WorldWideScience

Sample records for patterning colloidal nanoparticles

  1. Design of a versatile chemical assembly method for patterning colloidal nanoparticles

    International Nuclear Information System (INIS)

    Choi, J H; Adams, S M; Ragan, R

    2009-01-01

    Poly(methyl methacrylate) (PMMA) domains in phase-separated polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer thin films were chemically modified for controlled placement of solution synthesized Au nanoparticles having a mean diameter of 24 nm. Colloidal Au nanoparticles functionalized with thioctic acid were immobilized on amine functionalized PMMA domains on the PS-b-PMMA template using 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride linking chemistry and N-hydroxy sulfosuccinimide stabilizer. Atomic force microscopy and scanning electron microscopy images demonstrated immobilization of Au nanoparticles commensurate with PMMA domains. Nanoparticles form into clusters of single particles, dimers, and linear chains as directed by the PMMA domain size and shape. Capillary forces influence the spacing between Au nanoparticles on PMMA domains. Inter-particle spacings below 3 nm were achieved and these assemblies of closely spaced nanoparticle clusters are expected to exhibit strong localized electromagnetic fields. Thus, these processes and material systems provide an experimental platform for studying resonantly enhanced excitations of surface plasmons as a function of material and geometric structure as well as utilization in catalytic applications.

  2. Patterned Colloidal Photonic Crystals.

    Science.gov (United States)

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2018-03-01

    Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electron beam patterning for writing of positively charged gold colloidal nanoparticles

    Science.gov (United States)

    Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David

    2018-02-01

    Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.

  4. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  5. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    African Journals Online (AJOL)

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  6. Sustainable steric stabilization of colloidal titania nanoparticles

    Science.gov (United States)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  7. Sustainable steric stabilization of colloidal titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Elbasuney, Sherif, E-mail: sherif_basuney2000@yahoo.com

    2017-07-01

    Graphical abstract: Controlled surface properties of titania nanoparticles via surface modification, flocculation from aqueous phase (a), stabilization in aqueous phase (b), extraction to organic phase (c). - Highlights: • Complete change in surface properties of titania nanoparticles from hydrophilic to hydrophobic. • Harvesting the formulated nanoparticles from the aqueous phase to the organic phase. • Exclusive surface modification in the reactor during nanoparticle synthesis. • Sustainable stabilization of titania nanoparticles in aqueous media with polar polymeric dispersant. - Abstract: A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180–240 °C to ensure DDSA ring opening

  8. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  9. Evaporative lithographic patterning of binary colloidal films.

    Science.gov (United States)

    Harris, Daniel J; Conrad, Jacinta C; Lewis, Jennifer A

    2009-12-28

    Evaporative lithography offers a promising new route for patterning a broad array of soft materials. In this approach, a mask is placed above a drying film to create regions of free and hindered evaporation, which drive fluid convection and entrained particles to regions of highest evaporative flux. We show that binary colloidal films exhibit remarkable pattern formation when subjected to a periodic evaporative landscape during drying.

  10. Structure and stability of charged colloid-nanoparticle mixtures

    Science.gov (United States)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  11. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    Science.gov (United States)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  12. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  13. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.

    Science.gov (United States)

    Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan

    2015-06-02

    To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.

  14. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  15. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography.

    Science.gov (United States)

    Palleau, E; Sangeetha, N M; Ressier, L

    2011-08-12

    Directed assembly of 10 nm dodecanethiol stabilized silver nanoparticles in hexane and 14 nm citrate stabilized gold nanoparticles in ethanol was performed by AFM nanoxerography onto charge patterns of both polarities written into poly(methylmethacrylate) thin films. The quasi-neutral silver nanoparticles were grafted on both positive and negative charge patterns while the negatively charged gold nanoparticles were selectively deposited on positive charge patterns only. Numerical simulations were conducted to quantify the magnitude, direction and spatial range of the electrophoretic and dielectrophoretic forces exerted by the charge patterns on these two types of nanoparticles in suspension taken as models. The simulations indicate that the directed assembly of silver nanoparticles on both charge patterns is due to the predominant dielectrophoretic forces, while the selective assembly of gold nanoparticles only on positive charge patterns is due to the predominant electrophoretic forces. The study also suggests that the minimum surface potential of charge patterns required for obtaining effective nanoparticle assembly depends strongly on the charge and polarizability of the nanoparticles and also on the nature of the dispersing solvent. Attractive electrostatic forces of about 2 × 10( - 2) pN in magnitude just above the charged surface appear to be sufficient to trap silver nanoparticles in hexane onto charge patterns and the value is about 2 pN for gold nanoparticles in ethanol, under the present experimental conditions. The numerical simulations used in this work to quantify the electrostatic forces operating in the directed assembly of nanoparticles from suspensions onto charge patterns can easily be extended to any kind of colloid and serve as an effective tool for a better comprehension and prediction of liquid-phase nanoxerography processes.

  16. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography

    International Nuclear Information System (INIS)

    Palleau, E; Sangeetha, N M; Ressier, L

    2011-01-01

    Directed assembly of 10 nm dodecanethiol stabilized silver nanoparticles in hexane and 14 nm citrate stabilized gold nanoparticles in ethanol was performed by AFM nanoxerography onto charge patterns of both polarities written into poly(methylmethacrylate) thin films. The quasi-neutral silver nanoparticles were grafted on both positive and negative charge patterns while the negatively charged gold nanoparticles were selectively deposited on positive charge patterns only. Numerical simulations were conducted to quantify the magnitude, direction and spatial range of the electrophoretic and dielectrophoretic forces exerted by the charge patterns on these two types of nanoparticles in suspension taken as models. The simulations indicate that the directed assembly of silver nanoparticles on both charge patterns is due to the predominant dielectrophoretic forces, while the selective assembly of gold nanoparticles only on positive charge patterns is due to the predominant electrophoretic forces. The study also suggests that the minimum surface potential of charge patterns required for obtaining effective nanoparticle assembly depends strongly on the charge and polarizability of the nanoparticles and also on the nature of the dispersing solvent. Attractive electrostatic forces of about 2 x 10 -2 pN in magnitude just above the charged surface appear to be sufficient to trap silver nanoparticles in hexane onto charge patterns and the value is about 2 pN for gold nanoparticles in ethanol, under the present experimental conditions. The numerical simulations used in this work to quantify the electrostatic forces operating in the directed assembly of nanoparticles from suspensions onto charge patterns can easily be extended to any kind of colloid and serve as an effective tool for a better comprehension and prediction of liquid-phase nanoxerography processes.

  17. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity

    Czech Academy of Sciences Publication Activity Database

    Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, Naděžda; Sharma, V. K.; Nevěčná, T.; Zbořil, R.

    2006-01-01

    Roč. 110, č. 33 (2006), s. 16248-16253 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : silver colloid nanoparticles * antimicrobial and bactericidal assays * particle size Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  18. Colloidal nanoparticles as catalysts and catalyst precursors for nitrite hydrogenation

    NARCIS (Netherlands)

    Zhao, Yingnan

    2015-01-01

    The most distinguished advantage to use colloidal methods for catalyst preparation is that the size and the shape of nanoparticles can be manipulated easily under good control, which is normally difficult to achieve by using traditional methods, such as impregnation and precipitation. This

  19. Separation of plutonium oxide nanoparticles and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; Skanthakumar, S.; Soderholm, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2011-11-18

    Oil and vinegar: Colloidal plutonium is an important component of Pu aqueous speciation. Pu colloids are problematic in nuclear separations and are a potential transport vector in the environment. Using a mixture of n-octanol and trichloroacetic acid a selective and reversible separation of these particles can be achieved by exploiting their surface reactivity (Li{sub 2}[Pu{sub 38}O{sub 56}Cl{sub 42}(H{sub 2}O){sub 20}].15H{sub 2}O). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Separation of plutonium oxide nanoparticles and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; Skanthakumar, S.; Soderholm, L. [Argonne National Laboratory, IL (United States). Chemical Sciences and Engineering Division

    2011-11-18

    Colloidal plutonium is an important component of Pu aqueous speciation. Pu colloids are problematic in nuclear separations and are a potential transport vector in the environment. Using a mixture of n-octanol and trichloroacetic acid a selective and reversible separation of these particles can be achieved by exploiting their surface reactivity. [German] Kolloidales Plutonium ist ein wichtiger Bestandteil in waessrigen Pu-Bereitungen. Pu-Kolloide sind problematisch bei der Wiederaufbereitung von Kernmaterial und bilden einen potenziellen Transportvektor in die Umwelt. Mit einem Loesungsmittelgemisch aus n-Octanol und Trichloressigsaeure gelingt die selektive und reversible Trennung dieser Partikel durch Ausnutzung ihrer Oberflaechenreaktivitaet.

  1. Silver nanoparticle colloids with γ-cyclodextrin: enhanced stability and Gibbs–Marangoni flow

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Setareh; Duroux, Laurent; Larsen, Kim Lambertsen, E-mail: kll@bio.aau.dk [Aalborg University, Department of Chemistry and Bioscience (Denmark)

    2015-01-15

    Although cyclodextrins (CD) are effective stabilizers for metal nanoparticle colloids, differences between α-, β- and γ-CD in stabilizing such colloids have not been previously reported. In this study, silver nanoparticles (AgNP) were synthesized using NaBH{sub 4} as reducing agent and cyclodextrins as stabilizers. Long-term stability of AgNP colloids in equilibrium conditions showed no marked differences between CD types. Transmission electron microscopy and quantitative image analysis revealed only marginal differences in particle sizes for CD-AgNP, although statistically significant. CD-AgNP colloids showed dispersed particles with average diameters of 7.3 ± 2.2, 6.3 ± 2.9 and 4.9 ± 1.9 nm for α-, β- and γ-CD, respectively, and with similar ζ-potentials about −25 to −30 mV. AgNP without CD showed bigger and aggregated particles of 15.0 ± 2.0 nm with lower ζ-potentials of about −40 mV. When subjected to centrifugal forces, i.e. non-equilibrium conditions, γ-CD was markedly more efficient than α- and β-CD in stabilizing the colloids. Drying patterns of colloid droplets showed a typical self-pinned coffee ring for all but the colloid stabilized by γ-CD, which showed a pattern resulting from a dominant Gibbs–Marangoni flow inside the drying droplet. Calculations using the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory supported the stabilizing effect of CD in equilibrium conditions; it however did not provide clues for the superior stabilization by γ-CD in conditions of hydrodynamic stress.

  2. Silver nanoparticle colloids with γ-cyclodextrin: enhanced stability and Gibbs–Marangoni flow

    International Nuclear Information System (INIS)

    Amiri, Setareh; Duroux, Laurent; Larsen, Kim Lambertsen

    2015-01-01

    Although cyclodextrins (CD) are effective stabilizers for metal nanoparticle colloids, differences between α-, β- and γ-CD in stabilizing such colloids have not been previously reported. In this study, silver nanoparticles (AgNP) were synthesized using NaBH 4 as reducing agent and cyclodextrins as stabilizers. Long-term stability of AgNP colloids in equilibrium conditions showed no marked differences between CD types. Transmission electron microscopy and quantitative image analysis revealed only marginal differences in particle sizes for CD-AgNP, although statistically significant. CD-AgNP colloids showed dispersed particles with average diameters of 7.3 ± 2.2, 6.3 ± 2.9 and 4.9 ± 1.9 nm for α-, β- and γ-CD, respectively, and with similar ζ-potentials about −25 to −30 mV. AgNP without CD showed bigger and aggregated particles of 15.0 ± 2.0 nm with lower ζ-potentials of about −40 mV. When subjected to centrifugal forces, i.e. non-equilibrium conditions, γ-CD was markedly more efficient than α- and β-CD in stabilizing the colloids. Drying patterns of colloid droplets showed a typical self-pinned coffee ring for all but the colloid stabilized by γ-CD, which showed a pattern resulting from a dominant Gibbs–Marangoni flow inside the drying droplet. Calculations using the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory supported the stabilizing effect of CD in equilibrium conditions; it however did not provide clues for the superior stabilization by γ-CD in conditions of hydrodynamic stress

  3. Optical detection of magnetic nanoparticles in colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, Alejandro J.; Ramirez-Wong, Diana G.; Favela-Camacho, Sarai E. [Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Querétaro, Querétaro, México (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Yáñez-Limón, J.M.; Luna-Bárcenas, Gabriel [Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Querétaro, Querétaro, México (Mexico)

    2016-03-15

    This study reports the change of light transmittance and light scattering dispersion by colloidal suspensions of magnetic nanoparticles. Optical changes were observed during the application of transversal magnetic fields to magnetic nanoparticles and nanowires at concentrations spanning from 20 µg/mL to 2 ng/mL. Results show that light scattering modulation is a simple, fast and inexpensive method for detection of magnetic nanoparticles at low concentrations. Frequency and time response of the optical modulation strongly depends on the geometry of the particles. In this regard, light transmittance and scattering measurements may prove useful in characterizing the morphology of suspended nanoparticles. - Highlights: • A simple route to characterize magnetic nanowire suspension is proposed. • Studied concentration as low as 2 ng/mL compares with more complex techniques. • Transmission and scattering modes allow full characterization of nanoparticles.

  4. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  5. Non-hazardous anticancerous and antibacterial colloidal 'green' silver nanoparticles.

    Science.gov (United States)

    Barua, Shaswat; Konwarh, Rocktotpal; Bhattacharya, Satya Sundar; Das, Pallabi; Devi, K Sanjana P; Maiti, Tapas K; Mandal, Manabendra; Karak, Niranjan

    2013-05-01

    Poly(ethylene glycol) stabilized colloidal silver nanoparticles were prepared using the reductive potency of the aqueous extract of Thuja occidentalis leaves under ambient conditions. The nanoparticles were well dispersed within a narrow size spectrum (7-14 nm) and displayed characteristic surface plasmon resonance peak at around 420 nm and Bragg's reflection planes of fcc structure. MTT assay revealed the dose-dependent cytocompatibility and toxicity of the nanoparticles with the L929 normal cell line. On the other hand, the antiproliferative action of the nanoparticles was evaluated on HeLa cell (cancerous cells) line. Fluorescence and phase contrast microscopic imaging indicated the appearance of multinucleate stages with aggregation and nuclear membrane disruption of the HeLa cells post treatment with the nanoparticles. The interaction at the prokaryotic level was also assessed via differential antibacterial efficacy against Staphylococcus aureus (MTCC 3160) and Escherichia coli (MTCC 40). Under these perspectives, it is also necessary to observe the environmental impact of the prepared silver nanoparticles. Hence, the dose dependent toxicity of silver nanoparticles was evaluated upon the earthworm species Eisenia fetida. Neither the survival nor the reproduction was affected by the addition of silver nanoparticles up to 1000 ppm. Thus these 'green' silver nanoparticles have promising potential as future materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature

    NARCIS (Netherlands)

    Barani, H.; Montazer, M.; Braun, H.G.; Dutschk, Victoria

    2014-01-01

    The use of silver nanoparticle on various substrates has been widespread because of its good antibacterial properties that directly depend on the stability of the silver nanoparticles in a colloidal suspension. In this study, the colloidal solutions of the silver nanoparticles were synthesised by a

  7. Colloidal stability of silver nanoparticles in biologically relevant conditions

    International Nuclear Information System (INIS)

    MacCuspie, Robert I.

    2011-01-01

    Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.

  8. Agglomeration of luminescent porous silicon nanoparticles in colloidal solutions

    Czech Academy of Sciences Publication Activity Database

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-01-01

    Roč. 11, Aug (2016), s. 1-5, č. článku 367. ISSN 1556-276X Grant - others:AV ČR(CZ) DAAD-16-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : nanocrystalline silicon * porous silicon * nanoparticles * colloids * agglomeration Subject RIV: BO - Biophysics Impact factor: 2.833, year: 2016

  9. Application of Colloidal Palladium Nanoparticles for Labeling in Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Vancová, Marie; Šlouf, Miroslav; Langhans, Jan; Pavlová, Eva; Nebesářová, Jana

    2011-01-01

    Roč. 17, č. 5 (2011), s. 810-816 ISSN 1431-9276 R&D Projects: GA AV ČR KAN200520704; GA AV ČR KJB600960906; GA ČR GAP205/10/0348 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z40500505 Keywords : electron microscopy * colloidal palladium * nanoparticles * labeling * salivary glands * Ixodes ricinus Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.007, year: 2011

  10. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Gur, Leah; Tirosh, Einat [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Segal, Amir [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Markovich, Gil, E-mail: gilmar@post.tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Gerber, Alexander, E-mail: gerber@post.tau.ac.il [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-03-15

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field. - Highlights: • Ni nanoparticle ink capable of forming conductive films on drying. • The Ni nanoparticle films exhibit significant extraordinary Hall effect. • This system could be used for preparing printed magnetic field sensors integrated in 3D printed structures.

  11. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  12. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    Science.gov (United States)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  13. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid

    Science.gov (United States)

    Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.

    2018-05-01

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  14. Electron transport in gold colloidal nanoparticle-based strain gauges

    Science.gov (United States)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  15. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  16. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver

    Science.gov (United States)

    Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characte...

  17. An evaluation of acute toxicity of colloidal silver nanoparticles.

    Science.gov (United States)

    Maneewattanapinyo, Pattwat; Banlunara, Wijit; Thammacharoen, Chuchaat; Ekgasit, Sanong; Kaewamatawong, Theerayuth

    2011-11-01

    Tests for acute oral toxicity, eye irritation, corrosion and dermal toxicity of colloidal silver nanoparticles (AgNPs) were conducted in laboratory animals following OECD guidelines. Oral administration of AgNPs at a limited dose of 5,000 mg/kg produced neither mortality nor acute toxic signs throughout the observation period. Percentage of body weight gain of the mice showed no significant difference between control and treatment groups. In the hematological analysis, there was no significant difference between mice treated with AgNPs and controls. Blood chemistry analysis also showed no differences in any of the parameter examined. There was neither any gross lesion nor histopathological change observed in various organs. The results indicated that the LD(50) of colloidal AgNPs is greater than 5,000 mg/kg body weight. In acute eye irritation and corrosion study, no mortality and toxic signs were observed when various doses of colloidal AgNPs were instilled in guinea pig eyes during 72 hr observation period. However, the instillation of AgNPs at 5,000 ppm produced transient eye irritation during early 24 hr observation time. No any gross abnormality was noted in the skins of the guinea pigs exposed to various doses of colloidal AgNPs. In addition, no significant AgNPs exposure relating to dermal tissue changes was observed microscopically. In summary, these findings of all toxicity tests in this study suggest that colloidal AgNPs could be relatively safe when administered to oral, eye and skin of the animal models for short periods of time.

  18. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    Science.gov (United States)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Cream formulation impact on topical administration of engineered colloidal nanoparticles.

    Directory of Open Access Journals (Sweden)

    Benedetta Santini

    Full Text Available In order to minimize the impact of systemic toxicity of drugs in the treatment of local acute and chronic inflammatory reactions, the achievement of reliable and efficient delivery of therapeutics in/through the skin is highly recommended. While the use of nanoparticles is now an established practice for drug intravenous targeted delivery, their transdermal penetration is still poorly understood and this important administration route remains almost unexplored. In the present study, we have synthesized magnetic (iron oxide nanoparticles (MNP coated with an amphiphilic polymer, developed a water-in-oil emulsion formulation for their topical administration and compared the skin penetration routes with the same nanoparticles deposited as a colloidal suspension. Transmission and scanning electron microscopies provided ultrastructural evidence that the amphiphilic nanoparticles (PMNP cream formulation allowed the efficient penetration through all the skin layers with a controllable kinetics compared to suspension formulation. In addition to the preferential follicular pathway, also the intracellular and intercellular routes were involved. PMNP that crossed all skin layers were quantified by inductively coupled plasma mass spectrometry. The obtained data suggests that combining PMNP amphiphilic character with cream formulation improves the intradermal penetration of nanoparticles. While PMNP administration in living mice via aqueous suspension resulted in preferential nanoparticle capture by phagocytes and migration to draining lymph nodes, cream formulation favored uptake by all the analyzed dermis cell types, including hematopoietic and non-hematopoietic. Unlike aqueous suspension, cream formulation also favored the maintenance of nanoparticles in the dermal architecture avoiding their dispersion and migration to draining lymph nodes via afferent lymphatics.

  20. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun

    2011-11-01

    Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Quantitative Evaluation of the Total Magnetic Moments of Colloidal Magnetic Nanoparticles: A Kinetics-based Method.

    Science.gov (United States)

    Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning

    2015-06-08

    A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of colloids based on gold nanoparticles dispersed in castor oil

    International Nuclear Information System (INIS)

    Silva, E. C. da; Silva, M. G. A. da; Meneghetti, S. M. P.; Machado, G.; Alencar, M. A. R. C.; Hickmann, J. M.; Meneghetti, M. R.

    2008-01-01

    New colloidal solutions of gold nanoparticles (AuNP), using castor oil as a nontoxic organic dispersant agent, were prepared via three different methods. In all three cases, tetrachloroauric(III) acid was employed as the gold source. The colloids were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The AuNP produced by the three methods were quasispherical in shape, however with different average sizes. The individual characteristics of the nanoparticles presented in each colloidal system were also confirmed by observation of absorption maxima at different wavelengths of visible light. Each method of synthesis leads to colloids with different grades of stability with respect to particle agglomeration.

  3. Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    International Nuclear Information System (INIS)

    Tahmasebi, Nemat; Mahdavi, Seyed Mohammad

    2015-01-01

    Highlights: • Tungsten oxide nanoparticles were prepared by pulsed laser ablation (PLA). • A very fine metallic Au particles or coating are decorated on the surface of tungsten oxide nanoparticles. • UV–Vis spectroscopy shows an absorption peak at ∼530 nm which is due to SPR effect of gold. • After exposing to hydrogen gas, Au/WO_3 colloidal nanoparticles show excellent gasochromic coloring. - Abstract: In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl_4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au"3"+ ions were reduced to decorate gold metallic state (Au"0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV–Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms formation of gold state. Moreover, X-ray photoelectron spectroscopy reveals that Au ions’ reduction happens after adding HAuCl_4 solution into as-prepared colloidal tungsten oxide nanoparticles. Transmission electron microscope shows that an Au shell has been decorated onto colloidal WO_3 nanoparticles. Noble metal decorated tungsten oxide nanostructure could be an excellent candidate for photocatalysis, gas sensing and gasochromic applications. Finally, the gasochromic behavior of the synthesized samples was investigated by H_2 and O_2 gases bubbling into the produced colloidal Au/WO_3 nanoparticles. Synthesized colloidal nanoparticles show excellent coloration contrast (∼80%) through NIR spectra.

  4. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    Science.gov (United States)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  5. Collective mechanical behavior of multilayer colloidal arrays of hollow nanoparticles.

    Science.gov (United States)

    Yin, Jie; Retsch, Markus; Thomas, Edwin L; Boyce, Mary C

    2012-04-03

    The collective mechanical behavior of multilayer colloidal arrays of hollow silica nanoparticles (HSNP) is explored under spherical nanoindentation through a combination of experimental, numerical, and theoretical approaches. The effective indentation modulus E(ind) is found to decrease with an increasing number of layers in a nonlinear manner. The indentation force versus penetration depth behavior for multilayer hollow particle arrays is predicted by an approximate analytical model based on the spring stiffness of the individual particles and the multipoint, multiparticle interactions as well as force transmission between the layers. The model is in good agreement with experiments and with detailed finite element simulations. The ability to tune the effective indentation modulus, E(ind), of the multilayer arrays by manipulating particle geometry and layering is revealed through the model, where E(ind) = (0.725m(-3/2) + 0.275)E(mon) and E(mon) is the monolayer modulus and m is number of layers. E(ind) is seen to plateau with increasing m to E(ind_plateau) = 0.275E(mon) and E(mon) scales with (t/R)(2), t being the particle shell thickness and R being the particle radius. The scaling law governing the nonlinear decrease in indentation modulus with an increase in layer number (E(ind) scaling with m(-3/2)) is found to be similar to that governing the indentation modulus of thin solid films E(ind_solid) on a stiff substrate (where E(ind_solid) scales with h(-1.4) and also decreases until reaching a plateau value) which also decreases with an increase in film thickness h. However, the mechanisms underlying this trend for the colloidal array are clearly different, where discrete particle-to-particle interactions govern the colloidal array behavior in contrast to the substrate constraint on deformation, which governs the thickness dependence of the continuous thin film indentation modulus.

  6. Source of cytotoxicity in a colloidal silver nanoparticle suspension.

    Science.gov (United States)

    Hatipoglu, Manolya Kukut; Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2015-05-15

    Silver nanoparticles (AgNPs) are increasingly used in a variety of applications because of their potential antimicrobial activity and their plasmonic and conductivity properties. In this study, we investigated the source of cytotoxicity, genotoxicity, and reactive oxygen species (ROS) production on human dermal fibroblast and human lung cancer (A549) cell lines upon exposure to AgNP colloidal suspensions prepared with the simplest and most commonly used Lee–Meisel method with a variety of reaction times and the concentrations of the reducing agent. The AgNPs synthesized with shorter reaction times were more cytotoxic and genotoxic due to the presence of a few nanometer-sized AgNP seeds. The suspensions prepared with an increased citrate concentration were not cytotoxic, but they induced more ROS generation on A549 cells due to the high citrate concentration. The genotoxicity of the suspension decreased significantly at the higher citrate concentrations. The analysis of both transmission electron microscopy images from the dried droplet areas of the colloidal suspensions and toxicity data indicated that the AgNP seeds were the major source of toxicity. The completion of the nucleation step and the formation of larger AgNPs effectively decreased the toxicity.

  7. Effect of magnetic field on self-assembling of colloidal Co magnetic nanoparticles

    International Nuclear Information System (INIS)

    Chitu, L.; Chushkin, Y.; Luby, S.; Majkova, E.; Leo, G.; Satka, A.; Giersig, M.; Hilgendorff, M.

    2006-01-01

    In this paper the formation of 3-D structures composed of Co nanoparticles (NPs) is reported. Structures were obtained by drying a droplet of a colloidal solution of NPs in a magnetic field perpendicular to the substrate. The Co nanoparticles were prepared by thermolysis of Co 2 (CO) 8 . The 3-D NP structures were characterized by scanning electron microscopy (SEM) and atomic and magnetic force microscopy (AFM/MFM). It has been found that at the border of the droplet, NPs assemble into hexagonally ordered 3-D columns or they form a labyrinthine structure. The formation of the 3-D structures can be explained by the outflow of NPs to the border of the droplet during the drying process. Within this model the pattern formation is dependent on the concentration of the NPs and the degree of alignment of the magnetic moments of NPs in the 3-D columns

  8. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles

    International Nuclear Information System (INIS)

    Chu, Viet Ha; Nghiem, Thi Ha Lien; Tran, Hong Nhung; Fort, Emmanuel

    2011-01-01

    Due to the energy transfer from surface plasmons, the fluorescence of fluorophores near metallic nanostructures can be enhanced. This effect has been intensively studied recently for biosensor applications. This work reports on the luminescence enhancement of 100 nm Cy3 dye-doped polystyrene nanoparticles by energy transfer from surface plasmons of gold colloidal nanoparticles with sizes of 20 and 100 nm. Optimal luminescence enhancement of the fluorophores has been observed in the mixture with 20 nm gold nanoparticles. This can be attributed to the resonance energy transfer from gold nanoparticles to the fluorophore beads. The interaction between the fluorophores and gold particles is attributed to far-field interaction

  9. ANTIOXIDANT AND ANTIMICROBIAL PROPERTIES OF STEVIA LEAVES EXTRACTS AND SILVER NANOPARTICLES COLLOIDS

    Directory of Open Access Journals (Sweden)

    Iryna Laguta

    2016-12-01

    Full Text Available Three extracts of Stevia rebaudiana (Bertoni were prepared using various types of raw materials: leaves of plants grown ex situ, leaves of plants grown in vitro, callus culture formed on damaged leaves. Composition of the extracts, their activity in the synthesis of silver nanoparticles colloids, as well as antioxidant and antimicrobial properties of the extracts and the colloids were investigated.

  10. Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles

    NARCIS (Netherlands)

    Wang, Fang; Haftka, Joris J H; Sinnige, Theo L.; Hermens, Joop L M; Chen, Wei

    2014-01-01

    We conducted batch adsorption experiments to understand the adsorptive properties of colloidal graphene oxide nanoparticles (GONPs) for a range of environmentally relevant aromatics and substituted aromatics, including model nonpolar compounds (pyrene, phenanthrene, naphthalene, and

  11. Controlled synthesis of colloidal silver nanoparticles in capillary micro-flow reactor

    International Nuclear Information System (INIS)

    He Shengtai; Liu Yulan; Maeda, Hideaki

    2008-01-01

    In this study, using a polytetrafluoroethylene (PTFE) capillary tube as a micro-flow reactor, well-dispersed colloidal silver nanoparticles were controllably synthesized with different flow rates of precursory solution. Scanning transmission electron microscopy images and UV-visible absorbance spectra showed that silver nanoparticles with large size can be prepared with slow flow rate in the PTFE capillary reactor. The effects of tube diameters on the growth of colloidal silver nanoparticles were investigated. Experiment results demonstrated that using tube with small diameter was more propitious for the controllable synthesis of silver nanoparticles with different sizes.

  12. Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin.

    Science.gov (United States)

    Mathew, Thomas V; Kuriakose, Sunny

    2013-01-01

    Colloidal silver nanoparticles were synthesised using sol-gel method and these nanoparticles were stabilised by encapsulated into the scaffolds of bovine serum albumin. Silver nanoparticles and encapsulated products were characterised by FTIR, NMR, XRD, TG, SEM and TEM analyses. Silver nanoparticle encapsulated bovine serum albumin showed highly potent antibacterial activity towards the bacterial strains such as Staphylococcus aureus, Serratia marcescens, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  14. 2D mesoscale colloidal crystal patterns on polymer substrates

    Science.gov (United States)

    Bredikhin, Vladimir; Bityurin, Nikita

    2018-05-01

    The development of nanosphere lithography relies on the ability of depositing 2D colloidal crystals comprising micro- and nano-size elements on substrates of different materials. One of the most difficult problems here is deposition of coatings on hydrophobic substrates, e.g. polymers, from aqueous colloidal solutions. We use UV photooxidation for substrate hydrophilization. We demonstrate a new method of producing a two-dimensional ordered array of polymer microparticles (polystyrene microspheres ∼1 μm in diameter) on a polymer substrate (PMMA). We show that implementation of the new deposition technique for directed self-assembly of microspheres on an UV irradiated surface provides an opportunity to obtain coatings on a hydrophilized PMMA surface of large area (∼5 cm2). UV irradiation of the surface through masks allows creating 2D patterns consisting of mesoscale elements formed by the deposited self-assembled microparticles owing to the fact that the colloidal particles are deposited only on the irradiated area leaving the non-irradiated sections intact.

  15. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    Science.gov (United States)

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  16. Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors

    Directory of Open Access Journals (Sweden)

    Chun-Feng Lai

    2016-05-01

    Full Text Available Polystyrene (PS colloidal photonic crystals (CPhCs containing silver nanoparticles (AgNPs present tunable structural colors. PS CPhC color films containing a high concentration of AgNPs were prepared using self-assembly process through gravitational sedimentation method. High-concentration AgNPs were deposited on the bottom of the substrate and acted as black materials to absorb background and scattering light. Brilliant structural colors were enhanced because of the absorption of incoherent scattering light, and color saturation was increased by the distribution AgNPs on the PS CPhC surfaces. The vivid iridescent structural colors of AgNPs/PS hybrid CPhC films were based on Bragg diffraction and backward scattering absorption using AgNPs. The photonic stop band of PS CPhCs and AgNPs/PS hybrid CPhCs were measured by UV–visible reflection spectrometry and calculated based on the Bragg–Snell law. In addition, the tunable structural colors of AgNPs/PS hybrid CPhC films were evaluated using color measurements according to the Commission International d’Eclairage standard colorimetric system. This paper presents a simple and inexpensive method to produce tunable structural colors for numerous applications, such as textile fabrics, bionic colors, catalysis, and paints.

  17. Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent

    Science.gov (United States)

    Susilowati, E.; Maryani; Ashadi

    2018-04-01

    The present study we explore an environmentally friendly colloidal silver nanoparticles preparation using chitosan as reducing agent and stabilizer. It develops a new strategy on preparation of silver nanoparticles through the gel phase using sodium hydroxide (NaOH) as accelerator reagent. Sunlight irradiation was employed to assisted reducing process of silver ions to silver nanoparticles. Localized surface plasmon resonance (LSPR) phenomenon of silver nanoparticles was investigated using UV-Vis spectrophotometer. The shape and size of silver particles were analyzed using TEM. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 396.0–412.0 nm. The absorption peak of LSPR were affected by NaOH amount, time of sulight irradiation and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 5 to 8 nm as shown by TEM images. All colloidals were stable without any aggregation for 30 days after preparation.

  18. Synthesis of dextrin-stabilized colloidal silver nanoparticles and their application as modifiers of cement mortar.

    Science.gov (United States)

    Konował, Emilia; Sybis, Marta; Modrzejewska-Sikorska, Anna; Milczarek, Grzegorz

    2017-11-01

    Various commercial dextrins were used as reducing and stabilizing agents for a novel one-step synthesis of silver nanoparticles from ammonia complexes of silver ions. As a result, stable colloids of silver were formed during the reaction with the particle size being the function of the dextrin type. The obtained colloids were characterized by UV-vis spectrophotometry, size distribution (using Non-Invasive Backscatter optics) and transmission electron microscopy (TEM). The achieved results clearly indicate the possibility of low-cost production of large quantities of colloidal silver nanoparticles using materials derived from renewable sources. The resulting silver colloids can be used for different purposes, e.g. as bactericidal agents. Combination of the aforementioned properties of nanosilver particles with plasticizing properties of dextrin enables to obtain cement mortars with increased workability and enhanced compressive strength. Moreover, the obtained material is also characterized by increased immunity to adverse impact of microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  20. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    International Nuclear Information System (INIS)

    Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L.

    2014-01-01

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO 3 ) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO 3 , KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed

  1. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Mikac, L.; Ivanda, M., E-mail: ivanda@irb.hr [Ruđer Bošković Institute, Laboratory for Molecular Physics (Croatia); Gotić, M. [Ruđer Bošković Institute, Laboratory for Synthesis of New Materials (Croatia); Mihelj, T. [Ruđer Bošković Institute, Laboratory for Synthesis and Processes of Self-assembling of Organic Molecules (Croatia); Horvat, L. [Ruđer Bošković Institute, Laboratory for Electron Microscopy (Croatia)

    2014-12-15

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO{sub 3}) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO{sub 3}, KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed.

  2. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    Science.gov (United States)

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  3. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  4. Preparation of poly(N-vinylpyrrolidone-stabilized ZnO colloid nanoparticles

    Directory of Open Access Journals (Sweden)

    Tatyana Gutul

    2014-04-01

    Full Text Available We propose a method for the synthesis of a colloidal ZnO solution with poly(N-vinylpyrrolidone (PVP as stabilizer. Stable colloidal solutions with good luminescence properties are obtained by using PVP as stabilizer in the synthesis of ZnO nanoparticles by a sol–gel method assisted by ultrasound. Nanoparticles with sizes of 30–40 nm in a PVP matrix are produced as a solid product. The colloidal ZnO/PVP/methanol solution, apart from the most intense PL band at 356 nm coming from the PVP, exhibits a strong PL band at 376 nm (3.30 eV which corresponds to the emission of the free exciton recombination in ZnO nanoparticles.

  5. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  6. Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method

    International Nuclear Information System (INIS)

    Zang, Zhigang; Tang, Xiaosheng

    2015-01-01

    Highlights: • A dual phase hydrothermal method was developed to synthesize ZnO nanoparticles. • ZnO nanoparticles show a stability and solubility in the aqueous environment. • ZnO nanoparticles with a blue emission wavelength at around 420 nm and small size (30 nm). • ZnO nanoparticles as biological labeling agent was also shown. - Abstract: A facile synthesis method for the formation of ZnO nanoparticles by using a double-phase reaction was demonstrated in this paper. The morphology of the synthesized ZnO nanoparticles shows a flower-shape. Hydrogen peroxide was used as a unique oxygenic source to promote the formation of ZnO in the presence of organic zinc precursor. The as-synthesized ZnO nanoparticles also show a stability and solubility in the aqueous environment. The structure and properties of ZnO nanoparticles were investigated by the transmission electron microscopy (TEM) and X-ray diffraction (XRD) as well as UV–vis and photoluminescence spectroscopy. The as-prepared hydrophobic colloidal ZnO nanoparticles could be modified to become water-soluble via ligand exchange with amineothanethiol⋅HCl while retaining the photoluminescence properties. In addition, the potential application for biological label of water-soluble ZnO nanoparticles were also demonstrated. These results not only have applications towards using colloidal ZnO nanoparticles effectively in biological fluorescence imaging, but also promote its application in the field of targeted drug delivery

  7. Low molecular weight compounds as effective dispersing agents in the formation of colloidal silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Jun; Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp; Abe, Takao [Shinshu University, Faculty of Textile Science and Technology (Japan)

    2013-03-15

    A convenient method to synthesize uniform, well-dispersed colloidal silver nanoparticles is described. Aldonic acid or {alpha}-hydroxy acid compounds of low molecular weight are used instead of polymeric compounds as dispersing agents to prepare silver nanoparticles. The size, conformation, and electrical conductivity of the silver nanoparticles, and the effect and function of the dispersing agents are investigated in detail. Using these low molecular weight compounds as dispersing agents, silver nanoparticles with a diameter of 10 nm or less and high electrical conductivity can be obtained. In addition, this procedure allows silver nanoparticles to be sintered at 150 Degree-Sign C, which is lower than that required for silver nanoparticle formulation using polymeric compounds (200 Degree-Sign C). The silver nanoparticles produced by this process can be used to prepare various inks and to manufacture electronic circuits. It is found that low molecular weight compounds are more effective dispersing agents than polymeric compounds in the formation of silver nanoparticles.

