WorldWideScience

Sample records for pcr assays targeting

  1. Targeted resequencing and variant validation using pxlence PCR assays

    Directory of Open Access Journals (Sweden)

    Frauke Coppieters

    2016-01-01

    Full Text Available The advent of next-generation sequencing technologies had a profound impact on molecular diagnostics. PCR is a popular method for target enrichment of disease gene panels. Using our proprietary primer-design pipeline, primerXL, we have created almost one million assays covering over 98% of the human exome. Here we describe the assay specification and both in silico and wet-lab validation of a selected set of 2294 assays using both next-generation sequencing and Sanger sequencing. Using a universal PCR protocol without optimization, these assays result in high coverage uniformity and limited non-specific coverage. In addition, data indicates a positive correlation between the predictive in silico specificity score and the amount of assay non-specific coverage.

  2. Generic detection of poleroviruses using an RT-PCR assay targeting the RdRp coding sequence.

    Science.gov (United States)

    Lotos, Leonidas; Efthimiou, Konstantinos; Maliogka, Varvara I; Katis, Nikolaos I

    2014-03-01

    In this study a two-step RT-PCR assay was developed for the generic detection of poleroviruses. The RdRp coding region was selected as the primers' target, since it differs significantly from that of other members in the family Luteoviridae and its sequence can be more informative than other regions in the viral genome. Species specific RT-PCR assays targeting the same region were also developed for the detection of the six most widespread poleroviral species (Beet mild yellowing virus, Beet western yellows virus, Cucurbit aphid-borne virus, Carrot red leaf virus, Potato leafroll virus and Turnip yellows virus) in Greece and the collection of isolates. These isolates along with other characterized ones were used for the evaluation of the generic PCR's detection range. The developed assay efficiently amplified a 593bp RdRp fragment from 46 isolates of 10 different Polerovirus species. Phylogenetic analysis using the generic PCR's amplicon sequence showed that although it cannot accurately infer evolutionary relationships within the genus it can differentiate poleroviruses at the species level. Overall, the described generic assay could be applied for the reliable detection of Polerovirus infections and, in combination with the specific PCRs, for the identification of new and uncharacterized species in the genus. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. CRISPR is an optimal target for the design of specific PCR assays for salmonella enterica serotypes Typhi and Paratyphi A.

    Directory of Open Access Journals (Sweden)

    Laetitia Fabre

    Full Text Available BACKGROUND: Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. METHODOLOGY: Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats, as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. PRINCIPAL FINDINGS: We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. CONCLUSIONS: The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.

  4. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  5. Multiplex PCR-based assay for detection of Bordetella pertussis in nasopharyngeal swab specimens.

    Science.gov (United States)

    Wadowsky, R M; Michaels, R H; Libert, T; Kingsley, L A; Ehrlich, G D

    1996-11-01

    A multiplex PCR-based assay was developed for the detection of Bordetella pertussis in nasopharyngeal swab specimens. The assay simultaneously amplified two separate DNA targets (153 and 203 bp) within a B. pertussis repetitive element and a 438-bp target within the beta-actin gene of human DNA (PCR amplification control). PCR products were detected by a sensitive and specific liquid hybridization gel retardation assay. A total of 496 paired nasopharyngeal swab specimens were tested by both the PCR-based assay and culture. Although 30 (6%) of the specimens inhibited the amplification of the beta-actin target, in all 29 specimens studied, the inhibition disappeared on repeat testing or was easily overcome with a 1:8 dilution or less of specimen digest. Of the 495 specimen pairs yielding a final evaluable result by the PCR-based assay, 19.0% were positive by the PCR-based assay, whereas 13.9% were positive by culture (P < 0.0001). After resolving the PCR-positive, culture-negative results by testing an additional aliquot from these specimens by the multiplex PCR-based assay, the PCR-based assay had a sensitivity and specificity of 98.9 and 99.7%, respectively, compared with values of 73.4 and 100%, respectively, for culture. In comparison with patients with culture-confirmed pertussis, those with PCR-positive, culture-negative results were older and more likely to have had prolonged cough, immunization with pertussis vaccine, or treatment with erythromycin. This multiplex PCR-based assay is substantially more sensitive than culture and identifies specimens that contain inhibitors of PCR.

  6. Improved molecular detection of Babesia infections in animals using a novel quantitative real-time PCR diagnostic assay targeting mitochondrial DNA.

    Science.gov (United States)

    Qurollo, Barbara A; Archer, Nikole R; Schreeg, Megan E; Marr, Henry S; Birkenheuer, Adam J; Haney, Kaitlin N; Thomas, Brittany S; Breitschwerdt, Edward B

    2017-03-07

    Babesiosis is a protozoal, tick transmitted disease found worldwide in humans, wildlife and domesticated animals. Commonly used approaches to diagnose babesiosis include microscopic examination of peripheral blood smears, detection of circulating antibodies and PCR. To screen and differentiate canine Babesia infections many PCR assays amplify the 18S rRNA gene. These sequences contain hypervariable regions flanked by highly conserved regions allowing for amplification of a broad-range of Babesia spp. However, differences in the 18S rRNA gene sequence of distantly related clades can make it difficult to design assays that will amplify all Babesia species while excluding the amplification of other eukaryotes. By targeting Babesia mitochondrial genome (mtDNA), we designed a novel three primer qPCR with greater sensitivity and broader screening capabilities to diagnose and differentiate Babesia spp. Using 13 Babesia mtDNA sequences, a region spanning two large subunit rRNA gene fragments (lsu5-lsu4) was aligned to design three primers for use in a qPCR assay (LSU qPCR) capable of amplifying a wide range of Babesia spp. Plasmid clones were generated and used as standards to determine efficiency, linear dynamic range and analytical sensitivity. Animals naturally infected with vector-borne pathogens were tested retrospectively and prospectively to determine relative clinical sensitivity and specificity by comparing the LSU qPCR to an established 18S rDNA qPCR. The LSU qPCR efficiencies ranged between 92 and 100% with the limit of detection at five copies/reaction. The assay did not amplify mammalian host or other vector-borne pathogen gDNA except Cytauxzoon felis (a feline protozoal pathogen). The LSU qPCR assay amplified 12 different Babesia. sp. and C. felis from 31/31 (100%) archived samples, whereas the 18S qPCR amplified only 26/31 (83.9%). By prospective analysis, 19/394 diagnostic accessions (4.8%) were LSU qPCR positive, compared to 11/394 (2.8%) 18S rDNA qPCR

  7. Multi-laboratory evaluations of the performance of Catellicoccus marimammalium PCR assays developed to target gull fecal sources

    Science.gov (United States)

    Sinigalliano, Christopher D.; Ervin, Jared S.; Van De Werfhorst, Laurie C.; Badgley, Brian D.; Ballestée, Elisenda; Bartkowiaka, Jakob; Boehm, Alexandria B.; Byappanahalli, Muruleedhara N.; Goodwin, Kelly D.; Gourmelon, Michèle; Griffith, John; Holden, Patricia A.; Jay, Jenny; Layton, Blythe; Lee, Cheonghoon; Lee, Jiyoung; Meijer, Wim G.; Noble, Rachel; Raith, Meredith; Ryu, Hodon; Sadowsky, Michael J.; Schriewer, Alexander; Wang, Dan; Wanless, David; Whitman, Richard; Wuertz, Stefan; Santo Domingo, Jorge W.

    2013-01-01

    Here we report results from a multi-laboratory (n = 11) evaluation of four different PCR methods targeting the 16S rRNA gene of Catellicoccus marimammalium originally developed to detect gull fecal contamination in coastal environments. The methods included a conventional end-point PCR method, a SYBR® Green qPCR method, and two TaqMan® qPCR methods. Different techniques for data normalization and analysis were tested. Data analysis methods had a pronounced impact on assay sensitivity and specificity calculations. Across-laboratory standardization of metrics including the lower limit of quantification (LLOQ), target detected but not quantifiable (DNQ), and target not detected (ND) significantly improved results compared to results submitted by individual laboratories prior to definition standardization. The unit of measure used for data normalization also had a pronounced effect on measured assay performance. Data normalization to DNA mass improved quantitative method performance as compared to enterococcus normalization. The MST methods tested here were originally designed for gulls but were found in this study to also detect feces from other birds, particularly feces composited from pigeons. Sequencing efforts showed that some pigeon feces from California contained sequences similar to C. marimammalium found in gull feces. These data suggest that the prevalence, geographic scope, and ecology of C. marimammalium in host birds other than gulls require further investigation. This study represents an important first step in the multi-laboratory assessment of these methods and highlights the need to broaden and standardize additional evaluations, including environmentally relevant target concentrations in ambient waters from diverse geographic regions.

  8. A MIQE-compliant real-time PCR assay for Aspergillus detection.

    Directory of Open Access Journals (Sweden)

    Gemma L Johnson

    Full Text Available The polymerase chain reaction (PCR is widely used as a diagnostic tool in clinical laboratories and is particularly effective for detecting and identifying infectious agents for which routine culture and microscopy methods are inadequate. Invasive fungal disease (IFD is a major cause of morbidity and mortality in immunosuppressed patients, and optimal diagnostic criteria are contentious. Although PCR-based methods have long been used for the diagnosis of invasive aspergillosis (IA, variable performance in clinical practice has limited their value. This shortcoming is a consequence of differing sample selection, collection and preparation protocols coupled with a lack of standardisation of the PCR itself. Furthermore, it has become clear that the performance of PCR-based assays in general is compromised by the inadequacy of experimental controls, insufficient optimisation of assay performance as well as lack of transparency in reporting experimental details. The recently published "Minimum Information for the publication of real-time Quantitative PCR Experiments" (MIQE guidelines provide a blueprint for good PCR assay design and unambiguous reporting of experimental detail and results. We report the first real-time quantitative PCR (qPCR assay targeting Aspergillus species that has been designed, optimised and validated in strict compliance with the MIQE guidelines. The hydrolysis probe-based assay, designed to target the 18S rRNA DNA sequence of Aspergillus species, has an efficiency of 100% (range 95-107%, a dynamic range of at least six orders of magnitude and limits of quantification and detection of 6 and 0.6 Aspergillus fumigatus genomes, respectively. It does not amplify Candida, Scedosporium, Fusarium or Rhizopus species and its clinical sensitivity is demonstrated in histological material from proven IA cases, as well as concordant PCR and galactomannan data in matched broncho-alveolar lavage and blood samples. The robustness

  9. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    Science.gov (United States)

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  10. Multiplex real-time PCR assay for Legionella species.

    Science.gov (United States)

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated Bacteroidetes for Microbial Source Tracking across Sixteen Countries on Six Continents

    Science.gov (United States)

    2013-01-01

    Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods. PMID:23755882

  12. Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets.

    Science.gov (United States)

    Kline, Margaret C; Romsos, Erica L; Duewer, David L

    2016-02-16

    Polymerase chain reaction (PCR) multiplexed assays perform best when the input quantity of template DNA is controlled to within about a factor of √2. To help ensure that PCR assays yield consistent results over time and place, results from methods used to determine DNA quantity need to be metrologically traceable to a common reference. Many DNA quantitation systems can be accurately calibrated with solutions of DNA in aqueous buffer. Since they do not require external calibration, end-point limiting dilution technologies, collectively termed "digital PCR (dPCR)", have been proposed as suitable for value assigning such DNA calibrants. The performance characteristics of several commercially available dPCR systems have recently been documented using plasmid, viral, or fragmented genomic DNA; dPCR performance with more complex materials, such as human genomic DNA, has been less studied. With the goal of providing a human genomic reference material traceably certified for mass concentration, we are investigating the measurement characteristics of several dPCR systems. We here report results of measurements from multiple PCR assays, on four human genomic DNAs treated with four endonuclease restriction enzymes using both chamber and droplet dPCR platforms. We conclude that dPCR does not estimate the absolute number of PCR targets in a given volume but rather the number of accessible and amplifiable targets. While enzymatic restriction of human genomic DNA increases accessibility for some assays, in well-optimized PCR assays it can reduce the number of amplifiable targets and increase assay variability relative to uncut sample.

  13. A one-step, real-time PCR assay for rapid detection of rhinovirus.

    Science.gov (United States)

    Do, Duc H; Laus, Stella; Leber, Amy; Marcon, Mario J; Jordan, Jeanne A; Martin, Judith M; Wadowsky, Robert M

    2010-01-01

    One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID(50) (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform.

  14. Molecular surveillance of true nontypeable Haemophilus influenzae: an evaluation of PCR screening assays.

    Science.gov (United States)

    Binks, Michael J; Temple, Beth; Kirkham, Lea-Ann; Wiertsema, Selma P; Dunne, Eileen M; Richmond, Peter C; Marsh, Robyn L; Leach, Amanda J; Smith-Vaughan, Heidi C

    2012-01-01

    Unambiguous identification of nontypeable Haemophilus influenzae (NTHi) is not possible by conventional microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus haemolyticus (Hh); however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as PCR for species discrimination. Here we assess the ability of previously published and novel PCR-based assays to identify true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22), Hh (n = 27) or equivocal (n = 11), were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCR-based assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3) and the conventional iga PCR assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction. Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H. influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.

  15. Molecular surveillance of true nontypeable Haemophilus influenzae: an evaluation of PCR screening assays.

    Directory of Open Access Journals (Sweden)

    Michael J Binks

    Full Text Available BACKGROUND: Unambiguous identification of nontypeable Haemophilus influenzae (NTHi is not possible by conventional microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus haemolyticus (Hh; however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as PCR for species discrimination. METHODOLOGY/PRINCIPAL FINDINGS: Here we assess the ability of previously published and novel PCR-based assays to identify true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22, Hh (n = 27 or equivocal (n = 11, were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCR-based assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3 and the conventional iga PCR assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction. CONCLUSIONS/SIGNIFICANCE: Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H. influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.

  16. Calibrated user-friendly reverse transcriptase-PCR assay

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Rammer, P

    1998-01-01

    We report a competitive reverse transcriptase-PCR (RT-PCR) assay and a calibrated user-friendly RT-PCR assay (CURT-PCR) for epidermal growth factor receptor (EGFR) mRNA. A calibrator was prepared from isolated rat liver RNA, and the amount of EGFR mRNA was determined by competitive RT-PCR. In CUR...

  17. Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays

    Directory of Open Access Journals (Sweden)

    Yuan Xin Goay

    2016-01-01

    Full Text Available Salmonella Typhi (S. Typhi causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S. Typhi with other enteric pathogens was performed, and 6 S. Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico. Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro. The diagnostic sensitivities and specificities of each assay were determined using 39 S. Typhi, 62 non-Typhi Salmonella, and 10 non-Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39 and 100% specificity (0/72. The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.

  18. Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays.

    Science.gov (United States)

    Goay, Yuan Xin; Chin, Kai Ling; Tan, Clarissa Ling Ling; Yeoh, Chiann Ying; Ja'afar, Ja'afar Nuhu; Zaidah, Abdul Rahman; Chinni, Suresh Venkata; Phua, Kia Kien

    2016-01-01

    Salmonella Typhi ( S . Typhi) causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S . Typhi with other enteric pathogens was performed, and 6 S . Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico . Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro . The diagnostic sensitivities and specificities of each assay were determined using 39 S . Typhi, 62 non-Typhi Salmonella , and 10 non- Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39) and 100% specificity (0/72). The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.

  19. A multiplex real-time PCR assay for routine diagnosis of bacterial vaginosis

    NARCIS (Netherlands)

    Kusters, J. G.; Reuland, E. A.; Bouter, S.; Koenig, P.; Dorigo-Zetsma, J. W.

    2015-01-01

    A semi-quantitative multiplex PCR assay for the diagnosis of bacterial vaginosis (BV) was evaluated in a prospective study in a population of Dutch women with complaints of abnormal vaginal discharge. The PCR targets Gardnerella vaginalis, Atopobium vaginae, Megasphaera phylotype 1, Lactobacillus

  20. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Pilatti, Marcia M.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: marciapilatti@yahoo.com.br, e-mail: antero@cdtn.br; Ferreira, Sidney A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Parasitologia], e-mail: saninoalmeida@gmail.com

    2009-07-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with {sup 32}P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  1. Comparison of kDNA PCR-hybridization assay with three PCR methods for canines visceral Leishmaniasis diagnosis

    International Nuclear Information System (INIS)

    Pilatti, Marcia M.; Andrade, Antero S.R.; Ferreira, Sidney A.

    2009-01-01

    The sensitivity of the kDNA PCR-Hybridization assay, which uses radioactive DNA probes (labeled with 32 P), was compared with three conventional PCR methods used for canine visceral leishmaniasis diagnosis. All PCR methods had two steps: a first amplification followed by hybridization or by a new amplification (nested or semi nested). Two methods (kDNA PCR-Hybridization and kDNA snPCR) used primers addressed to kinetoplast minicircles and the other two methods to the coding (LnPCR) and intergenic noncoding regions (ITS-1 nPCR) of the ribosomal rRNA genes. The comparison was accomplished in two groups of 23 infected dogs using samples collected by the conjunctival swab procedure. In the Group 1 the DNA was extracted from cotton swabs by phenol-chloroform and in Group 2 by boiling. The most efficient PCR methods in the Group 1 were those based on kDNA targets. The kDNA PCR-Hybridization was able to detect parasites in 22/23 dogs (95.6%) and in 40/46 samples (86.9%). The kDNA snPCR was positive for 21/23 dogs (91.3%) and for 40/46 samples (86.9%). The positivities of the kDNA based methods were significantly higher than the positivities verified for the methods based on ribosomal rRNA genes (p<0.05). In the Group 2 the kDNA PCR- Hybridization showed a better performance detecting parasites in 18/23 dogs (78.3%) and in 31/46 samples (67.4%), significantly higher than the other three methods (p<0.05). The higher sensitivity of the minicircle kDNA based assays reported by others was confirmed in this study and kDNA PCR-Hybridization showed the best sensitivity among the assays evaluated. (author)

  2. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree

    2012-09-23

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  3. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree; Waters, Alicia M.; Bej, Gautam A.; Bej, Asim K.; Mojib, Nazia

    2012-01-01

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  4. Development and validation of a duplex real-time PCR assay for the diagnosis of equine piroplasmosis.

    Science.gov (United States)

    Lobanov, Vladislav A; Peckle, Maristela; Massard, Carlos L; Brad Scandrett, W; Gajadhar, Alvin A

    2018-03-02

    Equine piroplasmosis (EP) is an economically significant infection of horses and other equine species caused by the tick-borne protozoa Theileria equi and Babesia caballi. The long-term carrier state in infected animals makes importation of such subclinical cases a major risk factor for the introduction of EP into non-enzootic areas. Regulatory testing for EP relies on screening of equines by serological methods. The definitive diagnosis of EP infection in individual animals will benefit from the availability of sensitive direct detection methods, for example, when used as confirmatory assays for non-negative serological test results. The objectives of this study were to develop a real-time quantitative polymerase chain reaction (qPCR) assay for simultaneous detection of both agents of EP, perform comprehensive evaluation of its performance and assess the assay's utility for regulatory testing. We developed a duplex qPCR targeting the ema-1 gene of T. equi and the 18S rRNA gene of B. caballi and demonstrated that the assay has high analytical sensitivities for both piroplasm species. Validation of the duplex qPCR on samples from 362 competitive enzyme-linked immunosorbent assay (cELISA)-negative horses from Canada and the United States yielded no false-positive reactions. The assay's performance was further evaluated using samples collected from 430 horses of unknown EP status from a highly endemic area in Brazil. This set of samples was also tested by a single-target 18S rRNA qPCR for T. equi developed at the OIE reference laboratory for EP in Japan, and a previously published single-target 18S rRNA qPCR for B. caballi whose oligonucleotides we adopted for use in the duplex qPCR. Matching serum samples were tested for antibodies to these parasites using cELISA. By the duplex qPCR, T. equi-specific 18S rRNA qPCR and cELISA, infections with T. equi were detected in 87.9% (95% confidence interval, CI: 84.5-90.7%), 90.5% (95% CI: 87.3-92.3%) and 87.4% (95% CI: 84

  5. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Chinen, Isabel; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  6. Determining the analytical specificity of PCR-based assays for the diagnosis of IA: What is Aspergillus?

    Science.gov (United States)

    Morton, C Oliver; White, P Lewis; Barnes, Rosemary A; Klingspor, Lena; Cuenca-Estrella, Manuel; Lagrou, Katrien; Bretagne, Stéphane; Melchers, Willem; Mengoli, Carlo; Caliendo, Angela M; Cogliati, Massimo; Debets-Ossenkopp, Yvette; Gorton, Rebecca; Hagen, Ferry; Halliday, Catriona; Hamal, Petr; Harvey-Wood, Kathleen; Jaton, Katia; Johnson, Gemma; Kidd, Sarah; Lengerova, Martina; Lass-Florl, Cornelia; Linton, Chris; Millon, Laurence; Morrissey, C Orla; Paholcsek, Melinda; Talento, Alida Fe; Ruhnke, Markus; Willinger, Birgit; Donnelly, J Peter; Loeffler, Juergen

    2017-06-01

    A wide array of PCR tests has been developed to aid the diagnosis of invasive aspergillosis (IA), providing technical diversity but limiting standardisation and acceptance. Methodological recommendations for testing blood samples using PCR exist, based on achieving optimal assay sensitivity to help exclude IA. Conversely, when testing more invasive samples (BAL, biopsy, CSF) emphasis is placed on confirming disease, so analytical specificity is paramount. This multicenter study examined the analytical specificity of PCR methods for detecting IA by blind testing a panel of DNA extracted from a various fungal species to explore the range of Aspergillus species that could be detected, but also potential cross reactivity with other fungal species. Positivity rates were calculated and regression analysis was performed to determine any associations between technical specifications and performance. The accuracy of Aspergillus genus specific assays was 71.8%, significantly greater (P Aspergillus species (47.2%). For genus specific assays the most often missed species were A. lentulus (25.0%), A. versicolor (24.1%), A. terreus (16.1%), A. flavus (15.2%), A. niger (13.4%), and A. fumigatus (6.2%). There was a significant positive association between accuracy and using an Aspergillus genus PCR assay targeting the rRNA genes (P = .0011). Conversely, there was a significant association between rRNA PCR targets and false positivity (P = .0032). To conclude current Aspergillus PCR assays are better suited for detecting A. fumigatus, with inferior detection of most other Aspergillus species. The use of an Aspergillus genus specific PCR assay targeting the rRNA genes is preferential. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    Science.gov (United States)

    Benacer, Douadi; Zain, Siti Nursheena Mohd; Lewis, John W; Khalid, Mohd Khairul Nizam Mohd; Thong, Kwai Lin

    2017-01-01

    This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains. Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively. The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water. Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.

  8. How to evaluate PCR assays for the detection of low-level DNA

    DEFF Research Database (Denmark)

    Banch-Clausen, Frederik; Urhammer, Emil; Rieneck, Klaus

    2015-01-01

    distribution describing parameters for singleplex real-time PCR-based detection of low-level DNA. The model was tested against experimental data of diluted cell-free foetal DNA. Also, the model was compared with a simplified formula to enable easy predictions. The model predicted outcomes that were...... not significantly different from experimental data generated by testing of cell-free foetal DNA. Also, the simplified formula was applicable for fast and accurate assay evaluation. In conclusion, the model can be applied for evaluation of sensitivity of real-time PCR-based detection of low-level DNA, and may also......High sensitivity of PCR-based detection of very low copy number DNA targets is crucial. Much focus has been on design of PCR primers and optimization of the amplification conditions. Very important are also the criteria used for determining the outcome of a PCR assay, e.g. how many replicates...

  9. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  10. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    Science.gov (United States)

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  11. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    Science.gov (United States)

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This mPCR

  12. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus".

    Science.gov (United States)

    Selvaraj, Vijayanandraj; Maheshwari, Yogita; Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg; Yokomi, Raymond

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium "Candidatus Liberibacter asiaticus" (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer.

  13. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.

    Science.gov (United States)

    Denman, Stuart E; McSweeney, Christopher S

    2006-12-01

    Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population.

  14. Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses.

    Directory of Open Access Journals (Sweden)

    Qing Fan

    Full Text Available Foot-and-mouth disease virus (FMDV, Bluetongue virus (BTV, Vesicular stomatitis Virus (VSV, Bovine viral diarrheal (BVDV, Bovine rotavirus (BRV, and Bovine herpesvirus 1 (IBRV are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis

  15. A semiquantitative PCR assay for assessing Perkinsus marinus infections in the eastern oyster, Crassostrea virginica.

    Science.gov (United States)

    Marsh, A G; Gauthier, J D; Vasta, G R

    1995-08-01

    A 3.2-kb fragment of Perkinsus marinus DNA was cloned and sequenced. A noncoding domain was identified and targeted for the development of a semiquantitative polymerase chain reaction (PCR) assay for the presence of P. marinus in eastern oyster tissues. The assay involves extracting total DNA from oyster hemolymph and using 1 microgram of that DNA as template in a stringent PCR amplification with oligonucleotide primers that are specific for the P. marinus 3.2-kb fragment. With this assay, we can detect 10 pg of total P. marinus DNA per 1 microgram of oyster hemocyte DNA with ethidium bromide (EtBr) staining of agarose gels, 100 fg total P. marinus DNA with Southern blot autoradiography, and 10 fg of total P. marinus DNA with dot-blot hybridizations. We have used the sensitivity of the PCR assay to develop a method for estimating the level of P. marinus DNA in oyster hemolymph and have successfully applied this technique to gill tissues. Our semiquantitative assay uses a dilution series to essentially titrate the point at which a P. marinus DNA target is no longer amplified in a sample. We refer to this technique as "dilution endpoint" PCR. Using hemocytes obtained by withdrawing a 1-ml sample of hemolymph, this assay provides a nondestructive methodology for rapidly screening large numbers of adult oysters for the presence and quantification of P. marinus infection levels. This technique is applicable to other tissues (gills) and could potentially be applied to DNA extracts of whole larvae or spat.

  16. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea.

    Science.gov (United States)

    Reich, J D; Alexander, T W; Chatterton, S

    2016-05-01

    Traditional culture methods for identifying the plant fungal pathogens Sclerotinia sclerotiorum (Lib.) de Bary and Botrytis cinerea Pers.:Fr. are slow and laborious. The goal of this study was to develop a multiplex real-time PCR (qPCR) assay to detect and quantify DNA from S. sclerotiorum and B. cinerea. A primer set (SsIGS_5) for S. sclerotiorum was designed that targeted the intergenic spacer (IGS) regions of the ribosomal DNA. Addition of a probe to the assay increased its specificity: when the primer/probe set was tested against 21 fungal species (35 strains), amplification was detected from all S. sclerotiorum strains and no other species. For qPCR, the SsIGS_5 primer and probe set exhibited a linear range from 7·0 ng to 0·07 pg target DNA (R(2)  = 0·99). SsIGS_5 was then multiplexed with a previously published primer/probe set for B. cinerea to develop a high-throughput method for the detection and quantification of DNA from both pathogens. When multiplexed, the sensitivity and specificity of both assays were not different from individual qPCR reactions. The multiplex assay is currently being used to detect and quantify S. sclerotiorum and B. cinerea DNA from aerosol samples collected in commercial seed alfalfa fields. A primer and probe set for the quantification of Sclerotinia sclerotiorum DNA in a PCR assay was developed. The probe-based nature of this assay signifies an improvement over previous assays for this species by allowing multiplex reactions while maintaining high sensitivity. The primer/probe set was used in a multiplex real-time PCR assay for the quantification of S. sclerotiorum and Botrytis cinerea DNA, enabling rapid analysis of environmental samples. In crops susceptible to both pathogens, this multiplex assay can be used to quickly quantify the presence of each pathogen. © 2016 Her Majesty the Queen in Right of Canada © 2016 The Society for Applied Microbiology. Reproduced with the permission of the Office of the

  17. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    Science.gov (United States)

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  18. Comparison of three PCR-based assays for SNP genotyping in sugar beet

    Science.gov (United States)

    Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...

  19. Evaluation of a real-time PCR assay based on the single-copy SAG1 gene for the detection of Toxoplasma gondii.

    Science.gov (United States)

    Yu, Haijie; Huang, Bin; Zhuo, Xunhui; Chen, Xueqiu; Du, Aifang

    2013-11-08

    Real-time PCR-based detection of Toxoplasma gondii is very sensitive and convenient for diagnosing toxoplasmosis. However, the performance of the PCR assays could be influenced by the target gene chosen. Here we evaluate a real-time PCR assay using double-stranded DNA dyes (SYBR(®) Green I assay) with a new set of primers targeting the SAG1 gene for the fast and specific detection of T. gondii. The assay showed higher sensitivity than conventional PCR protocols using T. gondii DNA as template. The detection limit of the developed real-time PCR assay was in the order of 1 tachyzoite. The assay was also assessed by experimentally infected mice and showed positive results for blood (25%), spleen (50%) and lung (50%) as early as 1 dpi. The specificity of the assay was confirmed by using DNA from Neospora caninum, Escherichia coli, Babesia bovis, Trypanosoma brucei, Cryptosporidium parvum, and Toxocara canis. Assay applicability was successfully tested in blood samples collected from slaughtered pigs. These results indicate that, based on SYBR(®) green I, the quantitative SAG1 assay may also be useful in the study of the pathogenicity, immunoprophylaxis, and treatment of T. gondii. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    Science.gov (United States)

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  1. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  2. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  3. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  4. Human papillomavirus detection and typing using a nested-PCR-RFLP assay.

    Science.gov (United States)

    Coser, Janaina; Boeira, Thaís da Rocha; Fonseca, André Salvador Kazantzi; Ikuta, Nilo; Lunge, Vagner Ricardo

    2011-01-01

    It is clinically important to detect and type human papillomavirus (HPV) in a sensitive and specific manner. Development of a nested-polymerase chain reaction-restriction fragment length polymorphism (nested-PCR-RFLP) assay to detect and type HPV based on the analysis of L1 gene. Analysis of published DNA sequence of mucosal HPV types to select sequences of new primers. Design of an original nested-PCR assay using the new primers pair selected and classical MY09/11 primers. HPV detection and typing in cervical samples using the nested-PCR-RFLP assay. The nested-PCR-RFLP assay detected and typed HPV in cervical samples. Of the total of 128 clinical samples submitted to simple PCR and nested-PCR for detection of HPV, 37 (28.9%) were positive for the virus by both methods and 25 samples were positive only by nested-PCR (67.5% increase in detection rate compared with single PCR). All HPV positive samples were effectively typed by RFLP assay. The method of nested-PCR proved to be an effective diagnostic tool for HPV detection and typing.

  5. Multiplex Real-Time PCR Assay Targeting Eight Parasites Customized to the Korean Population: Potential Use for Detection in Diarrheal Stool Samples from Gastroenteritis Patients.

    Directory of Open Access Journals (Sweden)

    Eun Jeong Won

    Full Text Available Intestinal parasitic diseases occur worldwide and can cause diarrhea or gastroenteritis; however, their diagnosis is quite difficult, especially in low-endemism countries. We developed a multiplex real-time PCR assay for detection of eight intestinal parasites and prospectively evaluated it for patients with gastroenteritis. The assay targeted Cryptosporidium parvum, Giardia lamblia, Entamoeba histolytica, Blastocystis hominis, Dientamoeba fragilis, Clonorchis sinensis, Metagonimus yokogawai, and Gymnophalloides seoi. Performance characteristics were evaluated based on recovery after DNA extraction, analytical sensitivity, specificity, reproducibility, cross-reactivity, and interference characteristics. Clinical performance was validated against microscopy on 123 diarrheal samples. The assay demonstrated strong correlations between DNA concentrations and Ct values (R2, 0.9924-0.9998, and had a high PCR efficiency (83.3%-109.5%. Polymerase chain reactions detected as few as 10-30 copies of genomic DNA, and coefficient of variance was 0-7%. There was no cross-reactivity to the other 54 microorganisms tested. Interference occurred only in presence of high concentrations of erythrocytes or leukocytes. This assay had a higher correct identification rate (100.0% vs. 90.2% and lower incorrect ID rate (0.0% vs. 9.8% when compared to microscopy. Overall, this assay showed a higher sensitivity (100.0%; 95% confidence interval [CI] of 80.5-100.0 than microscopy (29.4%; 95% CI 10.31-55.96, and the specificity levels were comparable for both methods (100.0%; 95% CI 96.58-100.0. This newly developed multiplex real-time PCR assay offers a potential use for detecting intestinal parasitic pathogens customized to the Korean population.

  6. An optimized one-tube, semi-nested PCR assay for Paracoccidioides brasiliensis detection.

    Science.gov (United States)

    Pitz, Amanda de Faveri; Koishi, Andrea Cristine; Tavares, Eliandro Reis; Andrade, Fábio Goulart de; Loth, Eduardo Alexandre; Gandra, Rinaldo Ferreira; Venancio, Emerson José

    2013-01-01

    Herein, we report a one-tube, semi-nested-polymerase chain reaction (OTsn-PCR) assay for the detection of Paracoccidioides brasiliensis. We developed the OTsn-PCR assay for the detection of P. brasiliensis in clinical specimens and compared it with other PCR methods. The OTsn-PCR assay was positive for all clinical samples, and the detection limit was better or equivalent to the other nested or semi-nested PCR methods for P. brasiliensis detection. The OTsn-PCR assay described in this paper has a detection limit similar to other reactions for the molecular detection of P. brasiliensis, but this approach is faster and less prone to contamination than other conventional nested or semi-nested PCR assays.

  7. Viability-qPCR for detecting Legionella: Comparison of two assays based on different amplicon lengths.

    Science.gov (United States)

    Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M

    2015-08-01

    Two different real-time quantitative PCR (PMA-qPCR) assays were applied for quantification of Legionella spp. by targeting a long amplicon (approx 400 bp) of 16S rRNA gene and a short amplicon (approx. 100 bp) of 5S rRNA gene. Purified DNA extracts from pure cultures of Legionella spp. and from environmental water samples were quantified. Application of the two assays to quantify Legionella in artificially contaminated water achieved that both assays were able to detect Legionella over a linear range of 10 to 10(5) cells ml(-1). A statistical analysis of the standard curves showed that both assays were linear with a good correlation coefficient (R(2) = 0.99) between the Ct and the copy number. Amplification with the reference assay was the most effective for detecting low copy numbers (1 bacterium per PCR mixture). Using selective quantification of viable Legionella by the PMA-qPCR method we obtained a greater inhibition of the amplification of the 400-bp 16S gene fragment (Δlog(10) = 3.74 ± 0.39 log(10) GU ml(-1)). A complete inhibition of the PCR signal was obtained when heat-killed cells in a concentration below 1 × 10(5) cells ml(-1) were pretreated with PMA. Analysing short amplicon sizes led to only 2.08 log reductions in the Legionella dead-cell signal. When we tested environmental water samples, the two qPCR assays were in good agreement according to the kappa index (0.741). Applying qPCR combined with PMA treatment, we also obtained a good agreement (kappa index 0.615). The comparison of quantitative results shows that both assays yielded the same quantification sensitivity (mean log = 4.59 vs mean log = 4.31). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Authentication of beef, carabeef, chevon, mutton and pork by a PCR-RFLP assay of mitochondrial cytb gene.

    Science.gov (United States)

    Kumar, Deepak; Singh, S P; Karabasanavar, Nagappa S; Singh, Rashmi; Umapathi, V

    2014-11-01

    Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168-776 bp) of mitochondrial cytochrome-b (cytb) gene for targeted species was designed which yielded a 609 bp PCR amplicon. Further, restriction enzyme digestion of the amplicons with Alu1 and Taq1 restriction enzymes resulted in a distinctive digestion pattern that was able to discriminate each species. The repeatability of the PCR-RFLP assay was validated ten times with consistent results observed. The developed assay can be used in routine diagnostic laboratories to differentiate the meats of closely related domestic livestock species namely cattle from buffalo and sheep from goat.

  9. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    Science.gov (United States)

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  10. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    Science.gov (United States)

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  11. Comparative Study of a Real-Time PCR Assay Targeting senX3-regX3 versus Other Molecular Strategies Commonly Used in the Diagnosis of Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Rocio Sanjuan-Jimenez

    Full Text Available Nucleic acid amplification tests are increasingly used for the rapid diagnosis of tuberculosis. We undertook a comparative study of the efficiency and diagnostic yield of a real-time PCR senX3-regX3 based assay versus the classical IS6110 target and the new commercial methods.This single-blind prospective comparative study included 145 consecutive samples: 76 from patients with culture-confirmed tuberculosis (86.8% pulmonary and 13.2% extrapulmonary tuberculosis: 48.7% smear-positive and 51.3% smear-negative and 69 control samples (24 from patients diagnosed with non-tuberculous mycobacteria infections and 45 from patients with suspected tuberculosis which was eventually ruled out. All samples were tested by two CE-marked assays (Xpert®MTB/RIF and AnyplexTM plus MTB/NTM and two in-house assays targeting senX3-regX3 and the IS6110 gene.The detection limit ranged from 1.00E+01 fg for Anyplex, senX3-regX3 and IS6110 to 1.00E+04 fg for Xpert. All three Xpert, senX3-regX3 and IS6110 assays detected all 37 smear-positive cases. Conversely, Anyplex was positive in 34 (91.9% smear-positive cases. In patients with smear-negative tuberculosis, differences were observed between the assays; Xpert detected 22 (56.41% of the 39 smear-negative samples, Anyplex 24 (61.53%, senX3-regX3 28 (71.79% and IS6110 35 (89.74%. Xpert and senX3-regX3 were negative in all control samples; however, the false positive rate was 8.7% and 13% for Anyplex and IS6110, respectively. The overall sensitivity was 77.6%, 85.7%, 77.3% and 94.7% and the specificity was 100%, 100%, 90.8% and 87.0% for the Xpert, senX3-regX3, Anyplex and IS6110 assays, respectively.Real-time PCR assays targeting IS6110 lack the desired specificity. The Xpert MTB/RIF and in-house senX3-regX3 assays are both sensitive and specific for the detection of MTBC in both pulmonary and extrapulmonary samples. Therefore, the real time PCR senX3-regX3 based assay could be a useful and complementary tool in the

  12. Design of a multiplex PCR assay for the simultaneous detection and confirmation of Neisseria gonorrhoeae.

    LENUS (Irish Health Repository)

    O'Callaghan, Isabelle

    2010-05-01

    To improve the detection of Neisseria gonorrhoeae by designing a multiplex PCR assay using two N gonorrhoeae-specific genes as targets, thereby providing detection and confirmation of a positive result simultaneously.

  13. An optimized one-tube, semi-nested PCR assay for Paracoccidioides brasiliensis detection

    Directory of Open Access Journals (Sweden)

    Amanda de Faveri Pitz

    2013-12-01

    Full Text Available Introduction Herein, we report a one-tube, semi-nested-polymerase chain reaction (OTsn-PCR assay for the detection of Paracoccidioides brasiliensis. Methods We developed the OTsn-PCR assay for the detection of P. brasiliensis in clinical specimens and compared it with other PCR methods. Results The OTsn-PCR assay was positive for all clinical samples, and the detection limit was better or equivalent to the other nested or semi-nested PCR methods for P. brasiliensis detection. Conclusions The OTsn-PCR assay described in this paper has a detection limit similar to other reactions for the molecular detection of P. brasiliensis, but this approach is faster and less prone to contamination than other conventional nested or semi-nested PCR assays.

  14. Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays

    Directory of Open Access Journals (Sweden)

    Kelly J. Henrickson

    2009-10-01

    Full Text Available Assays to simultaneously detect multiple potential agents of bioterrorism are limited. Two multiplex PCR and RT-PCR enzyme hybridization assays (mPCR-EHA, mRT-PCR-EHA were developed to simultaneously detect many of the CDC category “A” bioterrorism agents. The “Bio T” DNA assay was developed to detect: Variola major (VM, Bacillus anthracis (BA, Yersinia pestis (YP, Francisella tularensis (FT and Varicella zoster virus (VZV. The “Bio T” RNA assay (mRT-PCR-EHA was developed to detect: Ebola virus (Ebola, Lassa fever virus (Lassa, Rift Valley fever (RVF, Hantavirus Sin Nombre species (HSN and dengue virus (serotypes 1-4. Sensitivity and specificity of the 2 assays were tested by using genomic DNA, recombinant plasmid positive controls, RNA transcripts controls, surrogate (spiked clinical samples and common respiratory pathogens. The analytical sensitivity (limit of detection (LOD of the DNA asssay for genomic DNA was 1×100~1×102 copies/mL for BA, FT and YP. The LOD for VZV whole organism was 1×10-2 TCID50/mL. The LOD for recombinant controls ranged from 1×102~1×103copies/mL for BA, FT, YP and VM. The RNA assay demonstrated LOD for RNA transcript controls of 1×104~1×106 copies/mL without extraction and 1×105~1×106 copies/mL with extraction for Ebola, RVF, Lassa and HSN. The LOD for dengue whole organisms was ~1×10-4 dilution for dengue 1 and 2, 1×104 LD50/mL and 1×102 LD50/mL for dengue 3 and 4. The LOD without extraction for recombinant plasmid DNA controls was ~1×103 copies/mL (1.5 input copies/reaction for Ebola, RVF, Lassa and HSN. No cross-reactivity of primers and probes used in both assays was detected with common respiratory pathogens or between targeted analytes. Clinical sensitivity was estimated using 264 surrogate clinical samples tested with the BioT DNA assay and 549 samples tested with the BioT RNA assay. The clinical specificity is 99.6% and 99.8% for BioT DNA assay and BioT RNA assay, respectively. The

  15. Improved assay to detect Plasmodium falciparum using an uninterrupted, semi-nested PCR and quantitative lateral flow analysis

    Science.gov (United States)

    2013-01-01

    Background A rapid, non-invasive, and inexpensive point-of-care (POC) diagnostic for malaria followed by therapeutic intervention would improve the ability to control infection in endemic areas. Methods A semi-nested PCR amplification protocol is described for quantitative detection of Plasmodium falciparum and is compared to a traditional nested PCR. The approach uses primers that target the P. falciparum dihydrofolate reductase gene. Results This study demonstrates that it is possible to perform an uninterrupted, asymmetric, semi-nested PCR assay with reduced assay time to detect P. falciparum without compromising the sensitivity and specificity of the assay using saliva as a testing matrix. Conclusions The development of this PCR allows nucleic acid amplification without the need to transfer amplicon from the first PCR step to a second reaction tube with nested primers, thus reducing both the chance of contamination and the time for analysis to PCR amplicon yield was adapted to lateral flow detection using the quantitative up-converting phosphor (UCP) reporter technology. This approach provides a basis for migration of the assay to a POC microfluidic format. In addition the assay was successfully evaluated with oral samples. Oral fluid collection provides a simple non-invasive method to collect clinical samples. PMID:23433252

  16. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    Science.gov (United States)

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  17. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    Science.gov (United States)

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Highly Sensitive Telomerase Activity Assay that Eliminates False-Negative Results Caused by PCR Inhibitors

    Directory of Open Access Journals (Sweden)

    Hidenobu Yaku

    2013-09-01

    Full Text Available An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR on magnetic beads (MBs and subsequent application of cycling probe technology (CPT is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGGn-3' of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  19. The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD.

    Directory of Open Access Journals (Sweden)

    Aili Cui

    Full Text Available Large-scale Hand, Foot, and Mouth Disease (HFMD outbreaks have frequently occurred in China since 2008, affecting more than one million children and causing several hundred children deaths every year. The pathogens of HFMD are mainly human enteroviruses (HEVs. Among them, human enterovirus 71 (HEV71 and coxsackievirus A16 (CVA16 are the most common pathogens of HFMD. However, other HEVs could also cause HFMD. To rapidly detect HEV71 and CVA16, and ensure detection of all HEVs causing HFMD, two real-time hybridization probe-based RT-PCR assays were developed in this study. One is a multiplex real-time RT-PCR assay, which was developed to detect and differentiate HEV71 specifically from CVA16 directly from clinical specimens within 1-2 h, and the other is a broad-spectrum real-time RT-PCR assay, which targeted almost all HEVs. The experiments confirmed that the two assays have high sensitivity and specificity, and the sensitivity was up to 0.1 TCID50/ml for detection of HEVs, HEV71, and CVA16, respectively. A total of 213 clinical specimens were simultaneously detected by three kinds of assays, including the two real-time RT-PCR assays, direct conventional RT-PCR assay, and virus isolation assay on human rhabdomyosarcoma cells (RD cells. The total positive rate of both HEV71 and CVA16 was 69.48% with real-time RT-PCR assay, 47.42% with RT-PCR assay, and 34.58% with virus isolation assay. One HFMD clinical specimen was positive for HEV, but negative for HEV71 or CVA16, which was identified as Echovirus 11 (Echo11 by virus isolation, RT-PCR, and sequencing for the VP1 gene. The two real-time RT-PCR assays had been applied in 31 provincial HFMD labs to detect the pathogens of HFMD, which has contributed to the rapid identification of the pathogens in the early stages of HFMD outbreaks, and helped to clarify the etiologic agents of HFMD in China.

  20. BurkDiff: a real-time PCR allelic discrimination assay for Burkholderia pseudomallei and B. mallei.

    Directory of Open Access Journals (Sweden)

    Jolene R Bowers

    2010-11-01

    Full Text Available A real-time PCR assay, BurkDiff, was designed to target a unique conserved region in the B. pseudomallei and B. mallei genomes containing a SNP that differentiates the two species. Sensitivity and specificity were assessed by screening BurkDiff across 469 isolates of B. pseudomallei, 49 isolates of B. mallei, and 390 isolates of clinically relevant non-target species. Concordance of results with traditional speciation methods and no cross-reactivity to non-target species show BurkDiff is a robust, highly validated assay for the detection and differentiation of B. pseudomallei and B. mallei.

  1. Analytical Performance of Four Polymerase Chain Reaction (PCR and Real Time PCR (qPCR Assays for the Detection of Six Leishmania Species DNA in Colombia

    Directory of Open Access Journals (Sweden)

    Cielo M. León

    2017-10-01

    Full Text Available Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR, limit of detection (LoD and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia. Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America.

  2. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia

    Science.gov (United States)

    León, Cielo M.; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S.; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R.; Ramírez, Juan D.

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America. PMID:29046670

  3. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    Science.gov (United States)

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  4. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus.

    Science.gov (United States)

    Ambagala, A; Fisher, M; Goolia, M; Nfon, C; Furukawa-Stoffer, T; Ortega Polo, R; Lung, O

    2017-10-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot-and-mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field-deployable assay would support local decision-making during an FMDV outbreak. Here we report validation of a novel reverse transcription-insulated isothermal PCR (RT-iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT ™ analyser that automatically analyses data and displays '+' or '-' results. The FMDV RT-iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro-transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross-reactivity with viruses causing similar clinical diseases in cloven-hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory-based real-time RT-PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco ™ mini transportable magnetic bead-based, automated extraction system was used. This assay provides a potentially useful field-deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD-free countries or for routine diagnostics in endemic countries with less structured laboratory systems. © 2016 Her Majesty the Queen in Right of Canada.

  5. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  6. Development and validation of a quantitative PCR assay for Ichthyophonus spp.

    Science.gov (United States)

    White, Vanessa C; Morado, J Frank; Crosson, Lisa M; Vadopalas, Brent; Friedman, Carolyn S

    2013-04-29

    Members of the genus Ichthyophonus are trophically transmitted, cosmopolitan parasites that affect numerous fish species worldwide. A quantitative PCR (qPCR) assay specific for genus Ichthyophonus 18S ribosomal DNA was developed for parasite detection and surveillance. The new assay was tested for precision, repeatability, reproducibility, and both analytical sensitivity and specificity. Diagnostic sensitivity and specificity were estimated using tissue samples from a wild population of walleye pollock Theragra chalcogramma. Ichthyophonus sp. presence in tissue samples was determined by qPCR, conventional PCR (cPCR), and histology. Parasite prevalence estimates varied depending upon the detection method employed and tissue type tested. qPCR identified the greatest number of Ichthyophonus sp.-positive cases when applied to walleye pollock skeletal muscle. The qPCR assay proved sensitive and specific for Ichthyophonus spp. DNA, but like cPCR, is only a proxy for infection. When compared to cPCR, qPCR possesses added benefits of parasite DNA quantification and a 100-fold increase in analytical sensitivity. Because this novel assay is specific for known members of the genus, it is likely appropriate for detecting Ichthyophonus spp. DNA in various hosts from multiple regions. However, species-level identification and isotype variability would require DNA sequencing. In addition to distribution and prevalence applications, this assay could be modified and adapted for use with zooplankton or environmental samples. Such applications could aid in investigating alternate routes of transmission and life history strategies typical to members of the genus Ichthyophonus.

  7. Development and evaluation of a nested-PCR assay for Senecavirus A diagnosis.

    Science.gov (United States)

    Feronato, Cesar; Leme, Raquel A; Diniz, Jaqueline A; Agnol, Alais Maria Dall; Alfieri, Alice F; Alfieri, Amauri A

    2018-02-01

    Senecavirus A (SVA) has been associated with vesicular disease in weaned and adult pigs and with high mortality of newborn piglets. This study aimed to establish a nested-PCR assay for the routine diagnosis of SVA infection. Tissue samples (n = 177) were collected from 37 piglets of 18 pig farms located in four different Brazilian states. For the nested-PCR, a primer set was defined to amplify an internal VP1 fragment of 316 bp of SVA genome. Of the 37 piglets, 15 (40.5%) and 23 (62.2%) were positive for the SVA in the RT-PCR and nested-PCR assays, respectively. The SVA RNA was detected in 61/177 (34.5%) samples with the RT-PCR, while the nested-PCR assay showed 84/177 (47.5%) samples with the virus (p PCR and nested-PCR assays, respectively. Nucleotide sequencing analysis revealed similarities of 98.7-100% among SVA Brazilian strains and of 86.6-98% with SVA strains from other countries. The nested-PCR assay in this study was suitable to recover the SVA RNA in biological specimens, piglets, and/or herds that were considered as negative in the RT-PCR assay, and is proposed for the routine investigation of the SVA infection in piglets, especially when other techniques are not available or when a great number of samples has to be examined.

  8. Temperature Switch PCR (TSP: Robust assay design for reliable amplification and genotyping of SNPs

    Directory of Open Access Journals (Sweden)

    Mather Diane E

    2009-12-01

    Full Text Available Abstract Background Many research and diagnostic applications rely upon the assay of individual single nucleotide polymorphisms (SNPs. Thus, methods to improve the speed and efficiency for single-marker SNP genotyping are highly desirable. Here, we describe the method of temperature-switch PCR (TSP, a biphasic four-primer PCR system with a universal primer design that permits amplification of the target locus in the first phase of thermal cycling before switching to the detection of the alleles. TSP can simplify assay design for a range of commonly used single-marker SNP genotyping methods, and reduce the requirement for individual assay optimization and operator expertise in the deployment of SNP assays. Results We demonstrate the utility of TSP for the rapid construction of robust and convenient endpoint SNP genotyping assays based on allele-specific PCR and high resolution melt analysis by generating a total of 11,232 data points. The TSP assays were performed under standardised reaction conditions, requiring minimal optimization of individual assays. High genotyping accuracy was verified by 100% concordance of TSP genotypes in a blinded study with an independent genotyping method. Conclusion Theoretically, TSP can be directly incorporated into the design of assays for most current single-marker SNP genotyping methods. TSP provides several technological advances for single-marker SNP genotyping including simplified assay design and development, increased assay specificity and genotyping accuracy, and opportunities for assay automation. By reducing the requirement for operator expertise, TSP provides opportunities to deploy a wider range of single-marker SNP genotyping methods in the laboratory. TSP has broad applications and can be deployed in any animal and plant species.

  9. Diagnostic efficacy of a real time-PCR assay for Chlamydia trachomatis infection in infertile women in north India

    Directory of Open Access Journals (Sweden)

    Benu Dhawan

    2014-01-01

    Full Text Available Background & objectives: Little is known about the prevalence of Chlamydia trachomatis infection in Indian women with infertility. To improve the diagnosis of C. trachomatis infection in developing countries, there is an urgent need to establish cost-effective molecular test with high sensitivity and specificity. This study was conducted to determine the diagnostic utility of a real time-PCR assay for detention of C. trachomatis infection in infertile women attending an infertility clinic in north India. The in house real time-PCR assay was also compared with a commercial real-time PCR based detection system. Methods: Endocervical swabs, collected from 200 infertile women were tested for C. trachomatis by three different PCR assays viz. in-house real time-PCR targeting the cryptic plasmid using published primers, along with omp1 gene and cryptic plasmid based conventional PCR assays. Specimens were also subjected to direct fluorescence assay (DFA and enzyme immunoassay (EIA Performance of in-house real time-PCR was compared with that of COBAS Taqman C. trachomatis Test, version 2.0 on all in-house real time-PCR positive sample and 30 consecutive negative samples. Results: C. trachomatis infection was found in 13.5 per cent (27/200 infertile women by in-house real time-PCR, 11.5 per cent (23/200 by cryptic plasmid and/or omp1 gene based conventional PCR, 9 per cent (18/200 by DFA and 6.5 per cent (7/200 by EIA. The in-house real time-PCR exhibited a sensitivity and specificity of 100 per cent, considering COBAS Taqman CT Test as the gold standard. The negative and positive predictive values of the in-house real time-PCR were 100 per cent. The in-house real time-PCR could detect as low as 10 copies of C. trachomatis DNA per reaction. Interpretation & conclusions: In-house real time-PCR targeting the cryptic plasmid of C. trachomatis exhibited an excellent sensitivity and specificity similar to that of COBAS Taqman CT Test, v2.0 for detection of C

  10. Novel PCR Assays Complement Laser Biosensor-Based Method and Facilitate Listeria Species Detection from Food

    Directory of Open Access Journals (Sweden)

    Kwang-Pyo Kim

    2015-09-01

    Full Text Available The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634 encoding alcohol acetaldehyde dehydrogenase (Aad, previously designated as Listeria adhesion protein (LAP, and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology. PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 104 CFU/mL.

  11. Improving specificity of Bordetella pertussis detection using a four target real-time PCR.

    Directory of Open Access Journals (Sweden)

    Helena Martini

    Full Text Available The incidence of whooping cough, a contagious respiratory disease caused by Bordetella pertussis, is on the rise despite existing vaccination programmes. Similar, though usually milder, respiratory symptoms may be caused by other members of the Bordetella genus: B. parapertussis, B. holmesii, and B. bronchiseptica. Pertussis diagnosis is mostly done using PCR, but the use of multiple targets is necessary in order to differentiate the different Bordetella spp. with sufficient sensitivity and specificity. In this study we evaluate a multiplex PCR assay for the differentiation of B. pertussis from other Bordetella spp., using the targets IS481, IS1001, IS1002, and recA. Moreover, we retrospectively explore the epidemiology of Bordetella spp. infections in Belgium, using the aforementioned assay over a three-year period, from 2013 until 2015.

  12. Improving specificity of Bordetella pertussis detection using a four target real-time PCR

    Science.gov (United States)

    Detemmerman, Liselot; Soetens, Oriane; Yusuf, Erlangga; Piérard, Denis

    2017-01-01

    The incidence of whooping cough, a contagious respiratory disease caused by Bordetella pertussis, is on the rise despite existing vaccination programmes. Similar, though usually milder, respiratory symptoms may be caused by other members of the Bordetella genus: B. parapertussis, B. holmesii, and B. bronchiseptica. Pertussis diagnosis is mostly done using PCR, but the use of multiple targets is necessary in order to differentiate the different Bordetella spp. with sufficient sensitivity and specificity. In this study we evaluate a multiplex PCR assay for the differentiation of B. pertussis from other Bordetella spp., using the targets IS481, IS1001, IS1002, and recA. Moreover, we retrospectively explore the epidemiology of Bordetella spp. infections in Belgium, using the aforementioned assay over a three-year period, from 2013 until 2015. PMID:28403204

  13. A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs.

    Science.gov (United States)

    Guo, Jinchao; Chen, Lili; Liu, Xin; Gao, Ying; Zhang, Dabing; Yang, Litao

    2012-06-01

    Currently, the detection methods with lower cost and higher throughput are the major trend in screening genetically modified (GM) food or feed before specific identification. In this study, we developed a quadruplex degenerate PCR screening approach for more than 90 approved GMO events. This assay is consisted of four PCR systems targeting on nine DNA sequences from eight trait genes widely introduced into GMOs, such as CP4-EPSPS derived from Acetobacterium tumefaciens sp. strain CP4, phosphinothricin acetyltransferase gene derived from Streptomyceshygroscopicus (bar) and Streptomyces viridochromogenes (pat), and Cry1Ab, Cry1Ac, Cry1A(b/c), mCry3A, and Cry3Bb1 derived from Bacillus thuringiensis. The quadruplex degenerate PCR assay offers high specificity and sensitivity with the absolute limit of detection (LOD) of approximate 80targetcopies. Furthermore, the applicability of the quadruplex PCR assay was confirmed by screening either several artificially prepared samples or samples of Grain Inspection, Packers and Stockyards Administration (GIPSA) proficiency program. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    Science.gov (United States)

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  15. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    Science.gov (United States)

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  16. Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identificatio nof the parasite species

    Directory of Open Access Journals (Sweden)

    Grazielle Cardoso da Graça

    2012-08-01

    Full Text Available In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70 regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL. A total of 70 Leishmania strains were analysed, including seven reference strains (RS and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorfism (PCR-RFLP. This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region, internal transcribed spacer (ITS1 and glucose-6-phosphate dehydrogenase (G6pd. A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.

  17. Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples

    DEFF Research Database (Denmark)

    Perelle, Sylvie; Dilasser, Françoise; Malorny, Burkhard

    2004-01-01

    , minced beef and raw milk, and 92 naturally-contaminated milk and meat samples. When using either PCR-ELISA or LC-PCR assays, only Salmonella strains were detected. PCR-ELISA and LC-PCR assays gave with pure Salmonella cultures the same detection limit level of 10(3) CFU/ml, which corresponds respectively...

