) for enhanced delivery to orthotopic breast cancer and its brain metastasis. Compared with single ligand or non-cleavable Fd modified liposomes, cFd-Lip exhibited synergistic TME targeting and BBB transmigration. Moreover, upon arrival at the TME, the acid-cleavable cFd-Lip/PTX showed sensitive cleavage of FA, which reduced the hindrance effect and maximized the function of both FA and dNP2 peptide. Consequently, efficient targeting of folate receptor (FR)-positive tumor cells and FR-negative CAFs was achieved, leading to enhanced anti-tumor activity. This strategy provides a feasible approach to the cascade targeting of TME and BBB transmigration in orthotopic and metastatic cancer treatment. Copyright © 2018. Published by Elsevier Inc.

  15. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.

    Science.gov (United States)

    Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki

    2016-11-19

    The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  16. Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays

    Directory of Open Access Journals (Sweden)

    Kei Kanie

    2016-11-01

    Full Text Available The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV, an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I, and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.

  17. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    Directory of Open Access Journals (Sweden)

    Mie Kristensen

    2016-01-01

    Full Text Available The hydrophilic nature of peptides and proteins renders them impermeable to cell membranes. Thus, in order to successfully deliver peptide and protein-based therapeutics across the plasma membrane or epithelial and endothelial barriers, a permeation enhancing strategy must be employed. Cell-penetrating peptides (CPPs constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB. CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate cell membranes are believed to involve both endocytosis and direct translocation, but are still widely investigated and discussed. The fact that multiple factors influence the mechanisms responsible for cellular CPP internalization and the lack of sensitive methods for detection of the CPP, and in some cases the cargo, further complicates the design and conduction of conclusive mechanistic studies.

  18. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Robaczewska, Magdalena; Narayan, Ramamurthy; Seigneres, Beatrice

    2005-01-01

    BACKGROUND/AIMS: Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT...... in primary duck hepatocytes (PDH). RESULTS: Both PNAs reproducibly inhibited DHBV RT in a dose-dependent manner with IC(50) of 10nM, whereas up to 600-fold higher concentration of S-ODNs was required for similar inhibition. The PNA targeting the bulge and upper stem of epsilon appeared as more efficient RT...

  19. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212.

    Science.gov (United States)

    León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J

    2015-01-01

    Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  20. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212

    Directory of Open Access Journals (Sweden)

    María A. León-Calvijo

    2015-01-01

    Full Text Available Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i the incorporation of unnatural amino acids in the sequence, the (ii reduction or (iii elongation of the peptide chain length, and (iv synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR and I.4 ((RRWQWR4K2Ahx2C2 exhibit bigger or similar activity against E. coli (MIC 4–33 μM and E. faecalis (MIC 10–33 μM when they were compared with lactoferricin protein (LF and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE. It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.

  1. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    Liu Min; Guo Youmin; Wu Qifei; Yang Junle; Wang Peng; Wang Sicen; Guo Xiaojuan; Qiang Yongqian; Duan Xiaoyi

    2006-01-01

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol -1 s -1 , higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  2. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Haniyeh Ghaffari-Nazari

    Full Text Available Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL in combination with a universal Pan DR epitope (PADRE or CpG-oligodeoxynucleotides (CpG-ODNs as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.

  3. Reactions of tritium atoms with amino acids, deuterated amino acids and mixtures of amino acids. Additivity property and isotope effect

    International Nuclear Information System (INIS)

    Badun, G.A.; Filatov, Eh.S.

    1988-01-01

    Interaction of tritium atoms with glycine (1) and leucine (2) amino acids, deuterated amino acids, their mixtures and glycylleucine (3) peptide in the 77-300 K temperature range is studied in isothermal and gradient regimes. Tagged amino acids were separated from targets after conducting the reaction. At T 150 K are associated with intermolecular transmission of free valence in the mixture of amino acids. Regularities of the reaction found for the mixture of amino acids are conserved for (3) as well, i.e. the peptide bond does not essentially affect the reaction of isotopic exchange conditioned by atomic tritium

  4. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers

    International Nuclear Information System (INIS)

    Noda, Yoshifumi; Goshima, Satoshi; Kajita, Kimihiro; Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki; Bae, Kyongtae T.

    2016-01-01

    Purpose: To evaluate the association between gadoxetic-acid-enhanced magnetic resonance (MR) imaging measurements and laboratory and clinical biomarkers of liver function and fibrosis. Materials and methods: One hundred thirty nine consecutive patients with suspected liver disease or liver tumor underwent gadoxetic-acid-enhanced MR imaging. MR imaging measurements during the hepatobiliary phase included biliary tract structure-to-muscle signal intensity ratio (SIR). These measurements were compared with Child-Pugh classification, end-stage liver disease (MELD) score, and aspartate aminotransferase-to-platelet ratio index (APRI). Results: The SIRs of cystic duct and common bile duct were significantly correlated with Child-Pugh classification (P = 0.012 for cystic duct and P < 0.0001 for common bile duct), MELD score (P = 0.0016 and P = 0.0033), and APRI (P = 0.0022 and P = 0.0015). The sensitivity, specificity, and area under the receiver-operating-characteristic curve were: (74%, 88%, 0.86) with the SIR of common bile duct for the detection of patients with Child-Pugh class B or C; (100%, 87%, 0.94) with the SIR of cystic duct for MELD score (>10); (65%, 76%, 0.70) with the SIR of common bile duct for APRI (>1.5). Conclusion: Gadoxetic-acid contrast enhancement of cystic duct and common bile duct could be used as biomarkers to assess liver function.