  8. Microwave-assisted one-step patterning of aqueous colloidal silver.

    Science.gov (United States)

    Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N

    2012-07-05

    A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.

  9. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

    Science.gov (United States)

    Bharali, P; Saikia, J P; Paul, S; Konwar, B K

    2013-10-01

    The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia Nano-Biotechnology Research (Malaysia); Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  11. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties.

    Science.gov (United States)

    Costo, Rocio; Bello, Valentina; Robic, Caroline; Port, Marc; Marco, Jose F; Puerto Morales, M; Veintemillas-Verdaguer, Sabino

    2012-01-10

    A considerable increase in the saturation magnetization, M(s) (40%), and initial susceptibility of ultrasmall (<5 nm) iron oxide nanoparticles prepared by laser pyrolysis was obtained through an optimized acid treatment. Moreover, a significant enhancement in the colloidal properties, such as smaller aggregate sizes in aqueous media and increased surface charge densities, was found after this chemical protocol. The results are consistent with a reduction in nanoparticle surface disorder induced by a dissolution-recrystallization mechanism.

  12. A novel 'green' synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract.

    Science.gov (United States)

    Singh, Susmita; Saikia, Jyoti P; Buragohain, Alak K

    2013-02-01

    In the present research we have defined a novel green method of silver nanoparticles synthesis using Dillenia indica fruit extract. D. indica is an edible fruit widely distributed in the foothills of Himalayas and known for its antioxidant and further predicted for cancer preventive potency. The maximum absorbance of the colloidal silver nanoparticle solution was observed at 421 nm when examined with UV-vis spectrophotometer. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Dewetting-mediated pattern formation in nanoparticle assemblies

    International Nuclear Information System (INIS)

    Stannard, Andrew

    2011-01-01

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered. (topical review)

  14. Dewetting-mediated pattern formation in nanoparticle assemblies.

    Science.gov (United States)

    Stannard, Andrew

    2011-03-02

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  15. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    Science.gov (United States)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  16. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  17. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review.

    Science.gov (United States)

    Champagne, Pierre-Olivier; Westwick, Harrison; Bouthillier, Alain; Sawan, Mohamad

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) consist of nanosized metallic-based particles with unique magnetic properties. Their potential in both diagnostic and therapeutic applications in the CNS is at the source of an expanding body of the literature in recent years. Colloidal stability of nanoparticles represents their ability to resist aggregation and is a central aspect for the use of SPION in biological environment such as the CNS. This review gives a comprehensive update of the recent developments and knowledge on the determinants of colloidal stability of SPIONs in the CNS. Factors leading to aggregate formation and the repercussions of colloidal instability of SPION are reviewed in detail pertaining to their use in the CNS.

  18. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications

    Science.gov (United States)

    Yeap, Swee Pin; Lim, JitKang; Ooi, Boon Seng; Ahmad, Abdul Latif

    2017-11-01

    Magnetic nanoparticles (MNPs) which exhibit magnetic and catalytic bifunctionalities have been widely accepted as one of the most promising nanoagents used in water purification processes. However, due to the magnetic dipole-dipole interaction, MNPs can easily lose their colloidal stability and tend to agglomerate. Thus, it is necessary to enhance their colloidal stability in order to maintain the desired high specific surface area. Meanwhile, in order to successfully utilize MNPs for environmental engineering applications, an effective magnetic separation technology has to be developed. This step is to ensure the MNPs that have been used for pollutant removal can be fully reharvested back. Unfortunately, it was recently highlighted that there exists a conflicting role between colloidal stability and magnetic separability of the MNPs, whereby the more colloidally stable the particle is, the harder for it to be magnetically separated. In other words, attaining a win-win scenario in which the MNPs possess both good colloidal stability and fast magnetic separation rate becomes challenging. Such phenomenon has to be thoroughly understood as the colloidal stability and the magnetic separability of MNPs play a pivotal role on affecting their effective implementation in water purification processes. Accordingly, it is the aim of this paper to provide reviews on (i) the colloidal stability and (ii) the magnetic separation of MNPs, as well as to provide insights on (iii) their conflicting relationship based on recent research findings. [Figure not available: see fulltext.

  19. PtRu colloid nanoparticles for CO oxidation in microfabricated reactors

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Saadi, Souheil; Toftegaard, Maja Bøg

    2006-01-01

    The catalytic activity of PtRu colloid nanoparticles for CO oxidation is investigated in microfabricated reactors. The measured catalytic performance describes a volcano curve as a function of the Pt/Ru ratio. The apparent activation energies for the different alloy catalysts are between 21 and 1...

  20. Sweet Nanochemistry: A Fast, Reliable Alternative Synthesis of Yellow Colloidal Silver Nanoparticles Using Benign Reagents

    Science.gov (United States)

    Cooke, Jason; Hebert, Dominique; Kelly, Joel A.

    2015-01-01

    This work describes a convenient and reliable laboratory experiment in nanochemistry that is flexible and adaptable to a wide range of educational settings. The rapid preparation of yellow colloidal silver nanoparticles is achieved by glucose reduction of silver nitrate in the presence of starch and sodium citrate in gently boiling water, using…

  1. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    Science.gov (United States)

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    International Nuclear Information System (INIS)

    Slepička, P.; Elashnikov, R.; Ulbrich, P.; Staszek, M.; Kolská, Z.; Švorčík, V.

    2015-01-01

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H 2 O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H 2 O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H 2 O—1/1), 509–535 nm (PEG/H 2 O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles

  3. Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature.

    Science.gov (United States)

    Barani, Hossein; Montazer, Majid; Braun, Hans-Georg; Dutschk, Victoria

    2014-12-01

    The use of silver nanoparticle on various substrates has been widespread because of its good antibacterial properties that directly depend on the stability of the silver nanoparticles in a colloidal suspension. In this study, the colloidal solutions of the silver nanoparticles were synthesised by a simple and safe method by using lecithin as a stabilising agent and their stability was examined at various temperatures. The effect of the lecithin concentrations on the stability of the synthesised silver nanoparticles was examined from 25 to 80°C at 5°C intervals, by recording the changes in the UV-vis absorption spectra, the hydrodynamic diameter and the light scattering intensity of the silver nanoparticles. In addition, the morphology of the synthesised silver nanoparticles was investigated with the low-voltage scanning electron microscopy and transmission electron microscopy. The results indicated that increasing temperature caused different changes in the size of the stabilised and the unstabilised silver nanoparticles. The size of the stabilised silver nanoparticles reduced from 38 to 36 nm during increasing temperature, which confirmed good stability.

  4. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz; Elashnikov, R. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology (Czech Republic); Staszek, M. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Kolská, Z. [University of J. E. Purkyně, Faculty of Science (Czech Republic); Švorčík, V. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic)

    2015-01-15

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H{sub 2}O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H{sub 2}O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H{sub 2}O—1/1), 509–535 nm (PEG/H{sub 2}O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

  5. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    International Nuclear Information System (INIS)

    Munjal, Sandeep; Khare, Neeraj

    2016-01-01

    We have synthesized CoFe 2 O 4 (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible in water and form a stable aqueous solution with high electrophoretic mobility.

  6. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation.

    Science.gov (United States)

    Devrim, Burcu; Kara, Aslı; Vural, İmran; Bozkır, Asuman

    2016-11-01

    Lipid-polymer hybrid nanoparticles (LPNPs) are polymeric nanoparticles enveloped by lipid layers, which have emerged as a potent therapeutic nanocarrier alternative to liposomes and polymeric nanoparticles. The aim of this work was to develop, characterize and evaluate LPNPs to deliver a model protein, lysozyme. Lysozyme-loaded LPNPs were prepared by using the modified w/o/w double-emulsion-solvent-evaporation method. Poly-ɛ-caprolactone (PCL) was used as polymeric core material and tripalmitin:lechitin mixture was used to form a lipid shell around the LPNPs. LPNPs were evaluated for particle size distribution, zeta potential, morphology, encapsulation efficiency, in vitro drug release, stability and cytotoxicity. The DLS measurement results showed that the particle size of LPNPs ranged from 58.04 ± 1.95 nm to 2009.00 ± 0.52 nm. The AFM and TEM images of LPNPs demonstrate that LPNPs are spherical in shape. The protein-loading capacity of LPNPs ranged from 5.81% to 60.32%, depending on the formulation parameters. LPNPs displayed a biphasic drug release pattern with a burst release within 1 h, followed by sustained release afterward. Colloidal stability results of LPNPs in different media showed that particle size and zeta potential values of particles did not change significantly in all media except of FBS 100% for 120 h. Finally, the results of a cellular uptake study showed that LPNPs were significantly taken up by 83.3% in L929 cells. We concluded that the LPNPs prepared with PCL as polymeric core material and tripalmitin:lechitin mixture as lipid shell should be a promising choice for protein delivery.

  7. Deposition of gold nanoparticles from colloid on TiO2 surface

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  8. Synthesis of ultrasmall magnetic iron oxide nanoparticles and study of their colloid and surface chemistry

    International Nuclear Information System (INIS)

    Goloverda, Galina; Jackson, Barry; Kidd, Clayton; Kolesnichenko, Vladimir

    2009-01-01

    Colloidal nanoparticles of Fe 3 O 4 (4 nm) were synthesized by high-temperature hydrolysis of chelated iron (II) and (III) diethylene glycol alkoxide complexes in a solution of the parent alcohol (H 2 DEG) without using capping ligands or surfactants: [Fe(DEG)Cl 2 ] 2- +2[Fe(DEG)Cl 3 ] 2- +2H 2 O+2OH - →Fe 3 O 4 +3H 2 DEG+8Cl - The obtained particles were reacted with different small-molecule polydentate ligands, and the resulting adducts were tested for aqueous colloid formation. Both the carboxyl and α-hydroxyl groups of the hydroxyacids are involved in coordination to the nanoparticles' surface. This coordination provides the major contribution to the stability of the ligand-coated nanoparticles against hydrolysis.

  9. Magnetorheology of colloidal dispersion containing Fe nanoparticles synthesized by the arc-plasma method

    International Nuclear Information System (INIS)

    Noma, Junichi; Abe, Hiroya; Kikuchi, Takehito; Furusho, Junji; Naito, Makio

    2010-01-01

    Spherical crystalline Fe nanoparticles, ∼100 nm in diameter, were synthesized under Ar-50% H 2 arc-plasma. These nanoparticles were dispersed in silicone oil after silane treatment on as-grown thin oxide layer (∼2 nm) to make their surfaces hydrophobic. The resulting Fe nanoparticles exhibited a high saturation magnetization of ∼190 emu/g at room temperature. The static magnetorheological behavior was measured for the colloidal dispersion (solid concentration: 15 vol%) at room temperature under magnetic flux densities of 0-0.3 T, using a parallel-plate-type commercial rheometer. The yield stress continuously increased with magnetic flux density, demonstrating the Bingham plastic behavior. Moreover, subjecting the sample to a magnetic flux density of 0.3 T increased the yield stress by ∼10 2 . Additionally, the colloidal dispersion exhibited good stability against sedimentation.

  10. Magnetorheology of colloidal dispersion containing Fe nanoparticles synthesized by the arc-plasma method

    Science.gov (United States)

    Noma, Junichi; Abe, Hiroya; Kikuchi, Takehito; Furusho, Junji; Naito, Makio

    2010-07-01

    Spherical crystalline Fe nanoparticles, ˜100 nm in diameter, were synthesized under Ar-50% H 2 arc-plasma. These nanoparticles were dispersed in silicone oil after silane treatment on as-grown thin oxide layer (˜2 nm) to make their surfaces hydrophobic. The resulting Fe nanoparticles exhibited a high saturation magnetization of ˜190 emu/g at room temperature. The static magnetorheological behavior was measured for the colloidal dispersion (solid concentration: 15 vol%) at room temperature under magnetic flux densities of 0-0.3 T, using a parallel-plate-type commercial rheometer. The yield stress continuously increased with magnetic flux density, demonstrating the Bingham plastic behavior. Moreover, subjecting the sample to a magnetic flux density of 0.3 T increased the yield stress by ˜10 2. Additionally, the colloidal dispersion exhibited good stability against sedimentation.

  11. Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal.

    Science.gov (United States)

    Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel

    2014-12-09

    The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.

  12. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections

    International Nuclear Information System (INIS)

    Le, Anh-Tuan; Le, Thi Tam; Nguyen, Van Quy; Tran, Huy Hoang; Dang, Duc Anh; Tran, Quang Huy; Vu, Dinh Lam

    2012-01-01

    In this work we have demonstrated a powerful disinfectant ability of colloidal silver nanoparticles (NPs) for the prevention of gastrointestinal bacterial infections. The silver NPs colloid was synthesized by a UV-enhanced chemical precipitation. Two gastrointestinal bacterial strains of Escherichia coli (ATCC 43888-O157:k-:H7) and Vibrio cholerae (O1) were used to verify the antibacterial activity of the as-prepared silver NPs colloid by means of surface disinfection assay in agar plates and turbidity assay in liquid media. Transmission electron microscopy was also employed to analyze the ultrastructural changes of bacterial cells caused by silver NPs. Noticeably, our silver NPs colloid displayed a highly effective bactericidal effect against two tested gastrointestinal bacterial strains at a silver concentration as low as ∼3 mg l −1 . More importantly, the silver NPs colloid showed an enhancement of antibacterial activity and long-lasting disinfectant effect as compared to conventional chloramin B (5%) disinfection agent. These advantages of the as-prepared colloidal silver NPs make them very promising for environmental treatments contaminated with gastrointestinal bacteria and other infectious pathogens. Moreover, the powerful disinfectant activity of silver-containing materials can also help in controlling and preventing further outbreak of diseases. (paper)

  13. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Naghavi, Kazem, E-mail: Kazem.naghavi@gmail.co [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Saion, Elias [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Rezaee, Khadijeh [Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Yunus, Wan Mahmood Mat [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia)

    2010-12-15

    Colloidal silver nanoparticles were synthesized by {gamma}-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10{sup -4} and 1.84x10{sup -3} M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a {sup 60}Co {gamma} source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak {lambda}{sub max} blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  14. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Naghavi, Kazem; Saion, Elias; Rezaee, Khadijeh; Yunus, Wan Mahmood Mat

    2010-01-01

    Colloidal silver nanoparticles were synthesized by γ-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10 -4 and 1.84x10 -3 M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a 60 Co γ source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak λ max blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  15. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  16. Experimental evidence of colloids and nanoparticles presence from 25 waste leachates

    Energy Technology Data Exchange (ETDEWEB)

    Hennebert, Pierre, E-mail: pierre.hennebert@ineris.fr [INERIS – Institut National de l’Environnement Industriel et des Risques, Domaine du Petit Arbois BP33, F-13545 Aix-en-Provence (France); Avellan, Astrid; Yan, Junfang [INERIS – Institut National de l’Environnement Industriel et des Risques, Domaine du Petit Arbois BP33, F-13545 Aix-en-Provence (France); Aguerre-Chariol, Olivier [INERIS, Parc Technologique ALATA, BP No. 2, 60550 Verneuil en Halatte (France)

    2013-09-15

    Highlights: • This work is the first assessment of colloids in waste leachates. • Analytical methods are proposed and discussed. • All the waste have at least one element in colloidal form, and some elements are always colloidal. • Man-made nanoparticles are observed. • It can change the interpretation of leachate elemental concentration. - Abstract: The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used to easily detect colloids potentially released by waste. Precautions against CO{sub 2} capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l{sup −1}. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l{sup −1}. In particular

  17. Colloidal strategies for controlling the morphology, composition, and crystal structure of inorganic nanoparticles

    Science.gov (United States)

    Hodges, James M.

    Emerging applications and fundamental studies require nanomaterials with increasingly sophisticated architectures that have precise composition, morphology, and crystal structure. Colloidal nanochemistry has emerged as one of the most effective methods for generating high quality, monodisperse nanoparticles with diverse structural features and highly complex geometries. These wet-chemical approaches offer an array of synthetic levers that can be used to tailor nanoparticles for targeted applications, and deliver solution-dispersible solids that are easily integrated onto device architectures. Additionally, colloidal nanoparticles can be used as building blocks for constructing periodic superlattices and multicomponent hybrid nanoparticles, which offer unique properties that can support next-generation technologies. As the applications for colloidal nanoparticles continue to expand, the architectural and compositional requirements for these materials are becoming increasingly rigid. Conventional colloidal methods are effective for generating diverse nanoparticle systems, but rely on complex nucleation and growth processes, which are often poorly understood and difficult to control in dynamic reaction environments. For these reasons, there are a number of high profile nanoparticle targets that remain out of reach. Accordingly, new approaches are needed that can circumvent these synthetic bottlenecks and narrow the growing disconnect between nano-design and synthetic capability. In this dissertation, I present several colloidal strategies for engineering synthetically challenging nanomaterials using multistep reaction sequences that, in many ways, parallel the total-synthesis framework that organic chemists use to access complex molecules. A variety of approaches are discussed, including nanoscale ion exchange transformations and seeded-growth protocol for constructing multicomponent hybrid nanoparticles. First, I demonstrate that solution-mediated anion and cation

  18. Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Chen, Yu-Chun; Shyue, Jing-Jong

    2011-01-01

    This article presents an electrochemical discharge (ECD) method that consists of a combination of chemical methods and electric arc discharges. In the method, 140 V is applied to an Ag electrode from a DC power supply. The arc-discharge between the electrodes produces metallic silver nanoparticles and silver ions in the aqueous solution. Compared with the original arc discharge, this ECD method creates smaller nanoparticles, prevents clumping of the nanoparticles, and shortens the production time. The citrate ions also reduce the silver ions to silver nanoparticles. In addition, the citrate ions cap the surface of the produced silver nanoparticles and the zeta potential increases. In this article, the weight loss of the electrodes and the reduction of silver ions to silver nanoparticles as a function of citrate concentration and electric conductivity of the medium are discussed. Furthermore, the properties of the colloidal silver prepared with ECD are analyzed by UV–Vis spectroscopy, dynamic light scattering, electrophoresis light scattering, and scanning electron microscopy. Finally, a continuous production apparatus is presented for the continuous production of colloidal silver.

  19. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  20. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    International Nuclear Information System (INIS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-01-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al 2 O 3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  1. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun, E-mail: 1044208419@qq.com; Mao, Hui, E-mail: rejoice222@163.com [Sichuan Normal University, College of Chemistry and Materials Science (China)

    2016-10-15

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al{sub 2}O{sub 3} catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  2. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics.

    Science.gov (United States)

    Ovais, Muhammad; Raza, Abida; Naz, Shagufta; Islam, Nazar Ul; Khalil, Ali Talha; Ali, Shaukat; Khan, Muhammad Adeeb; Shinwari, Zabta Khan

    2017-05-01

    The design, development, and biomedical applications of phytochemical-based green synthesis of biocompatible colloidal gold nanoparticles (AuNPs) are becoming an emerging field due to several advantages (safer, eco-friendly, simple, fast, energy efficient, low-cost, and less toxic) over conventional chemical synthetic procedures. Biosynthesized colloidal gold nanoparticles are remarkably attractive in several biomedical applications including cancer theranostics due to small size, unusual physico-chemical properties, facile surface modification, high biocompatibility, and numerous other advantages. Of late, several researchers have investigated the biosynthesis and prospective applications (diagnostics, imaging, drug delivery, and cancer therapeutics) of AuNPs in health care and medicine. However, not a single review article is available in the literature that demonstrates the anti-cancer potential of biosynthesized colloidal AuNPs with detailed mechanistic study. In the present review article, we for the first time discuss the biointerface of colloidal AuNPs, plants, and cancer mainly (i) comprehensive mechanistic aspects of phytochemical-based synthesis of AuNPs; (ii) proposed anti-cancer mechanisms along with biomedical applications in diagnostics, imaging, and drug delivery; and (iii) key challenges for biogenic AuNPs as future cancer nanomedicine.

  3. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids

    Directory of Open Access Journals (Sweden)

    Emilia Tomaszewska

    2013-01-01

    Full Text Available Dynamic light scattering is a method that depends on the interaction of light with particles. This method can be used for measurements of narrow particle size distributions especially in the range of 2–500 nm. Sample polydispersity can distort the results, and we could not see the real populations of particles because big particles presented in the sample can screen smaller ones. Although the theory and mathematical basics of DLS technique are already well known, little has been done to determine its limits experimentally. The size and size distribution of artificially prepared polydisperse silver nanoparticles (NPs colloids were studied using dynamic light scattering (DLS and ultraviolet-visible (UV-Vis spectroscopy. Polydisperse colloids were prepared based on the mixture of chemically synthesized monodisperse colloids well characterized by atomic force microscopy (AFM, transmission electron microscopy (TEM, DLS, and UV-Vis spectroscopy. Analysis of the DLS results obtained for polydisperse colloids reveals that several percent of the volume content of bigger NPs could screen completely the presence of smaller ones. The presented results could be extremely important from nanoparticles metrology point of view and should help to understand experimental data especially for the one who works with DLS and/or UV-Vis only.

  4. Shape-Selection of Thermodynamically Stabilized Colloidal Pd and Pt Nanoparticles Controlled via Support Effects

    DEFF Research Database (Denmark)

    Ahmadi, M.; Behafarid, F.; Holse, Christian

    2015-01-01

    Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2(110) was i......Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2...... rows and was found to be responsible for the shape control. The ability of synthesizing thermally stable shape-selected metal NPs demonstrated here is expected to be of relevance for applications in the field of catalysis, since the activity and selectivity of NP catalysts has been shown to strongly...

  5. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  6. Radiation induced synthesis of colloidal silver nanoparticles stabilized by PVP/chitosan

    International Nuclear Information System (INIS)

    Dang Van Phu; Nguyen Trieu; Vo Thi Kim Lang; Nguyen Quoc Hien; Bui Duy Du

    2008-01-01

    Colloidal silver nanoparticle solution (10 mmol) was prepared by gamma 60 Co irradiation using polyvinyl pyrrolidone (PVP), water soluble chitosan (WSC) and mixture of PVP/WSC as stabilizers. Saturated conversion doses (Ag + → Ag 0 ) and maximum absorption wavelengths (λ max ) were determined by UV-vis spectra to be of 28 kGy (405.5 nm), 20 kGy (418.5 nm), 24 kGy (415.0 nm) and 24 kGy (407.0 nm) for PVP 1% (C1), WSC 0.5% (C2), PVP 1%/WSC 0.5% (C3) and PVP 1%/ethanol 1 M (C4), respectively. Results of the conversion doses indicated that WSC and ethanol plays a role in scavenging the OH* and H* arising from radiolysis of water, which reduced the conversion dose from 28 kGy (C1) to 20 kGy (C2). The average size of silver nanoparticles was characterized by Transmission Electron Microscopy (TEM) as 15.96 ± 0.51, 5.55 ± 0.25, 2.92 ± 0.05, and 11.44 ±2.07 nm for C1, C2, C3 and C4, respectively. The obtained result of silver nanoparticle sizes showed that WSC exhibited the effect of reducing silver nanoparticle size in colloids, especially the mixture of PVP/WSC that reduced the size of silver nanoparticle from ∼16 nm (C1) to about 3 nm (C3). The effect of NaNO 3 on stability of colloidal silver nanoparticles has been also investigated. (author)

  7. Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles

    Science.gov (United States)

    Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing

    2017-12-01

    The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.

  8. The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice

    Directory of Open Access Journals (Sweden)

    Lee S

    2013-01-01

    Full Text Available Soyoung Lee,1,* Mi-Sun Kim,1,* Dakeun Lee,2 Taeg Kyu Kwon,3 Dongwoo Khang,4 Hui-Suk Yun,5 Sang-Hyun Kim11CMRI, Laboratory of Immunotoxicology, Department of Pharmacology,School of Medicine, Kyungpook National University, Daegu, Republic of Korea; 2Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; 3Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea; 4School of Nano and Advanced Materials Science and Engineering, Gyeongsang National University, Jinju, Republic of Korea; 5Engineering Ceramics Department, Powder and Ceramics Division, Korea Institute of Materials Science, Changwon, Republic of Korea*These authors contributed equally to this workBackground: Mesoporous silica (MPS nanoparticles (NPs, which have a unique pore structure and extremely large surface area and pore volume, have received much attention because of their biomedical application potential. Using MPS NPs for biomedical devices requires the verification of their biocompatibility because the surface area of NPs is one of the most important determinants of toxicity, including the cellular uptake and immune response. We have previously reported that the cytotoxicity and inflammation potential of MPS NPs have been shown to be lower than those of general amorphous colloidal silica (Col NPs in macrophages, but the low cytotoxicity does not guarantee high biocompatibility in vivo. In this study, we compared the in vivo immunotoxicity of MPS and Col NPs in the mouse model to define the effects of pore structural conditions of silica NPs.Materials and methods: Both MPS and Col NPs (2, 20, and 50 mg/kg/day were intraperitoneally administered in female BALB/c mice for 4 weeks, and clinical toxicity, lymphocyte population, serum IgG/IgM levels, and histological changes were examined.Results: There was no overt sign of clinical toxicity in either MPS- or Col-treated mice. However, MPS NPs led to

  9. Time-Resolved Fluorescence Immunoassay for C-Reactive Protein Using Colloidal Semiconducting Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pekka Hänninen

    2011-11-01

    Full Text Available Besides the typical short-lived fluorescence with decay times in the nanosecond range, colloidal II/VI semiconductor nanoparticles dispersed in buffer also possess a long-lived fluorescence component with decay times in the microsecond range. Here, the signal intensity of the long-lived luminescence at microsecond range is shown to increase 1,000-fold for CdTe nanoparticles in PBS buffer. This long-lived fluorescence can be conveniently employed for time-gated fluorescence detection, which allows for improved signal-to-noise ratio and thus the use of low concentrations of nanoparticles. The detection principle is demonstrated with a time-resolved fluorescence immunoassay for the detection of C-reactive protein (CRP using CdSe-ZnS nanoparticles and green light excitation.

  10. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  11. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    Science.gov (United States)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  12. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  13. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate

    Science.gov (United States)

    Siegel, Jakub; Lyutakov, Oleksiy; Polívková, Markéta; Staszek, Marek; Hubáček, Tomáš; Švorčík, Václav

    2017-10-01

    Immobilization of nanoobjects on the surface of underlying material belongs to current issues of material science. Such altered materials exhibits completely exceptional properties exploitable in a broad spectrum of industrially important applications ranging from catalysts up to health-care industry. Here we present unique approach for immobilization of electrochemically synthesized silver nanoparticles on polyethyleneterephthalate (PET) foil whose essence lies in physical incorporation of particles into thin polymer surface layer induced by polarized excimer laser light. Changes in chemical composition and surface structure of polymer after particle immobilization were recorded by wide range of analytical techniques such as ARXPS, EDX, RBS, AAS, Raman, ICP-MS, DLS, UV-vis, SEM, TEM, and AFM. Thorough analysis of both nanoparticles entering the immobilization step as well as modified PET surface allowed revealing the mechanism of immobilization process itself. Silver nanoparticles were physically embedded into a thin surface layer of polymer reaching several nanometers beneath the surface rather than chemically bonded to PET macromolecules. Laser-implanted nanoparticles open up new possibilities especially in the development of the next generation cell-conform antimicrobial coatings of polymeric materials, namely due to the considerable immobilization strength which is strong enough to prevent particle release into the surrounding environment.

  14. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate

    Czech Academy of Sciences Publication Activity Database

    Siegel, J.; Lyutakov, O.; Polívková, M.; Staszek, M.; Hubáček, Tomáš; Švorčík, V.

    2017-01-01

    Roč. 420, OCT (2017), s. 661-668 ISSN 0169-4332 R&D Projects: GA MŠk LM2015075 Institutional support: RVO:60077344 Keywords : silver nanoparticles * polyethyleneterephthalate * excimer laser * immobilization Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 3.387, year: 2016

  15. Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Lomelí-Marroquín, Diana; Pramanick, Bidhan; Nieto-Argüello, Alfonso; Cantú-Castillo, Luis A; Hwang, Hyundoo

    2018-03-01

    Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent. The optical properties of the yellowish as-synthesized silver colloids were characterized by UV-vis spectroscopy, in which besides a typical band at 410 nm related to the localized surface plasmon resonance of the silver nanoparticles, a shoulder band around 500 nm, due to silver nanoparticle cluster formation, is presented when relatively higher concentrations of starch are used in the synthesis. These starch-capped silver nanoparticles show an intrinsic Raman peak at 1386 cm -1 assigned to deformation modes of the starch structure. The increase of the intensity of the SERS peak at 1386 cm -1 with an increase in the concentration of the ascorbic acid is related to a decrease of the gap between dimers and trimers of the silver nanoparticle clusters produced by the presence of ascorbic acid in the colloid. The limit of detection of this technique for ascorbic acid is 0.02 mM with a measurement concentration range of 0.02-10 mM, which is relevant for the application of this method for detecting ascorbic acid in biological specimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein–Lecithin Composite Colloidal Nanoparticles

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang

    2016-01-01

    Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparticles was firstly increased with the rise of lecithin concentration and then siginificantly decreased. The nanoparticles at the zein to lecithin mass ratio of 5:1 had the largest particle size (263 nm), indicating that zein and lecithin formed composite colloidal nanoparticles, which might aggregate due to the enhanced interaction at a higher proportion of lecithin. Continuing to increase lecithin concentration, the zein-lecithin nanoparticles possibly formed a reverse micelle-like or a vesicle-like structure with zein in the core, which prevented the formation of nanoparticle aggregates and decreased the size of composite nanoparticles. The presence of lecithin significantly reduced the ζ-potential of zein-lecithin composite colloidal nanoparticles. The interaction between zein and lecithin enhanced the intensity of the fluorescence emission of zein in ethanol-water solution. The secondary structure of zein was also changed by the addition of lecithin. Differential scanning calorimetry thermograms revealed that the thermal stability of zein-lecithin nanoparticles was enhanced with the rise of lecithin level. The composite nanoparticles were relatively stable to elevated ionic strengths. Possible interaction mechanism between zein and lecithin was proposed. These findings would help further understand the theory of the interaction between the alcohol soluble protein and the natural small molecular surfactant. The composite colloidal nanoparticles formed in this study can

  17. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein-Lecithin Composite Colloidal Nanoparticles.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang

    2016-01-01

    Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparticles was firstly increased with the rise of lecithin concentration and then siginificantly decreased. The nanoparticles at the zein to lecithin mass ratio of 5:1 had the largest particle size (263 nm), indicating that zein and lecithin formed composite colloidal nanoparticles, which might aggregate due to the enhanced interaction at a higher proportion of lecithin. Continuing to increase lecithin concentration, the zein-lecithin nanoparticles possibly formed a reverse micelle-like or a vesicle-like structure with zein in the core, which prevented the formation of nanoparticle aggregates and decreased the size of composite nanoparticles. The presence of lecithin significantly reduced the ζ-potential of zein-lecithin composite colloidal nanoparticles. The interaction between zein and lecithin enhanced the intensity of the fluorescence emission of zein in ethanol-water solution. The secondary structure of zein was also changed by the addition of lecithin. Differential scanning calorimetry thermograms revealed that the thermal stability of zein-lecithin nanoparticles was enhanced with the rise of lecithin level. The composite nanoparticles were relatively stable to elevated ionic strengths. Possible interaction mechanism between zein and lecithin was proposed. These findings would help further understand the theory of the interaction between the alcohol soluble protein and the natural small molecular surfactant. The composite colloidal nanoparticles formed in this study can

  18. A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods.

    Science.gov (United States)

    Wen, Tianlong; Brush, Lucien N; Krishnan, Kannan M

    2014-04-01

    A nanoparticle growth model is developed to predict and guide the syntheses of monodisperse colloidal nanoparticles in the liquid phase. The model, without any a priori assumptions, is based on the Fick's law of diffusion, conservation of mass and the Gibbs-Thomson equation for crystal growth. In the limiting case, this model reduces to the same expression as the currently accepted model that requires the assumption of a diffusion layer around each nanoparticle. The present growth model bridges the two limiting cases of the previous model i.e. complete diffusion controlled and adsorption controlled growth of nanoparticles. Specifically, the results show that a monodispersion of nanoparticles can be obtained both with fast monomer diffusion and with surface reaction under conditions of small diffusivity to surface reaction constant ratio that results is growth 'focusing'. This comprehensive description of nanoparticle growth provides new insights and establishes the required conditions for fabricating monodisperse nanoparticles critical for a wide range of applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Size fractionation and characterization of natural aquatic colloids and nanoparticles

    International Nuclear Information System (INIS)

    Baalousha, M.; Lead, J.R.

    2007-01-01

    Atomic force microscopy (AFM) was used to image and quantify natural nanoparticles (prefiltered < 25 nm) from three different freshwater sites (Vale Lake, Bailey Brook and Tern Rivers). Four fractions were analysed by AFM; the prefiltered fraction (< 25 nm) and three fractions collected after separation of this prefiltered sample by flow field-flow fractionation (FlFFF) which corresponds to material which has size ranges of < 4.2 nm, 4.2-15.8 nm and 15.8-32.4 nm, as determined by FlFFF theory. The large majority of materials in all samples appeared as < 3 nm nanoparticles, nearly spherical and rich in chromophores active at 254 nm UV, which thus correspond to natural organic matter. However, nanoparticles were also imaged up to slightly more than 25 nm in size, indicating a slight disagreement in sizing between filtration and FlFFF. In addition, some particles in certain fractions were found to be covered with a thin film of less than 0.5-1.0 nm. Substantial differences between sites were observed

  20. Antibacterial Activity of Electrochemically Synthesized Colloidal Silver Nanoparticles Against Hospital-Acquired Infections

    Science.gov (United States)

    Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc

    2017-06-01

    This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.

  1. Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.

    Science.gov (United States)

    Pascu, Oana; Caicedo, José Manuel; Fontcuberta, Josep; Herranz, Gervasi; Roig, Anna

    2010-08-03

    We report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles. We found that the measured MCD signal scales up with the concentration thus providing a means of determining the concentration values of highly diluted dispersions. The methodology presented here exhibits large flexibility and versatility and might be suitable to study either fundamental problems related to properties of nanosize particles including surface related effects which are highly relevant for magnetic colloids in biomedical applications or to be applied to in situ testing and integration in production lines.

  2. Synchrotron radiation based multi-scale structural characterization of CoPt{sub 3} colloidal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan

    2010-08-05

    Bimetallic CoPt{sub 3} nanoparticles represent a category of colloidal nanoparticles with high application potentials in, e.g., heterogeneous catalysis, sensor technology, and magnetic storage media. Deposition of this system on functionalized supports delivers opportunities for controlled immobilization of the nanoparticles. In this work, self-assembled monolayers (SAMs) of n-alkanethiol molecules served as functionalizing material for the Au covered Si substrates. Deposition of the ligand-terminated nanoparticles took place by means of spin and dip coating and has been optimized for each of the mentioned methods so that monolayers of nanoparticles on supports were fabricated with a well-controlled coverage The morphology of the nanoparticle film arranged is addressed by grazing-incidence small angle x-ray scattering (GISAXS). This together with x-ray standing waves in total external reflection (TER-XSW) enables a 3D structural characterization of such nanoparticle films, so that the mean particle size, mean distance of the arranged nanoparticle films to the substrate, as well as the mean particle-particle distance in lateral direction have been determined. TER-XSW, being an element-specific position-sensitive method, also reveals the elemental distribution of the particles which complementary provides a fundamental understanding of their internal structure. The CoPt{sub 3} nanoparticles investigated here exhibit a core-shell-like structure with cores of CoPt{sub 3} and shells mainly comprise Co. The results regarding the internal structure of the nanoparticles were then verified by extended X-ray absorption fine structure (EXAFS) measurements. (orig.)

  3. Solvent-Free Patterning of Colloidal Quantum Dot Films Utilizing Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Hohyun Keum

    2017-01-01

    Full Text Available Colloidal quantum dots (QDs with properties that can be tuned by size, shape, and composition are promising for the next generation of photonic and electronic devices. However, utilization of these materials in such devices is hindered by the limited compatibility of established semiconductor processing techniques. In this context, patterning of QD films formed from colloidal solutions is a critical challenge and alternative methods are currently being developed for the broader adoption of colloidal QDs in functional devices. Here, we present a solvent-free approach to patterning QD films by utilizing a shape memory polymer (SMP. The high pull-off force of the SMP below glass transition temperature (Tg in conjunction with the conformal contact at elevated temperatures (above Tg enables large-area, rate-independent, fine patterning while preserving desired properties of QDs.

  4. Interaction of colloidal nanoparticles with cells (Conference Presentation)

    Science.gov (United States)

    Parak, Wolfgang J.

    2017-02-01

    What happens to inorganic nanoparticles (NPs), such as plasmonic gold or silver, superparamagnetic iron oxide, or fluorescent quantum dot NPs, after they have been administrated to an animal or a human being? The review discusses the integrity, biodistribution, and fate of NPs after in vivo administration. First the hybrid nature of the NPs is described, by conceptually dividing them into the inorganic NP core, an engineered surface coating around the core which comprises the ligand shell and optionally also bioconjugation, and into the corona of adsorbed biological molecules. It is shown that in vivo all of these three compounds may degrade individually and that each of them can drastically modify the life-cycle and biodistribution of the whole hetero-structure. The NPs thus may be disintegrated into different parts, of which biodistribution and fate would need to be analyzed individually. Multiple labelling and quantification strategies for such purpose will be discussed. All reviewed data indicate that in vivo NPs no longer should be considered as homogeneous entity, but should be seen as inorganic/organic/biological nano-hybrids with complex and intricately linked degradation pathways. References: M. Chanana, P. Rivera Gil, M. A. Correa-Duarte, L. M. Liz-Marzán. W. J. Parak, "Physicochemical Properties of Protein-Coated Gold Nanoparticles in Biological Fluids and Cells before and after Proteolytic Digestion", Angewandte Chemie International Edition 52, 4179-4183 (2013). W. G. Kreyling, A. M. Abdelmonem, Z. Ali, F. Alves, M. Geiser, N. Haberl, R. Hartmann, S. Hirn, K. Kantner, D. Jimenez de Aberasturi, G. Khadem-Saba, J.-M. Montenegro, J. Rejman, T. Rojo, I. Ruiz de Larramendi, R. Ufartes, A. Wenk, W. J. Parak, "In vivo integrity of polymer-coated gold nanoparticles", Nature Nanotechnology 10, 619-623 (2015).J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

  5. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  6. Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects.