  18. Developing high throughput quantitative PCR assays for diagnosing Ikeda and other Theileria orientalis types common to New Zealand in bovine blood samples.

    Science.gov (United States)

    Pulford, D J; Gias, E; Bueno, I M; McFadden, Amj

    2016-01-01

    µL of blood. All qPCR assays had improved specificity and sensitivity over existing conventional PCR assays for diagnosis of T. orientalis Ikeda. The burden of Ikeda DNA in blood was demonstrated using an Ikeda-specific qPCR assay with titrated synthetic gene target. Adoption of high-throughput DNA extraction and qPCR reduced T. orientalis and Ikeda diagnosis times. The Ikeda-specific qPCR assay provides a specific diagnosis for Ikeda in animals with signs of infection with T. orientalis and can be used to monitor the parasite load of Ikeda in blood.

  19. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.

    Science.gov (United States)

    Williamson, Charles H D; Vazquez, Adam J; Hill, Karen; Smith, Theresa J; Nottingham, Roxanne; Stone, Nathan E; Sobek, Colin J; Cocking, Jill H; Fernández, Rafael A; Caballero, Patricia A; Leiser, Owen P; Keim, Paul; Sahl, Jason W

    2017-09-15

    Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present ( ha positive [ ha + ] or orfX + ). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene ( bont ) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes , and two major subgroups within C. botulinum group II. Since Bo

  20. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene

    Directory of Open Access Journals (Sweden)

    Lewin Astrid

    2008-12-01

    Full Text Available Abstract Background The free-living amoeba Balamuthia mandrillaris may cause fatal encephalitis both in immunocompromised and in – apparently – immunocompetent humans and other mammalian species. Rapid, specific, sensitive, and reliable detection requiring little pathogen-specific expertise is an absolute prerequisite for a successful therapy and a welcome tool for both experimental and epidemiological research. Results A real-time polymerase chain reaction assay using TaqMan® probes (real-time PCR was established specifically targeting the RNase P gene of B. mandrillaris amoebae. The assay detected at least 2 (down to 0.5 genomes of B. mandrillaris grown in axenic culture. It did not react with DNA from closely related Acanthamoeba (3 species, nor with DNA from Toxoplasma gondii, Leishmania major, Pneumocystis murina, Mycobacterium bovis (BCG, human brain, various mouse organs, or from human and murine cell lines. The assay efficiently detected B. mandrillaris DNA in spiked cell cultures, spiked murine organ homogenates, B. mandrillaris-infected mice, and CNS tissue-DNA preparations from 2 patients with proven cerebral balamuthiasis. This novel primer set was successfully combined with a published set that targets the B. mandrillaris 18S rRNA gene in a duplex real-time PCR assay to ensure maximum specificity and as a precaution against false negative results. Conclusion A real-time PCR assay for B. mandrillaris amoebae is presented, that is highly specific, sensitive, and reliable and thus suited both for diagnosis and for research.

  1. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    Science.gov (United States)

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples. Copyright © 2013. Published by Elsevier B.V.

  2. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods.

    Science.gov (United States)

    Ali, Md Eaqub; Razzak, Md Abdur; Hamid, Sharifah Bee Abd; Rahman, Md Mahfujur; Amin, Md Al; Rashid, Nur Raifana Abd; Asing

    2015-06-15

    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Restriction Cascade Exponential Amplification (RCEA) assay with an attomolar detection limit: a novel, highly specific, isothermal alternative to qPCR.

    Science.gov (United States)

    Ghindilis, Andrey L; Smith, Maria W; Simon, Holly M; Seoudi, Ihab A; Yazvenko, Nina S; Murray, Iain A; Fu, Xiaoqing; Smith, Kenneth; Jen-Jacobson, Linda; Xu, Shuang-Yong

    2015-01-13

    An alternative to qPCR was developed for nucleic acid assays, involving signal rather than target amplification. The new technology, Restriction Cascade Exponential Amplification (RCEA), relies on specific cleavage of probe-target hybrids by restriction endonucleases (REase). Two mutant REases for amplification (Ramp), S17C BamHI and K249C EcoRI, were conjugated to oligonucleotides, and immobilized on a solid surface. The signal generation was based on: (i) hybridization of a target DNA to a Ramp-oligonucleotide probe conjugate, followed by (ii) specific cleavage of the probe-target hybrid using a non-immobilized recognition REase. The amount of Ramp released into solution upon cleavage was proportionate to the DNA target amount. Signal amplification was achieved through catalysis, by the free Ramp, of a restriction cascade containing additional oligonucleotide-conjugated Ramp and horseradish peroxidase (HRP). Colorimetric quantification of free HRP indicated that the RCEA achieved a detection limit of 10 aM (10(-17) M) target concentration, or approximately 200 molecules, comparable to the sensitivity of qPCR-based assays. The RCEA assay had high specificity, it was insensitive to non-specific binding, and detected target sequences in the presence of foreign DNA. RCEA is an inexpensive isothermal assay that allows coupling of the restriction cascade signal amplification with any DNA target of interest.

  4. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals.

    Science.gov (United States)

    Zemtsova, Galina E; Montgomery, Merrill; Levin, Michael L

    2015-01-01

    Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.

  5. Real-Time Detection and Identification of Chlamydophila Species in Veterinary Specimens by Using SYBR Green-Based PCR Assays

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Kabell, Susanne; Pedersen, Karl

    2011-01-01

    of Chlamydiaceae and differentiate the most prevalent veterinary Chlamydophila species: Cp. psittaci, Cp. abortus, Cp. felis, and Cp. caviae. By adding bovine serum albumin to the master mixes, target DNA could be detected directly in crude lysates of enzymatically digested conjunctival or pharyngeal swabs...... or tissue specimens from heart, liver, and spleen without further purification. The assays were evaluated on veterinary specimens where all samples were screened using a family-specific PCR, and positive samples were further tested using species-specific PCRs. Cp. psittaci was detected in 47 birds, Cp...... with a highly sensitive family-specific PCR, we were able to screen for Chlamydiaceae in veterinary specimens and confirm the species in positive samples with additional PCR assays....

  6. Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.

    Science.gov (United States)

    Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta

    2015-12-01

    Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be

  7. Real-time PCR Detection of Brucella Abortus: A Comparative Study of SYBR Green I, 5'-exonuclease, and Hybridization Probe Assays

    Energy Technology Data Exchange (ETDEWEB)

    Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa

    2003-08-01

    Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.

  8. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  9. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Candida auris from Surveillance Samples.

    Science.gov (United States)

    Leach, L; Zhu, Y; Chaturvedi, S

    2018-02-01

    Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 ( ITS 2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. Copyright © 2018 Leach et al.

  10. Detection of Replication Competent Lentivirus Using a qPCR Assay for VSV-G

    Directory of Open Access Journals (Sweden)

    Lindsey M. Skrdlant

    2018-03-01

    Full Text Available Lentiviral vectors are a common tool used to introduce new and corrected genes into cell therapy products for treatment of human diseases. Although lentiviral vectors are ideal for delivery and stable integration of genes of interest into the host cell genome, they potentially pose risks to human health, such as integration-mediated transformation and generation of a replication competent lentivirus (RCL capable of infecting non-target cells. In consideration of the latter risk, all cell-based products modified by lentiviral vectors and intended for patient use must be tested for RCL prior to treatment of the patient. Current Food and Drug Administration (FDA guidelines recommend use of cell-based assays to this end, which can take up to 6 weeks for results. However, qPCR-based assays are a quick alternative for rapid assessment of RCL in products intended for fresh infusion. We describe here the development and qualification of a qPCR assay based on detection of envelope gene sequences (vesicular stomatitis virus G glycoprotein [VSV-G] for RCL in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE guidelines. Our results demonstrate the sensitivity, linearity, specificity, and reproducibility of detection of VSV-G sequences, with a low false-positive rate. These procedures are currently being used in our phase 1 clinical investigations.

  11. Quantitative CrAssphage PCR Assays for Human Fecal ...

    Science.gov (United States)

    Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal indicator bacteria are used; however, they cannot distinguish human fecal waste from pollution from other animals. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based upon initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against a large animal fecal reference library and were highly abundant in raw sewage and sewage impacted water samples. In addition, CPQ_056 and CPQ_064 assay performance was compared to HF183/BacR287 and HumM2 methods in paired experiments. Findings confirm viral crAssphage qPCR assays perform at a similar level to well established bacterial human-associated fecal source identification technologies. These new viral based assays could become important water quality management and research tools. To inform the public.

  12. Development and validation of a real-time PCR assay for specific and sensitive detection of canid herpesvirus 1.

    Science.gov (United States)

    Decaro, Nicola; Amorisco, Francesca; Desario, Costantina; Lorusso, Eleonora; Camero, Michele; Bellacicco, Anna Lucia; Sciarretta, Rossana; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-10-01

    A TaqMan-based real-time PCR assay targeting the glycoprotein B-encoding gene was developed for diagnosis of canid herpesvirus 1 (CHV-1) infection. The established assay was highly specific, since no cross-reactions were observed with other canine DNA viruses, including canine parvovirus type 2, canine minute virus, or canine adenovirus types 1 and 2. The detection limit was 10(1) and 1.20 x 10(1) DNA copies per 10 microl(-1) of template for standard DNA and a CHV-1-positive kidney sample, respectively: about 1-log higher than a gel-based PCR assay targeting the thymidine kinase gene. The assay was also reproducible, as shown by satisfactory low intra-assay and inter-assay coefficients of variation. CHV-1 isolates of different geographical origins were recognised by the TaqMan assay. Tissues and clinical samples collected from three pups which died of CHV-1 neonatal infection were also tested, displaying a wide distribution of CHV-l DNA in their organs. Unlike other CHV-1-specific diagnostic methods, this quantitative assay permits simultaneous detection and quantitation of CHV-1 DNA in a wide range of canine tissues and body fluids, thus providing a useful tool for confirmation of a clinical diagnosis, for the study of viral pathogenesis and for evaluation of the efficacy of vaccines and antiviral drugs. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays

    DEFF Research Database (Denmark)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan

    2009-01-01

    methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay...... (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons...... were evaluated for 15 HPV types common in both assays. A slightly higher proportion of samples tested positive by the HPV multiplex PCR than by the HCII-LiPA v2 assay. The sensitivities of the multiplex PCR assay relative to those of the HCII-LiPA v2 assay for HPV types 6, 11, 16, and 18, for example...

  14. Sensitive detection of Treponema pallidum DNA from the whole blood of patients with syphilis by the nested PCR assay.

    Science.gov (United States)

    Wang, Cuini; Cheng, Yuanyuan; Liu, Biao; Wang, Yuanyuan; Gong, Weiming; Qian, Yihong; Guan, Zhifang; Lu, Haikong; Gu, Xin; Shi, Mei; Zhou, Pingyu

    2018-05-09

    The aim of this work was to investigate the application of the nested PCR assay for the detection of Treponema pallidum (TP) DNA from the blood of patients with different stages of syphilis. In this study, a nested PCR method targeting the Tpp47 and polA genes (Tpp47-Tp-PCR and polA-Tp-PCR) was developed to detect TP-DNA in whole blood samples collected from 262 patients with different stages of syphilis (84 primary syphilis, 97 secondary syphilis, and 81 latent syphilis patients). The PCR assay detected T. pallidum DNA in 53.6% and 62.9% of the patients with primary and secondary syphilis, respectively, which was much higher than the detection levels in patients with latent syphilis (7.4%) (both p PCR in the early phase of the latent infection. Thus, blood RPR titers were correlated with the blood T. pallidum burden, but the correlations varied with primary and secondary syphilis. The results indicate that nested PCR is a sensitive method for detecting blood TP-DNA and is especially useful for detecting early syphilis including primary syphilis and secondary syphilis. The findings also suggest that the PCR assay may be used to complement other methods to enhance the diagnosis of syphilis.

  15. A novel dNTP-limited PCR and HRM assay to detect Williams-Beuren syndrome.

    Science.gov (United States)

    Zhang, Lichen; Zhang, Xiaoqing; You, Guoling; Yu, Yongguo; Fu, Qihua

    2018-06-01

    Williams-Beuren syndrome (WBS) is caused by a microdeletion of chromosome arm 7q11.23. A rapid and inexpensive genotyping method to detect microdeletion on 7q11.23 needs to be developed for the diagnosis of WBS. This study describes the development of a new type of molecular diagnosis method to detect microdeletion on 7q11.23 based upon high-resolution melting (HRM). Four genes on 7q11.23 were selected as the target genes for the deletion genotyping. dNTP-limited duplex PCR was used to amplify the reference gene, CFTR, and one of the four genes respectively on 7q11.23. An HRM assay was performed on the PCR products, and the height ratio of the negative derivative peaks between the target gene and reference gene was employed to analyze the copy number variation of the target region. A new genotyping method for detecting 7q11.23 deletion was developed based upon dNTP-limited PCR and HRM, which cost only 96 min. Samples from 15 WBS patients and 12 healthy individuals were genotyped by this method in a blinded fashion, and the sensitivity and specificity was 100% (95% CI, 0.80-1, and 95% CI, 0.75-1, respectively) which was proved by CytoScan HD array. The HRM assay we developed is an rapid, inexpensive, and highly accurate method for genotyping 7q11.23 deletion. It is potentially useful in the clinical diagnosis of WBS. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Nested-PCR assay for detection of Schistosoma japonicum infection in domestic animals.

    Science.gov (United States)

    Zhang, Xin; He, Chuan-Chuan; Liu, Jin-Ming; Li, Hao; Lu, Ke; Fu, Zhi-Qiang; Zhu, Chuan-Gang; Liu, Yi-Ping; Tong, Lai-Bao; Zhou, De-Bao; Zha, Li; Hong, Yang; Jin, Ya-Mei; Lin, Jiao-Jiao

    2017-04-13

    Schistosomiasis japonica is a common zoonosis. Domestic animals are the primary source of infection and play an important role in disease transmission. The prevalence and infectivity of this disease in domestic animals in China have significantly decreased and, for this reason, diagnostics with a higher sensitivity have become increasingly necessary. It was reported that polymerase chain reaction (PCR)-based methods could be used to detect schistosome infection in humans and animals and presented a high sensitivity and specificity. The present study aimed to develop a PCR-based method for detection of Schistosoma japonicum infection in domestic animals. A specific nested-PCR assay was developed to detect S. japonicum infection in domestic animals via amplification of a 231-bp DNA fragment of retrotransposon SjR2. The developed assay was first used in sera and dry blood filter paper (DBFP) from goats and buffaloes at different time points of infection. Then, 78 DBFPs from 39 artificially-infected bovines at 14 and 28 days post-infection and 42 DBFPs from schistosome-negative bovines from the city of Huangshan in the Anhui province were used to evaluate the diagnostic validity. Furthermore, this assay was used to detect S. japonicum infection in domestic animals in Dongzhi and Wangjiang counties. The expected PCR product was detected in eggs and adult worms of S. japonicum and blood samples from S. japonicum-infected goats and water buffaloes, but not from Fasciola and Haemonchus contortus worms. The nested-PCR assay could detect the target S. japonicum DNA in DBFPs from goats and buffaloes after day 3 post-infection. The sensitivity in buffaloes at 14 and 28 days post-infection was 92.30% (36/39) and 100% (39/39), respectively. The specificity was 97.60% (41/42). The positivity rates in Dongzhi and Wangjiang counties were 6.00% and 8.00% in bovines and 22.00% and 16.67% in goats, respectively. The positivity rates in goats in both counties were higher than those

  17. A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.

    Science.gov (United States)

    Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta

    2017-01-01

    Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.

  18. A multiplex, internally controlled real-time PCR assay for detection of toxigenic Clostridium difficile and identification of hypervirulent strain 027/ST-1

    DEFF Research Database (Denmark)

    Hoegh, A M; Nielsen, J B; Lester, A

    2012-01-01

    The purpose of this study was to validate a multiplex real-time PCR assay capable of detecting toxigenic Clostridium difficile and simultaneously identifying C. difficile ribotype 027/ST-1 by targeting the toxin genes tcdA, tcdB and cdtA in one reaction and in a separate reaction identifying the Δ...... to confirm the correct identification of the Δ117 deletion in tcdC and C. difficile ribotype 027/ST-1, respectively. The PCR assay displayed a sensitivity, specificity, PPV and NPV of 99.0%, 97.4%, 87.4% and 99.8%, respectively, compared to toxigenic culture on 665 samples evaluable both by PCR and culture....... Sequencing of tcdC, ribotyping and MLST of cultured isolates validated the genotyping assay and confirmed the ability of the assay to correctly identify C. difficile ribotype 027/ST-1 in our current epidemiological setting. We describe the use of a combination of two separate PCR assays for sensitive...

  19. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    Science.gov (United States)

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  20. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals.

    Directory of Open Access Journals (Sweden)

    Galina E Zemtsova

    Full Text Available Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87. The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.

  1. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus.

    Science.gov (United States)

    Zhu, Yu; Wang, Gui-Hua; Cui, Yu-Dong; Cui, Shang-Jin

    2016-09-01

    Porcine epidemic diarrhea virus (PEDV) can cause serious disease and even death in neonatal piglets, resulting in serious damage to the swine industry worldwide. Open reading frame 3 (ORF3) is the only accessory gene in the PEDV genome. Previous studies have indicated that PEDV vaccine strains have a partial deletion in ORF3. In this study, a nanoparticle-assisted polymerase chain reaction (nanoparticle-assisted RT-PCR) assay targeting the ORF3 of PEDV was developed to distinguish PEDV field strains from attenuated strains by using a specific pair of primers. The PCR products of field strains and attenuated strains were 264 bp and 215 bp in length, respectively. The sensitivity and specificity of this assay were also assessed. The nanoparticle-assisted RT-PCR assay was 10-100 times more sensitive than the conventional RT-PCR assay, with no cross-reactions when amplifying porcine pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine rotavirus (RV), and porcine transmissible gastroenteritis virus (TGEV). The nanoparticle-assisted RT-PCR assay we describe here can be used to distinguish field strains from vaccine strains of PEDV, and it shows promise for reducing economic loss due to PEDV infection.

  2. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Cecchinato, Mattia; Lupini, Caterina; Munoz Pogoreltseva, Olga Svetlana; Listorti, Valeria; Mondin, Alessandra; Drigo, Michele; Catelli, Elena

    2013-01-01

    In recent years, special attention has been paid to real-time polymerase chain reaction (PCR) for avian metapneumovirus (AMPV) diagnosis, due to its numerous advantages over classical PCR. A new multiplex quantitative real-time reverse transcription-PCR (qRT-PCR) with molecular beacon probe assay, designed to target the SH gene, was developed. The test was evaluated in terms of specificity, sensitivity and repeatability, and compared with conventional RT nested-PCR based on the G gene. All of the AMPV subtype A and B strains tested were amplified and specifically detected while no amplification occurred with other non-target bird respiratory pathogens. The detection limit of the assay was 10(-0.41) median infectious dose/ml and 10(1.15) median infectious dose/ml when the AMPV-B strain IT/Ty/B/Vr240/87 and the AMPV-A strain IT/Ty/A/259-01/03 were used, respectively, as templates. In all cases, the amplification efficiency was approximately 2 and the error values were 0.9375) between crossing point values and virus quantities, making the assay herein designed reliable for quantification. When the newly developed qRT-PCR was compared with a conventional RT nested-PCR, it showed greater sensitivity with RNA extracted from both positive controls and from experimentally infected birds. This assay can be effectively used for the detection, identification, differentiation and quantitation of AMPV subtype A or subtype B to assist in disease diagnosis and to carry out rapid surveillance with high levels of sensitivity and specificity.

  3. Clinical Assessment of a Nocardia PCR-Based Assay for Diagnosis of Nocardiosis.

    Science.gov (United States)

    Rouzaud, Claire; Rodriguez-Nava, Véronica; Catherinot, Emilie; Méchaï, Frédéric; Bergeron, Emmanuelle; Farfour, Eric; Scemla, Anne; Poirée, Sylvain; Delavaud, Christophe; Mathieu, Daniel; Durupt, Stéphane; Larosa, Fabrice; Lengelé, Jean-Philippe; Christophe, Jean-Louis; Suarez, Felipe; Lortholary, Olivier; Lebeaux, David

    2018-06-01

    The diagnosis of nocardiosis, a severe opportunistic infection, is challenging. We assessed the specificity and sensitivity of a 16S rRNA Nocardia PCR-based assay performed on clinical samples. In this multicenter study (January 2014 to April 2015), patients who were admitted to three hospitals and had an underlying condition favoring nocardiosis, clinical and radiological signs consistent with nocardiosis, and a Nocardia PCR assay result for a clinical sample were included. Patients were classified as negative control (NC) (negative Nocardia culture results and proven alternative diagnosis or improvement at 6 months without anti- Nocardia treatment), positive control (PC) (positive Nocardia culture results), or probable nocardiosis (positive Nocardia PCR results, negative Nocardia culture results, and no alternative diagnosis). Sixty-eight patients were included; 47 were classified as NC, 8 as PC, and 13 as probable nocardiosis. PCR results were negative for 35/47 NC patients (74%). For the 12 NC patients with positive PCR results, the PCR assay had been performed with respiratory samples. These NC patients had chronic bronchopulmonary disease more frequently than did the NC patients with negative PCR results (8/12 patients [67%] versus 11/35 patients [31%]; P = 0.044). PCR results were positive for 7/8 PC patients (88%). There were 13 cases of probable nocardiosis, diagnosed solely using the PCR results; 9 of those patients (69%) had lung involvement (consolidation or nodule). Nocardia PCR testing had a specificity of 74% and a sensitivity of 88% for the diagnosis of nocardiosis. Nocardia PCR testing may be helpful for the diagnosis of nocardiosis in immunocompromised patients but interpretation of PCR results from respiratory samples is difficult, because the PCR assay may also detect colonization. Copyright © 2018 American Society for Microbiology.

  4. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  5. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia.

    Science.gov (United States)

    Fallahi, Shirzad; Seyyed Tabaei, Seyyed Javad; Pournia, Yadollah; Zebardast, Nozhat; Kazemi, Bahram

    2014-07-01

    Toxoplasmosis diagnosis constitutes an important measure for disease prevention and control. In this paper, a newly described DNA amplification technique, loop-mediated isothermal amplification (LAMP), and nested-PCR targeting the repeated element (RE) and B1 gene, were compared to each other for the detection of Toxoplasma gondii DNA in blood samples of children with leukaemia. One hundred ten blood samples from these patients were analyzed by LAMP and nested-PCR. Out of 50 seropositive samples (IgM+, IgG+), positive results were obtained with 92% and 86% on RE, B1-LAMP and 82% and 68% on RE, B1-nested PCR analyses, respectively. Of the 50 seronegative samples, three, two and one samples were detected positive by RE-LAMP, B1-LAMP and RE-nested PCR assays, respectively, while none were detected positive by B1-nested PCR. None of the 10 IgM-, IgG+ samples was detected positive after testing LAMP and nested-PCR assays in duplicate. This is the first report of a study in which the LAMP method was applied with high sensitivity and efficacy for the diagnosis of T. gonii in blood samples of children with leukaemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. High-throughput multiplex real-time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants.

    Science.gov (United States)

    Otti, G; Bouvaine, S; Kimata, B; Mkamillo, G; Kumar, P L; Tomlins, K; Maruthi, M N

    2016-05-01

    To develop a multiplex TaqMan-based real-time PCR assay (qPCR) for the simultaneous detection and quantification of both RNA and DNA viruses affecting cassava (Manihot esculenta) in eastern Africa. The diagnostic assay was developed for two RNA viruses; Cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV) and two predominant DNA viruses; African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV), which cause the economically important cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) respectively. Our method, developed by analysing PCR products of viruses, was highly sensitive to detect target viruses from very low quantities of 4-10 femtograms. Multiplexing did not diminish sensitivity or accuracy compared to uniplex alternatives. The assay reliably detected and quantified four cassava viruses in field samples where CBSV and UCBSV synergy was observed in majority of mixed-infected varieties. We have developed a high-throughput qPCR diagnostic assay capable of specific and sensitive quantification of predominant DNA and RNA viruses of cassava in eastern Africa. The qPCR methods are a great improvement on the existing methods and can be used for monitoring virus spread as well as for accurate evaluation of the cassava varieties for virus resistance. © 2016 The Society for Applied Microbiology.

  7. Development of a PCR assay to detect cyprinid herpesvirus 1 in koi and common carp.

    Science.gov (United States)

    Viadanna, Pedro H O; Miller-Morgan, Tim; Peterson, Trace; Way, Keith; Stone, David M; Marty, Gary D; Pilarski, Fabiana; Hedrick, Ronald P; Waltzek, Thomas B

    2017-02-08

    Cyprinid herpesvirus 1 (CyHV1) infects all scaled and color varieties of common carp Cyprinus carpio, including koi. While it is most often associated with unsightly growths known as 'carp pox,' the underlying lesion (epidermal hyperplasia) can arise from a variety of disease processes. CyHV1-induced epidermal hyperplasia may occur transiently in response to water temperature, and thus histopathology cannot be used in isolation to assess CyHV1 infection status. To address this problem, here we describe a PCR assay targeted to the putative thymidine kinase gene of CyHV1. The PCR assay generates a 141 bp amplicon and reliably detects down to 10 copies of control plasmid DNA sequence (analytic sensitivity). The PCR does not cross-detect genomic DNA from cyprinid herpesvirus 2 and 3 (analytic specificity). The CyHV1 PCR effectively detected viral DNA in koi and common carp sampled from various locations in the UK, USA, Brazil, and Japan. Viral DNA was detected in both normal appearing and grossly affected epidermal tissues from koi experiencing natural epizootics. The new CyHV1 PCR provides an additional approach to histopathology for the rapid detection of CyHV1. Analysis of the thymidine kinase gene sequences determined for 7 PCR-positive carp originating from disparate geographical regions identified 3 sequence types, with 1 type occurring in both koi and common carp.

  8. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis and Spikedace (Meda fulgida in the Southwestern United States.

    Directory of Open Access Journals (Sweden)

    Joseph C Dysthe

    Full Text Available Loach minnow (Rhinichthys cobitis and spikedace (Meda fulgida are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species' distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur.

  9. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  10. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice.

    Science.gov (United States)

    Cui, Z; Ojaghian, M R; Tao, Z; Kakar, K U; Zeng, J; Zhao, W; Duan, Y; Vera Cruz, C M; Li, B; Zhu, B; Xie, G

    2016-05-01

    The aim of this study was to develop a multiplex PCR (mPCR) assay for rapid, sensitive and simultaneous detection of six important rice pathogens: Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Pseudomonas fuscovaginae, Burkholderia glumae, Burkholderia gladioli and Acidovorax avenae subsp. avenae. Specific primers were designed through a bioinformatics pipeline. Sensitivity of detection was established using both traditional PCR and quantitative real-time PCR on isolated DNA and on bacterial cells both in vitro and in simulated diseased seeds and the parameters were optimized for an mPCR assay. A total of 150 bacterial strains were tested for specificity. The mPCR assay accurately predicted the presence of pathogens among 44 symptomatic and asymptomatic rice seed, sheath and leaf samples. This study confirmed that this mPCR assay is a rapid, reliable and simple tool for the simultaneous detection of six important rice bacterial pathogens. This study is the first report of a method allowing simultaneous detection of six major rice pathogens. The ability to use crude extracts from plants without bacterial isolation or DNA extraction enhances the value of this mPCR technology for rapid detection and aetiological/epidemiological studies. © 2016 The Society for Applied Microbiology.

  11. Optimized Pan-species and speciation duplex real-time PCR assays for Plasmodium parasites detection in malaria vectors.

    Directory of Open Access Journals (Sweden)

    Maurice Marcel Sandeu

    Full Text Available BACKGROUND: An accurate method for detecting malaria parasites in the mosquito's vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. METHODS: Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. RESULTS: The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6% and specificity (98%, compared to ELISA-CSP as the referent standard. The agreement between both methods was "excellent" (κ=0.8, P<0.05. The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P=0, 2. All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. CONCLUSION: This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the

  12. Rapid real-time PCR assay for culture and tissue identification of Geomyces destructans: the etiologic agent of bat geomycosis (white nose syndrome).

    Science.gov (United States)

    Chaturvedi, Sudha; Rudd, Robert J; Davis, April; Victor, Tanya R; Li, Xiaojiang; Appler, Kim A; Rajkumar, Sunanda S; Chaturvedi, Vishnu

    2011-10-01

    Geomyces destructans is the etiologic agent of bat geomycosis, commonly referred to as white nose syndrome (WNS). This infection has caused severe morbidity and mortality in little brown bats (Myotis lucifugus) and has also spread to other bat species with significant decline in the populations. Currently, G. destructans infection is identified by culture, ITS-PCR, and histopathology. We hypothesized that a real-time PCR assay would considerably improve detection of G. destructans in bats. The 100 bp sequence of the Alpha-L-Rhamnosidase gene was validated as a target for real-time PCR. The assay sensitivity was determined from serial dilution of DNA extracted from G. destructans conidia (5 × 10(-1)-5 × 10(7)), and the specificity was tested using DNA from 30 closely and distantly related fungi and 5 common bacterial pathogens. The real-time PCR assay was highly sensitive with detection limit of two G. destructans conidia per reaction at 40 PCR cycles. The assay was also highly specific as none of the other fungal or bacterial DNA cross-reacted in the real-time PCR assay. One hundred and forty-seven bat tissue samples, suspected of infection with G. destructans, were used to compare the real-time PCR assay to other methods employed for the detection of G. destructans. Real-time PCR was highly sensitive with 80 of 147 (55%) samples testing positive for G. destructans DNA. In comparison, histopathology examination revealed 64/147 (44%) positive samples. The internal transcribed spacer (ITS)-PCR yielded positive amplicon for G. destructans from 37 tissue samples (25%). The least sensitive assay was the fungal culture with only 17 tissue samples (12%) yielding G. destructans in culture. The data suggested that the real-time PCR assay is highly promising for rapid, sensitive, and specific identification of G. destructans. Further trials and inter-laboratory comparisons of this novel assay are recommended to improve the diagnosis of bat geomycosis.

  13. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan PCR Assay

    Directory of Open Access Journals (Sweden)

    Hua-Ying Fu

    2016-01-01

    Full Text Available Ratoon stunting disease (RSD of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx. A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR and a fluorogenic probe (Pat1-QP targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7% of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174 were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174 were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.

  14. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment

    Directory of Open Access Journals (Sweden)

    Tian Ding

    2017-05-01

    Full Text Available This study firstly developed a multiplex real-time PCR (RT-PCR technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus, Listeria monocytogenes (L. monocytogenes and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water in one reaction. Brain heart infusion (BHI broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.

  15. Performance of a real-time PCR assay in routine bovine mastitis diagnostics compared with in-depth conventional culture.

    Science.gov (United States)

    Hiitiö, Heidi; Riva, Rauna; Autio, Tiina; Pohjanvirta, Tarja; Holopainen, Jani; Pyörälä, Satu; Pelkonen, Sinikka

    2015-05-01

    Reliable identification of the aetiological agent is crucial in mastitis diagnostics. Real-time PCR is a fast, automated tool for detecting the most common udder pathogens directly from milk. In this study aseptically taken quarter milk samples were analysed with a real-time PCR assay (Thermo Scientific PathoProof Mastitis Complete-12 Kit, Thermo Fisher Scientific Ltd.) and by semi-quantitative, in-depth bacteriological culture (BC). The aim of the study was to evaluate the diagnostic performance of the real-time PCR assay in routine use. A total of 294 quarter milk samples from routine mastitis cases were cultured in the national reference laboratory of Finland and examined with real-time PCR. With BC, 251 out of 294 (85.7%) of the milk samples had at least one colony on the plate and 38 samples were considered contaminated. In the PCR mastitis assay, DNA of target species was amplified in 244 samples out of 294 (83.0%). The most common bacterial species detected in the samples, irrespective of the diagnostic method, was the coagulase negative staphylococci (CNS) group (later referred as Staphylococcus spp.) followed by Staphylococcus aureus. Sensitivity (Se) and specificity (Sp) for the PCR assay to provide a positive Staph. aureus result was 97.0 and 95.8% compared with BC. For Staphylococcus spp., the corresponding figures were 86.7 and 75.4%. Our results imply that PCR performed well as a diagnostic tool to detect Staph. aureus but may be too nonspecific for Staphylococcus spp. in routine use with the current cut-off Ct value (37.0). Using PCR as the only microbiological method for mastitis diagnostics, clinical relevance of the results should be carefully considered before further decisions, for instance antimicrobial treatment, especially when minor pathogens with low amount of DNA have been detected. Introducing the concept of contaminated samples should also be considered.

  16. Soil Baiting, Rapid PCR Assay and Quantitative Real Time PCR to Diagnose Late Blight of Potato in Quarantine Programs

    Directory of Open Access Journals (Sweden)

    Touseef Hussain

    2018-05-01

    Full Text Available Phytophthora infestans (mont de Bary is a pathogen of great concern across the globe, and accurate detection is an important component in responding to the outbreaks of potential disease. Although the molecular diagnostic protocol used in regulatory programs has been evaluated but till date methods implying direct comparison has rarely used. In this study, a known area soil samples from potato fields where light blight appear every year (both A1 and A2 mating type was assayed by soil bait method, PCR assay detection and quantification of the inoculums. Suspected disease symptoms appeared on bait tubers were further confirmed by rapid PCR, inoculums were quantified through Real Time PCR, which confirms presence of P. infestans. These diagnostic methods can be highly correlated with one another. Potato tuber baiting increased the sensitivity of the assay compared with direct extraction of DNA from tuber and soil samples. Our study determines diagnostic sensitivity and specificity of the assays to determine the performance of each method. Overall, molecular techniques based on different types of PCR amplification and Real-time PCR can lead to high throughput, faster and more accurate detection method which can be used in quarantine programmes in potato industry and diagnostic laboratory.

  17. Tetraplex PCR assay involving double gene-sites discriminates beef and buffalo in Malaysian meat curry and burger products.

    Science.gov (United States)

    Hossain, M A Motalib; Ali, Md Eaqub; Hamid, Sharifah Bee Abd; Hossain, S M Azad; Asing; Nizar, Nina Naquiah Ahmad; Uddin, Mohammad Nasir; Ali, Lokman; Asaduzzaman, Md; Akanda, Md Jahurul Haque

    2017-06-01

    Replacement of beef by buffalo and vice versa is frequent in global markets, but their authentication is challenging in processed foods due to the fragmentation of most biomarkers including DNA. The shortening of target sequences through use of two target sites might ameliorate assay reliability because it is highly unlikely that both targets will be lost during food processing. For the first time, we report a tetraplex polymerase chain reaction (PCR) assay targeting two different DNA regions in beef (106 and 120-bp) and buffalo (90 and 138-bp) mitochondrial genes to discriminate beef and buffalo in processed foods. All targets were stable under boiling, autoclaving and microwave cooking conditions. A survey in Malaysian markets revealed 71% beef curries contained buffalo but there was no buffalo in beef burgers. The assay detected down to 0.01ng DNA and 1% meat in admixed and burger products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots.

    Science.gov (United States)

    Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D

    2014-10-04

    As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, PNested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.

  19. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    Science.gov (United States)

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines.

    Science.gov (United States)

    Košir, Alexandra Bogožalec; Spilsberg, Bjørn; Holst-Jensen, Arne; Žel, Jana; Dobnik, David

    2017-08-17

    Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.

  1. A Rapid and Simple Real-Time PCR Assay for Detecting Foodborne Pathogenic Bacteria in Human Feces.

    Science.gov (United States)

    Hanabara, Yutaro; Ueda, Yutaka

    2016-11-22

    A rapid, simple method for detecting foodborne pathogenic bacteria in human feces is greatly needed. Here, we examined the efficacy of a method that employs a combination of a commercial PCR master mix, which is insensitive to PCR inhibitors, and a DNA extraction method which used sodium dodecyl benzene sulfonate (SDBS), and Tween 20 to counteract the inhibitory effects of SDBS on the PCR assay. This method could detect the target genes (stx1 and stx2 of enterohemorrhagic Escherichia coli, invA of Salmonella Enteritidis, tdh of Vibrio parahaemolyticus, gyrA of Campylobacter jejuni, ceuE of Campylobacter coli, SEA of Staphylococcus aureus, ces of Bacillus cereus, and cpe of Clostridium perfringens) in a fecal suspension containing 1.0 × 10 1 to 1.0 × 10 3 CFU/ml. Furthermore, the assay was neither inhibited nor influenced by individual differences among the fecal samples of 10 subjects or fecal concentration (40-160 mg/ml in the fecal suspension). When we attempted to detect the genes of pathogenic bacteria in 4 actual clinical cases, we found that this method was more sensitive than standard culture method. These results showed that this assay is a rapid, simple detection method for foodborne pathogenic bacteria in human feces.

  2. Development and Validation of a Multiplex PCR-Based Assay for the Upper Respiratory Tract Bacterial Pathogens Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis.

    Science.gov (United States)

    Post; White; Aul; Zavoral; Wadowsky; Zhang; Preston; Ehrlich

    1996-06-01

    Background: Conventional simplex polymerase chain reaction (PCR)-based assays are limited in that they only provide for the detection of a single infectious agent. Many clinical diseases, however, present in a nonspecific, or syndromic, fashion, thereby necessitating the simultaneous assessment of multiple pathogens. Panel-based molecular diagnostic testing can be accomplished by the development of multiplex PCR-based assays, which can detect, individually or severally, different pathogens that are associated with syndromic illness. As part of a larger program of panel development, an assay that can simultaneously detect Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis was developed. These organisms were chosen as they are the most common bacterial pathogens associated with both the acute and chronic forms of otitis media; they are also responsible for a high percentage of sinus infections in both children and adults. In addition, H. influenzae and S. pneumoniae are commonly associated with septic meningitits. Methods and Results: Multiple individual PCR-based assays were developed for each of the three target organisms which were then evaluated for sensitivity and specificity. Utilizing the simplex assays that met our designated performance criteria, a matrix style approach was used to develop a duplex H. influenzae-S. pneumoniae assay. The duplex assay was then used as a single component in the development of a triplex assay, wherein the various M. catarrhalis primer-probe sets were tested for compatibility with the existing assay. A single-step PCR protocol, with species-specific primers for each of the three target organisms and a liquid hybridization-gel retardation amplimer detection system, was developed, which amplifies and then discriminates among each of the amplification products according to size. This assay is able to detect all three organisms in a specific manner, either individually or severally. Dilutional experiments

  3. Development and evaluation of novel one-step TaqMan realtime RT-PCR assays for the detection and direct genotyping of genogroup I and II noroviruses

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Vega, Everado; Dalsgaard, Anders

    2011-01-01

    BackgroundCurrent detection and genotyping methods of genogroup (G) I and II noroviruses (NoVs) consist of a 2-step approach including detection of viral RNA by TaqMan realtime RT-PCR (RT-qPCR) followed by conventional RT-PCR and sequencing of partial regions of ORF1 or ORF2. ObjectiveTo develop ......Man RT-qPCR assays for the sensitive detection and direct genotyping of GI and GII NoVs from clinical and environmental matrices...... novel long-template one-step TaqMan assays (L-RT-qPCR) for the rapid detection and direct genotyping of GI and GII NoVs and to evaluate the sensitivity and specificity of the assays. Study designGI and GII-specific broadly reactive L-RT-qPCR assays were developed by combining existing NoV primers...... and probes targeting the open reading frame (ORF)1–ORF2 junction as well as region C at the 5′–ORF2. The assays were validated using GI and GII RNA transcripts and a coded panel of 75 stool samples containing NoV strains representing 9 GI genotypes and 12 GII genotypes, as well as sapoviruses, astroviruses...

  4. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA.

    Science.gov (United States)

    Zozaya-Valdés, Enrique; Porter, Jessica L; Coventry, John; Fyfe, Janet A M; Carter, Glen P; Gonçalves da Silva, Anders; Schultz, Mark B; Seemann, Torsten; Johnson, Paul D R; Stewardson, Andrew J; Bastian, Ivan; Roberts, Sally A; Howden, Benjamin P; Williamson, Deborah A; Stinear, Timothy P

    2017-06-01

    Mycobacterium chimaera is an opportunistic environmental mycobacterium belonging to the Mycobacterium avium - M. intracellulare complex. Although most commonly associated with pulmonary disease, there has been growing awareness of invasive M. chimaera infections following cardiac surgery. Investigations suggest worldwide spread of a specific M. chimaera clone, associated with contaminated hospital heater-cooler units used during the surgery. Given the global dissemination of this clone, its potential to cause invasive disease, and the laboriousness of current culture-based diagnostic methods, there is a pressing need to develop rapid and accurate diagnostic assays specific for M. chimaera Here, we assessed 354 mycobacterial genome sequences and confirmed that M. chimaera is a phylogenetically coherent group. In silico comparisons indicated six DNA regions present only in M. chimaera We targeted one of these regions and developed a TaqMan quantitative PCR (qPCR) assay for M. chimaera with a detection limit of 100 CFU/ml in whole blood spiked with bacteria. In vitro screening against DNA extracted from 40 other mycobacterial species and 22 bacterial species from 21 diverse genera confirmed the in silico -predicted specificity for M. chimaera Screening 33 water samples from heater-cooler units with this assay highlighted the increased sensitivity of PCR compared to culture, with 15 of 23 culture-negative samples positive by M. chimaera qPCR. We have thus developed a robust molecular assay that can be readily and rapidly deployed to screen clinical and environmental specimens for M. chimaera . Copyright © 2017 American Society for Microbiology.

  5. A new PCR assay for the detection and differentiation of Babesia canis and Babesia vogeli.

    Science.gov (United States)

    Annoscia, Giada; Latrofa, Maria Stefania; Cantacessi, Cinzia; Olivieri, Emanuela; Manfredi, Maria Teresa; Dantas-Torres, Filipe; Otranto, Domenico

    2017-10-01

    Babesia spp. are globally distributed tick-borne protozoan parasites that infect the red blood cells of a wide range of vertebrate hosts, including humans. Diagnosis of babesiosis is often impeded by the transient presence of the parasites in peripheral blood, as well as by their pleomorphic nature. Given the reports of an expanding and, in some cases, sympatric geographical distribution of Babesia canis and Babesia vogeli in dogs and associated vectors, in Europe, the development of time-efficient and cost-effective diagnostic tools to detect and differentiate these two species is warranted. In this study, we designed and developed a novel polymerase chain reaction (PCR) assay targeting the parasite cytochrome c oxidase subunit 1 (cox1) gene, for the simultaneous detection and differentiation of B. canis and B. vogeli. The analytical sensitivity of the PCR was evaluated using serial dilutions of genomic DNA extracted from individual and artificially mixed canine blood samples infected by B. canis (3×10 2 infected erythrocytes/ml, ie/ml) and B. vogeli (2.1×10 1 ie/ml). The analytical specificity of the assay was assessed using blood samples positive for Hepatozoon canis, Ehrlichia canis, Anaplasma platys, Babesia microti, Babesia rossi and Theileria annae (syn. Babesia vulpes). The clinical specificity of the PCR assay was evaluated on 147 blood samples from dogs and 128 tick specimens (Dermacentor reticulatus and Rhipicephalus sanguineus sensu lato). Species-specific bands of the expected sizes (i.e., 750bp for B. canis and 450bp for B. vogeli), and two bands in the mixed blood samples were obtained. The PCR assay developed herein detected a low number of infected erythrocytes (i.e., 3×10 -2 B. canis, 2.1×10 -2 B. vogeli ie/ml). Of the 147 blood samples, nine (6.1%) were positive for B. canis and six (4.1%) for B. vogeli, whereas only one tick (D. reticulatus) was positive for B. canis. This PCR assay represents a rapid and reliable tool for the diagnosis of B

  6. Quantitative PCR assay to determine prevalence and intensity of MSX (Haplosporidium nelsoni) in North Carolina and Rhode Island oysters Crassostrea virginica.

    Science.gov (United States)

    Wilbur, Ami E; Ford, Susan E; Gauthier, Julie D; Gomez-Chiarri, Marta

    2012-12-27

    The continuing challenges to the management of both wild and cultured eastern oyster Crassostrea virginica populations resulting from protozoan parasites has stimulated interest in the development of molecular assays for their detection and quantification. For Haplosporidium nelsoni, the causative agent of multinucleated sphere unknown (MSX) disease, diagnostic evaluations depend extensively on traditional but laborious histological approaches and more recently on rapid and sensitive (but not quantitative) end-point polymerase chain reaction (PCR) assays. Here, we describe the development and application of a quantitative PCR (qPCR) assay for H. nelsoni using an Applied Biosystems TaqMan® assay designed with minor groove binder (MGB) probes. The assay was highly sensitive, detecting as few as 20 copies of cloned target DNA. Histologically evaluated parasite density was significantly correlated with the quantification cycle (Cq), regardless of whether quantification was categorical (r2 = 0.696, p < 0.0001) or quantitative (r2 = 0.797, p < 0.0001). Application in field studies conducted in North Carolina, USA (7 locations), revealed widespread occurrence of the parasite with moderate to high intensities noted in some locations. In Rhode Island, USA, application of the assay on oysters from 2 locations resulted in no positives.

  7. Quantitative analysis of food and feed samples with droplet digital PCR.

    Directory of Open Access Journals (Sweden)

    Dany Morisset

    Full Text Available In this study, the applicability of droplet digital PCR (ddPCR for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs. Real-time quantitative polymerase chain reaction (qPCR is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.

  8. Development of an ultrasensitive PCR assay for polycyclic musk determination in fish.

    Science.gov (United States)

    Zhang, Xiaohan; Zhuang, Huisheng

    2018-05-01

    Polycyclic musks (PCMs) in the aquatic environment and organisms have become an emerging environmental issue because of their potential risk. The most used method for polycyclic musk determination is gas chromatography-mass spectrometry (GC-MS) with different sample extractions, which are somewhat expensive to operate, complex and laborious. In this study, a novel and ultrasensitive real-time polymerase chain reaction (PCR) assay with multiple signal amplification of carboxylic-DNA by gold nanoparticle-polyamidoamine conjugation (Au-PAMAM) was developed for determining polycyclic musks in fish. Hapten and immunogen were specially prepared. Polyclonal antibodies were produced based on the optimal immunisation, and the antibodies were characterised. Due to PAMAM's unique nanostructure of numerous functional amino groups, polyclonal antibody and carboxylic-DNA were immobilised by Au-PAMAM conjugation to develop the antibody-Au-PAMAM-DNA probes, which were used as a signal DNA amplifier in the PCR system. Compared with real-time immuno-PCR, this biological probe-amplified immuno-PCR (BPAI-PCR) assay had higher sensitivity due to the probes' higher ratio of signal DNA. Finally, the BPAI-PCR assay was applied to analyse AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene,Tonalide) concentrations in fish samples in the range from 1 pg/L to 10 ng/L, giving an of LOD 0.61 pg/L. In general, due to the specificity of the antibody and novel nanoprobe design, this BPAI-PCR assay provided a potential way for trace analysis of AHTN in the aquatic organisms. The high concentrations of AHTN found in cultivated fish should encourage further toxicological studies.

  9. Droplet digital polymerase chain reaction (ddPCR assays integrated with an internal control for quantification of bovine, porcine, chicken and turkey species in food and feed.

    Directory of Open Access Journals (Sweden)

    Hanan R Shehata

    Full Text Available Food adulteration and feed contamination are significant issues in the food/feed industry, especially for meat products. Reliable techniques are needed to monitor these issues. Droplet Digital PCR (ddPCR assays were developed and evaluated for detection and quantification of bovine, porcine, chicken and turkey DNA in food and feed samples. The ddPCR methods were designed based on mitochondrial DNA sequences and integrated with an artificial recombinant plasmid DNA to control variabilities in PCR procedures. The specificity of the ddPCR assays was confirmed by testing both target species and additional 18 non-target species. Linear regression established a detection range between 79 and 33200 copies of the target molecule from 0.26 to 176 pg of fresh animal tissue DNA with a coefficient of determination (R2 of 0.997-0.999. The quantification ranges of the methods for testing fortified heat-processed food and feed samples were 0.05-3.0% (wt/wt for the bovine and turkey targets, and 0.01-1.0% (wt/wt for pork and chicken targets. Our methods demonstrated acceptable repeatability and reproducibility for the analytical process for food and feed samples. Internal validation of the PCR process was monitored using a control chart for 74 consecutive ddPCR runs for quantifying bovine DNA. A matrix effect was observed while establishing calibration curves with the matrix type under testing, and the inclusion of an internal control in DNA extraction provides a useful means to overcome this effect. DNA degradation caused by heating, sonication or Taq I restriction enzyme digestion was found to reduce ddPCR readings by as much as 4.5 fold. The results illustrated the applicability of the methods to quantify meat species in food and feed samples without the need for a standard curve, and to potentially support enforcement activities for food authentication and feed control. Standard reference materials matching typical manufacturing processes are needed for

  10. Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate▿

    Science.gov (United States)

    Saikaly, Pascal E.; Barlaz, Morton A.; de los Reyes, Francis L.

    2007-01-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R2 > 0.98) over a 7-log-unit dynamic range down to 101 B. atrophaeus cells or spores. Quantification of S. marcescens (R2 > 0.98) was linear over a 6-log-unit dynamic range down to 102 S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can

  11. Nested PCR Assay for Detection of Leishmania donovani in Slit Aspirates from Post-Kala-Azar Dermal Leishmaniasis Lesions

    Science.gov (United States)

    Sreenivas, Gannavaram; Ansari, N. A.; Kataria, Joginder; Salotra, Poonam

    2004-01-01

    A nested PCR assay to detect parasite DNA in slit aspirates from skin lesions of patients with post-kala-azar dermal lesihmaniasis (PKDL) is described. PCR results were positive in 27 of 29 (93%) samples by nested PCR assay, while only 20 of 29 (69%) were positive in a primary PCR assay. The nested PCR assay allowed reliable diagnosis of PKDL in a noninvasive manner. PMID:15071047

  12. Nested PCR Assay for Detection of Leishmania donovani in Slit Aspirates from Post-Kala-Azar Dermal Leishmaniasis Lesions

    OpenAIRE

    Sreenivas, Gannavaram; Ansari, N. A.; Kataria, Joginder; Salotra, Poonam

    2004-01-01

    A nested PCR assay to detect parasite DNA in slit aspirates from skin lesions of patients with post-kala-azar dermal lesihmaniasis (PKDL) is described. PCR results were positive in 27 of 29 (93%) samples by nested PCR assay, while only 20 of 29 (69%) were positive in a primary PCR assay. The nested PCR assay allowed reliable diagnosis of PKDL in a noninvasive manner.

  13. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    Science.gov (United States)

    Wadhwa, Ashutosh; Wilkins, Kimberly; Gao, Jinxin; Condori Condori, Rene Edgar; Gigante, Crystal M; Zhao, Hui; Ma, Xiaoyue; Ellison, James A; Greenberg, Lauren; Velasco-Villa, Andres; Orciari, Lillian; Li, Yu

    2017-01-01

    Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high

  14. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses.

    Directory of Open Access Journals (Sweden)

    Ashutosh Wadhwa

    2017-01-01

    Full Text Available Rabies, resulting from infection by Rabies virus (RABV and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses

  15. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    Science.gov (United States)

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    Science.gov (United States)

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  17. Detection and serotyping of dengue virus in serum samples by multiplex reverse transcriptase PCR-ligase detection reaction assay.

    Science.gov (United States)

    Das, S; Pingle, M R; Muñoz-Jordán, J; Rundell, M S; Rondini, S; Granger, K; Chang, G-J J; Kelly, E; Spier, E G; Larone, D; Spitzer, E; Barany, F; Golightly, L M

    2008-10-01

    The detection and successful typing of dengue virus (DENV) from patients with suspected dengue fever is important both for the diagnosis of the disease and for the implementation of epidemiologic control measures. A technique for the multiplex detection and typing of DENV serotypes 1 to 4 (DENV-1 to DENV-4) from clinical samples by PCR-ligase detection reaction (LDR) has been developed. A serotype-specific PCR amplifies the regions of genes C and E simultaneously. The two amplicons are targeted in a multiplex LDR, and the resultant fluorescently labeled ligation products are detected on a universal array. The assay was optimized using 38 DENV strains and was evaluated with 350 archived acute-phase serum samples. The sensitivity of the assay was 98.7%, and its specificity was 98.4%, relative to the results of real-time PCR. The detection threshold was 0.017 PFU for DENV-1, 0.004 PFU for DENV-2, 0.8 PFU for DENV-3, and 0.7 PFU for DENV-4. The assay is specific; it does not cross-react with the other flaviviruses tested (West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, Kunjin virus, Murray Valley virus, Powassan virus, and yellow fever virus). All but 1 of 26 genotypic variants of DENV serotypes in a global DENV panel from different geographic regions were successfully identified. The PCR-LDR assay is a rapid, sensitive, specific, and high-throughput technique for the simultaneous detection of all four serotypes of DENV.

  18. A TaqMan real-time PCR assay for detection of Meloidogyne hapla in root galls and in soil

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Skantar, Andrea M.; Nicolaisen, Mogens

    2016-01-01

    . haplaand showed no significant amplification of DNA from non-target nematodes. The assay was able to detect M. haplain a background of plant and soil DNA. A dilution series of M. haplaeggs in soil showed a high correlation ( R 2 = 0 . 95 , P ...Early detection and quantification of Meloidogyne haplain soil is essential for effective disease management. The purpose of this study was to develop a real-time PCR assay for detection of M. haplain soil. Primers and a TaqMan probe were designed for M. hapladetection. The assay detected M......-knot development in carrots by testing soils before planting. The assay could be useful for management decisions in carrot cultivation....

  19. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus and PCV2 (DNA virus from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29% and TGEV (11.7% preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  20. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay

    Science.gov (United States)

    Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility. PMID:26544710

  1. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    Science.gov (United States)

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  2. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    DEFF Research Database (Denmark)

    Ågren, Joakim; Hamidjaja, Raditijo A.; Hansen, Trine

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely...... on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S...... targets evaluated are claimed to be specific to B. anthracis, cross-reactions with closely related B. cereus and B. thuringiensis strains were often observed. Of the 35 investigated PCR assays, only 4 were 100% specific for the B. anthracis chromosome. An interlaboratory ring trial among five European...

  3. Utility of a Multiplex PCR Assay for Detecting Herpesvirus DNA in Clinical Samples

    Science.gov (United States)

    Druce, Julian; Catton, Mike; Chibo, Doris; Minerds, Kirsty; Tyssen, David; Kostecki, Renata; Maskill, Bill; Leong-Shaw, Wendy; Gerrard, Marie; Birch, Chris

    2002-01-01

    A multiplex PCR was designed to amplify herpes simplex virus types 1 and 2, cytomegalovirus, and varicella-zoster virus DNA present in a diverse range of clinical material. The susceptibility of these viruses to in vivo inhibition by at least one antiviral drug was an important consideration in their inclusion in the multiplex detection system. An aliquot of equine herpesvirus was introduced into each specimen prior to extraction and served as an indicator of potential inhibitors of the PCR and a detector of suboptimal PCR conditions. Compared to virus isolation and immunofluorescence-based antigen detection, the multiplex assay yielded higher detection rates for all viruses represented in the assay. The turnaround time for performance of the assay was markedly reduced compared to those for the other techniques used to identify these viruses. More than 21,000 tests have been performed using the assay. Overall, the multiplex PCR enabled the detection of substantially increased numbers of herpesviruses, in some cases in specimens or anatomical sites where previously they were rarely if ever identified using traditional detection methods. PMID:11980951

  4. Evaluation of dual target-specific real-time PCR for the detection of Kingella kingae in a Danish paediatric population

    DEFF Research Database (Denmark)

    de Knegt, Victoria Elizabeth; Kristiansen, Gitte Qvist; Schønning, Kristian

    2017-01-01

    BACKGROUND: We aimed to evaluate the relevance of dual target real-time polymerase chain (PCR) assays targeting the rtxA and cpn60 genes of the paediatric pathogen Kingella kingae. We also studied for the first time the clinical and epidemiological features of K. kingae infections in a Danish pop......-value: peak in autumn. CONCLUSION: Dual target-specific real-time PCR markedly improved the detection of K. kingae in clinical specimens when compared to culture methods....

  5. A multiplex real-time PCR assay targeting virulence and resistance genes in Salmonella enterica serotype Typhimurium

    Directory of Open Access Journals (Sweden)

    Brisabois Anne

    2011-06-01

    Full Text Available Abstract Background Typhimurium is the main serotype of Salmonella enterica subsp. enterica implicated in food-borne diseases worldwide. This study aimed to detect the prevalence of ten markers combined in a macro-array based on multiplex real-time PCR. We targeted characteristic determinants located on pathogenicity islands (SPI-2 to -5, virulence plasmid pSLT and Salmonella genomic island 1 (SGI1 as well as a specific 16S-23S rRNA intergenic spacer sequence of definitive type 104 (DT104. To investigate antimicrobial resistance, the study also targeted the presence of genes involved in sulfonamide (sul1 and beta-lactam (blaTEM resistance. Finally, the intI1 determinant encoding integrase from class 1 integron was also investigated. Results A total of 538 unrelated S. Typhimurium strains isolated between 1999 and 2009 from various sources, including food animals, food products, human and environmental samples were studied. Based on the combined presence or absence of these markers, we distinguished 34 different genotypes, including three major genotypes encountered in 75% of the studied strains, Although SPI determinants were almost always detected, SGI1, intI1, sul1 and blaTEM determinants were found 47%, 52%, 54% and 12% of the time respectively, varying according to isolation source. Low-marker patterns were most often detected in poultry sources whereas full-marker patterns were observed in pig, cattle and human sources. Conclusion The GeneDisc® assay developed in this study madeit easier to explore variability within serotype Typhimurium by analyzing ten relevant gene determinants in a large collection of strains. This real-time multiplex method constitutes a valuable tool for strains characterization on epidemiological purposes.