  6. Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yoshifumi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Goshima, Satoshi, E-mail: gossy@par.odn.ne.jp [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Kajita, Kimihiro [Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Bae, Kyongtae T. [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-11-15

    Purpose: To evaluate the association between gadoxetic-acid-enhanced magnetic resonance (MR) imaging measurements and laboratory and clinical biomarkers of liver function and fibrosis. Materials and methods: One hundred thirty nine consecutive patients with suspected liver disease or liver tumor underwent gadoxetic-acid-enhanced MR imaging. MR imaging measurements during the hepatobiliary phase included biliary tract structure-to-muscle signal intensity ratio (SIR). These measurements were compared with Child-Pugh classification, end-stage liver disease (MELD) score, and aspartate aminotransferase-to-platelet ratio index (APRI). Results: The SIRs of cystic duct and common bile duct were significantly correlated with Child-Pugh classification (P = 0.012 for cystic duct and P < 0.0001 for common bile duct), MELD score (P = 0.0016 and P = 0.0033), and APRI (P = 0.0022 and P = 0.0015). The sensitivity, specificity, and area under the receiver-operating-characteristic curve were: (74%, 88%, 0.86) with the SIR of common bile duct for the detection of patients with Child-Pugh class B or C; (100%, 87%, 0.94) with the SIR of cystic duct for MELD score (>10); (65%, 76%, 0.70) with the SIR of common bile duct for APRI (>1.5). Conclusion: Gadoxetic-acid contrast enhancement of cystic duct and common bile duct could be used as biomarkers to assess liver function.

  7. Synthesis and antioxidant activity of peptide-based ebselen analogues.

    Science.gov (United States)

    Satheeshkumar, Kandhan; Mugesh, Govindasamy

    2011-04-18

    A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2) , tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a cosubstrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO(2) Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO(2) Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration. Copyright

  8. Thermal behavior of potato starch and water-vaporization behavior of its paste controlled with amino acid and peptide-rich food materials.

    Science.gov (United States)

    Sakauchi, Satoshi; Hattori, Makoto; Yoshida, Tadashi; Yagishita, Takahiro; Ito, Koichi; Akemitsu, Shin-Ichi; Takahashi, Koji

    2010-03-01

    The particular effect of 4 kinds of amino acid and peptide-rich food material (APRM) containing different charged amino acid contents on the gelatinization and retrogradation behavior of potato starch granules and on the water-vaporization behavior was analyzed by differential scanning calorimetry, rapid viscoanalysis, x-ray diffractometry, thermal gravimetry-differential thermal analysis, and pulsed NMR. APRM with a high-charged amino acid content produced unique gelatinization and retrogradation behavior in terms of an elevated gelatinization temperature, reduced viscosity, higher setback, and lower retrograded starch melting enthalpy. The recovered x-ray diffraction intensity decreased with increasing charged amino acid content. APRM with high-charged amino acid content could provide an improved paste having easy vaporization of external water in the swollen starch granules due to the reduced swelling.

  9. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-06-01

    Full Text Available Host defense peptides (HDPs are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.

  10. Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Andersson, Magnus; Nielsen, Peter Eigil

    2014-01-01

    This protocol describes how to monitor individual naturally supercoiled circular DNA plasmids bound via peptide nucleic acid (PNA) handles between a bead and a surface. The protocol was developed for single-molecule investigation of the dynamics of supercoiled DNA, and it allows the investigation...... of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti......-digoxigenin-coated glass cover slide, and one conjugated with biotin for attachment to a submicron-sized streptavidin-coated polystyrene bead. Plasmids are constructed, purified and incubated with the PNA handles. The dynamics of the construct is analyzed by tracking the tethered bead using video microscopy: less...

  11. Light-enhanced acid catalysis over a metal-organic framework.

    Science.gov (United States)

    Xu, Caiyun; Sun, Keju; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2018-03-06

    A Brønsted acid-functionalized metal-organic framework (MOF), MIL-101-SO 3 H, was prepared for acid-engaged esterification reactions. Strikingly, for the first time, the MOF exhibits significantly light-enhanced activity and possesses excellent activity and recyclability, with even higher activity than H 2 SO 4 under light irradiation.

  12. Effects of the Amino Acid Linkers on the Melanoma-Targeting and Pharmacokinetic Properties of Indium-111-labeled Lactam Bridge-Cyclized α-MSH Peptides

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-01-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma targeting and pharmacokinetic properties of novel 111In-labeled lactam bridge-cyclized DOTA-[X]-CycMSHhex {1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2, X=GlyGlyNle, GlyGluNle or NleGlyGlu} peptides. Methods Three novel DOTA-GGNle-CycMSHhex, DOTA-GENle-CycMSHhex and DOTA-NleGE-CycMSHhex peptides were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma targeting and pharmacokinetic properties of 111In-DOTA-GGNle-CycMSHhex and 111In-DOTA-GENle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. Results DOTA-GGNle-CycMSHhex and DOTA-GENle-CycMSHhex displayed 2.1 and 11.5 nM MC1 receptor binding affinities, whereas DOTA-NleGE-CycMSHhex showed 873.4 nM MC1 receptor binding affinity. The introduction of the -GlyGly- linker maintained high melanoma uptake while decreased the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex. The tumor uptake values of 111In-DOTA-GGNle-CycMSHhex were 19.05 ± 5.04 and 18.6 ± 3.56 % injected dose/gram (%ID/g) at 2 and 4 h post-injection. 111In-DOTA-GGNle-CycMSHhex exhibited 28, 32 and 42% less renal uptake values than 111In-DOTA-Nle-CycMSHhex we reported previously, and 61, 65 and 68% less liver uptake values than 111In-DOTA-Nle-CycMSHhex at 2, 4 and 24 h post-injection, respectively. Conclusion The amino acid linkers exhibited the profound effects on the melanoma targeting and pharmacokinetic properties of the 111In-labeled lactam bridge-cyclized α-MSH peptides. Introduction of the -GlyGly- linker maintained high melanoma uptake while reducing the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex, highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic

  13. new caerin-like antibacterial peptide from the venom gland of the ...

    African Journals Online (AJOL)

    Scorpion venom consists of different types of peptides and proteins which are encoded by individual genes. A full length cDNA consisting of 238 base pair nucleotides and encoding 74 amino acids peptide was isolated from the venom gland of the Iranian scorpion Mesobuthus eupeus (Buthidae family). This peptide named ...