    Science.gov (United States)

    Ovais, Muhammad; Ahmad, Irshad; Khalil, Ali Talha; Mukherjee, Sudip; Javed, Rabia; Ayaz, Muhammad; Raza, Abida; Shinwari, Zabta Khan

    2018-05-01

    Nanotechnology has emerged as a prominent scientific discipline in the technological revolution of this millennium. The scientific community has focused on the green synthesis of metal nanoparticles as compared to physical and chemical methods due to its eco-friendly nature and high efficacy. Medicinal plants have been proven as the paramount source of various phytochemicals that can be used for the biogenic synthesis of colloidal silver and gold nanoparticles as compared to other living organisms, e.g., microbes and fungi. According to various scientific reports, the biogenic nanoparticles have shown promising potential as wound healing agents. However, not a single broad review article was present that demonstrates the wound healing application of biogenic silver and gold nanoparticles. Foreseeing the overall literature published, we for the first time intended to discuss the current trends in wound healing via biogenic silver and gold nanoparticles. Furthermore, light has been shed on the mechanistic aspects of wound healing along with futuristic discussion on the faith of biogenic silver and gold nanoparticles as potential wound healing agents.

  7. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  8. One-step microwave-assisted colloidal synthesis of hybrid silver oxide/silver nanoparticles: characterization and catalytic study

    Science.gov (United States)

    Prakoso, S. P.; Taufik, A.; Saleh, R.

    2017-04-01

    This study reports the characterization and catalytic activities of silver-oxide/silver nanoparticles (Ag2O/Ag NPs) synthesized by microwave-assisted colloidal method in the presence of anionic sodium dodecyl sulfate (SDS) surfactant. To promote different contents of silver in silver oxide, the volume ratio (VR) of ethylene glycol (EG) was varied (VR: 10% to 14%) in relation to the total volume of distilled water solvent. The plasmonic resonance of Ag2O/Ag NPs could be detected around a wavelength of 350 nm, and it is suggested that Ag2O/Ag NPs were successfully formed in the colloid solution following exposure to microwaves. Additionally, the growth rate for each crystal phase within Ag2O and Ag was influenced by an increase of EG as revealed by x-ray diffraction patterns. The morphology, average diameter, and uniformity of Ag2O/Ag NPs were studied simultaneously by transmission electron microscopy. Infrared absorption measurement of Ag2O/Ag NPs confirmed the existence of SDS surfactant as a protective agent. Based on the characterization data, Ag2O/Ag NPs synthesized using this technique exhibited good properties, with high-yield production of NPs. The photocatalytic experiments demonstrate the key role of the crystal phase of Ag2O/Ag NPs in photocatalytic efficiency.

  9. Metal Oxide Nanoparticle Photoresists for EUV Patterning

    KAUST Repository

    Jiang, Jing

    2014-01-01

    © 2014SPST. Previous studies of methacrylate based nanoparticle have demonstrated the excellent pattern forming capability of these hybrid materials when used as photoresists under 13.5 nm EUV exposure. HfO2 and ZrO2 methacrylate resists have achieved high resolution (∼22 nm) at a very high EUV sensitivity (4.2 mJ/cm2). Further investigations into the patterning process suggests a ligand displacement mechanism, wherein, any combination of a metal oxide with the correct ligand could generate patterns in the presence of the suitable photoactive compound. The current investigation extends this study by developing new nanoparticle compositions with transdimethylacrylic acid and o-toluic acid ligands. This study describes their synthesis and patterning performance under 248 nm KrF laser (DUV) and also under 13.5 nm EUV exposures (dimethylacrylate nanoparticles) for the new resist compositions.

  10. Physical approaches to tuning the luminescence color patterns of colloidal quantum dots

    International Nuclear Information System (INIS)

    Hu Lian; Wu Huizhen; Wan Zhengfen; Cai Chunfeng; Xu Tianning; Lou Tenggang; Zhang Bingpo

    2012-01-01

    Localized surface plasmon resonance (LSPR) and photoactivation (PA) effects are combined for the tuning of fluorescent colors of colloidal CdSe quantum dots (QDs). It is found that LSPR with QD emitters intensely enhances surface state emission, accompanied by a remarkable red-shift of fluorescent colors, while PA treatment with colloidal QDs leads to a distinct enhancement of band-edge emission, accompanied by a peak blue-shift. Furthermore, the LSPR effect on QD emitters can be continuously tuned by the PA process. The combination of the post-synthetic approaches allows feasible realization of multi-color patterns from one batch of QDs and the approaches can also be compatible with other micro-fabrication technologies of QD embossed fluorescent patterns, which undoubtedly provides a way of precisely tuning the colors of light-emitting materials and devices that use colloidal QDs. (paper)

  11. Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers

    Czech Academy of Sciences Publication Activity Database

    Zucchi, I. A.; Hoppe, C. E.; Galante, M. J.; Williams, R. J. J.; López-Quintela, M. A.; Matějka, Libor; Šlouf, Miroslav; Pleštil, Josef

    2008-01-01

    Roč. 41, č. 13 (2008), s. 4895-4903 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701 Grant - others:National Agency for the Promotion of Science and Technology(AR) PICT03-14738; Ministry of Science and Technology(ES) MAT2005-07554-C02-01 Institutional research plan: CEZ:AV0Z40500505 Keywords : self -assembly * gold nanoparticles * hierarchical structure * colloidal crystals Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.407, year: 2008

  12. Investigation on the adsorption characteristics of anserine on the surface of colloidal silver nanoparticles.

    Science.gov (United States)

    Thomas, S; Maiti, N; Mukherjee, T; Kapoor, S

    2013-08-01

    The surface-enhanced Raman scattering (SERS) studies of anserine (beta-alanyl-N-methylhistidine) was carried out on colloidal silver nanoparticles to understand its adsorption characteristics. The experimentally observed Raman bands were assigned based on the results of DFT calculations. The studies suggest that the interaction of anserine is primarily through the carboxylate group with the imidazole ring in an upright position with respect to the silver surface. Concentration dependent SERS studies suggest a change in orientation at sub-monolayer concentration. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Pattern transfer with stabilized nanoparticle etch masks

    International Nuclear Information System (INIS)

    Hogg, Charles R; Majetich, Sara A; Picard, Yoosuf N; Narasimhan, Amrit; Bain, James A

    2013-01-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiO x substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results. (paper)

  14. An aerosol-mediated magnetic colloid: Study of nickel nanoparticles

    International Nuclear Information System (INIS)

    Sahoo, Y.; He, Y.; Swihart, M. T.; Wang, S.; Luo, H.; Furlani, E.P.; Prasad, P.N.

    2005-01-01

    A method is presented for the synthesis of high-quality nickel nanoparticles. Laser-driven decomposition of nickel carbonyl vapors is used to produce particles in the form of an aerosol, followed by exposure to a solvent containing an appropriate surfactant to yield a stable dispersion of particles. This method is scalable and yields a substantially monodisperse distribution of particles at a relatively high rate of production. The particles produced by this method are subjected to a detailed characterization using transmission electron microscopy, atomic force microscopy, energy dispersive spectroscopy, and dc magnetization. They have an average diameter of 5 nm, and the observed magnetization curves show no hysteresis above 200 K. The normalized magnetization curves follow a scaling law proportional to the quotient of the applied field over temperature. This data indicates the presence of randomly oriented superparamagnetic particles. The measured magnetization is significantly smaller than that of the bulk, probably due to an effective surface anisotropy and spin canting. The coercivity is the same in either direction of the applied field which indicates that there is negligible exchange coupling between the nickel particles and any possible antiferromagnetic oxide layer on their surfaces

  15. Temperature effect on the nucleation and growth of TiO2 colloidal nanoparticles

    Directory of Open Access Journals (Sweden)

    Morteza Sasani Ghamsari

    2017-01-01

    Full Text Available The nucleation and growth of sol-gel derived TiO2 colloidal nanoparticles have been studied using  experiment and theory as well. In this study, the temperature effect on the formation of TiO2 nanoparticles was discussed and some effective parameters such as the supply rate of solute (Q0, the mean volumic growth rate of stable nuclei during the nucleation period (u, the diffusion coefficient of [Ti]+4 ions and the nucleus size were determined. The formation of TiO2 nanoparticles in three different temperatures (60, 70 and 80°C was studied. The obtained results showed that the process temperature has a considerable impact on the nucleation and growth of TiO2 nanoparticles. It can be concluded that  increasing the temperature leads to a decrease of the supersaturation and an increase of the nucleus size, supply rate of monomer, nanoparticles density and growth rate as evident from LaMer diagram.

  16. MAPLE deposition and characterization of SnO2 colloidal nanoparticle thin films

    International Nuclear Information System (INIS)

    Caricato, A P; Martino, M; Romano, F; Tunno, T; Valerini, D; Epifani, M; Rella, R; Taurino, A

    2009-01-01

    In this paper we report on the deposition and characterization of tin oxide (SnO 2 ) nanoparticle thin films. The films were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. SnO 2 colloidal nanoparticles with a trioctylphosphine capping layer were diluted in toluene with a concentration of 0.2 wt% and frozen at liquid nitrogen temperature. The frozen target was irradiated with a KrF (248 nm, τ = 20 ns) excimer laser (6000 pulses at 10 Hz). The nanoparticles were deposited on silica (SiO 2 ) and (1 0 0) Si substrates and submitted to morphological (high resolution scanning electron microscopy (SEM)), structural Fourier transform infrared spectroscopy (FTIR) and optical (UV-Vis transmission) characterizations. SEM and FTIR analyses showed that trioctylphosphine was the main component in the as-deposited films. The trioctylphosphine was removed after an annealing in vacuum at 400 0 C, thus allowing to get uniform SnO 2 nanoparticle films in which the starting nanoparticle dimensions were preserved. The energy gap value, determined by optical characterizations, was 4.2 eV, higher than the bulk SnO 2 energy gap (3.6 eV), due to quantum confinement effects.

  17. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoliang; Wang Xiu; Kong Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yi Gewen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Jia Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-15

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  18. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    International Nuclear Information System (INIS)

    Zhang Xiaoliang; Wang Xiu; Kong Wen; Yi Gewen; Jia Junhong

    2011-01-01

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  19. Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles

    Science.gov (United States)

    Michen, Benjamin; Geers, Christoph; Vanhecke, Dimitri; Endes, Carola; Rothen-Rutishauser, Barbara; Balog, Sandor; Petri-Fink, Alke

    2015-01-01

    Standard transmission electron microscopy nanoparticle sample preparation generally requires the complete removal of the suspending liquid. Drying often introduces artifacts, which can obscure the state of the dispersion prior to drying and preclude automated image analysis typically used to obtain number-weighted particle size distribution. Here we present a straightforward protocol for prevention of the onset of drying artifacts, thereby allowing the preservation of in-situ colloidal features of nanoparticles during TEM sample preparation. This is achieved by adding a suitable macromolecular agent to the suspension. Both research- and economically-relevant particles with high polydispersity and/or shape anisotropy are easily characterized following our approach (http://bsa.bionanomaterials.ch), which allows for rapid and quantitative classification in terms of dimensionality and size: features that are major targets of European Union recommendations and legislation. PMID:25965905

  20. Periodically arranged colloidal gold nanoparticles for enhanced light harvesting in organic solar cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Fernandes Cauduro, André Luis; Kunstmann-Olsen, Casper

    2016-01-01

    Although organic solar cells show intriguing features such as low-cost, mechanical flexibility and light weight, their efficiency is still low compared to their inorganic counterparts. One way of improving their efficiency is by the use of light-trapping mechanisms from nano- or microstructures......, which makes it possible to improve the light absorption and charge extraction in the device’s active layer. Here, periodically arranged colloidal gold nanoparticles are demonstrated experimentally and theoretically to improve light absorption and thus enhance the efficiency of organic solar cells....... Surface-ordered gold nanoparticle arrangements are integrated at the bottom electrode of organic solar cells. The resulting optical interference and absorption effects are numerically investigated in bulk hetero-junction solar cells based on the Finite-Difference Time-Domain (FDTD) and Transfer Matrix...

  1. Zein nanoparticles and the strategies to improve the colloidal stability: a mini review

    Science.gov (United States)

    Pascoli, Mônica; de Lima, Renata; Fraceto, Leonardo F.

    2018-01-01

    Zein, a protein extracted from maize, can be employed to easily produce nanoscale particles suitable for use as carrier systems. This review investigates the main methods for obtaining zein nanoparticles, as well as the problems and options available in the development of stable colloidal suspensions. Considerable gaps were identified in the literature concerning this topic, with studies being unclear about the factors that affect the stability of zein particles. In the vast majority of cases, no data are presented in relation to the stability of the formulations over time. It could be concluded that in order to produce a high quality system, detailed evaluation is required, considering factors including the zein concentration, pH, ionic strength, thermal treatment of the protein prior to preparation of the nanoparticles, strategies employing other materials as coatings, and the storage conditions. It is extremely important that these aspects should be considered during product development, prior to commercial-scale manufacture.

  2. Colloidal silver nanoparticle gradient layer prepared by drying between two walls of different wettability

    International Nuclear Information System (INIS)

    Roth, S V; Kuhlmann, M; Walter, H; Snigirev, A; Snigireva, I; Burghammer, M; Riekel, C; Lengeler, B; Schroer, C G; Mueller-Buschbaum, P

    2009-01-01

    A one-dimensional silver (Ag) nanoparticle gradient layer is prepared from an aqueous colloidal solution upon a polystyrene (PS) coated silicon (Si) substrate. For preparation two walls of different wettability are used. The 40 nm PS-layer exhibits a locally constant film thickness due to the strong roughness correlation with the underlying Si-substrate and is less wettable as compared to the glass plate placed above. The Ag nanoparticles have a triangular prism-like shape. The structural characterization of the obtained complex gradient formed by drying is performed with microbeam grazing incidence small-angle x-ray scattering based on compound refractive lenses. Due to the adsorption from aqueous solution in the selective geometry a double gradient type structure defined by two areas with characteristic lateral lengths and a cross-over regime between both is observed.

  3. Effect of sonication on the colloidal stability of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode [Nano-Optoelectronics Research and Technology (NOR) Lab, School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia)

    2015-04-24

    Colloidal stability of superparamagnetic iron oxide nanoparticles’ (SPION) suspensions, ultrasonically irradiated at various pH was studied. Electrophoresis measurement of the sonicated SPION showed that the shock waves and other unique conditions generated from the acoustic cavitation process (formation, growth and collapse of bubbles) affect the zeta potential value of the suspension. In this work, stabled colloidal suspensions of SPION were prepared and their pH is varied between 3 and 5. Prior to ultrasonic irradiation of the suspensions, their initial zeta potential values were determined. After ultrasonic irradiation of the suspensions, we observed that the sonication process interacts with colloidal stability of the nanoparticles. The results demonstrated that only suspensions with pH less 4 were found stable and able to retain more than 90% of its initial zeta potential value. However, at pH greater than 4, the suspensions were found unstable. The result implies that good zeta potential value of SPION can be sustained in sonochemical process as long as the pH of the mixture is kept below 4.

  4. Preparation and characterization compatible pellets for immobilization of colloidal sulphur nanoparticles

    Science.gov (United States)

    Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.

    2018-03-01

    Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.

  5. A new approach for determination of fouling potential by colloidal nanoparticles during reverse osmosis (RO) membrane filtration of seawater

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Lim, Sungil; Park, Kihong

    2013-01-01

    A direct measurement of number concentration of colloidal nanoparticles (15–450 nm) in water was made with the membrane filtration-differential mobility analyzer technique, and its corresponding flux decline rate (FDR) was determined by laboratory-scale RO fouling test unit using varying number concentrations of silica nanoparticles in artificial seawaters. This relationship was used to predict fouling potential of colloidal nanoparticles in reverse osmosis (RO) membrane process of seawaters in RO plant. It was found that the FDR linearly increased with the increasing number of colloidal nanoparticles for the given concentration range and that the relationship between the number concentration and the FDR also depended on RO membrane surface properties. Data for estimated FDR values for natural seawaters after pretreatment showed a clear difference among samples, which is contrary to the pre-existing index such as silt density index and modified fouling index. Our data suggest that measurement of colloidal nanoparticles is useful for selection of proper pretreatment and successful operation of RO membrane process along with other particle fouling predictors accounting for large particles (>450 nm).

  6. A new approach for determination of fouling potential by colloidal nanoparticles during reverse osmosis (RO) membrane filtration of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Lim, Sungil; Park, Kihong, E-mail: kpark@gist.ac.kr [Gwangju Institute of Science and Technology (GIST), School of Environmental Science and Engineering (Korea, Republic of)

    2013-04-15

    A direct measurement of number concentration of colloidal nanoparticles (15-450 nm) in water was made with the membrane filtration-differential mobility analyzer technique, and its corresponding flux decline rate (FDR) was determined by laboratory-scale RO fouling test unit using varying number concentrations of silica nanoparticles in artificial seawaters. This relationship was used to predict fouling potential of colloidal nanoparticles in reverse osmosis (RO) membrane process of seawaters in RO plant. It was found that the FDR linearly increased with the increasing number of colloidal nanoparticles for the given concentration range and that the relationship between the number concentration and the FDR also depended on RO membrane surface properties. Data for estimated FDR values for natural seawaters after pretreatment showed a clear difference among samples, which is contrary to the pre-existing index such as silt density index and modified fouling index. Our data suggest that measurement of colloidal nanoparticles is useful for selection of proper pretreatment and successful operation of RO membrane process along with other particle fouling predictors accounting for large particles (>450 nm).

  7. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.

    Science.gov (United States)

    Kumar, Anil; Singhal, Aditi

    2009-07-22

    Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.

  8. Study of optical and physicochemical properties of colloidal silver nanoparticles as an efficient substrate for SERS

    International Nuclear Information System (INIS)

    Cyrankiewicz, M; Kruszewski, S

    2011-01-01

    The unique optical and physicochemical properties of the noble metal colloidal nanoparticles enable their use in a wide range of applications, especially as a substrate in SERS and MEF study. The aim of this work is to characterize the conditions for the enhancement of Raman scattering by molecules adsorbed on silver surface. Silver sol is prepared by slightly modified Lee-Meisel's method and rhodamine 6G is used as a probe adsorbate. Pure colloidal silver suspension containing isolated nanoparticles exhibits relatively poor SERS efficiency. The extremely large electromagnetic field is induced in the junctions between two or more metallic nanocrystalites so some degree of their aggregation is necessary. The influence of potassium chloride and nitric acid as the aggregating agents is investigated here. The experiments show that both of them can promote the controlled aggregation process but chloride anions, unlike nitrate, much more effectively affect both electromagnetic and chemical mechanisms contributing to SERS. Due to the co-adsorption with rhodamine 6G they allow the dye molecules to directly interact with metallic surface. Moreover, the results clearly indicate that chloride in the presence of silver particles can induce the dimerization of the dye molecules.

  9. One-pot synthesis of stable colloidal solutions of MFe2O4 nanoparticles using oleylamine as solvent and stabilizer

    International Nuclear Information System (INIS)

    Pérez-Mirabet, Leonardo; Solano, Eduardo; Martínez-Julián, Fernando; Guzmán, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier; Pomar, Alberto; Yáñez, Ramón; Ros, Josep; Ricart, Susagna

    2013-01-01

    Highlights: ► One-pot synthesis of ferrite magnetic nanoparticles ( 3 and M(acac) 2 (M = Co, Mn, Cu and Zn) in oleylamine, which also acts as a capping ligand, by producing stable colloidal dispersions of nanoparticles in non-polar solvents. The properties of the nanoparticles have been studied via different techniques, such as transmission electron microscopy, which shows that nanoparticles are monocrystallines and a narrow dispersion in size; magnetic analyses have demonstrated that the resulting ferrite nanoparticles show high saturation values and superparamagnetic behavior at room temperature; X-ray diffraction has also been performed, and it confirms that the synthesized nanoparticles have a spinel structure. Complementarily, ligand exchange has been also carried out in order to produce dispersions of the synthesized nanoparticles in polar media

  10. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    Directory of Open Access Journals (Sweden)

    Lee H

    2015-08-01

    Full Text Available Haisung Lee,1 Dongkyung Sung,2 Jinhoon Kim,3 Byung-Tae Kim,3 Tuntun Wang,4 Seong Soo A An,5 Soo-Won Seo,6 Dong Kee Yi4 1Molecular Diagnostics, In Vitro Diagnostics Unit, New Business Division, SK Telecom, 2Department of Life Sciences, Graduate School of Korea University, 3Interdisciplinary Graduate Program of Biomedical Engineering, School of Medicine, Sungkyunkwan University, Samsung Medical Center, 4Department of Chemistry, Myongji University, Seoul, 5Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, 6Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea Abstract: In this study, fluorescent dye-conjugated magnetic resonance (MR imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. Keywords: dual bioimaging, MR imaging, silica colloid, T1 contrast imaging, nanohybrid

  11. Experimental Aspects of Colloidal Interactions in Mixed Systems of Liposome and Inorganic Nanoparticle and Their Applications

    Directory of Open Access Journals (Sweden)

    Michael Gradzielski

    2012-09-01

    Full Text Available In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles and hard nanoparticles (NPs. In this context liposomes (vesicles may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.

  12. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    OpenAIRE

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-01-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene ...

  13. Extensive Characterization of Oxide-Coated Colloidal Gold Nanoparticles Synthesized by Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Romuald Intartaglia

    2016-09-01

    Full Text Available Colloidal gold nanoparticles are a widespread nanomaterial with many potential applications, but their aggregation in suspension is a critical issue which is usually prevented by organic surfactants. This solution has some drawbacks, such as material contamination and modifications of its functional properties. The gold nanoparticles presented in this work have been synthesized by ultra-fast laser ablation in liquid, which addresses the above issues by overcoating the metal nanoparticles with an oxide layer. The main focus of the work is in the characterization of the oxidized gold nanoparticles, which were made first in solution by means of dynamic light scattering and optical spectroscopy, and then in dried form by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and finally by surface potential measurements with atomic force microscopy. The light scattering assessed the nanoscale size of the formed particles and provided insight in their stability. The nanoparticles’ size was confirmed by direct imaging in transmission electron microscopy, and their crystalline nature was disclosed by X-ray diffraction. The X-ray photoelectron spectroscopy showed measurements compatible with the presence of surface oxide, which was confirmed by the surface potential measurements, which are the novel point of the present work. In conclusion, the method of laser ablation in liquid for the synthesis of gold nanoparticles has been presented, and the advantage of this physical approach, consisting of coating the nanoparticles in situ with gold oxide which provides the required morphological and chemical stability without organic surfactants, has been confirmed by using scanning Kelvin probe microscopy for the first time.

  14. Colloidal silver nanoparticles prepared by UV-light induced citrate reduction technique for the quantitative detection of uric acid

    Science.gov (United States)

    Maity, Anupam; Panda, Sovan Kumar

    2018-04-01

    Reddish-yellow color colloid consisting of silver nanoparticles (Ag NPs) has been synthesized by reducing aqueous AgNO3 solution by photo-induced citrate reduction technique under UV light. As prepared colloid exhibits single and intense plasmonic absorption peak in the violet region of the visible spectra with the peak centered at 405 nm. The NPs are fine and spherical with diameter ranging from 5 to 10 nm. These colloidal NPs have been used for the quantitative detection of uric acid by UV-VIS spectroscopy. A linear red shifting of the characteristics Plasmonic absorption peak of Ag NPs is observed with uric acid concentration. Uric acid can be detected by UV-VIS spectroscopy down to 5 nM limit using the prepared colloid.

  15. Metal Oxide Nanoparticle Photoresists for EUV Patterning

    KAUST Repository

    Jiang, Jing; Chakrabarty, Souvik; Yu, Mufei; Ober, Christopher K.

    2014-01-01

    © 2014SPST. Previous studies of methacrylate based nanoparticle have demonstrated the excellent pattern forming capability of these hybrid materials when used as photoresists under 13.5 nm EUV exposure. HfO2 and ZrO2 methacrylate resists have

  16. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika; Baudouin, David; Basset, Jean-Marie; Bayard, Franç ois; Candy, Jean Pierre; Jumas, Jean Claude; Veyre, Laurent; Thieuleux, Chloé

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained

  17. Protocol optimization for the mild detemplation of mesoporous silica nanoparticles resulting in enhanced texture and colloidal stability

    NARCIS (Netherlands)

    Zhang, Zheng; Mayoral, Alvaro; Melian-Cabrera, Ignacio

    2016-01-01

    Porosity development of mesostructured colloidal silica nanoparticles is related to the removal of the organic templates and co-templates which is often carried out by calcination at high temperatures, 500 -600 degrees C. In this study a mild detemplation method based on the oxidative Fenton

  18. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained spontaneously as the unique phase regardless of the number of tin equivalents introduced. © 2010 The Royal Society of Chemistry.

  19. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system.

    Science.gov (United States)

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto; Fresta, Massimo; Cosco, Donato

    2018-01-01

    The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20-40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100-200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems.

  20. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

    Science.gov (United States)

    Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki

    2014-08-01

    This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

  1. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  2. Colloidal synthesis of BaF2 nanoparticles and their application as fillers in polymer nanocomposites

    Science.gov (United States)

    Sathyamurthy, Srivatsan; Tuncer, Enis; More, Karren L.; Gu, Baohua; Sauers, Isidor; Paranthaman, M. Parans

    2012-03-01

    Nanoparticles of pure and Eu-doped BaF2 have been prepared through sol-gel colloidal synthesis. In addition, BaF2-filled PMMA polymer nanocomposites were fabricated and dielectric properties were measured. The as-synthesized pure and Eu-doped BaF2 nanoparticles were analyzed by both X-ray diffraction and transmission electron microscopy and consisted of crystalline BaF2 particles with an average diameter of 13.6 nm with a standard deviation of about ±2.4 nm. The photoluminescence properties of the pure and Eu-doped (2%, 4% and 8%) nanoparticles showed characteristic emission of Eu3+ (5D0→7F J ( J=1-4) transitions). We also measured significantly enhanced dielectric breakdown strength of up to 30% for BaF2 nanocomposites over the unfilled PMMA polymer. This study thus offers some promise of sol-gel synthesis of nanocomposite dielectrics with great potential for use as electrical insulation materials in cryogenic high-voltage applications.

  3. Colloidal synthesis of BaF2 nanoparticles and their application as fillers in polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sathyamurthy, Srivatsan [ORNL; Tuncer, Enis [ORNL; More, Karren Leslie [ORNL; Gu, Baohua [ORNL; Sauers, Isidor [ORNL; Paranthaman, Mariappan Parans [ORNL

    2012-01-01

    Nanoparticles of pure and Eu-doped BaF2 have been prepared through sol-gel colloidal synthesis. In addition, BaF2 filled PMMA polymer nanocomposites were fabricated and dielectric properties were measured. The as-synthesized pure and Eu-doped BaF2 nanoparticles were analyzed by both X-ray diffraction and transmission electron microscopy and consisted of crystalline BaF2 particles with an average diameter of 13.6 nm with a standard deviation of about 2.4 nm. The photoluminescence properties of the pure and Eu-doped (2%, 4% and 8%) nanoparticles showed characteristic emission of Eu3+ (5D0 7FJ (J=1-4) transitions). We also measured significantly enhanced dielectric breakdown strength of up to 30% for BaF2 nanocomposites over the unfilled PMMA polymer. This study thus offers some promise of sol-gel synthesis of nanocomposite dielectrics with great potential for use as electrical insulation materials in cryogenic high voltage applications.

  4. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  5. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    International Nuclear Information System (INIS)

    Selishcheva, Elena; Parisi, Jürgen; Kolny-Olesiak, Joanna

    2012-01-01

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In 2 O 3 surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV–Vis-absorption spectroscopy are used to characterize the samples.

  6. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.

  7. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  8. Protein-silver nanoparticle interactions to colloidal stability in acidic environments.

    Science.gov (United States)

    Tai, Jui-Ting; Lai, Chao-Shun; Ho, Hsin-Chia; Yeh, Yu-Shan; Wang, Hsiao-Fang; Ho, Rong-Ming; Tsai, De-Hao

    2014-11-04

    We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.

  9. Synthesis of 2.5 nm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity

    International Nuclear Information System (INIS)

    Cui, Malin; Zhao, Yuan; Wang, Chan; Song, Qijun

    2016-01-01

    Colloidal iridium nanoparticles (IrNPs) were synthesized through an environmentally friendly approach by using trisodium citrate as the capping molecule in an aqueous medium. The resulting colloidal IrNPs have a typical diameter of 2.5 nm and display absorption bands at 250, 400 and 600 nm. They possess uniform morphology, good dispersibility, excellent stability in water, and exhibit strong surface enhanced Raman scattering (SERS) activity with an enhancement factor (EF) of 3.5 × 10 5 at the 1512 cm -1 peak when using Rhodamine 6G as the probe molecule. The excellent SERS performance of the IrNPs was exemplarily applied to the determination of the industrial colorant Sudan Red I. The peak intensity of the Raman band at 1236 cm -1 is linearly related to the concentration of Sudan Red I which can be determined by SERS in the 2 nM to 8 μM concentration range with a limit of detection as low as 0.6 nM. In our perception, this strong SERS activity of the IrNPs has a large potential in the SERS-based quantitation of various chemical substances. (author)

  10. Facile Synthesis Polyethylene Glycol Coated Magnetite Nanoparticles for High Colloidal Stability

    Directory of Open Access Journals (Sweden)

    Mun Foong Tai

    2016-01-01

    Full Text Available Polyethylene glycol (PEG is one of the most frequently used synthetic polymers for surface modifications of magnetite nanoparticles (MNPs to provide a new opportunity for constructing high colloidal stability. Herein, a facile in situ coprecipitation technique is described for the synthesis of PEG coated MNPs using ammonium hydroxide as the precipitating agent. The structure and morphology of the prepared PEG coated MNPs samples were characterized by Fourier transform infrared (FTIR spectroscopy, X-ray spectroscopy, thermogravimetric analysis (TGA, and the high resolution transmission electron microscopy (HRTEM. In this study, all samples demonstrated hydrodynamic size in the range of 32 to 43 nm with narrow size distribution. In addition, the magnetic properties of resultant samples were investigated using a vibrating sample magnetometer (VSM to reveal the superparamagnetic behaviour with saturation magnetization. The saturation magnetization of PEG coated MNPs samples was in the range of 63 to 66 emu/g at 300 K. Interestingly, it was found that 1.0 g of PEG coated MNPs exhibited high colloidal stability in a basic solution (pH = 10 and nitrile (NBR latex up to 21 days as compared to the unmodified MNPs during the sedimentation test.

  11. Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules.

    Science.gov (United States)

    Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Konrad, Manfred; Skirtach, Andre G

    2014-05-01

    Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.

    Science.gov (United States)

    Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina

    2015-03-24

    The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.

  13. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein?Lecithin Composite Colloidal Nanoparticles

    OpenAIRE

    Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang

    2016-01-01

    Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparti...

  14. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction

    Energy Technology Data Exchange (ETDEWEB)

    Steitz, Benedikt [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Kamau, Sarah W. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Hassa, Paul O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zuerich, Zurich (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann-Amtenbrink, Magarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Petri-Fink, Alke [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)]. E-mail: alke.fink@epfl.ch

    2007-04-15

    Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, {zeta}-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency.

  15. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction

    International Nuclear Information System (INIS)

    Steitz, Benedikt; Hofmann, Heinrich; Kamau, Sarah W.; Hassa, Paul O.; Hottiger, Michael O.; Rechenberg, Brigitte von; Hofmann-Amtenbrink, Magarethe; Petri-Fink, Alke

    2007-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyethylenimine. Here, we briefly describe the synthesis as well as DNA:PEI:SPION complexes and the characterization of the compounds according to their particle size, ζ-potential, morphology, DNA complexing ability, magnetic sedimentation, and colloidal stability. PEI coating of SPIONs led to colloidally stable beads even in high salt concentrations over a wide pH range. DNA plasmids and PCR products encoding for green fluorescent protein were associated with the described beads. The complexes were added to cells and exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency

  16. Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

    International Nuclear Information System (INIS)

    Cabrera, David; Camarero, Julio; Ortega, Daniel; Teran, Francisco J.

    2015-01-01

    Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization

  17. Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, David; Camarero, Julio; Ortega, Daniel; Teran, Francisco J., E-mail: francisco.teran@imdea.org [Ciudad Universitaria de Cantoblanco, IMDEA Nanociencia (Spain)

    2015-03-15

    Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization.

  18. Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium

    Science.gov (United States)

    Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto

    2009-08-01

    Pulsed laser ablation (PLA) in liquid medium was successfully employed to synthesize hydroxyapatite (HAp) colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the HAp nanoparticles were investigated in detail. The obtained HAp nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were studied in terms of the explosive ejection mechanism by investigating the change of the surface morphology on target. The stoichiometry and bonding properties were studied by using XPS, FT-IR and Raman spectroscopy. A molar ratio of Ca/P of the prepared HAp nanoparticles was more stoichiometric than the value reported in the case of ablation in vacuum.

  19. Discharge time dependence of a solution plasma process for colloidal copper nanoparticle synthesis and particle characteristics

    International Nuclear Information System (INIS)

    Pootawang, Panuphong; Saito, Nagahiro; Lee, Sang Yul

    2013-01-01

    In this study, we investigate a new synthetic route, termed the solution plasma process, for the synthesis of colloidal copper nanoparticles (CuNPs) in the presence of an amide and acid capping agent. Gelatin and ascorbic acid were selected as the capping agents to protect the particles against coalescence and oxidation side reaction. Using a high voltage power supply, CuNPs were rapidly formed by 1 min after the discharge. The size and shape of the CuNPs were dependent on the discharge time and were clearly influenced by the effect of the capping agents under two characteristics of the discharge medium (pH and temperature). With a long discharge time, the CuNP size tended to decrease with the formation of anisotropic particle morphologies: spherical, cubic, hexagonal, triangular and rod-like shapes. The decrease in CuNP size as a function of discharge time could be explained by the dissolution of CuNPs in a lower pH solution. After 5 min discharge the capping agent evidently allowed the protection of the synthesized CuNPs against oxidation with the presence of anisotropic CuNP shapes. It is demonstrated that the CuNP shape could be tuned from spherical to anisotropic shapes without the undesirable oxidation by adjusting the discharge time of the solution plasma. These advantages are valuable for material engineering to design the properties of Cu-based nanoparticles for the desired applications. (paper)

  20. Laser-produced plasma EUV source using a colloidal microjet target containing tin dioxide nanoparticles

    Science.gov (United States)

    Higashiguchi, Takeshi; Dojyo, Naoto; Sasaki, Wataru; Kubodera, Shoichi

    2006-10-01

    We realized a low-debris laser-produced plasma extreme ultraviolet (EUV) source by use of a colloidal microjet target, which contained low-concentration (6 wt%) tin-dioxide nanoparticles. An Nd:YAG laser was used to produce a plasma at the intensity on the order of 10^11 W/cm^2. The use of low concentration nanoparticles in a microjet target with a diameter of 50 μm regulated the neutral debris emission from a target, which was monitored by a silicon witness plate placed 30 cm apart from the source in a vacuum chamber. No XPS signals of tin and/or oxygen atoms were observed on the plate after ten thousand laser exposures. The low concentration nature of the target was compensated and the conversion efficiency (CE) was improved by introducing double pulses of two Nd:YAG lasers operated at 532 and 1064 nm as a result of controlling the micro-plasma characteristics. The EUV CE reached its maximum of 1.2% at the delay time of approximately 100 ns with the main laser intensiy of 2 x10^11 W/cm^2. The CE value was comparable to that of a tin bulk target, which, however, produced a significant amount of neutral debris.

  1. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles.

    Science.gov (United States)

    Pokhrel, Lok R; Dubey, Brajesh; Scheuerman, Phillip R

    2013-11-19

    Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.

  2. Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis.

    Science.gov (United States)

    Zuykov, Michael; Pelletier, Emilien; Demers, Serge

    2011-02-01

    Metal transport in mollusk extrapallial fluid (EPF) that acts as a "bridge" between soft tissues and shell has surprisingly received little attention until now. Using ultrafiltration and radiotracer techniques we determined silver concentrations and speciation in the EPF of the blue mussel Mytilus edulis after short-term uptake and depuration laboratory experiments. Radiolabelled silver ((¹¹⁰m)Ag) was used in dissolved or nanoparticulate phases (AgNPs silver nanoparticles were transported to the EPF of blue mussels at a level similar to the Ag ionic form. Bulk activity of radiolabelled silver in the EPF represented only up to 7% of the bulk activity measured in the whole mussels. The EPF extracted from mussels exposed to both treatments exhibited an Ag colloidal complexed form based on EPF ultrafiltration through a 3 kDa filter. This original study brings new insights to internal circulation of nanoparticles in living organisms and contributes to the international effort in studying the potential impacts of engineered nanomaterials on marine bivalves which play an essential role in coastal ecosystems, and are important contributors to human food supply from the sea. © 2010 Elsevier Ltd. All rights reserved.