  6. Evaluation of a multiplex real-time PCR assay for the detection of respiratory viruses in clinical specimens.

    Science.gov (United States)

    Rheem, Insoo; Park, Joowon; Kim, Tae-Hyun; Kim, Jong Wan

    2012-11-01

    In this study, we evaluated the analytical performance and clinical potential of a one-step multiplex real-time PCR assay for the simultaneous detection of 14 types of respiratory viruses using the AdvanSure RV real-time PCR Kit (LG Life Sciences, Korea). Three hundred and twenty clinical specimens were tested with the AdvanSure RV real-time PCR Kit and conventional multiplex reverse transcription (RT)-PCR assay. The assay results were analyzed and the one-step AdvanSure RV real-time PCR Kit was compared with the conventional multiplex RT-PCR assay with respect to the sensitivity and specificity of the detection of respiratory viruses. The limit of detection (LOD) was 1.31 plaque-forming units (PFU)/mL for human rhinoviruses (hRVs), 4.93 PFU/mL for human coronavirus HCoV-229E/NL63, 2.67 PFU/mL for human coronavirus HCoV-OC43, 18.20 PFU/mL for parainfluenza virus 1 (PIV)-1, 24.57 PFU/mL for PIV-2, 1.73 PFU/mL for PIV-3, 1.79 PFU/mL for influenza virus group (Flu) A, 59.51 PFU/mL for FluB, 5.46 PFU/mL for human respiratory syncytial virus (hRSV)-A, 17.23 PFU/mL for hRSV-B, 9.99 PFU/mL for human adenovirus (ADVs). The cross-reactivity test for this assay against 23 types of non-respiratory viruses showed negative results for all viruses tested. The agreement between the one-step AdvanSure multiplex real-time PCR assay and the conventional multiplex RT-PCR assay was 98%. The one-step AdvanSure RV multiplex real-time PCR assay is a simple assay with high potential for specific, rapid and sensitive laboratory diagnosis of respiratory viruses compared to conventional multiplex RT-PCR.

  7. Cutaneous and visceral leishmaniasis co-infection in dogs from Rio de Janeiro, Brazil: evaluation by specific PCR and RFLP-PCR assays

    Directory of Open Access Journals (Sweden)

    Marize Quinhones Pires

    2014-04-01

    Full Text Available Introduction During a diagnostic evaluation of canine visceral leishmaniasis (VL, two of seventeen dogs were found to be co-infected by Leishmania (Viannia braziliensis and Leishmania (Leishmania chagasi. Methods Specific polymerase chain reaction (PCR and restriction fragment length polymorphism-PCR (RFLP-PCR assays were performed. Results PCR assays for Leishmania subgenus identification followed by RFLP-PCR analysis in biopsies from cutaneous lesions and the spleen confirmed the presence of Leishmania (Viannia braziliensis and Leishmania (Leishmania chagasi in those fragments. Conclusions This report reinforces the importance of using serological and molecular techniques in the epidemiological surveillance of canine populations in endemic areas in which both diseases are known to co-exist. In such cases, a reassessment of the control measures is required.

  8. Clinical evaluation of a Mucorales-specific real-time PCR assay in tissue and serum samples.

    Science.gov (United States)

    Springer, Jan; Lackner, Michaela; Ensinger, Christian; Risslegger, Brigitte; Morton, Charles Oliver; Nachbaur, David; Lass-Flörl, Cornelia; Einsele, Hermann; Heinz, Werner J; Loeffler, Juergen

    2016-12-01

    Molecular diagnostic assays can accelerate the diagnosis of fungal infections and subsequently improve patient outcomes. In particular, the detection of infections due to Mucorales is still challenging for laboratories and physicians. The aim of this study was to evaluate a probe-based Mucorales-specific real-time PCR assay (Muc18S) using tissue and serum samples from patients suffering from invasive mucormycosis (IMM). This assay can detect a broad range of clinically relevant Mucorales species and can be used to complement existing diagnostic tests or to screen high-risk patients. An advantage of the Muc18S assay is that it exclusively detects Mucorales species allowing the diagnosis of Mucorales DNA without sequencing within a few hours. In paraffin-embedded tissue samples this PCR-based method allowed rapid identification of Mucorales in comparison with standard methods and showed 91 % sensitivity in the IMM tissue samples. We also evaluated serum samples, an easily accessible material, from patients at risk from IMM. Mucorales DNA was detected in all patients with probable/proven IMM (100 %) and in 29 % of the possible cases. Detection of IMM in serum could enable an earlier diagnosis (up to 21 days) than current methods including tissue samples, which were gained mainly post-mortem. A screening strategy for high-risk patients, which would enable targeted treatment to improve patient outcomes, is therefore possible.

  9. Simultaneous detection of Legionella species and Legionella pneumophila by duplex PCR (dPCR assay in cooling tower water samples from Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Andi Yasmon

    2010-11-01

    Full Text Available Aim: Since culture method is time-consuming and has low  sensitivity, we developed a duplex PCR (dPCR assay for the detection of Legionella sp. and L. pneumophila in cooling tower samples. We used culture method as a gold standard.Methods: Optimization of dPCR method was performed to obtain an assay with high sensitivity and specifi city. The optimized method was used to detect Legionella sp. dan L. pneumophila in 9 samples obtained from 9 buildings in Jakarta. For culture method, the bacteria were grown or isolated on selective growth factor supplemented-buffered charcoal yeast extract (BCYE media.Results: Of 9 samples tested by dPCR assay, 6 were positive for Legionella species,1 was positive for L. pneumophila, and 2 showed negative results. For the same samples, no Legionella sp. was detected by the culture method.Conclusion: dPCR assay was much more sensitive than the culture method and was potentially used as a rapid, specifi c and sensitive test for routine detection of Legionella sp. dan for L. pneumophila in water samples. (Med J Indones 2010; 19:223-7Keywords: BCYE media, mip gene, 16S-rRNA gene

  10. Fundamentals of Counting Statistics in Digital PCR: I Just Measured Two Target Copies-What Does It Mean?

    Science.gov (United States)

    Tzonev, Svilen

    2018-01-01

    Current commercially available digital PCR (dPCR) systems and assays are capable of detecting individual target molecules with considerable reliability. As tests are developed and validated for use on clinical samples, the need to understand and develop robust statistical analysis routines increases. This chapter covers the fundamental processes and limitations of detecting and reporting on single molecule detection. We cover the basics of quantification of targets and sources of imprecision. We describe the basic test concepts: sensitivity, specificity, limit of blank, limit of detection, and limit of quantification in the context of dPCR. We provide basic guidelines how to determine those, how to choose and interpret the operating point, and what factors may influence overall test performance in practice.

  11. PCR based diagnostic assay targeting the beta tubulin gene for the detection of Trichomonas vaginalis infection in vaginal swab samples of symptomatic and asymptomatic women in India

    Directory of Open Access Journals (Sweden)

    Surya Prakash Dwivedi

    2012-10-01

    Full Text Available Objective: To develop an in-house PCR based diagnostic assay for identification of strains isolated from symptomatic and asymptomatic subjects of India, targeting the 毬 -tubulin gene using specific primers. Methods: In the present study a primer set is designed to target a well-conserved region in the beta-tubulin gene of Trichomonas vaginalis (T. vaginalis. All strains of T. vaginalis were tested and successfully detected by PCR yielding a single predicted product of 198 bp in gel electrophoresis, while there was negative response with DNA from Giardia lamblia, Toxoplasma gondii, Leishmania donovani and Entamoeba histolytica. The sensitivity and specificity for a single T. vaginalis cell per PCR was achieved. Axenic Culture, performed with long term axenized T. vaginalis culture system, was routinely examined to identify T. vaginalis. Results: The PCR based investigations with 498 vaginal swab samples from women attending OPD clinics of Halberg Hospital Moradabad and Queen Mary ’s Hospital, Lucknow, India and 17 long term axenic cultures maintained at PGIMER, Chandigarh, India using primer set BTUB 1 & BTUB 2 showed sensitivity and specificity response of 98% and 100%, respectively, while wet preparation in clinically isolated samples responded up to 62.5%. The PCR product sequencing result of symptomatic strains (SS1 of T. vaginalis (744 bp long was submitted to NCBI (Accession No: JF513200. It shows maximum identity 98 % with XM_001284521 Trichomonas vaginalis G-3 beta-tubulin (btub putative partial mRNA. Conclusions: The data gathered in the present study entail that the diagnosis of T. vaginalis infection by PCR may be established as a sensitive and specific protocol, to be incorporated into a joint strategy for the screening of multiple STDs by employing molecular amplification technique. The merits and precautions of the protocol have been discussed.

  12. Development of ultra-short PCR assay to reveal BRAF V600 mutation status in Thai colorectal cancer tissues.

    Science.gov (United States)

    Chat-Uthai, Nunthawut; Vejvisithsakul, Pichpisith; Udommethaporn, Sutthirat; Meesiri, Puttarakun; Danthanawanit, Chetiya; Wongchai, Yannawan; Teerapakpinyo, Chinachote; Shuangshoti, Shanop; Poungvarin, Naravat

    2018-01-01

    The protein kinase BRAF is one of the key players in regulating cellular responses to extracellular signals. Somatic mutations of the BRAF gene, causing constitutive activation of BRAF, have been found in various types of human cancers such as malignant melanoma, and colorectal cancer. BRAF V600E and V600K, most commonly observed mutations in these cancers, may predict response to targeted therapies. Many techniques suffer from a lack of diagnostic sensitivity in mutation analysis in clinical samples with a low cancer cell percentage or poor-quality fragmented DNA. Here we present allele-specific real-time PCR assay for amplifying 35- to 45-base target sequences in BRAF gene. Forward primer designed for BRAF V600E detection is capable of recognizing both types of BRAF V600E mutation, i.e. V600E1 (c.1799T>A) and V600E2 (c.1799_1800delTGinsAA), as well as complex tandem mutation caused by nucleotide changes in codons 600 and 601. We utilized this assay to analyze Thai formalin-fixed paraffin-embedded tissues. Forty-eight percent of 178 Thai colorectal cancer tissues has KRAS mutation detected by highly sensitive commercial assays. Although these DNA samples contain low overall yield of amplifiable DNA, our newly-developed assay successfully revealed BRAF V600 mutations in 6 of 93 formalin-fixed paraffin-embedded colorectal cancer tissues which KRAS mutation was not detected. Ultra-short PCR assay with forward mutation-specific primers is potentially useful to detect BRAF V600 mutations in highly fragmented DNA specimens from cancer patients.

  13. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients.

    Science.gov (United States)

    Zarrinfar, Hossein; Makimura, Koichi; Satoh, Kazuo; Khodadadi, Hossein; Mirhendi, Hossein

    2013-05-01

    Although the incidence of invasive aspergillosis in the intensive care unit (ICU) is scarce, it has emerged as major problems in critically ill patients. In this study, the incidence of pulmonary aspergillosis (PA) in ICU patients has evaluated and direct microscopy and culture has compared with nested polymerase chain reaction (PCR) and real-time PCR for detection of Aspergillus fumigatus and A. flavus in bronchoalveolar lavage (BAL) samples of the patients. Thirty BAL samples obtained from ICU patients during a 16-month period were subjected to direct examinations on 20% potassium hydroxide (KOH) and culture on two culture media. Nested PCR targeting internal transcribed spacer ribosomal DNA and TaqMan real-time PCR assay targeting β-tubulin gene were used for the detection of A. fumigatus and A. flavus. Of 30 patients, 60% were men and 40% were women. The diagnosis of invasive PA was probable in 1 (3%), possible in 11 (37%), and not IPA in 18 (60%). Nine samples were positive in nested PCR including seven samples by A. flavus and two by A. fumigatus specific primers. The lowest amount of DNA that TaqMan real-time PCR could detect was ≥40 copy numbers. Only one of the samples had a positive result of A. flavus real-time PCR with Ct value of 37.5. Although a significant number of specimens were positive in nested PCR, results of this study showed that establishment of a correlation between the conventional methods with nested PCR and real-time PCR needs more data confirmed by a prospective study with a larger sample group. © 2013 Wiley Periodicals, Inc.

  14. Detection of Toxoplasma gondii oocysts in soils in northwestern China using a new semi-nested PCR assay.

    Science.gov (United States)

    Wang, Meng; Meng, Peng; Ye, Qiang; Pu, Yuan-Hua; Yang, Xiao-Yu; Luo, Jian-Xun; Zhang, Nian-Zhang; Zhang, De-Lin

    2014-09-28

    Toxoplasma gondii is a zoonotic pathogen that can infect a range of animals and humans. Ingestion of T. gondii oocysts in soil is a significant transmission route for humans and animals acquiring toxoplasmosis. In the present study, we developed a new semi-nested PCR method to determine T. gondii oocysts distribution in soils in northwestern China. The one tube semi-nested PCR assay was developed to detect the oocysts of T. gondii in soil, targeting the repetitive 529 bp fragment of T. gondii genomic DNA. Then a total of 268 soil samples, including 148 samples from Gansu Province and 120 samples from Qinghai Province, northwestern China, were examined by the semi-nested PCR method. One third of the positive samples were sequenced. The sensitivity of the semi-nested PCR assay was 10(2)  T. gondii oocysts in 5 g soil sample. Investigation of soil samples from northwestern China showed that 34 out of 268 soil samples (12.69%) were T. gondii positive. Sequences of the partial 529 bp fragments varied from 0-1.2% among the sequenced samples. The prevalence of T. gondii oocysts in soil from cities (24/163) was slightly higher than that in soils from pasturing areas (10/105) (P = 0.21). Among the different regions in cities, the prevalence of T. gondii oocysts in soils from parks was 14.15%, whereas that in soils from schools was 19.05%. The present study firstly reported the prevalence of T. gondii oocysts in soils in northwest China using a novel semi-nested PCR assay, which provided baseline data for the effective prevention and control of toxoplasmosis in this region.

  15. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    Science.gov (United States)

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; PPCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An Evaluation of Quantitative PCR Assays (TaqMan® and SYBR Green for the Detection of Babesia bigemina and Babesia bovis, and a Novel Fluorescent-ITS1-PCR Capillary Electrophoresis Method for Genotyping B. bovis Isolates

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2016-09-01

    Full Text Available Babesia spp. are tick-transmitted haemoparasites causing tick fever in cattle. In Australia, economic losses to the cattle industry from tick fever are estimated at AUD$26 Million per annum. If animals recover from these infections, they become immune carriers. Here we describe a novel multiplex TaqMan qPCR targeting cytochrome b genes for the identification of Babesia spp. The assay shows high sensitivity, specificity and reproducibility, and allows quantification of parasite DNA from Babesia bovis and B. bigemina compared to standard PCR assays. A previously published cytochrome b SYBR Green qPCR was also tested in this study, showing slightly higher sensitivity than the Taqman qPCRs but requires melting curve analysis post-PCR to confirm specificity. The SYBR Green assays were further evaluated using both diagnostic submissions and vaccinated cattle (at 7, 9, 11 and 14 days post-inoculation showed that B. bigemina can be detected more frequently than B. bovis. Due to fewer circulating parasites, B. bovis detection in carrier animals requires higher DNA input. Preliminary data for a novel fluorescent PCR genotyping based on the Internal Transcribed Spacer 1 region to detect vaccine and field alleles of B. bovis are described. This assay is capable of detecting vaccine and novel field isolate alleles in a single sample.

  17. Development and utility of an internal threshold control (ITC real-time PCR assay for exogenous DNA detection.

    Directory of Open Access Journals (Sweden)

    Weiyi Ni

    Full Text Available Sensitive and specific tests for detecting exogenous DNA molecules are useful for infectious disease diagnosis, gene therapy clinical trial safety, and gene doping surveillance. Taqman real-time PCR using specific sequence probes provides an effective approach to accurately and quantitatively detect exogenous DNA. However, one of the major challenges in these analyses is to eliminate false positive signals caused by either non-targeted exogenous or endogenous DNA sequences, or false negative signals caused by impurities that inhibit PCR. Although multiplex Taqman PCR assays have been applied to address these problems by adding extra primer-probe sets targeted to endogenous DNA sequences, the differences between targets can lead to different detection efficiencies. To avoid these complications, a Taqman PCR-based approach that incorporates an internal threshold control (ITC has been developed. In this single reaction format, the target sequence and ITC template are co-amplified by the same primers, but are detected by different probes each with a unique fluorescent dye. Sample DNA, a prescribed number of ITC template molecules set near the limit of sensitivity, a single pair of primers, target probe and ITC probe are added to one reaction. Fluorescence emission signals are obtained simultaneously to determine the cycle thresholds (Ct for amplification of the target and ITC sequences. The comparison of the target Ct with the ITC Ct indicates if a sample is a true positive for the target (i.e. Ct less than or equal to the ITC Ct or negative (i.e. Ct greater than the ITC Ct. The utility of this approach was demonstrated in a nonhuman primate model of rAAV vector mediated gene doping in vivo and in human genomic DNA spiked with plasmid DNA.

  18. A novel RT-qPCR assay for quantification of the MLL-MLLT3 fusion transcript in acute myeloid leukaemia

    DEFF Research Database (Denmark)

    Abildgaard, Lotte; Ommen, Hans Beier; Lausen, Birgitte Frederiksen

    2013-01-01

    OBJECTIVES: Patients with acute myeloid leukaemia (AML) of the monocytic lineage often lack molecular markers for minimal residual disease (MRD) monitoring. The MLL-MLLT3 fusion transcript found in patients with AML harbouring t(9;11) is amenable to RT-qPCR quantification but because...... of the heterogeneity of translocation break points, the MLL-MLLT3 fusion gene is a challenging target. We hypothesised that MRD monitoring using MLL-MLLT3 as a RT-qPCR marker is feasible in the majority of patients with t(9;11)-positive AML. METHODS: Using a locked nucleic acid probe, we developed a sensitive RT......-qPCR assay for quantification of the most common break point region of the MLL-MLLT3 fusion gene. Five paediatric patients with t(9;11)-positive AML were monitored using the MLL-MLLT3 assay. RESULTS: A total of 43 bone marrow (BM) and 52 Peripheral blood (PB) samples were collected from diagnosis until...

  19. Multiplex real-time PCR assay for the detection of extended-spectrum β-lactamase and carbapenemase genes using melting curve analysis.

    Science.gov (United States)

    Singh, Prashant; Pfeifer, Yvonne; Mustapha, Azlin

    2016-05-01

    Real-time PCR melt curve assays for the detection of β-lactamase, extended-spectrum β-lactamase and carbapenemase genes in Gram-negative bacteria were developed. Two multiplex real-time PCR melt curve assays were developed for the detection of ten common β-lactamase genes: blaKPC-like, blaOXA-48-like, blaNDM-like, blaVIM-like, blaIMP-like, blaCTX-M-1+2-group, blaCMY-like, blaACC-like, blaSHV-like and blaTEM-like. The assays were evaluated using 25 bacterial strains and 31 DNA samples (total n=56) comprising different Enterobacteriaceae genera and Pseudomonas spp. These strains were previously characterized at five research institutes. Each resistance gene targeted in this study generated a non-overlapping and distinct melt curve peak. The assay worked effectively and detected the presence of additional resistance genes in 23 samples. The assays developed in this study offer a simple, low cost method for the detection of prevalent β-lactamase, ESBL and carbapenemase genes among Gram-negative pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Qin E-de

    2010-06-01

    Full Text Available Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009 influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  1. Development and application of a PCR assay to detect chicken and turkey parvoviruses in commercial poultry flocks in the United States.

    Science.gov (United States)

    Comparative sequence analysis of six independent chicken and turkey parvovirus nonstructural (NS) genes revealed specific genomic regions with 100% nucleotide sequence identity. A PCR assay with primers targeting these conserved genome sequences proved to be highly specific and sensitive to detect p...

  2. Introduction of a hydrolysis probe PCR assay for high-throughput screening of methicillin-resistant Staphylococcus aureus with the ability to include or exclude detection of Staphylococcus argenteus.

    Science.gov (United States)

    Bogestam, Katja; Vondracek, Martin; Karlsson, Mattias; Fang, Hong; Giske, Christian G

    2018-01-01

    Many countries using sensitive screening methods for detection of carriage of methicillin-resistant Staphylococcus aureus (MRSA) have a sustained low incidence of MRSA infections. For diagnostic laboratories with high sample volumes, MRSA screening requires stability, low maintenance and high performance at a low cost. Herein we designed oligonucleotides for a new nuc targeted hydrolysis probe PCR to replace the standard in-house nuc SybrGreen PCR assay. This new, more time-efficient, PCR assay resulted in a 40% increase in daily sample capacity, with maintained high specificity and sensitivity. The assay was also able to detect Staphylococcus aureus clonal cluster 75 (CC75) lineage strains, recently re-classified as Staphylococcus argenteus, with a sensitivity considerably increased compared to our previous assay. While awaiting consensus if the CC75 lineage of S. aureus should be considered as S. argenteus, and whether methicillin-resistant S. argenteus should be included in the MRSA definition, many diagnostic laboratories need to update their MRSA assay sensitivity/specificity towards this lineage/species. The MRSA screening assay presented in this manuscript is comprised of nuc oligonucleotides separately targeting S. aureus and CC75 lineage strains/S. argenteus, thus providing high user flexibility for the detection of CC75 lineage strains/S. argenteus.

  3. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed.

    Science.gov (United States)

    Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich

    2013-10-30

    Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.

  4. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa

    DEFF Research Database (Denmark)

    Bachanek-Bankowska, Katarzyna; Mero, Herieth R.; Wadsworth, Jemma

    2016-01-01

    Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping...... methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within...... sequencing. Samples (n = 71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious...

  5. Validation of a PCR Assay for Chlamydophila abortus rRNA gene detection in a murine model

    Directory of Open Access Journals (Sweden)

    Francielle Gibson da Silva-Zacarias

    2009-11-01

    Full Text Available Chlamydophila abortus (C. abortus is associated with reproductive problems in cattle, sheep, and goats. Diagnosis of C. abortus using embryonated chicken eggs or immortalized cell lines has a very low sensitivity. Polymerase chain reaction (PCR assays have been used to detect C. abortus infection in clinical specimens and organ fragments, such as placenta, fetal organs, vaginal secretions, and semen. The aim of this study was to develop a PCR assay for the amplification of an 856-bp fragment of the rRNA gene of the Chlamydiaceae family. The PCR assay was evaluated using organs from 15 mice experimentally infected with the S26/3 reference strain of C. abortus. The results of the rRNA PCR were compared to the results from another PCR system (Omp2 PCR that has been previously described for the Omp2 (outer major protein gene from the Chlamydiaceae family. From the 15 C. abortus-inoculated mice, 13 (K=0.84, standard error =0.20 tested positive using the rRNA PCR assay and 9 (K=0.55, standard error=0.18 tested positive using the Omp2 PCR assay. The detection limit, measured using inclusion-forming units (IFU, for C. abortus with the rRNA PCR (1.05 IFU was 100-fold lower than for the Omp2 PCR (105 IFU. The higher sensitivity of the rRNA PCR, as compared to the previously described PCR assay, and the specificity of the assay, demonstrated using different pathogenic microorganisms of the bovine reproductive system, suggest that the new PCR assay developed in this study can be used for the molecular diagnosis of C. abortus in abortion and other reproductive failures in bovines, caprines, and ovines.Chlamydophila abortus (C. abortus é frequentemente associada a distúrbios reprodutivos em bovinos, ovinos e caprinos. Para o diagnóstico, os métodos de cultivo em ovo embrionado de galinha e em células de linhagem contínua apresentam baixa sensibilidade. A reação em cadeia da polimerase (PCR tem sido utilizada em placenta, órgãos fetais, secre

  6. Evaluation of a PCR Assay for Detection of Streptococcus pneumoniae in Respiratory and Nonrespiratory Samples from Adults with Community-Acquired Pneumonia

    Science.gov (United States)

    Murdoch, David R.; Anderson, Trevor P.; Beynon, Kirsten A.; Chua, Alvin; Fleming, Angela M.; Laing, Richard T. R.; Town, G. Ian; Mills, Graham D.; Chambers, Stephen T.; Jennings, Lance C.

    2003-01-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, but it is undoubtedly underdiagnosed. We used a nested PCR assay (targeting the pneumolysin gene) to detect S. pneumoniae DNA in multiple sample types from 474 adults with community-acquired pneumonia and 183 control patients who did not have pneumonia. Plasma or buffy coat samples were PCR positive in only 6 of the 21 patients with positive blood cultures for S. pneumoniae and in 12 other patients (4 of whom had no other laboratory evidence of S. pneumoniae infection). Buffy coat samples from two control patients (neither having evidence of S. pneumoniae infection), but no control plasma samples, were PCR positive. Although pneumococcal antigen was detected in the urine from 120 of 420 (29%) patients, only 4 of 227 (2%) urine samples tested were PCR positive. Overall, 256 of 318 (81%) patients had PCR-positive sputum samples, including 58 of 59 samples from which S. pneumoniae was cultured. Throat swab samples from 229 of 417 (55%) patients were PCR positive and, in those who produced sputum, 96% also had positive PCR results from sputum. Throat swabs from 73 of 126 (58%) control patients were also PCR positive. We conclude that the pneumolysin PCR assay adds little to existing diagnostic tests for S. pneumoniae and is unable to distinguish colonization from infection when respiratory samples are tested. PMID:12517826

  7. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR).

    Science.gov (United States)

    Floren, C; Wiedemann, I; Brenig, B; Schütz, E; Beck, J

    2015-04-15

    Species fraud and product mislabelling in processed food, albeit not being a direct health issue, often results in consumer distrust. Therefore methods for quantification of undeclared species are needed. Targeting mitochondrial DNA, e.g. CYTB gene, for species quantification is unsuitable, due to a fivefold inter-tissue variation in mtDNA content per cell resulting in either an under- (-70%) or overestimation (+160%) of species DNA contents. Here, we describe a reliable two-step droplet digital PCR (ddPCR) assay targeting the nuclear F2 gene for precise quantification of cattle, horse, and pig in processed meat products. The ddPCR assay is advantageous over qPCR showing a limit of quantification (LOQ) and detection (LOD) in different meat products of 0.01% and 0.001%, respectively. The specificity was verified in 14 different species. Hence, determining F2 in food by ddPCR can be recommended for quality assurance and control in production systems. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Lab-on-a-Chip-Based PCR-RFLP Assay for the Detection of Malayan Box Turtle (Cuora amboinensis) in the Food Chain and Traditional Chinese Medicines

    Science.gov (United States)

    Asing; Ali, Md. Eaqub; Abd Hamid, Sharifah Bee; Hossain, M. A. Motalib; Mustafa, Shuhaimi; Kader, Md. Abdul; Zaidul, I. S. M.

    2016-01-01

    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition. PMID:27716792

  9. Lab-on-a-Chip-Based PCR-RFLP Assay for the Detection of Malayan Box Turtle (Cuora amboinensis) in the Food Chain and Traditional Chinese Medicines.

    Science.gov (United States)

    Asing; Ali, Md Eaqub; Abd Hamid, Sharifah Bee; Hossain, M A Motalib; Mustafa, Shuhaimi; Kader, Md Abdul; Zaidul, I S M

    2016-01-01

    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition.

  10. Detection and characterization of Leishmania (Leishmania and Leishmania (Viannia by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA.

    Directory of Open Access Journals (Sweden)

    Marcello Ceccarelli

    Full Text Available Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1, whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2. The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania and Leishmania (Viannia using the qPCR2 assay followed by melting or High Resolution Melt (HRM analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania and Leishmania (Viannia subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L. infantum WHO international reference strain (MHOM/TN/80/IPT1, highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical

  11. Routine clinical application of the FRAXA Pfu PCR assay: limits and utility.

    Science.gov (United States)

    Condorelli, D F; Milana, G; Dell'Albani, P; Roccazzello, A M; Insirello, E; Pavone, L; Mollica, F

    1996-11-01

    Fragile X genotype is characterized by the excessive amplification of an unstable region of DNA: a trinucleotide repeat CGG of variable copy number present in the FRAXA locus. Methods based on polymerase chain reaction (PCR) amplification of the CGG repeat region could facilitate the development of a rapid screening assay. Unfortunately, amplification across CGG repeats can be inefficient and unreliable due to their 100% G + C base composition. The utility of the exonuclease-deficient Pfu polymerase for amplification and detection of the CGG repeats at the FRAXA locus has been reported. In the present study we analysed the utility of a Pfu PCR assay as a rapid initial screening method to rule out a diagnosis of fragile X syndrome in males with mental retardation. Affected males did not show any amplification products or a smear of amplification products between 350 and 550 bp. Only 10% of affected male samples did not show any amplification products, while the vast majority showed the amplification smear. The amplification smears represent a serious drawback of the method, since they cannot be distinguished from the amplification products of normal samples after separation in 1% agarose gel. Several modifications of the PCR conditions were attempted to eliminate this problem, but none was appropriate for clinical applications. However, the problem was easily solved by using a higher resolution electrophoretic system that allows a clear distinction of normal bands from pathological smears. We tested the specificity of the Pfu PCR assay, followed by an improved MetaPhor gel electrophoretic separation of PCR products, on 50 samples from normal males and 24 samples form affected males. The results showed that this method is a rapid, sensitive and specific assay for the exclusion of fragile X syndrome diagnosis in mentally retarded males.

  12. A TaqMan-based real-time PCR assay for porcine parvovirus 4 detection and quantification in reproductive tissues of sows

    Science.gov (United States)

    Porcine parvovirus 4 (PPV4) is a DNA virus, and a member of the Parvoviridae family within the Bocavirus genera. It was recently detected in swine, but its epidemiology and pathology remain unclear. A TaqMan-based real-time polymerase chain reaction (qPCR) assay targeting a conserved region of the O...

  13. Development and application of a universal Hemoplasma screening assay based on the SYBR green PCR principle.

    Science.gov (United States)

    Willi, Barbara; Meli, Marina L; Lüthy, Ruedi; Honegger, Hanspeter; Wengi, Nicole; Hoelzle, Ludwig E; Reusch, Claudia E; Lutz, Hans; Hofmann-Lehmann, Regina

    2009-12-01

    Hemotropic mycoplasmas (hemoplasmas) are the causative agents of infectious anemia in several mammalian species. Their zoonotic potential has recently been substantiated by the identification of a feline hemoplasma isolate in an immunocompromised human patient. Although species-specific diagnostic molecular methods have been developed, their application as screening tools is limited due to the species diversity of hemoplasmas. The goals of this study were to develop a universal hemoplasma screening assay with broad specificity based on the SYBR green PCR principle, to compare the assay with hemoplasma-specific TaqMan PCR, and to analyze potential tick vectors and human blood samples to address the zoonotic potential. The newly developed PCR assay based on the 16S rRNA gene amplified feline, canine, bovine, porcine, camelid, and murine hemoplasmas, as well as Mycoplasma penetrans and Mycoplasma pneumoniae. The lower detection limit for feline and canine hemoplasmas was 1 to 10 copies/PCR. The assay exhibited 98.2% diagnostic sensitivity and 92.1% diagnostic specificity for feline hemoplasmas. All 1,950 Ixodes ticks were PCR negative, suggesting that Ixodes ticks are not relevant vectors for the above-mentioned hemoplasma species in Switzerland. None of the 414 blood samples derived from anemic or immunocompromised human patients revealed a clear positive result. The SYBR green PCR assay described here is a suitable tool to screen for known and so-far-undiscovered hemoplasma species. Positive results should be confirmed by specific TaqMan PCR or sequencing.

  14. Droplet Digital™ PCR Next-Generation Sequencing Library QC Assay.

    Science.gov (United States)

    Heredia, Nicholas J

    2018-01-01

    Digital PCR is a valuable tool to quantify next-generation sequencing (NGS) libraries precisely and accurately. Accurately quantifying NGS libraries enable accurate loading of the libraries on to the sequencer and thus improve sequencing performance by reducing under and overloading error. Accurate quantification also benefits users by enabling uniform loading of indexed/barcoded libraries which in turn greatly improves sequencing uniformity of the indexed/barcoded samples. The advantages gained by employing the Droplet Digital PCR (ddPCR™) library QC assay includes the precise and accurate quantification in addition to size quality assessment, enabling users to QC their sequencing libraries with confidence.

  15. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    Science.gov (United States)

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  16. A novel and highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus.

    Science.gov (United States)

    Shen, Xin-Xin; Qiu, Fang-Zhou; Zhao, Huai-Long; Yang, Meng-Jie; Hong, Liu; Xu, Song-Tao; Zhou, Shuai-Feng; Li, Gui-Xia; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-03-01

    The sensitivity of qRT-PCR assay is not adequate for the detection of the samples with lower viral load, particularly in the cerebrospinal fluid (CSF) of patients. Here, we present the development of a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of human enterovirus (HEV). The clinical performance of both RTN RT-PCR and qRT-PCR was also tested and compared using 140 CSF and fecal specimens. The sensitivities of RTN RT-PCR assay for EV71, Coxsackievirus A (CVA)16, CVA6 and CVA10 achieved 10 -8 dilution with a corresponding Ct value of 38.20, 36.45, 36.75, and 36.45, respectively, which is equal to traditional two-step nested RT-PCR assay and approximately 2-10-fold lower than that of qRT-PCR assay. The specificity of RTN RT-PCR assay was extensively analyzed insilico and subsequently verified using the reference isolates and clinical samples. Sixteen qRT-PCR-negative samples were detected by RTN RT-PCR and a variety of enterovirus serotypes was identified by sequencing of inner PCR products. We conclude RTN RT-PCR is more sensitive than qRT-PCR for the detection of HEV in clinical samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Detection of bovine herpesvirus 4 glycoprotein B and thymidine kinase DNA by PCR assays in bovine milk

    NARCIS (Netherlands)

    Wellenberg, G.J.; Verstraten, E.; Belak, S.; Verschuren, S.B.E.; Rijsewijk, F.A.M.; Peshev, R.; Oirschot, van J.T.

    2001-01-01

    A polymerase chain reaction (PCR) assay was developed to detect bovine herpesvirus 4 (BHV4) glycoprotein B (gB) DNA, and a nested-PCR assay was modified for the detection of BHV4 thymidine kinase (TK) DNA in bovine milk samples. To identify false-negative PCR results, internal control templates were

  18. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae) in the New World.

    Science.gov (United States)

    Gilligan, Todd M; Tembrock, Luke R; Farris, Roxanne E; Barr, Norman B; van der Straten, Marja J; van de Vossenberg, Bart T L H; Metz-Verschure, Eveline

    2015-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult-adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae.

  19. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae in the New World.

    Directory of Open Access Journals (Sweden)

    Todd M Gilligan

    Full Text Available The Old World bollworm, Helicoverpa armigera (Hübner, and the corn earworm, H. zea (Boddie, are two of the most important agricultural pests in the world. Diagnosing these two species is difficult-adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2 amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae.

  20. Evaluation of a PCR Assay for Detection of Streptococcus pneumoniae in Respiratory and Nonrespiratory Samples from Adults with Community-Acquired Pneumonia

    OpenAIRE

    Murdoch, David R.; Anderson, Trevor P.; Beynon, Kirsten A.; Chua, Alvin; Fleming, Angela M.; Laing, Richard T. R.; Town, G. Ian; Mills, Graham D.; Chambers, Stephen T.; Jennings, Lance C.

    2003-01-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, but it is undoubtedly underdiagnosed. We used a nested PCR assay (targeting the pneumolysin gene) to detect S. pneumoniae DNA in multiple sample types from 474 adults with community-acquired pneumonia and 183 control patients who did not have pneumonia. Plasma or buffy coat samples were PCR positive in only 6 of the 21 patients with positive blood cultures for S. pneumoniae and in 12 other patients (4 of whom h...

  1. A specific endogenous reference for genetically modified common bean (Phaseolus vulgaris L.) DNA quantification by real-time PCR targeting lectin gene.

    Science.gov (United States)

    Venturelli, Gustavo L; Brod, Fábio C A; Rossi, Gabriela B; Zimmermann, Naíra F; Oliveira, Jaison P; Faria, Josias C; Arisi, Ana C M

    2014-11-01

    The Embrapa 5.1 genetically modified (GM) common bean was approved for commercialization in Brazil. Methods for the quantification of this new genetically modified organism (GMO) are necessary. The development of a suitable endogenous reference is essential for GMO quantification by real-time PCR. Based on this, a new taxon-specific endogenous reference quantification assay was developed for Phaseolus vulgaris L. Three genes encoding common bean proteins (phaseolin, arcelin, and lectin) were selected as candidates for endogenous reference. Primers targeting these candidate genes were designed and the detection was evaluated using the SYBR Green chemistry. The assay targeting lectin gene showed higher specificity than the remaining assays, and a hydrolysis probe was then designed. This assay showed high specificity for 50 common bean samples from two gene pools, Andean and Mesoamerican. For GM common bean varieties, the results were similar to those obtained for non-GM isogenic varieties with PCR efficiency values ranging from 92 to 101 %. Moreover, this assay presented a limit of detection of ten haploid genome copies. The primers and probe developed in this work are suitable to detect and quantify either GM or non-GM common bean.

  2. Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay.

    Science.gov (United States)

    Blackstone, George M; Nordstrom, Jessica L; Bowen, Michael D; Meyer, Richard F; Imbro, Paula; DePaola, Angelo

    2007-02-01

    Toxigenic Vibrio cholerae, the etiological agent of cholera, is a natural inhabitant of the marine environment and causes severe diarrheal disease affecting thousands of people each year in developing countries. It is the subject of extensive testing of shrimp produced and exported from these countries. We report the development of a real time PCR (qPCR) assay to detect the gene encoding cholera toxin, ctxA, found in toxigenic V. cholerae strains. This assay was tested against DNA isolated from soil samples collected from diverse locations in the US, a panel of eukaryotic DNA from various sources, and prokaryotic DNA from closely related and unrelated bacterial sources. Only Vibrio strains known to contain ctxA generated a fluorescent signal with the 5' nuclease probe targeting the ctxA gene, thus confirming the specificity of the assay. In addition, the assay was quantitative in pure culture across a six-log dynamic range down to <10 CFU per reaction. To test the robustness of this assay, oysters, aquatic sediments, and seawaters from Mobile Bay, AL, were analyzed by qPCR and traditional culture methods. The assay was applied to overnight alkaline peptone water enrichments of these matrices after boiling the enrichments for 10 min. Toxigenic V. cholerae strains were not detected by either qPCR or conventional methods in the 16 environmental samples examined. A novel exogenous internal amplification control developed by us to prevent false negatives identified the samples that were inhibitory to the PCR. This assay, with the incorporated internal control, provides a highly specific, sensitive, and rapid detection method for the detection of toxigenic strains of V. cholerae.

  3. Development of a panel of seven duplex real-time PCR assays for detecting 13 streptococcal superantigens.

    Science.gov (United States)

    Yang, Peng; Peng, Xiaomin; Cui, Shujuan; Shao, Junbin; Zhu, Xuping; Zhang, Daitao; Liang, Huijie; Wang, Quanyi

    2013-07-30

    Streptococcal superantigens (SAgs) are the major virulence factors of infection in humans for group A Streptococcus (GAS) bacteria. A panel consisting of seven duplex real-time PCR assays was developed to simultaneously detect 13 streptococcal SAgs and one internal control which may be important in the control of GAS-mediated diseases. Primer and probe sequences were selected based on the highly conserved region from an alignment of nucleotide sequences of the 13 streptococcal SAgs. The reaction conditions of the duplex real-time PCR were optimized and the specificity of the duplex assays was evaluated using SAg positive strains. The limit of detection of the duplex assays was determined by using 10-fold serial dilutions of the DNA of 13 streptococcal SAgs and compared to a conventional polymerase chain reaction (PCR) method for evaluating the duplex assays sensitivity. Using the duplex assays, we were able to differentiate between 13 SAgs from Streptococcus strains and other non-Streptococcus bacteria without cross-reaction. On the other hand, the limit of detection of the duplex assays was at least one or two log dilutions lower than that of the conventional PCR. The panel was highly specific (100%) and the limit of detection of these duplex groups was at least ten times lower than that obtained by using a conventional PCR method.

  4. Study of the Efficacy of Real Time-PCR Method for Amikacin Determination Using Microbial Assay

    Directory of Open Access Journals (Sweden)

    Farzaneh Lotfipour

    2015-06-01

    Full Text Available Purpose: Microbial assay is used to determine the potency of antibiotics and vitamins. In spite of its advantages like simplicity and easiness, and to reveal the slight changes in the molecules, the microbial assay suffers from significant limitations; these methods are of lower specificity, accuracy and sensitivity. The objective of the present study is to evaluate the efficacy of real time-PCR technique in comparison with turbidimetric method for microbial assay of amikacin. Methods: Microbial determination of amikacin by turbidimetric method was performed according to USP. Also amikacin concentrations were determined by microbial assay using taq-man quantitative PCR method. Standard curves in different concentration for both methods were plotted and method validation parameters of linearity, precision and accuracy were calculated using statistical procedures. Results: The RT-PCR method was linear in the wider concentration range (5.12 – 38.08 for RT-PCR versus 8.00 – 30.47 for turbidimetric method with a better correlation coefficient (0.976 for RT-PCR versus 0.958 for turbidimetric method. RT-PCR method with LOQ of 5.12 ng/ml was more sensitive than turbidimetric method with LOQ of 8.00 ng/ml and the former could detect and quantify low concentrations of amikacin. The results of accuracy and precision evaluation showed that the RT-PCR method was accurate and precise in all of the tested concentration. Conclusion: The RT-PCR method described here provided an accurate and precise technique for measurement of amikacin potency and it can be a candidate for microbial determination of the antibiotics with the same test organism.

  5. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    Science.gov (United States)

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  6. Automated 5 ' nuclease PCR assay for identification of Salmonella enterica

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Ahrens, Peter; Rådström, P.

    2000-01-01

    -point fluorescence (FAM) signals for the samples and positive control (TET) signals (relative sensitivity [Delta Rn], >0.6). The diagnostic specificity of the method was assessed using 120 non-Salmonella strains, which all resulted in negative FAM signals (Delta Rn, less than or equal to 0.5). All 100 rough...... Salmonella strains tested resulted in positive FAM and TET signals. In addition, it was found that the complete PCR mixture, predispensed in microwell plates, could be stored for up to 3 months at -20 degrees C, Thus, the diagnostic TaqMan assay developed can be a useful and simple alternative method......A simple and ready-to-go test based on a 5' nuclease (TaqMan) PCR technique was developed for identification of presumptive Salmonella enterica isolates. The results were compared with those of conventional methods. The TaqMan assay was evaluated for its ability to accurately detect 210 S. enterica...

  7. Disclosing respiratory co-infections: a broad-range panel assay for avian respiratory pathogens on a nanofluidic PCR platform.

    Science.gov (United States)

    Croville, Guillaume; Foret, Charlotte; Heuillard, Pauline; Senet, Alexis; Delpont, Mattias; Mouahid, Mohammed; Ducatez, Mariette F; Kichou, Faouzi; Guerin, Jean-Luc

    2018-06-01

    Respiratory syndromes (RS) are among the most significant pathological conditions in edible birds and are caused by complex coactions of pathogens and environmental factors. In poultry, low pathogenic avian influenza A viruses, metapneumoviruses, infectious bronchitis virus, infectious laryngotracheitis virus, Mycoplasma spp. Escherichia coli and/or Ornithobacterium rhinotracheale in turkeys are considered as key co-infectious agents of RS. Aspergillus sp., Pasteurella multocida, Avibacterium paragallinarum or Chlamydia psittaci may also be involved in respiratory outbreaks. An innovative quantitative PCR method, based on a nanofluidic technology, has the ability to screen up to 96 samples with 96 pathogen-specific PCR primers, at the same time, in one run of real-time quantitative PCR. This platform was used for the screening of avian respiratory pathogens: 15 respiratory agents, including viruses, bacteria and fungi potentially associated with respiratory infections of poultry, were targeted. Primers were designed and validated for SYBR green real-time quantitative PCR and subsequently validated on the Biomark high throughput PCR nanofluidic platform (Fluidigm©, San Francisco, CA, USA). As a clinical assessment, tracheal swabs were sampled from turkeys showing RS and submitted to this panel assay. Beside systematic detection of E. coli, avian metapneumovirus, Mycoplasma gallisepticum and Mycoplasma synoviae were frequently detected, with distinctive co-infection patterns between French and Moroccan flocks. This proof-of-concept study illustrates the potential of such panel assays for unveiling respiratory co-infection profiles in poultry.

  8. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus.

    Science.gov (United States)

    Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D

    2018-06-01

    We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.

  9. Validation of a newly developed hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed.

    Science.gov (United States)

    Bahrdt, C; Krech, A B; Wurz, A; Wulff, D

    2010-03-01

    For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LOD(abs)) GMOs in processed and unprocessed food, feed and seed samples with high efficiency.

  10. Biomarker discovery for colon cancer using a 761 gene RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Hackett James R

    2007-08-01

    Full Text Available Abstract Background Reverse transcription PCR (RT-PCR is widely recognized to be the gold standard method for quantifying gene expression. Studies using RT-PCR technology as a discovery tool have historically been limited to relatively small gene sets compared to other gene expression platforms such as microarrays. We have recently shown that TaqMan® RT-PCR can be scaled up to profile expression for 192 genes in fixed paraffin-embedded (FPE clinical study tumor specimens. This technology has also been used to develop and commercialize a widely used clinical test for breast cancer prognosis and prediction, the Onco typeDX™ assay. A similar need exists in colon cancer for a test that provides information on the likelihood of disease recurrence in colon cancer (prognosis and the likelihood of tumor response to standard chemotherapy regimens (prediction. We have now scaled our RT-PCR assay to efficiently screen 761 biomarkers across hundreds of patient samples and applied this process to biomarker discovery in colon cancer. This screening strategy remains attractive due to the inherent advantages of maintaining platform consistency from discovery through clinical application. Results RNA was extracted from formalin fixed paraffin embedded (FPE tissue, as old as 28 years, from 354 patients enrolled in NSABP C-01 and C-02 colon cancer studies. Multiplexed reverse transcription reactions were performed using a gene specific primer pool containing 761 unique primers. PCR was performed as independent TaqMan® reactions for each candidate gene. Hierarchal clustering demonstrates that genes expected to co-express form obvious, distinct and in certain cases very tightly correlated clusters, validating the reliability of this technical approach to biomarker discovery. Conclusion We have developed a high throughput, quantitatively precise multi-analyte gene expression platform for biomarker discovery that approaches low density DNA arrays in numbers of

  11. A Newly Developed Nested PCR Assay for the Detection of Helicobacter pylori in the Oral Cavity.

    Science.gov (United States)

    Ismail, Hawazen; Morgan, Claire; Griffiths, Paul; Williams, John; Jenkins, Gareth

    2016-01-01

    To develop a new nested polymerase chain reaction (PCR) assay for identifying Helicobacter pylori DNA from dental plaque. H. pylori is one of the most common chronic bacterial pathogens in humans. The accurate detection of this organism is essential for proper patient management and for the eradication of the bacteria following treatment. Forty-nine patients (24 males and 25 females; mean age: 51; range, 19 to 94 y) were investigated for the presence of H. pylori in dental plaque by single-step PCR and nested PCR and in the stomach by single-step PCR, nested PCR, and histologic examination. The newly developed nested PCR assay identified H. pylori DNA in gastric biopsies of 18 patients who were histologically classified as H. pylori-positive and 2 additional biopsies of patients who were H. pylori-negative by histologic examination (20/49; 40.8%). Dental plaque samples collected before and after endoscopy from the 49 patients revealed that single-step PCR did not detect H. pylori but nested PCR was able to detect H. pylori DNA in 40.8% (20/49) patients. Nested PCR gave a higher detection rate (40.8%, 20/49) than that of histology (36.7%, 18/49) and single-step PCR. When nested PCR results were compared with histology results there was no significant difference between the 2 methods. Our newly developed nested PCR assay is at least as sensitive as histology and may be useful for H. pylori detection in patients unfit for endoscopic examination.

  12. Authentication of beef, carabeef, chevon, mutton and pork by a PCR-RFLP assay of mitochondrial cytb gene

    OpenAIRE

    Kumar, Deepak; Singh, S. P.; Karabasanavar, Nagappa S.; Singh, Rashmi; Umapathi, V.

    2012-01-01

    Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168–776 b...

  13. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli.

    Science.gov (United States)

    Li, Baoguang; Liu, Huanli; Wang, Weimin

    2017-11-09

    Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella

  14. Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies

    DEFF Research Database (Denmark)

    Hum, S.; Quinn, K.; Brunner, J.

    1997-01-01

    methods were attributed to methodological differences used in various laboratories. Conclusion Our results indicate that misidentification of C fetus in routine diagnostic laboratories may be relatively common. The PCR assay evaluated gave rapid and reproducible results and is thus a valuable adjunctive......Objective To evaluate a polymerase chain reaction assay for identification of Campylobacter fetus and differentiation of the defined subspecies. Design Characterisation of bacterial strains by traditional phenotyping, polymerase chain reaction, a probabilistic identification scheme...... by traditional phenotypic methods and the PCR assay was found to be 80.8%. The polymerase chain reaction proved to be a reliable technique for the species and subspecies identification of C fetus; equivocal results were obtained in only two instances. Initial misidentifications by conventional phenotyping...

  15. Improvement of a real-time RT-PCR assay for the detection of enterovirus RNA

    Directory of Open Access Journals (Sweden)

    Bruynseels Peggy

    2009-07-01

    Full Text Available Abstract We describe an improvement of an earlier reported real-time RT-PCR assay for the detection of enterovirus RNA, based on the 5' exonuclease digestion of a dual-labeled fluorogenic probe by Taq DNA polymerase. A different extraction method, real-time RT-PCR instrument and primer set were evaluated. Our data show that the optimized assay yields a higher sensitivity and reproducibility and resulted in a significant reduced hands-on time per sample.

  16. Evaluation of the reliability of maize reference assays for GMO quantification.

    Science.gov (United States)

    Papazova, Nina; Zhang, David; Gruden, Kristina; Vojvoda, Jana; Yang, Litao; Buh Gasparic, Meti; Blejec, Andrej; Fouilloux, Stephane; De Loose, Marc; Taverniers, Isabel

    2010-03-01

    A reliable PCR reference assay for relative genetically modified organism (GMO) quantification must be specific for the target taxon and amplify uniformly along the commercialised varieties within the considered taxon. Different reference assays for maize (Zea mays L.) are used in official methods for GMO quantification. In this study, we evaluated the reliability of eight existing maize reference assays, four of which are used in combination with an event-specific polymerase chain reaction (PCR) assay validated and published by the Community Reference Laboratory (CRL). We analysed the nucleotide sequence variation in the target genomic regions in a broad range of transgenic and conventional varieties and lines: MON 810 varieties cultivated in Spain and conventional varieties from various geographical origins and breeding history. In addition, the reliability of the assays was evaluated based on their PCR amplification performance. A single base pair substitution, corresponding to a single nucleotide polymorphism (SNP) reported in an earlier study, was observed in the forward primer of one of the studied alcohol dehydrogenase 1 (Adh1) (70) assays in a large number of varieties. The SNP presence is consistent with a poor PCR performance observed for this assay along the tested varieties. The obtained data show that the Adh1 (70) assay used in the official CRL NK603 assay is unreliable. Based on our results from both the nucleotide stability study and the PCR performance test, we can conclude that the Adh1 (136) reference assay (T25 and Bt11 assays) as well as the tested high mobility group protein gene assay, which also form parts of CRL methods for quantification, are highly reliable. Despite the observed uniformity in the nucleotide sequence of the invertase gene assay, the PCR performance test reveals that this target sequence might occur in more than one copy. Finally, although currently not forming a part of official quantification methods, zein and SSIIb

  17. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  18. Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus.

    Science.gov (United States)

    Faye, Martin; Dacheux, Laurent; Weidmann, Manfred; Diop, Sylvie Audrey; Loucoubar, Cheikh; Bourhy, Hervé; Sall, Amadou Alpha; Faye, Ousmane

    2017-05-01

    Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans and animals and affecting different parts of the world, particularly in Asia and Africa. Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular techniques such as detection of viral RNA by reverse transcription polymerase chain reaction (RT-PCR) are increasingly being used. In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum detection of RABV, with a focus on African isolates. The primer and probe sets were targeted highly conserved regions of the nucleoprotein (N) and polymerase (L) genes. The results indicated the absence of non-specific amplification and cross-reaction with a range of other viruses belonging to the same taxonomic family, i.e. Rhabdoviridae, as well as negative brain tissues from various host species. Analytical sensitivity ranged between 100 to 10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively. Effective detection and high sensitivity of these assays on African isolates showed that they can be successfully applied in general research and used in diagnostic process and epizootic surveillance in Africa using a double-check strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    DEFF Research Database (Denmark)

    Frosth, Sara; Slettemeås, Jannice S.; Jørgensen, Hannah J.

    2012-01-01

    BACKGROUND: Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium Dichelobacter nodosus. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet...... was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126...... laboratories and corresponds to approximately three copies of the D. nodosus genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR. CONCLUSIONS...

  20. Development of a digital droplet PCR assay to measure HBV DNA in patients receiving long-term TDF treatment.

    Science.gov (United States)

    Liu, Yang; Cathcart, Andrea L; Delaney, William E; Kitrinos, Kathryn M

    2017-11-01

    The COBAS TaqMan assay has a lower limit of quantification (LLOQ) of 169 HBV copies/mL and a lower limit of detection (LLOD) of 58 copies/mL. HBV DNA below the TaqMan LLOQ is classified as target not detected (TND) (HBV DNA to 8 copies/mL. HBV DNA levels in plasma from patients with or without HBsAg seroconversion were assessed by ddPCR. For patients who did not achieve HBsAg seroconversion, the majority of TD samples (33/58, 57%) were HBV DNA positive by ddPCR while (10/37, 27%) of TND samples were positive. In contrast, for patients who achieved HBsAg seroconversion, HBV DNA was rarely detected by ddPCR after HBsAg seroconversion (1/28, 3.6%). ddPCR is a sensitive method to evaluate low-level viral replication in plasma samples. Frequent detection of HBV DNA by ddPCR among patients who did not achieve HBsAg seroconversion suggests new agents may be needed to suppress low levels of replicating HBV. Copyright © 2017. Published by Elsevier B.V.

  1. A novel method for detection of dioxins. Exonuclease protection mediated PCR assay

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.Q.; Sun, X.; Li, F.; Li, B.S. [Huazhong Univ. of Science and Technology, Wuhan, HB (China). Tongji Medical College

    2004-09-15

    The aromatic hydrocarbon receptor (AhR) is a ligand-actived transcription factor that mediates many of the biologic and toxicologic effects of dioxin-like chemicals (DLCs), such as 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD). Numerous AhR-based bioassays for identification and detection of DLCs have been developed in vitro. Such as the chemical-activated luciferase gene expression (CALUX), ethoxyresolufin-O-deethylase (EROD) activity are sometimes represented as the next best system when compared with whole body or in vivo systems. However, cell systems can be affected by the toxic chemical itself during the assay, thus confusing problems couldn't be avoided in the assay. Incorporation of metabolism in cell systems with uncertain consequences prolongs assay complexity and time. Thus these drawbacks limit the utility of cell systems for screening purposes. Most cell-free bioassays require radioactivity, such as the gel retardation of AhR binding (GRAB) assay, or antibody of AhR or ligand, which are unfeasible for some laboratories. Here a cell-free bioanalysis method, Exonuclease Protection Mediated PCR (EPM-PCR) bioassay, was established for detection of AhR ligands based on the binding of the dioxin:AhR complex to the specific DNA. EPM-PCR can provide indirect detection of ligands by quantification of the specific AhR-binding DNA, no necessary of any DNA labeling and sophisticated equipments. This new bioassay not only has the higher sensitivity and specificity, but it is rapid and easy to perform.

  2. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR.

    Directory of Open Access Journals (Sweden)

    Yogita Maheshwari

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative PCR (qPCR for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.

  3. A quantitative PCR (TaqMan assay for pathogenic Leptospira spp

    Directory of Open Access Journals (Sweden)

    Symonds Meegan L

    2002-07-01

    Full Text Available Abstract Background Leptospirosis is an emerging infectious disease. The differential diagnosis of leptospirosis is difficult due to the varied and often "flu like" symptoms which may result in a missed or delayed diagnosis. There are over 230 known serovars in the genus Leptospira. Confirmatory serological diagnosis of leptospirosis is usually made using the microscopic agglutination test (MAT which relies on the use of live cultures as the source of antigen, often performed using a panel of antigens representative of local serovars. Other techniques, such as the enzyme linked immunosorbent assay (ELISA and slide agglutination test (SAT, can detect different classes of antibody but may be subject to false positive reactions and require confirmation of these results by the MAT. Methods The polymerase chain reaction (PCR has been used to detect a large number of microorganisms, including those of clinical significance. The sensitivity of PCR often precludes the need for isolation and culture, thus making it ideal for the rapid detection of organisms involved in acute infections. We employed real-time (quantitative PCR using TaqMan chemistry to detect leptospires in clinical and environmental samples. Results and Conclusions The PCR assay can be applied to either blood or urine samples and does not rely on the isolation and culture of the organism. Capability exists for automation and high throughput testing in a clinical laboratory. It is specific for Leptospira and may discriminate pathogenic and non-pathogenic species. The limit of detection is as low as two cells.