  14. Reactivity of glycyl-amino acids toward hydroxyl radical in neutral aqueous solutions

    International Nuclear Information System (INIS)

    Masuda, Takahiro; Iwashita, Naomi; Shinohara, Hiroyuki; Kondo, Masaharu

    1978-01-01

    Rate constants for reactions of hydroxyl radicals with several glycyl-amino acids were determined by a competition method using p-nitrosodimethylailine as a reference compound. For glycyl-aliphatic amino acids, the enhancement of reactivity was observed as compared with the corresponding free amino acids. The reactivity was explained qualitatively in terms of partial reactivities assigned to each C-H bond of the dipeptides. For glycyl-aromatic amino acids, the rate constants were found to be almost equal to those of the corresponding free amino acids. The reactivity of a protein toward hydroxyl radical was well understood by summation of the rate constants, corrected by steric factors, of amino acid residues located on surface of the protein. The enhanced reactivity of the aliphatic peptides was interpreted in terms of the difference in interaction energy between NH 2 - and NH 3 + -forms of an aliphatic amino acid, which was calculated for the system including glycine and hydroxyl radical according to CNDO/2 method. (auth.)

  15. Current trends in mass spectrometry of peptides and proteins: Application to veterinary and sports-doping control.

    Science.gov (United States)

    van den Broek, Irene; Blokland, Marco; Nessen, Merel A; Sterk, Saskia

    2015-01-01

    Detection of misuse of peptides and proteins as growth promoters is a major issue for sport and food regulatory agencies. The limitations of current analytical detection strategies for this class of compounds, in combination with their efficacy in growth-promoting effects, make peptide and protein drugs highly susceptible to abuse by either athletes or farmers who seek for products to illicitly enhance muscle growth. Mass spectrometry (MS) for qualitative analysis of peptides and proteins is well-established, particularly due to tremendous efforts in the proteomics community. Similarly, due to advancements in targeted proteomic strategies and the rapid growth of protein-based biopharmaceuticals, MS for quantitative analysis of peptides and proteins is becoming more widely accepted. These continuous advances in MS instrumentation and MS-based methodologies offer enormous opportunities for detection and confirmation of peptides and proteins. Therefore, MS seems to be the method of choice to improve the qualitative and quantitative analysis of peptide and proteins with growth-promoting properties. This review aims to address the opportunities of MS for peptide and protein analysis in veterinary control and sports-doping control with a particular focus on detection of illicit growth promotion. An overview of potential peptide and protein targets, including their amino acid sequence characteristics and current MS-based detection strategies is, therefore, provided. Furthermore, improvements of current and new detection strategies with state-of-the-art MS instrumentation are discussed for qualitative and quantitative approaches. © 2013 Wiley Periodicals, Inc.

  16. Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Deborah A. [Department; Rokhlenko, Yekaterina [Department; Marine, Jeannette E. [Department; David, Rachelle [Department; Sahoo, Dipankar [Department; Watson, Matthew D. [Department; Koga, Tadanori [Department; Department; Osuji, Chinedum O. [Department; Rudick, Jonathan G. [Department

    2017-10-24

    Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.

  17. Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.

    Science.gov (United States)

    Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L

    2015-06-23

    A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.

  18. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors.

    Science.gov (United States)

    Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J; Friedrich, Alexander W; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł

    2015-09-28

    Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups.

  19. Lumazine Peptides from the Marine-Derived Fungus Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Minjung You

    2015-03-01

    Full Text Available Terrelumamides A (1 and B (2, two new lumazine-containing peptides, were isolated from the culture broth of the marine-derived fungus Aspergillus terreus. From the results of combined spectroscopic and chemical analyses, the structures of these compounds were determined to be linear assemblies of 1-methyllumazine-6-carboxylic acid, an amino acid residue and anthranilic acid methyl ester connected by peptide bonds. These new compounds exhibited pharmacological activity by improving insulin sensitivity, which was evaluated in an adipogenesis model using human bone marrow mesenchymal stem cells. In addition, the compounds exhibited fluorescence changes upon binding to DNA, demonstrating their potential applications to DNA sequence recognition.

  20. Using X-PEEM to study biomaterials: Protein and peptide adsorption to a polystyrene-poly(methyl methacrylate)-b-polyacrylic acid blend

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie O. [Chemistry and Chemical Biology, BIMR, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Hitchcock, Adam P., E-mail: aph@mcmaster.ca [Chemistry and Chemical Biology, BIMR, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Cornelius, Rena M.; Brash, John L. [School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Scholl, Andreas; Doran, Andrew [Advanced Light Source, Berkeley Lab, Berkeley, CA 94720 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We review applications of synchrotron X-PEEM to biomaterials. Black-Right-Pointing-Pointer We report characterization of a PS/PMMA-b-PAA blend surface by AFM and X-PEEM. Black-Right-Pointing-Pointer We report quantitative mapping of protein (HSA) and peptide adsorption on PS/PMMA-b-PAA. Black-Right-Pointing-Pointer We report how this adsorption changes with pH. -- Abstract: Recent synchrotron-based soft X-ray photoemission electron microscopy (X-PEEM) studies of protein and peptide interaction with phase segregated and patterned polymer surfaces in the context of optimization of candidate biomaterials are reviewed and a study of a new system is reported. X-PEEM and atomic force microscopy (AFM) were used to investigate the morphology of a phase-segregated thin film of a polystyrene/poly(methyl methacrylate)-b-polyacrylic acid (PS/PMMA-PAA) blend, and its interactions with negatively charged human serum albumin (HSA) and positively charged SUB-6 (a cationic antimicrobial peptide, RWWKIWVIRWWR-NH{sub 2}) at several pHs. At neutral pH, where the polymer surface is partially negatively charged, HSA and SUB-6 peptide showed contrasting adsorption behavior which is interpreted in terms of differences in their electrostatic interactions with the polymer surface.

  1. Peptide Macrocycles Featuring a Backbone Secondary Amine: A Convenient Strategy for the Synthesis of Lipidated Cyclic and Bicyclic Peptides on Solid Support

    DEFF Research Database (Denmark)

    Oddo, Alberto; Münzker, Lena; Hansen, Paul Robert

    2015-01-01

    A convenient strategy for the on-resin synthesis of macrocyclic peptides (3- to 13-mers) via intramolecular halide substitution by a diamino acid is described. The method is compatible with standard Fmoc/tBu SPPS and affords a tail-to-side-chain macrocyclic peptide featuring an endocyclic secondary...

  2. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...... (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders...... amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests...

  3. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  4. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening.