  3. Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Veintemillas-Verdaguer, Sabino [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Morales, Maria del Puerto [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bomati-Miguel, Oscar [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bautista, Carmen [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Zhao, Xinqing [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bonville, Pierre [CEA, CE Saclay, DSM/DRECAM/SPEC, 91191 Gif-Sur-Yvette (France); Alejo, Rigoberto Perez de [Universidad Complutense de Madrid, Unidad de RMN, Paseo Juan XXIII, 1, 28040 Madrid (Spain); Ruiz-Cabello, Jesus [Universidad Complutense de Madrid, Unidad de RMN, Paseo Juan XXIII, 1, 28040 Madrid (Spain); Santos, Martin [Hospital Universitario Puerta de Hierro, Servicio de Cirugia Experimental. C/San Martin de Porres 4, 28035 Madrid (Spain); Tendillo-Cortijo, Francisco J [Hospital Universitario Puerta de Hierro, Servicio de Cirugia Experimental. C/San Martin de Porres 4, 28035 Madrid (Spain); Ferreiros, Joaquin [Hospital Clinico de Madrid ' San Carlos' , Ciudad Universitaria, 28040 Madrid (Spain)

    2004-08-07

    Biocompatible magnetic dispersions have been prepared from {gamma}-Fe{sub 2}O{sub 3} nanoparticles (5 nm) synthesized by continuous laser pyrolysis of Fe(CO){sub 5} vapours. The feasibility of using these dispersions as magnetic resonance imaging (MRI) contrast agents has been analysed in terms of chemical structure, magnetic properties, {sup 1}H NMR relaxation times and biokinetics. The magnetic nanoparticles were dispersed in a strong alkaline solution in the presence of dextran, yielding stable colloids in a single step. The dispersions consist of particle-aggregates 25 nm in diameter measured using transmission electron microscope and a hydrodynamic diameter of 42 nm measured using photon correlation spectroscopy. The magnetic and relaxometric properties of the dispersions were of the same order of magnitude as those of commercial contrast agents produced using coprecipitation. However, these dispersions, when injected intravenously in rats at standard doses showed a mono-exponential blood clearance instead of a biexponential one, with a blood half-life of 7 {+-} 1 min. Furthermore, an important enhancement of the image contrast was observed after the injection, mainly located at the liver and the spleen of the rat. In conclusion, the laser pyrolysis technique seems to be a good alternative to the coprecipitation method for producing MRI contrast agents, with the advantage of being a continuous synthesis method that leads to very uniform particles capable of being dispersed and therefore transformed in a biocompatible magnetic liquid.

  4. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen

    2018-05-04

    The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    Science.gov (United States)

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles

    Science.gov (United States)

    Velgosová, Oksana; Mražíková, Anna

    2017-12-01

    In this paper the influence of algae life cycle and the solutions pH on the green synthesis of colloidal Ag nanoparticles (AgNPs) as well as effect of different storage conditions on AgNPs long-term stability was investigated. Silver nanoparticles were biologically synthesized using extracts of Parachlorella kessleri algae cultivated 1, 2, 3 and 4 weeks. The formation of AgNPs was monitored using a UV-vis spectrophotometer and verified by TEM observation. The results confirmed formation of polyhedron and/or near polyhedron AgNPs, ranging between 5 and 60 nm in diameter. The age of algae influenced the synthesis rate and an amount of AgNPs in solution. The best results were obtained using tree weeks old algae. UV-vis analysis and TEM observation also revealed that the size and the stability of AgNPs depend on the pH of solution. AgNPs formed in solutions of higher pH (8 and 10) are polyhedron, fine, with narrow size interval and stabile. Nanoparticles formed in solutions of low pH (2, 4 and 6) started to lose their stability on 10th day of experiment, and the particle size interval was wide. The long-term stability of AgNPs can be influenced by light and temperature conditions. The most significant stability loss was observed at day light and room temperature (21°C). After 200-days significant amount of agglomerated particles settled on the bottom of the Erlenmeyer flask. AgNPs stored at dark and room temperature showed better long-term stability, weak particles agglomeration was observed. AgNPs stored at dark and at temperature 5°C showed the best long-term stability. Such AgNPs remained spherical, fine (5-20 nm), with narrow size interval and stable (no agglomeration) even after more than six months.

  7. Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses.

    Science.gov (United States)

    Nguyen, Thai Phuong; Chang, Wei-Chang; Lai, Yen-Chih; Hsiao, Ta-Chih; Tsai, De-Hao

    2017-10-01

    In this work, we develop an aerosol-based, time-resolved ion mobility-coupled mass characterization method to investigate colloidal assembly of graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure on a quantitative basis. Transmission electron microscopy (TEM) and zeta potential (ZP) analysis were used to provide visual information and elemental-based particle size distributions, respectively. Results clearly show a successful controlled assembly of GO-AgNP by electrostatic-directed heterogeneous aggregation between GO and bovine serum albumin (BSA)-functionalized AgNP under an acidic environment. Additionally, physical size, mass, and conformation (i.e., number of AgNP per nanohybrid) of GO-AgNP were shown to be proportional to the number concentration ratio of AgNP to GO (R) and the selected electrical mobility diameter. An analysis of colloidal stability of GO-AgNP indicates that the stability increased with its absolute ZP, which was dependent on R and environmental pH. The work presented here provides a proof of concept for systematically synthesizing hybrid colloidal nanomaterials through the tuning of surface chemistry in aqueous phase with the ability in quantitative characterization. Graphical Abstract Colloidal assembly of graphene oxide-silver nanoparticle hybrids characterized by aerosol differential mobility-coupled mass analyses.

  8. Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles

    International Nuclear Information System (INIS)

    Hong, Sang-Hyun; Kim, Jae-Joon; Jung, Yen-Sook; Kim, Dong-Yu; Park, Seong-Ju; Kang, Jang-Won; Yim, Sang-Youp

    2015-01-01

    We report on the characteristics of localized surface plasmon (LSP)-enhanced near-ultraviolet light-emitting diodes (NUV-LEDs) fabricated by using colloidal silver (Ag) nanoparticles (NPs). Colloidal Ag NPs were deposited on the 20 nm thick p-GaN spacer layer using a spray process. The optical output power of NUV-LEDs with colloidal Ag NPs was increased by 48.7% at 20 mA compared with NUV-LEDs without colloidal Ag NPs. The enhancement was attributed to increased internal quantum efficiency caused by the resonance coupling between excitons in the multiple quantum wells and the LSPs in the Ag NPs. (paper)

  9. Silver nanoparticles in complex biological media: assessment of colloidal stability and protein corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Argentiere, Simona, E-mail: simona.argentiere@fondazionefilarete.com; Cella, Claudia, E-mail: claudia.cella@unimi.it [Fondazione Filarete (Italy); Cesaria, Maura, E-mail: maura.cesaria@le.infn.it [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi” (Italy); Milani, Paolo, E-mail: paolo.milani@mi.infn.it; Lenardi, Cristina, E-mail: cristina.lenardi@mi.infn.it [Università degli Studi di Milano, CIMAINA and Dipartimento di Fisica (Italy)

    2016-08-15

    Engineered silver nanoparticles (AgNPs) are among the most used nanomaterials in consumer products, therefore concerns are raised about their potential for adverse effects in humans and environment. Although an increasing number of studies in vitro and in vivo are being reported on the toxicity of AgNPs, most of them suffer from incomplete characterization of AgNPs in the tested biological media. As a consequence, the comparison of toxicological data is troublesome and the toxicity evaluation still remains an open critical issue. The development of a reliable protocol to evaluate interactions of AgNPs with surrounding proteins as well as to assess their colloidal stability is therefore required. In this regard, it is of importance not only to use multiple, easy-to-access and simple techniques but also to understand limitations of each characterization methods. In this work, the morphological and structural behaviour of AgNPs has been studied in two relevant biological media, namely 10 % FBS and MP. Three different techniques (Dynamic Light Scattering, Transmission Electron Microscopy, UV–Vis spectroscopy) were tested for their suitability in detecting AgNPs of three different sizes (10, 40 and 100 nm) coated with either citrate or polyvinylpyrrolidone. Results showed that UV–Vis spectroscopy is the most versatile and informative technique to gain information about interaction between AgNPs and surrounding proteins and to determine their colloidal stability in the tested biological media. These findings are expected to provide useful insights in characterizing AgNPs before performing any further in vitro/in vivo experiment.

  10. Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media.

    Science.gov (United States)

    Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J

    2016-04-06

    The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Colloidal Nanoparticles of Ln3+-Doped LaVO4: Energy Transfer to Visible- and Near-Infrared-Emitting Lanthanide Ions

    NARCIS (Netherlands)

    Stouwdam, J.W.; Raudsepp, Mati; van Veggel, F.C.J.M.

    2005-01-01

    Colloidal, organic solvent-soluble Ln3+-doped LaVO4 nanoparticles have been synthesized by a precipitation reaction in the presence of (C18H37O)2PS2- as ligand, that coordinates to the surface of the nanoparticles. The materials are well soluble in chlorinated solvent such as chloroform. Energy

  12. Brightly luminescent colloidal Ag–In–S nanoparticles stabilized in aqueous solutions by branched polyethyleneimine

    Energy Technology Data Exchange (ETDEWEB)

    Raevskaya, Alexandra E.; Ivanchenko, Maria V.; Skoryk, Mykola A.; Stroyuk, Oleksandr L., E-mail: alstroyuk@ukr.net

    2016-10-15

    Silver indium sulfide nanoparticles (NPs) stabilized in water by branched polyethyleneimine (PEI) were produced by a mild and direct synthesis. The Ag–In–S NPs exhibit relatively bright photoluminescence (PL) in the visible spectral range. The key parameters influencing color and intensity of PL are the Ag:In and Ag:S molar ratios and duration of the post-synthesis thermal treatment at ~100 °C. A maximal PL quantum yield, 20%, was observed for the Ag–In–S–PEI NPs produced at a molar Ag:In:S ratio of 1:5:5 and a thermal treatment at ~100 °C for 2 h. Such NPs are characterized by an average hydrodynamic size of around 100 nm. According to SEM each 100-nm globule comprises many smaller Ag–In–S NPs. Reasonably high PL quantum yield, variability of the emission color and self-aggregation of Ag–In–S–PEI NPs into polymer globules that do not scatter light makes such NPs promising for the luminescent bio-labeling applications. The PL band maximum energy of the Ag–In–S–PEI NPs produced in optimal conditions is very close to the band gap derived from the absorption spectra of colloidal solutions indicating that PL originates from the radiative recombination of delocalized or shallowly trapped charge carriers. - Highlights: • Ag–In–S nanoparticles (NPs) stabilized by polyethyleneimine in water were synthesized. • Ag–In–S NPs emit bright visible photoluminescence varying in color from green to red. • Maximal quantum yield of emission, ~20%, is observed at a Ag:In:S ratio of 1:5:5. • Separate Ag–In–S NPs are assembled into ~100-nm polyethyleneimine globules.

  13. Plasmonic effects of gold colloids on the fluorescence behavior of dye-doped SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tarpani, Luigi, E-mail: luigi.tarpani@unipg.it; Latterini, Loredana

    2017-05-15

    The interactions of dye molecules with gold nanoparticles are of great interest owing to the potential applications in the areas of bioimaging, sensing and photodynamic therapy applications. In many cases the distances between fluorophores and the metal particles can change during the experiment and the spectral features of the units are not taken into account. In this work, the fluorescence behaviour of two dyes with different spectral properties (Rhodamine B and 9-aminoacridine) are investigated in the presence of gold nanoparticles having diameters of 2 or 26 nm and hence different plasmonic properties. In order to fix the distance between the dye and the gold nanoparticles, the dyes are entrapped in 20 nm silica nanoparticles, and the metal colloids are adsorbed on the silica surface. The distance between the fluorescent units and the metal particles is tuned by growing additional silica layers on the pristine nanoparticles. Steady-state and time-resolved fluorescence measurements show that in the presence of gold nanoparticles, having 2 nm diameter, a drastic quenching of the dye emission is observed, for all the prepared samples, despite the average dye-metal distances. When gold nanoparticles with 26 nm diameters are used, their interactions with the dyes are strongly dependent on the averaged distances between the metal colloids and the dyes and on the overlap of their spectral properties. Indeed, an enhanced emission is observed for 9-aminoacridine while the fluorescence of longer wavelength emitting Rhodamine B is quenched. The steady state and time-resolved data are analysed to evaluate the plasmonic impact of the radiative and non-radiative rate constants of the dyes.

  14. Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles.

    Science.gov (United States)

    Skoglund, Sara; Lowe, Troy A; Hedberg, Jonas; Blomberg, Eva; Wallinder, Inger Odnevall; Wold, Susanna; Lundin, Maria

    2013-07-16

    The stability of silver nanoparticles (Ag NPs) potentially released from clothing during a laundry cycle and their interactions with laundry-relevant surfactants [anionic (LAS), cationic (DTAC), and nonionic (Berol)] have been investigated. Surface interactions between Ag NPs and surfactants influence their speciation and stability. In the absence of surfactants as well as in the presence of LAS, the negatively charged Ag NPs were stable in solution for more than 1 day. At low DTAC concentrations (≤1 mM), DTAC-Ag NP interactions resulted in charge neutralization and formation of agglomerates. The surface charge of the particles became positive at higher concentrations due to a bilayer type formation of DTAC that prevents from agglomeration due to repulsive electrostatic forces between the positively charged colloids. The adsorption of Berol was enhanced when above its critical micelle concentration (cmc). This resulted in a surface charge close to zero and subsequent agglomeration. Extended DLVO theory calculations were in compliance with observed findings. The stability of the Ag NPs was shown to depend on the charge and concentration of the adsorbed surfactants. Such knowledge is important as it may influence the subsequent transport of Ag NPs through different chemical transients and thus their potential bioavailability and toxicity.

  15. Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Takamiya, Aline Satie; Feresin, Leonardo Perina; Gorup, Luiz Fernando; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo; Henriques, Mariana; Barbosa, Debora Barros

    2014-08-01

    Our aim in this study was to evaluate how the chemical stability of silver nanoparticles (SNs) influences their efficacy against Candida albicans and C. glabrata biofilms. Several parameters of SN stability were tested, namely, temperature (50ºC, 70ºC, and 100ºC), pH (5.0 and 9.0), and time of contact (5 h and 24 h) with biofilms. The control was defined as SNs without temperature treatment, pH 7, and 24 h of contact. These colloidal suspensions at 54 mg/L were used to treat mature Candida biofilms (48 h) formed on acrylic. Their efficacy was determined by total biomass and colony-forming unit quantification. Data were analyzed using analysis of variance and the Bonferroni post hoc test (α = 0.05). The temperature and pH variations of SNs did not affect their efficacy against the viable cells of Candida biofilms (P > 0.05). Moreover, the treatment periods were not decisive in terms of the susceptibility of Candida biofilms to SNs. These findings provide an important advantage of SNs that may be useful in the treatment of Candida-associated denture stomatitis. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Immobilization, direct electrochemistry and electrocatalysis of hemoglobin on colloidal silver nanoparticles-chitosan film

    Energy Technology Data Exchange (ETDEWEB)

    Yu Chunmei [College of Chemistry and Chemical Engineering and Materials Science, Suzhou University, Suzhou 215123 (China); Institute of Analytical Chemistry for Life Science, School of Public Health, Nantong University, Nantong 226007 (China); Zhou Xiaohui [Institute of Analytical Chemistry for Life Science, School of Public Health, Nantong University, Nantong 226007 (China); Gu Haiying, E-mail: hygu@ntu.edu.c [Institute of Analytical Chemistry for Life Science, School of Public Health, Nantong University, Nantong 226007 (China)

    2010-12-01

    This paper reports on the fabrication and characterization of hemoglobin (Hb)-colloidal silver nanoparticles (CSNs)-chitosan film on the glassy carbon electrode and its application on electrochemical biosensing. CSNs could greatly enhance the electron transfer reactivity of Hb as a bridge. In the phosphate buffer solution with pH value of 7.0, Hb showed a pair of well-defined redox peaks with the formal potential (E{sup 0'}) of -0.325 V (vs. SCE). The immobilized Hb in the film maintained its biological activity, showing a surface-controlled process with the heterogeneous electron transfer rate constant (k{sub s}) of 1.83 s{sup -1} and displayed the same features of a peroxidase in the electrocatalytic reduction of oxygen and hydrogen peroxide (H{sub 2}O{sub 2}). The linear range for the determination of H{sub 2}O{sub 2} was from 0.75 {mu}M to 0.216 mM with a detection limit of 0.5 {mu}M (S/N = 3). Such a simple assemble method could offer a promising platform for further study on the direct electrochemistry of other redox proteins and the development of the third-generation electrochemical biosensors.

  17. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

    Science.gov (United States)

    Dahoumane, Si Amar; Yéprémian, Claude; Djédiat, Chakib; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2016-03-01

    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7-8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  18. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

    Energy Technology Data Exchange (ETDEWEB)

    Dahoumane, Si Amar, E-mail: sa.dahoumane@gmail.com [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France); Yéprémian, Claude; Djédiat, Chakib; Couté, Alain [Muséum National d’Histoire Naturelle, Département RDDM, UMR 7245, Unité MCAM (France); Fiévet, Fernand [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France); Coradin, Thibaud, E-mail: thibaud.coradin@upmc.fr [UPMC—Paris 06, CNRS, Chimie de la Matière Condensée de Paris, Collège de France (France); Brayner, Roberta, E-mail: roberta.brayner@univ-paris-diderot.fr [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France)

    2016-03-15

    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7–8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  19. Laser-induced particle size tuning and structural transformations in germanium nanoparticles prepared by stain etching and colloidal synthesis route

    Energy Technology Data Exchange (ETDEWEB)

    Karatutlu, Ali, E-mail: a.karatutlu@qmul.ac.uk, E-mail: ali.karatutlu@bou.edu.tr [Centre for Condensed Matter and Materials Physics, School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS (United Kingdom); Electrical and Electronics Engineering, Bursa Orhangazi University, 16310 Yıldırım/Bursa (Turkey); Little, William; Ersoy, Osman; Zhang, Yuanpeng; Sapelkin, Andrei [Centre for Condensed Matter and Materials Physics, School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS (United Kingdom); Seker, Isa [Bio-Nanotechnology Research and Development Centre, Fatih University, 34500 Buyukcekmece, Istanbul (Turkey)

    2015-12-28

    In this study, with the aid of Raman measurements, we have observed transformations in small (∼3 nm and ∼10 nm) free-standing Ge nanoparticles under laser light exposure. The nanoparticles were obtained by the chemical stain etching of a monocrystalline Ge wafer and of Ge powder and by colloidal synthesis route. We found that the transformation path depends on laser power and exposure time. At relatively low values of the laser power (2 mW) over a period of 100 min, the Raman signal indicates transformation of the sample from a nanocrystaline to bulk-like state, followed by partial oxidation and finally a conversion of the entire sample into alpha-quartz type GeO{sub 2}. However, when the laser power is set at 60 mW, we observed a heat release during an explosive crystallization of the nanocrystalline material into bulk Ge without noticeable signs of oxidation. Together with the transmission electron microscopy measurements, these results suggest that the chemical stain etching method for the preparation of porous Ge may not be a top-down process as has been widely considered, but a bottom up one. Systematic studies of the laser exposure on Ge nanoparticles prepared by colloidal synthesis results in the fact that the explosive crystallisation is common for H-terminated and partially disordered Ge nanoparticles regardless of its particle size. We suggest possible bio-medical applications for the observed phenomena.

  20. Study on the synthesis of colloidal silver nanoparticles by γ-irradiation for using as an antimicrobial substance

    International Nuclear Information System (INIS)

    Dang Van Phu; Nguyen Trieu; Vo Thi Kim Lang; Doan Thi The; Nguyen Quoc Hien; Bui Duy Du

    2007-01-01

    Colloidal silver nanoparticles of different sizes less than 20 nm were synthesized by γ Co-60 irradiation of Ag + in solution containing polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) as stabilizer. The saturated conversion dose (D) of Ag + to Ag 0 and particle size (d) depended on Ag + concentration from 1 to 50 mM were found out to be as: D (kGy) = - 0.0041[Ag + ] 2 + 0.8674[Ag + ] + 3.2262, d (nm) = 0.0029[Ag + ] 2 + 0.0529[Ag + ] + 0.9259 for PVA 2 g/100 ml and D (kGy) = -0.0151[Ag + ] 2 + 1.5258[Ag + ] + 9.2441, d (nm) = -0.0016[Ag + ] 2 + 0.3757[Ag + ] + 6.2886 for PVP 2 g/100 ml. Colloidal silver nanoparticles showed the maximal absorption peak at λ max ∼ 400-420 nm. The size and size distribution of silver nanoparticles were characterized by transmission electron microscopy (TEM). The silver nanoparticle size of approximate 10 nm showed highly antimicrobial effect against E.coli and S.aureus. (author)

  1. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kim, Younghoon

    2017-03-13

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  2. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    Science.gov (United States)

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  3. Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles

    International Nuclear Information System (INIS)

    Suryajaya; Nabok, A.; Davis, F.; Hassan, A.; Higson, S.P.J.; Evans-Freeman, J.

    2008-01-01

    CdS and ZnS semiconducting colloid nanoparticles coated with the organic shell, containing either SO 3 - or NH 2 + groups, were prepared using the aqueous phase synthesis. The multilayer films of CdS (or ZnS) were deposited onto glass, quartz and silicon substrates using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy, spectroscopic ellipsometry and atomic force microscopy. A substantial blue shift of the main absorption band with respect to the bulk materials was found for both CdS and ZnS films. The Efros equation in the effective mass approximation (EMA) theoretical model allowed the evaluation of the nanoparticle radius of 1.8 nm, which corresponds well to the ellipsometry results. AFM shows the formation of larger aggregates of nanoparticles on solid surfaces

  4. The magnetic and colloidal properties of CoFe2O4 nanoparticles synthesized by co-precipitation.

    Science.gov (United States)

    Gyergyek, Sašo; Drofenik, Miha; Makovec, Darko

    2014-01-01

    Magnetic CoFe(2)O(4) nanoparticles were synthesized by co-precipitation at 80 °C. This co-precipitation was achieved by the rapid addition of a strong base to an aqueous solution of cations. The investigation of the samples that were quenched at different times after the addition of the base, using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDXS) and X-ray powder diffractometry, revealed the formation of a Co-deficient amorphous phase and Co(OH)(2), which rapidly reacted to form small CoFe(2)O(4) nanoparticles. The nanoparticles grew with the time of aging at elevated temperature. The colloidal suspensions of the nanoparticles were prepared in both an aqueous medium and in a non-polar organic medium, with the adsorption of citric acid and ricinoleic acid on the nanoparticles, respectively. The measurements of the room-temperature magnetization revealed the ferrimagnetic state of the CoFe(2)O(4) nanoparticles, while their suspensions displayed superparamagnetic behaviour.

  5. Evaluation of Flexural Strength of Polymethyl Methacrylate modified with Silver Colloidal Nanoparticles subjected to Two Different Curing Cycles: An in vitro Study.

    Science.gov (United States)

    Munikamaiah, Ranganath L; Jain, Saket K; Pal, Kapil S; Gaikwad, Ajay

    2018-03-01

    Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles. Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine. Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group. The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis. The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.

  6. Binary Colloidal Crystal Layers as Platforms for Surface Patterning of Puroindoline-Based Antimicrobial Peptides.

    Science.gov (United States)

    Boden, Andrew; Bhave, Mrinal; Wang, Peng-Yuan; Jadhav, Snehal; Kingshott, Peter

    2018-01-24

    The ability of bacteria to form biofilms and the emergence of antibiotic-resistant strains have prompted the need to develop the next generation of antibacterial coatings. Antimicrobial peptides (AMPs) are showing promise as molecules that can address these issues, especially if used when immobilized as a surface coating. We present a method that explores how surface patterns together with the selective immobilization of an AMP called PuroA (FPVTWRWWKWWKG-NH 2 ) can be used to both kill bacteria and also as a tool to study bacterial attachment mechanisms. Surface patterning is achieved using stabilized self-assembled binary colloidal crystal (BCC) layers, allowing selective PuroA immobilization to carboxylated particles using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide (EDC) hydrochloride/N-hydroxysuccinimide (NHS) coupling chemistry. Covalent immobilization of PuroA was compared with physical adsorption (i.e., without the addition of EDC/NHS). The AMP-functionalized colloids and BCC layers were characterized by X-ray photoelectron spectroscopy, ζ potentials, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surface antimicrobial activity was assessed by viability assays using Escherichia coli. MALDI-TOF MS analysis revealed that although not all of PuroA was successfully covalently immobilized, a relatively low density of PuroA (1.93 × 10 13 molecules/cm 2 and 7.14 × 10 12 molecules/cm 2 for covalent and physical immobilization, respectively) was found to be sufficient at significantly decreasing the viability of E. coli by 70% when compared to that of control samples. The findings provide a proof of concept that BCC layers are a suitable platform for the patterned immobilization of AMPs and the importance of ascertaining the success of small-molecule grafting reactions using surface-MALDI, something that is often assumed to be successful in the field.

  7. Parametric analysis of the growth of colloidal ZnO nanoparticles synthesized in alcoholic medium

    International Nuclear Information System (INIS)

    Fonseca, A. S.; Figueira, P. A.; Pereira, A. S.; Santos, R. J.; Trindade, T.; Nunes, M. I.

    2017-01-01

    The growth kinetics of nanosized ZnO was studied considering the influence of different parameters (mixing degree, temperature, alcohol chain length, reactant concentration and Zn/OH ratios) on the synthesis reaction and modelling the outputs using typical kinetic growth models, which were then evaluated by means of a sensitivity analysis. The Zn/OH ratio, the temperature and the alcohol chain length were found to be essential parameters to control the growth of ZnO nanoparticles, whereas zinc acetate concentration (for Zn/OH = 0.625) and the stirring during the ageing stage were shown to not have significant influence on the particle size growth. This last operational parameter was for the first time investigated for nanoparticles synthesized in 1-pentanol, and it is of outmost importance for the implementation of continuous industrial processes for mass production of nanosized ZnO and energy savings in the process. Concerning the nanoparticle growth modelling, the results show a different pattern from the more commonly accepted diffusion-limited Ostwald ripening process, i.e. the Lifshitz–Slyozov–Wagner (LSW) model. Indeed, this study shows that oriented attachment occurs during the early stages whereas for the later stages the particle growth is well represented by the LSW model. This conclusion contributes to clarify some controversy found in the literature regarding the kinetic model which better represents the ZnO NPs’ growth in alcoholic medium.

  8. Parametric analysis of the growth of colloidal ZnO nanoparticles synthesized in alcoholic medium

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A. S. [National Research Centre for the Working Environment (Denmark); Figueira, P. A.; Pereira, A. S. [Universidade de Aveiro, Departamento de Química—CICECO (Portugal); Santos, R. J. [Universidade do Porto, Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia (Portugal); Trindade, T. [Universidade de Aveiro, Departamento de Química—CICECO (Portugal); Nunes, M. I., E-mail: isanunes@ua.pt [Universidade de Aveiro, Centre for Environmental and Marine Studies (CESAM), Dep. de Ambiente e Ordenamento (Portugal)

    2017-02-15

    The growth kinetics of nanosized ZnO was studied considering the influence of different parameters (mixing degree, temperature, alcohol chain length, reactant concentration and Zn/OH ratios) on the synthesis reaction and modelling the outputs using typical kinetic growth models, which were then evaluated by means of a sensitivity analysis. The Zn/OH ratio, the temperature and the alcohol chain length were found to be essential parameters to control the growth of ZnO nanoparticles, whereas zinc acetate concentration (for Zn/OH = 0.625) and the stirring during the ageing stage were shown to not have significant influence on the particle size growth. This last operational parameter was for the first time investigated for nanoparticles synthesized in 1-pentanol, and it is of outmost importance for the implementation of continuous industrial processes for mass production of nanosized ZnO and energy savings in the process. Concerning the nanoparticle growth modelling, the results show a different pattern from the more commonly accepted diffusion-limited Ostwald ripening process, i.e. the Lifshitz–Slyozov–Wagner (LSW) model. Indeed, this study shows that oriented attachment occurs during the early stages whereas for the later stages the particle growth is well represented by the LSW model. This conclusion contributes to clarify some controversy found in the literature regarding the kinetic model which better represents the ZnO NPs’ growth in alcoholic medium.

  9. Noble-metal nanoparticles produced with colloidal lithography: fabrication, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bocchio, Noelia Laura

    2008-08-15

    In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this

  10. Colloidal Flower-Shaped Iron Oxide Nanoparticles: Synthesis Strategies and Coatings

    DEFF Research Database (Denmark)

    Gavilán, Helena; Kowalski, Anja; Heinke, David

    2017-01-01

    The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. In this work, key synthesis parameters driving the self-assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi-core nano...

  11. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes

    Directory of Open Access Journals (Sweden)

    Farzaneh Ahrari

    2015-01-01

    Full Text Available Background: Metal nanoparticles have been recently applied in dentistry because of their antibacterial properties. This study aimed to evaluate antibacterial effects of colloidal solutions containing zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO 2 and silver (Ag nanoparticles on Streptococcus mutans and Streptococcus sangius and compare the results with those of chlorhexidine and sodium fluoride mouthrinses. Materials and Methods: After adding nanoparticles to a water-based solution, six groups were prepared. Groups I to IV included colloidal solutions containing nanoZnO, nanoCuO, nanoTiO 2 and nanoAg, respectively. Groups V and VI consisted of 2.0% sodium fluoride and 0.2% chlorhexidine mouthwashes, respectively as controls. We used serial dilution method to find minimum inhibitory concentrations (MICs and with subcultures obtained minimum bactericidal concentrations (MBCs of the solutions against S. mutans and S. sangius. The data were analyzed by analysis of variance and Duncan test and P < 0.05 was considered as significant. Results: The sodium fluoride mouthrinse did not show any antibacterial effect. The nanoTiO 2 -containing solution had the lowest MIC against both microorganisms and also displayed the lowest MBC against S. mutans (P < 0.05. The colloidal solutions containing nanoTiO 2 and nanoZnO showed the lowest MBC against S. sangius (P < 0.05. On the other hand, chlorhexidine showed the highest MIC and MBC against both streptococci (P < 0.05. Conclusion: The nanoTiO 2 -containing mouthwash proved to be an effective antimicrobial agent and thus it can be considered as an alternative to chlorhexidine or sodium fluoride mouthrinses in the oral cavity provided the lack of cytotoxic and genotoxic effects on biologic tissues.

  12. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO.

    Science.gov (United States)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-15

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  13. Suppression of suprathermal ions from a colloidal microjet target containing SnO2 nanoparticles by using double laser pulses

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi

    2007-01-01

    We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO 2 ) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9 to 3 keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse

  14. Suppression of suprathermal ions from a colloidal microjet target containing SnO2 nanoparticles by using double laser pulses

    Science.gov (United States)

    Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi

    2007-10-01

    We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO2) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9to3keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse.

  15. Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Liu, Chi-Jen; Yang, Tsung-Yeh; Wang, Chang-Hai; Chien, Chia-Chi; Chen, Shin-Tai; Wang, Cheng-Liang; Leng, Wei-Hua; Hwu, Y.; Lin, Hong-Ming; Lee, Yao-Chang; Cheng, Chia-Liang; Je, J.H.; Margaritondo, G.

    2009-01-01

    Au/TiO 2 nanocomposite particles were synthesized by a method based on intense X-ray irradiation without adding any reducing agent or stabilizer. The nanocomposite exhibits promising photocatalytic and biological properties at physiologically relevant concentration ([Au] = 0.028 mM, [TiO 2 ] = 0.5 mM). The structure and photocatalysis were examined by X-ray diffraction, electron microscopy and ultraviolet-visible spectroscopy demonstrating that gold nanoparticles of 2-5 nm size were successfully deposited on TiO 2 nanoparticle surfaces. The nanocomposite exhibited good colloidal stability within a typical cellular environment and was nontoxic to cancer cell according to evaluations under controlled conditions. The Au/TiO 2 nanoparticles were also found to enhance the photocatalytic efficiency of UV radiation and even more that of X-ray radiation. In vitro studies indicated that the cell-killing effect under X-ray irradiation is more pronounced with the addition of Au/TiO 2 nanoparticles than of bare TiO 2 nanoparticles.

  16. Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chi-Jen; Yang, Tsung-Yeh; Wang, Chang-Hai [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Chien, Chia-Chi [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Department of Engineering Science and System, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chen, Shin-Tai; Wang, Cheng-Liang; Leng, Wei-Hua [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan (China); Department of Engineering Science and System, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Lin, Hong-Ming [Department of Materials Engineering, Tatung University, Taipei 10461, Taiwan (China); Lee, Yao-Chang [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Cheng, Chia-Liang [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Je, J.H. [X-ray Imaging Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Margaritondo, G. [Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2009-09-15

    Au/TiO{sub 2} nanocomposite particles were synthesized by a method based on intense X-ray irradiation without adding any reducing agent or stabilizer. The nanocomposite exhibits promising photocatalytic and biological properties at physiologically relevant concentration ([Au] = 0.028 mM, [TiO{sub 2}] = 0.5 mM). The structure and photocatalysis were examined by X-ray diffraction, electron microscopy and ultraviolet-visible spectroscopy demonstrating that gold nanoparticles of 2-5 nm size were successfully deposited on TiO{sub 2} nanoparticle surfaces. The nanocomposite exhibited good colloidal stability within a typical cellular environment and was nontoxic to cancer cell according to evaluations under controlled conditions. The Au/TiO{sub 2} nanoparticles were also found to enhance the photocatalytic efficiency of UV radiation and even more that of X-ray radiation. In vitro studies indicated that the cell-killing effect under X-ray irradiation is more pronounced with the addition of Au/TiO{sub 2} nanoparticles than of bare TiO{sub 2} nanoparticles.

  17. Feasibility Study on the Use of the Seeding Growth Technique in Producing a Highly Stable Gold Nanoparticle Colloidal System

    Directory of Open Access Journals (Sweden)

    Kim Han Tan

    2015-01-01

    Full Text Available Stable colloidal gold nanoparticles (Au NPs are synthesized successfully using a seeding growth technique. The size of the nanoparticles is determined using transmission electron microscopy (TEM, and it is observed that the size of the nanoparticles ranges from 7 to 30 nm. The TEM images and optical absorption spectra of the Au NPs reveal that the suspension is well dispersed and consistent with the particle size. The feasibility of the seeding growth technique is investigated using Turbiscan Classic MA 2000 screening stability tester. Based on the peak thickness kinetics and mean value kinetics, the backscattered light profiles indicate that the suspension is highly stable without particle sedimentation as well as negligible agglomeration. In addition, the Au NPs are proven to remain stable over a period of 2 months. Particle sedimentation eventually occurs due to the weight of nanoparticles. It is concluded that the seeding growth technique is feasible in synthesizing stable Au NPs. Controlling the stability, size and shape of Au NPs are technologically important because of the strong correlation between these parameters and the optical, electrical, and catalytic properties of the nanoparticles.

  18. Hemocompatible poly(NIPAm-MBA-AMPS) colloidal nanoparticles as carriers of anti-inflammatory cell penetrating peptides.

    Science.gov (United States)

    Bartlett, Rush L; Medow, Matthew R; Panitch, Alyssa; Seal, Brandon

    2012-04-09

    Anionic copolymer systems containing sulfated monomers have great potential for delivery of cationic therapeutics, but N-isopropylacrylamide (NIPAm) 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) copolymer nanoparticles have seen limited characterization to date with regard to physical properties relevant to loading and release of therapeutics. Characterization of polymeric nanoparticles incorporating AMPS showed an increased size and decreased thermodynamic swelling ratios of AMPS containing particles as compared to NIPAm nanoparticles lacking AMPS. Particles with increasing AMPS addition showed an increased propensity for uniformity, intraparticle colloidal stability, and drug loading capacity. Peptide encapsulated in particles was shielded from peptide degradation in serum. Particles were shown not impede blood coagulation or to cause hemolysis. This study has demonstrated that AMPS incorporation into traditional NIPAm nanoparticles presents a tunable parameter for changing particle LCST, size, swelling ratio, ζ potential, and cationic peptide loading potential. This one-pot synthesis results in a thermosensitive anionic nanoparticle system that is a potentially useful platform to deliver cationic cell penetrating peptides.

  19. Topology assisted self-organization of colloidal nanoparticles: application to 2D large-scale nanomastering

    Directory of Open Access Journals (Sweden)

    Hind Kadiri

    2014-08-01

    Full Text Available Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ posts, on the self-organization of polystyrene beads (PS dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching.

  20. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    International Nuclear Information System (INIS)

    Ye, L.; Pearson, T.; Crawford, T. M.; Qi, B.; Cordeau, Y.; Mefford, O. T.

    2014-01-01

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability

  1. Tangential flow ultrafiltration: a "green" method for the size selection and concentration of colloidal silver nanoparticles.