  4. Development of a novel real-time qPCR assay for the dual detection of canine and phocine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Linette Buxbom; Hjulsager, Charlotte Kristiane; Larsen, Helene

    conventional PCR assays with real-time PCR assays to obtain a uniform assay palette. The present work describes the development of a novel real-time RT-qPCR assay for the dual detection of canine and phocine distemper virus. The assay is relevant for the future detection of outbreaks of canine distemper virus...... in e.g. in farmed mink and wildlife and phocine distemper in seals. A set of primers and dual labelled probe was designed based on an alignment of distemper sequences in GenBank from various species and in-house sequences from recent outbreaks in Danish farmed mink. The assay amplifies a segment of 151...... bp in the Phosphoprotein (P) gene of the distemper virus genome. The dynamic range and PCR efficiency (E) was experimentally determined using 10-fold dilutions of a specially designed distemper DNA-oligo in addition to extracted RNA from clinical samples. E of the real-time assay was shown to range...

  5. Lab-on-a-chip-based PCR-RFLP assay for the confirmed detection of short-length feline DNA in food.

    Science.gov (United States)

    Ali, Md Eaqub; Al Amin, Md; Hamid, Sharifah Bee Abd; Hossain, M A Motalib; Mustafa, Shuhaimi

    2015-01-01

    Wider availability but lack of legal market trades has given feline meat a high potential for use as an adulterant in common meat and meat products. However, mixing of feline meat or its derivatives in food is a sensitive issue, since it is a taboo in most countries and prohibited in certain religions such as Islam and Judaism. Cat meat also has potential for contamination with of severe acute respiratory syndrome, anthrax and hepatitis, and its consumption might lead to an allergic reaction. We developed a very short-amplicon-length (69 bp) PCR assay, authenticated the amplified PCR products by AluI-restriction digestion followed by its separation and detection on a lab-on-a-chip-based automated electrophoretic system, and proved its superiority over the existing long-amplicon-based assays. Although it has been assumed that longer DNA targets are susceptible to breakdown under compromised states, scientific evidence for this hypothesis has been rarely documented. Strong evidence showed that shorter targets are more stable than the longer ones. We confirmed feline-specificity by cross-challenging the primers against 10 different species of terrestrial, aquatic and plant origins in the presence of a 141-bp site of an 18S rRNA gene as a universal eukaryotic control. RFLP analysis separated 43- and 26-bp fragments of AluI-digest in both the gel-image and electropherograms, confirming the original products. The tested detection limit was 0.01% (w/w) feline meat in binary and ternary admixed as well as meatball matrices. Shorter target, better stability and higher sensitivity mean such an assay would be valid for feline identification even in degraded specimens.

  6. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    Science.gov (United States)

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  7. Development and systematic validation of qPCR assays for rapid and reliable differentiation of Xylella fastidiosa strains causing citrus variegated chlorosis.

    Science.gov (United States)

    Li, Wenbin; Teixeira, Diva C; Hartung, John S; Huang, Qi; Duan, Yongping; Zhou, Lijuan; Chen, Jianchi; Lin, Hong; Lopes, Silvio; Ayres, A Juliano; Levy, Laurene

    2013-01-01

    The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the

  8. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  9. A Simple, High-Throughput Assay for Fragile X Expanded Alleles Using Triple Repeat Primed PCR and Capillary Electrophoresis

    Science.gov (United States)

    Lyon, Elaine; Laver, Thomas; Yu, Ping; Jama, Mohamed; Young, Keith; Zoccoli, Michael; Marlowe, Natalia

    2010-01-01

    Population screening has been proposed for Fragile X syndrome to identify premutation carrier females and affected newborns. We developed a PCR-based assay capable of quickly detecting the presence or absence of an expanded FMR1 allele with high sensitivity and specificity. This assay combines a triplet repeat primed PCR with high-throughput automated capillary electrophoresis. We evaluated assay performance using archived samples sent for Fragile X diagnostic testing representing a range of Fragile X CGG-repeat expansions. Two hundred five previously genotyped samples were tested with the new assay. Data were analyzed for the presence of a trinucleotide “ladder” extending beyond 55 repeats, which was set as a cut-off to identify expanded FMR1 alleles. We identified expanded FMR1 alleles in 132 samples (59 premutation, 71 full mutation, 2 mosaics) and normal FMR1 alleles in 73 samples. We found 100% concordance with previous results from PCR and Southern blot analyses. In addition, we show feasibility of using this assay with DNA extracted from dried-blood spots. Using a single PCR combined with high-throughput fragment analysis on the automated capillary electrophoresis instrument, we developed a rapid and reproducible PCR-based laboratory assay that meets many of the requirements for a first-tier test for population screening. PMID:20431035

  10. Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay

    Directory of Open Access Journals (Sweden)

    Dabisch-Ruthe Mareike

    2012-07-01

    Full Text Available Abstract Background A broad spectrum of pathogens is causative for respiratory tract infections, but symptoms are mostly similar. Therefore, the identification of the causative viruses and bacteria is only feasible using multiplex PCR or several monoplex PCR tests in parallel. Methods The analytical sensitivity of three multiplex PCR assays, RespiFinder-19, RespiFinder-SMART-22 and xTAG-Respiratory-Virus-Panel-Fast-Assay (RVP, were compared to monoplex real-time PCR with quantified standardized control material. All assays include the most common respiratory pathogens. Results To compare the analytical sensitivity of the multiplex assays, samples were inoculated with 13 different quantified viruses in the range of 101 to 105 copies/ml. Concordant results were received for rhinovirus, whereas the RVP detected influenzavirus, RSV and hMPV more frequently in low concentrations. The RespiFinder-19 and the RespiFinder-SMART-22 showed a higher analytical sensitivity for adenoviruses and coronaviruses, whereas the RVP was incapable to detect adenovirus and coronavirus in concentrations of 104 copies/ml. The RespiFinder-19 and RespiFinder-SMART-22A did not detect influenzaviruses (104 copies/ml and RSV (103 copies/ml. The detection of all 13 viruses in one sample was only achieved using monoplex PCR. To analyze possible competitive amplification reactions between the different viruses, samples were further inoculated with only 4 different viruses in one sample. Compared to the detection of 13 viruses in parallel, only a few differences were found. The incidence of respiratory viruses was compared in tracheal secretion (TS samples (n = 100 of mechanically ventilated patients in winter (n = 50 and summer (n = 50. In winter, respiratory viruses were detected in 32 TS samples (64% by RespiFinder-19, whereas the detection rate with RVP was only 22%. The most frequent viruses were adenovirus (32% and PIV-2 (20%. Multiple infections were detected

  11. One-Step Multiplex RT-qPCR Assay for the detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae

    International Nuclear Information System (INIS)

    Settypalli, T.B.K.; Lamien, C.; Spergser, J.; Lelenta, M.; Wade, A.; Gelaye, E.; Loitsch, A.; Minoungou, G.; Thiaucourt, F.; Diallo, A.

    2016-01-01

    Full text: Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV), Peste de petits ruminants virus (PPRV), Pasteurella multocida (PM) and Mycoplasma capricolum ssp. capripneumonia (Mccp) in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%–4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI) were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s) by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in

  12. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp. capripneumoniae.

    Directory of Open Access Journals (Sweden)

    Tirumala Bharani Kumar Settypalli

    Full Text Available Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV, Peste de petits ruminants virus (PPRV, Pasteurella multocida (PM and Mycoplasma capricolum ssp. capripneumonia (Mccp in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%-4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in

  13. Impact of a Rapid Herpes Simplex Virus PCR Assay on Duration of Acyclovir Therapy.

    Science.gov (United States)

    Van, Tam T; Mongkolrattanothai, Kanokporn; Arevalo, Melissa; Lustestica, Maryann; Dien Bard, Jennifer

    2017-05-01

    Herpes simplex virus (HSV) infections of the central nervous system (CNS) are associated with significant morbidity and mortality rates in children. This study assessed the impact of a direct HSV (dHSV) PCR assay on the time to result reporting and the duration of acyclovir therapy for children with signs and symptoms of meningitis and encephalitis. A total of 363 patients with HSV PCR results from cerebrospinal fluid (CSF) samples were included in this retrospective analysis, divided into preimplementation and postimplementation groups. For the preimplementation group, CSF testing was performed using a laboratory-developed real-time PCR assay; for the postimplementation group, CSF samples were tested using a direct sample-to-answer assay. All CSF samples were negative for HSV. Over 60% of patients from both groups were prescribed acyclovir. The average HSV PCR test turnaround time for the postimplementation group was reduced by 14.5 h (23.6 h versus 9.1 h; P < 0.001). Furthermore, 79 patients (43.6%) in the postimplementation group had dHSV PCR results reported <4 h after specimen collection. The mean time from specimen collection to acyclovir discontinuation was 17.1 h shorter in the postimplementation group (31.1 h versus 14 h; P < 0.001). The median duration of acyclovir therapy was also significantly reduced in the postimplementation group (29.2 h versus 14.3 h; P = 0.01). Our investigation suggests that implementation of rapid HSV PCR testing can decrease turnaround times and the duration of unnecessary acyclovir therapy. Copyright © 2017 American Society for Microbiology.

  14. Detection and Differentiation of Leishmania spp. in Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay.

    Science.gov (United States)

    de Almeida, Marcos E; Koru, Ozgur; Steurer, Francis; Herwaldt, Barbara L; da Silva, Alexandre J

    2017-01-01

    Leishmaniasis in humans is caused by Leishmania spp. in the subgenera Leishmania and Viannia Species identification often has clinical relevance. Until recently, our laboratory relied on conventional PCR amplification of the internal transcribed spacer 2 (ITS2) region (ITS2-PCR) followed by sequencing analysis of the PCR product to differentiate Leishmania spp. Here we describe a novel real-time quantitative PCR (qPCR) approach based on the SYBR green technology (LSG-qPCR), which uses genus-specific primers that target the ITS1 region and amplify DNA from at least 10 Leishmania spp., followed by analysis of the melting temperature (T m ) of the amplicons on qPCR platforms (the Mx3000P qPCR system [Stratagene-Agilent] and the 7500 real-time PCR system [ABI Life Technologies]). We initially evaluated the assay by testing reference Leishmania isolates and comparing the results with those from the conventional ITS2-PCR approach. Then we compared the results from the real-time and conventional molecular approaches for clinical specimens from 1,051 patients submitted to the reference laboratory of the Centers for Disease Control and Prevention for Leishmania diagnostic testing. Specimens from 477 patients tested positive for Leishmania spp. with the LSG-qPCR assay, specimens from 465 of these 477 patients also tested positive with the conventional ITS2-PCR approach, and specimens from 10 of these 465 patients had positive results because of retesting prompted by LSG-qPCR positivity. On the basis of the T m values of the LSG-qPCR amplicons from reference and clinical specimens, we were able to differentiate four groups of Leishmania parasites: the Viannia subgenus in aggregate; the Leishmania (Leishmania) donovani complex in aggregate; the species L (L) tropica; and the species L (L) mexicana, L (L) amazonensis, L (L) major, and L (L) aethiopica in aggregate. Copyright © 2016 American Society for Microbiology.

  15. Simultaneous detection of Zika, Chikungunya and Dengue viruses by a multiplex real-time RT-PCR assay.

    Science.gov (United States)

    Pabbaraju, Kanti; Wong, Sallene; Gill, Kara; Fonseca, Kevin; Tipples, Graham A; Tellier, Raymond

    2016-10-01

    In the recent past, arboviruses such as Chikungunya (CHIKV) and Zika (ZIKV) have increased their area of endemicity and presented as an emerging global public health threat. To design an assay for the simultaneous detection of ZIKV, CHIKV and Dengue (DENV) 1-4 from patients with symptoms of arboviral infection. This would be advantageous because of the similar clinical presentation typically encountered with these viruses and their co-circulation in endemic areas. In this study we have developed and validated a triplex real time reverse transcription PCR assay using hydrolysis probes targeting the non-structural 5 (NS5) region of ZIKV, non-structural protein 4 (nsP4) from CHIKV and 3' untranslated region (3'UTR) of DENV 1-4. The 95% LOD by the triplex assay was 15 copies/reaction for DENV-1 and less than 10 copies/reaction for all other viruses. The triplex assay was 100% specific and did not amplify any of the other viruses tested. The assay was reproducible and adaptable to testing different specimen types including serum, plasma, urine, placental tissue, brain tissue and amniotic fluid. This assay can be easily implemented for diagnostic testing of patient samples, even in a high throughput laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Development of a novel quantitative real-time RT-PCR assay for the simultaneous detection of all serotypes of Foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; de Stricker, K.

    2003-01-01

    Foot-and-mouth disease virus (FMDV) spreads extremely fast and the need for rapid and robust diagnostic virus detection systems was obvious during the recent European epidemic. Using a novel real-time RT-PCR system based on primer-probe energy transfer (PriProET) we present here an assay targeting...

  17. A molecular-beacon-based asymmetric PCR assay for easy visualization of amplicons in the diagnosis of trichomoniasis.

    Science.gov (United States)

    Sonkar, Subash C; Sachdev, Divya; Mishra, Prashant K; Kumar, Anita; Mittal, Pratima; Saluja, Daman

    2016-12-15

    The currently available nucleic acid amplification tests (NAATs) for trichomoniasis are accurate, quick and confirmative with superior sensitivity than traditional culture-based microbiology assays. However, these assays are associated with problems of carry over contamination, false positive results, requirement of technical expertise for performance and detection of end product. Hence, a diagnostic assay with easy visualization of the amplified product will be profitable. An in-house, rapid, sensitive, specific molecular-beacon-based PCR assay, using primers against pfoB gene of Trichomonas vaginalis, was developed and evaluated using dry ectocervical swabs (n=392) from symptomatic females with vaginal discharge. Total DNA was isolated and used as template for the PCR assays. The performance and reproducibility of PCR assay was evaluated by composite reference standard (CRS). For easy visualization of the amplified product, molecular-beacon was designed and amplicons were visualized directly using fluorescent handheld dark reader or by Micro-Plate Reader. Molecular-beacons are single-stranded hairpin shaped nucleic acid probes composed of a stem, with fluorophore/quencher pair and a loop region complementary to the desired DNA. The beacon-based PCR assay designed in the present study is highly specific as confirmed by competition experiments and extremely sensitive with detection limit of 20fg of genomic DNA (3-4 pathogens). The minimum infrastructure requirement and ease to perform the assay makes this method highly useful for resource poor countries for better disease management. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Preclinical detection of porcine circovirus type 2 infection using an ultrasensitive nanoparticle DNA probe-based PCR assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Porcine circovirus type 2 (PCV2 has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.

  19. Prevalence of Chlamydia infection among women visiting a gynaecology outpatient department: evaluation of an in-house PCR assay for detection of Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Patel Achchhe L

    2010-09-01

    Full Text Available Abstract Background Screening women for Chlamydia trachomatis infection in developing countries is highly desirable because of asymptomatic infection. The existing diagnostic methods in developing countries are not effective and their sensitivity fall below 45.0% which leads to further spread of infection. There is an urgent need for improved and cost effective diagnostic tests that will reduce the burden of sexually transmitted infections in the developing world. Methods Prevalence of C. trachomatis infection among women visiting gynaecology department of Hindu Rao hospital in Delhi, India was determined using Roche Amplicor Multi Well Plate kit (MWP as well as using in-house PCR assay. We used 593 endocervical swabs for clinical evaluation of the in-house developed assay against Direct Fluorescence Assay (DFA; Group I n = 274 and Roche Amplicor MWP kit (Group II, n = 319 samples and determined the sensitivity, specificity, positive predictive value (PPV, negative predictive value (NPV of the in-house developed assay. Results We detected 23.0% positive cases and there was a higher representation of women aged 18-33 in this group. An in-house PCR assay was developed and evaluated by targeting unique sequence within the gyrA gene of C. trachomatis. Specificity of the reaction was confirmed by using genomic DNA of human and other STI related microorganisms as template. Assay is highly sensitive and can detect as low as 10 fg of C. trachomatis DNA. The resolved sensitivity of in-house PCR was 94.5% compared with 88.0% of DFA assay. The high specificity (98.4% and sensitivity (97.1% of the in-house assay against Roche kit and availability of test results within 3 hours allowed for immediate treatment and reduced the risk of potential onward transmission. Conclusions The in-house PCR method is cost effective (~ 20.0% of Roche assay and hence could be a better alternative for routine diagnosis of genital infection by C. trachomatis to facilitate

  20. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    Science.gov (United States)

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  1. Mistaken identity of an open reading frame proposed for PCR-based identification of Mycoplasma bovis and the effect of polymorphisms and insertions on assay performance

    Science.gov (United States)

    Mycoplasma bovis is an important cause of disease in cattle and bison. Because the bacterium requires specialized growth conditions many diagnostic laboratories routinely use PCR to replace or complement conventional isolation and identification methods. A frequently used target of such assays is th...

  2. A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach.

    Science.gov (United States)

    Yu, Y; Zhao, Z; Jiang, D; Wu, Z; Li, S

    2013-10-01

    A multiplex reverse transcription polymerase chain reaction (mRT-PCR) assay was developed to enable the simultaneous detection and differentiation of four viruses that infect peach, namely Apple chlorotic leaf spot virus (ACLSV), Cherry green ring mottle virus (CGRMV), Prunus necrotic ringspot virus (PNRSV) and Apricot pseudo-chlorotic leaf spot virus (APCLSV). In this study, four pairs of primers, one specific for each virus, were designed; the corresponding PCR products were 632, 439, 346 and 282 bp in length for ACLSV, CGRMV, PNRSV and APCLSV, respectively, and the fragments could be distinguished clearly by agarose gel electrophoresis. The sensitivity and specificity of the method were tested using individual RT-PCR and enzyme-linked immunosorbent assay (ELISA), and the identity of the RT-PCR amplification products was also confirmed by DNA sequencing. The results of RT-PCR and ELISA, along with batch detection using samples collected from peach orchards, revealed that this rapid and simple technique is an effective way to identify the four viruses simultaneously. The mRT-PCR assay described in this study was developed for the simultaneous detection of four peach viruses from infected peach samples is reliable and sensitive. In contrast to conventional uniplex RT-PCR, mRT-PCR is more efficient, reducing costs, time and handling when testing large numbers of samples. This rapid and simple method is useful for large-scale surveys of viruses that infect peach. © 2013 The Society for Applied Microbiology.

  3. HybProbes-based real-time PCR assay for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei, the potato common scab pathogens.

    Science.gov (United States)

    Xu, R; Falardeau, J; Avis, T J; Tambong, J T

    2016-02-01

    The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.

  4. Development, optimization, and single laboratory validation of an event-specific real-time PCR method for the detection and quantification of Golden Rice 2 using a novel taxon-specific assay.

    Science.gov (United States)

    Jacchia, Sara; Nardini, Elena; Savini, Christian; Petrillo, Mauro; Angers-Loustau, Alexandre; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-02-18

    In this study, we developed, optimized, and in-house validated a real-time PCR method for the event-specific detection and quantification of Golden Rice 2, a genetically modified rice with provitamin A in the grain. We optimized and evaluated the performance of the taxon (targeting rice Phospholipase D α2 gene)- and event (targeting the 3' insert-to-plant DNA junction)-specific assays that compose the method as independent modules, using haploid genome equivalents as unit of measurement. We verified the specificity of the two real-time PCR assays and determined their dynamic range, limit of quantification, limit of detection, and robustness. We also confirmed that the taxon-specific DNA sequence is present in single copy in the rice genome and verified its stability of amplification across 132 rice varieties. A relative quantification experiment evidenced the correct performance of the two assays when used in combination.

  5. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa.

    Science.gov (United States)

    Bachanek-Bankowska, Katarzyna; Mero, Herieth R; Wadsworth, Jemma; Mioulet, Valerie; Sallu, Raphael; Belsham, Graham J; Kasanga, Christopher J; Knowles, Nick J; King, Donald P

    2016-11-01

    Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within the VP1-coding region that share high intra-lineage identity, but do not cross-react with FMD viruses from other serotypes that circulate in the region. These serotype-specific assays operate with the same thermal profile as the pan-diagnostic tests making it possible to run them in parallel to produce C T values comparable to the pan-diagnostic test detecting the 3D-coding region. These assays were evaluated alongside the established pan-specific molecular test using field samples and virus isolates collected from Tanzania, Kenya and Ethiopia that had been previously characterised by nucleotide sequencing. Samples (n=71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious virus could still be serotyped using these assays. These serotype-specific real-time RT-PCR assays can detect and characterise FMDVs currently circulating in East Africa and hence improve disease control in this region. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. A sensitive duplex nanoparticle-assisted PCR assay for identifying porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus from clinical specimens.

    Science.gov (United States)

    Zhu, Yu; Liang, Lin; Luo, Yakun; Wang, Guihua; Wang, Chunren; Cui, Yudong; Ai, Xia; Cui, Shangjin

    2017-02-01

    In this study, a novel duplex nanoparticle-assisted polymerase chain reaction (nanoPCR) assay was developed to detect porcine epidemic diarrhea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV). Two pairs of primers were designed based on the conserved region within the N gene of PEDV and TGEV. In a screening of 114 clinical samples from four provinces in China for PEDV and TGEV, 48.2 and 3.5 % of the samples, respectively, tested positive. Under optimized conditions, the duplex nanoPCR assay had a detection limit of 7.6 × 10 1 and 8.5 × 10 1 copies μL -1 for PEDV and TGEV, respectively. The sensitivity of the duplex nanoPCR assay was ten times higher than that of a conventional PCR assay. Moreover, no fragments were amplified when the duplex nanoPCR assay was used to test samples containing other porcine viruses. Our results indicate that the duplex nanoPCR assay described here is useful for the rapid detection of PEDV and TGEV and can be applied in clinical diagnosis.

  7. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    Science.gov (United States)

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  8. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    ) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect r = 0.99) over...... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro....... In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  9. Real-time PCR and enzyme-linked fluorescent assay methods for detecting Shiga-toxin-producing Escherichia coli in mincemeat samples.

    Science.gov (United States)

    Stefan, A; Scaramagli, S; Bergami, R; Mazzini, C; Barbanera, M; Perelle, S; Fach, P

    2007-03-01

    This work aimed to compare real-time polymerase chain reaction (PCR) with the commercially available enzyme-linked fluorescent assay (ELFA) VIDAS ECOLI O157 for detecting Escherichia coli O157 in mincemeat. In addition, a PCR-based survey on Shiga-toxin-producing E. coli (STEC) in mincemeat collected in Italy is presented. Real-time PCR assays targeting the stx genes and a specific STEC O157 sequence (SILO157, a small inserted locus of STEC O157) were tested for their sensitivity on spiked mincemeat samples. After overnight enrichment, the presence of STEC cells could be clearly determined in the 25 g samples containing 10 bacterial cells, while the addition of five bacteria provided equivocal PCR results with Ct values very close to or above the threshold of 40. The PCR tests proved to be more sensitive than the ELFA-VIDAS ECOLI O157, whose detection level started from 50 bacterial cells/25 g of mincemeat. The occurrence of STEC in 106 mincemeat (bovine, veal) samples collected from September to November 2004 at five different points of sale in Italy (one point of sale in Arezzo, Tuscany, central Italy, two in Mantova, Lombardy, Northern Italy, and two in Bologna, Emilia-Romagna, upper-central Italy) was less than 1%. Contamination by the main STEC O-serogroups representing a major public health concern, including O26, O91, O111, O145, and O157, was not detected. This survey indicates that STEC present in these samples are probably not associated with pathogenesis in humans.

  10. PCR (Polymerase Chain Reaction) Assay On Antibiotics Resistant Clinical Isolates Of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    R, Maria Lina; S, Dadang; Suhadi, F.

    2000-01-01

    To detect to DNA of 9 drug-resistant isolates of m. tuberculosis such as isoniazid, streptomycin, isoniazid + streptomycin and isoniazid + rifampisin- resistant isolates, the DNA amplification by using PCR assay was carried out after lysing the bacterial cells. Two primer pairs for amplification used were Pt8 and Pt9 and Pt3 and Pt6. The amplified DNA taeget of 8 drug-resistant isolates and 1 drug-resistant isolate by means Pt8 8 Pt9 primer, gave the positive and negative result, respectively. Presence of amplified DNA target fragmens/bands on agarose gel, showed the positive result and vice verse. PCR process by using Pt3 and Pt6 primer revealed the positive results on 2 drug-resistant islates, whereas there was no amplified DNA bands from the other 7 isolates. DNA amplification by using either Pt8 and Pt9 or Pt3 and Pt6 primers occurred on H sub.37Rv strain DNA. Size of the amplified DNA products with Pt8 and Pt9 and Pt3 and Pt6 primers were 541 bp and 188 bp, respectively

  11. Real-time pcr (qpcr) assay for rhizoctonia solani anastomoses group ag2-2 iiib

    International Nuclear Information System (INIS)

    Abbas, S.J.; Ahmad, B.

    2014-01-01

    Rhizoctonia solani anastomosis group AG2-2 IIIB is a severe sugar beet and maize pathogen. It causes crown and root rot disease which leads to yield losses world-wide. The soil-borne pathogen is difficult to detect and quantify by conventional methods. We developed a real-time PCR (qPCR) assay for the quantification of genomic DNA of Rhizoctonia solani AG2-2 IIIB based on the ITS region of rDNA genes. The limit of quantification of the assay is 1.8 pg genomic DNA. The amplification efficiency was 96.4. The assay will be helpful in the diagnoses of Rhizoctonia solani infection of sugar beet and maize roots and in the quantification of R. solani AG2-2 IIIB inoculum in plant debris and soil. (author)

  12. Development of a direct PCR assay to detect Taenia multiceps eggs isolated from dog feces.

    Science.gov (United States)

    Wang, Ning; Wang, Yu; Ye, Qinghua; Yang, Yingdong; Wan, Jie; Guo, Cheng; Zhan, Jiafei; Gu, Xiaobin; Lai, Weimin; Xie, Yue; Peng, Xuerong; Yang, Guangyou

    2018-02-15

    Taenia multiceps is a tapeworm that leads to the death of livestock, resulting in major economic losses worldwide. The adult stage of this parasite invades the small intestine of dogs and other canids. In the present study, we developed a direct PCR assay to detect T. multiceps eggs isolated from dog feces to help curb further outbreaks. The genomic DNA was rapidly released using a lysis buffer and the PCR reaction was developed to amplify a 433-bp fragment of the T. multiceps mitochondrial gene encoding NADH dehydrogenase subunit 5 (nad5) from eggs isolated from dog feces. The procedure could be completed within 3 h, including flotation. The sensitivity of the assay was determined by detecting DNA from defined numbers of eggs, and the specificity was determined by detecting DNA from other intestinal tapeworm and roundworm species that commonly infect dogs. In addition, 14 taeniid-positive fecal samples determined by the flotation technique were collected and further evaluated by the regular PCR and our direct PCR. The results showed that the direct PCR developed herein was sensitive enough to detect the DNA from as few as 10 T. multiceps eggs and that no cross-reactions with other tapeworm and roundworm were observed, suggesting its high sensitivity and specificity for T. multiceps detection. Moreover, 14 taeniid-positive samples were screened by the regular PCR and direct PCR, with detection rates of 78.6% and 85.7%, respectively. In conclusion, the direct PCR assay developed in the present study has high sensitivity and specificity to identify T. multiceps eggs isolated from dog feces and therefore could represent an invaluable tool to identify T. multiceps outbreaks and would contribute to future clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Duplex quantitative real-time PCR assay for the detection and discrimination of the eggs of Toxocara canis and Toxocara cati (Nematoda, Ascaridoidea) in soil and fecal samples.

    Science.gov (United States)

    Durant, Jean-Francois; Irenge, Leonid M; Fogt-Wyrwas, Renata; Dumont, Catherine; Doucet, Jean-Pierre; Mignon, Bernard; Losson, Bertrand; Gala, Jean-Luc

    2012-12-07

    Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis) and/or Toxocara cati (T. cati), two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. A duplex quantitative real-time PCR (2qPCR) targeting the ribosomal RNA gene internal transcribed spacer (ITS2) has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum) and Parascaris equorum (P. equorum). The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD) in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits.

  14. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element.

    Science.gov (United States)

    Haudenshield, James S; Song, Jeong Y; Hartman, Glen L

    2017-01-01

    Phytophthora root rot of soybean [Glycine max (L.) Merr.] is caused by the oomycete Phytophthora sojae (Kaufm. & Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospores which subsequently germinate to release motile, infectious zoospores. Molecular assays detecting DNA of P. sojae are useful in disease diagnostics, and for determining the presence of the organism in host tissues, soils, and runoff or ponded water from potentially infested fields. Such assays as published have utilized ITS sequences from the nuclear ribosomal RNA genes in conventional PCR or dye-binding quantitative PCR (Q-PCR) but are not amenable to multiplexing, and some of these assays did not utilize control strategies for type I or type II errors. In this study, we describe primers and a bifunctional probe with specificity to a gypsy-like retroelement in the P. sojae genome to create a fluorogenic 5'-exonuclease linear hydrolysis assay, with a multiplexed internal control reaction detecting an exogenous target to validate negative calls, and with uracil-deglycosylase-mediated protection against carryover contamination. The assay specifically detected 13 different P. sojae isolates, and excluded 17 other Phytophthora species along with 20 non-Phytophthora fungal and oomycete species pathogenic on soybean. A diagnostic limit of detection of 34 fg total P. sojae DNA was observed in serial dilutions, equivalent to 0.3 genome, and a practical detection sensitivity of four zoospores per sample was achieved, despite losses during DNA extraction.

  15. Neutralization Assay for Zika and Dengue Viruses by Use of Real-Time-PCR-Based Endpoint Assessment.

    Science.gov (United States)

    Wilson, Heather L; Tran, Thomas; Druce, Julian; Dupont-Rouzeyrol, Myrielle; Catton, Michael

    2017-10-01

    The global spread and infective complications of Zika virus (ZKV) and dengue virus (DENV) have made them flaviviruses of public health concern. Serological diagnosis can be challenging due to antibody cross-reactivity, particularly in secondary flavivirus infections or when there is a history of flavivirus vaccination. The virus neutralization assay is considered to be the most specific assay for measurement of anti-flavivirus antibodies. This study describes an assay where the neutralization endpoint is measured by real-time PCR, providing results within 72 h. It demonstrated 100% sensitivity (24/24 ZKV and 15/15 DENV) and 100% specificity (11/11 specimens) when testing well-characterized sera. In addition, the assay was able to determine the correct DENV serotype in 91.7% of cases. The high sensitivity and specificity of the real-time PCR neutralization assay makes it suitable to use as a confirmatory test for sera that are reactive in commercial IgM/IgG enzyme immunoassays. Results are objective and the PCR-based measurement of the neutralization endpoint lends itself to automation so that throughput may be increased in times of high demand. Copyright © 2017 American Society for Microbiology.

  16. Evaluation of a single-tube fluorogenic RT-PCR assay for detection of bovine respiratory syncytial virus in clinical samples

    DEFF Research Database (Denmark)

    Hakhverdyan, Mikhayil; Hägglund, Sara; Larsen, Lars Erik

    2005-01-01

    understanding of the virus. In this study, a BRSV fluorogenic reverse transcription PCR (fRT-PCR) assay, based on TaqMan principle, was developed and evaluated on a large number of clinical samples, representing various cases of natural and experimental BRSV infections. By using a single-step closed-tube format......, the turn-around time was shortened drastically and results were obtained with minimal risk for cross-contamination. According to comparative analyses, the detection limit of the fRT-PCR was on the same level as that of a nested PCR and the sensitivity relatively higher than that of a conventional PCR......, antigen ELISA (Ag-ELISA) and virus isolation (VI). Interspersed negative control samples, samples from healthy animals and eight symptomatically or genetically related viruses were all negative, confirming a high specificity of the assay. Taken together, the data indicated that the fRT-PCR assay can...

  17. Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes

    Directory of Open Access Journals (Sweden)

    Ernault Pauline

    2003-05-01

    Full Text Available Abstract Background Toxoplasmosis is an infectious disease caused by the parasitic protozoan Toxoplasma gondii. It is endemic worldwide and, depending on the geographic location, 15 to 85% of the human population are asymptomatically infected. Routine diagnosis is based on serology. The parasite has emerged as a major opportunistic pathogen for immunocompromised patients, in whom it can cause life-threatening disease. Moreover, when a pregnant woman develops a primary Toxoplasma gondii infection, the parasite may be transmitted to the fetus and cause serious damnage. For these two subpopulations, a rapid and accurate diagnosis is required to initiate treatment. Serological diagnosis of active infection is unreliable because reactivation is not always accompanied by changes in antibody levels, and the presence of IgM does not necessarily indicate recent infection. Application of quantitative PCR has evolved as a sensitive, specific, and rapid method for the detection of Toxoplasma gondii DNA in amniotic fluid, blood, tissue samples, and cerebrospinal fluid. Methods Two separate, real-time fluorescence PCR assays were designed and evaluated with clinical samples. The first, targeting the 35-fold repeated B1 gene, and a second, targeting a newly described multicopy genomic fragment of Toxoplasma gondii. Amplicons of different intragenic copies were analyzed for sequence heterogeneity. Results Comparative LightCycler experiments were conducted with a dilution series of Toxoplasma gondii genomic DNA, 5 reference strains, and 51 Toxoplasma gondii-positive amniotic fluid samples revealing a 10 to 100-fold higher sensitivity for the PCR assay targeting the newly described 529-bp repeat element of Toxoplasma gondii. Conclusion We have developed a quantitative LightCycler PCR protocol which offer rapid cycling with real-time, sequence-specific detection of amplicons. Results of quantitative PCR demonstrate that the 529-bp repeat element is repeated more

  18. Sources of Blood Meals of Sylvatic Triatoma guasayana near Zurima, Bolivia, Assayed with qPCR and 12S Cloning

    Science.gov (United States)

    Lucero, David E.; Ribera, Wilma; Pizarro, Juan Carlos; Plaza, Carlos; Gordon, Levi W.; Peña, Reynaldo; Morrissey, Leslie A.; Rizzo, Donna M.; Stevens, Lori

    2014-01-01

    Background In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia. Methodology/Principal Findings We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors). Conclusions/Significance We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors. PMID:25474154

  19. Sources of blood meals of sylvatic Triatoma guasayana near Zurima, Bolivia, assayed with qPCR and 12S cloning.

    Directory of Open Access Journals (Sweden)

    David E Lucero

    2014-12-01

    Full Text Available In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps. Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia.We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens, five for chicken (Gallus gallus and unicolored blackbird (Agelasticus cyanopus, and one for opossum (Monodelphis domestica. Using the qPCR assay we detected chicken (13 vectors, and human (14 vectors blood meals as well as an additional blood meal source, Canis sp. (4 vectors.We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors.

  20. Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples

    Directory of Open Access Journals (Sweden)

    Whyte Paul

    2008-09-01

    Full Text Available Abstract Background A real-time multiplex PCR assay was developed for the detection of multiple Salmonella serotypes in chicken samples. Poultry-associated serotypes detected in the assay include Enteritidis, Gallinarum, Typhimurium, Kentucky and Dublin. The traditional cultural method according to EN ISO 6579:2002 for the detection of Salmonella in food was performed in parallel. The real-time PCR based method comprised a pre-enrichment step in Buffered Peptone Water (BPW overnight, followed by a shortened selective enrichment in Rappaport Vasilliadis Soya Broth (RVS for 6 hours and subsequent DNA extraction. Results The real-time multiplex PCR assay and traditional cultural method showed 100% inclusivity and 100% exclusivity on all strains tested. The real-time multiplex PCR assay was as sensitive as the traditional cultural method in detecting Salmonella in artificially contaminated chicken samples and correctly identified the serotype. Artificially contaminated chicken samples resulted in a detection limit of between 1 and 10 CFU per 25 g sample for both methods. A total of sixty-three naturally contaminated chicken samples were investigated by both methods and relative accuracy, relative sensitivity and relative specificity of the real-time PCR method were determined to be 89, 94 and 87%, respectively. Thirty cultures blind tested were correctly identified by the real-time multiplex PCR method. Conclusion Real-time PCR methodology can contribute to meet the need for rapid identification and detection methods in food testing laboratories.

  1. Multiplex PCR assay discriminates rabbit, rat and squirrel meat in food chain.

    Science.gov (United States)

    Ahamad, Mohammad Nasir Uddin; Ali, Md Eaqub; Hossain, M A Motalib; Asing, Asing; Sultana, Sharmin; Jahurul, M H A

    2017-12-01

    Rabbit meat is receiving increasing attention because it contains a high level of proteins with relatively little fat. On the other hand, squirrel meat is served in upper-class meals in certain countries, so is sold at higher prices. The other side of the coin is rat meat, which has family ties with rabbit and squirrel but poses substantial threats to public health because it is a potential carrier of several zoonotic organisms. Recently, rat meat was mislabelled and sold as lamb after chemical modification. Thus, the chances of rabbit and squirrel meat substitution by rat meat cannot be ruled out. For the first time, a multiplex PCR assay was developed in Malaysia for the discriminatory identification of rat, rabbit and squirrel in the food chain. Rabbit (123 bp), rat (108 bp) and squirrel (243 bp) targets were amplified from ATP6 and cytb genes, along with a eukaryotic internal control (141bp). The products were sequenced and cross-tested against 22 species. A total of 81 reference samples and 72 meatball specimens were screened to validate the assay. Analyte stability was evaluated through boiling, autoclaving and micro-oven cooking. The tested lower limits of detection were 0.01 ng DNA for pure meat and 0.1% for meatballs.

  2. A novel one-step real-time multiplex PCR assay to detect Streptococcus agalactiae presence and serotypes Ia, Ib, and III.

    Science.gov (United States)

    Furfaro, Lucy L; Chang, Barbara J; Payne, Matthew S

    2017-09-01

    Streptococcus agalactiae is the leading cause of early-onset neonatal sepsis. Culture-based screening methods lack the sensitivity of molecular assays and do not indicate serotype; a potentially important virulence marker. We aimed to develop a multiplex PCR to detect S. agalactiae while simultaneously identifying serotypes Ia, Ib, and III; commonly associated with infant disease. Primers were designed to target S. agalactiae serotype-specific cps genes and the dltS gene. The assay was validated with 512 vaginal specimens from pregnant women. 112 (21.9%) were dltS positive, with 14.3%, 0.9%, and 6.3% of these identified as cps Ia, Ib, and III, respectively. Our assay is a specific and sensitive method to simultaneously detect S. agalactiae and serotypes Ia, Ib, and III in a single step. It is of high significance for clinical diagnostic applications and also provides epidemiological data on serotype, information that may be important for vaccine development and other targeted non-antibiotic therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Development of a novel real-time RT-PCR assay to detect Seneca Valley virus-1 associated with emerging cases of vesicular disease in pigs.

    Science.gov (United States)

    Fowler, Veronica L; Ransburgh, Russell H; Poulsen, Elizabeth G; Wadsworth, Jemma; King, Donald P; Mioulet, Valerie; Knowles, Nick J; Williamson, Susanna; Liu, Xuming; Anderson, Gary A; Fang, Ying; Bai, Jianfa

    2017-01-01

    Seneca Valley virus 1 (SVV-1) can cause vesicular disease that is clinically indistinguishable from foot-and-mouth disease, vesicular stomatitis and swine vesicular disease. SVV-1-associated disease has been identified in pigs in several countries, namely USA, Canada, Brazil and China. Diagnostic tests are required to reliably detect this emerging virus, and this report describes the development and evaluation of a novel real-time (r) reverse-transcription (RT) PCR assay (rRT-PCR), targeting the viral polymerase gene (3D) of SVV-1. This new assay detected all historical and contemporary SVV-1 isolates examined (n=8), while no cross-reactivity was observed with nucleic acid templates prepared from other vesicular disease viruses or common swine pathogens. The analytical sensitivity of the rRT-PCR was 0.79 TCID 50 /ml and the limit of detection was equivalent using two different rRT-PCR master-mixes. The performance of the test was further evaluated using pig nasal (n=25) and rectal swab samples (n=25), where concordant results compared to virus sequencing were generated for 43/50 samples. The availability of this assay, will enable laboratories to rapidly detect SVV-1 in cases of vesicular disease in pigs, negated for notifiable diseases, and could enable existing knowledge gaps to be investigated surrounding the natural epidemiology of SVV-1. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evaluation of two real time PCR assays for the detection of bacterial DNA in amniotic fluid.

    Science.gov (United States)

    Girón de Velasco-Sada, Patricia; Falces-Romero, Iker; Quiles-Melero, Inmaculada; García-Perea, Adela; Mingorance, Jesús

    2018-01-01

    The aim of this study was to evaluate two non-commercial Real-Time PCR assays for the detection of microorganisms in amniotic fluid followed by identification by pyrosequencing. We collected 126 amniotic fluids from 2010 to 2015 for the evaluation of two Real-Time PCR assays for detection of bacterial DNA in amniotic fluid (16S Universal PCR and Ureaplasma spp. specific PCR). The method was developed in the Department of Microbiology of the University Hospital La Paz. Thirty-seven samples (29.3%) were positive by PCR/pyrosequencing and/or culture, 4 of them were mixed cultures with Ureaplasma urealyticum. The Universal 16S Real-Time PCR was compared with the standard culture (81.8% sensitivity, 97.4% specificity, 75% positive predictive value, 98% negative predictive value). The Ureaplasma spp. specific Real-Time PCR was compared with the Ureaplasma/Mycoplasma specific culture (92.3% sensitivity, 89.4% specificity, 50% positive predictive value, 99% negative predictive value) with statistically significant difference (p=0.005). Ureaplasma spp. PCR shows a rapid response time (5h from DNA extraction until pyrosequencing) when comparing with culture (48h). So, the response time of bacteriological diagnosis in suspected chorioamnionitis is reduced. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A reverse transcriptase-PCR assay for detecting filarial infective larvae in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sandra J Laney

    2008-06-01

    Full Text Available Existing molecular assays for filarial parasite DNA in mosquitoes cannot distinguish between infected mosquitoes that contain any stage of the parasite and infective mosquitoes that harbor third stage larvae (L3 capable of establishing new infections in humans. We now report development of a molecular L3-detection assay for Brugia malayi in vectors based on RT-PCR detection of an L3-activated gene transcript.Candidate genes identified by bioinformatics analysis of EST datasets across the B. malayi life cycle were initially screened by PCR using cDNA libraries as templates. Stage-specificity was confirmed using RNA isolated from infected mosquitoes. Mosquitoes were collected daily for 14 days after feeding on microfilaremic cat blood. RT-PCR was performed with primer sets that were specific for individual candidate genes. Many promising candidates with strong expression in the L3 stage were excluded because of low-level transcription in less mature larvae. One transcript (TC8100, which encodes a particular form of collagen was only detected in mosquitoes that contained L3 larvae. This assay detects a single L3 in a pool of 25 mosquitoes.This L3-activated gene transcript, combined with a control transcript (tph-1, accession # U80971 that is constitutively expressed by all vector-stage filarial larvae, can be used to detect filarial infectivity in pools of mosquito vectors. This general approach (detection of stage-specific gene transcripts from eukaryotic pathogens may also be useful for detecting infective stages of other vector-borne parasites.

  6. Pre-Clinical Testing of Real-Time PCR Assays for Diarrheal Disease Agents of Genera Escherichia and Shigella

    Science.gov (United States)

    2014-05-16

    FOR DIARRHEAL DISEASE AGENTS OF GENERA ESCHERICHIA AND SHIGELLA May 16, 2014 Reporting Period: October 1, 2010 to September 30, 2013...10-2010 - 30-09-2013 PRE-CLINICAL TESTING OF REAL-TIME PCR ASSAYS FOR DIARRHEAL DISEASE AGENTS OF GENERA ESCHERICHIA AND SHIGELLA ...Texas (MOA 2007 - 2013. Agreement No.: DODI 4000.19; AFI 25-201). Pre-clinical test results qualify ETEC and Shigella real-time PCR assays as lead

  7. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus.

    Science.gov (United States)

    Santiago, Gilberto A; Vergne, Edgardo; Quiles, Yashira; Cosme, Joan; Vazquez, Jesus; Medina, Juan F; Medina, Freddy; Colón, Candimar; Margolis, Harold; Muñoz-Jordán, Jorge L

    2013-01-01

    Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV). There are four genetically distinct DENVs (DENV-1-4) that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1-4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA) for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1-4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1-4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases.

  8. Sensitivity of PCR assays for murine gammaretroviruses and mouse contamination in human blood samples.

    Directory of Open Access Journals (Sweden)

    Li Ling Lee

    Full Text Available Gammaretroviruses related to murine leukemia virus (MLV have variously been reported to be present or absent in blood from chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME patients and healthy controls. Using subjects from New York State, we have investigated by PCR methods whether MLV-related sequences can be identified in nucleic acids isolated from whole blood or from peripheral blood mononuclear cells (PBMCs or following PBMC culture. We have also passaged the prostate cancer cell line LNCaP following incubation with plasma from patients and controls and assayed nucleic acids for viral sequences. We have used 15 sets of primers that can effectively amplify conserved regions of murine endogenous and exogenous retrovirus sequences. We demonstrate that our PCR assays for MLV-related gag sequences and for mouse DNA contamination are extremely sensitive. While we have identified MLV-like gag sequences following PCR on human DNA preparations, we are unable to conclude that these sequences originated in the blood samples.

  9. Differentiation of herpes simplex virus types 1 and 2 in clinical samples by a real-time taqman PCR assay.

    Science.gov (United States)

    Corey, Lawrence; Huang, Meei-Li; Selke, Stacy; Wald, Anna

    2005-07-01

    While the clinical manifestations of HSV-1 and -2 overlap, the site of CNS infection, complications, response to antivirals, frequency of antiviral resistance, and reactivation rate on mucosal surfaces varies between HSV-1 and -2. Detection of HSV DNA by PCR has been shown to be the most sensitive method for detecting HSV in clinical samples. As such, we developed a PCR-based assay to accurately distinguish HSV-1 from HSV-2. Our initial studies indicated the assay using type specific primers was slightly less efficient for detecting HSV-1 and -2 DNA than the high throughput quantitative PCR assay we utilize that employs type common primers to gB. We subsequently evaluated the type specific assay on 3,131 specimens that had HSV DNA detected in the type common PCR assay. The typing results of these specimens were compared with the monoclonal antibody staining results of culture isolates collected from the same patients at the same time, and the HSV serologic status of the patient. The typing assay accurately identified both HSV-1 and -2 with a specificity of >99.5% and was significantly more sensitive than typing by culture and subsequent monoclonal antibody assays. Complete concordance was seen between the typing assay and HSV serologic status of the patient. Dual (HSV-1 and -2) infection in clinical samples was recognized in 2.6% of clinical samples using the new typing assay. This assay, when used in combination with the type common assay, can now accurately type almost all mucosal and visceral HSV isolates by molecular techniques. Copyright (c) 2005 Wiley-Liss, Inc.

  10. Development and evaluation of a 28S rRNA gene-based nested PCR assay for P. falciparum and P. vivax

    Science.gov (United States)

    Pakalapati, Deepak; Garg, Shilpi; Middha, Sheetal; Acharya, Jyoti; Subudhi, Amit K; Boopathi, Arunachalam P; Saxena, Vishal; Kochar, Sanjay K; Kochar, Dhanpat K; Das, Ashis

    2013-01-01

    The 28S rRNA gene was amplified and sequenced from P. falciparum and P. vivax isolates collected from northwest India. Based upon the sequence diversity of the Plasmodium 28SrRNA gene in comparison with its human counterpart, various nested polymerase chain reaction (PCR) primers were designed from the 3R region of the 28SrRNA gene and evaluated on field isolates. This is the first report demonstrating the utility of this gene for species-specific diagnosis of malaria for these two species, prevalent in India. The initial evaluation on 363 clinical isolates indicated that, in comparison with microscopy, which showed sensitivity and specificity of 85.39% and 100% respectively, the sensitivity and specificity of the nested PCR assay was found to be 99.08% and 100% respectively. This assay was also successful in detecting mixed infections that are undetected by microscopy. Our results demonstrate the utility of the 28S rRNA gene as a diagnostic target for the detection of the major plasmodial species infecting humans. PMID:23816509

  11. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms.

    Science.gov (United States)

    Frawley, Thomas; O'Brien, Cathal P; Conneally, Eibhlin; Vandenberghe, Elisabeth; Percy, Melanie; Langabeer, Stephen E; Haslam, Karl

    2018-02-01

    The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.

  12. Determining the analytical specificity of PCR-based assays for the diagnosis of IA: What is Aspergillus?

    NARCIS (Netherlands)

    Morton, C.O.; White, P.L.; Barnes, R.A.; Klingspor, L.; Cuenca-Estrella, M.; Lagrou, K.; Bretagne, S.; Melchers, W.J.; Mengoli, C.; Caliendo, A.M.; Cogliati, M.; Debets-Ossenkopp, Y.; Gorton, R.; Hagen, F.; Halliday, C.; Hamal, P.; Harvey-Wood, K.; Jaton, K.; Johnson, G.; Kidd, S.; Lengerova, M.; Lass-Florl, C.; Linton, C.; Millon, L.; Morrissey, C.O.; Paholcsek, M.; Talento, A.F.; Ruhnke, M.; Willinger, B.; Donnelly, J.P.; Loeffler, J.

    2017-01-01

    A wide array of PCR tests has been developed to aid the diagnosis of invasive aspergillosis (IA), providing technical diversity but limiting standardisation and acceptance. Methodological recommendations for testing blood samples using PCR exist, based on achieving optimal assay sensitivity to help

  13. A diagnostic PCR assay for the detection of an Australian epidemic strain of Pseudomonas aeruginosa

    Science.gov (United States)

    2010-01-01

    Background Chronic lung infection with the bacterium Pseudomonas aeruginosa is one of the hallmarks of cystic fibrosis (CF) and is associated with worsening lung function, increased hospitalisation and reduced life expectancy. A virulent clonal strain of P. aeruginosa (Australian epidemic strain I; AES-I) has been found to be widespread in CF patients in eastern Australia. Methods Suppression subtractive hybridization (SSH) was employed to identify genetic sequences that are present in the AES-I strain but absent from the sequenced reference strain PAO1. We used PCR to evaluate the distribution of several of the AES-I loci amongst a collection of 188 P. aeruginosa isolates which was comprised of 35 AES-I isolates (as determined by PFGE), 78 non-AES-I CF isolates including other epidemic CF strains as well as 69 P. aeruginosa isolates from other clinical and environmental sources. Results We have identified a unique AES-I genetic locus that is present in all 35 AES-I isolates tested and not present in any of the other 153 P. aeruginosa strains examined. We have used this unique AES-I locus to develop a diagnostic PCR and a real-time PCR assay to detect the presence of P. aeruginosa and AES-I in patient sputum samples. Conclusions We have developed diagnostic PCR assays that are 100% sensitive and 100% specific for the P. aeruginosa strain AES-I. We have also shown that Whatman FTA® Elute cards may be used with PCR-based assays to rapidly detect the presence of P. aeruginosa strains in CF sputum. PMID:20637114

  14. A diagnostic PCR assay for the detection of an Australian epidemic strain of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Murphy Anna

    2010-07-01

    Full Text Available Abstract Background Chronic lung infection with the bacterium Pseudomonas aeruginosa is one of the hallmarks of cystic fibrosis (CF and is associated with worsening lung function, increased hospitalisation and reduced life expectancy. A virulent clonal strain of P. aeruginosa (Australian epidemic strain I; AES-I has been found to be widespread in CF patients in eastern Australia. Methods Suppression subtractive hybridization (SSH was employed to identify genetic sequences that are present in the AES-I strain but absent from the sequenced reference strain PAO1. We used PCR to evaluate the distribution of several of the AES-I loci amongst a collection of 188 P. aeruginosa isolates which was comprised of 35 AES-I isolates (as determined by PFGE, 78 non-AES-I CF isolates including other epidemic CF strains as well as 69 P. aeruginosa isolates from other clinical and environmental sources. Results We have identified a unique AES-I genetic locus that is present in all 35 AES-I isolates tested and not present in any of the other 153 P. aeruginosa strains examined. We have used this unique AES-I locus to develop a diagnostic PCR and a real-time PCR assay to detect the presence of P. aeruginosa and AES-I in patient sputum samples. Conclusions We have developed diagnostic PCR assays that are 100% sensitive and 100% specific for the P. aeruginosa strain AES-I. We have also shown that Whatman FTA® Elute cards may be used with PCR-based assays to rapidly detect the presence of P. aeruginosa strains in CF sputum.

  15. Some target assay uncertainties for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Langner, D.G.; Menlove, H.O.; Miller, M.C.; Russo, P.A.

    1990-01-01

    This paper provides some target assay uncertainties for passive neutron coincidence counting of plutonium metal, oxide, mixed oxide, and scrap and waste. The target values are based in part on past user experience and in part on the estimated results from new coincidence counting techniques that are under development. The paper summarizes assay error sources and the new coincidence techniques, and recommends the technique that is likely to yield the lowest assay uncertainty for a given material type. These target assay uncertainties are intended to be useful for NDA instrument selection and assay variance propagation studies for both new and existing facilities. 14 refs., 3 tabs

  16. A family-wide RT-PCR assay for detection of paramyxoviruses and application to a large-scale surveillance study.

    Directory of Open Access Journals (Sweden)

    Sander van Boheemen

    Full Text Available Family-wide molecular diagnostic assays are valuable tools for initial identification of viruses during outbreaks and to limit costs of surveillance studies. Recent discoveries of paramyxoviruses have called for such assay that is able to detect all known and unknown paramyxoviruses in one round of PCR amplification. We have developed a RT-PCR assay consisting of a single degenerate primer set, able to detect all members of the Paramyxoviridae family including all virus genera within the subfamilies Paramyxovirinae and Pneumovirinae. Primers anneal to domain III of the polymerase gene, with the 3' end of the reverse primer annealing to the conserved motif GDNQ, which is proposed to be the active site for nucleotide polymerization. The assay was fully optimized and was shown to indeed detect all available paramyxoviruses tested. Clinical specimens from hospitalized patients that tested positive for known paramyxoviruses in conventional assays were also detected with the novel family-wide test. A high-throughput fluorescence-based RT-PCR version of the assay was developed for screening large numbers of specimens. A large number of samples collected from wild birds was tested, resulting in the detection of avian paramyxoviruses type 1 in both barnacle and white-fronted geese, and type 8 in barnacle geese. Avian metapneumovirus type C was found for the first time in Europe in mallards, greylag geese and common gulls. The single round family-wide RT-PCR assay described here is a useful tool for the detection of known and unknown paramyxoviruses, and screening of large sample collections from humans and animals.

  17. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection

    Directory of Open Access Journals (Sweden)

    Van Neste Leander

    2012-06-01

    Full Text Available Abstract Background PSA-directed prostate cancer screening leads to a high rate of false positive identifications and an unnecessary biopsy burden. Epigenetic biomarkers have proven useful, exhibiting frequent and abundant inactivation of tumor suppressor genes through such mechanisms. An epigenetic, multiplex PCR test for prostate cancer diagnosis could provide physicians with better tools to help their patients. Biomarkers like GSTP1, APC and RASSF1 have demonstrated involvement with prostate cancer, with the latter two genes playing prominent roles in the field effect. The epigenetic states of these genes can be used to assess the likelihood of cancer presence or absence. Results An initial test cohort of 30 prostate cancer-positive samples and 12 cancer-negative samples was used as basis for the development and optimization of an epigenetic multiplex assay based on the GSTP1, APC and RASSF1 genes, using methylation specific PCR (MSP. The effect of prostate needle core biopsy sample volume and age of formalin-fixed paraffin-embedded (FFPE samples was evaluated on an independent follow-up cohort of 51 cancer-positive patients. Multiplexing affects copy number calculations in a consistent way per assay. Methylation ratios are therefore altered compared to the respective singleplex assays, but the correlation with patient outcome remains equivalent. In addition, tissue-biopsy samples as small as 20 μm can be used to detect methylation in a reliable manner. The age of FFPE-samples does have a negative impact on DNA quality and quantity. Conclusions The developed multiplex assay appears functionally similar to individual singleplex assays, with the benefit of lower tissue requirements, lower cost and decreased signal variation. This assay can be applied to small biopsy specimens, down to 20 microns, widening clinical applicability. Increasing the sample volume can compensate the loss of DNA quality and quantity in older samples.

  18. The Development of a Novel qPCR Assay-Set for Identifying Fecal Contamination Originating from Domestic Fowls and Waterfowl in Israel

    Directory of Open Access Journals (Sweden)

    Shoshanit eOhad

    2016-02-01

    Full Text Available The emerging Microbial Source Tracking (MST methodologies aim to identify fecal contamination originating from domestic and wild animals, and from humans. Avian MST is especially challenging, primarily because the Aves class includes both domesticated and wild species with highly diverse habitats and dietary characteristics. The quest for specific fecal bacterial MST markers can be difficult with respect to attaining sufficient assay sensitivity and specificity. The present study utilizes High Throughput Sequencing (HTS to screen bacterial 16S rRNA genes from fecal samples collected from both domestic and wild avian species. Operational taxonomic unit (OTU analysis was then performed, from which sequences were retained for downstream qPCR marker development. Identification of unique avian host DNA sequences, absent in non-avian hosts, was then carried out using a dedicated database of bacterial 16S rRNA gene taken from the Ribosomal Database Project. Six qPCR assays were developed targeting the 16S rRNA gene of Lactobacillus, Gallibacterium, Firmicutes, Fusobacteriaceae and other bacteria. Two assays (Av4143 and Av163 identified most of the avian fecal samples and demonstrated sensitivity values of 91% and 70%, respectively. The Av43 assay only identified droppings from battery hens and poultry, whereas each of the other three assays (Av24, Av13, and Av216 identified waterfowl species with lower sensitivities values. The development of an MST assay-panel, which includes both domestic and wild avian species, expands the currently known MST analysis capabilities for decoding fecal contamination.

  19. Duplex quantitative real-time PCR assay for the detection and discrimination of the eggs of Toxocara canis and Toxocara cati (Nematoda, Ascaridoidea in soil and fecal samples

    Directory of Open Access Journals (Sweden)

    Durant Jean-Francois

    2012-12-01

    Full Text Available Abstract Background Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis and/or Toxocara cati (T. cati, two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. Methods A duplex quantitative real-time PCR (2qPCR targeting the ribosomal RNA gene internal transcribed spacer (ITS2 has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum and Parascaris equorum (P. equorum. The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. Results 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. Conclusion The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits.