    Science.gov (United States)

    Oda, Akifumi; Noji, Ikuhiko; Fukuyoshi, Shuichi; Takahashi, Ohgi

    2015-12-10

    Because the aspartic acid (Asp) residues in proteins are occasionally isomerized in the human body, not only l-α-Asp but also l-β-Asp, D-α-Asp and D-β-Asp are found in human proteins. In these isomerized aspartic acids, the proportion of D-β-Asp is the largest and the proportions of l-β-Asp and D-α-Asp found in human proteins are comparatively small. To explain the proportions of aspartic acid isomers, the possibility of an enzyme able to repair l-β-Asp and D-α-Asp is frequently considered. The protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PIMT) is considered one of the possible repair enzymes for l-β-Asp and D-α-Asp. Human PIMT is an enzyme that recognizes both l-β-Asp and D-α-Asp, and catalyzes the methylation of their side chains. In this study, the binding modes between PIMT and peptide substrates containing l-β-Asp or D-α-Asp residues were investigated using computational protein-ligand docking and molecular dynamics simulations. The results indicate that carboxyl groups of both l-β-Asp and D-α-Asp were recognized in similar modes by PIMT and that the C-terminal regions of substrate peptides were located in similar positions on PIMT for both the l-β-Asp and D-α-Asp peptides. In contrast, for peptides containing l-α-Asp or D-β-Asp residues, which are not substrates of PIMT, the computationally constructed binding modes between PIMT and peptides greatly differed from those between PIMT and substrates. In the nonsubstrate peptides, not inter- but intra-molecular hydrogen bonds were observed, and the conformations of peptides were more rigid than those of substrates. Thus, the in silico analytical methods were able to distinguish substrates from nonsubstrates and the computational methods are expected to complement experimental analytical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    Science.gov (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  6. Cloning and heterologous expression of the antibiotic peptide (ABP) genes from Rhizopus oligosporus NBRC 8631.

    Science.gov (United States)

    Yamada, Osamu; Sakamoto, Kazutoshi; Tominaga, Mihoko; Nakayama, Tasuku; Koseki, Takuya; Fujita, Akiko; Akita, Osamu

    2005-03-01

    We carried out protein sequencing of purified Antibiotic Peptide (ABP), and cloned two genes encoding this peptide as abp1 and abp2, from Rhizopus oligosporus NBRC 8631. Both genes contain an almost identical 231-bp segment, with only 3 nucleotide substitutions, encoding a 77 amino acid peptide. The abp gene product comprises a 28 amino acid signal sequence and a 49 amino acid mature peptide. Northern blot analysis showed that at least one of the abp genes is transcribed in R. oligosporus NBRC 8631. A truncated form of abp1 encoding only the mature peptide was fused with the alpha-factor signal peptide and engineered for expression in Pichia pastoris SMD1168H. Culture broth of the recombinant Pichia displayed ABP activity against Bacillus subtilis NBRC 3335 after induction of heterologous gene expression. This result indicates that mature ABP formed the active structure without the aid of other factors from R. oligosporus, and was secreted.

  7. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    Energy Technology Data Exchange (ETDEWEB)

    Berges, J [Universite Pierre et Marie Curie, UMR 7616, Laboratoire de Chimie Theorique, 75005 Paris (France); Trouillas, P [EA 4021 Faculte de Pharmacie, 2 Rue du Dr. Marcland, 87025 Limoges Cedex (France); Houee-Levin, C, E-mail: jb@lct.jussieu.fr, E-mail: patrick.trouillas@unilim.fr, E-mail: chantal.houee@u-psud.fr [Universite Paris Sud, UMR 8000, Laboratoire de Chimie Physique, 91405 Orsay (France) (France)

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH{sup -} elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  8. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    International Nuclear Information System (INIS)

    Berges, J; Trouillas, P; Houee-Levin, C

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH - elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  9. Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin.

    Science.gov (United States)

    Yin, C; Wong, J H; Ng, T B

    2014-01-01

    Lactoferricin and lactoferrampin, peptides derived from the whey protein lactoferrin, are antimicrobial agents with a promising prospect and are currently one of the research focuses. In this review, a basic introduction including location and solution structures of these two peptides is given. Their biological activities encompassing antiviral, antibacterial, antifungal and anti-inflammatory activities with possible mechanisms are mentioned. In terms of modification studies, research about identification of their active derivatives and crucial amino acid residues is also discussed. Various attempts at modification of lactoferricin and lactoferrampin such as introducing big hydrophobic side-chains; employing special amino acids for synthesis; N-acetylization, amidation, cyclization and peptide chimera are summarized. The studies on lactoferricin-lactoferrampin chimera are discussed in detail. Future prospects of lactoferricin and lactoferrampin are covered.

  10. InverPep: A database of invertebrate antimicrobial peptides.

    Science.gov (United States)

    Gómez, Esteban A; Giraldo, Paula; Orduz, Sergio

    2017-03-01

    The aim of this work was to construct InverPep, a database specialised in experimentally validated antimicrobial peptides (AMPs) from invertebrates. AMP data contained in InverPep were manually curated from other databases and the scientific literature. MySQL was integrated with the development platform Laravel; this framework allows to integrate programming in PHP with HTML and was used to design the InverPep web page's interface. InverPep contains 18 separated fields, including InverPep code, phylum and species source, peptide name, sequence, peptide length, secondary structure, molar mass, charge, isoelectric point, hydrophobicity, Boman index, aliphatic index and percentage of hydrophobic amino acids. CALCAMPI, an algorithm to calculate the physicochemical properties of multiple peptides simultaneously, was programmed in PERL language. To date, InverPep contains 702 experimentally validated AMPs from invertebrate species. All of the peptides contain information associated with their source, physicochemical properties, secondary structure, biological activity and links to external literature. Most AMPs in InverPep have a length between 10 and 50 amino acids, a positive charge, a Boman index between 0 and 2 kcal/mol, and 30-50% hydrophobic amino acids. InverPep includes 33 AMPs not reported in other databases. Besides, CALCAMPI and statistical analysis of InverPep data is presented. The InverPep database is available in English and Spanish. InverPep is a useful database to study invertebrate AMPs and its information could be used for the design of new peptides. The user-friendly interface of InverPep and its information can be freely accessed via a web-based browser at http://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  11. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  12. A multiple multicomponent approach to chimeric peptide-peptoid podands.