    Science.gov (United States)

    Anders, Catherine B; Baker, Joshua D; Stahler, Adam C; Williams, Austin J; Sisco, Jackie N; Trefry, John C; Wooley, Dawn P; Pavel Sizemore, Ioana E

    2012-10-04

    Nowadays, AgNPs are extensively used in the manufacture of consumer products,(1) water disinfectants,(2) therapeutics,(1, 3) and biomedical devices(4) due to their powerful antimicrobial properties.(3-6) These nanoparticle applications are strongly influenced by the AgNP size and aggregation state. Many challenges exist in the controlled fabrication(7) and size-based isolation(4,8) of unfunctionalized, homogenous AgNPs that are free from chemically aggressive capping/stabilizing agents or organic solvents.(7-13) Limitations emerge from the toxicity of reagents, high costs or reduced efficiency of the AgNP synthesis or isolation methods (e.g., centrifugation, size-dependent solubility, size-exclusion chromatography, etc.).(10,14-18) To overcome this, we recently showed that TFU permits greater control over the size, concentration and aggregation state of Creighton AgNPs (300 ml of 15.3 μg ml(-1) down to 10 ml of 198.7 μg ml(-1)) than conventional methods of isolation such as ultracentrifugation.(19) TFU is a recirculation method commonly used for the weight-based isolation of proteins, viruses and cells.(20,21) Briefly, the liquid sample is passed through a series of hollow fiber membranes with pore size ranging from 1,000 kD to 10 kD. Smaller suspended or dissolved constituents in the sample will pass through the porous barrier together with the solvent (filtrate), while the larger constituents are retained (retentate). TFU may be considered a "green" method as it neither damages the sample nor requires additional solvent to eliminate toxic excess reagents and byproducts. Furthermore, TFU may be applied to a large variety of nanoparticles as both hydrophobic and hydrophilic filters are available. The two main objectives of this study were: 1) to illustrate the experimental aspects of the TFU approach through an invited video experience and 2) to demonstrate the feasibility of the TFU method for larger volumes of colloidal nanoparticles and smaller volumes of

  2. Study of fungicidal properties of colloidal silver nanoparticles (AgNPs on trout egg pathogen, Saprolegnia sp.

    Directory of Open Access Journals (Sweden)

    Seyed Ali Johari

    2015-05-01

    Full Text Available Silver nanoparticles (AgNPs are known to have bactericidal and fungicidal effects. Since, there is few information available on the interaction of colloidal nanosilver with fish pathogens. Hence, the current study investigated the effects of colloidal AgNPs on the in vitro growth of the fish pathogen Saprolegnia sp.. Before the experiments, various important properties of AgNPs were well-characterized. The antifungal activity of AgNPs was then evaluated by determining the minimum inhibitory concentrations (MICs using two-fold serial dilutions of colloidal nanosilver in a glucose yeast extract agar at 22ºC. The growth of Saprolegnia sp. on the AgNPs agar treatments was compared to that of nanosilver-free agar as controls. The results showed that AgNPs have an inhibitory effect on the in vitro growth of the tested fungi. The MIC of AgNPs for Saprolegnia sp. was calculated at 1800 mg/L, which is equal to 0.18 percent. It seems that AgNPs could be a proper replacement for teratogenic and toxic agents, such as malachite green. In addition, the indirect use of AgNPs could be a useful method for providing new antifungal activity in aquaculture systems.

  3. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  4. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  5. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  6. Raman scattering and band-gap variations of Al-doped ZnO nanoparticles synthesized by a chemical colloid process

    International Nuclear Information System (INIS)

    Lo, Shih-Shou; Huang, Dison; Tu, Chun Hsiang; Hou, Chia-Hung; Chen, Chii-Chang

    2009-01-01

    This study synthesizes Al-doped ZnO (AZO) nanoparticles using a chemical colloid process. Raman scattering analysis shows that Al doping increases the lattice defects and induces Raman vibration modes of 651 cm -1 . The Raman shift of the active mode E 2 (high) of AZO nanoparticles shows the presence and increase in the stress in nanoparticles when the Al dopant concentration increases. Room-temperature photoluminescence (RT-PL) spectra of synthesized AZO nanoparticles exhibit strong UV emissions near the band edges. The RT-PL peak shifts to a higher photon energy region as the Al concentration increases, indicating a broadening of the band gap.

  7. Assembly of nanoparticles on patterned surfaces by noncovalent interachtions

    NARCIS (Netherlands)

    Maury, P.A.; Reinhoudt, David; Huskens, Jurriaan

    2008-01-01

    This article reviews the recent developments in the assembly of nanoparticles into patterned arrays. An introduction is given on nanoparticles assembly and its applications. This is followed by a discussion on recent papers, seen from the perspective of the interaction between particle and

  8. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    International Nuclear Information System (INIS)

    Karasenkov, Y; Frolov, G; Gusev, A; Kuznetsov, D; Leont'ev, V; Pogorelsky, I; Latuta, N

    2015-01-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse – condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO 2 ), iron oxide (Fe 2 O 3 ), tantalum oxide (TaO), vanadium oxide (VO 2 ), cobalt oxide (CoO), tantalum dioxide TaO 2 , zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe 2 O 3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity. (paper)

  9. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    Science.gov (United States)

    Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.

    2015-11-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.

  10. Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing.

    Science.gov (United States)

    Montazer, Majid; Alimohammadi, Farbod; Shamei, Ali; Rahimi, Mohammad Karim

    2012-01-01

    Colloidal nano silver was applied on the surface of cotton fabric and stabilized using 1,2,3,4-butanetetracarboxylic acid (BTCA). The two properties of antimicrobial activity and resistance against creasing were imparted to the samples of fabric as a result of the treatment with silver nano colloid and BTCA. The antimicrobial property of samples was evaluated using two pathogenic bacteria including Escherichia coli and Staphylococcus aureus as outstanding barometers in this field. The durability of applied nanoparticles, color variation, wettability and wrinkle recovery angle of the treated samples were investigated employing related credible standards. The presence of nano silver particles on the surface of treated cotton fabric was proved using EDS spectrum as well as the SEM images. Furthermore, the creation of cross-links was confirmed by the means of both ATR-FTIR and Raman spectra. In conclusion, it was observed that BTCA plays a prominent role in stabilizing silver nanoparticle. Besides, Wettability and winkle recovery angle of finished samples decreased and increased, respectively. In addition, it is noteworthy that no obvious color variation was observed. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    Science.gov (United States)

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  12. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    Science.gov (United States)

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  13. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO

    International Nuclear Information System (INIS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Elbaum, Danek; Koper, Kamil; Stępień, Piotr

    2013-01-01

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles’ green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell. (paper)

  14. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    International Nuclear Information System (INIS)

    Mahdieh, Mohammad Hossein; Fattahi, Behzad

    2015-01-01

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution

  15. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir; Fattahi, Behzad

    2015-02-28

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  16. Prediction of Nanoparticle and Colloid Attachment on Unfavorable Mineral Surfaces Using Representative Discrete Heterogeneity.

    Science.gov (United States)

    Trauscht, Jacob; Pazmino, Eddy; Johnson, William P

    2015-09-01

    Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing

  17. Measurement of the Four-Point Susceptibility of an Out-of-Equilibrium Colloidal Solution of Nanoparticles Using Time-Resolved Light Scattering

    DEFF Research Database (Denmark)

    Maggi, Claudio; Di Leonardo, Ricardo; ruocco, giancarlo

    2012-01-01

    The spatial fluctuations of the dynamics of a colloidal system composed of nanoparticles are probed by a novel experimental setup, which combines homodyne and heterodyne dynamic light scattering focused onto a micron-sized volume via a microscope objective. The technique is used to measure the four-point...

  18. Facile preparation of ZIF-8@Pd-CSS sandwich-type microspheres via in situ growth of ZIF-8 shells over Pd-loaded colloidal carbon spheres with aggregation-resistant and leach-proof properties for the Pd nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tong; Lin, Lu [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Zhang, Xiongfu, E-mail: xfzhang@dlut.edu.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Liu, Haiou; Yan, Xinjuan [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 (China); Liu, Zhang; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR (China)

    2015-10-01

    Graphical abstract: - Highlights: • Uniform-sized colloidal carbon spheres were synthesized from low-cost glucose. • Pd nanoparticles were loaded onto the carbon spheres via self-reduction method. • A layer of ZIF-8 shell was in situ grown over the Pd-loaded carbon spheres. • The ZIF-8@Pd-CCS showed leach-proof and aggregation-resistant properties of Pd. - Abstract: Aiming to enhance the stability of noble metal nanoparticles that are anchored on the surface of colloidal carbon spheres (CCSs), we designed and prepared a new kind of sandwich-structured ZIF-8@Pd-CCS microsphere. Typically, uniform CCSs were first synthesized by the aromatization and carbonization of glucose under hydrothermal conditions. Subsequently, noble metal nanoparticles, herein Pd nanoparticles, were attached to the surface of CCSs via self-reduction route, followed by in situ assembly of a thin layer of ZIF-8 over the Pd nanoparticles to form the sandwich-type ZIF-8@Pd-CCS microspheres. X-ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FTIR) spectra confirmed the presence of crystalline ZIF-8, while TEM analysis revealed that the ZIF-8 shells were closely bound to the Pd-loaded CCSs. The shell thickness could be tuned by varying the ZIF-8 assembly cycles. Further, liquid-phase hydrogenation of 1-hexene as the probe reaction was carried out over the ZIF-8@Pd-CCS microspheres and results showed that the prepared microspheres exhibited excellent agglomeration-resistant and leach-proof properties for the Pd nanoparticles, thus leading to the good reusability of the ZIF-8@Pd-CCS microspheres.

  19. Natural colloids are the dominant factor in the sedimentation of nanoparticles

    NARCIS (Netherlands)

    Quik, J.T.K.; Cohen Stuart, M.A.; Wouterse, M.; Peijnenburg, W.; Hendriks, A.J.; Meent, van de D.

    2012-01-01

    Estimating the environmental exposure to manufactured nanomaterials is part of risk assessment. Because nanoparticles aggregate with each other (homoaggregation) and with other particles (heteroaggregation), the main route of the removal of most nanoparticles from water is aggregation, followed by

  20. Evaluation of Colloidal Stability and Ecotoxicity of Metal-based Nanoparticles in the Aquatic and Terrestrial Systems

    Science.gov (United States)

    Pokhrel, Lok Raj

    Intrinsic to the many nano-enabled products are atomic-size multifunctional engineered nanomaterials, which upon release contaminate the environments, raising considerable health and safety concerns. This Ph.D. dissertation is designed to investigate (i) whether metals or oxide nanoparticles are more toxic than ions, and if MetPLATE(TM) bioassay is applicable as a rapid nanotoxicity screening tool; (ii) how variable water chemistry (dissolved organic carbon (DOC), pH, and hardness) and organic compounds (cysteine, humic acid, and trolox) modulate colloidal stability, ion release, and aquatic toxicity of silver nanoparticles (AgNP); and (iii) the developmental responses of crop plants exposed to Ag- or ZnO- (zinc oxide) nanoparticles. Results suggest that the MetPLATE can be considered a high-throughput screening tool for rapid nanotoxicity evaluation. Detectable changes in the colloidal diameter, surface charge, and plasmonic resonance revealed modulating effects of variable water chemistry and organic ligands on the particle stability, dissolution, and toxicity of AgNPs against Escherichia coli or Daphnia magna. Silver dissolution increased as a function of DOC concentrations but decreased with increasing hardness, pH, cysteine, or trolox levels. Notably, the dissociated Ag+ was inadequate to explain AgNP toxicity, and that the combined effect of AgNPs and dissolved Ag+ under each ligand treatment was lower than of AgNO 3. Significant attenuation by trolox signifies an oxidative stress-mediated AgNP toxicity; its inability to attenuate AgNO3 toxicity, however, negates oxidative stress as Ag+ toxicity mechanism, and that cysteine could effectively quench free Ag+ to alleviate AgNO 3 toxicity in D. magna. Surprisingly, DOC-AgNPs complex that apparently formed at higher DOC levels might have led daphnids filter-feed on aggregates, potentially elevating internal dose, and thus higher mortality. Maize root anatomy showed differential alterations upon exposure to Ag

  1. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy

    Science.gov (United States)

    Misra, Santosh K.; Mukherjee, Prabuddha; Chang, Huei-Huei; Tiwari, Saumya; Gryka, Mark; Bhargava, Rohit; Pan, Dipanjan

    2016-07-01

    Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C3-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C3-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C3 with phospholipid was used to generate C3-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.

  2. pH Triggered Recovery and Reuse of Thiolated Poly(acrylic acid) Functionalized Gold Nanoparticles with Applications in Colloidal Catalysis.

    Science.gov (United States)

    Ansar, Siyam M; Fellows, Benjamin; Mispireta, Patrick; Mefford, O Thompson; Kitchens, Christopher L

    2017-08-08

    Thiolated poly(acrylic acid) (PAA-SH) functionalized gold nanoparticles were explored as a colloidal catalyst with potential application as a recoverable catalyst where the PAA provides pH-responsive dispersibility and phase transfer capability between aqueous and organic media. This system demonstrates complete nanoparticle recovery and redispersion over multiple reaction cycles without changes in nanoparticle morphology or reduction in conversion. The catalytic activity (rate constant) was reduced in subsequent reactions when recovery by aggregation was employed, despite unobservable changes in morphology or dispersibility. When colloidal catalyst recovery employed a pH induced phase transfer between two immiscible solvents, the catalytic activity of the recovered nanoparticles was unchanged over four cycles, maintaining the original rate constant and 100% conversion. The ability to recover and reuse colloidal catalysts by aggregation/redispersion and phase transfer methods that occur at low and high pH, respectively, could be used for different gold nanoparticle catalyzed reactions that occur at different pH conditions.

  3. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  4. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction.

    Science.gov (United States)

    Yu, Dabin; Yam, Vivian Wing-Wah

    2005-03-31

    Small colloidal silver spheres (diameter synthesis process. Adjustment of the synthesis parameters, in particular the concentrations of HTAB and [Ag(NH3)2]+, led to an obvious shape evolution of silver nanoparticles, thus resulting in the shape-selective formation of the silver nanoparticles. The monodisperse nanocubes with a well-defined crystallographical structure (a single crystal bounded by six {200} facets) have a strong tendency to assemble into two-dimensional arrays on substrates. The nanowires with uniform diameter usually existed in the form of two-dimensional alignments. The findings suggested that hydrothermal-induced assembly of small silver colloidal particles should be a convenient and effective approach to the preparation of various silver nanoparticles.

  5. Hydrophilic luminescent silicon nanoparticles in steric colloidal solutions: their size, agglomeration and toxicity

    Czech Academy of Sciences Publication Activity Database

    Herynková, Kateřina; Šimáková, Petra; Cibulka, Ondřej; Fučíková, Anna; Kalbáčová, M.H.

    2017-01-01

    Roč. 14, č. 12 (2017), s. 1-4, č. článku 1700195. ISSN 1862-6351 Grant - others:AV ČR(CZ) DAAD-16-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : silicon nanocrystals * colloidal solutions * steric stabilization * cytotoxicity Subject RIV: BO - Biophysics OBOR OECD: Biophysics

  6. Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles.

    Science.gov (United States)

    Wang, Yong-Hui; Yuan, Yang; Yang, Xiao-Quan; Wang, Jin-Mei; Guo, Jian; Lin, Yuan

    2016-07-01

    The aims of this work were to construct corn protein hydrolysate (CPH)-based curcumin nanoparticles (Cur NPs) and to compare the colloidal stability, bioaccessibility and antioxidant activity of the Cur NPs stabilized CPH and sodium caseinate (NaCas) respectively. The results indicated that Cur solubility could be considerably improved after the Cur NPs fabrication. The spectroscopy results demonstrated that the solubilization of Cur should be attributed to its complexation with CPH or NaCas. The Cur NPs exhibited good colloidal stability after 1 week's storage but showed smaller (40 nm) size in CPH than in NaCas (100 nm). After lyophilization, the Cur NPs powders showed good rehydration properties and chemical stability, and compared with NaCas, the size of Cur NPs stabilized by CPH was still smaller. Additionally, the Cur NPs exhibited higher chemical stability against the temperature compared with free Cur, and the CPH could protect Cur from degradation more efficiently. Comparing with NaCas, the Cur NPs stabilized by CPH exhibited better bioaccessibility and antioxidant activity. This study demonstrated that CPH may be better than NaCas in Cur NPs fabrication and it opens up the possibility of using hydrophobic protein hydrolysate to construct the NPs delivery system.

  7. Enhanced Colloidal Stability of CeO2 Nanoparticles by Ferrous Ions: Adsorption, Redox Reaction, and Surface Precipitation.

    Science.gov (United States)

    Liu, Xuyang; Ray, Jessica R; Neil, Chelsea W; Li, Qingyun; Jun, Young-Shin

    2015-05-05

    Due to the toxicity of cerium oxide (CeO2) nanoparticles (NPs), a better understanding of the redox reaction-induced surface property changes of CeO2 NPs and their transport in natural and engineered aqueous systems is needed. This study investigates the impact of redox reactions with ferrous ions (Fe2+) on the colloidal stability of CeO2 NPs. We demonstrated that under anaerobic conditions, suspended CeO2 NPs in a 3 mM FeCl2 solution at pH 4.8 were much more stable against sedimentation than those in the absence of Fe2+. Redox reactions between CeO2 NPs and Fe2+ lead to the formation of 6-line ferrihydrite on the CeO2 surfaces, which enhanced the colloidal stability by increasing the zeta potential and hydrophilicity of CeO2 NPs. These redox reactions can affect the toxicity of CeO2 NPs by increasing cerium dissolution, and by creating new Fe(III) (hydr)oxide reactive surface layers. Thus, these findings have significant implications for elucidating the phase transformation and transport of redox reactive NPs in the environment.

  8. Chronic effect of waterborne colloidal silver nanoparticles on plasma biochemistry and hematology of rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Seyed Ali Johari

    2016-05-01

    Full Text Available Objective: To investigate the possible effects of silver nanoparticles (AgNPs on some blood and plasma indices of rainbow trout (Oncorhynchus mykiss. Methods: Hence, fish were exposed for 21 days to sub-lethal concentrations of colloidal AgNPs and blood parameters including erythrocyte size and hematocrit, plasma parameters including cholinesterase, cortisol, sodium, chloride, and potassium, and also silver concentration in plasma were measured following the 11th and 21st days of exposure. Results: According to the results of present study, higher concentrations of AgNPs had more significant effects on plasma biochemistry and hematology of trout. The greatest impacts were decline of chloride ions and increase of cortisol and cholinesterase. Also fish exposed to AgNPs significantly increased silver concentration in the plasma. Conclusions: Further studies are needed to identify appropriate blood biomarkers following fish exposed to nanomaterials, especially AgNPs.

  9. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, Virginia [Hospital Universitario La Paz-IdiPAZ (Spain); Yaguee, Clara; Arruebo, Manuel, E-mail: arruebom@unizar.es [University of Zaragoza, Aragon Nanoscience Institute (INA), C/Mariano Esquillor, Edif. I-D (Spain); Martin-Saavedra, Francisco M. [Hospital Universitario La Paz-IdiPAZ (Spain); Santamaria, Jesus [CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ (Spain)

    2011-09-15

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle-plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  10. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    OpenAIRE

    Abedini, Alam; Daud, Abdul Razak; Abdul Hamid, Muhammad Azmi; Kamil Othman, Norinsan; Saion, Elias

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation ...

  11. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates

    International Nuclear Information System (INIS)

    Bollani, M; Bietti, S; Sanguinetti, S; Frigeri, C; Chrastina, D; Reyes, K; Smereka, P; Millunchick, J M; Vanacore, G M; Tagliaferri, A; Burghammer, M

    2014-01-01

    We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations. (papers)

  12. Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges

    International Nuclear Information System (INIS)

    Danilov, P A; Zayarnyi, D A; Ionin, A A; Kudryashov, S I; Makarov, S V; Rudenko, A A; Saraeva, I N; Yurovskikh, V I; Lednev, V N; Pershin, S M

    2015-01-01

    The specific features of photofragmentation of sols of gold nanoparticles under focused femtosecond laser pulses in IR (1030 nm) and visible (515 nm) ranges is experimentally investigated. A high photofragmentation efficiency of nanoparticles in the waist of a pulsed laser beam in the visible range (at moderate radiation scattering) is demonstrated; this efficiency is related to the excitation of plasmon resonance in nanoparticles on the blue shoulder of its spectrum, in contrast to the regime of very weak photofragmentation in an IR-laser field of comparable intensity. Possible mechanisms of femtosecond laser photofragmentation of gold nanoparticles are discussed. (extreme light fields and their applications)

  13. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    Science.gov (United States)

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  14. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline [University of Puerto Rico, Department of Chemical Engineering (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2013-08-15

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle-cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine-silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33-45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from -50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle-cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.

  15. The contribution of organic and mineral colloidal nanoparticles to element transport in a podzol soil.

    NARCIS (Netherlands)

    Regelink, I.C.; Weng, L.P.; Riemsdijk, van W.H.

    2011-01-01

    The aim of this work is to analyze the size-distribution and composition of nanoparticles in a water-extract of a podzol B horizon. AsFlowFFF coupled to ICP–MS and a UV/VIS detector was used for particle fractionation and simultaneous measurement of the composition of the nanoparticles. Detected

  16. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles

    KAUST Repository

    Debnath, Ratan; Tang, Jiang; Barkhouse, D. Aaron; Wang, Xihua; Pattantyus-Abraham, Andras G.; Brzozowski, Lukasz; Levina, Larissa; Sargent, Edward H.

    2010-01-01

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm2 that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere. © 2010 American Chemical Society.

  17. Colloidal synthesis and characterization of Bi2S3 nanoparticles for photovoltaic applications

    International Nuclear Information System (INIS)

    Piras, R; Aresti, M; Saba, M; Marongiu, D; Mula, G; Quochi, F; Mura, A; Bongiovanni, G; Cannas, C; Mureddu, M; Ardu, A; Ennas, G; Musinu, A; Calzia, V; Mattoni, A

    2014-01-01

    Bismuth sulfide is a promising n-type semiconductor for solar energy conversion. We have explored the colloidal synthesis of Bi 2 S 3 nanocrystals, with the aim of employing them in the fabrication of solution-processable solar cells and to replace toxic heavy metals chalcogenides like PbS or CdS, that are currently employed in such devices. We compare different methods to obtain Bi 2 S 3 colloidal quantum dots, including the use of environmentally benign reactants, through organometallic synthesis. Different sizes and shapes were obtained according to the synthesis parameters and the growth process has been rationalized by comparing the predicted morphology with systematic physical-chemistry characterization of nanocrystals by X-ray diffraction, FT-IR spectroscopy, Transmission Electron Microscopy (TEM)

  18. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles

    KAUST Repository

    Debnath, Ratan

    2010-05-05

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm2 that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere. © 2010 American Chemical Society.

  19. On the role of the colloidal stability of mesoporous silica nanoparticles as gene delivery vectors

    International Nuclear Information System (INIS)

    Cebrián, Virginia; Yagüe, Clara; Arruebo, Manuel; Martín-Saavedra, Francisco M.; Santamaría, Jesus; Vilaboa, Nuria

    2011-01-01

    Mesoporous silica nanoparticles have been synthesized and functionalized with four different types of molecules containing amino groups, i.e., with primary amines only, with quaternary amines, with quaternized cyclic amines, or with polyethylenimine (PEI), which is formed by primary, secondary, and tertiary amines. These nanoparticles were then incubated with reporter plasmids and the ability of the resulting complexes to transfect human cells was studied. Only nanoparticles functionalized with PEI were efficient for transfection. The agglomeration behavior and the electrokinetic potential of the nanoparticle–plasmid complexes have been studied, as well as their cell internalization behavior using a fluorescent-labeled plasmid that allows its monitorization by confocal microscopy. The results indicate that the efficiency of PEI-functionalized nanoparticles for transfection resides to some extent in the different characteristics imparted to the nanoparticles regarding agglomeration and surface charge behavior.

  20. One-pot synthesis of stable colloidal solutions of MFe{sub 2}O{sub 4} nanoparticles using oleylamine as solvent and stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Mirabet, Leonardo [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Solano, Eduardo, E-mail: eduardo.solano@uab.cat [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Martínez-Julián, Fernando; Guzmán, Roger [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Arbiol, Jordi [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona (Spain); Puig, Teresa; Obradors, Xavier; Pomar, Alberto [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Yáñez, Ramón; Ros, Josep [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Ricart, Susagna [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain)

    2013-03-15

    Highlights: ► One-pot synthesis of ferrite magnetic nanoparticles (<10 nm) in non-polar media. ► Nanoparticles present high monocrystal quality and monodispersion. ► Superparamagnetic behavior at room temperature. ► Nanoparticles transfer to polar media via ligand exchange. - Abstract: An easy, efficient, reproducible and scalable one-pot synthetic methodology to obtain magnetic spinel ferrite nanoparticles has been developed. This approach is based on one-pot thermal decomposition of Fe(acac){sub 3} and M(acac){sub 2} (M = Co, Mn, Cu and Zn) in oleylamine, which also acts as a capping ligand, by producing stable colloidal dispersions of nanoparticles in non-polar solvents. The properties of the nanoparticles have been studied via different techniques, such as transmission electron microscopy, which shows that nanoparticles are monocrystallines and a narrow dispersion in size; magnetic analyses have demonstrated that the resulting ferrite nanoparticles show high saturation values and superparamagnetic behavior at room temperature; X-ray diffraction has also been performed, and it confirms that the synthesized nanoparticles have a spinel structure. Complementarily, ligand exchange has been also carried out in order to produce dispersions of the synthesized nanoparticles in polar media.

  1. The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Hromádková, Jiřina; Kovářová, Jana; Kalendová, A.

    2010-01-01

    Roč. 59, č. 7 (2010), s. 875-878 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR KAN200520704; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * colloids * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.056, year: 2010

  2. Fabrication of palladium nanoparticles immobilized on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yan; Chen, Rizhi [Nanjing Tech University, Nanjing (China)

    2015-09-15

    An efficient and reusable catalyst was developed by depositing palladium nanoparticles on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method. The as-prepared Pdloaded ceramic membrane support was characterized by XRD, SEM, EDS, TEM, XPS, ICP, and its catalytic properties were investigated in the liquid-phase p-nitrophenol hydrogenation. A comparative study was also made with the palladium nanoparticles deposited on an amine-functionalized ceramic membrane support by an impregnation-reduction method. The palladium nanoparticles could be homogeneously immobilized on the ceramic membrane support surface, and exhibited excellent catalytic performance in the p-nitrophenol hydrogenation. The catalytic activity of the Pdloaded ceramic membrane support prepared by the nanoparticulate colloidal impregnation method increased by 16.6% compared to that of impregnation-reduction method. In the nanoparticulate colloidal impregnation method, palladium nanoparticles were presynthesized, higher loading of Pd(0) could be obtained, resulting in better catalytic activity. The as-prepared Pd-loaded ceramic membrane support could be easily reused for several cycles without appreciable degradation of catalytic activity.

  3. Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D.; Aswal, V. K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-04-28

    The evolution of the interaction and the resultant structure in the mixed system of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactant decaethylene glycol monododecylether (C12E10), undergoing phase separation, have been studied using small-angle neutron scattering and dynamic light scattering. The measurements have been carried out for a fixed concentration of nanoparticle (1 wt. %) with varying concentration of surfactant (0 to 1 wt. %), in the absence and presence of an electrolyte. It is found that the micelles of non-ionic surfactant adsorb on the nanoparticle in the absence of electrolyte (form stable system), whereas these micelles become non-adsorbing in the presence of electrolyte (show phase separation). The phase separation arises because of C12E10 micelles, causing depletion interaction between nanoparticles and leading to their aggregation. The interaction is modeled by double Yukawa potential accounting for attractive depletion as well as repulsive electrostatic forces. Both the interactions (attraction and repulsion) are found to be of long-range. The nanoparticle aggregation (phase separation) is governed by the increase in the magnitude and the range of the depletion attraction with the increase in the surfactant concentration. The nanoparticle aggregates formed are quite large in size (order of micron) and are characterized by the surface fractal having simple cubic packing of nanoparticles within the aggregates.

  4. Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Tang, Jing; Aldalbahi, Ali; Torad, Nagy L; Yamauchi, Yusuke

    2015-04-20

    A new dual soft-template system comprising the asymmetric triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS-b-P2VP-b-PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA(+) ions via negatively charged hydrolyzed silica species. Thus, dual soft-templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces.

    Science.gov (United States)

    Oras, Sven; Vlassov, Sergei; Berholts, Marta; Lõhmus, Rünno; Mougin, Karine

    2018-01-01

    Adhesion forces between functionalized gold colloidal nanoparticles (Au NPs) and scanning probe microscope silicon tips were experimentally investigated by atomic force microscopy (AFM) equipped with PeakForce QNM (Quantitative Nanoscale Mechanics) module. Au NPs were synthesized by a seed-mediated process and then functionalized with thiols containing different functional groups: amino, hydroxy, methoxy, carboxy, methyl, and thiol. Adhesion measurements showed strong differences between NPs and silicon tip depending on the nature of the tail functional group. The dependence of the adhesion on ligand density for different thiols with identical functional tail-group was also demonstrated. The calculated contribution of the van der Waals (vdW) forces between particles was in good agreement with experimentally measured adhesive values. In addition, the adhesion forces were evaluated between flat Au films functionalized with the same molecular components and silicon tips to exclude the effect of particle shape on the adhesion values. Although adhesion values on flat substrates were higher than on their nanoparticle counterparts, the dependance on functional groups remained the same.

  6. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline; Rinaldi, Carlos

    2013-01-01

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions

  7. Radio-colloid liver scintigraphy : patterns of findings and its importance in present perspect

    International Nuclear Information System (INIS)

    Rahman, M.H.; Dey, S.K.; Sobhan, S.

    2004-01-01

    Total 81 patients those have undergone radio-colloid (Technetium-99m Tin-colloid) liver scintigraphy in the Centre for Nuclear Medicine and Ultrasound, Faridpur were retrospectively studied and their respective ultrasound report were correlated. The patients showing normal liver scan acquired top of the list followed by single space occupying lesion (SOL), chronic liver disease (CLD) with or without SOL and multiple SOL in liver. The fact behind relatively more normal scan is that, scan was recommended while doing ultra sonogram to exclude if any focal lesion or early CLD which was not possible by ultrasound imaging. Though demand for radiocolloid liver scan is decreasing due to presence of CT or MRI imaging in advanced world, the combined ultrasound and radio-colloid liver scintigraphy is still very useful to detect focal and diffuse liver diseases in countries like ours. (author) 1 tab., 11 refs

  8. Colloidal templating : a route towards controlled synthesis of functional polymeric nanoparticles

    NARCIS (Netherlands)

    Ali, S.I.

    2010-01-01

    Template-directed synthesis of polymeric nanoparticles offers better control over particle morphology, shape, structure, composition and properties compare to the conventional emulsion polymerization routes. For the production of anisotropic polymer-clay composite latex particles and polymeric

  9. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.; Michalak, William D.; Baker, L. Robert; An, Kwangjin; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2012-01-01

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous

  10. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  11. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink

    KAUST Repository

    Fischer, Armin H.; Rollny, Lisa R.; Pan, Jun; Carey, Graham H.; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Kim, Jinyoung; Bakr, Osman; Sargent, E. H.

    2013-01-01

    We develop a photovoltaic colloidal quantum dot ink that allows for lossless, single-step coating of large areas in a manufacturing-compatible process. Our materials strategy involves a solution-phase ligand exchange to transport compatible linkers that yield 1-thioglycerol-capped PbS quantum dots in dimethyl sulfoxide with a photoluminescence quantum yield of 24%. A proof-of-principle solar cell made from the ink exhibits 2.1% power conversion efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink

    KAUST Repository

    Fischer, Armin H.

    2013-08-12

    We develop a photovoltaic colloidal quantum dot ink that allows for lossless, single-step coating of large areas in a manufacturing-compatible process. Our materials strategy involves a solution-phase ligand exchange to transport compatible linkers that yield 1-thioglycerol-capped PbS quantum dots in dimethyl sulfoxide with a photoluminescence quantum yield of 24%. A proof-of-principle solar cell made from the ink exhibits 2.1% power conversion efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bio-inactivation of human malignant cells through highly responsive diluted colloidal suspension of functionalized magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Roberta V. [Federal Center of Technological Education of Minas Gerais, Department of Materials (Brazil); Silva-Caldeira, Priscila P. [Federal Center of Technological Education of Minas Gerais, Department of Chemistry (Brazil); Pereira-Maia, Elene C.; Fabris, José D.; Cavalcante, Luis Carlos D. [Federal University of Minas Gerais (UFMG), Department of Chemistry – ICEx (Brazil); Ardisson, José D. [Nuclear Technology Development Center (CDTN) (Brazil); Domingues, Rosana Z., E-mail: rosanazd@yahoo.com.br, E-mail: rosanazd@ufmg.br [Federal University of Minas Gerais (UFMG), Department of Chemistry – ICEx (Brazil)

    2016-04-15

    Magnetic fluids, more specifically aqueous colloidal suspensions containing certain magnetic nanoparticles (MNPs), have recently been gaining special interest due to their potential use in clinical treatments of cancerous formations in mammalians. The technological application arises mainly from their hyperthermic behavior, which means that the nanoparticles dissipate heat upon being exposed to an alternating magnetic field (AMF). If the temperature is raised to slightly above 43 °C, cancer cells are functionally inactivated or killed; however, normal cells tend to survive under those same conditions, entirely maintaining their bioactivity. Recent in vitro studies have revealed that under simultaneous exposure to an AMF and magnetic nanoparticles, certain lines of cancer cells are bio-inactivated even without experiencing a significant temperature increase. This non-thermal effect is cell specific, indicating that MNPs, under alternating magnetic fields, may effectively kill cancer cells under conditions that were previously thought to be implausible, considering that the temperature does not increase more than 5 °C, which is also true in cases for which the concentration of MNPs is too low. To experimentally test for this effect, this study focused on the feasibility of inducing K562 cell death using an AMF and aqueous suspensions containing very low concentrations of MNPs. The assay was designed for a ferrofluid containing magnetite nanoparticles, which were obtained through the co-precipitation method and were functionalized with citric acid; the particles had an average diameter of 10 ± 2 nm and a mean hydrodynamic diameter of approximately 40 nm. Experiments were first performed to test for the ability of the ferrofluid to release heat under an AMF. The results show that for concentrations ranging from 2.5 to 1.0 × 10{sup 3} mg L{sup −1}, the maximum temperature increase was actually less than 2 °C. However, the in vitro test results from K

  14. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R.; Garcí a de Arquer, F. Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required

  15. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Macková, Hana [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine); Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich [R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 45 Vasylkivska St., 03022 Kiev (Ukraine); Kuzmenko, Oleksandr Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine)

    2015-04-15

    Maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe{sub 2}O{sub 3} nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe{sub 2}O{sub 3} nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe{sub 2}O{sub 4} particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed.

  16. The irradiation influence on the properties of silver sulfide (Ag2S) colloidal nanoparticles

    Science.gov (United States)

    Rempel, S. V.; Kuznetsova, Yu. V.; Gerasimov, E. Yu.; Rempel', A. A.

    2017-08-01

    The aqueous solutions of different stability containing silver sulfide (Ag2S) nanoparticles are studied. The stable, transparent, and turbid solutions have been subjected to daylight for 7 months, to ultraviolet and laser irradiation, as well as to an electron beam. Solar radiation is found to favor the Ag2S reduction to Ag and/or the formation of Ag2S/Ag hybrid nanoparticles in the solution. At a high amount of hybrid nanoparticles, the exciton-plasmon interaction causes asymmetry in the absorption spectra. The exposure of Ag2S particles precipitated from the solution with the electron beam leads to the reversible growth of Ag threads. The possible exciton-plasmon interplay mechanisms in Ag2S/Ag hybrid nanoparticles are considered. The physical mechanisms of the changing Ag2S stoichiometry, the formation of metallic Ag and Ag2S/Ag hybrid nanoparticles are the generation of hot carriers and the energy transfer (exciton-plasmon interaction) in a metal-semiconductor hybrid nanosystem are elucidated, as well.

  17. Growth and optical characterization of colloidal CdTe nanoparticles capped by a bifunctional molecule

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-sadek, M.S., E-mail: el_sadek_99@email.co [Nanomaterial Laboratory, Physics Department, Faculty of Science, South Valley University, Qena-83523 (Egypt); Crystal Growth Centre, Anna University Chennai, Chennai-600025 (India); Moorthy Babu, S. [Crystal Growth Centre, Anna University Chennai, Chennai-600025 (India)

    2010-08-15

    Thiol-capped CdTe nanoparticles were synthesized in aqueous solution by wet chemical route. CdTe nanoparticles with bifunctional molecule mercaptoacetic acid as a stabilizer were synthesized at pH{approx}11.2 and using potassium tellurite as tellurium source. The effect of refluxing time on the preparation of these samples was measured using UV-vis absorption and photoluminescence analysis. By increasing the refluxing time the UV-vis absorption and photoluminescence results show that the band edge emission is redshifted. The synthesized thiol-capped CdTe were characterized with FT-IR, TEM and TG-DTA. The particle size was calculated by the effective mass approximation (EMA). The role of precursors, their composition, pH and reaction procedure on the development of nanoparticles are analyzed.