  20. Improved diagnostic PCR assay for Actinobacillus pleuropneumoniae based on the nucleotide sequence of an outer membrane lipoprotein

    DEFF Research Database (Denmark)

    Gram, Trine; Ahrens, Peter

    1998-01-01

    species related to A. pleuropneumoniae or isolated from pigs were assayed. They were all found negative in the PCR, as were tonsil cultures from 50 pigs of an A. pleuropneumoniae-negative herd. The sensitivity assessed by agarose gel analysis of the PCR product was 10(2) CFU/PCR test tube. The specificity...

  1. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus.

    Directory of Open Access Journals (Sweden)

    Gilberto A Santiago

    Full Text Available Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV. There are four genetically distinct DENVs (DENV-1-4 that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1-4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1-4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1-4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases.

  2. A duplex PCR assay for the detection of Ralstonia solanacearum phylotype II strains in Musa spp.

    Directory of Open Access Journals (Sweden)

    Gilles Cellier

    Full Text Available Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato, no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae.

  3. An N-targeting real-time PCR strategy for the accurate detection of spring viremia of carp virus.

    Science.gov (United States)

    Shao, Ling; Xiao, Yu; He, Zhengkan; Gao, Longying

    2016-03-01

    Spring viremia of carp virus (SVCV) is a highly pathogenic agent of several economically important Cyprinidae fish species. Currently, there are no effective vaccines or drugs for this virus, and prevention of the disease mostly relies on prompt diagnosis. Previously, nested RT-PCR and RT-qPCR detection methods based on the glycoprotein gene G have been developed. However, the high genetic diversity of the G gene seriously limits the reliability of those methods. Compared with the G gene, phylogenetic analyses indicate that the nucleoprotein gene N is more conserved. Furthermore, studies in other members of the Rhabdoviridae family reveals that their gene transcription level follows the order N>P>M>G>L, indicating that an N gene based RT-PCR should have higher sensitivity. Therefore, two pairs of primers and two corresponding probes targeting the conserved regions of the N gene were designed. RT-qPCR assays demonstrated all primers and probes could detect phylogenetically distant isolates specifically and efficiently. Moreover, in artificially infected fish, the detected copy numbers of the N gene were much higher than those of the G gene in all tissues, and both the N and G gene copy numbers were highest in the kidney and spleen. Testing in 1100 farm-raised fish also showed that the N-targeting strategy was more reliable than the G-targeting methods. The method developed in this study provides a reliable tool for the rapid diagnosis of SVCV. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development of a highly sensitive real-time nested RT-PCR assay in a single closed tube for detection of enterovirus 71 in hand, foot, and mouth disease.

    Science.gov (United States)

    Niu, Peihua; Qi, Shunxiang; Yu, Benzhang; Zhang, Chen; Wang, Ji; Li, Qi; Ma, Xuejun

    2016-11-01

    Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease (HFMD). A commercial TaqMan probe-based real-time PCR assay has been widely used for the differential detection of EV71 despite its relatively high cost and failure to detect samples with a low viral load (Ct value > 35). In this study, a highly sensitive real-time nested RT-PCR (RTN RT-PCR) assay in a single closed tube for detection of EV71 in HFMD was developed. The sensitivity and specificity of this assay were evaluated using a reference EV71 stock and a panel of controls consisting of coxsackievirus A16 (CVA16) and common respiratory viruses, respectively. The clinical performance of this assay was evaluated and compared with those of a commercial TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional two-step nested RT-PCR assay. The limit of detection for the RTN RT-PCR assay was 0.01 TCID50/ml, with a Ct value of 38.3, which was the same as that of the traditional two-step nested RT-PCR assay and approximately tenfold lower than that of the qRT-PCR assay. When testing the reference strain EV71, this assay showed favorable detection reproducibility and no obvious cross-reactivity. The testing results of 100 clinical throat swabs from HFMD-suspected patients revealed that 41 samples were positive for EV71 by both RTN RT-PCR and traditional two-step nested RT-PCR assays, whereas only 29 were EV71 positive by qRT-PCR assay.

  5. Mung bean nuclease treatment increases capture specificity of microdroplet-PCR based targeted DNA enrichment.

    Directory of Open Access Journals (Sweden)

    Zhenming Yu

    Full Text Available Targeted DNA enrichment coupled with next generation sequencing has been increasingly used for interrogation of select sub-genomic regions at high depth of coverage in a cost effective manner. Specificity measured by on-target efficiency is a key performance metric for target enrichment. Non-specific capture leads to off-target reads, resulting in waste of sequencing throughput on irrelevant regions. Microdroplet-PCR allows simultaneous amplification of up to thousands of regions in the genome and is among the most commonly used strategies for target enrichment. Here we show that carryover of single-stranded template genomic DNA from microdroplet-PCR constitutes a major contributing factor for off-target reads in the resultant libraries. Moreover, treatment of microdroplet-PCR enrichment products with a nuclease specific to single-stranded DNA alleviates off-target load and improves enrichment specificity. We propose that nuclease treatment of enrichment products should be incorporated in the workflow of targeted sequencing using microdroplet-PCR for target capture. These findings may have a broad impact on other PCR based applications for which removal of template DNA is beneficial.

  6. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    Science.gov (United States)

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The

  7. A Real-Time PCR Assay to Identify and Discriminate Among Wild-Type and Vaccine Strains of Varicella-Zoster Virus and Herpes Simplex Virus in Clinical Specimens, and Comparison With the Clinical Diagnoses

    Science.gov (United States)

    Harbecke, Ruth; Oxman, Michael N.; Arnold, Beth A.; Ip, Charlotte; Johnson, Gary R.; Levin, Myron J.; Gelb, Lawrence D.; Schmader, Kenneth E.; Straus, Stephen E.; Wang, Hui; Wright, Peter F.; Pachucki, Constance T.; Gershon, Anne A.; Arbeit, Robert D.; Davis, Larry E.; Simberkoff, Michael S.; Weinberg, Adriana; Williams, Heather M.; Cheney, Carol; Petrukhin, Luba; Abraham, Katalin G.; Shaw, Alan; Manoff, Susan; Antonello, Joseph M.; Green, Tina; Wang, Yue; Tan, Charles; Keller, Paul M.

    2014-01-01

    A real-time PCR assay was developed to identify varicella-zoster virus (VZV) and herpes simplex virus (HSV) DNA in clinical specimens from subjects with suspected herpes zoster (HZ; shingles). Three sets of primers and probes were used in separate PCR reactions to detect and discriminate among wild-type VZV (VZV-WT), Oka vaccine strain VZV (VZV-Oka), and HSV DNA, and the reaction for each virus DNA was multiplexed with primers and probe specific for the human β-globin gene to assess specimen adequacy. Discrimination of all VZV-WT strains, including Japanese isolates and the Oka parent strain, from VZV-Oka was based upon a single nucleotide polymorphism at position 106262 in ORF 62, resulting in preferential amplification by the homologous primer pair. The assay was highly sensitive and specific for the target virus DNA, and no cross-reactions were detected with any other infectious agent. With the PCR assay as the gold standard, the sensitivity of virus culture was 53% for VZV and 77% for HSV. There was 92% agreement between the clinical diagnosis of HZ by the Clinical Evaluation Committee and the PCR assay results. PMID:19475609

  8. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    Science.gov (United States)

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an

  9. Polymerase chain reaction assay targeting cytochrome b gene for the detection of dog meat adulteration in meatball formulation.

    Science.gov (United States)

    Rahman, Md Mahfujur; Ali, Md Eaqub; Hamid, Sharifah Bee Abd; Mustafa, Shuhaimi; Hashim, Uda; Hanapi, Ummi Kalthum

    2014-08-01

    A polymerase chain reaction (PCR) assay for the assessment of dog meat adulteration in meatballs was developed. The assay selectively amplified a 100-bp region of canine mitochondrial cytochrome b gene from pure, raw, processed and mixed backgrounds. The specificity of the assay was tested against 11 animals and 3 plants species, commonly available for meatball formulation. The stability of the assay was proven under extensively autoclaving conditions that breakdown target DNA. A blind test from ready to eat chicken and beef meatballs showed that the assay can repeatedly detect 0.2% canine meat tissues under complex matrices using 0.04 ng of dog DNA extracted from differentially treated meatballs. The simplicity, stability and sensitivity of the assay suggested that it could be used in halal food industry for the authentication of canine derivatives in processed foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    Science.gov (United States)

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  11. Two quantitative real-time PCR assays for the detection of penaeid shrimp and blue crab, crustacean shellfish allergens.

    Science.gov (United States)

    Eischeid, Anne C; Kim, Bang-hyun; Kasko, Sasha M

    2013-06-19

    Food allergen detection methods must be able to specifically detect minute quantities of an allergenic food in a complex food matrix. One technique that can be used is real-time PCR. For the work described here, real-time PCR assays were developed to detect penaeid shrimp and blue crab, crustacean shellfish allergens. The method was tested using shrimp meat and crab meat spiked into several types of foods, including canned soups, deli foods, meat, seafood, and prepared seafood products. Foods were spiked with either shrimp or crab at levels ranging from 0.1 to 10⁶ parts per million (ppm) and analyzed either raw or cooked by a variety of methods. Real-time PCR data were used to generate linear standard curves, and assays were evaluated with respect to linear range and reaction efficiency. Results indicate that both assays performed well in a variety of food types. High reaction efficiencies were achieved across a linear range of 6-8 orders of magnitude. Limits of detection were generally between 0.1 and 1 ppm. Cooking methods used to simulate thermal processing of foods had little effect on assay performance. This work demonstrates that real-time PCR can be a valuable tool in the detection of crustacean shellfish.

  12. Nested polymerase chain reaction (PCR) targeting 16S rDNA for bacterial identification in empyema.

    Science.gov (United States)

    Prasad, Rajniti; Kumari, Chhaya; Das, B K; Nath, Gopal

    2014-05-01

    Empyema in children causes significant morbidity and mortality. However, identification of organisms is a major concern. To detect bacterial pathogens in pus specimens of children with empyema by 16S rDNA nested polymerase chain reaction (PCR) and correlate it with culture and sensitivity. Sixty-six children admitted to the paediatric ward with a diagnosis of empyema were enrolled prospectively. Aspirated pus was subjected to cytochemical examination, culture and sensitivity, and nested PCR targeting 16S rDNA using a universal eubacterial primer. Mean (SD) age was 5·8 (1·8) years (range 1-13). Analysis of aspirated pus demonstrated total leucocyte count >1000×10(6)/L, elevated protein (≧20 g/L) and decreased glucose (≤2·2 mmol/L) in 80·3%, 98·5% and 100%, respectively. Gram-positive cocci were detected in 29 (43·9%) and Gram-negative bacilli in two patients. Nested PCR for the presence of bacterial pathogens was positive in 50·0%, compared with 36·3% for culture. 16S rDNA PCR improves rates of detection of bacteria in pleural fluid, and can detect bacterial species in a single assay as well as identifying unusual and unexpected causal agents.

  13. Optimization and Evaluation of a PCR Assay for Detecting Toxoplasmic Encephalitis in Patients with AIDS

    Science.gov (United States)

    Joseph, Priya; Calderón, Maritza M.; Gilman, Robert H.; Quispe, Monica L.; Cok, Jaime; Ticona, Eduardo; Chavez, Victor; Jimenez, Juan A.; Chang, Maria C.; Lopez, Martín J.; Evans, Carlton A.

    2002-01-01

    Toxoplasma gondii is a common life-threatening opportunistic infection. We used experimental murine T. gondii infection to optimize the PCR for diagnostic use, define its sensitivity, and characterize the time course and tissue distribution of experimental toxoplasmosis. PCR conditions were adjusted until the assay reliably detected quantities of DNA derived from less than a single parasite. Forty-two mice were inoculated intraperitoneally with T. gondii tachyzoites and sacrificed from 6 to 72 h later. Examination of tissues with PCR and histology revealed progression of infection from blood to lung, heart, liver, and brain, with PCR consistently detecting parasites earlier than microscopy and with no false-positive results. We then evaluated the diagnostic value of this PCR assay in human patients. We studied cerebrospinal fluid and serum samples from 12 patients with AIDS and confirmed toxoplasmic encephalitis (defined as positive mouse inoculation and/or all of the Centers for Disease Control clinical diagnostic criteria), 12 human immunodeficiency virus-infected patients with suspected cerebral toxoplasmosis who had neither CDC diagnostic criteria nor positive mouse inoculation, 26 human immunodeficiency virus-infected patients with other opportunistic infections and no signs of cerebral toxoplasmosis, and 18 immunocompetent patients with neurocysticercosis. Eleven of the 12 patients with confirmed toxoplasmosis had positive PCR results in either blood or cerebrospinal fluid samples (6 of 9 blood samples and 8 of 12 cerebrospinal fluid samples). All samples from control patients were negative. This study demonstrates the high sensitivity, specificity, and clinical utility of PCR in the diagnosis of toxoplasmic encephalitis in a resource-poor setting. PMID:12454142

  14. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food.

    Science.gov (United States)

    Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook

    2014-07-01

    A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.

  15. Comparison of Simplexa universal direct PCR with cytotoxicity assay for diagnosis of Clostridium difficile infection: performance, cost, and correlation with disease.

    Science.gov (United States)

    Landry, Marie L; Ferguson, David; Topal, Jeffrey

    2014-01-01

    Simplexa Clostridium difficile universal direct PCR, a real-time PCR assay for the detection of the C. difficile toxin B (tcdB) gene using the 3M integrated cycler, was compared with a two-step algorithm which includes the C. Diff Chek-60 glutamate dehydrogenase (GDH) antigen assay followed by cytotoxin neutralization. Three hundred forty-two liquid or semisolid stools submitted for diagnostic C. difficile testing, 171 GDH antigen positive and 171 GDH antigen negative, were selected for the study. All samples were tested by the C. Diff Chek-60 GDH antigen assay, cytotoxin neutralization, and Simplexa direct PCR. Of 171 GDH-positive samples, 4 were excluded (from patients on therapy or from whom duplicate samples were obtained) and 88 were determined to be true positives for toxigenic C. difficile. Of the 88, 67 (76.1%) were positive by the two-step method and 86 (97.7%) were positive by PCR. Seventy-nine were positive by the GDH antigen assay only. Of 171 GDH antigen-negative samples, none were positive by PCR. One antigen-negative sample positive by the cytotoxin assay only was deemed a false positive based on chart review. Simplexa C. difficile universal direct PCR was significantly more sensitive for detecting toxigenic C. difficile bacteria than cytotoxin neutralization (P = 0.0002). However, most PCR-positive/cytotoxin-negative patients did not have clear C. difficile disease. The estimated cost avoidance provided by a more rapid molecular diagnosis was outweighed by the cost of isolating and treating PCR-positive/cytotoxin-negative patients. The costs, clinical consequences, and impact on nosocomial transmission of treating and/or isolating patients positive for toxigenic C. difficile by PCR but negative for in vivo toxin production merit further study.

  16. Diagnostic accuracy of a loop-mediated isothermal PCR assay for detection of Orientia tsutsugamushi during acute Scrub Typhus infection.

    Science.gov (United States)

    Paris, Daniel H; Blacksell, Stuart D; Nawtaisong, Pruksa; Jenjaroen, Kemajittra; Teeraratkul, Achara; Chierakul, Wirongrong; Wuthiekanun, Vanaporn; Kantipong, Pacharee; Day, Nicholas P J

    2011-09-01

    There is an urgent need to develop rapid and accurate point-of-care (POC) technologies for acute scrub typhus diagnosis in low-resource, primary health care settings to guide clinical therapy. In this study we present the clinical evaluation of loop-mediated isothermal PCR assay (LAMP) in the context of a prospective fever study, including 161 patients from scrub typhus-endemic Chiang Rai, northern Thailand. A robust reference comparator set comprising following 'scrub typhus infection criteria' (STIC) was used: a) positive cell culture isolate and/or b) an admission IgM titer ≥1∶12,800 using the 'gold standard' indirect immunofluorescence assay (IFA) and/or c) a 4-fold rising IFA IgM titer and/or d) a positive result in at least two out of three PCR assays. Compared to the STIC criteria, all PCR assays (including LAMP) demonstrated high specificity ranging from 96-99%, with sensitivities varying from 40% to 56%, similar to the antibody based rapid test, which had a sensitivity of 47% and a specificity of 95%. The diagnostic accuracy of the LAMP assay was similar to realtime and nested conventional PCR assays, but superior to the antibody-based rapid test in the early disease course. The combination of DNA- and antibody-based detection methods increased sensitivity with minimal reduction of specificity, and expanded the timeframe of adequate diagnostic coverage throughout the acute phase of scrub typhus.

  17. A novel duplex ddPCR assay for the diagnosis of schistosomiasis japonica: proof of concept in an experimental mouse model.

    Science.gov (United States)

    Weerakoon, Kosala G; Gordon, Catherine A; Cai, Pengfei; Gobert, Geoffrey N; Duke, Mary; Williams, Gail M; McManus, Donald P

    2017-07-01

    The current World Health Organization strategic plan targets the elimination of schistosomiasis as a public health problem by 2025 and accurate diagnostics will play a pivotal role in achieving this goal. DNA-based detection methods provide a viable alternative to some of the commonly used tests, notably microscopy and serology, for the diagnosis of schistosomiasis. The detection of parasite cell-free DNA in different clinical samples is a recent valuable advance, which provides significant benefits for accurate disease diagnosis. Here we validated a novel duplex droplet digital PCR assay for the diagnosis of Chinese (SjC) and Philippine (SjP) strains of Schistosoma japonicum infection in a mouse model. The assay proved applicable for both SjC and SjP infections and capable of detecting infection at a very early intra-mammalian stage in conveniently obtainable samples (urine and saliva) as well as in serum and feces. The target DNA copy numbers obtained in the assay showed a positive correlation with the infection burden assessed by direct traditional parasitology. The potential to detect parasite DNA in urine and saliva has important practical implications for large-scale epidemiological screening programmes in the future, particularly in terms of logistical convenience, and the assay has the potential to be a valuable additional tool for the diagnosis of schistosomiasis japonica.

  18. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    International Nuclear Information System (INIS)

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A.

    2007-01-01

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

  19. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    Science.gov (United States)

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR.

    Science.gov (United States)

    Lee, C S; Wetzel, K; Buckley, T; Wozniak, D; Lee, J

    2011-10-01

    For the rapid detection of Pseudomonas aeruginosa from chlorinated water and aerosols, gyrB gene-based real-time PCR assay was developed and investigated. Two novel primer sets (pa722F/746MGB/899R and pa722F/746MGB/788R) were designed using the most updated 611 Pseudomonas and 748 other bacterial gyrB genes for achieving high specificity. Their specificity showed 100% accuracy when tested with various strains including clinical isolates from cystic fibrosis patients. The assay was tested with Ps. aeruginosa-containing chlorinated water and aerosols to simulate the waterborne and airborne transmission routes (detection limit 3·3 × 10² CFU per PCR-2·3 × 10³ CFU per PCR). No chlorine interference in real-time PCR was observed at drinking water level (c. 1 mg l⁻¹), but high level of chorine (12 mg l⁻¹) interfered the assay, and thus neutralization was needed. Pseudomonas aeruginosa in aerosol was successfully detected after capturing with gelatin filters with minimum 2 min of sampling time when the initial concentration of 10⁴ CFU ml⁻¹ bacteria existed in the nebulizer. A highly specific and rapid assay (2-3 h) was developed by targeting gyrB gene for the detection of Ps. aeruginosa in chlorinated water and aerosols, combined with optimized sample collection methods and sample processing, so the direct DNA extraction from either water or aerosol was possible while achieving the desired sensitivity of the method.   The new assay can provide timely and accurate risk assessment to prevent Ps. aeruginosa exposure from water and aerosol, resulting in reduced disease burden, especially among immune-compromised and susceptible individuals. This approach can be easily utilized as a platform technology for the detection of other types of micro-organisms, especially for those that are transmitted via water and aerosol routes, such as Legionella pneumophila. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Duplex real-time PCR assay using SYBR Green to detect and quantify Malayan box turtle (Cuora amboinensis) materials in meatballs, burgers, frankfurters and traditional Chinese herbal jelly powder.

    Science.gov (United States)

    Asing; Ali, Eaqub; Hamid, Sharifah Bee Abd; Hossain, Motalib; Ahamad, Mohammad Nasir Uddin; Hossain, S M Azad; Naquiah, Nina; Zaidul, I S M

    2016-11-01

    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected species widely used in exotic foods and traditional medicines. Currently available polymerase chain reaction (PCR) assays to identify MBT lack automation and involve long targets which break down in processed or denatured tissue. This SYBR Green duplex real-time PCR assay has addressed this research gap for the first time through the combination of 120- and 141-bp targets from MBT and eukaryotes for the quantitative detection of MBT DNA in food chain and herbal medicinal preparations. This authentication ensures better security through automation, internal control and short targets that were stable under the processing treatments of foods and medicines. A melting curve clearly demonstrated two peaks at 74.63 ± 0.22 and 78.40 ± 0.31°C for the MBT and eukaryotic products, respectively, under pure, admixed and commercial food matrices. Analysis of 125 reference samples reflected a target recovery of 93.25-153.00%, PCR efficiency of 99-100% and limit of detection of 0.001% under various matrices. The quantification limits were 0.00001, 0.00170 ± 0.00012, 0.00228 ± 0.00029, 0.00198 ± 0.00036 and 0.00191 ± 0.00043 ng DNA for the pure meat, binary mixtures, meatball, burger and frankfurter products, respectively. The assay was used to screen 100 commercial samples of traditional Chinese herbal jelly powder from eight different brands; 22% of them were found to be MBT-positive (5.37 ± 0.50-7.00 ± 0.34% w/w), which was reflected through the Ct values (26.37 ± 0.32-28.90 ± 0.42) and melting curves (74.63-78.65 ± 0.22°C) of the amplified MBT target (120 bp), confirming the speculation that MBT materials are widely used in Chinese herbal desserts, exotic dishes consumed with the hope of prolonging life and youth.

  2. A FRET-based real-time PCR assay to identify the main causal agents of New World tegumentary leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Pablo Tsukayama

    Full Text Available In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL. The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V. braziliensis, L. (V. panamensis, L. (V. guyanensis, L. (V. peruviana and L. (V. lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST. In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America.

  3. Development of a Taqman real-time PCR assay for rapid detection and quantification of Vibrio tapetis in extrapallial fluids of clams

    Directory of Open Access Journals (Sweden)

    Adeline Bidault

    2015-12-01

    Full Text Available The Gram-negative bacterium Vibrio tapetis is known as the causative agent of Brown Ring Disease (BRD in the Manila clam Venerupis (=Ruditapes philippinarum. This bivalve is the second most important species produced in aquaculture and has a high commercial value. In spite of the development of several molecular methods, no survey has been yet achieved to rapidly quantify the bacterium in the clam. In this study, we developed a Taqman real-time PCR assay targeting virB4 gene for accurate and quantitative identification of V. tapetis strains pathogenic to clams. Sensitivity and reproducibility of the method were assessed using either filtered sea water or extrapallial fluids of clam injected with the CECT4600T V. tapetis strain. Quantification curves of V. tapetis strain seeded in filtered seawater (FSW or extrapallial fluids (EF samples were equivalent showing reliable qPCR efficacies. With this protocol, we were able to specifically detect V. tapetis strains down to 1.125 101 bacteria per mL of EF or FSW, taking into account the dilution factor used for appropriate template DNA preparation. This qPCR assay allowed us to monitor V. tapetis load both experimentally or naturally infected Manila clams. This technique will be particularly useful for monitoring the kinetics of massive infections by V. tapetis and for designing appropriate control measures for aquaculture purposes.

  4. Inter-laboratory and inter-assay comparison on two real-time PCR techniques for quantification of PCV2 nucleic acid extracted from field samples

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Grau-Roma, L.; Sibila, M.

    2009-01-01

    Several real-time PCR assays for quantification of PCV2 DNA (qPCR) have been described in the literature. and different in-house assays are being used by laboratories around the world. A general threshold of it copies of PCV2 per millilitre serum for postweaning multisystemic wasting syndrome (PMWS......) diagnosis has been suggested. However, neither inter-laboratory nor inter-assay comparisons have been published so far. In the present study two different qPCR probe assays Used routinely in two laboratories were compared on DNA extracted From serum, nasal and rectal swabs. Results showed a significant...

  5. Development of a Quantitative PCR Assay for Thermophilic Spore-Forming Geobacillus stearothermophilus in Canned Food.

    Science.gov (United States)

    Nakano, Miyo

    2015-01-01

    The thermophilic spore forming bacteria Geobacillus stearothermophilus is recognized as a major cause of spoilage in canned food. A quantitative real-time PCR assay was developed to specifically detect and quantify the species G. stearothermophilus in samples from canned food. The selected primer pairs amplified a 163-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 12.5 fg of pure culture DNA, corresponding to DNA extracted from approximately 0.7 CFU/mL of G. stearothermophilus. Analysis showed that the bacterial species G. stearothermophilus was not detected in any canned food sample. Our approach presented here will be useful for tracking or quantifying species G. stearotethermophilus in canned food and ingredients.

  6. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

    Science.gov (United States)

    Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena

    2011-03-30

    A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Detection of four important Eimeria species by multiplex PCR in a single assay.

    Science.gov (United States)

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay.

    Science.gov (United States)

    Bottari, Benedetta; Felis, Giovanna E; Salvetti, Elisa; Castioni, Anna; Campedelli, Ilenia; Torriani, Sandra; Bernini, Valentina; Gatti, Monica

    2017-07-01

    Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.

  9. Development of a PCR-RFLP assay for the detection and differentiation of canine parvovirus and mink enteritis virus.

    Science.gov (United States)

    Zhang, Chuanmei; Yu, Yongle; Yang, Haiyan; Li, Guimei; Yu, Zekun; Zhang, Hongliang; Shan, Hu

    2014-12-15

    A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay has been developed to detect and differentiate between canine parvovirus (CPV) and mink enteritis virus (MEV). Eight CPV and three MEV epidemic strains isolated from 28 pathological samples from dogs and minks suspected of being infected with parvovirus were amplified by PCR using a pair of specific primers designed based on the CPV-N strain (M19296). PCR amplified a fragment of 1016bp from the genomic DNA of both MEV and CPV. The MEV-derived fragment could be digested with the restriction enzyme BSP1407I into three fragments of 102bp, 312bp and 602bp, while the fragment amplified from the CPV genomic DNA was digested into only two fragments of 414bp and 602bp. The lowest DNA concentration of CPV and MEV that could be detected using this assay was 0.004μg/ml and 0.03μg/ml, respectively. The PCR-RFLP assay developed in the present study can, therefore, be used to detect and differentiate MEV from CPV with high specificity and sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Drug Target Interference in Immunogenicity Assays: Recommendations and Mitigation Strategies.

    Science.gov (United States)

    Zhong, Zhandong Don; Clements-Egan, Adrienne; Gorovits, Boris; Maia, Mauricio; Sumner, Giane; Theobald, Valerie; Wu, Yuling; Rajadhyaksha, Manoj

    2017-11-01

    Sensitive and specific methodology is required for the detection and characterization of anti-drug antibodies (ADAs). High-quality ADA data enables the evaluation of potential impact of ADAs on the drug pharmacokinetic profile, patient safety, and efficacious response to the drug. Immunogenicity assessments are typically initiated at early stages in preclinical studies and continue throughout the drug development program. One of the potential bioanalytical challenges encountered with ADA testing is the need to identify and mitigate the interference mediated by the presence of soluble drug target. A drug target, when present at sufficiently high circulating concentrations, can potentially interfere with the performance of ADA and neutralizing antibody (NAb) assays, leading to either false-positive or, in some cases, false-negative ADA and NAb assay results. This publication describes various mechanisms of assay interference by soluble drug target, as well as strategies to recognize and mitigate such target interference. Pertinent examples are presented to illustrate the impact of target interference on ADA and NAb assays as well as several mitigation strategies, including the use of anti-target antibodies, soluble versions of the receptors, target-binding proteins, lectins, and solid-phase removal of targets. Furthermore, recommendations for detection and mitigation of such interference in different formats of ADA and NAb assays are provided.

  11. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  12. Rapid, actionable diagnosis of urban epidemic leptospirosis using a pathogenic Leptospira lipL32-based real-time PCR assay.

    Science.gov (United States)

    Riediger, Irina N; Stoddard, Robyn A; Ribeiro, Guilherme S; Nakatani, Sueli M; Moreira, Suzana D R; Skraba, Irene; Biondo, Alexander W; Reis, Mitermayer G; Hoffmaster, Alex R; Vinetz, Joseph M; Ko, Albert I; Wunder, Elsio A

    2017-09-01

    With a conservatively estimated 1 million cases of leptospirosis worldwide and a 5-10% fatality rate, the rapid diagnosis of leptospirosis leading to effective clinical and public health decision making is of high importance, and yet remains a challenge. Based on parallel, population-based studies in two leptospirosis-endemic regions in Brazil, a real-time PCR assay which detects lipL32, a gene specifically present in pathogenic Leptospira, was assessed for the diagnostic effectiveness and accuracy. Patients identified by active hospital-based surveillance in Salvador and Curitiba during large urban leptospirosis epidemics were tested. Real-time PCR reactions were performed with DNA-extracted samples obtained from 127 confirmed and 23 unconfirmed cases suspected of leptospirosis, 122 patients with an acute febrile illness other than leptospirosis, and 60 healthy blood donors. The PCR assay had a limit of detection of 280 Leptospira genomic equivalents/mL. Sensitivity for confirmed cases was 61% for whole blood and 29% for serum samples. Sensitivity was higher (86%) for samples collected within the first 6 days after onset of illness compared to those collected after 7 days (34%). The real-time PCR assay was able to detect leptospiral DNA in blood from 56% of serological non-confirmed cases. The overall specificity of the assay was 99%. These findings indicate that real-time PCR may be a reliable tool for early diagnosis of leptospirosis, which is decisive for clinical management of severe and life-threatening cases and for public health decision making.

  13. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    Science.gov (United States)

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of common genetically modified organisms (GMOs).

    Science.gov (United States)

    Feng, Jiawang; Tang, Shiming; Liu, Lideng; Kuang, Xiaoshan; Wang, Xiaoyu; Hu, Songnan; You, Shuzhu

    2015-03-01

    Here, we developed a loop-mediated isothermal amplification (LAMP) assay for 11 common transgenic target DNA in GMOs. Six sets of LAMP primer candidates for each target were designed and their specificity, sensitivity, and reproductivity were evaluated. With the optimized LAMP primers, this LAMP assay was simply run within 45-60 min to detect all these targets in GMOs tested. The sensitivity, specificity, and reproductivity of the LAMP assay were further analyzed in comparison with those of Real-Time PCR. In consistent with real-time PCR, detection of 0.5% GMOs in equivalent background DNA was possible using this LAMP assay for all targets. In comparison with real-time PCR, the LAMP assay showed the same results with simple instruments. Hence, the LAMP assay developed can provide a rapid and simple approach for routine screening as well as specific events detection of many GMOs.

  15. [Identification of Clonorchis sinensis metacercariae based on PCR targeting ribosomal DNA ITS regions and COX1 gene].

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong

    2014-06-01

    To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.

  16. Improved Detection of Lassa Virus by Reverse Transcription-PCR Targeting the 5′ Region of S RNA▿

    OpenAIRE

    Ölschläger, Stephan; Lelke, Michaela; Emmerich, Petra; Panning, Marcus; Drosten, Christian; Hass, Meike; Asogun, Danny; Ehichioya, Deborah; Omilabu, Sunday; Günther, Stephan

    2010-01-01

    The method of choice for the detection of Lassa virus is reverse transcription (RT)-PCR. However, the high degree of genetic variability of the virus poses a problem with the design of RT-PCR assays that will reliably detect all strains. Recently, we encountered difficulties in detecting some strains from Liberia and Nigeria in a commonly used glycoprotein precursor (GPC) gene-specific RT-PCR assay (A. H. Demby, J. Chamberlain, D. W. Brown, and C. S. Clegg, J. Clin. Microbiol. 32:2898-2903, 1...

  17. Development and evaluation of the quantitative real-time PCR assay in detection and typing of herpes simplex virus in swab specimens from patients with genital herpes.

    Science.gov (United States)

    Liu, Junlian; Yi, Yong; Chen, Wei; Si, Shaoyan; Yin, Mengmeng; Jin, Hua; Liu, Jianjun; Zhou, Jinlian; Zhang, Jianzhong

    2015-01-01

    Genital herpes (GH), which is caused mainly by herpes simplex virus (HSV)-2 and HSV-1, remains a worldwide problem. Laboratory confirmation of GH is important, particularly as there are other conditions which present similarly to GH, while atypical presentations of GH also occur. Currently, virus culture is the classical method for diagnosis of GH, but it is time consuming and with low sensitivity. A major advance for diagnosis of GH is to use Real-time polymerase chain reaction (PCR). In this study, to evaluate the significance of the real-time PCR method in diagnosis and typing of genital HSV, the primers and probes targeted at HSV-1 DNA polymerase gene and HSV-2 glycoprotein D gene fraction were designed and applied to amplify DNA from HSV-1 or HSV-2 by employing the real-time PCR technique. Then the PCR reaction system was optimized and evaluated. HSV in swab specimens from patients with genital herpes was detected by real-time PCR. The real-time PCR assay showed good specificity for detection and typing of HSV, with good linear range (5×10(2)~5×10(8) copies/ml, r=0.997), a sensitivity of 5×10(2) copies/ml, and good reproducibility (intra-assay coefficients of variation 2.29% and inter-assay coefficients of variation 4.76%). 186 swab specimens were tested for HSV by real-time PCR, and the positive rate was 23.7% (44/186). Among the 44 positive specimens, 8 (18.2%) were positive for HSV-1 with a viral load of 8.5546×10(6) copies/ml and 36 (81.2%) were positive for HSV-2 with a viral load of 1.9861×10(6) copies/ml. It is concluded that the real-time PCR is a specific, sensitive and rapid method for the detection and typing of HSV, which can be widely used in clinical diagnosis of GH.

  18. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay.

    Science.gov (United States)

    Cross, Kristen E; Mercante, Jeffrey W; Benitez, Alvaro J; Brown, Ellen W; Diaz, Maureen H; Winchell, Jonas M

    2016-07-01

    Legionnaires' disease is a severe respiratory disease that is estimated to cause between 8,000 and 18,000 hospitalizations each year, though the exact burden is unknown due to under-utilization of diagnostic testing. Although Legionella pneumophila is the most common species detected in clinical cases (80-90%), other species have also been reported to cause disease. However, little is known about Legionnaires' disease caused by these non-pneumophila species. We designed a multiplex real-time PCR assay for detection of all Legionella spp. and simultaneous specific identification of four clinically-relevant Legionella species, L. anisa, L. bozemanii, L. longbeachae, and L. micdadei, using 5'-hydrolysis probe real-time PCR. The analytical sensitivity for detection of nucleic acid from each target species was ≤50fg per reaction. We demonstrated the utility of this assay in spiked human sputum specimens. This assay could serve as a tool for understanding the scope and impact of non-pneumophila Legionella species in human disease. Published by Elsevier Inc.

  19. Diagnosis of Barmah Forest Virus Infection by a Nested Real-Time SYBR Green RT-PCR Assay

    OpenAIRE

    Hueston, Linda; Toi, Cheryl S.; Jeoffreys, Neisha; Sorrell, Tania; Gilbert, Gwendolyn

    2013-01-01

    Barmah Forest virus (BFV) is a mosquito borne (+) ssRNA alphavirus found only in Australia. It causes rash, myalgia and arthralgia in humans and is usually diagnosed serologically. We developed a real-time PCR assay to detect BFV in an effort to improve diagnosis early in the course of infection. The limit of detection was 16 genome equivalents with a specificity of 100%. Fifty five serum samples from BFV-infected patients were tested by the PCR. 52 of 53 antibody-positive samples were PCR ne...

  20. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material

    DEFF Research Database (Denmark)

    Lundberg, Martin; Thorsen, Stine Buch; Assarsson, Erika

    2011-01-01

    A high throughput protein biomarker discovery tool has been developed based on multiplexed proximity ligation assays (PLA) in a homogeneous format in the sense of no washing steps. The platform consists of four 24-plex panels profiling 74 putative biomarkers with sub pM sensitivity each consuming...... sequences are united by DNA ligation upon simultaneous target binding forming a PCR amplicon. Multiplex PLA thereby converts multiple target analytes into real-time PCR amplicons that are individually quantificatied using microfluidic high capacity qPCR in nano liter volumes. The assay shows excellent...

  1. Development of a Rickettsia bellii-Specific TaqMan Assay Targeting the Citrate Synthase Gene.

    Science.gov (United States)

    Hecht, Joy A; Allerdice, Michelle E J; Krawczak, Felipe S; Labruna, Marcelo B; Paddock, Christopher D; Karpathy, Sandor E

    2016-11-01

    Rickettsia bellii is a rickettsial species of unknown pathogenicity that infects argasid and ixodid ticks throughout the Americas. Many molecular assays used to detect spotted fever group (SFG) Rickettsia species do not detect R. bellii, so that infection with this bacterium may be concealed in tick populations when assays are used that screen specifically for SFG rickettsiae. We describe the development and validation of a R. bellii-specific, quantitative, real-time PCR TaqMan assay that targets a segment of the citrate synthase (gltA) gene. The specificity of this assay was validated against a panel of DNA samples that included 26 species of Rickettsia, Orientia, Ehrlichia, Anaplasma, and Bartonella, five samples of tick and human DNA, and DNA from 20 isolates of R. bellii, including 11 from North America and nine from South America. A R. bellii control plasmid was constructed, and serial dilutions of the plasmid were used to determine the limit of detection of the assay to be one copy per 4 µl of template DNA. This assay can be used to better determine the role of R. bellii in the epidemiology of tick-borne rickettsioses in the Western Hemisphere. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  2. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR.

    Science.gov (United States)

    Pharo, Heidi D; Andresen, Kim; Berg, Kaja C G; Lothe, Ragnhild A; Jeanmougin, Marine; Lind, Guro E

    2018-01-01

    Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1 , SEPT9 , and VIM . A 4Plex panel consisting of EPHA3 , KBTBD4 , PLEKHF1 , and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis.

  3. Design and optimization of a novel reverse transcription linear-after-the-exponential PCR for the detection of foot-and-mouth disease virus.

    Science.gov (United States)

    Pierce, K E; Mistry, R; Reid, S M; Bharya, S; Dukes, J P; Hartshorn, C; King, D P; Wangh, L J

    2010-07-01

    A novel molecular assay for the detection of foot-and-mouth disease virus (FMDV) was developed using linear-after-the-exponential polymerase chain reaction (LATE-PCR). Pilot experiments using synthetic DNA targets demonstrated the ability of LATE-PCR to quantify initial target concentration through endpoint detection. A two-step protocol involving reverse transcription (RT) followed by LATE-PCR was then used to confirm the ability of the assay to detect FMDV RNA. Finally, RT and LATE-PCR were combined in a one-step duplex assay for co-amplification of an FMDV RNA segment and an internal control comprised of an Armored RNA. In that form, each of the excess primers in the reaction mixture hybridize to their respective RNA targets during a short pre-incubation, then generate cDNA strands during a 3-min RT step at 60°C, and the resulting cDNA is amplified by LATE-PCR without intervening sample processing. The RT-LATE-PCR assay generates fluorescent signals at endpoint that are proportional to the starting number of RNA targets and can detect a range of sequence variants using a single mismatch-tolerant probe. In addition to offering improvements over current laboratory-based molecular diagnostic assays for FMDV, this new assay is compatible with a novel portable ('point-of-care') device, the BioSeeq II, designed for the rapid diagnosis of FMD in the field. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  4. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis

    Directory of Open Access Journals (Sweden)

    P K Balne

    2015-01-01

    Full Text Available This study is a comparative evaluation (Chi-square test of a closed tube loop mediated isothermal amplification assay using hydroxy naphthol blue dye (HNB-LAMP, real-time polymerase chain reaction (PCR and conventional PCR in the diagnosis of intraocular tuberculosis. Considering clinical presentation as the gold standard in 33 patients, the sensitivity of HNB-LAMP assay (75.8% was higher (not significant, P value 0.2 than conventional PCR (57.6% and lower than real-time PCR (90.9%. Specificity was 100% by all three methods. No amplification was observed in negative controls (n = 20 by all three methods. The cost of the HNB-LAMP assay was Rs. 500.00 and it does not require thermocycler, therefore, it can be used as an alternative to conventional PCR in resource-poor settings.

  5. New Highly Sensitive Real-Time PCR Assay for HIV-2 Group A and Group B DNA Quantification.

    Science.gov (United States)

    Bertine, Mélanie; Gueudin, Marie; Mélard, Adeline; Damond, Florence; Descamps, Diane; Matheron, Sophie; Collin, Fidéline; Rouzioux, Christine; Plantier, Jean-Christophe; Avettand-Fenoel, Véronique

    2017-09-01

    HIV-2 infection is characterized by a very low replication rate in most cases and low progression. This necessitates an approach to patient monitoring that differs from that for HIV-1 infection. Here, a new highly specific and sensitive method for HIV-2 DNA quantification was developed. The new test is based on quantitative real-time PCR targeting the long terminal repeat (LTR) and gag regions and using an internal control. Analytical performance was determined in three laboratories, and clinical performance was determined on blood samples from 63 patients infected with HIV-2 group A ( n = 35) or group B ( n = 28). The specificity was 100%. The 95% limit of detection was three copies/PCR and the limit of quantification was six copies/PCR. The within-run coefficients of variation were between 1.03% at 3.78 log 10 copies/PCR and 27.02% at 0.78 log 10 copies/PCR. The between-run coefficient of variation was 5.10%. Both manual and automated nucleic acid extraction methods were validated. HIV-2 DNA loads were detectable in blood cells from all 63 patients. When HIV-2 DNA was quantifiable, median loads were significantly higher in antiretroviral-treated than in naive patients and were similar for groups A and B. HIV-2 DNA load was correlated with HIV-2 RNA load ( r = 0.68; 95% confidence interval [CI], 0.4 to 0.8; P < 0.0001). Our data show that this new assay is highly sensitive and quantifies the two main HIV-2 groups, making it useful for the diagnosis of HIV-2 infection and for pathogenesis studies on HIV-2 reservoirs. Copyright © 2017 American Society for Microbiology.

  6. High throughput multiplex real time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants

    OpenAIRE

    Otti, Gerald; Bouvaine, Sophie; Kimata, Bernadetha; Mkamillo, Geoffrey; Kumar, Lava; Tomlins, Keith; Maruthi, M.N.

    2016-01-01

    Aims: To develop a multiplex TaqMan-based real-time PCR assay (qPCR) for the simultaneous detection and quantification of both RNA and DNA viruses affecting cassava (Manihot esculenta) in eastern Africa.\\ud \\ud Methods and Results: The diagnostic assay was developed for two RNA viruses; Cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV) and two predominant DNA viruses; African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV), which cause t...

  7. A comparison between the efficiency of the Xpert MTB/RIF assay and nested PCR in identifying Mycobacterium tuberculosis during routine clinical practice.

    Science.gov (United States)

    Kim, Cheol-Hong; Woo, Heungjeong; Hyun, In Gyu; Kim, Changhwan; Choi, Jeong-Hee; Jang, Seung-Hun; Park, Sang Myeon; Kim, Dong-Gyu; Lee, Myung Goo; Jung, Ki-Suck; Hyun, Jeongwon; Kim, Hyun Soo

    2014-06-01

    Polymerase chain reaction (PCR) for the detection of Mycobacterium tuberculosis (MTB) is more sensitive, specific, and rapid than the conventional methods of acid-fast bacilli (AFB) smear and culture. The aim of this study was to determine if the Xpert MTB/rifampicin (RIF) assay had additional advantages over nested PCR for the detection of MTB in a geographical area with intermediate tuberculosis (TB) incidence. Between February and December 2013, the Xpert MTB/RIF assay and MTB nested PCR, as well as AFB smear and culture, were simultaneously performed on 198 clinical samples (160 pulmonary and 38 non-pulmonary specimens) collected from 171 patients hospitalized at Hallym University Medical Center for possible TB. The accuracy of the diagnosis of MTB culture-positive TB and the turnaround time of reporting laboratory results were calculated and compared. Rifampin resistance by the Xpert MTB/RIF assay was reviewed with that of conventional drug susceptibility testing (DST). The sensitivity, specificity, and positive and negative predictive values of the Xpert MTB/RIF assay and MTB nested PCR for diagnosis of MTB culture-positive pulmonary TB were 86.1% vs. 69.4% (P=0.1563), 97.8% vs. 94.1% (P=0.2173), 91.2% vs. 75.8% (P=0.1695), and 96.4% vs. 92.0% (P=0.2032), respectively. The median turnaround times of the Xpert MTB/RIF assay and MTB nested PCR were 0 [0-4] days and 4 [1-11] days, respectively (Pnested PCR for identifying MTB among clinically suspected TB patients, and the assay can be valuable in giving a timely identification of resistance to rifampin.

  8. Rapid, actionable diagnosis of urban epidemic leptospirosis using a pathogenic Leptospira lipL32-based real-time PCR assay.

    Directory of Open Access Journals (Sweden)

    Irina N Riediger

    2017-09-01

    Full Text Available With a conservatively estimated 1 million cases of leptospirosis worldwide and a 5-10% fatality rate, the rapid diagnosis of leptospirosis leading to effective clinical and public health decision making is of high importance, and yet remains a challenge.Based on parallel, population-based studies in two leptospirosis-endemic regions in Brazil, a real-time PCR assay which detects lipL32, a gene specifically present in pathogenic Leptospira, was assessed for the diagnostic effectiveness and accuracy. Patients identified by active hospital-based surveillance in Salvador and Curitiba during large urban leptospirosis epidemics were tested. Real-time PCR reactions were performed with DNA-extracted samples obtained from 127 confirmed and 23 unconfirmed cases suspected of leptospirosis, 122 patients with an acute febrile illness other than leptospirosis, and 60 healthy blood donors.The PCR assay had a limit of detection of 280 Leptospira genomic equivalents/mL. Sensitivity for confirmed cases was 61% for whole blood and 29% for serum samples. Sensitivity was higher (86% for samples collected within the first 6 days after onset of illness compared to those collected after 7 days (34%. The real-time PCR assay was able to detect leptospiral DNA in blood from 56% of serological non-confirmed cases. The overall specificity of the assay was 99%.These findings indicate that real-time PCR may be a reliable tool for early diagnosis of leptospirosis, which is decisive for clinical management of severe and life-threatening cases and for public health decision making.

  9. Analytical and diagnostic performance of a qPCR assay for Ichthyophonus spp. compared to the tissue culture 'gold standard'.

    Science.gov (United States)

    Lowe, Vanessa C; Hershberger, Paul K; Friedman, Carolyn S

    2018-06-04

    Parasites of the genus Ichthyophonus infect many fish species and have a non-uniform distribution within host tissues. Due in part to this uneven distribution, the comparative sensitivity and accuracy of using molecular-based detection methods versus culture to estimate parasite prevalence is under debate. We evaluated the analytical and diagnostic performance of an existing qPCR assay in comparison to the 'gold standard' culture method using Pacific herring Clupea pallasii with known exposure history. We determined that the assay is suitable for use in this host, and diagnostic specificity was consistently high (>98%) in both heart and liver tissues. Diagnostic sensitivity could not be fully assessed due to low infection rates, but our results suggest that qPCR is not as sensitive as culture under all circumstances. Diagnostic sensitivity of qPCR relative to culture is likely affected by the amount of sample processed. The prevalence values estimated by the 2 methods were not significantly different when sample amounts were equal (heart tissue), but when the assayed sample amounts were unequal (liver tissue), the culture method detected a significantly higher prevalence of the parasite than qPCR. Further, culture of liver also detected significantly more Ichthyophonus infections than culture of heart, suggesting that the density and distribution of parasites in tissues also plays a role in assay sensitivity. This sensitivity issue would be most problematic for fish with light infections. Although qPCR does not detect the presence of a live organism, DNA-based pathogen detection methods provide the opportunity for alternate testing strategies when culture is not possible.

  10. Multi-targeted priming for genome-wide gene expression assays

    Directory of Open Access Journals (Sweden)

    Adomas Aleksandra B

    2010-08-01

    Full Text Available Abstract Background Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. Results We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Conclusions Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and

  11. MULTIPLEX SYBR® GREEN-REAL TIME PCR (qPCR ASSAY FOR THE DETECTION AND DIFFERENTIATION OF Bartonella henselae AND Bartonella clarridgeiae IN CATS

    Directory of Open Access Journals (Sweden)

    Rodrigo Staggemeier

    2014-04-01

    Full Text Available A novel SYBR® green-real time polymerase chain reaction (qPCR was developed to detect two Bartonella species, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.

  12. A comparison of PCR assays for beak and feather disease virus and high resolution melt (HRM) curve analysis of replicase associated protein and capsid genes.

    Science.gov (United States)

    Das, Shubhagata; Sarker, Subir; Ghorashi, Seyed Ali; Forwood, Jade K; Raidal, Shane R

    2016-11-01

    Beak and feather disease virus (BFDV) threatens a wide range of endangered psittacine birds worldwide. In this study, we assessed a novel PCR assay and genetic screening method using high-resolution melt (HRM) curve analysis for BFDV targeting the capsid (Cap) gene (HRM-Cap) alongside conventional PCR detection as well as a PCR method that targets a much smaller fragment of the virus genome in the replicase initiator protein (Rep) gene (HRM-Rep). Limits of detection, sensitivity, specificity and discriminatory power for differentiating BFDV sequences were compared. HRM-Cap had a high positive predictive value and could readily differentiate between a reference genotype and 17 other diverse BFDV genomes with more discriminatory power (genotype confidence percentage) than HRM-Rep. Melt curve profiles generated by HRM-Cap correlated with unique DNA sequence profiles for each individual test genome. The limit of detection of HRM-Cap was lower (2×10 -5 ng/reaction or 48 viral copies) than that for both HRM-Rep and conventional BFDV PCR which had similar sensitivity (2×10 -6 ng or 13 viral copies/reaction). However, when used in a diagnostic setting with 348 clinical samples there was strong agreement between HRM-Cap and conventional PCR (kappa=0.87, PHRM-Cap demonstrated higher specificity (99.9%) than HRM-Rep (80.3%). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Development of a PCR Assay to detect Papillomavirus Infection in the Snow Leopard

    Directory of Open Access Journals (Sweden)

    Eng Curtis

    2011-07-01

    Full Text Available Abstract Background Papillomaviruses (PVs are a group of small, non-encapsulated, species-specific DNA viruses that have been detected in a variety of mammalian and avian species including humans, canines and felines. PVs cause lesions in the skin and mucous membranes of the host and after persistent infection, a subset of PVs can cause tumors such as cervical malignancies and head and neck squamous cell carcinoma in humans. PVs from several species have been isolated and their genomes have been sequenced, thereby increasing our understanding of the mechanism of viral oncogenesis and allowing for the development of molecular assays for the detection of PV infection. In humans, molecular testing for PV DNA is used to identify patients with persistent infections at risk for developing cervical cancer. In felids, PVs have been isolated and sequenced from oral papillomatous lesions of several wild species including bobcats, Asian lions and snow leopards. Since a number of wild felids are endangered, PV associated disease is a concern and there is a need for molecular tools that can be used to further study papillomavirus in these species. Results We used the sequence of the snow leopard papillomavirus UuPV1 to develop a PCR strategy to amplify viral DNA from samples obtained from captive animals. We designed primer pairs that flank the E6 and E7 viral oncogenes and amplify two DNA fragments encompassing these genes. We detected viral DNA for E6 and E7 in genomic DNA isolated from saliva, but not in paired blood samples from snow leopards. We verified the identity of these PCR products by restriction digest and DNA sequencing. The sequences of the PCR products were 100% identical to the published UuPV1 genome sequence. Conclusions We developed a PCR assay to detect papillomavirus in snow leopards and amplified viral DNA encompassing the E6 and E7 oncogenes specifically in the saliva of animals. This assay could be utilized for the molecular

  14. Detection of Tomato black ring virus by real-time one-step RT-PCR.

    Science.gov (United States)

    Harper, Scott J; Delmiglio, Catia; Ward, Lisa I; Clover, Gerard R G

    2011-01-01

    A TaqMan-based real-time one-step RT-PCR assay was developed for the rapid detection of Tomato black ring virus (TBRV), a significant plant pathogen which infects a wide range of economically important crops. Primers and a probe were designed against existing genomic sequences to amplify a 72 bp fragment from RNA-2. The assay amplified all isolates of TBRV tested, but no amplification was observed from the RNA of other nepovirus species or healthy host plants. The detection limit of the assay was estimated to be around nine copies of the TBRV target region in total RNA. A comparison with conventional RT-PCR and ELISA, indicated that ELISA, the current standard test method, lacked specificity and reacted to all nepovirus species tested, while conventional RT-PCR was approximately ten-fold less sensitive than the real-time RT-PCR assay. Finally, the real-time RT-PCR assay was tested using five different RT-PCR reagent kits and was found to be robust and reliable, with no significant differences in sensitivity being found. The development of this rapid assay should aid in quarantine and post-border surveys for regulatory agencies. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Novel Multiplex PCR Assay for Detection of Chlorhexidine-Quaternary Ammonium, Mupirocin, and Methicillin Resistance Genes, with Simultaneous Discrimination of Staphylococcus aureus from Coagulase-Negative Staphylococci.

    Science.gov (United States)

    McClure, Jo-Ann; Zaal DeLongchamp, Johanna; Conly, John M; Zhang, Kunyan

    2017-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a clinically significant pathogen that is resistant to a wide variety of antibiotics and responsible for a large number of nosocomial infections worldwide. The Agency for Healthcare Research and Quality and the Centers for Disease Control and Prevention recently recommended the adoption of universal mupirocin-chlorhexidine decolonization of all admitted intensive care unit patients rather than MRSA screening with targeted treatments, which raises a serious concern about the selection of resistance to mupirocin and chlorhexidine in strains of staphylococci. Thus, a simple, rapid, and reliable approach is paramount in monitoring the prevalence of resistance to these agents. We developed a simple multiplex PCR assay capable of screening Staphylococcus isolates for the presence of antiseptic resistance genes for chlorhexidine and quaternary ammonium compounds, as well as mupirocin and methicillin resistance genes, while simultaneously discriminating S. aureus from coagulase-negative staphylococci (CoNS). The assay incorporates 7 PCR targets, including the Staphylococcus 16S rRNA gene (specifically detecting Staphylococcus spp.), nuc (distinguishing S. aureus from CoNS), mecA (distinguishing MRSA from methicillin-susceptible S. aureus ), mupA and mupB (identifying high-level mupirocin resistance), and qac and smr (identifying chlorhexidine and quaternary ammonium resistance). Our assay demonstrated 100% sensitivity, specificity, and accuracy in a total of 23 variant antiseptic- and/or antibiotic-resistant control strains. Further validation of our assay using 378 randomly selected and previously well-characterized local clinical isolates confirmed its feasibility and practicality. This may prove to be a useful tool for multidrug-resistant Staphylococcus monitoring in clinical laboratories, particularly in the wake of increased chlorhexidine and mupirocin treatments. Copyright © 2017 American Society for Microbiology.

  16. PCR Assays for Identification of Coccidioides posadasii Based on the Nucleotide Sequence of the Antigen 2/Proline-Rich Antigen

    Science.gov (United States)

    Bialek, Ralf; Kern, Jan; Herrmann, Tanja; Tijerina, Rolando; Ceceñas, Luis; Reischl, Udo; González, Gloria M.

    2004-01-01

    A conventional nested PCR and a real-time LightCycler PCR assay for detection of Coccidioides posadasii DNA were designed and tested in 120 clinical strains. These had been isolated from 114 patients within 10 years in Monterrey, Nuevo Leon, Mexico, known to be endemic for coccidioidomycosis. The gene encoding the specific antigen 2/proline-rich antigen (Ag2/PRA) was used as a target. All strains were correctly identified, whereas DNA from related members of the family Onygenaceae remained negative. Melting curve analysis by LightCycler and sequencing of the 526-bp product of the first PCR demonstrated either 100% identity to the GenBank sequence of the Silveira strain, now known to be C. posadasii (accession number AF013256), or a single silent mutation at position 1228. Length determination of two microsatellite-containing loci (GAC and 621) identified all 120 isolates as C. posadasii. Specific DNA was amplified by conventional nested PCR from three microscopically spherule-positive paraffin-embedded tissue samples, whereas 20 human tissue samples positive for other dimorphic fungi remained negative. Additionally, the safety of each step of a modified commercially available DNA extraction procedure was evaluated by using 10 strains. At least three steps of the protocol were demonstrated to sufficiently kill arthroconidia. This safe procedure is applicable to cultures and to clinical specimens. PMID:14766853

  17. Simplified PCR protocols for INNO-LiPA HBV Genotyping and INNO-LiPA HBV PreCore assays

    NARCIS (Netherlands)

    Qutub, Mohammed O.; Germer, Jeffrey J.; Rebers, Sjoerd P. H.; Mandrekar, Jayawant N.; Beld, Marcel G. H. M.; Yao, Joseph D. C.