    Science.gov (United States)

    Rivera, Daniel G; León, Fredy; Concepción, Odette; Morales, Fidel E; Wessjohann, Ludger A

    2013-05-10

    The success of multi-armed, peptide-based receptors in supramolecular chemistry traditionally is not only based on the sequence but equally on an appropriate positioning of various peptidic chains to create a multivalent array of binding elements. As a faster, more versatile and alternative access toward (pseudo)peptidic receptors, a new approach based on multiple Ugi four-component reactions (Ugi-4CR) is proposed as a means of simultaneously incorporating several binding and catalytic elements into organizing scaffolds. By employing α-amino acids either as the amino or acid components of the Ugi-4CRs, this multiple multicomponent process allows for the one-pot assembly of podands bearing chimeric peptide-peptoid chains as appended arms. Tripodal, bowl-shaped, and concave polyfunctional skeletons are employed as topologically varied platforms for positioning the multiple peptidic chains formed by Ugi-4CRs. In a similar approach, steroidal building blocks with several axially-oriented isocyano groups are synthesized and utilized to align the chimeric chains with conformational constrains, thus providing an alternative to the classical peptido-steroidal receptors. The branched and hybrid peptide-peptoid appendages allow new possibilities for both rational design and combinatorial production of synthetic receptors. The concept is also expandable to other multicomponent reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches.

    Science.gov (United States)

    Iwaniak, Anna; Minkiewicz, Piotr; Darewicz, Małgorzata; Hrynkiewicz, Monika

    2016-11-01

    Taste is one of the factors based on which the organism makes the selection of what to ingest. It also protects humans from ingesting toxic compounds and is one of the main attributes when thinking about food quality. Five basic taste sensations are recognized by humans: bitter, salty, sour, sweet, and umami. The taste of foods is affected by some molecules of some specific chemical nature. One of them are peptides derived from food proteins. Although they are not the major natural compounds originating from food sources that are responsible for the taste, they are in the area of scientific research due to the specific composition of amino acids which are well-known for their sensory properties. Literature data implicate that sweet, bitter, and umami are the tastes attributable to peptides. Moreover, the bitter peptide tastants are the dominant among the other tastes. Additionally, other biological activities like, e.g., inhibiting enzymes that regulate the body functions and acting as preventive food agents of civilization diseases, are also associated with the taste of peptides. The advance in information technologies has contributed to the elaboration of internet archives (databases) as well as in silico tools for the analysis of biological compounds. It also concerns peptides - namely taste carriers originating from foods. Thus, our paper provides a summary of knowledge about peptides as tastants with special attention paid to the following aspects: a) basis of taste perception, b) taste peptides detected in food protein sequences with special emphasis put on the role of bitter peptides, c) peptides that may enhance/suppress the taste of foods, d) databases as well as bioinformatic approaches suitable to study the taste of peptides, e) taste-taste interactions, f) basis of sensory analysis in the evaluation of the taste of molecules, including peptides, and g) the methodology applied to reduce/eliminate the undesired taste of peptides. The list of taste

  14. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Science.gov (United States)

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Huang, Ying; Wooliver, Craig; Macy, Sallie; Heidel, Eric; Gupta, Neil; Lee, Angela; Rader, Brianna; Martin, Emily B; Kennel, Stephen J

    2013-01-01

    Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  15. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity

    Directory of Open Access Journals (Sweden)

    Anselm H.C. Horn

    2015-11-01

    Full Text Available The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  16. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    Science.gov (United States)

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  17. Preservation of peptide moieties in three Spanish sulfur-rich Tertiary kerogens

    Energy Technology Data Exchange (ETDEWEB)

    Rio, J.C. del [Consejo Superior de Investigaciones Cientificas, Seville (Spain). Inst. de Recursos Naturales y Agrobiologia; Olivella, M.A.; Heras, F.X.D. de las [Escola Universitaria Politecnica de Manresa, Catalonia (Spain); Knicker, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Bodenkunde

    2004-09-01

    Thermochemolysis with tetramethylammonium hydroxide (TMAH) and solid-state {sup 15}N NMR were utilized for the characterization of refractory organic nitrogen in Tertiary Spanish kerogens. The samples included sulfur-rich oil shales from the Ribesalbes (Serravallian), Libros (Tortonian) and Cerdanya (Tortonian) basins. Analysis using solid state {sup 15}N NMR showed that part of the refractory nitrogen in the kerogens corresponds to amide groups. Moreover, the release of amino acid derivatives after pyrolysis in the presence of TMAH indicated that this amide-N arose from peptide moieties. The amino acids released from the kerogens were dominated by high amounts of glycine and alanine. Minor amounts of aspartic acid, serine, {alpha}-aminobutyric acid and other unidentified amino acids were also detected. Because proteinaceous structures, including small peptides, are generally considered as being highly sensitive to diagenetic degradation, encapsulation of labile peptide material into aliphatic structures in S-rich kerogens (probably via lipid sulfurization) has been proposed to explain the survival of these moieties. Substantial amounts of fatty acids (as methyl esters) were also released from all the kerogens after pyrolysis/TMAH, indicating their highly aliphatic character. The production of both fatty acids and amino acids from the kerogens supports the encapsulation process. (author)

  18. Designing anticancer peptides by constructive machine learning.

    Science.gov (United States)

    Grisoni, Francesca; Neuhaus, Claudia; Gabernet, Gisela; Müller, Alex; Hiss, Jan; Schneider, Gisbert

    2018-04-21

    Constructive machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a generative model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on alpha-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sildenafil citrate (Viagra) enhances vasodilatation by atrial natriuretic peptide in normal dogs.

    Science.gov (United States)

    Ishikura, Fuminobu; Beppu, Shintaro; Asanuma, Toshihiko; Seward, James B; Khandheria, Bijoy K

    2007-12-01

    Sildenafil citrate (Viagra) is a selective inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase type 5, which might enhance the vasorelaxant and natriuretic actions of atrial natriuretic peptide (ANP) in patients with heart failure. The objective of this study was to examine the combined effect of Viagra on hemodynamic changes during infusion of exogenous ANP. Healthy male beagles were used to assess systemic blood pressure, pulmonary artery pressure (PAP), and plasma levels of cGMP. After hemodynamic variables were measured, 0.1 microg.kg(-1).min(-1) of ANP was given during this study. One hour after initiating infusion of ANP, 2 mg/kg of sildenafil citrate or vehicle was given orally via a nasogastric tube. Hemodynamic changes were measured before and 1 h after these administrations. Mean systemic and PAP decreased during infusion of ANP, and further decreased after sildenafil citrate administration, however, mean systemic blood pressure decreased within 10 mmHg. Plasma levels of cGMP also increased after sildenafil citrate administration. In normal dogs, sildenafil citrate enhances the vasodilator effect of ANP by increasing the cGMP level, however, the concomitant use of sildenafil citrate with ANP will not induce severe hypotension.