  18. Effects of surfactant and polymerization method on the synthesis of magnetic colloidal polymeric nanoparticles

    International Nuclear Information System (INIS)

    Puentes-Vara, Luis A.; Gregorio-Jauregui, Karla M.; Bolarín, Ana M.; Navarro-Clemente, Ma. E.; Dorantes, Héctor J.; Corea, Mónica

    2016-01-01

    The addition of superparamagnetic iron nanoparticles into polystyrene matrix allows for the modification of the physical properties as well as the implementation of new features in the hybrid nanomaterials. These materials have excellent potential for biomedical and bioengineering applications. Nevertheless, it is necessary to achieve a good dispersion of magnetic nanoparticles for its successful incorporation into polymer particles. This can be obtained through the use of a stabilizer, which provides stability against aggregation. In this work, magnetic nanoparticles were dispersed using different stabilizers. Subsequently, ferrofluids stabilized using the mixture of ABEX/IGEPAL and acrylic acid (AA) were used to synthesize PS-Fe 3 O 4 nanocomposites, through miniemulsion and emulsion polymerization conventional techniques. Semicontinuous and batch processes were compared, by varying surfactants and their concentrations. The PS-Fe 3 O 4 nanoparticles were characterized by dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and vibrating sample magnetometer. Magnetic nanoparticle dispersions show better results when the anionic and nonionic surfactants are used as a mixture rather than when used alone. Results of DLS showed that the semicontinuous process allowed obtaining monodisperse materials, whereas polidisperse systems are generated in batch process. Raman spectroscopy confirmed the presence of magnetite and polystyrene in the nanocomposites. PS-Fe 3 O 4 nanoparticles showed superparamagnetic behavior with final magnetization of around 0.01 emu/g and low coercivity, properties that make them suitable for applications in wide fields of technology. Particle size (Dz), was lower than 300 nm in all cases. Moreover, the use of AA as stabilizer allows enhancing the PS-Fe 3 O 4 composite properties. These findings showed that particle size, morphology, and agglomeration are directly influenced by the concentration and the type of surfactant

  19. Effects of surfactant and polymerization method on the synthesis of magnetic colloidal polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Puentes-Vara, Luis A.; Gregorio-Jauregui, Karla M. [Instituto Politécnico Nacional, ESIQIE, UPALM (Mexico); Bolarín, Ana M. [Universidad Autónoma Del Estado de Hidalgo (Mexico); Navarro-Clemente, Ma. E.; Dorantes, Héctor J.; Corea, Mónica, E-mail: mcoreat@yahoo.com.mx, E-mail: mcorea@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM (Mexico)

    2016-07-15

    The addition of superparamagnetic iron nanoparticles into polystyrene matrix allows for the modification of the physical properties as well as the implementation of new features in the hybrid nanomaterials. These materials have excellent potential for biomedical and bioengineering applications. Nevertheless, it is necessary to achieve a good dispersion of magnetic nanoparticles for its successful incorporation into polymer particles. This can be obtained through the use of a stabilizer, which provides stability against aggregation. In this work, magnetic nanoparticles were dispersed using different stabilizers. Subsequently, ferrofluids stabilized using the mixture of ABEX/IGEPAL and acrylic acid (AA) were used to synthesize PS-Fe{sub 3}O{sub 4} nanocomposites, through miniemulsion and emulsion polymerization conventional techniques. Semicontinuous and batch processes were compared, by varying surfactants and their concentrations. The PS-Fe{sub 3}O{sub 4} nanoparticles were characterized by dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and vibrating sample magnetometer. Magnetic nanoparticle dispersions show better results when the anionic and nonionic surfactants are used as a mixture rather than when used alone. Results of DLS showed that the semicontinuous process allowed obtaining monodisperse materials, whereas polidisperse systems are generated in batch process. Raman spectroscopy confirmed the presence of magnetite and polystyrene in the nanocomposites. PS-Fe{sub 3}O{sub 4} nanoparticles showed superparamagnetic behavior with final magnetization of around 0.01 emu/g and low coercivity, properties that make them suitable for applications in wide fields of technology. Particle size (Dz), was lower than 300 nm in all cases. Moreover, the use of AA as stabilizer allows enhancing the PS-Fe{sub 3}O{sub 4} composite properties. These findings showed that particle size, morphology, and agglomeration are directly influenced by the

  20. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application.

    Science.gov (United States)

    S, Sonia; H, Linda Jeeva Kumari; K, Ruckmani; M, Sivakumar

    2017-10-01

    Nanocosmeceuticals are promising applications of nanotechnology in personal care industries. Zinc oxide is an inorganic material that is non-toxic and skin compatible with self-cleansing and microbicidal properties. Herein, exploitation of colloidal zinc oxide nanoparticles (ZnONps) as potent biomaterial for a topical formulation of cosmetic and dermatological significance is employed. ZnONps were green synthesized using environmentally benign Adhatoda vasica leaf extract and characterized by UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), high-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDX). The results reveal that the biosynthesized ZnONps exhibit an absorption peak at 352nm. XRD and HR-TEM analyses confirm the hexagonal wurtzite structure of ZnONps with particle size of about 10nm to 12nm. Elemental analysis by EDX confirms the presence of zinc and oxygen. Zeta potential of -24.6mV affirms the stability of nanoparticles. The antibacterial and antifungal activities of biosynthesized ZnONps exhibit mean zone of inhibition from 08.667±0.282 to 21.666±0.447 (mm) and 09.000±0.177 to 19.000±0.307 (mm) respectively, in a dose-dependent manner. The IC 50 value exerted from the antioxidant activity of ZnONps is found to be 139.27μgmL -1 . ZnONps infused cold cream formulation of microbicidal and antioxidant properties was further tested against clinical skin pathogens. The nano-based cold cream exhibited significant inhibitory action against Candida sp., which showed resistance against a commercial antifungal cream (2%). Therefore, this study demonstrates the exploitation of ZnONps as promising colloidal drug carriers in cosmeceuticals that can significantly alleviate human skin infections and oxidative stress induced cellular damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Hydrophilic luminescent silicon nanoparticles in steric colloidal solutions: Their size, agglomeration, and toxicity

    Czech Academy of Sciences Publication Activity Database

    Herynková, Kateřina; Šimáková, Petra; Cibulka, Ondřej; Fučíková, Anna; Kalbáčová, M.H.

    2017-01-01

    Roč. 14, č. 12 (2017), s. 1-4, č. článku 1700195. ISSN 1862-6351 Grant - others:AV ČR(CZ) DAAD-16-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : silicon nanoparticles * agglomeration * toxicity Subject RIV: BO - Biophysics OBOR OECD: Biophysics

  2. Ag-Cu Colloid Synthesis: Bimetallic Nanoparticle Characterisation and Thermal Treatment

    Czech Academy of Sciences Publication Activity Database

    Sopoušek, J.; Pinkas, J.; Brož, P.; Buršík, Jiří; Vykoukal, V.; Škoda, D.; Stýskalík, A.; Zobač, O.; Vřešťál, J.; Hrdlička, A.; Šimbera, J.

    2014-01-01

    Roč. 2014, ID 638964 (2014), s. 1-13 ISSN 1687-4110 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Ag-Cu nanoparticles * DSC * TEM Subject RIV: BJ - Thermodynamics Impact factor: 1.644, year: 2014

  3. Robust one pot synthesis of colloidal silver nanoparticles by simple redox method and absorbance recovered sensing.

    Science.gov (United States)

    Salman, Muhammad; Iqbal, Mahwish; El Ashry, El Sayed H; Kanwal, Shamsa

    2012-01-01

    Conventional synthesis of silver nanoparticles employs a reducing agent and a capping agent. In this report water-soluble silver nanoparticles (AgNPs) were prepared facilely by chemical reduction of Ag(I) ions. 4-Amino-3-(d-gluco-pentitol-1-yl)-4,5-dihydro-1,2,4-triazole-5-thione (AGTT) was used both as reducing and stabilizing agent. Direct heating methodology was found to be more suitable for achieving particles with a hydrodynamic diameter of ~20 nm. AGTT exists as tautomer in solution form and our studies indicate that -NH(2) group is involved in the reduction and stabilization of Ag(+) and thione (Δ=S) group of AGTT is possibly involved in stabilizing the nanoparticles via coordinate covalent linkage. Characterization of synthesized silver nanoparticles was performed by UV-vis, FT-IR and by FESEM. Based on the absorption properties of synthesized AgNPs, we used AgNPs to detect bovine serum albumin (BSA) and AgNPs-BSA composite nanoprobe was further applied to detect Cu(2+) based on absorbance recovery. The proposed method has advantages over existing methods in terms of rapid synthesis and stability of AgNPs and their applications. Analysis is reproducible, cost effective and highly sensitive. The lowest detectable concentration of BSA in this approach is 3 nM, and for Cu(2+) it can detect upto 200 pM. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Tangential Flow Filtration of Colloidal Silver Nanoparticles: A "Green" Laboratory Experiment for Chemistry and Engineering Students

    Science.gov (United States)

    Dorney, Kevin M.; Baker, Joshua D.; Edwards, Michelle L.; Kanel, Sushil R.; O'Malley, Matthew; Pavel Sizemore, Ioana E.

    2014-01-01

    Numerous nanoparticle (NP) fabrication methodologies employ "bottom-up" syntheses, which may result in heterogeneous mixtures of NPs or may require toxic capping agents to reduce NP polydispersity. Tangential flow filtration (TFF) is an alternative "green" technique for the purification, concentration, and size-selection of…

  5. Thiol-functionalized silica colloids, grains, and membranes for irreversible adsorption of metal(oxide) nanoparticles

    NARCIS (Netherlands)

    Claesson, E.M.; Philipse, A.P.

    2007-01-01

    Thiol-functionalization is described for silica surfaces from diverging origin, including commercial silica nanoparticles and St¨ober silica as well as silica structures provided by porous glasses and novel polymer-templated silica membranes. The functionalization allows in all cases for the

  6. Colloidal stability, surface characterisation and intracellular accumulation of Rhodium(II) citrate coated superparamagnetic iron oxide nanoparticles in breast tumour: a promising platform for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Silva Nunes, Eloiza da [Universidade Federal de Goias, Campus Samambaia, Instituto de Quimica (Brazil); Lemos Brettas Carneiro, Marcella; Guirelli Simoes de Oliveira, Ricardo; Nair Bao, Sonia [Universidade de Brasilia (UnB), Instituto de Ciencias Biologicas (Brazil); Ribeiro de Souza, Aparecido, E-mail: ardsouza@quimica.ufg.br [Universidade Federal de Goias, Campus Samambaia, Instituto de Quimica (Brazil)

    2013-06-15

    The colloidal stability of a rhodium(II) citrate, Rh{sub 2}(H{sub 2}cit){sub 4}, coating on the surface of maghemite ({gamma}-Fe{sub 2}O{sub 3}) nanoparticles was studied and compared in different dispersion media. The adsorption of Rh{sub 2}(H{sub 2}cit){sub 4} at the water-maghemite interface was evaluated as a function of pH and complex concentration. A slight pH-dependent adsorption of the complex was observed with a maximum at pH 3. The colloidal stability of the functionalised nanoparticles with different amounts of Rh{sub 2}(H{sub 2}cit){sub 4} as a function of pH was evaluated using dynamic light scattering measurements. The particles have a mean magnetic core size of 5.6 nm and the hydrodynamic diameters are approximately 60 nm, which remained unchanged in the pH range in which the samples were a stable sol. The tolerance to different dispersion media, which were deionised water, saline, phosphate-buffered saline (PBS), foetal bovine serum (FBS) and NaCl solutions with different concentrations, was investigated. At moderate ionic strength, the colloidal stability of the dispersions was similar in saline and in PBS compared to the stability of dispersions diluted in water. Moreover, the intracellular accumulation of nanoparticles in 4T1 breast tumour was examined by ultrastructural analysis performed by transmission electron microscopy. The rhodium(II) citrate-coated nanoparticles were found mostly in the cytoplasm and nucleus. Thus, we suggest that these SPIO nanoparticles functionalized with Rh{sub 2}(H{sub 2}Cit){sub 4} can be potential tools for anticancer therapy.

  7. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  8. Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating

    Science.gov (United States)

    Kolegov, K. S.

    2018-02-01

    The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.

  9. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics.

    Science.gov (United States)

    Mozaffari, Saeed; Li, Wenhui; Thompson, Coogan; Ivanov, Sergei; Seifert, Soenke; Lee, Byeongdu; Kovarik, Libor; Karim, Ayman M

    2017-09-21

    Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand's role in controlling their size remains elusive. We report a methodology that combines in situ small angle X-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate and trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (growth-to-nucleation rate ratio) 1/3 , despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.

  10. Application of CuInS{sub 2} and ZnO nanoparticles in colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Scheunemann, Dorothea; Wilken, Sebastian; Frevert, Katja; Witt, Florian; Borchert, Holger; Parisi, Juergen [University of Oldenburg, Department of Physics, Energy and Semiconductor Research Laboratory, 26111 Oldenburg (Germany)

    2013-07-01

    Colloidal quantum dots (CQD) are attractive for photovoltaics because of their solution processability and spectral tunability due to quantum size effects. Rapid advances in CQD photovoltaics in the recent years have led to high power conversion efficiencies. Previous works mainly focused on highly toxic materials containing cadmium or lead which might limit their possible application. One promising alternative material is CuInS{sub 2} (CIS) which has shown attractive device performance in thin film solar cells. Here, we present solution processed CIS nanoparticles as absorber layer in nanocrystal based solar cells. In order to achieve efficient charge separation we use a heterojunction based on a bilayer structure of CIS and intrinsically n-doped ZnO nanocrystals. One issue in thin film photovoltaics is the optimization of the absorber thickness, taking into account light absorption as well as charge carrier collection. Therefore, we determined the absorption coefficient and transport properties which can serve as input parameters into an electro-optical simulation in order to determine the optimal absorber thickness.

  11. Self-Assembly of Colloidal Photonic Crystals of PS@PNIPAM Nanoparticles and Temperature-Responsive Tunable Fluorescence.

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Yang, Xue; Guang, Shanyi

    2016-11-01

    A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method. Subsequently, the novel functional material (RhB/CPCs) can be prepared by depositing fluorescent dye molecules (RhB) on the top of PS@PNIPAM CPCs. We obtained an increase in the fluorescent intensity up to 15-fold and 22-fold compared with RhB on the glass slid and the uneven film. Due to the unique responsive shrinking properties of PNIPAM shell, the amplifying fluorescence behavior of CPCs can be well tuned by varying the temperature. In contrast to RhB on the glass slid, a 15-fold and 12-fold fluorescence enhancement can be observed when the temperature of RhB/CPCs was 20 °C and 50 °C, respectively. The mechanism on enhancement fluorescence of tunable CPCs can be achieved by measurements of thermoresponsive properties. The results indicate that the responsive fluorescence-amplifying method based on CPCs made with responsive core-shell NPs has a potential application for the development of efficient fluorescence sensors.

  12. Understanding the Formation of the Self-Assembly of Colloidal Copper Nanoparticles by Surfactant: A Molecular Velcro

    Directory of Open Access Journals (Sweden)

    Raquel Kely Bortoleto-Bugs

    2013-01-01

    Full Text Available Self-assembly procedure is employed to synthesize colloidal copper nanoparticles (ccNPs with cationic surfactant in an environmentally friendly method. Scanning electron microscopy images provide a clear view of the ccNPs formed having an approximate size of 15 nm. The X-ray diffraction reveals that the ccNPs have the two types of copper oxide as well as the metallic copper. The new procedure shows that the cationic surfactant CTAB plays an important role in the understanding and development of self-assembly. There is a strong relationship between the ccNPs formation with the critical micelle concentration of the CTAB which influences both shape and size. The outcomes allowed the development of a molecular model for the ccNPs synthesis showing that the CTAB monomer on the surface has the function of a molecular velcro making the linkage of ccNPs to form an agglomerate with size around 600 nm. Finally, with the emerging new technologies, the synthesis of copper oxide takes a new perspective for their applicability in diverse integrated areas such as the flexible electronics and energy.

  13. Colloidal-chemistry based synthesis of quantized CuInS2/Se2 nanoparticles

    Directory of Open Access Journals (Sweden)

    Abazović Nadica D.

    2012-01-01

    Full Text Available Ternary chalcogenide nanoparticles, CuInS2 and CuInSe2, were synthesized in high- temperature boiling organic non-polar solvent. The X-ray diffraction analysis revealed that both materials have tetragonal (chalcopyrite crystal structure. Morphology of the obtained materials was revealed by using transmission electron microscopy. Agglomerated spherical CuInS2 nanoparticles with broad size distribution in the range from 2 to 20 nm were obtained. In the case of CuInSe2, isolated particles with spherical or prismatic shape in the size range from 10 to 25 nm were obtained, as well as agglomerates consisting of much smaller particles with diameter of about 2-5 nm. The particles with the smallest diameters of both materials exhibit quantum size effect.

  14. Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media.

    Science.gov (United States)

    Natsuki, Jun; Abe, Takao

    2011-07-01

    This paper describes a practical and convenient method to prepare stable colloidal silver nanoparticles for use in printed electronic circuits. The method uses a dispersant and two kinds of reducing agents including 2-(dimethylamino) ethanol (DMAE), which play important roles in the reduction of silver ions in an aqueous medium. The effect of DMAE and dispersant, as well as the factors affecting particle size and morphology are investigated. In the formation of the silver nanoparticles, reduction occurs rapidly at room temperature and the silver particles can be separated easily from the mixture in a short time. In addition, organic solvents are not used. Pure, small and relatively uniform particles with a diameter less than 10 nm can be obtained that exhibit high electroconductivity. The silver nanoparticles are stable, and can be isolated as a dried powder that can be fully redispersed in deionized water. This method of producing colloidal silver nanoparticles will find practical use in electronics applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Improvement studies on emission and combustion characteristics of DICI engine fuelled with colloidal emulsion of diesel distillate of plastic oil, TiO2 nanoparticles and water.

    Science.gov (United States)

    Karisathan Sundararajan, Narayanan; Ammal, Anand Ramachandran Bhagavathi

    2018-04-01

    Experimentation was conducted on a single cylinder CI engine using processed colloidal emulsions of TiO 2 nanoparticle-water-diesel distillate of crude plastic diesel oil as test fuel. The test fuel was prepared with plastic diesel oil as the principal constituent by a novel blending technique with an aim to improve the working characteristics. The results obtained by the test fuel from the experiments were compared with that of commercial petro-diesel (CPD) fuel for same engine operating parameters. Plastic oil produced from high density polyethylene plastic waste by pyrolysis was subjected to fractional distillation for separating plastic diesel oil (PDO) that contains diesel range hydrocarbons. The blending process showed a little improvement in the field of fuel oil-water-nanometal oxide colloidal emulsion preparation due to the influence of surfactant in electrostatic stabilization, dielectric potential, and pH of the colloidal medium on the absolute value of zeta potential, a measure of colloidal stability. The engine tests with nano-emulsions of PDO showed an increase in ignition delay (23.43%), and decrease in EGT (6.05%), BSNO x (7.13%), and BSCO (28.96%) relative to PDO at rated load. Combustion curve profiles, percentage distribution of compounds, and physical and chemical properties of test fuels ascertains these results. The combustion acceleration at diffused combustion phase was evidenced in TiO 2 emulsion fuels under study.

  16. Colloidal behavior of goethite nanoparticles modified with humic acid and implications for aquifer reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Tiraferri, Alberto; Saldarriaga Hernandez, Laura Andrea; Bianco, Carlo; Tosco, Tiziana; Sethi, Rajandrea, E-mail: rajandrea.sethi@polito.it [Politecnico di Torino, Department of Land, Environment, and Infrastructure Engineering (DIATI) (Italy)

    2017-03-15

    Nanosized colloids of iron oxide adsorb heavy metals, enhance the biodegradation of contaminants, and represent a promising technology to clean up contaminated aquifers. Goethite particles for aquifer reclamation were recently synthesized with a coating of humic acids to reduce aggregation. This study investigates the stability and the mobility in porous media of this material as a function of aqueous chemistry, and it identifies the best practices to maximize the efficacy of the related remediation. Humic acid-coated nanogoethite (hydrodynamic diameter ∼90 nm) displays high stability in solutions of NaCl, consistent with effective electrosteric stabilization. However, particle aggregation is fast when calcium is present and, to a lesser extent, also in the presence of magnesium. This result is rationalized with complexation phenomena related to the interaction of divalent cations with humic acid, inducing rapid flocculation and sedimentation of the suspensions. The calcium dose, i.e., the amount of calcium ions with respect to solids in the dispersion, is the parameter governing stability. Therefore, more concentrated slurries may be more stable and mobile in the subsurface than dispersions of low particle concentration. Particle concentration during field injection should be thus chosen based on concentration and proportion of divalent cations in groundwater.

  17. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  18. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  19. Colloidally stable surface-modified iron oxide nanoparticles: preparation, characterization and anti-tumor activity

    Czech Academy of Sciences Publication Activity Database

    Macková, Hana; Horák, Daniel; Donchenko, G. V.; Andriyaka, V. I.; Palyvoda, O. M.; Chernishov, V. I.; Chekhun, V. F.; Todor, I. N.; Kuzmenko, O. I.

    2015-01-01

    Roč. 380, 15 April (2015), s. 125-131 ISSN 0304-8853. [International Conference on the Scientific and Clinical Applications of Magnetic Carriers /10./. Dresden, 10.06.2014-14.06.2014] R&D Projects: GA MŠk 7E12054; GA MŠk(CZ) LH14318; GA MŠk(CZ) ED1.1.00/02.0109 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : iron oxide nanoparticle * poly(N,N-dimethylacrylamide-co-acrylic acid) * protein oxidation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.357, year: 2015

  20. Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species.

    Science.gov (United States)

    Khan, S Sudheer; Mukherjee, Amitava; Chandrasekaran, N

    2011-10-01

    Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of 0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater.

    Science.gov (United States)

    Piccapietra, Flavio; Sigg, Laura; Behra, Renata

    2012-01-17

    To gain important information on fate, mobility, and bioavailability of silver nanoparticles (AgNP) in aquatic systems, the influence of pH, ionic strength, and humic substances on the stability of carbonate-coated AgNP (average diameter 29 nm) was systematically investigated in 10 mM carbonate and 10 mM MOPS buffer, and in filtered natural freshwater. Changes in the physicochemical properties of AgNP were measured using nanoparticle tracking analysis, dynamic light scattering, and ultraviolet-visible spectroscopy. According to the pH-dependent carbonate speciation, below pH 4 the negatively charged surface of AgNP became positive and increased agglomeration was observed. Electrolyte concentrations above 2 mM Ca(2+) and 100 mM Na(+) enhanced AgNP agglomeration in the synthetic media. In the considered concentration range of humic substances, no relevant changes in the AgNP agglomeration state were measured. Agglomeration of AgNP exposed in filtered natural freshwater was observed to be primarily controlled by the electrolyte type and concentration. Moreover, agglomerated AgNP were still detected after 7 days of exposure. Consequently, slow sedimentation and high mobility of agglomerated AgNP could be expected under the considered natural conditions. A critical evaluation of the different methods used is presented as well.

  2. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles.

    Science.gov (United States)

    Mashwani, Zia-Ur-Rehman; Khan, Mubarak Ali; Khan, Tariq; Nadhman, Akhtar

    2016-08-01

    Green chemistry is the design of chemical products and processes that reduce or eliminate the generation of hazardous substances. Since the last few years, natural products especially plant secondary metabolites have been extensively explored for their potency to synthesize silver nanoparticles (AgNPs). The plant-based AgNPs are safer, energy efficient, eco-friendly, and less toxic than chemically synthesized counterparts. The secondary metabolites, ubiquitously found in plants especially the terpenoid-rich essential oils, have a significant role in AgNPs synthesis. Terpenoids belong to the largest family of natural products and are found in all kinds of organisms. Their involvement in the synthesis of plant-based AgNPs has got much attention in the recent years. The current article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present the pertinent role of plant terpenoids in the biosynthesis of AgNPs, as capping and reducing agents for development of uniform size and shape AgNPs. An emphasis on the important role of FTIR in the identification and elucidation of major functional groups in terpenoids for AgNPs synthesis has also been reviewed in this manuscript. It was found that no such article is available that has discussed the role of plant terpenoids in the green synthesis of AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Colloidal gold nanoparticles. Synthesis, characterization and effect in polymer/fullerene solar cells; Kolloidale Goldnanopartikel. Synthese, Charakterisierung und Wirkung in Polymer/Fulleren-Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Katja

    2011-06-08

    It has been reported in the literature that the efficiency of polymer/fullerene solar cells has been improved by the incorporation of Au nanoparticles. The improvement was attributed to an enhanced electrical conductivity of the active layer and to an enhanced light absorption due to the plasmon resonance of the Au nanoparticles. In this work colloidal Au nanoparticles coated with different stabilizing ligands were synthesized and characterized. Then the impact of their incorporation into P3HT/PCBM solar cells was studied. On the one hand the Au nanoparticles were incorporated into the bulk heterojunction active layer, otherwise they were deposited as an interlayer in the device set-up. No improvement of the solar cell efficiency could be observed neither for the incorporation of Au nanoparticles with isolating ligand shell nor for those with direct contact to the photoactive molecules. The efficiency even dropped, the more the higher the concentration of the Au nanoparticles was. Possible reasons are pointed out on the basis of detailed photophysical and structural investigations.

  4. Dynamics of colloidal systems of magnetic nanoparticles under influence of magnetic fields investigated by XPCS

    International Nuclear Information System (INIS)

    Schavkan, Alexander

    2017-05-01

    This thesis investigates structural properties and the underlying microscopic dynamics of suspensions of α-FeOOH goethite platelets in water under the influence of magnetic fields. Goethite particles show unusual physical properties and a rich phase diagram, which makes their suspensions an object of high interest for research in the area of ''smart nanoparticles''. Five nanoparticle concentrations were chosen such that different liquid crystal phases could be studied. The suspensions of platelets of these chosen concentrations were exposed to magnetic fields of varying strength. Small angle X-ray scattering and X-ray photon correlation spectroscopy data were taken and evaluated. The appearing phases and phase transitions were studied as a function of concentration and applied magnetic field. For this purpose, order parameters, ellipticity, radial and azimuthal peak positions and widths of scattering features were investigated to clarify the structural properties in detail. For the analysis of the underlying dynamics, the relaxation rates and the shape of measured time correlation functions were evaluated. The results show that with increasing magnetic field a partial realignment of the platelets occurs. This realignment is connected to the magnetic properties of the particles. The dynamics of the corresponding phases revealed a dependence on the concentration of nanoparticles in the suspension. At a concentration of c=20 vol% the transition from the nematic to the anti-nematic phase traverses a mixed state. The nematic and anti-nematic phases show ballistic motion and very similar properties, even though a realignment of the particles from an orientation with the long axis parallel to the applied magnetic field in the nematic phase to an orientation with the long axis perpendicular to the magnetic field in the anti-nematic phase occurs. The mixed state of 20 vol%-suspension exhibits a diffusive motion of the particles and different characteristics. A significant

  5. Dynamics of colloidal systems of magnetic nanoparticles under influence of magnetic fields investigated by XPCS

    Energy Technology Data Exchange (ETDEWEB)

    Schavkan, Alexander

    2017-05-15

    This thesis investigates structural properties and the underlying microscopic dynamics of suspensions of α-FeOOH goethite platelets in water under the influence of magnetic fields. Goethite particles show unusual physical properties and a rich phase diagram, which makes their suspensions an object of high interest for research in the area of ''smart nanoparticles''. Five nanoparticle concentrations were chosen such that different liquid crystal phases could be studied. The suspensions of platelets of these chosen concentrations were exposed to magnetic fields of varying strength. Small angle X-ray scattering and X-ray photon correlation spectroscopy data were taken and evaluated. The appearing phases and phase transitions were studied as a function of concentration and applied magnetic field. For this purpose, order parameters, ellipticity, radial and azimuthal peak positions and widths of scattering features were investigated to clarify the structural properties in detail. For the analysis of the underlying dynamics, the relaxation rates and the shape of measured time correlation functions were evaluated. The results show that with increasing magnetic field a partial realignment of the platelets occurs. This realignment is connected to the magnetic properties of the particles. The dynamics of the corresponding phases revealed a dependence on the concentration of nanoparticles in the suspension. At a concentration of c=20 vol% the transition from the nematic to the anti-nematic phase traverses a mixed state. The nematic and anti-nematic phases show ballistic motion and very similar properties, even though a realignment of the particles from an orientation with the long axis parallel to the applied magnetic field in the nematic phase to an orientation with the long axis perpendicular to the magnetic field in the anti-nematic phase occurs. The mixed state of 20 vol%-suspension exhibits a diffusive motion of the particles and different

  6. Silver Nanoparticles Formed in a Colloidal System and a Polymer Matrix

    Science.gov (United States)

    Potapov, A. L.; Agabekov, V. E.; Belyi, V. N.

    2018-05-01

    The growth kinetics and particle-size distribution of Ag particles in a polyvinyl alcohol (PVA) composite, PVA film, and aqueous sol were studied using UV and visible spectroscopy, atomic force microscopy, and dynamic light scattering. A hypsochromic shift (55 nm) of the Ag nanoparticle (NP) surface plasmon absorption maximum was measured on going from the PVA composite to the film. The kinetics of Ag NP formation and their sizes were shown to depend considerably on UV irradiation, ultrasound action, and PVA concentration. It was established that UV irradiation accelerated Ag NP formation in the presence of reductants and destroyed the resulting NPs with a deficit of reductant. Partial destruction of the Ag NPs occurred under the influence of ultrasound whereas ultrasound action after UV irradiation reduced Ag+ on the clusters.

  7. Synthesis colloidal Kyllinga brevifolia-mediated silver nanoparticles at different temperature for methylene blue removal

    Science.gov (United States)

    Isa, Norain; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-09-01

    Metallic nanoparticles are well known of having wide applications in various fields such as, catalysis, electronics, energy, chemistry and medicine due to its unique physico-chemical properties. In this study, nanocatalyst Kyllinga brevifolia-mediated silver nanoparticles (AgNPs) were prepared by reduction of silver nitrate using aqueous extract of Kyllinga brevifolia at different temperature. The formations of AgNPs were monitored using UV-visible spectroscopy. Transmission electron microscope (TEM) results reveal that the AgNPs well dispersed with average particle size are 22.34 and 6.73 nm for synthesized at room temperature and cold temperature respectively. The biomolecules present in the Kyllinga brevifolia aqueous extract responsible for the formation of AgNPs were identified using Fourier transform infrared (FTIR). Our AgNPs performed excellent catalytic activity in degradation of methylene blue (MB) dyes via electron relay effect. MB is toxic to ecological system and also has carcinogenic properties. The AgNPs nanocatalysts synthesized in this study are highly dispersed, quasi-spherical and due to their size in nanoscale, they have shown effectiveness for degradation of MB dyes. More importantly, our AgNPs were prepared using biomolecules as capping and reducing agent, which make our product "greener" than available AgNPs that are commonly prepared using hydrazine and borohydride; which are harmful substances to human and environment. Not only the AgNPs can act as nanocatalyst for degradation of MB, they can also be expected to degrade other types of toxic dyes used in textiles industry.

  8. Physics and (patho)physiology in confined flows: from colloidal patterns to cytoplasmic rheology and sickle cell anemia

    Science.gov (United States)

    Mahadevan, L.

    2015-03-01

    I will discuss a few problems that involve the interaction of fluids and solids in confined spaces. (i) Jamming in pressure-driven suspension flows that show a transition from Stokes flows to Darcy flows as the solids start to lock, as in evaporative patterning in colloids (e.g. coffee stain formation) .(ii) Jamming and clogging of red blood cells, as in sickle-cell pathophysiology, with implications for other diseases that involve jamming. (iii) The mechanical response of crowded networks of filaments bathed in a fluid, as in the cytoskeleton, that can be described by poroelasticity theory. In each case, I will show how simple theories of multiphase flow and deformation can be used to explain a range of experimental observations, while failing to account for others, along with some thoughts on how to improve them.

  9. A Highly Sensitive Nonenzymatic Glucose Biosensor Based on the Regulatory Effect of Glucose on Electrochemical Behaviors of Colloidal Silver Nanoparticles on MoS₂†.

    Science.gov (United States)

    Anderson, Kash; Poulter, Benjamin; Dudgeon, John; Li, Shu-En; Ma, Xiang

    2017-08-05

    A novel and highly sensitive nonenzymatic glucose biosensor was developed by nucleating colloidal silver nanoparticles (AgNPs) on MoS₂. The facile fabrication method, high reproducibility (97.5%) and stability indicates a promising capability for large-scale manufacturing. Additionally, the excellent sensitivity (9044.6 μA mM -1 cm -2 ), low detection limit (0.03 μM), appropriate linear range of 0.1-1000 μM, and high selectivity suggests that this biosensor has a great potential to be applied for noninvasive glucose detection in human body fluids, such as sweat and saliva.

  10. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery

    International Nuclear Information System (INIS)

    Banerjee, Shashwat S; Chen, D.-H.

    2008-01-01

    A novel magnetic nanocarrier (CD-GAMNPs) was fabricated for targeted anticancer drug delivery by grafting cyclodextrin (CD) onto gum arabic modified magnetic nanoparticles (GAMNPs) using hexamethylene diisocyanate (HMDI) as a linker. Analyses by transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the product had a mean diameter of 17.1 nm and a mean hydrodynamic diameter of 44.1 nm. The CD grafting was confirmed by Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) indicated that the amount of CD grafted on the GAMNPs was 16.8 mg g -1 . The study on the loading of anticancer drug all-trans-retinoic acid (retinoic acid) revealed that the newly fabricated magnetic nanocarrier possessed a considerably higher adsorption capability as compared to GAMNPs due to the special hydrophobic cavity structure of CD, which could act as a host-guest complex with retinoic acid. Furthermore, it was found that the complexation of CD-GAMNPs with retinoic acid was exothermic and the presence of a surfactant (sodium dodecyl sulfate) led to the decrease in the inclusion of retinoic acid because the linear structure of sodium dodecyl sulfate made it easier to enter the cavity of CD as compared to less linear retinoic acid. In addition, the in vitro release profile of retinoic acid from CD-GAMNPs was characterized by an initial fast release followed by a delayed release phase

  11. Spectrophotometric Determination of 4-Hydroxy-2-mercapto-6-methylpyrimidine Based on Aggregation of Colloidal Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    M.Reza Hormozi-Nezhad

    2014-12-01

    Full Text Available We report herein the development of a highly sensitive colorimetric method for the detection of 4-hydroxy-2-mercapto-6-methylpyrimidine (MTU which acts as an anti-thyroid drug utilizing citrate capped gold nanoparticles (Au-NPs. This thiol-containing molecule exhibits intriguing affinity with Au-NPs. The reactivity involves the displacement of the citrate shell by the thiolate shell followed by intermolecular electrostatic interactions or hydrogen-bonding between the thiolate shells. The interparticle interactions depend on ionic strength, pH and Au-NPs concentration of the solution. The interparticle interactions lead to a small change in the plasmon band around 521 nm and the formation of a new red shifted band. The calibration curve is derived from the ratio of the absorption intensity changes at 650 nm to the changes at 520 nm. It was linear in the concentration range of 5.0 × 10-7-2.75 × 10-6 M. The detection limit (3σ for MTU was found to be 1.9 × 10-7 M.

  12. Lysozyme binding ability toward psychoactive stimulant drugs: Modulatory effect of colloidal metal nanoparticles.

    Science.gov (United States)

    Sonu, Vikash K; Islam, Mullah Muhaiminul; Rohman, Mostofa Ataur; Mitra, Sivaprasad

    2016-10-01

    The interaction and binding behavior of the well-known psychoactive stimulant drugs theophylline (THP) and theobromine (THB) with lysozyme (LYS) was monitored by in-vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of the drugs is due to the formation of protein-drug complex in the ground state in both the cases. However, the binding interaction is almost three orders of magnitude stronger in THP, which involves mostly hydrogen bonding interaction in comparison with THB where hydrophobic binding plays the predominant role. The mechanism of fluorescence quenching (static type) remains same also in presence of gold and silver nanoparticles (NPs); however, the binding capacity of LYS with the drugs changes drastically in comparison with that in aqueous buffer medium. While the binding affinity of LYS to THB increases ca. 100 times in presence of both the NPs, it is seen to decrease drastically (by almost 1000 fold) for THP. This significant modulation in binding behavior indicates that the drug transportation capacity of LYS can be controlled significantly with the formation protein-NP noncovalent assembly system as an efficient delivery channel. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dependency of plasmon resonance sensitivity of colloidal gold nanoparticles on the identity of surrounding ionic media

    Science.gov (United States)

    Mehrdel, B.; Aziz, A. Abdul

    2018-03-01

    The plasmon resonance sensitivity of gold nanoparticles (AuNPs) in sodium chloride (NaCl) liquid in near-infrared to the visible spectral region was investigated. The correlation between NaCl concentration and refractive index was analyzed using concentration dependency and Lorenz-Lorenz methods. The first derivative method was applied to the measured absorption spectra to quantitatively evaluate the plasmon resonance sensitivity. To understand the influence of the identity of the surrounding medium on the plasmon resonance sensitivity, experiments were repeated by replacing NaCl with sodium hydroxide (NaOH), followed by phosphate buffered saline (PBS). Experimental results showed that NaCl is the most effective ionic surrounding medium, which gives prominent plasmon resonance response. AuNPs size can have a significant influence on the plasmon resonance sensitivity. For tiny AuNPs (∼10 nm AuNPs), the plasmon resonance is insensitive to the identity of the surrounding medium due to their low cross-section value.

  14. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress.

    Science.gov (United States)

    Guo, Dawei; Zhang, Junren; Huang, Zhihai; Jiang, Shanxiang; Gu, Ning

    2015-02-01

    Recently, increased reactive oxygen species (ROS) levels and altered redox status in cancer cells have become a novel therapeutic strategy to improve cancer selectivity over normal cells. It has been known that silver nanoparticles (AgNPs) display anti-leukemic activity via ROS overproduction. Hence, we hypothesized that AgNPs could improve therapeutic efficacy of ROS-generating agents against leukemia cells. In the current study, N-(4-hydroxyphenyl)retinamide (4-HPR), a synthetic retinoid, was used as a drug model of ROS induction to investigate its synergistic effect with AgNPs. The data exhibited that AgNPs with uniform size prepared by an electrochemical method could localize in the lysosomes, mitochondria and cytoplasm of SHI-1 cells. More importantly, AgNPs together with 4-HPR could exhibit more cytotoxicity and apoptosis via overproduction of ROS in comparison with that alone. Taken together, these results reveal that AgNPs combined with ROS-generating drugs could potentially enhance therapeutic efficacy against leukemia cells, thereby providing a novel strategy for AgNPs in leukemia therapy. Copyright © 2015. Published by Elsevier B.V.

  15. Silver colloidal nanoparticles: effect on matrix composition and structure of Candida albicans and Candida glabrata biofilms.

    Science.gov (United States)

    Monteiro, D R; Silva, S; Negri, M; Gorup, L F; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2013-04-01

    The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13.5 or 54 μg SN ml(-1) for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

  16. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata.

    Science.gov (United States)

    Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2011-08-01

    The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.