    2006-01-01

    INNO-LiPA HBV Genotyping (LiPA HBV GT) and INNO-LiPA HBV PreCore (LiPA HBV PC) are commercially available assays for hepatitis B virus (HBV) characterization. These assays are labor-intensive and may be prone to exogenous DNA contamination due to their use of nested PCR amplification procedures and

  18. Tus-Ter-lock immuno-PCR assays for the sensitive detection of tropomyosin-specific IgE antibodies.

    Science.gov (United States)

    Johnston, Elecia B; Kamath, Sandip D; Lopata, Andreas L; Schaeffer, Patrick M

    2014-02-01

    The increasing prevalence of food allergies requires development of specific and sensitive tests capable of identifying the allergen responsible for the disease. The development of serologic tests that can detect specific IgE antibodies to allergenic proteins would, therefore, be highly received. Here we present two new quantitative immuno-PCR assays for the sensitive detection of antibodies specific to the shrimp allergen tropomyosin. Both assays are based on the self-assembling Tus-Ter-lock protein-DNA conjugation system. Significantly elevated levels of tropomyosin-specific IgE were detected in sera from patients allergic to shrimp. This is the first time an allergenic protein has been fused with Tus to enable specific IgE antibody detection in human sera by quantitative immuno-PCR.

  19. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Linke Sonja

    2006-01-01

    Full Text Available Abstract Background Coxiella burnetii, the bacterium causing Q fever, is an obligate intracellular biosafety level 3 agent. Detection and quantification of these bacteria with conventional methods is time consuming and dangerous. During the last years, several PCR based diagnostic assays were developed to detect C. burnetii DNA in cell cultures and clinical samples. We developed and evaluated TaqMan-based real-time PCR assays that targeted the singular icd (isocitrate dehydrogenase gene and the transposase of the IS1111a element present in multiple copies in the C. burnetii genome. Results To evaluate the precision of the icd and IS1111 real-time PCR assays, we performed different PCR runs with independent DNA dilutions of the C. burnetii Nine Mile RSA493 strain. The results showed very low variability, indicating efficient reproducibility of both assays. Using probit analysis, we determined that the minimal number of genome equivalents per reaction that could be detected with a 95% probability was 10 for the icd marker and 6.5 for the IS marker. Plasmid standards with cloned icd and IS1111 fragments were used to establish standard curves which were linear over a range from 10 to 107 starting plasmid copy numbers. We were able to quantify cell numbers of a diluted, heat-inactivated Coxiella isolate with a detection limit of 17 C. burnetii particles per reaction. Real-time PCR targeting both markers was performed with DNA of 75 different C. burnetii isolates originating from all over the world. Using this approach, the number of IS1111 elements in the genome of the Nine Mile strain was determined to be 23, close to 20, the number revealed by genome sequencing. In other isolates, the number of IS1111 elements varied widely (between seven and 110 and seemed to be very high in some isolates. Conclusion We validated TaqMan-based real-time PCR assays targeting the icd and IS1111 markers of C. burnetii. The assays were shown to be specific, highly

  20. Diagnosis of Barmah Forest virus infection by a nested real-time SYBR green RT-PCR assay.

    Directory of Open Access Journals (Sweden)

    Linda Hueston

    Full Text Available Barmah Forest virus (BFV is a mosquito borne (+ ssRNA alphavirus found only in Australia. It causes rash, myalgia and arthralgia in humans and is usually diagnosed serologically. We developed a real-time PCR assay to detect BFV in an effort to improve diagnosis early in the course of infection. The limit of detection was 16 genome equivalents with a specificity of 100%. Fifty five serum samples from BFV-infected patients were tested by the PCR. 52 of 53 antibody-positive samples were PCR negative. Two culture-positive (neutralizing antibody negative samples were positive on first round PCR, while one sample (IgM and neutralizing antibody strongly positive, IgG negative was positive on second round PCR, suggesting that viral RNA is detectable and transiently present in early infection. PCR can provide results faster than culture, is capable of high throughput and by sequencing the PCR product strain variants can be characterized.

  1. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    Science.gov (United States)

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development of a strain-specific real-time PCR assay for enumeration of a probiotic Lactobacillus reuteri in chicken feed and intestine.

    Directory of Open Access Journals (Sweden)

    Verity Ann Sattler

    Full Text Available A strain-specific real-time PCR assay was developed for quantification of a probiotic Lactobacillus reuteri (DSM 16350 in poultry feed and intestine. The specific primers were designed based on a genomic sequence of the strain derived from suppression subtractive hybridization with the type strain L. reuteri DSM 20016. Specificity was tested using a set of non-target strains from several sources. Applicability of the real-time PCR assay was evaluated in a controlled broiler feeding trial by using standard curves specific for feed and intestinal matrices. The amount of the probiotic L. reuteri was determined in feed from three feeding phases and in intestinal samples of the jejunum, ileum, and caecum of three, 14, and 39 day old birds. L. reuteri DSM 16350 cells were enumerated in all feeds supplemented with the probiotic close to the inclusion rate of 7.0 × 10(3 cfu/g, however, were not detected in L. reuteri DSM 16350 free feed. In three day old birds L. reuteri DSM 16350 was only detected in intestinal samples from probiotic fed animals ranging from 8.2 ± 7.8 × 10(5 cfu/g in the jejunum, 1.0 ± 1.1×10(7 cfu/g in the ileum, and 2.5 ± 5.7 × 10(5 cfu/g in the caecum. Similar results were obtained for intestinal samples of older birds (14 and 39 days. With increasing age of the animals the amount of L. reuteri signals in the control animals, however, also increased, indicating the appearance of highly similar bacterial genomes in the gut microbiota. The L. reuteri DSM 16350 qPCR assay could be used in future for feeding trials to assure the accurate inclusion of the supplement to the feed and to monitor it's uptake into the GIT of young chicken.

  3. Development of a strain-specific real-time PCR assay for enumeration of a probiotic Lactobacillus reuteri in chicken feed and intestine.

    Science.gov (United States)

    Sattler, Verity Ann; Mohnl, Michaela; Klose, Viviana

    2014-01-01

    A strain-specific real-time PCR assay was developed for quantification of a probiotic Lactobacillus reuteri (DSM 16350) in poultry feed and intestine. The specific primers were designed based on a genomic sequence of the strain derived from suppression subtractive hybridization with the type strain L. reuteri DSM 20016. Specificity was tested using a set of non-target strains from several sources. Applicability of the real-time PCR assay was evaluated in a controlled broiler feeding trial by using standard curves specific for feed and intestinal matrices. The amount of the probiotic L. reuteri was determined in feed from three feeding phases and in intestinal samples of the jejunum, ileum, and caecum of three, 14, and 39 day old birds. L. reuteri DSM 16350 cells were enumerated in all feeds supplemented with the probiotic close to the inclusion rate of 7.0 × 10(3) cfu/g, however, were not detected in L. reuteri DSM 16350 free feed. In three day old birds L. reuteri DSM 16350 was only detected in intestinal samples from probiotic fed animals ranging from 8.2 ± 7.8 × 10(5) cfu/g in the jejunum, 1.0 ± 1.1×10(7) cfu/g in the ileum, and 2.5 ± 5.7 × 10(5) cfu/g in the caecum. Similar results were obtained for intestinal samples of older birds (14 and 39 days). With increasing age of the animals the amount of L. reuteri signals in the control animals, however, also increased, indicating the appearance of highly similar bacterial genomes in the gut microbiota. The L. reuteri DSM 16350 qPCR assay could be used in future for feeding trials to assure the accurate inclusion of the supplement to the feed and to monitor it's uptake into the GIT of young chicken.

  4. Development of a direct species-specific PCR assay for differential diagnosis of Leishmania tropica

    Czech Academy of Sciences Publication Activity Database

    Jirků, Milan; Zemanová, Eva; Al-Jawabreh, A.; Schönian, G.; Lukeš, Julius

    2006-01-01

    Roč. 55, č. 1 (2006), s. 75-79 ISSN 0732-8893 Grant - others:European Comission(EU) QLK2-CT-2001-01810 Institutional research plan: CEZ:AV0Z60220518 Keywords : Kinetoplastida * Leishmania tropica * PCR assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.553, year: 2006

  5. A Multiplex PCR Assay for Differentiating Coconut Rhinoceros Beetle (Coleoptera: Scarabaeidae) From Oriental Flower Beetle (Coleoptera: Scarabaeidae) in Early Life Stages and Excrement.

    Science.gov (United States)

    Watanabe, S; Melzer, M J

    2017-04-01

    The coconut rhinoceros beetle, Oryctes rhinoceros (L.), is a major pest of coconut and other palm trees. An incipient coconut rhinoceros beetle population was recently discovered on the island of Oahu, Hawaii and is currently the target of a large, mutiagency eradication program. Confounding this program is the widespread presence of another scarab beetle on Oahu, the oriental flower beetle, Protaetia orientalis (Gory and Percheron 1833). Eggs, early life stages, and fecal excrement of coconut rhinoceros beetle and oriental flower beetle are morphologically indistinguishable, thereby creating uncertainty when such specimens are discovered in the field. Here, we report the development of a multiplex PCR assay targeting cytochrome oxidase I of coconut rhinoceros beetle and oriental flower beetle that can rapidly detect and distinguish between these insects. This assay also features an internal positive control to ensure DNA of sufficient quantity and quality is used in the assay, increasing its reliability and reducing the chances of false negative results. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Comparison of Real-Time Multiplex Human Papillomavirus (HPV) PCR Assays with INNO-LiPA HPV Genotyping Extra Assay▿

    OpenAIRE

    Else, Elizabeth A.; Swoyer, Ryan; Zhang, Yuhua; Taddeo, Frank J.; Bryan, Janine T.; Lawson, John; Van Hyfte, Inez; Roberts, Christine C.

    2011-01-01

    Real-time type-specific multiplex human papillomavirus (HPV) PCR assays were developed to detect HPV DNA in samples collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). Additional multiplex (L1, E6, and E7 open reading frame [ORF]) or duplex (E6 and E7 ORF) HPV PCR assays were developed to detect high-risk HPV types, including HPV type 31 (HPV31), HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, and H...

  7. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    Science.gov (United States)

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  8. Development of a real-time PCR melt curve assay for simultaneous detection of virulent and antibiotic resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2014-12-01

    Multiple drug resistance in Salmonella is an emerging problem in the area of food safety. Depending on the virulence and antibiotic resistance characteristics of the Salmonella strain, infections of varying severity could result. In this study, a multiplex melt curve real-time PCR assay for the detection of virulent and antibiotic resistance strains of Salmonella was developed with two primer sets. The first set targets the virulence gene, invasin (invA), and tetracycline (tetG), streptomycin (aadA2) and sulphonamide (sulI) antibiotic resistance genes, and the second set amplifies ampicillin (blaPSE,blaTEM) and chloramphenicol (floR) resistance genes. The multiplex assay was evaluated using 41 Salmonella strains and was further tested on eight different artificially inoculated food samples. The fluorescent DNA intercalating dye, SYTO9, generated high resolution melt curve peaks and, hence, was used for the development of the assay. This multiplex assay worked efficiently over a DNA concentration range of 20 ng-200 fg and showed a sensitivity of 290 CFU/mL with serially diluted broth cultures. The detection limit for un-enriched artificially inoculated food samples was 10(4) CFU/g, but an enrichment period of 6 h allowed for detection of 10 CFU/g of cells in the samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2015-12-23

    Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains of E. coli that can cause bloody diarrhea and kidney failure. Seven STEC serogroups, O157, O26, O45, O103, O111, O121 and O145 are responsible for more than 71% of the total infections caused by this group of pathogens. All seven serogroups are currently considered as adulterants in non-intact beef products in the U.S. In this study, two multiplex melt curve real-time PCR assays with internal amplification controls (IACs) were standardized for the detection of eight STEC serogroups. The first multiplex assay targeted E. coli serogroups O145, O121, O104, and O157; while the second set detected E. coli serogroups O26, O45, O103 and O111. The applicability of the assays was tested using 11 different meat and produce samples. For food samples spiked with a cocktail of four STEC serogroups with a combined count of 10 CFU/25 g food, all targets of the multiplex assays were detected after an enrichment period of 6h. The assays also worked efficiently when 325 g of food samples were spiked with 10 CFU of STECs. The assays are not dependent on fluorescent-labeled probes or immunomagnetic beads, and can be used for the detection of eight STEC serogroups in less than 11h. Routine preliminary screening of STECs in food samples is performed by testing for the presence of STEC virulence genes. The assays developed in this study can be useful as a first- or second-tier test for the identification of the eight O serogroup-specific genes in suspected food samples. Copyright © 2015. Published by Elsevier B.V.

  10. Multiplex real-time PCR (TaqMan) assay for the simultaneous detection and discrimination of potato powdery and common scab diseases and pathogens.

    Science.gov (United States)

    Qu, X S; Wanner, L A; Christ, B J

    2011-03-01

    To develop a multiplex real-time PCR assay using TaqMan probes for the simultaneous detection and discrimination of potato powdery scab and common scab, two potato tuber diseases with similar symptoms, and the causal pathogens Spongospora subterranea and plant pathogenic Streptomyces spp. Real-time PCR primers and a probe for S. subterranea were designed based on the DNA sequence of the ribosomal RNA ITS2 region. Primers and a probe for pathogenic Streptomyces were designed based on the DNA sequence of the txtAB genes. The two sets of primer pairs and probes were used in a single real-time PCR assay. The multiplex real-time PCR assay was confirmed to be specific for S. subterranea and pathogenic Streptomyces. The assay detected DNA quantities of 100 fg for each of the two pathogens and linear responses and high correlation coefficients between the amount of DNA and C(t) values for each pathogen were achieved. The presence of two sets of primer pairs and probes and of plant extracts did not alter the sensitivity and efficiency of multiplex PCR amplification. Using the PCR assay, we could discriminate between powdery scab and common scab tubers with similar symptoms. Common scab and powdery scab were detected in some tubers with no visible symptoms. Mixed infections of common scab and powdery scab on single tubers were also revealed. This multiplex real-time PCR assay is a rapid, cost efficient, specific and sensitive tool for the simultaneous detection and discrimination of the two pathogens on infected potato tubers when visual symptoms are inconclusive or not present. Accurate and quick identification and discrimination of the cause of scab diseases on potatoes will provide critical information to potato growers and researchers for disease management. This is important because management strategies for common and powdery scab diseases are very different. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Critical Evaluation of Urine-Based PCR Assay for Diagnosis of Lyme Borreliosis

    OpenAIRE

    Rauter, Carolin; Mueller, Markus; Diterich, Isabel; Zeller, Sabine; Hassler, Dieter; Meergans, Thomas; Hartung, Thomas

    2005-01-01

    Many approaches were made in recent years to establish urine PCR as a diagnostic tool for Lyme borreliosis, but results are contradictory. In the present study, a standardized protocol spiking urine from healthy donors with a defined amount of whole Borrelia or Borrelia DNA was established. The development of a nested real-time PCR targeting ospA enabled a highly sensitive and quantitative analysis of these samples. We show the following. (i) Storage of spiked urine samples for up to 6 months...

  12. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective "in-house" real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Daniel Hubert Darius

    2009-01-01

    Full Text Available Background: Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR for accurate quantitation and screening of HBV. Materials and Methods: The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV antibody and human immunodeficiency virus (HIV antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay′s capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. Results: The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001. Conclusion: This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.

  13. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    Science.gov (United States)

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  14. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  15. A novel SERRS sandwich-hybridization assay to detect specific DNA target.

    Directory of Open Access Journals (Sweden)

    Cécile Feuillie

    Full Text Available In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR. In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics.

  16. Temporal Assessment of the Impact of Exposure to Cow Feces in Two Watersheds by Multiple Host-Specific PCR Assays

    Science.gov (United States)

    Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay wa...

  17. The loss-of-allele assay for ES cell screening and mouse genotyping.

    Science.gov (United States)

    Frendewey, David; Chernomorsky, Rostislav; Esau, Lakeisha; Om, Jinsop; Xue, Yingzi; Murphy, Andrew J; Yancopoulos, George D; Valenzuela, David M

    2010-01-01

    Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction

  18. Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs--standard single, multiplex and construct-specific PCR assays.

    Science.gov (United States)

    Singh, Chandra K; Ojha, Abhishek; Bhatanagar, Raj K; Kachru, Devendra N

    2008-01-01

    Vegetative insecticidal protein (Vip), a unique class of insecticidal protein, is now part of transgenic plants for conferring resistance against lepidopteron pests. In order to address the imminent regulatory need for detection and labeling of vip3A carrying genetically modified (GM) products, we have developed a standard single PCR and a multiplex PCR assay. As far as we are aware, this is the first report on PCR-based detection of a vip3A-type gene (vip-s) in transgenic cotton and tobacco. Our assay involves amplification of a 284-bp region of the vip-s gene. This assay can possibly detect as many as 20 natural wild-type isolates bearing a vip3A-like gene and two synthetic genes of vip3A in transgenic plants. The limit of detection as established by our assay for GM trait (vip-s) is 0.1%. Spiking with nontarget DNA originating from diverse plant sources had no inhibitory effect on vip-s detection. Since autoclaving of vip-s bearing GM leaf samples showed no deterioration/interference in detection efficacy, the assay seems to be suitable for processed food products as well. The vip-s amplicon identity was reconfirmed by restriction endonuclease assay. The primer set for vip-s was equally effective in a multiplex PCR assay format (duplex, triplex and quadruplex), used in conjunction with the primer sets for the npt-II selectable marker gene, Cauliflower mosaic virus 35S promoter and nopaline synthetase terminator, enabling concurrent detection of the transgene, regulatory sequences and marker gene. Further, the entire transgene construct was amplified using the forward primer of the promoter and the reverse primer of the terminator. The resultant amplicon served as a template for nested PCR to confirm the construct integrity. The method is suitable for screening any vip3A-carrying GM plant and food. The availability of a reliable PCR assay method prior to commercial release of vip3A-based transgenic crops and food would facilitate rapid and efficient regulatory

  19. Duplex Real-Time PCR Assay Distinguishes Aedes aegypti From Ae. albopictus (Diptera: Culicidae) Using DNA From Sonicated First-Instar Larvae.

    Science.gov (United States)

    Kothera, Linda; Byrd, Brian; Savage, Harry M

    2017-11-07

    Aedes aegypti (L.) and Ae. albopictus (Skuse) are important arbovirus vectors in the United States, and the recent emergence of Zika virus disease as a public health concern in the Americas has reinforced a need for tools to rapidly distinguish between these species in collections made by vector control agencies. We developed a duplex real-time PCR assay that detects both species and does not cross-amplify in any of the other seven Aedes species tested. The lower limit of detection for our assay is equivalent to ∼0.03 of a first-instar larva in a 60-µl sample (0.016 ng of DNA per real-time PCR reaction). The assay was sensitive and specific in mixtures of both species that reflected up to a 2,000-fold difference in DNA concentration. In addition, we developed a simple protocol to extract DNA from sonicated first-instar larvae, and used that DNA to test the assay. Because it uses real-time PCR, the assay saves time by not requiring a separate visualization step. This assay can reduce the time needed for vector control agencies to make species identifications, and thus inform decisions about surveillance and control. Published by Oxford University Press on behalf of Entomological Society of America 2017 This work is written by US Government employees and is in the public domain in the US.

  20. O-5S quantitative real-time PCR: a new diagnostic tool for laboratory confirmation of human onchocerciasis.

    Science.gov (United States)

    Mekonnen, Solomon A; Beissner, Marcus; Saar, Malkin; Ali, Solomon; Zeynudin, Ahmed; Tesfaye, Kassahun; Adbaru, Mulatu G; Battke, Florian; Poppert, Sven; Hoelscher, Michael; Löscher, Thomas; Bretzel, Gisela; Herbinger, Karl-Heinz

    2017-10-02

    Onchocerciasis is a parasitic disease caused by the filarial nematode Onchocerca volvulus. In endemic areas, the diagnosis is commonly confirmed by microscopic examination of skin snip samples, though this technique is considered to have low sensitivity. The available melting-curve based quantitative real-time PCR (qPCR) using degenerated primers targeting the O-150 repeat of O. volvulus was considered insufficient for confirming the individual diagnosis, especially in elimination studies. This study aimed to improve detection of O. volvulus DNA in clinical samples through the development of a highly sensitive qPCR assay. A novel hydrolysis probe based qPCR assay was designed targeting the specific sequence of the O. volvulus O-5S rRNA gene. A total of 200 clinically suspected onchocerciasis cases were included from Goma district in South-west Ethiopia, from October 2012 through May 2013. Skin snip samples were collected and subjected to microscopy, O-150 qPCR, and the novel O-5S qPCR. Among the 200 individuals, 133 patients tested positive (positivity rate of 66.5%) and 67 negative by O-5S qPCR, 74 tested positive by microscopy (37.0%) and 78 tested positive by O-150 qPCR (39.0%). Among the 133 O-5S qPCR positive individuals, microscopy and O-150 qPCR detected 55.6 and 59.4% patients, respectively, implying a higher sensitivity of O-5S qPCR than microscopy and O-150 qPCR. None of the 67 individuals who tested negative by O-5S qPCR tested positive by microscopy or O-150 qPCR, implying 100% specificity of the newly designed O-5S qPCR assay. The novel O-5S qPCR assay is more sensitive than both microscopic examination and the existing O-150 qPCR for the detection of O. volvulus from skin snip samples. The newly designed assay is an important step towards appropriate individual diagnosis and control of onchocerciasis.

  1. Highly efficient PCR assay to discriminate allelic DNA methylation status using whole genome amplification

    Directory of Open Access Journals (Sweden)

    Ito Takashi

    2011-06-01

    Full Text Available Abstract Background We previously developed a simple method termed HpaII-McrBC PCR (HM-PCR to discriminate allelic methylation status of the genomic sites of interest, and successfully applied it to a comprehensive analysis of CpG islands (CGIs on human chromosome 21q. However, HM-PCR requires 200 ng of genomic DNA to examine one target site, thereby precluding its application to such samples that are limited in quantity. Findings We developed HpaII-McrBC whole-genome-amplification PCR (HM-WGA-PCR that uses whole-genome-amplified DNA as the template. HM-WGA-PCR uses only 1/100th the genomic template material required for HM-PCR. Indeed, we successfully analyzed 147 CGIs by HM-WGA-PCR using only ~300 ng of DNA, whereas previous HM-PCR study had required ~30 μg. Furthermore, we confirmed that allelic methylation status revealed by HM-WGA-PCR is identical to that by HM-PCR in every case of the 147 CGIs tested, proving high consistency between the two methods. Conclusions HM-WGA-PCR would serve as a reliable alternative to HM-PCR in the analysis of allelic methylation status when the quantity of DNA available is limited.

  2. Development of a real-time PCR for the detection of pathogenic Leptospira spp. in California sea lions.

    Science.gov (United States)

    Wu, Qingzhong; Prager, Katherine C; Goldstein, Tracey; Alt, David P; Galloway, Renee L; Zuerner, Richard L; Lloyd-Smith, James O; Schwacke, Lori

    2014-08-11

    Several real-time PCR assays are currently used for detection of pathogenic Leptospira spp.; however, few methods have been described for the successful evaluation of clinical urine samples. This study reports a rapid assay for the detection of pathogenic Leptospira spp. in California sea lions Zalophus californianus using real-time PCR with primers and a probe targeting the lipL32 gene. The PCR assay had high analytic sensitivity-the limit of detection was 3 genome copies per PCR volume using L. interrogans serovar Pomona DNA and 100% analytic specificity; it detected all pathogenic leptospiral serovars tested and none of the non-pathogenic Leptospira species (L. biflexa and L. meyeri serovar Semaranga), the intermediate species L. inadai, or the non-Leptospira pathogens tested. Our assay had an amplification efficiency of 1.00. Comparisons between the real-time PCR assay and culture isolation for detection of pathogenic Leptospira spp. in urine and kidney tissue samples from California sea lions showed that samples were more often positive by real-time PCR than by culture methods. Inclusion of an internal amplification control in the real-time PCR assay showed no inhibitory effects in PCR negative samples. These studies indicated that our real-time PCR assay has high analytic sensitivity and specificity for the rapid detection of pathogenic Leptospira species in urine and kidney tissue samples.

  3. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  4. Real-time PCR assays for detection of Brucella spp. and the identification of genotype ST27 in bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Wu, Qingzhong; McFee, Wayne E; Goldstein, Tracey; Tiller, Rebekah V; Schwacke, Lori

    2014-05-01

    Rapid detection of Brucella spp. in marine mammals is challenging. Microbiologic culture is used for definitive diagnosis of brucellosis, but is time consuming, has low sensitivity and can be hazardous to laboratory personnel. Serological methods can aid in diagnosis, but may not differentiate prior exposure versus current active infection and may cross-react with unrelated Gram-negative bacteria. This study reports a real-time PCR assay for the detection of Brucella spp. and application to screen clinical samples from bottlenose dolphins stranded along the coast of South Carolina, USA. The assay was found to be 100% sensitive for the Brucella strains tested, and the limit of detection was 0.27fg of genomic DNA from Brucella ceti B1/94 per PCR volume. No amplification was detected for the non-Brucella pathogens tested. Brucella DNA was detected in 31% (55/178) of clinical samples tested. These studies indicate that the real-time PCR assay is highly sensitive and specific for the detection of Brucella spp. in bottlenose dolphins. We also developed a second real-time PCR assay for rapid identification of Brucella ST27, a genotype that is associated with human zoonotic infection. Positive results were obtained for Brucella strains which had been identified as ST27 by multilocus sequence typing. No amplification was found for other Brucella strains included in this study. ST27 was identified in 33% (18/54) of Brucella spp. DNA-positive clinical samples. To our knowledge, this is the first report on the use of a real-time PCR assay for identification of Brucella genotype ST27 in marine mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Inhibition of PCR-based assay for Bordetella pertussis by using calcium alginate fiber and aluminum shaft components of a nasopharyngeal swab.

    Science.gov (United States)

    Wadowsky, R M; Laus, S; Libert, T; States, S J; Ehrlich, G D

    1994-04-01

    A PCR-based assay for Bordetella pertussis was inhibited by using a calcium alginate fiber-tipped swab with an aluminum shaft but not by using a Dacron fiber-tipped swab with a plastic shaft. The calcium alginate fiber component inhibited the assay following storage for less than 1 min in a suspension of 10(3) CFU of B. pertussis per ml, whereas the aluminum shaft component required storage for at least 48 h in order to cause inhibition. We recommend the Dacron swab over the calcium alginate swab for collecting specimens for testing in PCR-based assays.

  6. Detection of Different Genotypes of Clostridium perfringens in Feces of Healthy Dairy Cattle from China using Real-Time Duplex PCR Assay

    Directory of Open Access Journals (Sweden)

    Guanghua Wang, Jizhang Zhou, Fuying Zheng, Guozhen Lin, Xiaoan Cao, Xiaowei Gong and Changqing Qiu*

    2011-04-01

    Full Text Available Dual-labeled fluorescence hybridization probe-based multiplex quantitative real-time polymerase chain reaction (qPCR assay was used for the detection of Clostridium perfringens toxin genes alpha (cpa, beta (cpb, iota (ia, epsilon (etx, beta2 (cpb2 and enterotoxin (cpe directly from the feces of cattle. Fecal samples from 261 lactating cattle, belonging to three dairy herds in Ningxia (China, were examined using the developed assays. The duplex qPCR assay revealed that cpa, etx, cpb2 and cpe toxin genes were detected in 176 (100%, 15 (8.5%, 142 (80.7% and 4 (2.3% of 176 PCR positive samples, respectively. The findings of this study revealed that C. perfringens beta2-toxin-producing strains were widely prevalent in lactating cows in Ningxia, possibly playing an important role in C. perfringens-associated diarrheal disease.

  7. Comparison of Assays for Sensitive and Reproducible Detection of Cell Culture-Infectious Cryptosporidium parvum and Cryptosporidium hominis in Drinking Water

    Science.gov (United States)

    Di Giovanni, George D.; Rochelle, Paul A.

    2012-01-01

    This study compared the three most commonly used assays for detecting Cryptosporidium sp. infections in cell culture: immunofluorescent antibody and microscopy assay (IFA), PCR targeting Cryptosporidium sp.-specific DNA, and reverse transcriptase PCR (RT-PCR) targeting Cryptosporidium sp.-specific mRNA. Monolayers of HCT-8 cells, grown in 8-well chamber slides or 96-well plates, were inoculated with a variety of viable and inactivated oocysts to assess assay performance. All assays detected infection with low doses of flow cytometry-enumerated Cryptosporidium parvum oocysts, including infection with one oocyst and three oocysts. All methods also detected infection with Cryptosporidium hominis. The RT-PCR assay, IFA, and PCR assay detected infection in 23%, 25%, and 51% of monolayers inoculated with three C. parvum oocysts and 10%, 9%, and 16% of monolayers inoculated with one oocyst, respectively. The PCR assay was the most sensitive, but it had the highest frequency of false positives with mock-infected cells and inactivated oocysts. IFA was the only infection detection assay that did not produce false positives with mock-infected monolayers. IFA was also the only assay that detected infections in all experiments with spiked oocysts recovered from Envirochek capsules following filtration of 1,000 liters of treated water. Consequently, cell culture with IFA detection is the most appropriate method for routine and sensitive detection of infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. PMID:22038611

  8. A Novel PCR Assay for Detecting Brucella abortus and Brucella melitensis.

    Science.gov (United States)

    Alamian, Saeed; Esmaelizad, Majid; Zahraei, Taghi; Etemadi, Afshar; Mohammadi, Mohsen; Afshar, Davoud; Ghaderi, Soheila

    2017-02-01

    Brucellosis is a major zoonotic disease that poses a significant public health threat worldwide. The classical bacteriological detection process used to identify Brucella spp. is difficult and time-consuming. This study aimed to develop a novel molecular assay for detecting brucellosis. All complete sequences of chromosome 1 with 2.1-Mbp lengths were compared among all available Brucella sequences. A unique repeat sequence (URS) locus on chromosome 1 could differentiate Brucella abortus from Brucella melitensis . A primer set was designed to flank the unique locus. A total of 136 lymph nodes and blood samples were evaluated and classified by the URS-polymerase chain reaction (PCR) method in 2013-2014. Biochemical tests and bacteriophage typing as the golden standard indicated that all Brucella spp. isolates were B. melitensis biovar 1 and B. abortus biovar 3. The PCR results were the same as the bacteriological method for detecting Brucella spp. The sensitivity and specificity of the URS-PCR method make it suitable for detecting B. abortus and B. melitensis . Quick detection of B. abortus and B. melitensis can provide the most effective strategies for control of these bacteria. The advantage of this method over other presented methods is that both B. abortus and B. melitensis are detectable in a single test tube. Furthermore, this method covered 100% of all B. melitensis and B. abortus biotypes. The development of this URS-PCR method is the first step toward the development of a novel kit for the molecular identification of B. abortus and B. melitensis .

  9. Loop-mediated isothermal amplification assay for rapid and sensitive detection of sheep pox and goat pox viruses in clinical samples.

    Science.gov (United States)

    Venkatesan, G; Balamurugan, V; Bhanuprakash, V; Singh, R K; Pandey, A B

    2016-06-01

    A Loop-mediated isothermal amplification (LAMP) assay targeting the highly conserved DNA polymerase gene of capripox virus genome was developed and evaluated for rapid detection of sheep pox and goat pox viruses. The optimized LAMP assay is found specific and sensitive for amplification of target DNA with a diagnostic sensitivity and specificity of 96.6% and 100% respectively compared to quantitative PCR. The detection rate of LAMP, PCR and Q-PCR assays is found to be 81.5%, 67% and 83% respectively. This LAMP assay has the potential for rapid clinical diagnosis and surveillance of sheep pox and goat pox in field diagnostic laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Multiplex PCR for rapid diagnosis and differentiation of pox and pox-like diseases in dromedary Camels.

    Science.gov (United States)

    Khalafalla, Abdelmalik I; Al-Busada, Khalid A; El-Sabagh, Ibrahim M

    2015-07-07

    Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. Three distinct viruses may cause them: camelpox virus (CMLV), camel parapox virus (CPPV) and camelus dromedary papilloma virus (CdPV). These diseases are often difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify these diseases, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost-and timesaving benefits. In the present communication, we describe the development, optimization and validation of a multiplex PCR assay able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets and was validated with viral genomic DNA extracted from known virus strains (n = 14) and DNA extracted from homogenized clinical skin specimens (n = 86). The assay detects correctly the target pathogens by amplification of targeted genes, even in case of co-infection. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. This assay provide rapid, sensitive and specific method for identifying three important viruses in specimens collected from dromedary camels with varying clinical presentations.

  11. Evaluation and validation of a real-time PCR assay for detection and quantitation of human adenovirus 14 from clinical samples.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available In 2007, the Centers for Disease Control and Prevention (CDC reported that Human adenovirus type 14 (HAdV-14 infected 106 military personnel and was responsible for the death of one U.S. soldier at Lackland Air Force Base in Texas. Identification of the responsible adenovirus, which had not previously been seen in North America and for which rapid diagnostic tools were unavailable, required retrospective analysis at reference laboratories. Initial quarantine measures were also reliant on relatively slow traditional PCR analysis at other locations. To address this problem, we developed a real-time PCR assay that detects a 225 base pair sequence in the HAdV-14a hexon gene. Fifty-one oropharyngeal swab specimens from the Naval Health Research Center, San Diego, CA and Advanced Diagnostic Laboratory, Lackland AFB, TX were used to validate the new assay. The described assay detected eight of eight and 19 of 19 confirmed HAdV-14a clinical isolates in two separate cohorts from respiratory disease outbreaks. The real-time PCR assay had a wide dynamic range, detecting from 10(2 to 10(7 copies of genomic DNA per reaction. The assay did not cross-react with other adenoviruses, influenza, respiratory syncytial virus, or common respiratory tract bacteria. The described assay is easy to use, sensitive and specific for HAdV-14a in clinical throat swab specimens, and very rapid since turnaround time is less than four hours to obtain an answer.

  12. Droplet digital PCR (ddPCR) vs quantitative real-time PCR (qPCR) approach for detection and quantification of Merkel cell polyomavirus (MCPyV) DNA in formalin fixed paraffin embedded (FFPE) cutaneous biopsies.

    Science.gov (United States)

    Arvia, Rosaria; Sollai, Mauro; Pierucci, Federica; Urso, Carmelo; Massi, Daniela; Zakrzewska, Krystyna

    2017-08-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma and high viral load in the skin was proposed as a risk factor for the occurrence of this tumour. MCPyV DNA was detected, with lower frequency, in different skin cancers but since the viral load was usually low, the real prevalence of viral DNA could be underestimated. To evaluate the performance of two assays (qPCR and ddPCR) for MCPyV detection and quantification in formalin fixed paraffin embedded (FFPE) tissue samples. Both assays were designed to simultaneous detection and quantification of both MCPyV as well as house-keeping DNA in clinical samples. The performance of MCPyV quantification was investigated using serial dilutions of cloned target DNA. We also evaluated the applicability of both tests for the analysis of 76 FFPE cutaneous biopsies. The two approaches resulted equivalent with regard to the reproducibility and repeatability and showed a high degree of linearity in the dynamic range tested in the present study. Moreover, qPCR was able to quantify ≥10 5 copies per reaction, while the upper limit of ddPCR was 10 4 copies. There was not significant difference between viral load measured by the two methods The detection limit of both tests was 0,15 copies per reaction, however, the number of positive samples obtained by ddPCR was higher than that obtained by qPCR (45% and 37% respectively). The ddPCR represents a better method for detection of MCPyV in FFPE biopsies, mostly these containing low copies number of viral genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments.

    Science.gov (United States)

    Techathuvanan, Chayapa; Draughon, Frances Ann; D'Souza, Doris Helen

    2011-02-01

    Novel rapid Salmonella detection assays without the need for sophisticated equipment or labor remain in high demand. Real-time reverse transcriptase PCR (RT-PCR) assays, though rapid and sensitive, require expensive thermocyclers, while a novel RT loop-mediated isothermal amplification (RT-LAMP) method requires only a simple water bath. Our objective was to compare the detection sensitivity of Salmonella Typhimurium from the pork processing environment by RT-LAMP, RT-PCR, and culture-based assays. Carcass and surface swabs and carcass rinses were obtained from a local processing plant. Autoclaved carcass rinses (500 ml) were spiked with Salmonella Typhimurium and filtered. Filters were placed in stomacher bags containing tetrathionate broth (TTB) and analyzed with or without 10-h enrichment at 37 °C. Natural swabs were stomached with buffered peptone water, and natural carcass rinses were filtered, preenriched, and further enriched in TTB. Serially-diluted enriched samples were enumerated by spread plating on xylose lysine Tergitol 4 agar. RNA was extracted from 5 ml of enriched TTB with TRIzol. RT-LAMP assay using previously described invA primers was conducted at 62 °C for 90 min in a water bath with visual detection and by gel electrophoresis. SYBR Green I-based-real-time RT-PCR was carried out with invA primers followed by melt temperature analysis. The results of RT-LAMP detection for spiked carcass rinses were comparable to those of RT-PCR and cultural plating, with detection limits of 1 log CFU/ml, although they were obtained significantly faster, within 24 h including preenrichment and enrichment. RT-LAMP showed 4 of 12 rinse samples positive, while RT-PCR showed 1 of 12 rinse samples positive. For swabs, 6 of 27 samples positive by RT-LAMP and 5 of 27 by RT-PCR were obtained. This 1-day RT-LAMP assay shows promise for routine Salmonella screening by the pork industry. Copyright ©, International Association for Food Protection

  14. A multiplex PCR mini-barcode assay to identify processed shark products in the global trade.

    Directory of Open Access Journals (Sweden)

    Diego Cardeñosa

    Full Text Available Protecting sharks from overexploitation has become global priority after widespread population declines have occurred. Tracking catches and trade on a species-specific basis has proven challenging, in part due to difficulties in identifying processed shark products such as fins, meat, and liver oil. This has hindered efforts to implement regulations aimed at promoting sustainable use of commercially important species and protection of imperiled species. Genetic approaches to identify shark products exist but are typically based on sequencing or amplifying large DNA regions and may fail to work on heavily processed products in which DNA is degraded. Here, we describe a novel multiplex PCR mini-barcode assay based on two short fragments of the cytochrome oxidase I (COI gene. This assay can identify to species all sharks currently listed on the Convention of International Trade of Endangered Species (CITES and most shark species present in the international trade. It achieves species diagnosis based on a single PCR and one to two downstream DNA sequencing reactions. The assay is capable of identifying highly processed shark products including fins, cooked shark fin soup, and skin-care products containing liver oil. This is a straightforward and reliable identification method for data collection and enforcement of regulations implemented for certain species at all governance levels.

  15. Construção de iniciadores e otimização de ensaios de PCR e de nested-PCR para a detecção específica de Tritrichomonas foetus Primers design and optimization of PCR and nested-PCR assays for the specific detection of Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Paula Rogério Fernandes

    2008-09-01

    Full Text Available Tritrichomonas foetus é um protozoário patogênico responsável por doença venérea em bovinos conhecida por tricomonose genital bovina. A tricomonose bovina é uma doença venérea causada pelo protozoário cujo habitat natural é o trato genital. Os protocolos já desenvolvidos para o diagnóstico deste parasito por PCR, apesar de serem eficazes na identificação do DNA genômico alvo, promovem algumas amplificações inespecíficas ou são incapazes de distinguir T. foetus das outras espécies do gênero. O presente trabalho foi desenvolvido com o objetivo de estabelecer e otimizar protocolos de ensaio de PCR e nested-PCR para o diagnóstico específico de T. foetus, empregando-se novos iniciadores, selecionados do alinhamento das seqüências dos genes 18S rRNA, 5,8S rRNA, 28S rRNA e dos espaços transcritos do rDNA (ITS1 e ITS2. Um par de iniciadores foi construído para amplificação gênero-específica de um fragmento de 648 pares de base e outros dois para a obtenção de produtos espécie- específicos de 343 e 429 pb. Nenhuma reação cruzada foi observada frente ao DNA genômico de Bos taurus ou de microrganismos responsáveis por infecções genitais. A sensibilidade dos ensaios de PCR e de nested-PCR apresentados neste estudo permitiu um limiar de detecção de até dois parasitos.Tritrichomonas foetus is a pathogenic protozoan that causes a venereal disease in cattle known as bovine genital tricomonosis. In spite of the efficacy to recognize the target genomic DNA, the protocols so far developed for the diagnosis of this organism by PCR promote some inespecific amplifications or they are unable to discriminate T. foetus against other species within the genus. The objective of this study was to assess and optimize PCR and nested-PCR assays for the specific diagnosis of T. foetus, using novel primers selected from the alignment of sequences of the genes 18S rRNA, 5.8S rRNA, 28S rRNA and of the internal transcribed spacers of the

  16. Evaluation of an Immunochromatographic Strip (Xenostrip –Tv Test for Diagnosis of Vaginal Trichomoniasis Compared with Wet Mount and PCR Assay

    Directory of Open Access Journals (Sweden)

    MH Feiz-Haddad

    2008-09-01

    Full Text Available "nBackground: Trichomoniasis, caused by Trichomonas vaginalis, is one of the most common sexually transmitted infections in the world. Diagnosis of T. vaginalis is performed by different methods, including wet mount, culture, serological methods and PCR, which required laboratory equipments and expert laboratory personnel. The aim of this study was evaluation of immunochromatographic strip test (Xenostrip-Tv for diagnosis of vaginal trichomoniasis compared with wet mount and PCR assay."nMethods: In this prospective study vaginal swabs were obtained from 100 women with genital complaints demanding a speculum examination, referred to Imam Khomeini and Amir Kabir hospitals in Ahwaz, Khuzestan Province. Samples were first examined by wet mount and Xenostrip-Tv. PCR assay was performed in the next step using TVK3 and TVK7 primers initially. The positive samples were then confirmed by the second PCR assay using TVA5-1 and TVA6 primers."nResults: PCR with TVA5-1 and TVA6 primers was determined as gold standard. The wet mount as well as Xenostrip-Tv sensitivity and specificity were 73.3% and 100%, respectively in comparison with gold standard. The sensitivity and specificity of PCR with primers TVK3 and TVK7 were also determined as 100% and 96.6%, respectively. The infection rates were 14% for wet mount and Xenostrip-Tv, 21% for PCR with primers TVK3 plus TVK7 and 19% with the gold standard PCR using TVA5-1 and TVA6 primers."nConclusion: Xenostrip- Tv could be used for diagnosis of vaginal trichomoniasis in regions with no laboratory diagnostic facilities.

  17. Improved clonality detection in Hodgkin lymphoma using a semi-nested modification of the BIOMED-2 PCR assay for IGH and IGK rearrangements: A paraffin-embedded tissue study.

    Science.gov (United States)

    Han, Shusen; Masaki, Ayako; Sakamoto, Yuma; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi

    2018-05-01

    The BIOMED-2 PCR protocols targeting IGH and IGK genes may be useful for detecting clonality in Hodgkin lymphoma (HL). The clonality detection rates, however, have not been very high with these methods using paraffin-embedded tumor sections. We previously described the usefulness of the semi-nested BIOMED-2 IGH assay in B-cell malignancies. In this study, we devised a novel semi-nested BIOMED-2 IGK assay. Employing 58 cases of classical HL, we carried out the standard BIOMED-2, BIOMED-2 followed by BIOMED-2 re-amplification, and BIOMED-2 followed by semi-nested BIOMED-2, all targeting IGH and IGK, using paraffin-embedded tissues. In both IGH and IGK assays, semi-nested assays yielded significantly higher clonality detection rates than the standard assays and re-amplification assays. Clonality was detected in 13/58 (22.4%) classical HL cases using the standard IGH/IGK assays while it was detected in 38/58 (65.5%) cases using semi-nested IGH/IGK assays. The detection rates were not associated with the HL subtypes, CD30-positive cell density, CD20-positive cell density, or Epstein-Barr virus (EBV) positivity. In conclusion, tumor clonality was detected in nearly two-thirds of classical HL cases using semi-nested BIOMED-2 IGH/IGK assays using paraffin tumor sections. These semi-nested assays may be useful when the standard IGH/IGK assays fail to detect clonality in histopathologically suspected HLs. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  18. Applying a Real-Time PCR Assay for Histoplasma capsulatum to Clinically Relevant Formalin-Fixed Paraffin-Embedded Human Tissue

    Science.gov (United States)

    Koepsell, Scott A.; Hinrichs, Steven H.

    2012-01-01

    A real-time PCR assay to detect Histoplasma capsulatum in formalin-fixed, paraffin-embedded (FFPE) tissue is described. The assay had an analytical sensitivity of 6 pg/μl of fungal DNA, analytical specificity of 100%, and clinical sensitivity of 88.9%. This proof-of-concept study may aid in the diagnosis of histoplasmosis from FFPE tissue. PMID:22855519

  19. Rapid and sensitive detection of Feline immunodeficiency virus using an insulated isothermal PCR-based assay with a point-of-need PCR detection platform.

    Science.gov (United States)

    Wilkes, Rebecca Penrose; Kania, Stephen A; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chang, Hsiu-Hui; Ma, Li-Juan; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2015-07-01

    Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats. © 2015 The Author(s).

  20. Evaluation of the performance of quantitative detection of the Listeria monocytogenes prfA locus with droplet digital PCR.

    Science.gov (United States)

    Witte, Anna Kristina; Fister, Susanne; Mester, Patrick; Schoder, Dagmar; Rossmanith, Peter

    2016-11-01

    Fast and reliable pathogen detection is an important issue for human health. Since conventional microbiological methods are rather slow, there is growing interest in detection and quantification using molecular methods. The droplet digital polymerase chain reaction (ddPCR) is a relatively new PCR method for absolute and accurate quantification without external standards. Using the Listeria monocytogenes specific prfA assay, we focused on the questions of whether the assay was directly transferable to ddPCR and whether ddPCR was suitable for samples derived from heterogeneous matrices, such as foodstuffs that often included inhibitors and a non-target bacterial background flora. Although the prfA assay showed suboptimal cluster formation, use of ddPCR for quantification of L. monocytogenes from pure bacterial cultures, artificially contaminated cheese, and naturally contaminated foodstuff was satisfactory over a relatively broad dynamic range. Moreover, results demonstrated the outstanding detection limit of one copy. However, while poorer DNA quality, such as resulting from longer storage, can impair ddPCR, internal amplification control (IAC) of prfA by ddPCR, that is integrated in the genome of L. monocytogenes ΔprfA, showed even slightly better quantification over a broader dynamic range. Graphical Abstract Evaluating the absolute quantification potential of ddPCR targeting Listeria monocytogenes prfA.

  1. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Takao Ito

    Full Text Available Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  2. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: Implications for public health risk assessment.

    Science.gov (United States)

    Monteiro, S; Santos, R

    2018-04-01

    To assess the potential of a viability dye and an enzymatic reverse transcription quantitative PCR (RT-qPCR) pretreatment to discriminate between infectious and noninfectious enteric viruses. Enterovirus (EntV), norovirus (NoV) GII.4 and hepatitis A virus (HAV) were inactivated at 95°C for 10 min, and four methods were used to compare the efficiency of inactivation: (i) cell culture plaque assay for HAV and EntV, (ii) RT-qPCR alone, (iii) RT-qPCR assay preceded by RNase treatment, and (iv) pretreatment with a viability dye (reagent D (RD)) followed by RT-qPCR. In addition, heat-inactivated NoV was treated with RD coupled with surfactants to increase the efficiency of the viability dye. No treatment was able to completely discriminate infectious from noninfectious viruses. RD-RT-qPCR reduced more efficiently the detection of noninfectious viruses with little to no removal observed with RNase. RD-RT-qPCR method was the closest to cell culture assay. The combination of surfactants and RD did not show relevant improvements on the removal of inactivated viruses signal compared with viability RT-qPCR, with the exception of Triton X-100. The use of surfactant/RD-RT-qPCR, although not being able to completely remove the signal from noninfectious viral particles, yielded a better estimation of viral infectivity. Surfactant/RD-RT-qPCR may be an advantageous tool for a better detection of infectious viruses with potential significant impact in the risk assessment of the presence of enteric viruses. © 2017 The Society for Applied Microbiology.

  3. Polymerase chain reaction assay for verifying the labeling of meat and commercial meat products from game birds targeting specific sequences from the mitochondrial D-loop region.

    Science.gov (United States)

    Rojas, M; González, I; Pavón, M A; Pegels, N; Hernández, P E; García, T; Martín, R

    2010-05-01

    A PCR assay was developed for the identification of meats and commercial meat products from quail (Coturnix coturnix), pheasant (Phasianus colchicus), partridge (Alectoris spp.), guinea fowl (Numida meleagris), pigeon (Columba spp.), Eurasian woodcock (Scolopax rusticola), and song thrush (Turdus philomelos) based on oligonucleotide primers targeting specific sequences from the mitochondrial D-loop region. The primers designed generated specific fragments of 96, 100, 104, 106, 147, 127, and 154 bp in length for quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock, and song thrush tissues, respectively. The specificity of each primer pair was tested against DNA from various game and domestic species. In this work, satisfactory amplification was accomplished in the analysis of experimentally pasteurized (72 degrees C for 30 min) and sterilized (121 degrees C for 20 min) meats, as well as in commercial meat products from the target species. The technique was also applied to raw and sterilized muscular binary mixtures, with a detection limit of 0.1% (wt/wt) for each of the targeted species. The proposed PCR assay represents a rapid and straightforward method for the detection of possible mislabeling in game bird meat products.

  4. Detection of Cryptococcus neoformans DNA in Tissue Samples by Nested and Real-Time PCR Assays

    OpenAIRE

    Bialek, Ralf; Weiss, Michael; Bekure-Nemariam, Kubrom; Najvar, Laura K.; Alberdi, Maria B.; Graybill, John R.; Reischl, Udo

    2002-01-01

    Two PCR protocols targeting the 18S rRNA gene of Cryptococcus neoformans were established, compared, and evaluated in murine cryptococcal meningitis. One protocol was designed as a nested PCR to be performed in conventional block thermal cyclers. The other protocol was designed as a quantitative single-round PCR adapted to LightCycler technology. One hundred brain homogenates and dilutions originating from 20 ICR mice treated with different azoles were examined. A fungal burden of 3 × 101 to ...

  5. Comparison of multiplex RT-PCR and real-time HybProbe assay for serotyping of dengue virus using reference strains and clinical samples from India

    Directory of Open Access Journals (Sweden)

    Anita Chakravarti

    2016-01-01

    Full Text Available Background: Dengue virus serotyping is crucial from clinical management and epidemiological point of view. Aims: To compare efficacy of two molecular detection and typing methods, namely, multiplex reverse transcription polymerase chain reaction (RT-PCR and real-time Hybprobe assay using a panel of known dilution of four reference Dengue virus strains and a panel of sera collected from clinically suspected dengue patients. Settings: This study was conducted at a tertiary-care teaching hospital in Delhi, India. Materials and Methods: Dengue serotype specific virus strains were used as prototypes for serotyping assays. Viral load was quantified by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR. Acute phase serum samples were collected from 79 patients with clinically suspected Dengue fever on their first day of presentation during September-October 2012. Viral RNA from serum and cell culture supernatant was extracted. Reverse transcription was carried out. Quantitative detection of DENV RNA from reference strain culture supernatants and each of the 79 patient samples by real-time PCR was performed using light cycler Taqman master mix kit. Serotyping was done by multiplex RT-PCR assay and Hybprobe assay. Results: The multiplex RT-PCR assay, though found to be 100% specific, couldn't serotype either patient or reference strains with viral load less than 1000 RNA copies/ml. The Hybprobe assay was found to have 100% specificity and had a lower limit of serotype detection of merely 3.54 RNA copies/ml. Conclusions: HybProbe assay has an important role especially in situations where serotyping is to be performed in clinical samples with low viral load.

  6. Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy.

    Science.gov (United States)

    Esteva, Francisco J; Sahin, Aysegul A; Cristofanilli, Massimo; Coombes, Kevin; Lee, Sang-Joon; Baker, Joffre; Cronin, Maureen; Walker, Michael; Watson, Drew; Shak, Steven; Hortobagyi, Gabriel N

    2005-05-01

    To test the ability of a reverse transcriptase-PCR (RT-PCR) assay, based on gene expression profiles, to accurately determine the risk of recurrence in patients with node-negative breast cancer who did not receive systemic therapy using formalin-fixed, paraffin-embedded tissue. A secondary objective was to determine whether the quantitative RT-PCR data correlated with immunohistochemistry assay data regarding estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status. We obtained archival paraffin-embedded tissue from patients with invasive breast cancer but no axillary lymph node involvement who had received no adjuvant systemic therapy and been followed for at least 5 years. RNA was extracted from three 10-microm-thick sections. The expression of 16 cancer-related genes and 5 reference genes was quantified using RT-PCR. A gene expression algorithm was used to calculate a recurrence score for each patient. We then assessed the ability of the test to accurately predict distant recurrence-free survival in this population. We identified 149 eligible patients. Median age at diagnosis was 59 years; mean tumor diameter was 2 cm; and 69% of tumors were estrogen receptor positive. Median follow-up was 18 years. The 5-year disease-free survival rate for the group was 80%. The 21 gene-based recurrence score was not predictive of distant disease recurrence. However, a high concordance between RT-PCR and immunohistochemical assays for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status was noted. RT-PCR can be done on paraffin-embedded tissue to validate the large numbers of genes associated with breast cancer recurrence. However, further work needs to be done to develop an assay to identify the likelihood of recurrent disease in patients with node-negative breast cancer who do not receive adjuvant tamoxifen or chemotherapy.

  7. Polymerase chain reaction assay for the detection of Bacillus cereus group cells

    DEFF Research Database (Denmark)

    Hansen, Bjarne Munk; Leser, Thomas D.; Hendriksen, Niels Bohse

    2001-01-01

    of the B. cereus group in food and in the environment. Using 16S rDNA as target, a PCR assay for the detection of B. cereus group cells has been developed. Primers specific for the 16S rDNA of the B. cereus group bacteria were selected and used in combination with consensus primers for 165 rDNA as internal...... PCR procedure control. The PCR procedure was optimized with respect to annealing temperature. When DNA from the B. cereus group bacteria was present, the PCR assay yielded a B. cereus specific fragment, while when non-B. cereus prokaryotic DNA was present, the consensus 165 rDNA primers directed...

  8. A multiplex PCR/LDR assay for simultaneous detection and identification of the NIAID category B bacterial food and water-borne pathogens.

    Science.gov (United States)

    Rundell, Mark S; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H; Spitzer, Eric D; Golightly, Linnie; Barany, Francis

    2014-06-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/ligation detection reaction (LDR) assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay were assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91% to 100% (median 100%) depending on the species. For the majority of organisms, the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples, the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    Science.gov (United States)

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children

    NARCIS (Netherlands)

    Bruijnesteijn van Coppenraet, E. S.; Lindeboom, J. A.; Prins, J. M.; Peeters, M. F.; Claas, E. C. J.; Kuijper, E. J.

    2004-01-01

    A real-time PCR assay was developed to diagnose and identify the causative agents of suspected mycobacterial lymphadenitis. Primers and probes for the real-time PCR were designed on the basis of the internal transcribed spacer sequence, enabling the recognition of the genus Mycobacterium and the

  11. Rapid detection of Enterovirus and Coxsackievirus A10 by a TaqMan based duplex one-step real time RT-PCR assay.

    Science.gov (United States)

    Chen, Jingfang; Zhang, Rusheng; Ou, Xinhua; Yao, Dong; Huang, Zheng; Li, Linzhi; Sun, Biancheng

    2017-06-01

    A TaqMan based duplex one-step real time RT-PCR (rRT-PCR) assay was developed for the rapid detection of Coxsackievirus A10 (CV-A10) and other enterovirus (EVs) in clinical samples. The assay was fully evaluated and found to be specific and sensitive. When applied in 115 clinical samples, a 100% diagnostic sensitivity in CV-A10 detection and 97.4% diagnostic sensitivity in other EVs were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multiplexed Molecular Assays for Rapid Rule-Out of Foot-and-Mouth Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lenhoff, R; Naraghi-Arani, P; Thissen, J; Olivas, J; Carillo, C; Chinn, C; Rasmussen, M; Messenger, S; Suer, L; Smith, S M; Tammero, L; Vitalis, E; Slezak, T R; Hullinger, P J; Hindson, B J; Hietala, S; Crossley, B; Mcbride, M

    2007-06-26

    A nucleic acid-based multiplexed assay was developed that combines detection of foot-and-mouth disease virus (FMDV) with rule-out assays for two other foreign animal diseases and four domestic animal diseases that cause vesicular or ulcerative lesions indistinguishable from FMDV infection in cattle, sheep and swine. The FMDV 'look-alike' diagnostic assay panel contains five PCR and twelve reverse transcriptase PCR (RT-PCR) signatures for a total of seventeen simultaneous PCR amplifications for seven diseases plus incorporating four internal assay controls. It was developed and optimized to amplify both DNA and RNA viruses simultaneously in a single tube and employs Luminex{trademark} liquid array technology. Assay development including selection of appropriate controls, a comparison of signature performance in single and multiplex testing against target nucleic acids, as well of limits of detection for each of the individual signatures is presented. While this assay is a prototype and by no means a comprehensive test for FMDV 'look-alike' viruses, an assay of this type is envisioned to have benefit to a laboratory network in routine surveillance and possibly for post-outbreak proof of freedom from foot-and-mouth disease.

  13. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    Science.gov (United States)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  14. Multiplex real-time RT-PCR assay for bovine viral diarrhea virus type 1, type 2 and HoBi-like pestivirus.