  20. Whey Peptide-Based Formulas With ω-3 Fatty Acids Are Protective in Lipopolysaccharide-Mediated Sepsis.

    Science.gov (United States)

    Tsutsumi, Rie; Horikawa, Yousuke T; Kume, Katsuyoshi; Tanaka, Katsuya; Kasai, Asuka; Kadota, Takako; Tsutsumi, Yasuo M

    2015-07-01

    Sepsis and septic shock syndrome are among the leading causes of death in critically ill patients. Lipopolysaccharide (LPS) released by bacteria within the colon may translocate across a compromised epithelium, leading to oxidative stress, inflammation, sepsis, and eventually death. We examined the effects of a whey-based enteral formula high in cysteine (antioxidant precursor) and the addition of ω-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), against a mouse model of LPS-induced sepsis. Mice were fed either a whey-based diet with EPA-DHA (PAF), a whey-based diet without EPA-DHA (PSTD), or a casein-based control diet (CONT). Mice fed PAF or PSTD were protected against LPS-induced weight loss. Whey-based diets suppressed inflammatory cytokine release and oxidative stress damage. Furthermore, PAF and PSTD were able to inhibit autophagy, a mechanism in which the cell recycles damaged organelles. These anti-inflammatory and antioxidative effects of PSTD and PAF resulted in decreased liver inflammation and intestinal damage and promoted protective microbiota within the intestines. These data suggest a clinical role for whey peptide-based diets in promoting healing and recovery in critically ill patients. © 2014 American Society for Parenteral and Enteral Nutrition.

  1. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben

    2016-01-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing. (paper)

  2. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    Science.gov (United States)

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  3. Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide

    International Nuclear Information System (INIS)

    Dijkgraaf, Ingrid; Liu, Shuang; Kruijtzer, John A.W.; Soede, Annemieke C.; Oyen, Wim J.G.; Liskamp, Rob M.J.; Corstens, Frans H.M.; Boerman, Otto C.

    2007-01-01

    Introduction: Due to the selective expression of the α v β 3 integrin in tumors, radiolabeled arginine-glycine-aspartic acid (RGD) peptides are attractive candidates for tumor targeting. Minor modifications of these peptides could have a major impact on in vivo characteristics. In this study, we systematically investigated the effects of linker modification between two cyclic RGD sequences and DOTA (1,4,7,10-tetraazadodecane-N,N',N ' ,N'''-tetraacetic acid) on the in vitro and in vivo characteristics of the tracer. Methods: A dimeric RGD peptide was synthesized and conjugated either directly with DOTA or via different linkers: PEG 4 (polyethylene glycol), glutamic acid or lysine. The RGD peptides were radiolabeled with 111 In, and their in vitro and in vivo α v β 3 -binding characteristics were determined. Results: LogP values varied between -2.82±0.06 and -3.95±0.33. The IC 50 values for DOTA-E-[c(RGDfK)] 2 , DOTA-PEG 4 -E-[c(RGDfK)] 2 , DOTA-E-E-[c(RGDfK)] 2 and DOTA-K-E-[c(RGDfK)] 2 were comparable. Two hours after injection, the tumor uptakes of the 111 In-labeled compounds were not significantly different. The kidney accumulation of [ 111 In]-DOTA-K-E-[c(RGDfK)] 2 [4.05±0.20% of the injected dose per gram (ID/g)] was significantly higher as compared with that of [ 111 In]-DOTA-E-[c(RGDfK)] 2 (2.63±0.19% ID/g; P 111 In]-DOTA-E-E-[c(RGDfK)] 2 (2.16±0.21% ID/g; P 111 In]-DOTA-E-E-[c(RGDfK)] 2 (2.12±0.09% ID/g) was significantly higher as compared with that of [ 111 In]-DOTA-E-[c(RGDfK)] 2 (1.64±0.1% ID/g; P 111 In]-DOTA-K-E-[c(RGDfK)] 2 (1.52±0.04% ID/g; P v β 3 and tumor uptake. Insertion of lysine caused enhanced kidney retention; that of glutamic acid also resulted in enhanced retention in the kidneys. PEG 4 appeared to be the most suitable linker as compared with glutamic acid and lysine because it has the highest tumor-to-blood ratio and the lowest uptake in the kidney and liver

  4. Side Chain Cyclized Aromatic Amino Acids

    DEFF Research Database (Denmark)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel

    2016-01-01

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute...... the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected...... to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors....

  5. Enhancement of uranyl fluorescence using trimesic acid: Ligand sensitization and co-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, S. [Chemistry Group, Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Viswanathan, K.S., E-mail: vish@igcar.gov.in [Chemistry Group, Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2011-09-15

    Trimesic acid (TMA) was shown to sensitize and enhance uranyl fluorescence in aqueous medium, with the enhancement being a maximum at pH 5.0. Fluorescence spectra and lifetime data together suggest that TMA complexes with uranyl (UO{sub 2}{sup 2+}). The fluorescence of UO{sub 2}{sup 2+} in its acid complex is further enhanced by more than two orders of magnitude following the addition of Y{sup 3+}; a process referred to as co-fluorescence, leading to the possibility of detecting uranium at sub ng/mL level. The present study demonstrates, for the first time, fluorescence enhancement of the uranyl species due to co-fluorescence. - Highlights: > Trimesic acid was shown to sensitize and enhance the fluorescence of uranium in aqueous medium. > This ligand also exhibited co-fluorescence of uranium with Y{sup 3+}. > To the best of our knowledge this is the first report of co-fluorescence in uranium. > The enhancement of uranium fluorescence, resulted in detection limits in the ng/mL regime.