  17. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Young-Woo

    2012-01-01

    A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120° C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21±3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61×10(-3) mol min(-1)) manner than other cases (at ambient temperature (for 8 h, 0.03×10(-3) mol min(-1)): 86±16.8 nm, 120 °C (for 12 min, 1.16×10(-3) mol min(-1)): 64±14.9 nm, and 120 °C with injected solutions (during 12 min): 35±6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles

    International Nuclear Information System (INIS)

    Solano, Eduardo; Perez-Mirabet, Leonardo; Martinez-Julian, Fernando; Guzmán, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier; Yañez, Ramón; Pomar, Alberto; Ricart, Susagna; Ros, Josep

    2012-01-01

    Well-defined synthesis conditions of high quality MFe 2 O 4 (M = Mn, Fe, Co, Ni, Zn, and Cu) spinel ferrite magnetic nanoparticles, with diameters below 10 nm, have been described based on facile and efficient one-pot solvothermal or microwave-assisted heating procedures. Both methods are reproducible and scalable and allow forming concentrated stable colloidal solutions in polar solvents, but microwave-assisted heating allows reducing 15 times the required annealing time and leads to an enhanced monodispersity of the nanoparticles. Non-agglomerated nanoparticles dispersions have been achieved using a simple one-pot approach where a single compound, triethyleneglycol, behaves at the same time as solvent and capping ligand. A narrow nanoparticle size distribution and high quality crystallinity have been achieved through selected nucleation and growth conditions. High resolution transmission electron microscopy images and electron energy loss spectroscopy analysis confirm the expected structure and composition and show that similar crystal faceting has been formed in both synthetic approaches. The spinel nanoparticles behave as ferrimagnets with a high saturation magnetization and are superparamagnetic at room temperature. The influence of synthesis route on phase purity and unconventional magnetic properties is discussed in some particular cases such as CuFe 2 O 4 , CoFe 2 O 4 , and ZnFe 2 O 4 .

  19. Tangential Flow Ultrafiltration: A “Green” Method for the Size Selection and Concentration of Colloidal Silver Nanoparticles

    Science.gov (United States)

    Anders, Catherine B.; Baker, Joshua D.; Stahler, Adam C.; Williams, Austin J.; Sisco, Jackie N.; Trefry, John C.; Wooley, Dawn P.; Pavel Sizemore, Ioana E.

    2012-01-01

    Nowadays, AgNPs are extensively used in the manufacture of consumer products,1 water disinfectants,2 therapeutics,1, 3 and biomedical devices4 due to their powerful antimicrobial properties.3-6 These nanoparticle applications are strongly influenced by the AgNP size and aggregation state. Many challenges exist in the controlled fabrication7 and size-based isolation4,8 of unfunctionalized, homogenous AgNPs that are free from chemically aggressive capping/stabilizing agents or organic solvents.7-13 Limitations emerge from the toxicity of reagents, high costs or reduced efficiency of the AgNP synthesis or isolation methods (e.g., centrifugation, size-dependent solubility, size-exclusion chromatography, etc.).10,14-18 To overcome this, we recently showed that TFU permits greater control over the size, concentration and aggregation state of Creighton AgNPs (300 ml of 15.3 μg ml-1 down to 10 ml of 198.7 μg ml-1) than conventional methods of isolation such as ultracentrifugation.19 TFU is a recirculation method commonly used for the weight-based isolation of proteins, viruses and cells.20,21 Briefly, the liquid sample is passed through a series of hollow fiber membranes with pore size ranging from 1,000 kD to 10 kD. Smaller suspended or dissolved constituents in the sample will pass through the porous barrier together with the solvent (filtrate), while the larger constituents are retained (retentate). TFU may be considered a "green" method as it neither damages the sample nor requires additional solvent to eliminate toxic excess reagents and byproducts. Furthermore, TFU may be applied to a large variety of nanoparticles as both hydrophobic and hydrophilic filters are available. The two main objectives of this study were: 1) to illustrate the experimental aspects of the TFU approach through an invited video experience and 2) to demonstrate the feasibility of the TFU method for larger volumes of colloidal nanoparticles and smaller volumes of retentate. First

  20. Enhancing the stability of colloidal silver nanoparticles using polyhydroxyalkanoates (PHA) from Bacillus circulans (MTCC 8167) isolated from crude oil contaminated soil.

    Science.gov (United States)

    Phukon, Pinkee; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2011-09-01

    Polyhydroxyalkanoate (PHA) was produced by growing Bacillus circulans (MTCC 8167) in the specific detection medium. The identification of the polymer as PHA was confirmed by fluorescence microscopy. The PHA was purified and characterized using FT-IR. The silver nanoparticles (SNP) were synthesized from AgNO3 in the dispersed colloids of PHA (0.085%) using NaBH4 (sodium borohydrate as reducing agent). The stability was tested using wave length scanning with a UV-Vis spectrophotometer and finally with transmission electron microscopy. The PHA stabilized solution was found to be stable for 30 days as against the low stability of silver nanoparticles (SNP) solution alone. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Influence of the laser light absorption by the colloid on the properties of silver nanoparticles produced by laser ablation in stirred and stationary liquid

    International Nuclear Information System (INIS)

    Resano-Garcia, A.; Battie, Y.; Koch, A.; En Naciri, A.; Chaoui, N.

    2015-01-01

    Silver nanoparticles were produced by nanosecond pulsed-laser ablation at 1064 nm of Ag in pure water. These experiments were performed using an alternative ablation cell design where a cylindrical shaped Ag target was horizontally irradiated, while the liquid was stirred by a stir rod coaxially arranged to the target. The repeatability of the generated colloids properties (extinction and size distribution) is assessed by statistical tools. The colloids properties prepared under stationary liquid are found to be unpredictable, while they are highly repeatable at high stirring speed. At the same time, electronic microscopy examinations of the irradiated Ag targets revealed that the width of the laser-machined grooves exponentially decays in stationary liquid and almost linearly under high stirring speed as the ablation proceeds. In the latter case, the decay rate was found to be constant from one experiment to the other, while it was not repeatable stationary liquid. We show that the decay of the groove width is due to an attenuation of the laser energy reaching the target surface due to the formation of a more or less dense NPs layer in front of the target as the ablation proceeds. Using the ablation time-dependence of the groove width, we can quantify the attenuation factor of the laser energy with exposure time. Finally, the relationship between the laser energy attenuation, stirring speed, and repeatability of the colloids properties is interpreted and discussed in terms of mass transfer

  2. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    KAUST Repository

    Gentile, Francesco

    2014-04-03

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  3. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    KAUST Repository

    Gentile, Francesco; Laura Coluccio, Maria; Candeloro, Patrizio; Barberio, Marianna; Perozziello, Gerardo; Francardi, Marco; Di Fabrizio, Enzo M.

    2014-01-01

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  4. Elaboration of hybrid materials by templating with mineral liquid crystals stabilization of a mixed sol of YSZ nanoparticles and V2O5 ribbon-like colloids

    International Nuclear Information System (INIS)

    Guiot, C.

    2009-01-01

    The purpose of this PhD was to investigate innovative soft chemistry ways to prepare hybrid materials with ordered nano-structures. Concretely, research were conducted on the development of a hybrid material made of an yttria-stabilized zirconia (YSZ) matrix templated by a mineral liquid crystal, namely V 2 O 5 . In aqueous solutions, vanadium oxide exhibits ribbon-like colloids of typical dimensions 1 nm x 25 nm x 500 nm, stabilized by a strong negative surface charge. Above a critical concentration, the anisotropic colloids assemble into a nematic liquid crystal, whose domains can be oriented within the same direction over a macroscopic range under a weak magnetic field. The idea is to use V 2 O 5 anisotropic colloids as a template for a hybrid material, taking advantage of their ordering behavior. Preliminary experiments revealed a strong reactivity between molecular compounds of zirconium and vanadium oxide. Therefore, the studies were directed toward the preparation of a mixed colloidal sol containing YSZ nanoparticles and vanadium oxide ribbon-like colloids, as a precursor sol for the intended hybrid material. The YSZ nanoparticles are obtained through an outstanding hydrothermal synthesis leading to a stable suspension of nanocrystalline particles of ca. 5 nm, in pure water. Providing a mixed sol of YSZ and V 2 O 5 is a key challenge for it implies the co-stabilization of two types of colloids having different shape, size and surface properties. Besides, the existence of V 2 O 5 in its ribbon-like form requires acidic conditions and very low ionic strength. The first part of this work was then dedicated to the study of electro-steric stabilization of zirconia suspension by addition of acidic poly-electrolytes. Different polymers with carboxylic and/or sulfonic acidic functions were investigated. Based on zeta potential measurements and adsorption isotherms, the influence of molecular weight and polymer charge were discussed. Among the studied polymers, poly

  5. Radioluminescence studies of colloidal oleate-capped β-Na(Gd,Lu)F4:Ln3+ nanoparticles (Ln = Ce, Eu, Tb).

    Science.gov (United States)

    Cooper, Daniel R; Capobianco, John A; Seuntjens, Jan

    2018-04-26

    We report on the synthesis, characterization, and radioluminescence quantification of several new varieties of nanoparticles with the general composition β-NaLnF4, incorporating known luminescent activator/sensitizer pairs. Using Monte Carlo modeling to complement luminescence measurements, we have calculated the radioluminescence yields and intrinsic conversion efficiencies of colloidally-dispersed nanoparticles by comparison to an organic liquid scintillator. While five of the compositions had low to modest radioluminescence yields relative to bulk materials, colloidal β-Na(Lu0.65Gd0.2Tb0.15)F4 displayed a strong output of 39 460 photons per MeV absorbed, comparable to some of the best non-hygroscopic bulk crystal scintillators and X-ray phosphors such as Gd2O2S:Tb. Measurements of β-Na(Lu0.65Gd0.2Tb0.15)F4 powder samples revealed persistent luminescence as well as stable charge trapping, warranting further investigation.

  6. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    Science.gov (United States)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  7. High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics

    International Nuclear Information System (INIS)

    Abargues, R; Marques-Hueso, J; Canet-Ferrer, J; Pedrueza, E; Valdes, J L; Jimenez, E; MartInez-Pastor, J P

    2008-01-01

    Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry

  8. Synthesis of ZnMn2O4 Nanoparticles by a Microwave-Assisted Colloidal Method and their Evaluation as a Gas Sensor of Propane and Carbon Monoxide

    Directory of Open Access Journals (Sweden)

    Juan Pablo Morán-Lázaro

    2018-02-01

    Full Text Available Spinel-type ZnMn2O4 nanoparticles were synthesized via a simple and inexpensive microwave-assisted colloidal route. Structural studies by X-ray diffraction showed that a spinel crystal phase of ZnMn2O4 was obtained at a calcination temperature of 500 °C, which was confirmed by Raman and UV-vis characterizations. Spinel-type ZnMn2O4 nanoparticles with a size of 41 nm were identified by transmission electron microscopy. Pellet-type sensors were fabricated using ZnMn2O4 nanoparticles as sensing material. Sensing measurements were performed by exposing the sensor to different concentrations of propane or carbon monoxide at temperatures in the range from 100 to 300 °C. Measurements performed at an operating temperature of 300 °C revealed a good response to 500 ppm of propane and 300 ppm of carbon monoxide. Hence, ZnMn2O4 nanoparticles possess a promising potential in the gas sensors field.

  9. Nanoparticle Photoresists: Ligand Exchange as a New, Sensitive EUV Patterning Mechanism

    KAUST Repository

    Kryask, Marie

    2013-01-01

    Hybrid nanoparticle photoresists and their patterning using DUV, EUV, 193 nm lithography and e-beam lithography has been investigated and reported earlier. The nanoparticles have demonstrated very high EUV sensitivity and significant etch resistance compared to other standard photoresists. The current study aims at investigating and establishing the underlying mechanism for dual tone patterning of these nanoparticle photoresist systems. Infrared spectroscopy and UV absorbance studies supported by mass loss and dissolution studies support the current model. © 2013SPST.

  10. Synthesis and characterization of silver nanoparticles by sol-gel route from silver nitrate

    International Nuclear Information System (INIS)

    Morales, Jorge; Moran, Jose; Quintana, Maria; Estrada, Walter

    2009-01-01

    Silver nanoparticles colloids have been synthesized by sol-gel method. This synthesis consists in silver nitrate reduction by ethylene glycol in a process called polyol. The growth of the nanoparticles have been controlled by the steric stabilization of the colloid with polyvinylpyrrolidone (PVP, M w = 40 000). The silver nanoparticle size and structure was depending on the control of parameters such as: molar concentrations ratio of silver nitrate and PVP, temperature of reaction and the reflux time. Colloids have been characterized by UV-vis spectroscopy in the range from 300 to 1000 nm. The results show that the typical peak of surface plasmon resonance is formed at 400-450 nm indicating the formation of silver nanoparticles. The presences of silver nanoparticles of spherical shape with size among 20-40 nm were observed by transmission electronic microscopy (TEM). Electron diffraction patterns confirmed that synthesized colloids contain metallic silver with a crystal structure face centered cubic FCC. (author)

  11. Nanosphere Lithography of Chitin and Chitosan with Colloidal and Self-Masking Patterning

    Directory of Open Access Journals (Sweden)

    Rakkiyappan Chandran

    2018-02-01

    Full Text Available Complex surface topographies control, define, and determine the properties of insect cuticles. In some cases, these nanostructured materials are a direct extension of chitin-based cuticles. The cellular mechanisms that generate these elaborate chitin-based structures are unknown, and involve complicated cellular and biochemical “bottom-up” processes. We demonstrated that a synthetic “top-down” fabrication technique—nanosphere lithography—generates surfaces of chitin or chitosan that mimic the arrangement of nanostructures found on the surface of certain insect wings and eyes. Chitin and chitosan are flexible and biocompatible abundant natural polymers, and are a sustainable resource. The fabrication of nanostructured chitin and chitosan materials enables the development of new biopolymer materials. Finally, we demonstrated that another property of chitin and chitosan—the ability to self-assemble nanosilver particles—enables a novel and powerful new tool for the nanosphere lithographic method: the ability to generate a self-masking thin film. The scalability of the nanosphere lithographic technique is a major limitation; however, the silver nanoparticle self-masking enables a one-step thin-film cast or masking process, which can be used to generate nanostructured surfaces over a wide range of surfaces and areas.

  12. Protein capped nanosilver free radical oxidation: role of biomolecule capping on nanoparticle colloidal stability and protein oxidation.

    Science.gov (United States)

    Ahumada, Manuel; Bohne, Cornelia; Oake, Jessy; Alarcon, Emilio I

    2018-05-03

    We studied the effect of human serum albumin protein capped spherical nanosilver on the nanoparticle stability upon peroxyl radical oxidation. The nanoparticle-protein composite is less prone to oxidation compared to the individual components. However, higher concentrations of hydrogen peroxide were formed in the nanoparticle-protein system.

  13. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    Directory of Open Access Journals (Sweden)

    Stefan J. Kelly

    2016-05-01

    Full Text Available Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles (Dh =16.6 ± 3.6 nm are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe. Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc. are demonstrated with feature sizes down to 5 μm.

  14. Controlling statics and dynamics of colloids by photo-patterned liquid crystals (Conference Presentation)

    Science.gov (United States)

    Lavrentovich, Oleg D.; Peng, Chenhui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo

    2016-09-01

    Transport of fluids and particles at the microscale is an important theme both in fundamental and applied science. We demonstrate how an advanced approach to photo-induced alignment of liquid crystals can be used to generate nonlinear electrokinetics. The photoalignment technique is based on irradiation of a photosensitive substrate with light through nanoaperture arrays in metal films. The resulting pattern of surface alignment induces predesigned 2D and 3D distortions of local molecular orientation. In presence of a static electric field, these distortions generate spatial charge and drive electrokinetic flows of the new type, in which the velocities depend on the square of the applied electric field. The patterned liquid crystal electrolyte converts the electric energy into the flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned liquid crystal electrolyte induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications.

  15. Acute and subacute pulmonary toxicity caused by a single intratracheal instillation of colloidal silver nanoparticles in mice: pathobiological changes and metallothionein responses.

    Science.gov (United States)

    Kaewamatawong, Theerayuth; Banlunara, Wijit; Maneewattanapinyo, Pattwat; Thammachareon, Chuchaat; Ekgasit, Sanong

    2014-01-01

    To study the acute and subacute pulmonary toxicity of colloidal silver nanoparticles (Ag-NPs), 0 or 100 ppm of Ag-NPs were instilled intratracheally in mice. Cellular and biochemical parameters in bronchoalveolar lavage fluid (BALF) and histological alterations were determined 1, 3, 7, 15, and 30 days after instillation. Ag-NPs induced moderate pulmonary inflammation and injury on BALF indices during the acute period; however, these changes gradually regressed in a time-dependent manner. Concomitant histopathological and laminin immunohistochemical findings generally correlated to BALF data. Superoxide dismutase and metallothionein expression occurred in particle-laden macrophages and alveolar epithelial cells, which correlated to lung lesions in mice treated with Ag-NPs. These findings suggest that instillation of Ag-NPs causes transient moderate acute lung inflammation and tissue damage. Oxidative stress may underlie the induction of injury to lung tissue. Moreover, the expression of metallothionein in tissues indicated the protective response to exposure to Ag-NPs.

  16. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland.

    Science.gov (United States)

    Tepe, Nathalie; Bau, Michael

    2014-08-01

    Volcanic ashes are often referenced as examples for natural nanoparticles, yet the particle size distribution eruptions at Eyjafjallajökull in 2010. In addition to the dissolved concentrations of rare earth elements (REE), Zr, Hf, Nb, and Th in the 450 nm-filtered waters, we also studied the respective filter residues (river particulates >450 nm) and volcanic ash. In spite of the low solubilities and high particle-reactivities of the elements studied, most water samples show high dissolved concentrations, such as up to 971 ng/kg of Ce and 501 ng/kg of Zr. Except for the pure glacial meltwater and glacial base flow, all waters display the same shale-normalized REE patterns with pronounced light and heavy REE depletion and positive Eu anomalies. While such patterns are unusual for river waters, they are similar to those of the respective river particulates and the volcanic ash, though at different concentration levels. The distribution of dissolved Zr, Hf, Nb, and Th in the waters also matches that of filter residues and ash. This strongly suggests that in all 450 nm-filtered river waters, the elements studied are associated with solid ash particles smaller than 450 nm. This reveals that volcanic ash-derived nanoparticles and colloids are present in these glacial-fed rivers and that such ultrafine particles control the trace element distribution in the surface runoff. Subsequent to explosive volcanic eruptions, these waters provide terrigenous input from landmasses to estuaries, that is characterized by a unique trace element signature and that subsequent to modification by estuarine processes delivers a pulse of nutrients to coastal seawater in regions not affected by plume fall-out. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    Science.gov (United States)

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.

  18. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors

    OpenAIRE

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2015-01-01

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-?-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average s...

  19. [Study of the effect of colloidal solution of silver nanoparticles on parameters of cardio- and hemo-dynamics in rabbits].

    Science.gov (United States)

    Pryskoka, A O

    2014-01-01

    Metal nanoparticles and silver nanoparticles in particular are extensively studied recently considering their prominent antimicrobial properties. Nevertheless, their toxicity aspects and probable side effects remain not well studied. In this article the results of study of the influence of silver nanoparticles onto a cardiovascular system in an in vivo experiment were provided, changes in parameters of cardio- and hemodynamics were defined, and the principles of such influence were identified. Dose-dependent effect of these nanoparticles was established when administered in dose of 4.3 mg/kg three times and 20 mg/kg once.

  20. Liquid Crystal Colloids

    Science.gov (United States)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  1. Fabricating colloidal crystals and construction of ordered nanostructures

    Directory of Open Access Journals (Sweden)

    Sun Zhiqiang

    2006-01-01

    Full Text Available AbstractColloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous colloidal crystals of different building blocks, colloidal crystals composed of non-spherical polyhedrons, and colloidal crystals of non-close-packed colloidal microspheres in particular. The use of these colloidal crystals as templates for different microstructures range from nanoscale to micron-scale is also summarized.

  2. Continuous agglomerate model for identifying the solute- indifferent part of colloid nanoparticle's surface charge

    International Nuclear Information System (INIS)

    Alfimov, A V; Aryslanova, E M; Chivilikhin, S A

    2016-01-01

    This work proposes an explicit analytical model for the surface potential of a colloidal nano-agglomerate. The model predicts that when an agglomerate reaches a certain critical size, its surface potential becomes independent of the agglomerate radius. The model also provides a method for identifying and quantifying the solute-indifferent charge in nanocolloids, that allows to assess the stability of toxicologically significant parameters of the system. (paper)

  3. Active colloids

    International Nuclear Information System (INIS)

    Aranson, Igor S

    2013-01-01

    A colloidal suspension is a heterogeneous fluid containing solid microscopic particles. Colloids play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. It is useful to distinguish two major classes of colloidal suspensions: equilibrium and active, i.e., maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, active colloids pose a formidable challenge, and the research is in its early exploratory stage. One of the most remarkable properties of active colloids is the possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. Active colloidal suspensions may exhibit material properties not present in their equilibrium counterparts, e.g., reduced viscosity and enhanced self-diffusivity, etc. This study surveys the most recent developments in the physics of active colloids, both in synthetic and living systems, with the aim of elucidation of the fundamental physical mechanisms governing self-assembly and collective behavior. (physics of our days)

  4. Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy

    International Nuclear Information System (INIS)

    Catalano, E; Di Benedetto, A

    2017-01-01

    Superparamagnetic iron oxide nanoparticles have recently been investigated for their potential to kill cancer cells with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe 3 O 4 magnetic nanoparticles were synthesized to induce magnetic hyperthermia, and targeted delivering of chemotherapeutics in the cancer microenvironment. The characteristic properties of synthesized bare and CS-MNPs were analyzed by various analytical methods: X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy and Thermo-gravimetric analysis/differential thermal analysis. Magnetic nanoparticles were successfully synthesized using the co-precipitation method. This synthesis technique resulted in nanoparticles with an average particle size of 16 nm. The pure obtained nanoparticles were then successfully encapsulated with 4-nm-thick chitosan coating. The formation of chitosan on the surface of nanoparticles was confirmed by physicochemical analyses. Heating experiments at safe magnetic field (f = 100 kHz, H =10-20 kA m -1 ) revealed that the maximum achieved temperature of water stable chitosan-coated nanoparticles (50 mg ml -1 ) is fully in agreement with cancer therapy and biomedical applications. (paper)

  5. Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy

    Science.gov (United States)

    Catalano, E.; Di Benedetto, A.

    2017-05-01

    Superparamagnetic iron oxide nanoparticles have recently been investigated for their potential to kill cancer cells with promising results, owing to their ability to be targeted and heated by magnetic fields. In this study, novel hydrogel, chitosan Fe3O4 magnetic nanoparticles were synthesized to induce magnetic hyperthermia, and targeted delivering of chemotherapeutics in the cancer microenvironment. The characteristic properties of synthesized bare and CS-MNPs were analyzed by various analytical methods: X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy and Thermo-gravimetric analysis/differential thermal analysis. Magnetic nanoparticles were successfully synthesized using the co-precipitation method. This synthesis technique resulted in nanoparticles with an average particle size of 16 nm. The pure obtained nanoparticles were then successfully encapsulated with 4-nm-thick chitosan coating. The formation of chitosan on the surface of nanoparticles was confirmed by physicochemical analyses. Heating experiments at safe magnetic field (f = 100 kHz, H =10-20 kA m-1) revealed that the maximum achieved temperature of water stable chitosan-coated nanoparticles (50 mg ml-1) is fully in agreement with cancer therapy and biomedical applications.

  6. Influences of surface charge, size, and concentration of colloidal nanoparticles on fabrication of self-organized porous silica in film and particle forms.

    Science.gov (United States)

    Nandiyanto, Asep Bayu Dani; Suhendi, Asep; Arutanti, Osi; Ogi, Takashi; Okuyama, Kikuo

    2013-05-28

    Studies on preparation of porous material have attracted tremendous attention because existence of pores can provide material with excellent performances. However, current preparation reports described successful production of porous material with only partial information on charges, interactions, sizes, and compositions of the template and host materials. In this report, influences of self-assembly parameters (i.e., surface charge, size, and concentration of colloidal nanoparticles) on self-organized porous material fabrication were investigated. Silica nanoparticles (as a host material) and polystyrene (PS) spheres (as a template) were combined to produce self-assembly porous materials in film and particle forms. The experimental results showed that the porous structure and pore size were controllable and strongly depended on the self-assembly parameters. Materials containing highly ordered pores were effectively created only when process parameters fall within appropriate conditions (i.e., PS surface charge ≤ -30 mV; silica-to-PS size ratio ≤0.078; and silica-to-PS mass ratio of about 0.50). The investigation of the self-assembly parameter landscape was also completed using geometric considerations. Because optimization of these parameters provides significant information in regard to practical uses, results of this report could be relevant to other functional properties.

  7. Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina.

    Science.gov (United States)

    Drelich, J; Long, J; Xu, Z; Masliyah, J; White, C L

    2006-11-15

    The atomic force microscope (AFM) has been used to measure surface forces between silicon nitride AFM tips and individual nanoparticles deposited on substrates in 10(-4) and 10(-2) M KCl solutions. Silica nanoparticles (10 nm diameter) were deposited on an alumina substrate and alumina particles (5 to 80 nm diameter) were deposited on a mica substrate using aqueous suspensions. Ionic concentrations and pH were used to manage attractive substrate-particle electrostatic forces. The AFM tip was located on deposited nanoparticles using an operator controlled offset to achieve stepwise tip movements. Nanoparticles were found to have a negligible effect on long-range tip-substrate interactions, however, the forces between the tip and nanoparticle were detectable at small separations. Exponentially increasing short-range repulsive forces, attributed to the hydration forces, were observed for silica nanoparticles. The effective range of hydration forces was found to be 2-3 nm with the decay length of 0.8-1.3 nm. These parameters are in a good agreement with the results reported for macroscopic surfaces of silica obtained using the surface force apparatus suggesting that hydration forces for the silica nanoparticles are similar to those for flat silica surfaces. Hydration forces were not observed for either alumina substrates or alumina nanoparticles in both 10(-4) M KCl solution at pH 6.5 and 10(-2) M KCl at pH 10.2. Instead, strong attractive forces between the silicon nitride tip and the alumina (nanoparticles and substrate) were observed.

  8. Nanoparticle Photoresists: Ligand Exchange as a New, Sensitive EUV Patterning Mechanism

    KAUST Repository

    Kryask, Marie; Trikeriotis, Markos; Ouyang, Christine; Chakrabarty, Sovik; Giannelis, Emmanuel P.; Ober, Christopher K.

    2013-01-01

    compared to other standard photoresists. The current study aims at investigating and establishing the underlying mechanism for dual tone patterning of these nanoparticle photoresist systems. Infrared spectroscopy and UV absorbance studies supported by mass

  9. Mechanochemical activation and patterning of an adhesive surface toward nanoparticle deposition.

    Science.gov (United States)

    Baytekin, H Tarik; Baytekin, Bilge; Huda, Sabil; Yavuz, Zelal; Grzybowski, Bartosz A

    2015-02-11

    Mechanical pulling of adhesive tape creates radicals on the tape's surface. These radicals are capable of reducing metal salts to the corresponding metal nanoparticles. In this way, the mechanically activated tape can be decorated with various types of nanoparticles, including Au, Ag, Pd, or Cu. While retaining their mechanical properties and remaining "sticky," the tapes can exhibit new properties derived from the presence of metal nanoparticles (e.g., bacteriostaticity, increased electrical conductivity). They can also be patterned with nanoparticles only at selective locations of mechanical activation.

  10. Preparation of gold nanoparticles for plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Benkovicova, Monika, E-mail: monika.benkovicova@savba.sk [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava (Slovakia); Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Luby, Stefan; Majkova, Eva [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2013-09-30

    We present a simple hot injection method for the preparation of colloidal solutions of hydrophobic spherical gold nanoparticles with the diameter around 20 nm and size dispersion below 20%. Various surfactants with different lengths of hydrocarbon chains, such as oleylamine, 1-octadecanethiol, poly (N-vinylpyrrolidone), and AgNO{sub 3} in 1,5-pentanediol, were used for sterical stabilization in the colloidal solution. The hydrodynamic nanoparticle size and size dispersion were determined by the dynamic light scattering (DLS) while the small-angle X-ray scattering (SAXS) from the colloidal solution provided information on the size of the metallic nanoparticle core (without surfactant). Plasmon enhanced resonant absorption peaks between 500 nm and 600 nm were detected by the UV–VIS spectrophotometry. The nanoparticle arrays on silicon prepared by solvent evaporation or Langmuir-Schaefer method were inspected by high-resolution scanning electron microscopy and grazing-incidence SAXS (GISAXS). The presence of side maxima in the GISAXS pattern gives evidence of the nanoparticle ordering by self-assembly while very close values of the interparticle distance derived from GISAXS and the nanoparticle size derived from DLS indicate a close-packed order. - Highlights: ► Preparation of gold nanoparticles by use a various of surfactants ► Preparation of monodisperse nanoparticles ► Characterization of nanoparticles on a solid substrate.

  11. The Reactivity and Dynamics of Gaseous Clusters. The Dynamics and Controlled Shaped Synthesis of Gaseous and Colloidal Nanoparticles

    National Research Council Canada - National Science Library

    El-Sayed, M

    1997-01-01

    .... Thus our aim is to understand the adhesive and cohesive forces holding atoms or molecules together in unconventional nanoparticles that do not usually bind together in conventional macroscopic materials...

  12. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  13. Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone−ethylene glycol blends

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The dielectric dispersion behaviour of montmorillonite (MMT clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone-ethylene glycol (PVP-EG blends were investigated over the frequency range 20 Hz to 1 MHz at 30°C. The 0, 1, 2, 3, 5 and 10 wt% MMT clay concentration of the weight of total solute (MMT+PVP were prepared in PVP-EG blends using EG as solvent. The complex relative dielectric function, alternating current (ac electrical conductivity, electric modulus and impedance spectra of these materials show the relaxation processes corresponding to the micro-Brownian motion of PVP chain, ion conduction and electrode polarization phenomena. The real part of ac conductivity spectra of these materials obeys Jonscher power law σ′(ω =σdc + Aωn in upper frequency end of the measurement, whereas dispersion in lower frequency end confirms the presence of electrode polarization effect. It was observed that the increase of clay concentration in the PVP-EG blends significantly increases the ac conductivity values, and simultaneously reduces the ionic conductivity relaxation time and electric double layer relaxation time, which suggests that PVP segmental dynamics and ionic motion are strongly coupled. The intercalation of EG structures in clay galleries and exfoliation of clay sheets by adsorption of PVP-EG structures on clay surfaces are discussed by considering the hydrogen bonding interactions between the hydroxyl group (–OH of EG molecules, carbonyl group (C=O of PVP monomer units, and the hydroxylated aluminate surfaces of the MMT clay particles. Results suggest that the colloidal suspension of MMT clay nano particles in the PVP-EG blends provide a convenient way to obtain an electrolyte solution with tailored electrical conduction properties.

  14. Study of the magnetic microstructure of high-coercivity sintered SmCo5 permanent magnets with the conventional Bitter pattern technique and the colloid-SEM method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2007-01-01

    The magnetic microstructure of high-coercivity sintered SmCo 5 permanent magnets was studied with the conventional Bitter pattern technique, and also for the first time with the colloid-scanning electron microscopy (colloid-SEM) method. Both techniques were supported by digital image acquisition, enhancement and analysis. Thanks to this, it was possible to obtain high-contrast and clear images of the magnetic microstructure and to analyze them in detail, and consequently also to achieve improvements over earlier results. In the thermally demagnetized state the grains were composed of magnetic domains. On the surface perpendicular to the alignment axis, the main domains forming a maze pattern and surface reverse spikes were observed. Investigations on the surface parallel to the alignment axis, especially by the colloid-SEM technique, provided a detailed insight into the orientation of grains. The alignment of grains was good, but certainly not perfect; there were also strongly misaligned grains, although generally very rare. In most cases the domain structures within grains were independent of their neighbors, but in some cases (not so rare) the domain walls were observed to continue through the grain boundaries, indicating significant magnetostatic interaction between neighboring grains. Studies of the behavior of the magnetic microstructure under the influence of an external magnetic field, performed for the first time on the surface parallel to the alignment axis (with the conventional Bitter pattern method), showed that the domain walls move easily within the grains and that the magnetization reversal mechanism is mainly related to the nucleation and growth of reverse domains, i.e. that sintered SmCo 5 magnets are nucleation-dominated systems. Groupwise magnetization reversal of adjacent magnetically coupled grains was observed, an unfavorable effect for high-coercivity magnets. Images obtained by the colloid-SEM technique and the conventional Bitter pattern

  15. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen; Srivastava, Samanvaya; Archer, Lynden A.

    2011-01-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy

  16. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology

    Science.gov (United States)

    Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2015-11-01

    Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size

  17. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS.

    Science.gov (United States)

    Kazim, Samrana; Pfleger, Jiří; Procházka, Marek; Bondarev, Dmitrij; Vohlídal, Jiří

    2011-02-15

    We report tuning of structure dependent optical properties of colloidal systems of borate-stabilized silver nanoparticles (Ag NPs) and polythiophene-based cationic polyelectrolyte with ionic-liquid like side groups: poly{3-[6-(1-methylimidazolium-3-yl)hexyl]thiophene-2,5-diyl bromide} (PMHT-Br) towards obtaining local electromagnetic field enhancement effects. Surface-enhanced Raman scattering (SERS) studies showed that the strong electromagnetic field enhancement is related to the formation of aggregates of Ag NPs achieved at the components ratio providing the charge balance between Ag NPs and cationic polythiophene, at which Ag NPs are nearly single-polymer-layer coated, their zeta potential is close to zero and they easily form aggregates in which the mean inter-particle distance enables the occurrence of desired plasmonic effects. Fluorescence quenching is efficient only in the systems with low concentrations of PMHT-Br, in which almost all polymer chains directly interact with the Ag NPs surface. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. [The study of antimicrobial properties of silver nanoparticles in the form of a colloidal solution in the matrix of finely dispersed silica].

    Science.gov (United States)

    Korchak, G I; Surmasheva, E V; Mikhienkova, A I; Nikonova, N A; Romanenko, L I; Oliĭnyk, Z A; Gorval', A K; Rosada, M A

    2012-01-01

    In the experimental study obtained with chemical method colloid solution of nanoparticles (NPs) of silver (Ag) and a composite on his base in the matrix of finely dispersed silica with particle size of 8-12 nm and NPs concentration in basic solution of 0,0016% (0,016 mg/cm3) were established to exhibit high antimicrobial activity against the test organisms: E. coli, P. aeruginosa, S. Aureus and C. Albicans, which depended on a set of factors. Antibacterial properties of tissue impregnated with Ag-NPs were studied. As stabilizing substances a mixture of surface-active substance sodium dodecyl sulfate and polymer polyvinylpyrrolidone was used Before the beginning of the study effective neutralizer was tailored. Times of preservation of antimicrobial activity of test samples have been established, and also their stability throughout long term of supervision (24 months) has been shown. Effect of organic pollution on antimicrobal activity of the samples has been studied. Based on obtained results the algorithm of the study of antimicrobial properties of nanopreparations has been elaborated.

  19. Interfacial Transformation of an Amorphous Carbon Nanofilm upon Fe@Ag@Si Nanoparticle Landing and its Colloidal Nanoscrolls: Enhanced Nanocompositing-Based Performance for Bioapplications.

    Science.gov (United States)

    Kim, Jeong-Hwan; Benelmekki, Maria

    2016-12-07

    We report a novel method for generating magneto-plasmonic carbon nanofilms and nanoscrolls using a combination of two gas-phase synthetic techniques. Ternary Fe@Ag@Si "onion-like" nanoparticles (NPs) are produced by a magnetron sputtering inert gas condensation source and are in situ landed onto the surface of carbon nanofilms, which were previously deposited by a DC arc discharge technique. Subsequently, a polyethylenimine-mediated chemical exfoliation process is performed to obtain carbon nanoscrolls (CNS) with embedded NPs (CNS-NPs). Of note, the carbon nanofilms undergo an interfacial transition upon addition of NPs and become rich in the sp 2 phase. This transformation endows and enhances multiple functions, such as thermal conductivity and the plasmonic properties of the nanocomposites. The obtained two-dimentional (2D) nanocomposites not only exhibit a highly efficient surface-enhanced Raman scattering property, allowing sensitive detection of malachite green isothiocyanate (MGIT) and adenosine-triphosphate (ATP) molecules at concentrations as low as 1 × 10 -10 M, but also show enhanced near-infrared-responsive photothermal activity when forming stable colloidal 1D CNS-NPs. In addition, the CNS-NPs present an enhanced single- and two-photon fluorescence in comparison with pristine CNS and NPs. These results make them suitable for the rational fabrication of "all-in-one" multifunctional nanocomposites with tubular structures toward a wide range of biomedical solutions.

  20. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  1. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization

    Science.gov (United States)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban

    2017-11-01

    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  2. Low-temperature synthesis of hexagonal transition metal ion doped ZnS nanoparticles by a simple colloidal method

    International Nuclear Information System (INIS)

    Wang, Liping; Huang, Shungang; Sun, Yujie

    2013-01-01

    A general route to synthesize transition metal ions doped ZnS nanoparticles with hexagonal phase by means of a conventional reverse micelle at a low temperature is developed. The synthesis involves N,N-dimethylformamide, Zn(AC) 2 solution, thiourea, ammonia, mercaptoacetic acid, as oil phase, water phase, sulfide source, pH regulator, and surfactant, respectively. Thiourea, ammonia and mercaptoacetic acid are demonstrated crucial factors, whose effects have been studied in detail. In addition, the FT-IR spectra suggest that mercaptoacetic acid may form complex chelates with Zn 2+ in the preparation. In the case of Cu 2+ as a doped ion, hexagonal ZnS:Cu 2+ nanoparticles were synthesized at 95 °C for the first time. The X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements show that the ZnS:Cu 2+ nanoparticles are polycrystalline and possess uniform particle size. The possible formation mechanism of the hexagonal doped ZnS is discussed.