    Science.gov (United States)

    Mari, Viviana; Losurdo, Michele; Lucente, Maria Stella; Lorusso, Eleonora; Elia, Gabriella; Martella, Vito; Patruno, Giovanni; Buonavoglia, Domenico; Decaro, Nicola

    2016-03-01

    HoBi-like pestiviruses are emerging pestiviruses that infect cattle causing clinical forms overlapping to those induced by bovine viral diarrhea virus (BVDV) 1 and 2. As a consequence of their widespread distribution reported in recent years, molecular tools for rapid discrimination among pestiviruses infecting cattle are needed. The aim of the present study was to develop a multiplex real-time RT-PCR assay, based on the TaqMan technology, for the rapid and unambiguous characterisation of all bovine pestiviruses, including the emerging HoBi-like strains. The assay was found to be sensitive, specific and repeatable, ensuring detection of as few as 10(0)-10(1) viral RNA copies. No cross-reactions between different pestiviral species were observed even in samples artificially contaminated with more than one pestivirus. Analysis of field samples tested positive for BVDV-1, BVDV-2 or HoBi-like virus by a nested PCR protocol revealed that the developed TaqMan assay had equal or higher sensitivity and was able to discriminate correctly the viral species in all tested samples, whereas a real-time RT-PCR assay previously developed for HoBi-like pestivirus detection showed cross-reactivity with few high-titre BVDV-2 samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Performance of PCR-reverse blot hybridization assay for detection of rifampicin-resistant Mycobacterium leprae.

    Science.gov (United States)

    Wang, Hye-young; Kim, Hyunjung; Kim, Yeun; Bang, Hyeeun; Kim, Jong-Pill; Hwang, Joo Hwan; Cho, Sang-Nae; Kim, Tae Ue; Lee, Hyeyoung

    2015-10-01

    Drug resistance in Mycobacterium leprae is a significant problem in countries where leprosy is endemic. A sensitive, specific, and high-throughput reverse blot hybridization assay (REBA) for the detection of genotypic resistance to rifampicin (RIF) was designed and evaluated. It has been shown that resistance to RIF in M. leprae involves mutations in the rpoB gene encoding the -subunit of the RNA polymerase. The PCR-REBA simultaneously detects both 6 wild-type regions and 5 different mutations (507 AGC, 513 GTG, 516 TAT, 531 ATG, and 531 TTC) including the most prevalent mutations at positions 507 and 531. Thirty-one clinical isolates provided by Korea Institute of Hansen-s Disease were analyzed by PCR-REBA with RIF resistance of rpoB gene. As a result, missense mutations at codons 507 AGC and 531 ATG with 2-nucleotide substitutions were found in one sample, and a missense mutation at codon 516 TAT and ΔWT6 (deletion of 530-534) was found in another sample. These cases were confirmed by DNA sequence analysis. This rapid, simple, and highly sensitive assay provides a practical alternative to sequencing for genotypic evaluation of RIF resistance in M. leprae.

  16. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay

    Science.gov (United States)

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence. PMID:27031831

  17. A Novel Duplex Real-Time Reverse-Transcription PCR Assay for the Detection of Influenza A and the Novel Influenza A(H1N1 Strain

    Directory of Open Access Journals (Sweden)

    Theo P. Sloots

    2009-12-01

    Full Text Available Timely implementation of antiviral treatment and other public health based responses are dependent on accurate and rapid diagnosis of the novel pandemic influenza A(H1N1 strain. In this study we developed a duplex real-time PCR (RT-PCR (dFLU-TM assay for the simultaneous detection of a broad range of influenza A subtypes and specific detection of the novel H1N1 2009 pandemic strain. The assay was compared to the combined results of two previously described monoplex RT-PCR assays using 183 clinical samples and 10 seasonal influenza A isolates. Overall, the results showed that the dFLU-TM RT-PCR method is suitable for detection of influenza A, including the novel H1N1 pandemic strain, in clinical samples.

  18. Characterization of Aspergillus species on Brazil nut from the Brazilian Amazonian region and development of a PCR assay for identification at the genus level

    Science.gov (United States)

    2014-01-01

    Background Brazil nut is a protein-rich extractivist tree crop in the Amazon region. Fungal contamination of shells and kernel material frequently includes the presence of aflatoxigenic Aspergillus species from the section Flavi. Aflatoxins are polyketide secondary metabolites, which are hepatotoxic carcinogens in mammals. The objectives of this study were to identify Aspergillus species occurring on Brazil nut grown in different states in the Brazilian Amazon region and develop a specific PCR method for collective identification of member species of the genus Aspergillus. Results Polyphasic identification of 137 Aspergillus strains isolated from Brazil nut shell material from cooperatives across the Brazilian Amazon states of Acre, Amapá and Amazonas revealed five species, with Aspergillus section Flavi species A. nomius and A. flavus the most abundant. PCR primers ASP_GEN_MTSSU_F1 and ASP_GEN_MTSSU_R1 were designed for the genus Aspergillus, targeting a portion of the mitochondrial small subunit ribosomal RNA gene. Primer specificity was validated through both electronic PCR against target gene sequences at Genbank and in PCR reactions against DNA from Aspergillus species and other fungal genera common on Brazil nut. Collective differentiation of the observed section Flavi species A. flavus, A. nomius and A. tamarii from other Aspergillus species was possible on the basis of RFLP polymorphism. Conclusions Given the abundance of Aspergillus section Flavi species A. nomius and A. flavus observed on Brazil nut, and associated risk of mycotoxin accumulation, simple identification methods for such mycotoxigenic species are of importance for Hazard Analysis Critical Control Point system implementation. The assay for the genus Aspergillus represents progress towards specific PCR identification and detection of mycotoxigenic species. PMID:24885088

  19. The relative test performance characteristics of two commercial assays for the detection of Mycobacterium tuberculosis complex in paraffin-fixed human biopsy specimens

    Directory of Open Access Journals (Sweden)

    Broukhanski George

    2008-09-01

    Full Text Available Abstract The Seeplex™ TB Detection-2 assay (Rockville, MD is a nested endpoint PCR for the Mycobacterium tuberculosis complex (MTBC targets IS6110 and MPB64 that utilizes dual priming oligonucleotide technology. When used to detect the presence of MTBC DNA in formalin-fixed paraffin-embedded tissue specimens, the sensitivity and specificity of this assay is equivalent to a labor-intensive traditional endpoint PCR assay and is more sensitive than a commercial real-time PCR assay.

  20. High performance of a new PCR-based urine assay for HPV-DNA detection and genotyping.

    Science.gov (United States)

    Tanzi, Elisabetta; Bianchi, Silvia; Fasolo, Maria Michela; Frati, Elena R; Mazza, Francesca; Martinelli, Marianna; Colzani, Daniela; Beretta, Rosangela; Zappa, Alessandra; Orlando, Giovanna

    2013-01-01

    Human papillomavirus (HPV) testing has been proposed as a means of replacing or supporting conventional cervical screening (Pap test). However, both methods require the collection of cervical samples. Urine sample is easier and more acceptable to collect and could be helpful in facilitating cervical cancer screening. The aim of this study was to evaluate the sensitivity and specificity of urine testing compared to conventional cervical smear testing using a PCR-based method with a new, designed specifically primer set. Paired cervical and first voided urine samples collected from 107 women infected with HIV were subjected to HPV-DNA detection and genotyping using a PCR-based assay and a restriction fragment length polymorphism method. Sensitivity, specificity, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) were calculated using the McNemar's test for differences. Concordance between tests was assessed using the Cohen's unweighted Kappa (k). HPV DNA was detected in 64.5% (95% CI: 55.1-73.1%) of both cytobrush and urine samples. High concordance rates of HPV-DNA detection (k = 0.96; 95% CI: 0.90-1.0) and of high risk-clade and low-risk genotyping in paired samples (k = 0.80; 95% CI: 0.67-0.92 and k = 0.74; 95% CI: 0.60-0.88, respectively) were observed. HPV-DNA detection in urine versus cervix testing revealed a sensitivity of 98.6% (95% CI: 93.1-99.9%) and a specificity of 97.4% (95% CI: 87.7-99.9%), with a very high NPV (97.4%; 95% CI: 87.7-99.9%). The PCR-based assay utilized in this study proved highly sensitive and specific for HPV-DNA detection and genotyping in urine samples. These data suggest that a urine-based assay would be a suitable and effective tool for epidemiological surveillance and, most of all, screening programs. Copyright © 2012 Wiley Periodicals, Inc.

  1. Development of Candida-Specific Real-Time PCR Assays for the Detection and Identification of Eight Medically Important Candida Species.

    Science.gov (United States)

    Zhang, Jing; Hung, Guo-Chiuan; Nagamine, Kenjiro; Li, Bingjie; Tsai, Shien; Lo, Shyh-Ching

    2016-01-01

    Culture-based identification methods have been the gold standard for the diagnosis of fungal infection. Currently, molecular technologies such as real-time PCR assays with short turnaround time can provide desirable alternatives for the rapid detection of Candida microbes. However, most of the published PCR primer sets are not Candida specific and likely to amplify DNA from common environmental contaminants, such as Aspergillus microbes. In this study, we designed pan-Candida primer sets based on the ribosomal DNA-coding regions conserved within Candida but distinct from those of Aspergillus and Penicillium. We demonstrate that the final two selected pan-Candida primer sets would not amplify Aspergillus DNA and could be used to differentiate eight medically important Candida pathogens in real-time PCR assays based on their melting profiles, with a sensitivity of detection as low as 10 fg of Candida genomic DNA. Moreover, we further evaluated and selected species-specific primer sets covering Candida albicans, Candida glabrata, Candida tropicalis, and Candida dubliniensis and show that they had high sensitivity and specificity. These real-time PCR primer sets could potentially be assembled into a single PCR array for the rapid detection of Candida species in various clinical settings, such as corneal transplantation.

  2. Usefulness of Two Aspergillus PCR Assays and Aspergillus Galactomannan and β-d-Glucan Testing of Bronchoalveolar Lavage Fluid for Diagnosis of Chronic Pulmonary Aspergillosis.

    Science.gov (United States)

    Urabe, Naohisa; Sakamoto, Susumu; Sano, Go; Suzuki, Junko; Hebisawa, Akira; Nakamura, Yasuhiko; Koyama, Kazuya; Ishii, Yoshikazu; Tateda, Kazuhiro; Homma, Sakae

    2017-06-01

    We evaluated the usefulness of an Aspergillus galactomannan (GM) test, a β-d-glucan (βDG) test, and two different Aspergillus PCR assays of bronchoalveolar lavage fluid (BALF) samples for the diagnosis of chronic pulmonary aspergillosis (CPA). BALF samples from 30 patients with and 120 patients without CPA were collected. We calculated the sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio for each test individually and in combination with other tests. The optical density index values, as determined by receiver operating characteristic analysis, for the diagnosis of CPA were 0.5 and 100 for GM and βDG testing of BALF, respectively. The sensitivity and specificity of the GM test, βDG test, and PCR assays 1 and 2 were 77.8% and 90.0%, 77.8% and 72.5%, 86.7% and 84.2%, and 66.7% and 94.2%, respectively. A comparison of the PCR assays showed that PCR assay 1 had a better sensitivity, a better negative predictive value, and a better negative likelihood ratio and PCR assay 2 had a better specificity, a better positive predictive value, and a better positive likelihood ratio. The combination of the GM and βDG tests had the highest diagnostic odds ratio. The combination of the GM and βDG tests on BALF was more useful than any single test for diagnosing CPA. Copyright © 2017 American Society for Microbiology.

  3. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection.

    Science.gov (United States)

    Singh, Om P; Dykes, Cherry L; Lather, Manila; Agrawal, Om P; Adak, Tridibes

    2011-03-14

    Knockdown resistance (kdr) in insects, resulting from mutation(s) in the voltage-gated sodium channel (vgsc) gene is one of the mechanisms of resistance against DDT and pyrethroid-group of insecticides. The most common mutation(s) associated with knockdown resistance in insects, including anophelines, has been reported to be present at residue Leu1014 in the IIS6 transmembrane segment of the vgsc gene. This study reports the presence of two alternative kdr-like mutations, L1014S and L1014F, at this residue in a major malaria vector Anopheles stephensi and describes new PCR assays for their detection. Part of the vgsc (IIS4-S5 linker-to-IIS6 transmembrane segment) of An. stephensi collected from Alwar (Rajasthan, India) was PCR-amplified from genomic DNA, sequenced and analysed for the presence of deduced amino acid substitution(s). Analysis of DNA sequences revealed the presence of two alternative non-synonymous point mutations at L1014 residue in the IIS6 transmembrane segment of vgsc, i.e., T>C mutation on the second position and A>T mutation on the third position of the codon, leading to Leu (TTA)-to-Ser (TCA) and -Phe (TTT) amino acid substitutions, respectively. Polymerase chain reaction (PCR) assays were developed for identification of each of these two point mutations. Genotyping of An. stephensi mosquitoes from Alwar by PCR assays revealed the presence of both mutations, with a high frequency of L1014S. The PCR assays developed for detection of the kdr mutations were specific as confirmed by DNA sequencing of PCR-genotyped samples. Two alternative kdr-like mutations, L1014S and L1014F, were detected in An. stephensi with a high allelic frequency of L1014S. The occurrence of L1014S is being reported for the first time in An. stephensi. Two specific PCR assays were developed for detection of two kdr-like mutations in An. stephensi.

  4. A real-time PCR assay for detection and quantification of Verticillium dahliae in spinach seed.

    Science.gov (United States)

    Duressa, Dechassa; Rauscher, Gilda; Koike, Steven T; Mou, Beiquan; Hayes, Ryan J; Maruthachalam, Karunakaran; Subbarao, Krishna V; Klosterman, Steven J

    2012-04-01

    Verticillium dahliae is a soilborne fungus that causes Verticillium wilt on multiple crops in central coastal California. Although spinach crops grown in this region for fresh and processing commercial production do not display Verticillium wilt symptoms, spinach seeds produced in the United States or Europe are commonly infected with V. dahliae. Planting of the infected seed increases the soil inoculum density and may introduce exotic strains that contribute to Verticillium wilt epidemics on lettuce and other crops grown in rotation with spinach. A sensitive, rapid, and reliable method for quantification of V. dahliae in spinach seed may help identify highly infected lots, curtail their planting, and minimize the spread of exotic strains via spinach seed. In this study, a quantitative real-time polymerase chain reaction (qPCR) assay was optimized and employed for detection and quantification of V. dahliae in spinach germplasm and 15 commercial spinach seed lots. The assay used a previously reported V. dahliae-specific primer pair (VertBt-F and VertBt-R) and an analytical mill for grinding tough spinach seed for DNA extraction. The assay enabled reliable quantification of V. dahliae in spinach seed, with a sensitivity limit of ≈1 infected seed per 100 (1.3% infection in a seed lot). The quantification was highly reproducible between replicate samples of a seed lot and in different real-time PCR instruments. When tested on commercial seed lots, a pathogen DNA content corresponding to a quantification cycle value of ≥31 corresponded with a percent seed infection of ≤1.3%. The assay is useful in qualitatively assessing seed lots for V. dahliae infection levels, and the results of the assay can be helpful to guide decisions on whether to apply seed treatments.

  5. Two-temperature LATE-PCR endpoint genotyping

    Directory of Open Access Journals (Sweden)

    Reis Arthur H

    2006-12-01

    Full Text Available Abstract Background In conventional PCR, total amplicon yield becomes independent of starting template number as amplification reaches plateau and varies significantly among replicate reactions. This paper describes a strategy for reconfiguring PCR so that the signal intensity of a single fluorescent detection probe after PCR thermal cycling reflects genomic composition. The resulting method corrects for product yield variations among replicate amplification reactions, permits resolution of homozygous and heterozygous genotypes based on endpoint fluorescence signal intensities, and readily identifies imbalanced allele ratios equivalent to those arising from gene/chromosomal duplications. Furthermore, the use of only a single colored probe for genotyping enhances the multiplex detection capacity of the assay. Results Two-Temperature LATE-PCR endpoint genotyping combines Linear-After-The-Exponential (LATE-PCR (an advanced form of asymmetric PCR that efficiently generates single-stranded DNA and mismatch-tolerant probes capable of detecting allele-specific targets at high temperature and total single-stranded amplicons at a lower temperature in the same reaction. The method is demonstrated here for genotyping single-nucleotide alleles of the human HEXA gene responsible for Tay-Sachs disease and for genotyping SNP alleles near the human p53 tumor suppressor gene. In each case, the final probe signals were normalized against total single-stranded DNA generated in the same reaction. Normalization reduces the coefficient of variation among replicates from 17.22% to as little as 2.78% and permits endpoint genotyping with >99.7% accuracy. These assays are robust because they are consistent over a wide range of input DNA concentrations and give the same results regardless of how many cycles of linear amplification have elapsed. The method is also sufficiently powerful to distinguish between samples with a 1:1 ratio of two alleles from samples comprised of

  6. A real-time PCR assay for the detection of atypical strains of Chlamydiaceae from pigeons.

    Directory of Open Access Journals (Sweden)

    Aleksandar Zocevic

    Full Text Available Recent evidence of the occurrence of atypical Chlamydiaceae strains in pigeons, different from the established Chlamydiaceae, requires the development of a specific and rapid detection tool to investigate their prevalence and significance. Here is described a new real-time PCR assay that allows specific detection of atypical Chlamydiaceae from pigeons. The assay has been used to assess the dissemination of these strains in field samples collected from Parisian pigeon populations in 2009. The results suggest a limited dissemination compared to the usually higher prevalence of Chlamydia psittaci that is the main species associated with avian chlamydiosis.

  7. Intrapartum PCR assay versus antepartum culture for assessment of vaginal carriage of group B streptococci in a Danish cohort at birth

    DEFF Research Database (Denmark)

    Khalil, Mohammed Rohi; Uldbjerg, Niels; Thorsen, Poul Bak

    2017-01-01

    The aim of this study was to compare the performances of two strategies for predicting intrapartum vaginal carriage of group B streptococci (GBS). One strategy was based on an antepartum culture and the other on an intrapartum polymerase chain reaction (PCR). We conducted a prospective observatio......The aim of this study was to compare the performances of two strategies for predicting intrapartum vaginal carriage of group B streptococci (GBS). One strategy was based on an antepartum culture and the other on an intrapartum polymerase chain reaction (PCR). We conducted a prospective...... observational study enrolling 902 pregnant women offered GBS screening before delivery by two strategies. The Culture-strategy was based on vaginal and rectal cultures at 35-37 weeks' gestation, whereas the PCR-strategy was based on PCR assay on intrapartum vaginal swab samples. An intrapartum vaginal culture...... (NPV) of 98%, and Likelihood ratio (LH+) of 9.2. The PCR-strategy showed corresponding values as sensitivity of 83%, specificity of 97%, PPV of 78%, NPV of 98%, and LH+ of 27.5. We conclude that in a Danish population with a low rate of early-onset neonatal infection with GBS, the intrapartum PCR assay...

  8. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD......) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect ... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro...

  9. Real-Time PCR Assay To Detect Smallpox Virus

    Science.gov (United States)

    Sofi Ibrahim, M.; Kulesh, David A.; Saleh, Sharron S.; Damon, Inger K.; Esposito, Joseph J.; Schmaljohn, Alan L.; Jahrling, Peter B.

    2003-01-01

    We developed a highly sensitive and specific assay for the rapid detection of smallpox virus DNA on both the Smart Cycler and LightCycler platforms. The assay is based on TaqMan chemistry with the orthopoxvirus hemagglutinin gene used as the target sequence. With genomic DNA purified from variola virus Bangladesh 1975, the limit of detection was estimated to be approximately 25 copies on both machines. The assay was evaluated in a blinded study with 322 coded samples that included genomic DNA from 48 different isolates of variola virus; 25 different strains and isolates of camelpox, cowpox, ectromelia, gerbilpox, herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia, and varicella-zoster viruses; and two rickettsial species at concentrations mostly ranging from 100 fg/μl to 1 ng/μl. Contained within those 322 samples were variola virus DNA, obtained from purified viral preparations, at concentrations of 1 fg/μl to 1 ng/μl. On the Smart Cycler platform, 2 samples with false-positive results were detected among the 116 samples not containing variola virus tested; i.e., the overall specificity of the assay was 98.3%. On the LightCycler platform, five samples with false-positive results were detected (overall specificity, 95.7%). Of the 206 samples that contained variola virus DNA ranging in concentrations from 100 fg/μl to 1 ng/μl, 8 samples were considered negative on the Smart Cycler platform and 1 sample was considered negative on the LightCycler platform. Thus, the clinical sensitivities were 96.1% for the Smart Cycler instrument and 99.5% for the LightCycler instrument. The vast majority of these samples were derived from virus-infected cell cultures and variola virus-infected tissues; thus, the DNA material contained both viral DNA and cellular DNA. Of the 43 samples that contained purified variola virus DNA ranging in concentration from 1 fg/μl to 1 ng/μl, the assay correctly detected the virus in all 43 samples on both the Smart Cycler

  10. Evaluation of the Roche LightMix Gastro parasites multiplex PCR assay detecting Giardia duodenalis, Entamoeba histolytica, cryptosporidia, Dientamoeba fragilis, and Blastocystis hominis.

    Science.gov (United States)

    Friesen, J; Fuhrmann, J; Kietzmann, H; Tannich, E; Müller, M; Ignatius, R

    2018-03-23

    Multiplex PCR assays offer highly sensitive and specific tools for the detection of enteric pathogens. This prospective study aimed at comparing the novel Roche LightMix Modular Assay Gastro Parasites (LMAGP) detecting Giardia duodenalis, Entamoeba histolytica, Cryptosporidium spp., Blastocystishominis, and Dientamoebafragilis with routine laboratory procedures. Stool specimens (n = 1062 from 1009 patients) were consecutively examined by LMAGP, R-Biopharm Ridascreen enzyme immunoassays (EIAs) detecting G. duodenalis or E. histolytica/dispar, and microscopy of wet mounts. Discrepant results were analysed by in-house PCR. D. fragilis or B. hominis were detected by LMAGP in 131 (14.4%) and 179 (19.9%; 16 samples positive by microscopy; p PCR). G. duodenalis was detected by LMAGP, EIA, or microscopy in 20, 16, or 9 of 1039 stool samples, respectively; all four samples missed by EIA were confirmed by in-house PCR. In total, 938 stool samples were analysed for E. histolytica/dispar. Nine of ten EIA-positive samples were negative by LMAGP but positive by in-house PCR for E. dispar. One E. histolytica infection (positive by both LMAGP and in-house PCR) was missed by EIA and microscopy. Parasites only detected by microscopy included Enterobius vermicularis eggs (n = 3) and apathogenic amoebae (n = 27). The data call for routine use of multiplex PCR assays for the detection of enteric protozoan parasites in laboratory diagnostics. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations.

    Directory of Open Access Journals (Sweden)

    Dawn N Birdsell

    Full Text Available Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis, therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays

  12. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates.

    Science.gov (United States)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher

    2013-11-01

    In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products. © 2013 Elsevier B.V. All rights reserved.

  13. Multiplex Real-Time qPCR Assay for Simultaneous and Sensitive Detection of Phytoplasmas in Sesame Plants and Insect Vectors.

    Science.gov (United States)

    Ikten, Cengiz; Ustun, Rustem; Catal, Mursel; Yol, Engin; Uzun, Bulent

    2016-01-01

    Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.). Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease.

  14. Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian `fecal samples.

    Science.gov (United States)

    Hu, Hui; Jung, Kwonil; Wang, Qiuhong; Saif, Linda J; Vlasova, Anastasia N

    2018-06-01

    Coronaviruses (CoVs) are critical human and animal pathogens because of their potential to cause severe epidemics of respiratory or enteric diseases. In pigs, the newly emerged porcine deltacoronavirus (PDCoV) and re-emerged porcine epidemic diarrhea virus (PEDV) reported in the US and Asia, as well as the discovery of novel CoVs in wild bats or birds, has necessitated development of improved detection and control measures for these CoVs. Because the previous pancoronavirus (panCoV) RT-PCR established in our laboratory in 2007-2011 did not detect deltacoronaviruses (δ-CoVs) in swine fecal and serum samples, our goal was to develop a new panCoV RT-PCR assay to detect known human and animal CoVs, including δ-CoVs. In this study, we designed a new primer set to amplify a 668 bp-region within the RNA-dependent RNA polymerase (RdRP) gene that encodes the most conserved protein domain of α-, β-, γ-, and δ-CoVs. We established a one-step panCoV RT-PCR assay and standardized the assay conditions. The newly established panCoV RT-PCR assay was demonstrated to have a high sensitivity and specificity. Using a panel of 60 swine biological samples (feces, intestinal contents, and sera) characterized by PEDV, PDCoV and transmissible gastroenteritis virus-specific RT-PCR assays, we demonstrated that sensitivity and specificity of the newly established panCoV RT-PCR assay were 100%. 400 avian fecal (RNA) samples were further tested simultaneously for CoV by the new panCoV RT-PCR and a one-step RT-PCR assay with the δ-CoV nucleocapsid-specific universal primers. Four of 400 avian samples were positive for CoV, three of which were positive for δ-CoV by the conventional RT-PCR. PanCoV RT-PCR fragments for 3 of the 4 CoVs were sequenced. Phylogenetic analysis revealed the presence of one γ-CoV and two δ-CoV in the sequenced samples. The newly designed panCoV RT-PCR assay should be useful for the detection of currently known CoVs in animal biological samples. Copyright © 2018

  15. Development of a taqman-based real-time PCR assay for the rapid and specific detection of novel duck- origin goose parvovirus.

    Science.gov (United States)

    Wang, Jianchang; Wang, Jinfeng; Cui, Yuan; Nan, Huizhu; Yuan, Wanzhe

    2017-08-01

    A real-time PCR assay was developed for specific detection of novel duck-origin goose parvovirus (N-GPV), the etiological agent of duck beak atrophy and dwarfism syndrome (BADS). The detection limit of the assay was 10 2 copies. The assay was useful in the prevention and control of BADS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning.

    Science.gov (United States)

    Meghdadi, Hossein; Khosravi, Azar D; Ghadiri, Ata A; Sina, Amir H; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39-31.27% for rpoB-PCR, 36.44-60.83% for IS6110- PCR, 75.29-92.93% for nested-rpoB PCR, and 87.98-99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100

  17. Detection of Small Numbers of Campylobacter jejuni and Campylobacter coli Cells in Environmental Water, Sewage, and Food Samples by a Seminested PCR Assay

    Science.gov (United States)

    Waage, Astrid S.; Vardund, Traute; Lund, Vidar; Kapperud, Georg

    1999-01-01

    A rapid and sensitive assay was developed for detection of small numbers of Campylobacter jejuni and Campylobacter coli cells in environmental water, sewage, and food samples. Water and sewage samples were filtered, and the filters were enriched overnight in a nonselective medium. The enrichment cultures were prepared for PCR by a rapid and simple procedure consisting of centrifugation, proteinase K treatment, and boiling. A seminested PCR based on specific amplification of the intergenic sequence between the two Campylobacter flagellin genes, flaA and flaB, was performed, and the PCR products were visualized by agarose gel electrophoresis. The assay allowed us to detect 3 to 15 CFU of C. jejuni per 100 ml in water samples containing a background flora consisting of up to 8,700 heterotrophic organisms per ml and 10,000 CFU of coliform bacteria per 100 ml. Dilution of the enriched cultures 1:10 with sterile broth prior to the PCR was sometimes necessary to obtain positive results. The assay was also conducted with food samples analyzed with or without overnight enrichment. As few as ≤3 CFU per g of food could be detected with samples subjected to overnight enrichment, while variable results were obtained for samples analyzed without prior enrichment. This rapid and sensitive nested PCR assay provides a useful tool for specific detection of C. jejuni or C. coli in drinking water, as well as environmental water, sewage, and food samples containing high levels of background organisms. PMID:10103261

  18. Differentiation of Mycobacterium tuberculosis complex from non-tubercular mycobacteria by nested multiplex PCR targeting IS6110, MTP40 and 32kD alpha antigen encoding gene fragments.

    Science.gov (United States)

    Sinha, Pallavi; Gupta, Anamika; Prakash, Pradyot; Anupurba, Shampa; Tripathi, Rajneesh; Srivastava, G N

    2016-03-12

    Control of the global burden of tuberculosis is obstructed due to lack of simple, rapid and cost effective diagnostic techniques that can be used in resource poor-settings. To facilitate the early diagnosis of TB directly from clinical specimens, we have standardized and validated the use of nested multiplex PCR, targeting gene fragments IS6110, MTP40 and 32kD α-antigen encoding genes specific for Mycobacterium tuberculosis complex and non-tubercular mycobacteria (NTM), in comparison to smear microscopy, solid culture and single step multiplex PCR. The results were evaluated in comparison to a composite reference standard (CRS) comprising of microbiological results (smear and culture), clinical, radiological and cytopathological findings, clinical treatment and response to anti-tubercular therapy. The nested multiplex PCR (nMPCR) assay was evaluated to test its utility in 600 (535 pulmonary and 65 extra-pulmonary specimens) clinically suspected TB cases. All specimens were processed for smear, culture, single step multiplex PCR and nested multiplex PCR testing. Out of 535 screened pulmonary and 65 extra-pulmonary specimens, 329 (61.5%) and 19 (29.2%) cases were culture positive for M. tuberculosis. Based on CRS, 450 patients had "clinical TB" (definitive-TB, probable-TB and possible-TB). Remaining 150 were confirmed "non-TB" cases. For culture, the sensitivity was low, 79.3% for pulmonary and 54.3% for extra-pulmonary cases. The sensitivity and specificity results for nMPCR test were evaluated taken composite reference standard as a gold standard. The sensitivity of the nMPCR assay was 97.1% for pulmonary and 91.4% for extra-pulmonary TB cases with specificity of 100% and 93.3% respectively. Nested multiplex PCR using three gene primers is a rapid, reliable and highly sensitive and specific diagnostic technique for the detection and differentiation of M. tuberculosis complex from NTM genome and will be useful in diagnosing paucibacillary samples. Nested multiplex

  19. Comparison of the Abbott RealTime CT new formulation assay with two other commercial assays for detection of wild-type and new variant strains of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Møller, Jens Kjølseth; Pedersen, Lisbeth Nørum; Persson, Kenneth

    2010-01-01

    In an analytical methods comparison study on clinical samples, the Abbott RealTime CT new formulation assay (m2000 real-time PCR) consisting of a duplex PCR targeting different parts of the cryptic plasmid in Chlamydia trachomatis was compared with version 2 of the Roche COBAS(R) TaqMan(R) CT ass...

  20. Comparison of the genexpert enterovirus assay (GXEA) with real-time one step RT-PCR for the detection of enteroviral RNA in the cerebrospinal fluid of patients with meningitis.

    Science.gov (United States)

    Hong, JiYoung; Kim, Ahyoun; Hwang, Seoyeon; Cheon, Doo-Sung; Kim, Jong-Hyen; Lee, June-Woo; Park, Jae-Hak; Kang, Byunghak

    2015-02-13

    Enteroviruses (EVs) are the leading cause of aseptic meningitis worldwide. Detection of enteroviral RNA in clinical specimens has been demonstrated to improve the management of patient care, especially that of neonates and young children. To establish a sensitive and reliable assay for routine laboratory diagnosis, we compared the sensitivity and specificity of the GeneXpert Enterovirus Assay (GXEA) with that of the reverse transcription polymerase chain reaction (RT-PCR) based assay referred to as real-time one step RT-PCR (RTo-PCR). The sensitivity/specificity produced by GXEA and RTo-PCR were 100%/100% and 65%/100%, respectively. Both methods evaluated in this article can be used for detection of enterovirus in clinical specimens and these nucleic acid amplification methods are useful assays for the diagnosis of enteroviral infection.

  1. Novel 3′-Processing Integrase Activity Assay by Real-Time PCR for Screening and Identification of HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Supachai Sakkhachornphop

    2015-01-01

    Full Text Available The 3′-end processing (3′P of each viral long terminal repeat (LTR during human immunodeficiency virus type-1 (HIV-1 integration is a vital step in the HIV life cycle. Blocking the 3′P using 3′P inhibitor has recently become an attractive strategy for HIV-1 therapeutic intervention. Recently, we have developed a novel real-time PCR based assay for the detection of 3′P activity in vitro. The methodology usually involves biotinylated HIV-1 LTR, HIV-1 integrase (IN, and specific primers and probe. In this novel assay, we designed the HIV-1 LTR substrate based on a sequence with a homology to HIV-1 LTR labeled at its 3′ end with biotin on the sense strand. Two nucleotides at the 3′ end were subsequently removed by IN activity. Only two nucleotides labeled biotin were captured on an avidin-coated tube; therefore, inhibiting the binding of primers and probe results in late signals in the real-time PCR. This novel assay has successfully detected both the 3′P activity of HIV-1 IN and the anti-IN activity by Raltegravir and sodium azide agent. This real-time PCR assay has been shown to be effective and inexpensive for a high-throughput screening of novel IN inhibitors.

  2. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  3. Detection and quantification of Spirocerca lupi by HRM qPCR in fecal samples from dogs with spirocercosis.

    Science.gov (United States)

    Rojas, Alicia; Segev, Gilad; Markovics, Alex; Aroch, Itamar; Baneth, Gad

    2017-09-19

    Spirocerca lupi, the dog oesophageal nematode, causes a potentially fatal disease in domestic dogs, and is currently clinically diagnosed by coproscopy and oesophagoscopy. To date, a single molecular method, a semi-nested PCR, targeting the cox1 gene, has been developed to aid in the diagnosis of spirocercosis. The present study describes three novel high-resolution melt (HRM) quantitative PCR (qPCR) assays targeting fragments of the ITS1, 18S and cytb loci of S. lupi. The performance of these molecular assays in feces was compared to fecal flotation and to the previously described cox1 gene semi-nested PCR in 18 fecal samples from dogs with clinical oesophageal spirocercosis diagnosed by oesophagoscopy. The HRM qPCR for ITS1 and 18S were both able to detect 0.2 S. lupi eggs per gram (epg), while the HRM qPCR for the cytb and the semi-nested PCR for the cox1 detected 6 epg and 526 epg, respectively. Spirocerca lupi was detected in 61.1%, 44.4%, 27.8%, 11.1% and 5.6% of the fecal samples of dogs diagnosed with spirocercosis by using the ITS1 and 18S HRM qPCR assays, fecal flotation, cytb HRM qPCR and cox1 semi-nested PCR, respectively. All dogs positive by fecal flotation were also positive by ITS1 and 18S HRM qPCRs. Quantification of S. lupi eggs was successfully achieved in the HRM qPCRs and compared to the fecal flotation with no significant difference in the calculated concentrations between the HRM qPCRs that detected the 18S and ITS1 loci and the fecal flotation. The HRM qPCR for the 18S cross-amplified DNA from Toxocara canis and Toxascaris leonina. In contrast, the HRM qPCR for ITS1 did not cross-amplify DNA from other canine gastrointestinal parasites. This study presents two new molecular assays with significantly increased sensitivity for confirming and quantifying fecal S. lupi eggs. Of these, the HRM qPCR for ITS1 showed the best performance in terms of the limit of detection and absence of cross-amplification with other parasites. These assays will be

  4. A new restriction endonuclease-based method for highly-specific detection of DNA targets from methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Maria W Smith

    Full Text Available PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP. At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i any mutation of the restriction site reduced the signal to zero; (ii double and triple point mutations of sequences flanking the restriction site reduced restriction to 50-80% of the positive control; and (iii a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same

  5. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Ghaznavi-Rad, Ehsanollah; Nor Shamsudin, Mariana; Sekawi, Zamberi; van Belkum, Alex; Neela, Vasanthakumari

    2010-10-01

    A multiplex PCR assay was developed for the identification of major types and subtypes of staphylococcal cassette chromosome mec (SCCmec) in meticillin-resistant Staphylococcus aureus (MRSA) strains. The method uses a novel 9 valent multiplex PCR plus two primer pairs for S. aureus identification and detection of meticillin resistance. All 389 clinical MRSA isolates from Malaysia and 18 European isolates from the Harmony collection harbouring different SCCmec types that we tested were correctly characterized by our PCR assay. SCCmec type III and V were by far the most common types among both hospital- and community-acquired Malaysian MRSA isolates, with an apparent emergence of MRSA harbouring the IVh type.

  6. Development of a pan-Simbu real-time reverse transcriptase PCR for the detection of Simbu serogroup viruses and comparison with SBV diagnostic PCR systems.

    Science.gov (United States)

    Fischer, Melina; Schirrmeier, Horst; Wernike, Kerstin; Wegelt, Anne; Beer, Martin; Hoffmann, Bernd

    2013-11-05

    sensitivity. According to in silico analyses, this system seems to be able to detect a broad orthobunyavirus spectrum. As an additional feature of the pan-Simbu real-time RT-PCR system, subsequent species classification via sequencing is feasible. Regarding SBV diagnostics, the performance of the S-segment targeting SBV-S3 assay was superior with respect to the analytical sensitivity.

  7. A rapid and direct real time PCR-based method for identification of Salmonella spp

    DEFF Research Database (Denmark)

    Rodriguez-Lazaro, D.; Hernández, Marta; Esteve, T.

    2003-01-01

    The aim of this work was the validation of a rapid, real-time PCR assay based on TaqMan((R)) technology for the unequivocal identification of Salmonella spp. to be used directly on an agar-grown colony. A real-time PCR system targeting at the Salmonella spp. invA gene was optimized and validated ...

  8. Evaluation of three 5' exonuclease-based real-time polymerase chain reaction assays for detection of pathogenic Leptospira species in canine urine.

    Science.gov (United States)

    Fink, Jamie M; Moore, George E; Landau, Ruth; Vemulapalli, Ramesh

    2015-03-01

    Leptospirosis is caused by several pathogenic Leptospira species, and is an important infectious disease of dogs. Early detection of infection is crucial for an effective antibiotic treatment of the disease. Though different polymerase chain reaction (PCR) assays have been developed for detection of pathogenic Leptospira spp., thorough evaluation of the performance of these assays using dog urine samples has not been carried out. In the current study, the performance of 3 real-time PCR (qPCR) assays was assessed, 1 targeting the 16S ribosomal RNA (rRNA) gene and the other 2 targeting the lipL32 gene, a gene for the LipL32 outer membrane protein. With DNA extracted from laboratory-cultured pathogenic Leptospira spp., all 3 qPCR assays showed 100% specificity and had identical lower limits of detection. Compared to a conventional, gel-based PCR assay, all 3 qPCR assays were 100-fold more sensitive. There was a 100% agreement in the results of the 3 assays when tested on urine samples collected aseptically from 30 dogs suspected for leptospirosis. However, when tested on 30 urine samples that were collected by the free-catch method, the 16S rRNA-based assay falsely detected 13.3% of the samples as positive for pathogenic Leptospira spp. Nucleotide sequence analysis of the amplified DNA fragments showed that the assay resulted in false positives because of unrelated bacteria. All urine samples collected from 100 apparently healthy dogs at a local animal shelter tested negative for pathogenic Leptospira spp. These results highlight the importance of sample-specific validation of PCR-based diagnostic assays and the application of appropriately validated assays for more reliable pathogen detection. © 2015 The Author(s).

  9. Development of a quantitative PCR assay for measurement of trichechid herpesvirus 1 load in the Florida manatee ( Trichechus manatus latirostris).

    Science.gov (United States)

    Ferrante, Jason A; Cortés-Hinojosa, Galaxia; Archer, Linda L; Wellehan, James F X

    2017-07-01

    Trichechid herpesvirus 1 (TrHV-1) is currently the only known herpesvirus in any sirenian. We hypothesized that stress may lead to recrudescence of TrHV-1 in manatees, thus making TrHV-1 a potential biomarker of stress. We optimized and validated a TrHV-1 real-time quantitative probe hybridization PCR (qPCR) assay that was used to quantify TrHV-1 in manatee peripheral blood mononuclear cells (PBMCs). Average baseline TrHV-1 loads in a clinically healthy wild Florida manatee ( Trichechus manatus latirostris) population ( n = 42) were 40.9 ± SD 21.2 copies/100 ng DNA; 19 of 42 manatees were positive. TrHV-1 loads were significantly different between the 2 field seasons ( p < 0.025). This optimized and validated qPCR assay may be used as a tool for further research into TrHV-1 in Florida manatees.

  10. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  11. Development of Nested-PCR Assay to Detect Acidovorax citrulli, a Causal Agent of Bacterial Fruit Blotch at Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Young-Tak Kim

    2015-06-01

    Full Text Available The specific and sensitive nested-PCR method to detect Acidovorax citrulli, a causal agent of bacterial fruit blotch on cucurbitaceae, was developed. PCR primers were designed from the draft genome sequence which was obtained with the Next Generation Sequencing of A. citrulli KACC10651, and the nested-PCR primer set (Ac-ORF 21F/Ac-ORF 21R were selected by checking of specificity to A. citrulli with PCR assays. The selected nested-PCR primer amplified the 140 bp DNA only from A. citrulli strains, and detection sensitivity of the nested PCR increased 10,000 times of 1st PCR detection limit (10 ng genomic DNA/PCR. The nested PCR detected A. citrulli from the all samples of seed surface wash (external seed detection of the artificially inoculated watermelon seeds with 101 cfu/ml and above population of A. citrulli while the nested PCR could not detected A. citrulli from the mashed seed suspension (internal seed detection of the all artificially inoculated watermelon seeds. When the naturally infested watermelon seeds (10% seed infested rate with grow-out test used, the nested PCR detected A. citrulli from 2 seed samples out of 10 replication samples externally and 5 seed samples out of 10 replication samples internally. We believe that the nested-PCR developed in this study will be useful method to detect A. citrulli from the Cucurbitaceae seeds.

  12. Multiplex Real-Time qPCR Assay for Simultaneous and Sensitive Detection of Phytoplasmas in Sesame Plants and Insect Vectors.

    Directory of Open Access Journals (Sweden)

    Cengiz Ikten

    Full Text Available Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.. Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease.

  13. Strategies for the inclusion of an internal amplification control in conventional and real time PCR detection of Campylobacter spp. in chicken fecal samples

    DEFF Research Database (Denmark)

    Lund, Marianne; Madsen, Mogens

    2006-01-01

    To illustrate important issues in optimization of a PCR assay with an internal control four different primer combinations for conventional PCR, two non-competitive and two competitive set-ups for real time PCR were used for detection of Campylobacter spp. in chicken faecal samples....... In the conventional PCR assays the internal control was genomic DNA from Yersinia ruckeri, which is not found in chicken faeces. This internal control was also used in one of the set LIPS in real time PCR. In the three other set-ups different DNA fragments of 109 bp length prepared from two oligos of each 66 bp...... by a simple extension reaction was used. All assays were optimized to avoid loss of target sensitivity due to the presence of the internal control by adjusting the amount of internal control primers in the duplex assays and the amount of internal control in all assays. Furthermore. the assays were tested...

  14. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    Science.gov (United States)

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Quantification of DNA fragmentation in processed foods using real-time PCR.

    Science.gov (United States)

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detection and discrimination of five E. coli pathotypes using a combinatory SYBR® Green qPCR screening system.

    Science.gov (United States)

    Barbau-Piednoir, Elodie; Denayer, Sarah; Botteldoorn, Nadine; Dierick, Katelijne; De Keersmaecker, Sigrid C J; Roosens, Nancy H

    2018-04-01

    A detection and discrimination system for five Escherichia coli pathotypes, based on a combination of 13 SYBR® Green qPCR, has been developed, i.e., combinatory SYBR® Green qPCR screening system for pathogenic E. coli (CoSYPS Path E. coli). It allows the discrimination on isolates and the screening of potential presence in food of the following pathotypes of E. coli: shigatoxigenic (STEC) (including enterohemorrhagic (EHEC)), enteropathogenic (EPEC), enteroaggregative (EAggEC), enteroaggregative shigatoxigenic (EAggSTEC), and enteroinvasive (EIEC) E. coli. The SYBR® Green qPCR assays target the uidA, ipaH, eae, aggR, aaiC, stx1, and stx2 genes. uidA controls for E. coli presence and all the other genes are specific targets of E. coli pathotypes. For each gene, two primer pairs have been designed to guarantee a sufficient detection even in case of deletion or polymorphisms in the target gene. Moreover, all the qPCR have been designed to be run together in a single analytical PCR plate. This study includes the primer pairs' design, in silico and in situ selectivity, sensitivity, repeatability, and reproducibility evaluation of the 13 SYBR® Green qPCR assays. Each target displayed a selectivity of 100%. The limit of detection of the 13 assays is between 1 and 10 genomic copies. Their repeatability and reproducibility comply with the European requirements. As a preliminary feasibility study on food, the CoSYPS Path E. coli system was subsequently evaluated on four food matrices artificially contaminated with pathogenic E. coli. It allowed the detection of an initial contamination level as low as 2 to 7 cfu of STEC/25 g of food matrix after 24 h of enrichment.

  17. Quantification of Human Fecal Bifidobacterium Species by Use of Quantitative Real-Time PCR Analysis Targeting the groEL Gene

    Science.gov (United States)

    Junick, Jana

    2012-01-01

    Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log10 cells/g feces was approximately 50%. The quantification limit was 5 to 6 log10 groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR. PMID:22307308

  18. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    Science.gov (United States)

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  19. Development of a novel single tube nested PCR for enhanced detection of cytomegalovirus DNA from dried blood spots.

    Science.gov (United States)

    Atkinson, C; Emery, V C; Griffiths, P D

    2014-02-01

    Newborn screening for congenital cytomegalovirus (CCMV) using dried blood spots (DBS) has been proposed because many developed countries have DBS screening programmes in place for other diseases. The aim of this study was to develop a rapid, single tube nested polymerase chain reaction (PCR) method for enhanced detection of CMV from DBS compared to existing (single target) real time PCRs. The new method was compared with existing real time PCRs for sensitivity and specificity. Overall sensitivity of the single target PCR assays in both asymptomatic and symptomatic infants with laboratory confirmed congenital CMV was 69% (CMV PCR or culture positive before day 21 of life). In contrast, the single tube nested assay had an increased sensitivity of 81% with100% specificity. Overall the assay detected CMV from a DBS equivalent to an original blood sample which contained 500IU/ml. In conclusion this single tube nested methodology allows simultaneous amplification and detection of CMV DNA in 1.5h removing the associated contamination risk of a two step nested PCR. Owing to its increased sensitivity, it has the potential to be used as a screening assay and ultimately allow early identification and intervention for children with congenital CMV. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR.

    Science.gov (United States)

    Daems, Devin; Peeters, Bernd; Delport, Filip; Remans, Tony; Lammertyn, Jeroen; Spasic, Dragana

    2017-07-31

    Abstract : Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery ( Apium graveolens ) is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR) is followed by a high-resolution melting analysis (HRM). In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA) was developed to determine different concentrations of celery DNA (1 pM-0.1 fM). The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd ). The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement ( R ² = 0.96). In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  1. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples.

    Science.gov (United States)

    Turankar, Ravindra P; Pandey, Shradha; Lavania, Mallika; Singh, Itu; Nigam, Astha; Darlong, Joydeepa; Darlong, Fam; Sengupta, Utpal

    2015-03-01

    PCR assay is a highly sensitive, specific and reliable diagnostic tool for the identification of pathogens in many infectious diseases. Genome sequencing Mycobacterium leprae revealed several gene targets that could be used for the detection of DNA from clinical and environmental samples. The PCR sensitivity of particular gene targets for specific clinical and environmental isolates has not yet been established. The present study was conducted to compare the sensitivity of RLEP, rpoT, Sod A and 16S rRNA gene targets in the detection of M. leprae in slit skin smear (SSS), blood, soil samples of leprosy patients and their surroundings. Leprosy patients were classified into Paucibacillary (PB) and Multibacillary (MB) types. Ziehl-Neelsen (ZN) staining method for all the SSS samples and Bacteriological Index (BI) was calculated for all patients. Standard laboratory protocol was used for DNA extraction from SSS, blood and soil samples. PCR technique was performed for the detection of M. leprae DNA from all the above-mentioned samples. RLEP gene target was able to detect the presence of M. leprae in 83% of SSS, 100% of blood samples and in 36% of soil samples and was noted to be the best out of all other gene targets (rpoT, Sod A and 16S rRNA). It was noted that the RLEP gene target was able to detect the highest number (53%) of BI-negative leprosy patients amongst all the gene targets used in this study. Amongst all the gene targets used in this study, PCR positivity using RLEP gene target was the highest in all the clinical and environmental samples. Further, the RLEP gene target was able to detect 53% of blood samples as positive in BI-negative leprosy cases indicating its future standardization and use for diagnostic purposes. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  2. Detection of hepatitis C virus RNA: comparison of one-stage polymerase chain reaction (PCR) with nested-set PCR.

    OpenAIRE

    Gretch, D R; Wilson, J J; Carithers, R L; dela Rosa, C; Han, J H; Corey, L

    1993-01-01

    We evaluated a new hepatitis C virus RNA assay based on one-stage PCR followed by liquid hybridization with an oligonucleotide probe and compared it with nested-set PCR. The one-stage and nested-set PCR assays had identical sensitivities in analytical experiments and showed 100% concordance when clinical specimens were used. One-stage PCR may be less prone to contamination than nested-set PCR.

  3. PCR-based assays versus direct sequencing for evaluating the effect of KRAS status on anti-EGFR treatment response in colorectal cancer patients: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Lianfeng Shan

    Full Text Available The survival rate of colorectal cancer (CRC patients carrying wild-type KRAS is significantly increased by combining anti-EGFR monoclonal antibody (mAb with standard chemotherapy. However, conflicting data exist in both the wild-type KRAS and mutant KRAS groups, which strongly challenge CRC anti-EGFR treatment. Here we conducted a meta-analysis in an effort to provide more reliable information regarding anti-EGFR treatment in CRC patients.We searched full reports of randomized clinical trials using Medline, the American Society of Clinical Oncology (ASCO, and the European Society for Medical Oncology (ESMO. Two investigators independently screened the published literature according to our inclusive and exclusive criteria and the relative data were extracted. We used Review Manager 5.2 software to analyze the data.The addition of anti-EGFR mAb to standard chemotherapy significantly improved both progression-free survival (PFS and median overall survival (mOS in the wild-type KRAS group; hazard ratios (HRs for PFS and mOS were 0.70 [95% confidence interval (CI, 0.58-0.84] and 0.83 [95% CI, 0.75-0.91], respectively. In sub-analyses of the wild-type KRAS group, when PCR-based assays are employed, PFS and mOS notably increase: the HRs were 0.74 [95% CI, 0.62-0.88] and 0.87 [95% CI, 0.78-0.96], respectively. In sub-analyses of the mutant KRAS group, neither PCR-based assays nor direct sequencing enhance PFS or mOS.Our data suggest that PCR-based assays with high sensitivity and specificity allow accurate identification of patients with wild-type KRAS and thus increase PFS and mOS. Furthermore, such assays liberate patients with mutant KRAS from unnecessary drug side effects, and provide them an opportunity to receive appropriate treatment. Thus, establishing a precise standard reference test will substantially optimize CRC-targeted therapies.

  4. A TaqMan Real-Time PCR Assay for Detection and Quantification of Sporisorium scitamineum in Sugarcane

    Directory of Open Access Journals (Sweden)

    Yachun Su

    2013-01-01

    Full Text Available Sporisorium scitamineum is a fungal smut pathogen epidemic in sugarcane producing areas. Early detection and proper identification of the smut are an essential requirement in its management practice. In this study, we developed a TaqMan real-time PCR assay using specific primers (bEQ-F/bEQ-R and a TaqMan probe (bEQ-P which were designed based on the bE (b East mating type gene (Genbank Accession no. U61290.1. This method was more sensitive (a detection limit of 10 ag pbE DNA and 0.8 ng sugarcane genomic DNA than that of conventional PCR (10 fg and 100 ng, resp.. Reliability was demonstrated through the positive detection of samples collected from artificially inoculated sugarcane plantlets (FN40. This assay was capable of detecting the smut pathogen at the initial stage (12 h of infection and suitable for inspection of sugarcane pathogen-free seed cane and seedlings. Furthermore, quantification of pathogen was verified in pathogen-challenged buds in different sugarcane genotypes, which suggested its feasibility for evaluation of smut resistance in different sugarcane genotypes. Taken together, this novel assay can be used as a diagnostic tool for sensitive, accurate, fast, and quantitative detection of the smut pathogen especially for asymptomatic seed cane or plants and evaluation of smut resistance of sugarcane genotypes.

  5. Interlaboratory comparison of three microbial source tracking quantitative polymerase chain reaction (qPCR) assays from fecal-source and environmental samples

    Science.gov (United States)

    Stelzer, Erin A.; Strickler, Kriston M.; Schill, William B.

    2012-01-01

    During summer and early fall 2010, 15 river samples and 6 fecal-source samples were collected in West Virginia. These samples were analyzed by three laboratories for three microbial source tracking (MST) markers: AllBac, a general fecal indicator; BacHum, a human-associated fecal indicator; and BoBac, a ruminant-associated fecal indicator. MST markers were analyzed by means of the quantitative polymerase chain reaction (qPCR) method. The aim was to assess interlaboratory precision when the three laboratories used the same MST marker and shared deoxyribonucleic acid (DNA) extracts of the samples, but different equipment, reagents, and analyst experience levels. The term assay refers to both the markers and the procedure differences listed above. Interlaboratory precision was best for all three MST assays when using the geometric mean absolute relative percent difference (ARPD) and Friedman's statistical test as a measure of interlaboratory precision. Adjustment factors (one for each MST assay) were calculated using results from fecal-source samples analyzed by all three laboratories and applied retrospectively to sample concentrations to account for differences in qPCR results among labs using different standards and procedures. Following the application of adjustment factors to qPCR results, ARPDs were lower; however, statistically significant differences between labs were still observed for the BacHum and BoBac assays. This was a small study and two of the MST assays had 52 percent of samples with concentrations at or below the limit of accurate quantification; hence, more testing could be done to determine if the adjustment factors would work better if the majority of sample concentrations were above the quantification limit.

  6. Ultra-fast DNA-based multiplex convection PCR method for meat species identification with possible on-site applications.

    Science.gov (United States)

    Song, Kyung-Young; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-08-15

    The aim of this study was to develop an ultra-fast molecular detection method for meat identification using convection Palm polymerase chain reaction (PCR). The mitochondrial cytochrome b (Cyt b) gene was used as a target gene. Amplicon size was designed to be different for beef, lamb, and pork. When these primer sets were used, each species-specific set specifically detected the target meat species in singleplex and multiplex modes in a 24min PCR run. The detection limit was 1pg of DNA for each meat species. The convection PCR method could detect as low as 1% of meat adulteration. The stability of the assay was confirmed using thermal processed meats. We also showed that direct PCR can be successfully performed with mixed meats and food samples. These results suggest that the developed assay may be useful in the authentication of meats and meat products in laboratory and rapid on-site applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microsphere Suspension Array Assays for Detection and Differentiation of Hendra and Nipah Viruses

    Directory of Open Access Journals (Sweden)

    Adam J. Foord

    2013-01-01

    Full Text Available Microsphere suspension array systems enable the simultaneous fluorescent identification of multiple separate nucleotide targets in a single reaction. We have utilized commercially available oligo-tagged microspheres (Luminex MagPlex-TAG to construct and evaluate multiplexed assays for the detection and differentiation of Hendra virus (HeV and Nipah virus (NiV. Both these agents are bat-borne zoonotic paramyxoviruses of increasing concern for veterinary and human health. Assays were developed targeting multiple sites within the nucleoprotein (N and phosphoprotein (P encoding genes. The relative specificities and sensitivities of the assays were determined using reference isolates of each virus type, samples from experimentally infected horses, and archival veterinary diagnostic submissions. Results were assessed in direct comparison with an established qPCR. The microsphere array assays achieved unequivocal differentiation of HeV and NiV and the sensitivity of HeV detection was comparable to qPCR, indicating high analytical and diagnostic specificity and sensitivity.

  8. A fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp.

    Science.gov (United States)

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-01

    The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.

  9. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  10. Nested PCR for specific diagnosis of Taenia solium taeniasis.

    Science.gov (United States)

    Mayta, Holger; Gilman, Robert H; Prendergast, Emily; Castillo, Janeth P; Tinoco, Yeny O; Garcia, Hector H; Gonzalez, Armando E; Sterling, Charles R

    2008-01-01

    Taeniasis due to Taenia solium is a disease with important public health consequences, since the larval stage is not exclusive to the animal intermediate, the pig, but also infects humans, causing neurocysticercosis. Early diagnosis and treatment of T. solium tapeworm carriers is important to prevent human cysticercosis. Current diagnosis based on microscopic observation of eggs lacks both sensitivity and specificity. In the present study, a nested-PCR assay targeting the Tso31 gene was developed for the specific diagnosis of taeniasis due to T. solium. Initial specificity and sensitivity testing was performed using stored known T. solium-positive and -negative samples. The assay was further analyzed under field conditions by conducting a case-control study of pretreatment stool samples collected from a population in an area of endemicity. Using the archived samples, the assay showed 97% (31/32) sensitivity and 100% (123/123) specificity. Under field conditions, the assay had 100% sensitivity and specificity using microscopy/enzyme-linked immunosorbent assay coproantigen testing as the gold standards. The Tso31 nested PCR described here might be a useful tool for the early diagnosis and prevention of taeniasis/cysticercosis.

  11. Toward an international standard for PCR-based detection of Escherichia coli O157 - Part 1. Assay development and multi-center validation

    DEFF Research Database (Denmark)

    Abdulmawjood, A.; Bulte, M.; Cook, N.

    2003-01-01

    As part of a major European research project, a diagnostic PCR assay, including an internal amplification control, was developed and validated in a collaborative trial for the detection of Escherichia coli O157. The assay is based on amplification of sequences of the rJbE O157 gene. The collabora...

  12. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  13. Sequence polymorphism can produce serious artefacts in real-time PCR assays: hard lessons from Pacific oysters

    Directory of Open Access Journals (Sweden)

    Camara Mark D

    2008-05-01

    potential difficulties for using Q-PCR as a validation tool for transcriptome analysis in the presence of sequence polymorphism and emphasizes the need for extreme caution and thorough primer testing when assaying genetically diverse biological materials such as Pacific oysters. Our findings suggest that melt-curve analysis alone may not be sufficient as a mean of identifying acceptable Q-PCR primers. Minimally, testing numerous primer pairs seems to be necessary to avoid false conclusions from flawed Q-PCR assays for which sequence variation among individuals produces artifactual and unreliable quantitative results.