  6. Bacterial fatty acids enhance recovery from the dauer larva in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Tiffany K Kaul

    Full Text Available The dauer larva is a specialized dispersal stage in the nematode Caenorhabditis elegans that allows the animal to survive starvation for an extended period of time. The dauer does not feed, but uses chemosensation to identify new food sources and to determine whether to resume reproductive growth. Bacteria produce food signals that promote recovery of the dauer larva, but the chemical identities of these signals remain poorly defined. We find that bacterial fatty acids in the environment augment recovery from the dauer stage under permissive conditions. The effect of increased fatty acids on different dauer constitutive mutants indicates a role for insulin peptide secretion in coordinating recovery from the dauer stage in response to fatty acids. These data suggest that worms can sense the presence of fatty acids in the environment and that elevated levels can promote recovery from dauer arrest. This may be important in the natural environment where the dauer larva needs to determine whether the environment is appropriate to support reproductive growth following dauer exit.

  7. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.

    Science.gov (United States)

    Elliott, Tim; Williams, Anthony

    2005-10-01

    Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.

  8. Pyridyl-alanine as a Hydrophilic, Aromatic Element in Peptide Structural Optimization.

    Science.gov (United States)

    Mroz, Piotr A; Perez-Tilve, Diego; Liu, Fa; Gelfanov, Vasily; DiMarchi, Richard D; Mayer, John P

    2016-09-08

    Glucagon (Gcg) 1 serves a seminal physiological role in buffering against hypoglycemia, but its poor biophysical properties severely complicate its medicinal use. We report a series of novel glucagon analogues of enhanced aqueous solubility and stability at neutral pH, anchored by Gcg[Aib16]. Incorporation of 3- and 4-pyridyl-alanine (3-Pal and 4-Pal) enhanced aqueous solubility of glucagon while maintaining biological properties. Relative to native hormone, analogue 9 (Gcg[3-Pal6,10,13, Aib16]) demonstrated superior biophysical character, better suitability for medicinal purposes, and comparable pharmacology against insulin-induced hypoglycemia in rats and pigs. Our data indicate that Pal is a versatile surrogate to natural aromatic amino acids and can be employed as an alternative or supplement with isoelectric adjustment to refine the biophysical character of peptide drug candidates.

  9. Degradation of peptides by gamma-irradiation, 2

    Energy Technology Data Exchange (ETDEWEB)

    Oku, Tadatake; Yoshida, Shigeki; Kondo, Mitsumasa; Ishida, Tomoharu; Fukui, Manabu; Ito, Teiichiro (Nihon Univ., Tokyo (Japan). Coll. of Agriculture and Veterinary Medicine)

    1990-10-01

    The radiolytic products of two kinds of dipeptides containing aromatic amino acid, gly-L-tyr and L-tyr-gly in 1 mM aqueous solution in the presence of air were examined by gamma-irradiation at doses of about 6, 12 and 25 kGy. Peptide samples in aqueous solution were analyzed by HPLC and GC after gamma-irradiation. Amides which the amounts of formation was very small, were collected several times by an amino acid autoanalyzer and isolated by HPLC. The ninhydrin-positive products from gly-L-tyr were detected gly, tyr, dopa, asp, ammonia, methylamine, ethylamine and glycinamide. The products from L-tyr-gly were tyr, gly, dopa, asp, ammonia, methylamine and ethylamine, but tyrosinamide was not confirmed. The total amounts of ninhydrin-positive products formed were less than the decreasing amount of each peptide at every irradiation dose. Methanal and ethanal were detected in both peptides. A radiolytic pathway of gly-L-tyr and L-tyr-gly was estimated from these results. (author).

  10. Summarization on the synthesis and radionuclide-labeling of peptide nucleic acid for an oligonucleotide analogue

    International Nuclear Information System (INIS)

    Song, Hongtao; Zhang, Huaming; Gao, Hui

    2009-04-01

    Peptide nucleic acid (PNA), which is one kind of antisense nucleic acid compounds and an oligonucleotide analogue that binds strongly to DNA and RNA in a sequence specific manner, has its unique advantages in the field of molecular diagnostics and treatment of diseases. Now, people gradually attach more importance to PNA. To optimize the application of PNA in genetic re- search and therapy, a great number of backbone modifications on the newly- type structures of PNA were synthesized to improve its physicochemical proper- ties, such as hybridization speciality, solubility in biofluid, or cell permeability. The modified PNA labeled with radionuclides, which can obtain the aim at specific target and minimal non-target trauma, has important role in research and application of tumorous genitherapy. Here a review on the basic synthesis idea and several primary synthetic methods of PNA analogs was given, and also correlative studies and expectation on the compounds belonging to PNA series labeled with radionuclides were included. (authors)

  11. Selenium as an alternative peptide label - comparison to fluorophore-labelled penetratin

    DEFF Research Database (Denmark)

    Hyrup Møller, Laura; Bahnsen, Jesper Søborg; Nielsen, Hanne Mørck

    2015-01-01

    lysates, primarily the intact peptide (PenMSe, TAMRA-PenMSe or TAMRA-Pen) was observed. Selenium labelling caused minimal alteration of the physicochemical properties of the peptide and allowed for absolute quantitative determination of cellular uptake by inductively coupled plasma mass spectrometry......In the present study, the impact on peptide properties of labelling peptides with the fluorophore TAMRA or the selenium (Se) containing amino acid SeMet was evaluated. Three differently labelled variants of the cell-penetrating peptide (CPP) penetratin (Pen) were synthesized, PenMSe, TAMRA....... Selenium is thus proposed as a promising alternative label for quantification of peptides in general, altering the properties of the peptide to a minor extent as compared to commonly used peptide labels....

  12. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  13. Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry.

    Science.gov (United States)

    Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew

    2014-10-01

    Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    International Nuclear Information System (INIS)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha

    2016-01-01

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly(N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size (D h ) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV–visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.Graphical Abstract

  15. Application of biomimetic HPLC to estimate lipophilicity, protein and phospholipid binding of potential peptide therapeutics

    Directory of Open Access Journals (Sweden)

    Klara Livia Valko

    2018-06-01

    Full Text Available Peptide therapeutics are new modalities offering several challenges to drug discovery. They are generally less stable and permeable in vivo. The characterization of their lipophilicity cannot be carried out using the traditional in silico or wet octanol/water partition coefficients. The prediction of their in vivo distribution and permeability is also challenging. In this paper, it is demonstrated that the biomimetic properties such as lipophilicity, protein and phospholipid binding can be easily assessed by HPLC using chemically bonded protein and immobilized artificial membrane (IAM stationary phases. The obtained properties for a set of potential therapeutic peptides with 3 to 33 amino acids have been analysed and it was found that similar characteristics of the properties could be observed as for small molecule drugs. The albumin binding showed correlation with their measured lipophilicity on the C-18 stationary phase with acidic peptides showing stronger than expected albumin binding. The (IAM chromatography revealed peptide membrane affinity, which was stronger for positively charged peptides (containing arginine and showed correlation to the alpha-1-acid glycoprotein (AGP binding, which was also stronger for positively charged compounds. The in vivo volume of distribution and drug efficiency of the peptides have been estimated using the models developed for small molecules. One of the candidate linear peptides has been assessed in various cellular and in vivo assays and the results have confirmed the estimated cell partition and brain to plasma ratio. It can be demonstrated, that up to 21 amino acids, the peaks of the peptides obtained on the protein phase were symmetrical and narrow. The interaction of larger peptides with the protein stationary phases resulted in wide peaks showing multiple equilibrium processes with slow kinetics during chromatography. The larger peptides showed narrow and symmetrical peaks on the IAM column enabling

  16. Nanocarriers Conjugated with Cell Penetrating Peptides: New Trojan Horses by Modern Ulysses.

    Science.gov (United States)

    Zappavigna, Silvia; Misso, Gabriella; Falanga, Annarita; Perillo, Emiliana; Novellino, Ettore; Galdiero, Massimiliano; Grieco, Paolo; Caraglia, Michele; Galdiero, Stefania

    Nanomedicine has opened the way to the design of more efficient diagnostics and therapeutics. Moreover, recent literature has illustrated the use of short cationic and/or amphipathic peptides, known as cell-penetrating peptides (CPPs), for mediating advanced drug delivery. CPPs exploit their ability to enter cells and enhance the uptake of many cargoes ranging from small molecules to proteins. The distinctive properties of nanocarriers (NC) based systems provide unforeseen benefits over pure drugs for biomedical applications and constitute a challenging research field particularly focused on imaging and delivery; nonetheless, several problems have to be overcome to make them a viable option in clinic. The use of CPPs improves significantly their delivery to specific intracellular targets and thus readily contributes to their use both for effective tumor therapy and gene therapy. A key issue is related to their mechanism of uptake, because although classical CPPs enhance NCs' uptake, the entry mechanism involves the endocytic pathway, which means that the delivered material is sequestered within vesicles and only a small amount will escape from this environment and reach the desired target. In this review, we will summarize recent advances in the use of CPP for enhanced delivery of nanocarriers, nucleic acids, and drugs, we will discuss their uptake mechanisms and we will describe novel approaches to improve endosomal escape of internalized nanosystems.

  17. A Maple Program That Illustrates the Effect of pH on Peptide Charge

    Science.gov (United States)

    Sokolik, Charles W.

    1998-11-01

    One topic covered early in an introductory biochemistry course is acid-base chemistry and the Henderson-Hasselbalch equation (buffer equation). Using this equation a biochemistry student can determine the partial charges of amino acids in a peptide chain. This is an important concept to master for a student who is learning the structure-function relationship in proteins. The program described in this paper, written for Maple V, release 3 (Waterloo Maple Software, Waterloo, ON, Canada), uses the Henderson-Hasselbalch equation to calculate the partial charges of individual amino acids and the net charge of a peptide over the pH range 0 to 14. The amino acid sequence of a peptide is entered and an animated histogram is displayed illustrating the partial charge of the amino acids over the pH range. A graph showing the net charge of the peptide from pH 0 to 14 is also given. The program has been used with success in an introductory biochemistry course as an in-class demonstration as well as for individual homework assignments. The program is available through the Web page of the Journal of Chemical Education.

  18. On-resin conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) congeners.

    Science.gov (United States)

    Mullen, Daniel G; Weigel, Benjamin; Barany, George; Distefano, Mark D

    2010-05-01

    The Acm protecting group for the thiol functionality of cysteine is removed under conditions (Hg(2+)) that are orthogonal to the acidic milieu used for global deprotection in Fmoc-based solid-phase peptide synthesis. This use of a toxic heavy metal for deprotection has limited the usefulness of Acm in peptide synthesis. The Acm group may be converted to the Scm derivative that can then be used as a reactive intermediate for unsymmetrical disulfide formation. It may also be removed by mild reductive conditions to generate unprotected cysteine. Conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) derivatives in solution is often problematic because the sulfenyl chloride reagent used for this conversion may react with the sensitive amino acids tyrosine and tryptophan. In this protocol, we report a method for on-resin Acm to Scm conversion that allows the preparation of Cys(Scm)-containing peptides under conditions that do not modify other amino acids. (c) 2010 European Peptide Society and John Wiley & Sons, Ltd.

  19. Rapid Identification of Staphylococcus aureus and Methicillin Resistance by Flow Cytometry Using a Peptide Nucleic Acid Probe ▿

    Science.gov (United States)

    Shrestha, Nabin K.; Scalera, Nikole M.; Wilson, Deborah A.; Brehm-Stecher, Byron; Procop, Gary W.

    2011-01-01

    A total of 56 Staphylococcus aureus isolates incubated for 2 h in the presence or absence of oxacillin were analyzed by flow cytometry after labeling with an S. aureus-specific peptide nucleic acid (PNA) probe. Two defined ratios, the paired signal count ratio (PSCR) and the gate signal count ratio (GSCR), differentiated methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) with sensitivities of 100% each and specificities of 96% and 100%, respectively. PMID:21795508

  20. Phage display peptide libraries: deviations from randomness and correctives

    Science.gov (United States)

    Ryvkin, Arie; Ashkenazy, Haim; Weiss-Ottolenghi, Yael; Piller, Chen; Pupko, Tal; Gershoni, Jonathan M

    2018-01-01

    Abstract Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications. PMID:29420788