  14. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    Directory of Open Access Journals (Sweden)

    Wagner Mark C

    2005-05-01

    Full Text Available Abstract Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As

  15. An inter-laboratory validation of a real time PCR assay to measure host excretion of bacterial pathogens, particularly of Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Emma R Travis

    Full Text Available Advances in the diagnosis of Mycobacterium bovis infection in wildlife hosts may benefit the development of sustainable approaches to the management of bovine tuberculosis in cattle. In the present study, three laboratories from two different countries participated in a validation trial to evaluate the reliability and reproducibility of a real time PCR assay in the detection and quantification of M. bovis from environmental samples. The sample panels consisted of negative badger faeces spiked with a dilution series of M. bovis BCG Pasteur and of field samples of faeces from badgers of unknown infection status taken from badger latrines in areas with high and low incidence of bovine TB (bTB in cattle. Samples were tested with a previously optimised methodology. The experimental design involved rigorous testing which highlighted a number of potential pitfalls in the analysis of environmental samples using real time PCR. Despite minor variation between operators and laboratories, the validation study demonstrated good concordance between the three laboratories: on the spiked panels, the test showed high levels of agreement in terms of positive/negative detection, with high specificity (100% and high sensitivity (97% at levels of 10(5 cells g(-1 and above. Quantitative analysis of the data revealed low variability in recovery of BCG cells between laboratories and operators. On the field samples, the test showed high reproducibility both in terms of positive/negative detection and in the number of cells detected, despite low numbers of samples identified as positive by any laboratory. Use of a parallel PCR inhibition control assay revealed negligible PCR-interfering chemicals co-extracted with the DNA. This is the first example of a multi-laboratory validation of a real time PCR assay for the detection of mycobacteria in environmental samples. Field studies are now required to determine how best to apply the assay for population-level b

  16. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus

    NARCIS (Netherlands)

    E. Ghaznavi Rad (Ehsanollah); N.S. Mariana (Nor Shamsudin); Z. Sekawi (Zamberi); A.F. van Belkum (Alex); V. Neela (Vasanthakumari)

    2010-01-01

    textabstractA multiplex PCR assay was developed for the identification of major types and subtypes of staphylococcal cassette chromosome mec (SCCmec) in meticillin-resistant Staphylococcus aureus (MRSA) strains. The method uses a novel 9 valent multiplex PCR plus two primer pairs for S. aureus

  17. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  18. Real-time PCR systems targeting giant viruses of amoebae and their virophages.

    Science.gov (United States)

    Ngounga, Tatsiana; Pagnier, Isabelle; Reteno, Dorine-Gaelle Ikanga; Raoult, Didier; La Scola, Bernard; Colson, Philippe

    2013-01-01

    Giant viruses that infect amoebae, including mimiviruses and marseilleviruses, were first described in 2003. Virophages were subsequently described that infect mimiviruses. Culture isolation with Acanthamoeba spp. and metagenomic studies have shown that these giant viruses are common inhabitants of our biosphere and have enabled the recent detection of these viruses in human samples. However, the genomes of these viruses display substantial genetic diversity, making it a challenge to examine their presence in environmental and clinical samples using conventional and real-time PCR. We designed and evaluated the performance of PCR systems capable of detecting all currently isolated mimiviruses, marseilleviruses and virophages to assess their prevalence in various samples. Our real-time PCR assays accurately detected all or most of the members of the currently delineated lineages of giant viruses infecting acanthamoebae as well as the mimivirus virophages, and enabled accurate classification of the mimiviruses of amoebae in lineages A, B or C. We were able to detect four new mimiviruses directly from environmental samples and correctly classified these viruses within mimivirus lineage C. This was subsequently confirmed by culture on amoebae followed by partial Sanger sequencing. PCR systems such as those implemented here may contribute to an improved understanding of the prevalence of mimiviruses, their virophages and marseilleviruses in humans.

  19. Simultaneous Detection of Ricin and Abrin DNA by Real-Time PCR (qPCR

    Directory of Open Access Journals (Sweden)

    Roman Wölfel

    2012-08-01

    Full Text Available Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5′-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  20. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients

    Directory of Open Access Journals (Sweden)

    Ngo Tat Trung

    2018-02-01

    Conclusion: The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients.

  1. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system

    Directory of Open Access Journals (Sweden)

    He Junkun

    2012-06-01

    Full Text Available Abstract Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the liposomes allows nonspecific DNA in the assay medium to be degraded with DNase I prior to quantification of the encapsulated reporter by PCR, which reduces false-positive results and improves quantitative accuracy. The ability to

  2. Novel Molecular Beacon Probe-Based Real-Time RT-PCR Assay for Diagnosis of Crimean-Congo Hemorrhagic Fever Encountered in India

    Directory of Open Access Journals (Sweden)

    Aman Kamboj

    2014-01-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is an emerging zoonotic disease in India and requires immediate detection of infection both for preventing further transmission and for controlling the infection. The present study describes development, optimization, and evaluation of a novel molecular beacon-based real-time RT-PCR assay for rapid, sensitive, and specific diagnosis of Crimean-Congo hemorrhagic fever virus (CCHFV. The developed assay was found to be a better alternative to the reported TaqMan assay for routine diagnosis of CCHF.

  3. A new real-time PCR assay for rapid identification of the S. aureus/MRSA strains

    Directory of Open Access Journals (Sweden)

    Ivan Manga

    2013-01-01

    Full Text Available The Methicillin-resistant Staphylococcus aureus (MRSA with the livestock-associated MRSA (LA-MRSA are of great interest to scientists and general public. The aim of our study was to present a new more rapid and reliable diagnostic method working on the RT-PCR platform applicable for monitoring of MRSA/S. aureus. The parallel testing of the S. aureus specific nuc gene sequence and the mecA gene sequence was utilised for this purpose. A collection of ten S. aureus/MRSA reference strains, fifteen genetically related non S. aureus reference strains and fifty-six environmental samples was employed for estimation of the assay performance and parameters. The environmental samples acquired in the Czech livestock farms were represented with the livestock and human nasal mucosae or skin swabs, the slaughter meat swabs and were chosen preferentially from individuals with previously confi rmed or suspected positive MRSA/S. aureus cases. The classic selective cultivation approach with the biochemical test and agar disk diffusion test was accepted as reference diagnostic method. As there were no culture positive samples that were negative using RT-PCR, our method featured with 100% sensitivity in comparison to reference method. The limit of detection allowed to identify from tens to hundreds copies of S. aureus/MRSA genome. Further, the RT-PCR assay featured with 100% inclusivity and 95% exclusivity at Cq value below 30. These parameters suggested on powerful and reliable diagnostic method with real potential of practical utilisation. We consider our method as ideal for testing of individual suspected colonies, when the results can be acquired in less than 1.5 hour.

  4. Development of duplex PCR for simultaneous detection of Theileria spp. and Anaplasma spp. in sheep and goats.

    Science.gov (United States)

    Cui, Yanyan; Zhang, Yan; Jian, Fuchun; Zhang, Longxian; Wang, Rongjun; Cao, Shuxuan; Wang, Xiaoxing; Yan, Yaqun; Ning, Changshen

    2017-05-01

    Theileria spp. and Anaplasma spp., which are important tick-borne pathogens (TBPs), impact the health of humans and animals in tropical and subtropical areas. Theileria and Anaplasma co-infections are common in sheep and goats. Following alignment of the relevant DNA sequences, two primer sets were designed to specifically target the Theileria spp. 18S rRNA and Anaplasma spp. 16S rRNA gene sequences. Genomic DNA from the two genera was serially diluted tenfold for testing the sensitivities of detection of the primer sets. The specificities of the primer sets were confirmed when DNA from Anaplasma and Theileria (positive controls), other related hematoparasites (negative controls) and ddH 2 O were used as templates. Fifty field samples were also used to evaluate the utility of single PCR and duplex PCR assays, and the detection results were compared with those of the PCR methods previously published. An optimized duplex PCR assay was established from the two primer sets based on the relevant genes from the two TBPs, and this assay generated products of 298-bp (Theileria spp.) and 139-bp (Anaplasma spp.). The detection limit of the assay was 29.4 × 10 -3  ng per μl, and there was no cross-reaction with the DNA from other hematoparasites. The results showed that the newly developed duplex PCR assay had an efficiency of detection (P > 0.05) similar to other published PCR methods. In this study, a duplex PCR assay was developed that can simultaneously identify Theileria spp. and Anaplasma spp. in sheep and goats. This duplex PCR is a potentially valuable assay for epidemiological studies of TBPs in that it can detect cases of mixed infections of the pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Optimization and Validation of Real Time PCR Assays for Absolute Quantification of toxigenic Vibrio cholerae and Escherichia coli

    DEFF Research Database (Denmark)

    Ferdous, J.; Hossain, Z. Z.; Tulsiani, S.

    2016-01-01

    and quantify DNA by real-time PCR for two pathogenic species, Escherichia coli (E. coli) and Vibrio cholerae (V.cholerae). In order to generate a standard curve, total bacterial DNA was diluted in a 10-fold series and each sample was adjusted to an estimated cell count. The starting bacterial DNA concentration......Quantitative real-time PCR (qPCR) is a dynamic and cogent assay for the detection and quantification of specified nucleic acid sequences and is more accurate compared to both traditional culture based techniques and ‘end point’ conventional PCR. Serial dilution of bacterial cell culture provides...... significant, low F ratios indicated that there was some variation in CT values when genomic DNA dilution was compared to dilution of cell suspension in media. Different water samples spiked with pure cultures of E. coli and V. cholerae were used as unknown samples. The standard curve constructed by the serial...

  6. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro...... axenic cultivation system for P. carinii and confirmed our microscopy findings that no organism multiplication had occurred during culture. For all cultures analyzed, QTD PCR assays showed a decrease in P. carinii DNA that exceeded the expected decrease due to dilution of the inoculum upon transfer......A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD...

  7. New Real-Time PCR Assays for Detection of Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Group.

    Science.gov (United States)

    Shallom, Shamira J; Moura, Natalia S; Olivier, Kenneth N; Sampaio, Elizabeth P; Holland, Steven M; Zelazny, Adrian M

    2015-11-01

    Members of the Mycobacterium abscessus group (MAG) cause lung, soft tissue, and disseminated infections. The oral macrolides clarithromycin and azithromycin are commonly used for treatment. MAG can display clarithromycin resistance through the inducible erm(41) gene or via acquired mutations in the rrl (23S rRNA) gene. Strains harboring a truncation or a T28C substitution in erm(41) lose the inducible resistance trait. Phenotypic detection of clarithromycin resistance requires extended incubation (14 days), highlighting the need for faster methods to detect resistance. Two real-time PCR-based assays were developed to assess inducible and acquired clarithromycin resistance and tested on a total of 90 clinical and reference strains. A SYBR green assay was designed to distinguish between a full-length and truncated erm(41) gene by temperature shift in melting curve analysis. Single nucleotide polymorphism (SNP) allele discrimination assays were developed to distinguish T or C at position 28 of erm(41) and 23S rRNA rrl gene mutations at position 2058 and/or 2059. Truncated and full-size erm(41) genes were detected in 21/90 and 69/90 strains, respectively, with 64/69 displaying T at nucleotide position 28 and 5/69 containing C at that position. Fifteen isolates showed rrl mutations conferring clarithromycin resistance, including A2058G (11 isolates), A2058C (3 isolates), and A2059G (1 isolate). Targeted sequencing and phenotypic assessment of resistance concurred with molecular assay results. Interestingly, we also noted cooccurring strains harboring an active erm(41), inactive erm(41), and/or acquired mutational resistance, as well as slowly growing MAG strains and also strains displaying an inducible resistance phenotype within 5 days, long before the recommended 14-day extended incubation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Detection of human papillomavirus in pterygium and conjunctival papilloma by hybrid capture II and PCR assays.

    Science.gov (United States)

    Takamura, Y; Kubo, E; Tsuzuki, S; Akagi, Y

    2008-11-01

    To elucidate the putative role of human papillomavirus (HPV) infection in pterygium and conjunctival papilloma. Hybrid capture II (HC-II) and polymerase chain reaction (PCR) assays were performed to detect HPV in pterygium (42 samples obtained from 40 patients) and conjunctival papilloma (8 samples from 6 patients). The amount of HPV DNA was evaluated by measurement of relative light units (RLUs) on a luminometer. All papilloma samples were positive for HPV DNA by PCR and HC-II. The RLU values for specimens of recurrent and re-recurrent papilloma were markedly higher than those for specimens of primary lesions. HPV was detected by PCR in 2 of 42 (4.8%) beta-globin-positive pterygium specimens, whereas HC-II showed that HPV was negative in all pterygium samples. Our results support the hypothesis that HPV DNA is associated with the pathogenesis of conjunctival papilloma, but not pterygium. RLU measurement by HC-II may serve as a marker for evaluating the activity of HPV in conjunctival tumours.

  9. Correlation of immune activation with HIV-1 RNA levels assayed by real-time RT-PCR in HIV-1 Subtype C infected patients in Northern India

    Science.gov (United States)

    Agarwal, Atima; Sankaran, Sumathi; Vajpayee, Madhu; Sreenivas, V; Seth, Pradeep; Dandekar, Satya

    2014-01-01

    Background Assays with specificity and cost effectiveness are needed for the measurement of HIV-1 burden to monitor disease progression or response to anti-retroviral therapy (ART) in HIV-1 subtype C infected patients. Objectives The objective of this study was to develop and validate an affordable; one step Real-Time RT-PCR assay with high specificity and sensitivity to measure plasma HIV-1 loads in HIV-1 subtype C infected patients. Results We developed an RT-PCR assay to detect and quantitate plasma HIV-1 levels in HIV-1 subtype C infected patients. An inverse correlation between plasma viral loads (PVL) and CD4+ T-cell numbers was detected at all CDC stages. Significant correlations were found between CD8+ T-cell activation and PVL, as well as with the clinical and immunological status of the patients. Conclusions The RT-PCR assay provides a sensitive method to measure PVL in HIV-1 subtype C infected patients. Viral loads correlated with immune activation and can be used to monitor HIV care in India. PMID:17962068

  10. Prospective evaluation of the SeptiFAST multiplex real-time PCR assay for surveillance and diagnosis of infections in haematological patients after allogeneic stem cell transplantation compared to routine microbiological assays and an in-house real-time PCR method.

    Science.gov (United States)

    Elges, Sandra; Arnold, Renate; Liesenfeld, Oliver; Kofla, Grzegorz; Mikolajewska, Agata; Schwartz, Stefan; Uharek, Lutz; Ruhnke, Markus

    2017-12-01

    We prospectively evaluated a multiplex real-time PCR assay (SeptiFast, SF) in a cohort of patients undergoing allo-BMT in comparison to an in-house PCR method (IH-PCR). Overall 847 blood samples (mean 8 samples/patient) from 104 patients with haematological malignancies were analysed. The majority of patients had acute leukaemia (62%) with a mean age of 52 years (54% female). Pathogens could be detected in 91 of 847 (11%) samples by SF compared to 38 of 205 (18.5%) samples by BC, and 57 of 847 (6.7%) samples by IH-PCR. Coagulase-negative staphylococci (n=41 in SF, n=29 in BC) were the most frequently detected bacteria followed by Escherichia coli (n=9 in SF, n=6 in BC). Candida albicans (n=17 in SF, n=0 in BC, n=24 in IH-PCR) was the most frequently detected fungal pathogen. SF gave positive results in 5% of samples during surveillance vs in 26% of samples during fever episodes. Overall, the majority of blood samples gave negative results in both PCR methods resulting in 93% overall agreement resulting in a negative predictive value of 0.96 (95% CI: 0.95-0.97), and a positive predictive value of 0.10 (95% CI: -0.01 to 0.21). SeptiFast appeared to be superior over BC and the IH-PCR method. © 2017 Blackwell Verlag GmbH.

  11. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  12. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR

    Directory of Open Access Journals (Sweden)

    Devin Daems

    2017-07-01

    Full Text Available Abstract: Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery (Apium graveolens is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR is followed by a high-resolution melting analysis (HRM. In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA was developed to determine different concentrations of celery DNA (1 pM–0.1 fM. The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd. The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement (R2 = 0.96. In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  13. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Science.gov (United States)

    Takei, Hiraku; Morishita, Soji; Araki, Marito; Edahiro, Yoko; Sunami, Yoshitaka; Hironaka, Yumi; Noda, Naohiro; Sekiguchi, Yuji; Tsuneda, Satoshi; Ohsaka, Akimichi; Komatsu, Norio

    2014-01-01

    A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  14. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Directory of Open Access Journals (Sweden)

    Hiraku Takei

    Full Text Available A gain-of-function mutation in the myeloproliferative leukemia virus (MPL gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs. The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5% of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  15. Lactase Non-Persistence Genotyping: Comparison of Two Real-Time PCR Assays and Assessment of Concomitant Fructose/Sorbitol Malabsorption Rates.

    Science.gov (United States)

    Enko, Dietmar; Pollheimer, Verena; Németh, Stefan; Pühringer, Helene; Stolba, Robert; Halwachs-Baumann, Gabriele; Kriegshäuser, Gernot

    2016-01-01

    Genetic testing is a standard technique for the diagnosis of primary adult-type hypolactasia, also referred to as lactase non-persistence. The aim of this study was to compare the lactase gene (LCT) C/T-13910 polymorphism genotyping results of two commercially available real-time (RT)-PCR assays in patients referred to our outpatient clinic for primary lactose malabsorption testing. Furthermore, concomitant conditions of fructose/sorbitol malabsorption were assessed. Samples obtained from 100 patients were tested in parallel using the LCT T-13910C ToolSet for Light Cycler (Roche, Rotkreuz, Switzerland) and the LCT-13910C>T RealFast Assay (ViennaLab Diagnostics GmbH, Vienna, Austria). Additionally, patients were also screened for the presence of fructose/sorbitol malabsorption by functional hydrogen (H2)/methane (CH4) breath testing (HMBT). Cohen's Kappa (κ) was used to calculate the agreement between the two genotyping methods. The exact Chi-Square test was performed to compare fructose/sorbitol HMBT with LCT genotyping results. Twenty-one (21.0%) patients had a LCT C/C-13910 genotype suggestive of lactase non-persistence, and 79 (79.0%) patients were identified with either a LCT T/C-13910 or T/T-13910 genotype (i.e., lactase persistence). In all genotype groups, concordance between the two RT-PCR assays was 100%. Cohen's κ demonstrated perfect observed agreement (p sorbitol malabsorption was observed in 13/100 (13.0%) and 25/100 (25.0%) individuals, respectively. Both RT-PCR assays are robust and reliable LCT genotyping tools in a routine clinical setting. Concomitant fructose and/or sorbitol malabsorption should be considered in individuals with suspected lactase-non-persistence. However, standardization of clinical interpretation of laboratory HMBT results is required.

  16. Rapid and accurate identification by real-time PCR of biotoxin-producing dinoflagellates from the family gymnodiniaceae.

    Science.gov (United States)

    Smith, Kirsty F; de Salas, Miguel; Adamson, Janet; Rhodes, Lesley L

    2014-03-07

    The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  17. Comparative Study of Wheatley’s Trichrome Stain and In-vitro Culture against PCR Assay for the Diagnosis of Blastocystis sp. in Stool Samples

    Directory of Open Access Journals (Sweden)

    Nabilah Amelia MOHAMMAD

    2018-03-01

    Full Text Available Background: This study evaluated the performance of routine permanent stain and cultivation method in comparison with polymerase chain reaction assay as the reference technique to detect Blastocystis sp.Methods: A cross-sectional study was conducted among aboriginal populations that reside in Pahang, Peninsular Malaysia in Feb to Mar 2015. A total of 359 stool samples were examined using Wheatley’s trichrome stain, in-vitro cultivation in Jones’ medium and PCR assay. Positive amplicons were subjected to sequencing and phylogenetic analysis.Results: Fifty-six (15.6% samples were detected positive with Blastocystis sp. by Wheatley’s trichrome stain and 73 (20.3% by in-vitro culture, while PCR assay detected 71 (19.8% positive samples. Detection rate of Blastocystis sp. was highest in combination of microscopic techniques (27.9%. The sensitivity and specificity of Wheatley’s trichrome staining and in-vitro culture techniques compared to PCR assay were 49.3% (95% CI: 37.2-61.4 and 92.7% (95% CI: 89.1-95.4 and 39.4% (95% CI: 28.0-51.8 and 84.4% (95% CI: 79.7-88.4, respectively. However, the sensitivity [60.6% (95% CI: 48.3-71.9] of the method increased when both microscopic techniques were performed together. False negative results produced by microscopic techniques were associated with subtype 3. The agreement between Wheatley’s trichrome stain, in-vitro culture and combination of microscopic techniques with PCR assay were statistically significant by Kappa statistics (Wheatley’s trichrome stain: K = 0.456, P<0.001; in-vitro culture: K = 0.236, P<0.001 and combination techniques: K = 0.353, P<0.001.Conclusion: The combination of microscopic technique is highly recommended to be used as a screening method for the diagnosis of Blastocystis infection either for clinical or epidemiological study to ensure better and accurate diagnosis.

  18. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    Science.gov (United States)

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  19. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  20. Development of a Species-Specific PCR Assay for Detection of Leishmania donovani in Clinical Samples from Patients with Kala-Azar and Post-Kala-Azar Dermal Leishmaniasis

    Science.gov (United States)

    Salotra, Poonam; Sreenivas, G.; Pogue, Gregory P.; Lee, Nancy; Nakhasi, Hira L.; Ramesh, V.; Negi, N. S.

    2001-01-01

    We have developed a PCR assay that is capable of amplifying kinetoplast DNA (kDNA) of Leishmania donovani in a species-specific manner among Old World leishmanias. With Indian strains and isolates of L. donovani the assay was sensitive enough to detect kDNA in an amount equivalent to a single parasite or less. The extreme sensitivity of the assay was reflected in its ability to detect parasite DNA from small volumes of peripheral blood of patients with kala-azar (KA) and from skin lesions from patients with post-KA dermal leishmaniasis (PKDL). A total of 107 clinical leishmaniasis samples were analyzed. Of these 102 (95.3%) were positive by PCR. The test provided a diagnosis of KA with 96% sensitivity using patient whole-blood samples instead of bone marrow or spleen aspirates that are obtained by invasive procedures. The assay was also successful in the diagnosis of 45 of 48 PKDL cases (93.8%). Cross-reactions with pathogens prevalent in the area of endemicity, viz., Mycobacterium tuberculosis, Mycobacterium leprae, and Plasmodium spp., could be ruled out. Eighty-one control samples, including dermal scrapings from healthy portions of skin from patients with PKDL were all negative. Two of twenty controls from the area of endemicity were found positive by PCR assay; however, there was a good possibility that these two were asymptomatic carriers since they were serologically positive for KA. Thus, this PCR assay represents a tool for the diagnosis of KA and PKDL in Indian patients in a noninvasive manner, with simultaneous species identification of parasites in clinical samples. PMID:11230394

  1. Comparison of one commercial and two in-house TaqMan multiplex real-time PCR assays for detection of enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli.

    Science.gov (United States)

    Hahn, Andreas; Luetgehetmann, Marc; Landt, Olfert; Schwarz, Norbert Georg; Frickmann, Hagen

    2017-11-01

    Enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli (EPEC, ETEC, EAEC) are among the most frequent causes of diarrhoea during travel or on military deployments. Cost-efficient and reliable real-time multiplex PCR (mPCR) assays are desirable for surveillance or point prevalence studies in remote and resource-limited tropical settings. We compared one commercial PCR kit and two in-house assays without using a gold standard to estimate sensitivity and specificity of each assay. Residual materials from nucleic acid extractions of stool samples from two groups with presumably different prevalences and increased likelihood of being infected or colonised by diarrhoeagenic E. coli were included in the assessment. One group comprised samples from returnees from tropical deployments, the second group was of migrants and study participants from high-endemicity settings. Each sample was assessed with all of the PCR assays. Cycle threshold (Ct) values were descriptively compared. The calculated sensitivities for the commercial test vs. the in-house tests were for EPEC 0.84 vs. 0.89 and 0.96, for ETEC 0.83 vs. 0.76 and 0.61, and for EAEC 0.69 vs. 0.54 and 0.69. False positive results were rare - specificity was 0.94 and 0.97 for two EPEC tests and 1.0 for all other tests. Most positive samples had late Ct values corresponding to low quantities of pathogens. Discordant test results were associated with late Ct values. As commercial and in-house assays showed comparable results, in-house tests can be assumed to be safe while affording considerable savings, making them a valuable alternative for surveillance testing in resource-limited tropical areas. © 2017 John Wiley & Sons Ltd.

  2. A TaqMan-based real time PCR assay for specific detection and quantification of Xylella fastidiosa strains causing bacterial leaf scorch in oleander.

    Science.gov (United States)

    Guan, Wei; Shao, Jonathan; Singh, Raghuwinder; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2013-02-15

    A TaqMan-based real-time PCR assay was developed for specific detection of strains of X. fastidiosa causing oleander leaf scorch. The assay uses primers WG-OLS-F1 and WG-OLS-R1 and the fluorescent probe WG-OLS-P1, designed based on unique sequences found only in the genome of oleander strain Ann1. The assay is specific, allowing detection of only oleander-infecting strains, not other strains of X. fastidiosa nor other plant-associated bacteria tested. The assay is also sensitive, with a detection limit of 10.4fg DNA of X. fastidiosa per reaction in vitro and in planta. The assay can also be applied to detect low numbers of X. fastidiosa in insect samples, or further developed into a multiplex real-time PCR assay to simultaneously detect and distinguish diverse strains of X. fastidiosa that may occupy the same hosts or insect vectors. Specific and sensitive detection and quantification of oleander strains of X. fastidiosa should be useful for disease diagnosis, epidemiological studies, management of oleander leaf scorch disease, and resistance screening for oleander shrubs. Published by Elsevier B.V.

  3. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    Science.gov (United States)

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  4. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    OpenAIRE

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-01-01

    Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same a...

  5. Concurrent infections of pseudorabies virus and porcine bocavirus in China detected by duplex nanoPCR.

    Science.gov (United States)

    Luo, Yakun; Liang, Lin; Zhou, Ling; Zhao, Kai; Cui, Shangjin

    2015-07-01

    Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a novel method for the simple, rapid, and specific amplification of DNA and has been used to detect viruses. A duplex nanoPCR molecular detection system was developed to detect pseudorabies virus (PRV) and porcine bocavirus (PBoV). Primers were selected to target conserved regions within the PRV gE gene and the PBoV NS1 gene. Under optimized nanoPCR reaction conditions, two specific fragments of 316 bp (PRV) and 996 bp (PBoV) were amplified by the duplex nanoPCR with a detection limit of 6 copies for PRV and 95 copies for PBoV; no fragments were amplified when other porcine viruses were used as template. When used to test 550 clinical samples, the duplex nanoPRC assay and a conventional duplex PCR assay provided very similar results (98.1% consistency); single PRV infections, single PBoV infections, and concurrent PRV and PBoV infections were detected in 37%, 15%, and 9% of the samples, respectively. The results indicate that the novel duplex nanoPCR assay is useful for the rapid detection of PRV and PBoV in pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Real-time PCR and microscopy: Are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance?

    NARCIS (Netherlands)

    Gamper, H.A.; Young, J.P.W.; Jones, D.L.; Hodge, A.

    2008-01-01

    To enable quantification of mycelial abundance in mixed-species environments, eight new TaqMan® real-time PCR assays were developed for five arbuscular mycorrhizal fungal (AMF, Glomeromycota) taxa. The assays targeted genes encoding 18S rRNA or actin, and were tested on DNA from cloned gene

  7. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide

    Directory of Open Access Journals (Sweden)

    Yuexia Wang

    2015-09-01

    Full Text Available Real-time polymerase chain reaction (PCR allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at −18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 103 CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 100 CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach.

  8. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    Science.gov (United States)

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  9. Prevalence of bloodstream pathogens is higher in neonatal encephalopathy cases vs. controls using a novel panel of real-time PCR assays.

    Science.gov (United States)

    Tann, Cally J; Nkurunziza, Peter; Nakakeeto, Margaret; Oweka, James; Kurinczuk, Jennifer J; Were, Jackson; Nyombi, Natasha; Hughes, Peter; Willey, Barbara A; Elliott, Alison M; Robertson, Nicola J; Klein, Nigel; Harris, Kathryn A

    2014-01-01

    In neonatal encephalopathy (NE), infectious co-morbidity is difficult to diagnose accurately, but may increase the vulnerability of the developing brain to hypoxia-ischemia. We developed a novel panel of species-specific real-time PCR assays to identify bloodstream pathogens amongst newborns with and without NE in Uganda. Multiplex real-time PCR assays for important neonatal bloodstream pathogens (gram positive and gram negative bacteria, cytomegalovirus (CMV), herpes simplex virus(HSV) and P. falciparum) were performed on whole blood taken from 202 encephalopathic and 101 control infants. Automated blood culture (BACTEC) was performed for all cases and unwell controls. Prevalence of pathogenic bacterial species amongst infants with NE was 3.6%, 6.9% and 8.9%, with culture, PCR and both tests in combination, respectively. More encephalopathic infants than controls had pathogenic bacterial species detected (8.9%vs2.0%, p = 0.028) using culture and PCR in combination. PCR detected bacteremia in 11 culture negative encephalopathic infants (3 Group B Streptococcus, 1 Group A Streptococcus, 1 Staphylococcus aureus and 6 Enterobacteriacae). Coagulase negative staphylococcus, frequently detected by PCR amongst case and control infants, was considered a contaminant. Prevalence of CMV, HSV and malaria amongst cases was low (1.5%, 0.5% and 0.5%, respectively). This real-time PCR panel detected more bacteremia than culture alone and provides a novel tool for detection of neonatal bloodstream pathogens that may be applied across a range of clinical situations and settings. Significantly more encephalopathic infants than controls had pathogenic bacterial species detected suggesting that infection may be an important risk factor for NE in this setting.

  10. Prevalence of bloodstream pathogens is higher in neonatal encephalopathy cases vs. controls using a novel panel of real-time PCR assays.

    Directory of Open Access Journals (Sweden)

    Cally J Tann

    Full Text Available In neonatal encephalopathy (NE, infectious co-morbidity is difficult to diagnose accurately, but may increase the vulnerability of the developing brain to hypoxia-ischemia. We developed a novel panel of species-specific real-time PCR assays to identify bloodstream pathogens amongst newborns with and without NE in Uganda.Multiplex real-time PCR assays for important neonatal bloodstream pathogens (gram positive and gram negative bacteria, cytomegalovirus (CMV, herpes simplex virus(HSV and P. falciparum were performed on whole blood taken from 202 encephalopathic and 101 control infants. Automated blood culture (BACTEC was performed for all cases and unwell controls.Prevalence of pathogenic bacterial species amongst infants with NE was 3.6%, 6.9% and 8.9%, with culture, PCR and both tests in combination, respectively. More encephalopathic infants than controls had pathogenic bacterial species detected (8.9%vs2.0%, p = 0.028 using culture and PCR in combination. PCR detected bacteremia in 11 culture negative encephalopathic infants (3 Group B Streptococcus, 1 Group A Streptococcus, 1 Staphylococcus aureus and 6 Enterobacteriacae. Coagulase negative staphylococcus, frequently detected by PCR amongst case and control infants, was considered a contaminant. Prevalence of CMV, HSV and malaria amongst cases was low (1.5%, 0.5% and 0.5%, respectively.This real-time PCR panel detected more bacteremia than culture alone and provides a novel tool for detection of neonatal bloodstream pathogens that may be applied across a range of clinical situations and settings. Significantly more encephalopathic infants than controls had pathogenic bacterial species detected suggesting that infection may be an important risk factor for NE in this setting.

  11. Sensitive real-time PCR detection of pathogenic Leptospira spp. and a comparison of nucleic acid amplification methods for the diagnosis of leptospirosis.

    Science.gov (United States)

    Waggoner, Jesse J; Balassiano, Ilana; Abeynayake, Janaki; Sahoo, Malaya K; Mohamed-Hadley, Alisha; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Pinsky, Benjamin A

    2014-01-01

    Bacteria of the genus Leptospira, the causative agents of leptospirosis, are categorized into pathogenic and non-pathogenic species. However, the benefit of using a clinical diagnostic that is specific for pathogenic species remains unclear. In this study, we present the development of a real-time PCR (rtPCR) for the detection of pathogenic Leptospira (the pathogenic rtPCR), and we perform a comparison of the pathogenic rtPCR with a published assay that detects all Leptospira species [the undifferentiated febrile illness (UFI) assay] and a reference 16S Leptospira rtPCR, which was originally designed to detect pathogenic species. For the pathogenic rtPCR, a new hydrolysis probe was designed for use with primers from the UFI assay, which targets the 16S gene. The pathogenic rtPCR detected Leptospira DNA in 37/37 cultured isolates from 5 pathogenic and one intermediate species. Two strains of the non-pathogenic L. biflexa produced no signal. Clinical samples from 65 patients with suspected leptospirosis were then tested using the pathogenic rtPCR and a reference Leptospira 16S rtPCR. All 65 samples had tested positive for Leptospira using the UFI assay; 62 (95.4%) samples tested positive using the pathogenic rtPCR (p = 0.24). Only 24 (36.9%) samples tested positive in the reference 16S rtPCR (pLeptospira species in 49/50 cases, including 3 cases that were only detected using the UFI assay. The pathogenic rtPCR displayed similar sensitivity to the UFI assay when testing clinical specimens with no difference in specificity. Both assays proved significantly more sensitive than a real-time molecular test used for comparison. Future studies are needed to investigate the clinical and epidemiologic significance of more sensitive Leptospira detection using these tests.

  12. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    Science.gov (United States)

    Wang, Shaohui; Meng, Qingmei; Dai, Jianjun; Han, Xiangan; Han, Yue; Ding, Chan; Liu, Haiwen; Yu, Shengqing

    2014-01-01

    Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  13. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    Directory of Open Access Journals (Sweden)

    Shaohui Wang

    Full Text Available Systemic infections by avian pathogenic Escherichia coli (APEC are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  14. High-resolution melting PCR assay, applicable for diagnostics and screening studies, allowing detection and differentiation of several Babesia spp. infecting humans and animals.

    Science.gov (United States)

    Rozej-Bielicka, Wioletta; Masny, Aleksander; Golab, Elzbieta

    2017-10-01

    The goal of the study was to design a single tube PCR test for detection and differentiation of Babesia species in DNA samples obtained from diverse biological materials. A multiplex, single tube PCR test was designed for amplification of approximately 400 bp region of the Babesia 18S rRNA gene. Universal primers were designed to match DNA of multiple Babesia spp. and to have low levels of similarity to DNA sequences of other intracellular protozoa and Babesia hosts. The PCR products amplified from Babesia DNA isolated from human, dog, rodent, deer, and tick samples were subjected to high-resolution melting analysis for Babesia species identification. The designed test allowed detection and differentiation of four Babesia species, three zoonotic (B. microti, B. divergens, B. venatorum) and one that is generally not considered zoonotic-Babesia canis. Both detection and identification of all four species were possible based on the HRM curves of the PCR products in samples obtained from the following: humans, dogs, rodents, and ticks. No cross-reactivity with DNA of Babesia hosts or Plasmodium falciparum and Toxoplasma gondii was observed. The lack of cross-reactivity with P. falciparum DNA might allow using the assay in endemic malaria areas. The designed assay is the first PCR-based test for detection and differentiation of several Babesia spp. of medical and veterinary importance, in a single tube reaction. The results of the study show that the designed assay for Babesia detection and identification could be a practical and inexpensive tool for diagnostics and screening studies of diverse biological materials.

  15. Comparison of RT-PCR-Dot blot hybridization based on radioisotope 32P with conventional RT-PCR and commercial ELISA Assays for blood screening of HIV-1

    International Nuclear Information System (INIS)

    Maria Lina R; Andi Yasmon

    2011-01-01

    There are many commercial ELISA and rapid test kits that have been used for blood screening; however, the kits can give false positive and negative results. Therefore, RT-PCR (Reverse Transcription Polymerase Chain Reaction) - Dot Blot Hybridization based on radioisotope 32 P (RDBR) method was developed in this research, to compare the method with the conventional RT-PCR and commercial ELISA Enzyme-Linked lmmunosorbent Assay) kit. This method is efficient for screening of large blood specimens and surveillance study. Eighty seven samples were used and serum of the samples were tested by ELISA to detect HIV-1. The HIV-l RNA genome was extracted from plasma samples and tested using the RT-PCR and RDBR methods. Of 87 samples that were tested, the rates of positive testing of the RT-PCR, the RDBR, and the ELISA were 71.26%, 74.71%, and 80.46%, respectively. The RDBR (a combination of RTPCR and dot blot hybridization) was more sensitive than conventional RT-PCR by showing 3.45% in increase number of positive specimens. The results showed that of 9 samples (10.34%) were negative RDBR and positive ELISA, while 4 samples (4.60%) were negative ELISA and positive RDBR. The two methods showed slightly difference in the results but further validation is still needed. However, RDBR has high potential as an alternative method for screening of blood in large quantities when compared to method of conventional RT-PCR and ELISA. (author)

  16. Development and application of a quantitative PCR assay to study equine herpesvirus 5 invasion and replication in equine tissues in vitro and in vivo.

    Science.gov (United States)

    Zarski, Lila M; High, Emily A; Nelli, Rahul K; Bolin, Steven R; Williams, Kurt J; Hussey, Gisela

    2017-10-01

    Equine herpesvirus 5 (EHV-5) infection is associated with pulmonary fibrosis in horses, but further studies on EHV-5 persistence in equine cells are needed to fully understand viral and host contributions to disease pathogenesis. Our aim was to develop a quantitative PCR (qPCR) assay to measure EHV-5 viral copy number in equine cell cultures, blood lymphocytes, and nasal swabs of horses. Furthermore, we used a recently developed equine primary respiratory cell culture system to study EHV-5 pathogenesis at the respiratory tract. PCR primers and a probe were designed to target gene E11 of the EHV-5 genome. Sensitivity and repeatability were established, and specificity was verified by testing multiple isolates of EHV-5, as well as DNA from other equine herpesviruses. Four-week old fully differentiated (mature), newly seeded (immature) primary equine respiratory epithelial cell (ERECs), and equine dermal cell cultures were inoculated with EHV-5 and the cells and supernatants collected daily for 14days. Blood lymphocytes and nasal swabs were collected from horses experimentally infected with equine herpesvirus 1 (EHV-1). The qPCR assay detected EHV-5 at stable concentrations throughout 14days in inoculated mature EREC and equine dermal cell cultures (peaking at 202 and 5861 viral genomes per 10 6 cellular β actin, respectively). EHV-5 copies detected in the immature EREC cultures increased over 14days and reached levels greater than 10,000 viral genomes per 10 6 cellular β actin. Moreover, EHV-5 was detected in the lymphocytes of 76% of horses and in the nasal swabs of 84% of horses experimentally infected with EHV-1 pre-inoculation with EHV-1. Post-inoculation with EHV-1, EHV-5 was detected in lymphocytes of 52% of horses while EHV-5 levels in nasal swabs were not significantly different from pre-inoculation levels. In conclusion, qPCR was a reliable technique to investigate viral load in in vivo and in vitro samples, and EHV-5 replication in equine epithelial cells

  17. Detecting Mycobacterium tuberculosis in Bactec MGIT 960 Cultures by Inhouse IS6110-based PCR Assay in Routine Clinical Practice

    Directory of Open Access Journals (Sweden)

    Jun-Ren Sun

    2009-02-01

    Conclusion: The combined use of the automated Bactec MGIT 960 system and the IS6110-based PCR assay is sensitive and rapid for the detection of M. tuberculosis complex, and we recommend that this method be used routinely for identification of mycobacteria in clinical laboratories.

  18. Sensitive detection of novel Indian isolate of BTV 21 using ns1 gene based real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Gaya Prasad

    2013-06-01

    Full Text Available Aim: The study was conducted to develop ns1 gene based sensitive real-time RT-PCR assay for diagnosis of India isolates of bluetongue virus (BTV. Materials and Methods: The BTV serotype 21 isolate (KMNO7 was isolated from Andhra Pradesh and propagated in BHK-21 cell line in our laboratory. The Nucleic acid (dsRNA of virus was extracted using Trizol method and cDNA was prepared using a standard protocol. The cDNA was allowed to ns1 gene based group specific PCR to confirm the isolate as BTV. The viral RNA was diluted 10 folds and the detection limit of ns1 gene based RT-PCR was determined. Finally the tenfold diluted viral RNA was subjected to real-time RT-PCR using ns1 gene primer and Taq man probe to standardized the reaction and determine the detection limit. Results: The ns1 gene based group specific PCR showed a single 366bp amplicon in agarose gel electrophoresis confirmed the sample as BTV. The ns1 gene RT-PCR using tenfold diluted viral RNA showed the detection limit of 70.0 fg in 1%agarose gel electrophoresis. The ns1 gene based real time RT-PCR was successfully standardized and the detection limit was found to be 7.0 fg. Conclusion: The ns1 gene based real-time RT-PCR was successfully standardized and it was found to be 10 times more sensitive than conventional RT-PCR. Key words: bluetongue, BTV21, RT-PCR, Real time RT-PCR, ns1 gene [Vet World 2013; 6(8.000: 554-557

  19. Development of a real-time RT-PCR and Reverse Line probe Hybridisation assay for the routine detection and genotyping of Noroviruses in Ireland.

    LENUS (Irish Health Repository)

    Menton, John F

    2007-01-01

    BACKGROUND: Noroviruses are the most common cause of non-bacterial gastroenteritis. Improved detection methods have seen a large increase in the number of human NoV genotypes in the last ten years. The objective of this study was to develop a fast method to detect, quantify and genotype positive NoV samples from Irish hospitals. RESULTS: A real-time RT-PCR assay and a Reverse Line Blot Hybridisation assay were developed based on the ORF1-ORF2 region. The sensitivity and reactivity of the two assays used was validated using a reference stool panel containing 14 NoV genotypes. The assays were then used to investigate two outbreaks of gastroenteritis in two Irish hospitals. 56 samples were screened for NoV using a real-time RT-PCR assay and 26 samples were found to be positive. Genotyping of these positive samples found that all positives belonged to the GII\\/4 variant of NoV. CONCLUSION: The combination of the Real-time assay and the reverse line blot hybridisation assay provided a fast and accurate method to investigate a NoV associated outbreak. It was concluded that the predominant genotype circulating in these Irish hospitals was GII\\/4 which has been associated with the majority of NoV outbreaks worldwide. The assays developed in this study are useful tools for investigating NoV infection.

  20. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    Science.gov (United States)

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    Science.gov (United States)

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  3. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  4. Real-time PCR-based detection of Bordetella pertussis and Bordetella parapertussis in an Irish paediatric population.

    LENUS (Irish Health Repository)

    Grogan, Juanita A

    2011-06-01

    Novel real-time PCR assays targeting the Bordetella pertussis insertion sequence IS481, the toxin promoter region and Bordetella parapertussis insertion sequence IS1001 were designed. PCR assays were capable of detecting ≤10 copies of target DNA per reaction, with an amplification efficiency of ≥90 %. From September 2003 to December 2009, per-nasal swabs and nasopharyngeal aspirates submitted for B. pertussis culture from patients ≤1 month to >15 years of age were examined by real-time PCR. Among 1324 patients, 76 (5.7 %) were B. pertussis culture positive and 145 (10.95 %) were B. pertussis PCR positive. Of the B. pertussis PCR-positive patients, 117 (81 %) were aged 6 months or less. A total of 1548 samples were examined, of which 87 (5.6 %) were culture positive for B. pertussis and 169 (10.92 %) were B. pertussis PCR positive. All culture-positive samples were PCR positive. Seven specimens (0.5 %) were B. parapertussis culture positive and 10 (0.8 %) were B. parapertussis PCR positive, with all culture-positive samples yielding PCR-positive results. A review of patient laboratory records showed that of the 1324 patients tested for pertussis 555 (42 %) had samples referred for respiratory syncytial virus (RSV) testing and 165 (30 %) were positive, as compared to 19.4 % of the total 5719 patients tested for RSV in this period. Analysis of the age distribution of RSV-positive patients identified that 129 (78 %) were aged 6 months or less, similar to the incidence observed for pertussis in that patient age group. In conclusion, the introduction of the real-time PCR assays for the routine detection of B. pertussis resulted in a 91 % increase in the detection of the organism as compared to microbiological culture. The incidence of infection with B. parapertussis is low while the incidence of RSV infection in infants suspected of having pertussis is high, with a similar age distribution to B. pertussis infection.

  5. Development of a real-time RT-PCR assay based on primer-probe energy transfer for the detection of all serotypes of bluetongue virus

    DEFF Research Database (Denmark)

    Leblanc, N; Rasmussen, Thomas Bruun; Fernandez, J

    2010-01-01

    A real-time RT-PCR assay based on the primer–probe energy transfer (PriProET) was developed to detect all 24 serotypes of bluetongue virus (BTV). BTV causes serious disease, primarily in sheep, but in other ruminants as well. A distinguishing characteristic of the assay is its tolerance toward...

  6. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays.

    Science.gov (United States)

    Fernando, M Rohan; Jiang, Chao; Krzyzanowski, Gary D; Ryan, Wayne L

    2018-04-12

    Plasma cell-free DNA (cfDNA) fragment size distribution provides important information required for diagnostic assay development. We have developed and optimized droplet digital PCR (ddPCR) assays that quantify short and long DNA fragments. These assays were used to analyze plasma cfDNA fragment size distribution in human blood. Assays were designed to amplify 76,135, 490 and 905 base pair fragments of human β-actin gene. These assays were used for fragment size analysis of plasma cell-free, exosome and apoptotic body DNA obtained from normal and pregnant donors. The relative percentages for 76, 135, 490 and 905 bp fragments from non-pregnant plasma and exosome DNA were 100%, 39%, 18%, 5.6% and 100%, 40%, 18%,3.3%, respectively. The relative percentages for pregnant plasma and exosome DNA were 100%, 34%, 14%, 23%, and 100%, 30%, 12%, 18%, respectively. The relative percentages for non-pregnant plasma pellet (obtained after 2nd centrifugation step) were 100%, 100%, 87% and 83%, respectively. Non-pregnant Plasma cell-free and exosome DNA share a unique fragment distribution pattern which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe.

    Science.gov (United States)

    Ahonsi, Monday O; Ling, Yin; Kageyama, Koji

    2010-11-01

    Phytophthora nicotianae and Pythium helicoides are important water-borne oomycete pathogens of irrigated ornamentals particularly ebb-and-flow irrigated kalanchoe in Japan. We developed novel PCR-based sequence characterized amplified region markers and assays for rapid identification and species-specific detection of both pathogens in separate PCR reactions or simultaneously in a duplex PCR.

  8. A Real-Time PCR Assay Based on 5.8S rRNA Gene (5.8S rDNA) for Rapid Detection of Candida from Whole Blood Samples.

    Science.gov (United States)

    Guo, Yi; Yang, Jing-Xian; Liang, Guo-Wei

    2016-06-01

    The prevalence of Candida in bloodstream infections (BSIs) has increased. To date, the identification of Candida in BSIs still mainly relies on blood culture and serological tests, but they have various limitations. Therefore, a real-time PCR assay for the detection of Candida from whole blood is presented. The unique primers/probe system was designed on 5.8S rRNA gene (5.8S rDNA) of Candida genus. The analytical sensitivity was determined by numbers of positive PCRs in 12 repetitions. At the concentration of 10(1) CFU/ml blood, positive PCR rates of 100 % were obtained for C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. The detection rate for C. glabrata was 75 % at 10(1) CFU/ml blood. The reaction specificity was 100 % when evaluating the assay using DNA samples from clinical isolates and human blood. The maximum CVs of intra-assay and inter-assay for the detection limit were 1.22 and 2.22 %, respectively. To assess the clinical applicability, 328 blood samples from 82 patients were prospectively tested and real-time PCR results were compared with results from blood culture. Diagnostic sensitivity of the PCR was 100 % using as gold standard blood culture, and specificity was 98.4 %. Our data suggest that the developed assay can be used in clinical laboratories as an accurate and rapid screening test for the Candida from whole blood. Although further evaluation is warranted, our assay holds promise for earlier diagnosis of candidemia.

  9. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray.

    Science.gov (United States)

    El-Ashker, Maged; Hotzel, Helmut; Gwida, Mayada; El-Beskawy, Mohamed; Silaghi, Cornelia; Tomaso, Herbert

    2015-01-30

    In this preliminary study, a novel DNA microarray system was tested for the diagnosis of bovine piroplasmosis and anaplasmosis in comparison with microscopy and PCR assay results. In the Dakahlia Governorate, Egypt, 164 cattle were investigated for the presence of piroplasms and Anaplasma species. All investigated cattle were clinically examined. Blood samples were screened for the presence of blood parasites using microscopy and PCR assays. Seventy-one animals were acutely ill, whereas 93 were apparently healthy. In acutely ill cattle, Babesia/Theileria species (n=11) and Anaplasma marginale (n=10) were detected. Mixed infections with Babesia/Theileria spp. and A. marginale were present in two further cases. A. marginale infections were also detected in apparently healthy subjects (n=23). The results of PCR assays were confirmed by DNA sequencing. All samples that were positive by PCR for Babesia/Theileria spp. gave also positive results in the microarray analysis. The microarray chips identified Babesia bovis (n=12) and Babesia bigemina (n=2). Cattle with babesiosis were likely to have hemoglobinuria and nervous signs when compared to those with anaplasmosis that frequently had bloody feces. We conclude that clinical examination in combination with microscopy are still very useful in diagnosing acute cases of babesiosis and anaplasmosis, but a combination of molecular biological diagnostic assays will detect even asymptomatic carriers. In perspective, parallel detection of Babesia/Theileria spp. and A. marginale infections using a single microarray system will be a valuable improvement. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    Science.gov (United States)

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  11. Development of an RT-qPCR assay for the specific detection of a distinct genetic lineage of the infectious bursal disease virus.

    Science.gov (United States)

    Tomás, Gonzalo; Hernández, Martín; Marandino, Ana; Techera, Claudia; Grecco, Sofia; Hernández, Diego; Banda, Alejandro; Panzera, Yanina; Pérez, Ruben

    2017-04-01

    The infectious bursal disease virus (IBDV) is a major health threat to the world's poultry industry despite intensive controls including proper biosafety practices and vaccination. IBDV (Avibirnavirus, Birnaviridae) is a non-enveloped virus with a bisegmented double-stranded RNA genome. The virus is traditionally classified into classic, variant and very virulent strains, each with different epidemiological relevance and clinical implications. Recently, a novel worldwide spread genetic lineage was described and denoted as distinct (d) IBDV. Here, we report the development and validation of a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay for the specific detection of dIBDVs in the global poultry industry. The assay employs a TaqMan-MGB probe that hybridizes with a unique molecular signature of dIBDV. The assay successfully detected all the assessed strains belonging to the dIBDV genetic lineage, showing high specificity and absence of cross-reactivity with non-dIBDVs, IBDV-negative samples and other common avian viruses. Using serial dilutions of in vitro-transcribed RNA we obtained acceptable PCR efficiencies and determination coefficients, and relatively small intra- and inter-assay variability. The assay demonstrated a wide dynamic range between 10 3 and 10 8 RNA copies/reaction. This rapid, specific and quantitative assay is expected to improve IBDV surveillance and control worldwide and to increase our understanding of the molecular epidemiology of this economically detrimental poultry pathogen.

  12. MPprimer: a program for reliable multiplex PCR primer design

    Directory of Open Access Journals (Sweden)

    Wang Xiaolei

    2010-03-01

    Full Text Available Abstract Background Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. Results A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy, which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions. Conclusions MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  13. Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions

    Directory of Open Access Journals (Sweden)

    Puisieux Alain

    2003-10-01

    Full Text Available Abstract Background Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. Results We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC in peripheral blood mononuclear cells; the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. Conclusion Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.

  14. Clinical Application of a Multiplex Real-Time PCR Assay for Simultaneous Detection of Legionella Species, Legionella pneumophila, and Legionella pneumophila Serogroup 1

    OpenAIRE

    Benitez, Alvaro J.; Winchell, Jonas M.

    2014-01-01

    We developed a single-tube multiplex real-time PCR assay capable of simultaneously detecting and discriminating Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1 in primary specimens. Evaluation of 21 clinical specimens and 115 clinical isolates demonstrated this assay to be a rapid, high-throughput diagnostic test with 100% specificity that may aid during legionellosis outbreaks and epidemiologic investigations.

  15. Validation of a Pan-Orthopox Real-Time PCR Assay for the Detection and Quantification of Viral Genomes from Nonhuman Primate Blood

    Science.gov (United States)

    2017-06-19

    Validation of a pan-orthopox real-time PCR assay for the detection and quantification of viral genomes from nonhuman primate blood. Eric...medical countermeasures by the U.S. FDA, the assay was designed to quantitate poxvirus genomic DNA in a nonhuman primate (cynomolgus macaque) blood...monkeypox virus into nonhuman primate blood, we chose to use the HA standard after considering the potential biological safety and logistical issues with

  16. Performance of a Highly Sensitive Mycobacterium tuberculosis Complex Real-Time PCR Assay for Diagnosis of Pulmonary Tuberculosis in a Low-Prevalence Setting: a Prospective Intervention Study.

    Science.gov (United States)

    Vinuesa, Víctor; Borrás, Rafael; Briones, María Luisa; Clari, María Ángeles; Cresencio, Vicenta; Giménez, Estela; Muñoz, Carmen; Oltra, Rosa; Servera, Emilio; Scheelje, Talia; Tornero, Carlos; Navarro, David

    2018-05-01

    The potential impact of routine real-time PCR testing of respiratory specimens from patients with presumptive tuberculosis in terms of diagnostic accuracy and time to tuberculosis treatment inception in low-prevalence settings remains largely unexplored. We conducted a prospective intervention cohort study. Respiratory specimens from 1,020 patients were examined by acid-fast bacillus smear microscopy, tested by a real-time Mycobacterium tuberculosis complex PCR assay (Abbott RealTi me MTB PCR), and cultured in mycobacterial media. Seventeen patients tested positive by PCR (5 were acid-fast bacillus smear positive and 12 acid-fast bacillus smear negative), and Mycobacterium tuberculosis was recovered from cultures for 12 of them. Patients testing positive by PCR and negative by culture ( n = 5) were treated and deemed to have responded to antituberculosis therapy. There were no PCR-negative/culture-positive cases, and none of the patients testing positive for nontuberculous mycobacteria ( n = 20) yielded a positive PCR result. The data indicated that routine testing of respiratory specimens from patients with presumptive tuberculosis by the RealTi me MTB PCR assay improves the tuberculosis diagnostic yield and may reduce the time to antituberculosis treatment initiation. On the basis of our data, we propose a novel mycobacterial laboratory algorithm for tuberculosis diagnosis. Copyright © 2018 American Society for Microbiology.

  17. Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses.

    Science.gov (United States)

    Lung, O; Furukawa-Stoffer, T; Burton Hughes, K; Pasick, J; King, D P; Hodko, D

    2017-12-01

    Microarrays can be a useful tool for pathogen detection as it allow for simultaneous interrogation of the presence of a large number of genetic sequences in a sample. However, conventional microarrays require extensive manual handling and multiple pieces of equipment for printing probes, hybridization, washing and signal detection. In this study, a reverse transcription (RT)-PCR with an accompanying novel automated microarray for simultaneous detection of eight viruses that affect cattle [vesicular stomatitis virus (VSV), bovine viral diarrhoea virus type 1 and type 2, bovine herpesvirus 1, bluetongue virus, malignant catarrhal fever virus, rinderpest virus (RPV) and parapox viruses] is described. The assay accurately identified a panel of 37 strains of the target viruses and identified a mixed infection. No non-specific reactions were observed with a panel of 23 non-target viruses associated with livestock. Vesicular stomatitis virus was detected as early as 2 days post-inoculation in oral swabs from experimentally infected animals. The limit of detection of the microarray assay was as low as 1 TCID 50 /ml for RPV. The novel microarray platform automates the entire post-PCR steps of the assay and integrates electrophoretic-driven capture probe printing in a single user-friendly instrument that allows array layout and assay configuration to be user-customized on-site. © 2016 Her Majesty the Queen in Right of Canada.

  18. Rapid and Accurate Identification by Real-Time PCR of Biotoxin-Producing Dinoflagellates from the Family Gymnodiniaceae

    Directory of Open Access Journals (Sweden)

    Kirsty F. Smith

    2014-03-01

    Full Text Available The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR assays targeting the large subunit ribosomal RNA (LSU rRNA gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  19. Detection of Bacillus spores using PCR and FTA filters.

    Science.gov (United States)

    Lampel, Keith A; Dyer, Deanne; Kornegay, Leroy; Orlandi, Palmer A

    2004-05-01

    Emphasis has been placed on developing and implementing rapid detection systems for microbial pathogens. We have explored the utility of expanding FTA filter technology for the preparation of template DNA for PCR from bacterial spores. Isolated spores from several Bacillus spp., B. subtilis, B. cereus, and B. megaterium, were applied to FTA filters, and specific DNA products were amplified by PCR. Spore preparations were examined microscopically to ensure that the presence of vegetative cells, if any, did not yield misleading results. PCR primers SRM86 and SRM87 targeted a conserved region of bacterial rRNA genes, whereas primers Bsub5F and Bsub3R amplified a product from a conserved sequence of the B. subtilis rRNA gene. With the use of the latter set of primers for nested PCR, the sensitivity of the PCR-based assay was increased. Overall, 53 spores could be detected after the first round of PCR, and the sensitivity was increased to five spores by nested PCR. FTA filters are an excellent platform to remove PCR inhibitors and have universal applications for environmental, clinical, and food samples.

  20. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2008-06-01

    Full Text Available Abstract Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP, which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP and a complementary quenching probe (QP lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.