  3. Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge

    Directory of Open Access Journals (Sweden)

    Schweiger Christoph

    2012-07-01

    Full Text Available Abstract Time-resolved quantitative colocalization analysis is a method based on confocal fluorescence microscopy allowing for a sophisticated characterization of nanomaterials with respect to their intracellular trafficking. This technique was applied to relate the internalization patterns of nanoparticles i.e. superparamagnetic iron oxide nanoparticles with distinct physicochemical characteristics with their uptake mechanism, rate and intracellular fate. The physicochemical characterization of the nanoparticles showed particles of approximately the same size and shape as well as similar magnetic properties, only differing in charge due to different surface coatings. Incubation of the cells with both nanoparticles resulted in strong differences in the internalization rate and in the intracellular localization depending on the charge. Quantitative and qualitative analysis of nanoparticles-organelle colocalization experiments revealed that positively charged particles were found to enter the cells faster using different endocytotic pathways than their negative counterparts. Nevertheless, both nanoparticles species were finally enriched inside lysosomal structures and their efficiency in agarose phantom relaxometry experiments was very similar. This quantitative analysis demonstrates that charge is a key factor influencing the nanoparticle-cell interactions, specially their intracellular accumulation. Despite differences in their physicochemical properties and intracellular distribution, the efficiencies of both nanoparticles as MRI agents were not significantly different.

  4. Direct patterning of nanoparticles and biomolecules by liquid nanodispensing.

    Science.gov (United States)

    Fabié, Laure; Agostini, Pierre; Stopel, Martijn; Blum, Christian; Lassagne, Benjamin; Subramaniam, Vinod; Ondarçuhu, Thierry

    2015-03-14

    We report on the localized deposition of nanoparticles and proteins, nano-objects commonly used in many nanodevices, by the liquid nanodispensing (NADIS) technique which consists in depositing droplets of a solution through a nanochannel drilled at the apex of an AFM tip. We demonstrate that the size of spots can be adjusted from microns down to sub-50 nm by tuning the channel diameter, independently of the chemical nature of the solute. In the case of nanoparticles, we demonstrated the ultimate limit of the method and showed that large arrays of single (or pairs of) nanoparticles can be reproducibly deposited. We further explored the possibility to deposit different visible fluorescent proteins using NADIS without loss of protein function. The intrinsic fluorescence of these proteins is characteristic of their structural integrity; the retention of fluorescence after NADIS deposition demonstrates that the proteins are intact and functional. This study demonstrates that NADIS can be a viable alternative to other scanning probe lithography techniques since it combines high resolution direct writing of nanoparticles or biomolecules with the versatility of liquid lithography techniques.

  5. Direct patterning of nanoparticles and biomolecules by liquid nanodispensing

    NARCIS (Netherlands)

    Fabie, Laure; Agostini, Pierre; Stopel, M.H.W.; Blum, Christian; Lassagne, Benjamin; Subramaniam, Vinod; Ondarcuhua, Thierry

    2015-01-01

    We report on the localized deposition of nanoparticles and proteins, nano-objects commonly used in many nanodevices, by the liquid nanodispensing (NADIS) technique which consists in depositing droplets of a solution through a nanochannel drilled at the apex of an AFM tip. We demonstrate that the

  6. Colloidal stability of CeO2 nanoparticles coated with either natural organic matter or organic polymers under various hydrochemical conditions

    Science.gov (United States)

    Dippon, Urs; Pabst, Silke; Klitzke, Sondra

    2016-04-01

    The worldwide marked for engineered nanoparticles (ENPs) is growing and concerns on the environmental fate- and toxicity of ENPs are rising. Understanding the transport of ENPs within and between environmental compartments such as surface water and groundwater is crucial for exposition modeling, risk assessment and ultimately the protection of drinking water resources. The transport of ENPs is strongly influenced by the surface properties and aggregation behavior of the particles, which is strongly controlled by synthetic and natural organic coatings. Both, surface properties and aggregation characteristics are also key properties for the industrial application of ENPs, which leads to the development and commercialization of an increasing number of surface-functionalized ENPs. These include metals and oxides such as Cerium dioxide (CeO2) with various organic coatings. Therefore, we investigate CeO2 ENPs with different surface coatings such as weakly anionic polyvinyl alcohol (PVA) or strongly anionic poly acrylic acid (PAA) with respect to their colloidal stability in aqueous matrix under various hydrochemical conditions (pH, ionic strength) and their transport behavior in sand filter columns. Furthermore, we investigate the interaction of naturally occurring organic matter (NOM) with CeO2 ENPs and its effect on surface charge (zeta potential), colloidal stability and transport. While uncoated CeO2 ENPs aggregate at pH > 4 in aqueous matrix, our results show that PAA and PVA surface coatings as well as NOM sorbed to CeO2-NP surfaces can stabilize CeO2 ENPs under neutral and alkaline pH conditions in 1 mM KCl solution. Under slightly acidic conditions, differences between the three particle types were observed. PVA can stabilize particle suspensions in presence of 1 mM KCl at pH > 4.3, PAA at pH >4.0 and NOM at >3.2. While the presence of KCl did not influence particle size of NOM-CeO2 ENPs, CaCl2 at >2 mM lead to aggregation. Further results on the influence of KCl

  7. Adsorption and sub-nanomolar sensing of thioflavin T on colloidal gold nanoparticles, silver nanoparticles and silver-coated films studied using surface-enhanced Raman scattering.

    Science.gov (United States)

    Maiti, Nandita; Chadha, Ridhima; Das, Abhishek; Kapoor, Sudhir

    2015-01-01

    Raman and surface-enhanced Raman scattering (SERS) studies of thioflavin T (ThT) in solid, solution, gold nanoparticles (GNPs), silver nanoparticles (SNPs) and silver-coated films (SCFs) were investigated. Concentration-dependent SERS spectrum of ThT in GNPs and SNPs indicated the existence of two possible structures, one with the torsional angle (φ) between benzothiazole and dimethylaminobenzene rings being 37° and the other with φ=90°. The SERS spectrum of ThT in SCFs were similar to the Raman spectrum of solid and solution that suggests φ=37°. In this paper, the high sensitivity of the SERS technique was employed for sub-nanomolar (picomolar) sensing of ThT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synthetic Smectite Colloids: Characterization of Nanoparticles after Co-Precipitation in the Presence of Lanthanides and Tetravalent Elements (Zr, Th

    Directory of Open Access Journals (Sweden)

    Muriel Bouby

    2015-09-01

    Full Text Available The magnesian smectite hectorite is a corrosion product frequently detected in nuclear waste glass alteration experiments. The structural incorporation of a single trivalent lanthanide was previously demonstrated. Hectorite was presently synthesized, for the first time, in the presence of several lanthanides (La, Eu, Yb following a multi-step synthesis protocol. The smallest-sized particles (nanoparticles, NPs were isolated by centrifugation and analyzed by asymmetrical flow field-flow fractionation (AsFlFFF coupled to ICP-MS, in order to obtain information on the elemental composition and distribution as a function of the size. Nanoparticles can be separated from the bulk smectite phase. The particles are able to accommodate even the larger-sized lanthanides such as La, however, with lower efficiency. We, therefore, assume that the incorporation proceeds by substitution for octahedral Mg accompanied by a concomitant lattice strain that increases with the size of the lanthanides. The presence of a mixture does not seem to affect the incorporation extent of any specific element. Furthermore, syntheses were performed where in addition the tetravalent zirconium or thorium elements were admixed, as this oxidation state may prevail for many actinide ions in a nuclear waste repository. The results show that they can be incorporated as well.

  9. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  10. Radioactive colloids

    International Nuclear Information System (INIS)

    Bergqvist, L.

    1987-01-01

    Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)

  11. Aggregation-based colorimetric sensor for determination of prothioconazole fungicide using colloidal silver nanoparticles (AgNPs)

    Science.gov (United States)

    Ivrigh, Zahra Jafar-Nezhad; Fahimi-Kashani, Nafiseh; Hormozi-Nezhad, M. Reza

    2017-12-01

    There is a growing interest in developing high-performance sensors monitoring fungicides, due to their broadly usage and their adverse effects on humans and wildlife. In the present study, a colorimetric probe has been proposed for detection of prothioconazole based on aggregation of unmodified silver nanoparticles (AgNPs). Under optimized condition, linear relationships between the concentration of prothioconazole and the absorbance ratio of A500/A395 were found over the range of 0.01 μg·mL- 1 to 0.4 μg·mL- 1 with quantification limit as low as 1.7 ng·mL- 1. Furthermore, AgNPs color change from yellow to pink-orange in presence of prothioconazole, indicates highly sensitive naked-eye colorimetric assay for quantifying prothioconazole in real applications. The proposed approach was successfully used for the determination of prothioconazole in wheat flour and paddy water sample.

  12. Colloidal superballs

    NARCIS (Netherlands)

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and

  13. Soft-lithographic patterning of room termperature-sintering Ag Nanoparticles on foil

    NARCIS (Netherlands)

    Moonen, P.; Bat, E.; Voorthuijzen, W. Pim; Huskens, Jurriaan

    2013-01-01

    Room temperature-sintering, poly(acrylic acid)-capped silver nanoparticles (Ag-PAA NPs) were used in a wide range of nanofabrication methods to form metallic silver microstructures on flexible poly(ethylene terephthalate) (PET) substrates. Silver wires on top of PET foil were patterned by

  14. Soft-lithographic patterning of room temperaturesintering Ag nanoparticles on foil

    NARCIS (Netherlands)

    Moonen,P.F.; Bat,E.; Voorthuijzen, W.P.; Huskens, J.

    2013-01-01

    Room temperature-sintering, poly(acrylic acid)-capped silver nanoparticles (Ag-PAA NPs) were used in a wide range of nanofabrication methods to form metallic silver microstructures on flexible poly(ethylene terephthalate) (PET) substrates. Silver wires on top of PET foil were patterned by

  15. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    KAUST Repository

    Chakrabarty, Souvik; Ouyang, Christine; Krysak, Marie; Trikeriotis, Markos; Cho, Kyoungyoung; Giannelis, Emmanuel P.; Ober, Christopher K.

    2013-01-01

    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.

  16. Oxide nanoparticle EUV resists: toward understanding the mechanism of positive and negative tone patterning

    KAUST Repository

    Chakrabarty, Souvik

    2013-04-01

    DUV, EUV and e-beam patterning of hybrid nanoparticle photoresists have been reported previously by Ober and coworkers. The present work explores the underlying mechanism that is responsible for the dual tone patterning capability of these photoresist materials. Spectroscopic results correlated with mass loss and dissolution studies suggest a ligand exchange mechanism responsible for altering the solubility between the exposed and unexposed regions. © 2013 SPIE.

  17. [New toxicological patterns of nanomaterials, nanostructures and nanoparticles].

    Science.gov (United States)

    Mazzotta, M; Mazzotta, A D; Fernández, M; Tamborino, B; De Filippis, G

    2012-01-01

    Nanomaterials engineered as nanotubes, quantum-dots, dendrimers or hybrid systems are increasing themselves by an annual mean rate of 4-5%, with rapid spread in various sectors e.g. biomedical. The liposolubility through membranes and the hydrosolubility through active transport do not interfere with nanoparticles below a certain size, which without activation processes and carrier, transport through thanks to capillaries, to intracellular pores (60 - 70 nm) and fissures (4 - 6 nm) in the same membranes. Conversely, in the processes of pinocytosis/endocytosis energy and carrier are required and endocytosis clathrin/caveolae mediated,is respectively for nanoparticles higher or lower than 200 nm. In occupational hazard nanostructures ranging from a few nm up to 100 - 150 nm have the ability to affect several organs through inhalation, intestinal, parental or dermal route of access. New toxicological aspects are associated to the capacity of nanomaterials of being more or less biocompatible or hydrosoluble, of creating bonds with proteins or to determine accumulation in the cells due to an incomplete elimination process.

  18. Sulfonic acid-functionalized golf nanoparticles: A colloid-bound catalyst for soft lithographic application on self-assembled monolayers

    NARCIS (Netherlands)

    Li, X.; Paraschiv, V.; Huskens, Jurriaan; Reinhoudt, David

    2003-01-01

    In this report, we present a new lithographic approach to prepare patterned surfaces. Self-assembled monolayers (SAMs) of the acid-labile trimethylsilyl ether (TMS-OC11H22S)2 (TMS adsorbate) was formed on gold. 5-Mercapto-2-benzimidazole sulfonic acid sodium salt (MBS-Na+) was used as a ligand for

  19. Two-dimensional nanopatterning by PDMS relief structures of polymeric colloidal crystals

    Science.gov (United States)

    Nam, Hye Jin; Kim, Ju-Hee; Jung, Duk-Young; Park, Jong Bae; Lee, Hae Seong

    2008-06-01

    A new constructive method of fabricating a nanoparticle self-assembly on the patterned surface of a poly(dimethylsiloxane) (PDMS) relief nanostructure was demonstrated. Patterned PDMS templates with close-packed microwells were fabricated by molding against a self-assembled monolayer of polystyrene spheres. Alkanethiol-functionalized gold nanoparticles with an average particle size of 2.5 nm were selectively deposited onto a hydrophobic self-assembled monolayer printed on the substrate by the micro-contact printing (μCP) of the prepared PDMS microwell, in which the patterned gold nanoparticles consisted of close-packed hexagons with an average diameter of 370 nm. In addition, two-dimensional colloidal crystals derived from PMMA microspheres with a diameter of 380 nm and a negative surface charge were successfully formed on the hemispherical microwells by electrostatic force using positively charged PAH-coated PDMS as a template to produce multidimensional nanostructures.

  20. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  1. Quantum-size colloid metal systems

    International Nuclear Information System (INIS)

    Roldugin, V.I.

    2000-01-01

    In the review dealing with quantum-dimensional metallic colloid systems the methods of preparation, electronic, optical and thermodynamic properties of metal nanoparticles and thin films are considered, the effect of ionizing radiation on stability of silver colloid sols and existence of a threshold radiation dose affecting loss of stability being discussed. It is shown that sol stability loss stems from particles charge neutralization due to reduction of sorbed silver ions induced by radiation, which results in destruction of double electric layer on colloid particles boundary [ru

  2. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  3. Colloidal Stability of Gold Nanoparticles Coated with Multithiol-Poly(ethylene glycol) Ligands: Importance of Structural Constraints of the Sulfur Anchoring Groups

    Science.gov (United States)

    2013-08-13

    order: monothiol < flexible dithiol < constrained dithiol < disulfide. The present study indicates that the colloidal stability of thiolated ligand...protein/ polymer - negatively charged AuNP) and hydrophobic adsorption (hydrophobic protein pockets - AuNP).1, 20 Each mechanism will also be...colloidal stability has been significantly improved by preparing a relatively thicker shell with polymers or polyelectrolytes such as poly(N-vinyl-2

  4. Colloidal Interactions of Quantum Dots in Apolar Liquids

    NARCIS (Netherlands)

    van Rijssel, J.

    2013-01-01

    In this thesis, the main topic is the interactions of nanoparticles in apolar liquids. These includes both the colloidal interactions between nanoparticles and the interaction of the nanoparticles with an external potential from a liquid/air interface or a magnetic field. The understanding of these

  5. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.

    Science.gov (United States)

    Cho, Heesook; Yoo, Hana; Park, Soojin

    2010-05-18

    Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.

  6. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate.

    Science.gov (United States)

    Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian

    2017-03-21

    When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.

  7. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder.

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-08

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  8. Laser Printing of Superhydrophobic Patterns from Mixtures of Hydrophobic Silica Nanoparticles and Toner Powder

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2016-11-01

    In this work, a new and facile dry printing method was developed for the direct fabrication of superhydrophobic patterns based on silica nanoparticles. Mixtures of hydrophobic fumed silica nanoparticles and toner powder were printed on paper and polymer sheets using a commercial laser printer to produce the superhydrophobic patterns. The mixing ratio of the toner powder (for the laser printer) to hydrophobic silica was also investigated to optimize both the printing quality and the superhydrophobicity of the printed areas. The proper mixing ratio was then used to print various superhydrophobic patterns, including triangular, square, circular, and complex arrangements, to demonstrate that superhydrophobic surfaces with different patterns can be fabricated in a few seconds without any post-processing. The superhydrophobicity of each sample was evaluated by contact angle measurements, and all printed areas showed contact angles greater than 150°. The research described here opens the possibility of rapid production of superhydrophobic surfaces with various patterns. Ultimately, the obtained findings may have a significant impact on applications related to self-cleaning, control of water geometry and position, fluid mixing and fluid transport.

  9. Anisotropic Model Colloids

    NARCIS (Netherlands)

    van Kats, C.M.

    2008-01-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are

  10. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    related to historical prospective, synthesis, characterization, theoretical modeling and application of unique class of colloidal materials starting from colloidal gold to coated silica colloid and platinum, titania colloids. This book is unique in its design, content, providing depth of science about...

  11. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  12. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    KAUST Repository

    Lee, Ming-Tsang

    2011-08-12

    In this study we demonstrate a novel approach for the rapid fabricating micro scale metal (silver) patterning directly on a polydimethylsiloxane (PDMS) substrate. Silver nanoparticles were sintered on PDMS to form conductive metal films using laser direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical conductivities and good film properties of the sintered silver patterns. This study reveals an advanced method of metal patterning on PDMS, and proposes a new research application of LDW in a nanoparticle colloidal environment. © 2011 IOP Publishing Ltd.

  13. Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism

    KAUST Repository

    Jiang, Jing; Zhang, Ben; Yu, Mufei; Li, Li; Neisser, Mark; Sung Chun, Jun; Giannelis, Emmanuel P.; Ober, Christopher K.

    2015-01-01

    © 2015 SPST. In the past few years, industry has made significant progress to deliver a stable high power EUV scanner and a 100 W light source is now being tested on the manufacuring scale. The success of a high power EUV source demands a fast and high resolution EUV resist. However, chemcially amplied resists encounter unprecedented challenges beyond the 22 nm node due to resolution, roughness and sensitivity tradeoffs. Unless novel solutions for EUV resists are proposed and further optimzed, breakthroughs can hardly be achieved. Oxide nanoparticle EUV (ONE) resists stablized by organic ligands were originally proposed by Ober et al. Recently this work attracts more and more attention due to its extraordinanry EUV sensitivity. This new class of photoresist utilizes ligand cleavage with a ligand exchange mechanism to switch its solubilty for dual-tone patterning. Therefore, ligand selection of the nanoparticles is extremely important to its EUV performance.

  14. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  15. Patterned immobilisation of silicon dioxide nanoparticles on the surface of a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Muhr, Nina, E-mail: nina.muhr@unileoben.ac.at [Chair of Chemistry of Polymeric Materials, University of Leoben, Otto-Gloeckel-Strasse 2, A-8700 Leoben (Austria); Grinschgl, Markus; Griesser, Thomas [Chair of Chemistry of Polymeric Materials, University of Leoben, Otto-Gloeckel-Strasse 2, A-8700 Leoben (Austria); Kern, Wolfgang [Chair of Chemistry of Polymeric Materials, University of Leoben, Otto-Gloeckel-Strasse 2, A-8700 Leoben (Austria); Polymer Competence Center Leoben GmbH, Peter-Rosegger-Strasse 12, A-8700 Leoben (Austria); Schroettner, Hartmuth [Institute for Electron Microscopy, Technical University of Graz, Steyrergasse 17, A-8010 Graz (Austria)

    2012-01-01

    A photosensitive co-polymer of styrene and 4-vinylbenzyl thiocyanate was synthesised and employed for the immobilisation of aminofunctionalised silica nanoparticles (SiO{sub 2}-NP) at the polymer surface. Upon UV irradiation of the co-polymer, isothiocyanate groups are generated by a photo-isomerisation reaction of the thiocyanate groups. The silica nanoparticles were selectively immobilised in irradiated areas by immersing the illuminated polymer surface in a solution of SiO{sub 2}-NP. Depending on the time of immersion and the nanoparticle concentration, different amounts of silica can be deposited in the irradiated areas, whilst no immobilisation of SiO{sub 2}-NP is observed in the non-irradiated areas. By using photolithographic methods, patterned silica structures ({mu}m scale) were produced on the polymer surface. The SiO{sub 2}-NP covered surfaces are of potential interest to generate protective surface layers and to carry out further functionalisation reactions of the immobilised SiO{sub 2}-NP particles.

  16. Colloid transport in dual-permeability media

    Science.gov (United States)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  17. Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2016-11-01

    Full Text Available A new method to integrate poly-dl-lactide (PLA patterned electrospun fibers with a polydimethylsiloxane (PDMS microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP. In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.

  18. Highly luminescent colloidal Eu(3)+-doped KZnF(3) nanoparticles for the selective and sensitive detection of Cu(II) ions.

    Science.gov (United States)

    Sarkar, Shyam; Chatti, Manjunath; Mahalingam, Venkataramanan

    2014-03-17

    This article describes a green synthetic approach to prepare water dispersible perovskite-type Eu3+-doped KZnF3 nanoparticles, carried out using environmentally friendly microwave irradiation at low temperature (85 8C) with water as a solvent. Incorporation of Eu3+ ions into the KZnF3 matrix is confirmed by strong red emission upon ultraviolet (UV) excitation of the nanoparticles. The nanoparticles are coated with poly(acrylic acid) (PAA), which enhances the dispersibility of the nanoparticles in hydrophilic solvents. The strong red emission from Eu3+ ions is selectively quenched upon addition of CuII ions, thus making the nanoparticles a potential CuII sensing material. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA), with recovery of almost 90% of the luminescence. If the nanoparticles are strongly attached to a positively charged surface, dipping the surface in a CuII solution leads to the quenching of Eu3+ luminescence, which can be recovered after dipping in an EDTA solution. This process can be repeated for more than five cycles with only a slight decrease in the sensing ability. In addition to sensing, the strong luminescence from Eu3+-doped KZnF3 nanoparticles could be used as a tool for bioimaging.

  19. Photochemical events during photosensitization of colloidal ZnO ...

    Indian Academy of Sciences (India)

    The photosensitization of colloidal ZnO nanoparticles with riboflavin (RF) was investigated using absorption, fluorescence spectroscopic measurements and time resolved fluorescence measurements. Riboflavin adsorbed strongly on the surface of ZnO nanoparticles. Apparent association constant was obtained from the ...

  20. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    International Nuclear Information System (INIS)

    Choi, Young Joon; Djilali, Ned

    2016-01-01

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified

  1. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    Directory of Open Access Journals (Sweden)

    Yali Lin

    2017-11-01

    Full Text Available Cholesteric liquid crystals (CLCs exhibit selective Bragg reflections of circularly polarized (CP light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe3O4 nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters “L” and “C” was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs.

  2. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors.

    Science.gov (United States)

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-11-08

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe₃O₄ nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters "L" and "C" was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs.

  3. Fabrication of Octahedral Gold Nanoparticle embedded Polymer Pattern based on Electron Irradiation and Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Nam; Lee, Hyeok Moo; Cho, Sung Oh [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2011-05-15

    Noble metal nanoparticles (NPs) such as gold (Au), silver, and copper have been a hot research issue due to their unique optical, electronic, and catalytic properties. On account of the size- and shape- dependent properties of the noble metal NPs, most researches are concentrated on tailoring sizes and shapes of the noble metal NPs. In particular, noble metal NPs with Platonic shapes such as tetrahedron, cube, octahedron, dodecahedron, and icosahedron have significant impact on a variety of applications including surface-enhancement spectroscopy, biochemical sensing, and nanodevice fabrication because sharp corners of the metals lead to high local electric-field enhancement. In addition, patterning or controlled assembly of noble metal NPs is indispensible for biological sensors, micro-/nano-electronic devices, photonic and photovoltaic devices, and surface-enhanced Raman scattering (SERS)-active substrates. Although Platonic noble metal NPs with well defined sizes have been intensively studied, patterning of Platonic noble metal NPs has been rarely demonstrated. Here, we present a strategy to fabricate patterned Au nano-octahedra embedded polymer films by selectively irradiating an electron beam onto HAuCl{sub 4}-loadaed poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymer (BCP) precursor films followed by thermal treatment. The BCP plays a important role for the patterning of the precursor film due to a cross-linking behavior under electron irradiation

  4. Coulomb force directed single and binary assembly of nanoparticles from aqueous dispersions by AFM nanoxerography.

    Science.gov (United States)

    Palleau, Etienne; Sangeetha, Neralagatta M; Viau, Guillaume; Marty, Jean-Daniel; Ressier, Laurence

    2011-05-24

    We present a simple protocol to obtain versatile assemblies of nanoparticles from aqueous dispersions onto charge patterns written by atomic force microscopy, on a 100 nm thin film of polymethylmethacrylate spin-coated on silicon wafers. This protocol of nanoxerography uses a two-stage development involving incubation of the desired aqueous colloidal dispersion on charge patterns and subsequent immersion in an adequate water-soluble alcohol. The whole process takes only a few minutes. Numerical simulations of the evolution of the electric field generated by charge patterns in various solvents are done to resolve the mechanism by which nanoparticle assembly occurs. The generic nature of this protocol is demonstrated by constructing various assemblies of charged organic/inorganic/metallic (latex, silica, gold) nanoparticles of different sizes (3 to 100 nm) and surface functionalities from aqueous dispersions onto charge patterns of complex geometries. We also demonstrate that it is possible to construct a binary assembly of nanoparticles on a pattern made of positive and negative charges generated in a single charge writing step, by sequential developments in two aqueous dispersions of oppositely charged particles. This protocol literally extends the spectra of eligible colloids that can be assembled by nanoxerography and paves the way for building complex assemblies of nanoparticles on predefined areas of surfaces, which could be useful for the elaboration of nanoparticle-based functional devices.

  5. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination

    Directory of Open Access Journals (Sweden)

    Niels Hadrup

    2016-10-01

    Full Text Available Selenium (Se is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human high level were employed to study the effects at borderline toxicity. Evaluations of all significantly changed putative metabolites, showed that Se nanoparticles and sodium selenite induced similar dose dependent changes of the metabolite pattern. Putative identified metabolites included increased decenedioic acid and hydroxydecanedioic acid for both Se formulations whereas dipeptides were only increased for selenite. These effects could reflect altered fatty acid and protein metabolism, respectively.

  6. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A K [Department of Physics, Washington University in St Louis, MO 63130 (United States); Krishna, H [Department of Physics, Washington University in St Louis, MO 63130 (United States); Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Miller, C [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, R [Department of Physics, Washington University in St Louis, MO 63130 (United States)

    2007-12-05

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe{sub 64.5}Cr{sub 10}Si{sub 13.5}B{sub 9}Nb{sub 3} alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen.

  7. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    International Nuclear Information System (INIS)

    Gangopadhyay, A K; Krishna, H; Favazza, C; Miller, C; Kalyanaraman, R

    2007-01-01

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe 64.5 Cr 10 Si 13.5 B 9 Nb 3 alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen

  8. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    Directory of Open Access Journals (Sweden)

    V.S. Neverov

    2017-01-01

    Full Text Available XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D diffraction patterns and pair-distribution functions (PDF for amorphous or crystalline nanoparticles (up to ∼107 atoms of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  9. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    Science.gov (United States)

    Neverov, V. S.

    XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  10. Highly Tunable Complementary Micro/Submicro-Nanopatterned Surfaces Combining Block Copolymer Self-Assembly and Colloidal Lithography.

    Science.gov (United States)

    Chang, Tongxin; Du, Binyang; Huang, Haiying; He, Tianbai

    2016-08-31

    Two kinds of large-area ordered and highly tunable micro/submicro-nanopatterned surfaces in a complementary manner were successfully fabricated by elaborately combining block copolymer self-assembly and colloidal lithography. Employing a monolayer of polystyrene (PS) colloidal spheres assembled on top as etching mask, polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) or polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) micelle films were patterned into micro/submicro patches by plasma etching, which could be further transferred into micropatterned metal nanoarrays by subsequent metal precursor loading and a second plasma etching. On the other hand, micro/submicro-nanopatterns in a complementary manner were generated via preloading a metal precursor in initial micelle films before the assembly of PS colloidal spheres on top. Both kinds of micro/submicro-nanopatterns showed good fidelity at the micro/submicroscale and nanoscale; meanwhile, they could be flexibly tuned by the sample and processing parameters. Significantly, when the PS colloidal sphere size was reduced to 250 nm, a high-resolution submicro-nanostructured surface with 3-5 metal nanoparticles in each patch or a single-nanoparticle interconnected honeycomb network was achieved. Moreover, by applying gold (Au) nanoparticles as anchoring points, micronanopatterned Au arrays can serve as a flexible template to pattern bovine serum albumin (BSA) molecules. This facile and cost-effective approach may provide a novel platform for fabrication of micropatterned nanoarrays with high tunability and controllability, which are promising in the applications of biological and microelectronic fields.

  11. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    International Nuclear Information System (INIS)

    Botasini, Santiago; Méndez, Eduardo

    2013-01-01

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10–20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV–Vis–NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  12. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Botasini, Santiago; Mendez, Eduardo, E-mail: emendez@fcien.edu.uy [Instituto de Quimica Biologica, Universidad de la Republica, Laboratorio de Biomateriales (Uruguay)

    2013-04-15

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10-20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV-Vis-NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  13. Colloid and interface chemistry for nanotechnology

    CERN Document Server

    Kralchevsky, Peter; Ravera, Francesca

    2016-01-01

    Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthes...

  14. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  15. GISAXS analysis of 3D nanoparticle assemblies—effect of vertical nanoparticle ordering

    International Nuclear Information System (INIS)

    Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V

    2012-01-01

    We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions—layer-by-layer Langmuir–Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished—no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir–Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found. (paper)

  16. Antibody-based donor-acceptor spatial reconfiguration in decorated lanthanide-doped nanoparticle colloids for the quantification of okadaic acid biotoxin.

    Science.gov (United States)

    Stipić, Filip; Burić, Petra; Jakšić, Željko; Pletikapić, Galja; Dutour Sikirić, Maja; Zgrablić, Goran; Frkanec, Leo; Lyons, Daniel M

    2015-11-01

    With the increasing movement away from the mouse bioassay for the detection of toxins in commercially harvested shellfish, there is a growing demand for the development of new and potentially field-deployable tests in its place. In this direction we report the development of a simple and sensitive nanoparticle-based luminescence technique for the detection of the marine biotoxin okadaic acid. Photoluminescent lanthanide nanoparticles were conjugated with fluorophore-labelled anti-okadaic acid antibodies which, upon binding to okadaic acid, gave rise to luminescence resonance energy transfer from the nanoparticle to the organic fluorophore dye deriving from a reduction in distance between the two. The intensity ratio of the fluorophore: nanoparticle emission peaks was found to correlate with okadaic acid concentration, and the sensor showed a linear response in the 0.37-3.97 μM okadaic acid range with a limit of detection of 0.25 μM. This work may have important implications for the development of new, cheap, and versatile biosensors for a range of biomolecules and that are sufficiently simple to be applied in the field or at point-of-care. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. In situ ultra-small-angle X-ray scattering study under uniaxial stretching of colloidal crystals prepared by silica nanoparticles bearing hydrogen-bonding polymer grafts

    Directory of Open Access Journals (Sweden)

    Ryohei Ishige

    2016-05-01

    Full Text Available A molded film of single-component polymer-grafted nanoparticles (SPNP, consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated by in situ ultra-small-angle X-ray scattering (USAXS measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c. lattice structure with the [11−1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis of in situ USAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction in proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.

  18. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Pfleger, Jiří; Procházka, M.; Bondarev, D.; Vohlídal, J.

    2011-01-01

    Roč. 354, č. 2 (2011), s. 611-619 ISSN 0021-9797 R&D Projects: GA AV ČR KAN100500652; GA ČR GA203/07/0717 Institutional research plan: CEZ:AV0Z40500505 Keywords : ionic conjugated polymer * polythiophene polyelectrolyte * plasmonic nanoparticle Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.070, year: 2011

  19. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent.

    Science.gov (United States)

    Parlinska-Wojtan, Magdalena; Kus-Liskiewicz, Małgorzata; Depciuch, Joanna; Sadik, Omowunmi

    2016-08-01

    Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag(+) and preventing them from agglomeration. Fourier transform infrared and ultraviolet-visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm(-1) band, corresponding to -C-O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.

  20. H51E-1535: Biogeochemical factors influencing the transport and fate of colloids and colloid-associated contaminants in the vadose zone

    Science.gov (United States)

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...

  1. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    International Nuclear Information System (INIS)

    Creixell, Mar; Herrera, Adriana P.; Ayala, Vanessa; Latorre-Esteves, Magda; Perez-Torres, Marianela; Torres-Lugo, Madeline; Rinaldi, Carlos

    2010-01-01

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  2. Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination

    DEFF Research Database (Denmark)

    Hadrup, Niels; Löschner, Katrin; Skov, Kasper

    2016-01-01

    Selenium (Se) is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected...... toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite. Low doses of 10 and 100 fold the recommended human...

  3. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces

    International Nuclear Information System (INIS)

    Scherbahn, Vitali; Nizamov, Shavkat; Mirsky, Vladimir M.

    2016-01-01

    It has recently been shown that surface plasmon microscopy (SPM) allows single nanoparticles (NPs) on sensor surfaces to be detected and analyzed. The authors have applied this technique to study the adsorption of single metallic and plastic NPs. Binding of gold NPs (40, 60 and 100 nm in size) and of 100 nm polystyrene NPs to gold surfaces modified by differently ω-functionalized alkyl thiols was studied first. Self-assembled monolayers (SAM) with varying terminal functions including amino, carboxy, oligo(ethylene glycol), methyl, or trimethylammonium groups were deposited on gold films to form surfaces possessing different charge and hydrophobicity. The affinity of NPs to these surfaces depends strongly on the type of coating. SAMs terminated with trimethylammonium groups and carboxy group display highly different affinity and therefore were preferred when creating patterned charged surfaces. Citrate-stabilized gold NPs and sulfate-terminated polystyrene NPs were used as negatively charged NPs, while branched polyethylenimine-coated silver NPs were used as positively charged NPs. It is shown that the charged patterned areas on the gold films are capable of selectively adsorbing oppositely charged NPs that can be detected and analyzed with an ∼1 ng⋅mL −1 detection limit. (author)

  4. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    Science.gov (United States)

    Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng

    2015-03-01

    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.

  5. Analysis of colloid transport

    International Nuclear Information System (INIS)

    Travis, B.J.; Nuttall, H.E.

    1985-01-01

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab

  6. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  7. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  8. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  9. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi ( Ocimum sanctum) leaf

    Science.gov (United States)

    Philip, Daizy; Unni, C.

    2011-05-01

    Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.

  10. Core-shell La.sub.1-x./sub.Sr.sub.x./sub.MnO.sub.3./sub. nanoparticles as colloidal mediators for magnetic fluid hyperthermia

    Czech Academy of Sciences Publication Activity Database

    Pollert, Emil; Kaman, Ondřej; Veverka, Pavel; Veverka, Miroslav; Maryško, Miroslav; Závěta, Karel; Kačenka, M.; Lukeš, I.; Jendelová, Pavla; Kašpar, P.; Burián, M.; Herynek, V.

    2010-01-01

    Roč. 368, č. 1927 (2010), s. 4389-4405 ISSN 1364-503X R&D Projects: GA AV ČR KAN200200651; GA AV ČR KAN201110651 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z50390512 Keywords : magnetic fluid hyperthermia * manganese perovskites * nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.457, year: 2010

  11. In Vitro and In Vivo Toxicity Evaluation of Colloidal Silver Nanoparticles Used in Endodontic Treatments.

    Science.gov (United States)

    Takamiya, Aline Satie; Monteiro, Douglas Roberto; Bernabé, Daniel Galera; Gorup, Luiz Fernando; Camargo, Emerson Rodrigues; Gomes-Filho, João Eduardo; Oliveira, Sandra Helena Penha; Barbosa, Debora Barros

    2016-06-01

    Silver nanoparticles have been used for different purposes in dentistry, including endodontic treatments. The aim of this study was to determine the cytotoxicity of different types of silver nanoparticles on mouse fibroblast cell line L929 and the reaction of subcutaneous connective tissue of Wistar rats to these nanoparticles. Silver nanoparticles of an average size of 5 nm were synthesized with ammonia (SNA) or polyvinylpyrrolidone (SNP). L929 was exposed to SNA and SNP (0.1-100 μg/mL), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and enzyme-linked immunosorbent assays were performed after 6, 24, and 48 hours. Culture medium was used as the control. Sixteen rats received, individually, 3 polyethylene tubes filled with a fibrin sponge embedded in 100 μL SNA or SNP (1 μg/mL). A fibrin sponge with no embedding was the control. Tissue reaction was performed qualitatively and quantitatively after 7, 15, 30, and 90 days of implantation in the dorsal connective tissue of Wistar rats. SNA and SNP were cytotoxic to L929 in higher concentrations, with SNA significantly more toxic than SNP. SNA and SNP did not induce significant interleukin-1β and interleukin-6 production. The release of stem cell factor by L929 increased 48 hours after the treatment with SNP at 5 μg/mL. Histologic examination showed that the inflammatory responses caused by SNA and SNP at 1 μg/mL were similar to the control in all experimental periods. It was concluded that SNA and SNP were not cytotoxic at 25 μg/mL or lower concentrations. However, for safe clinical use, further studies establishing others points of its toxicologic profile are recommended. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Colloidal silver solutions with antimicrobial properties

    International Nuclear Information System (INIS)

    Petica, A.; Gavriliu, S.; Lungu, M.; Buruntea, N.; Panzaru, C.

    2008-01-01

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties

  13. Colloidal silver solutions with antimicrobial properties

    Energy Technology Data Exchange (ETDEWEB)

    Petica, A. [INCDIE ICPE-Advanced Research, Bucharest (Romania)], E-mail: petica@icpe-ca.ro; Gavriliu, S.; Lungu, M.; Buruntea, N. [INCDIE ICPE-Advanced Research, Bucharest (Romania); Panzaru, C. [Institute of Medicine and Pharmacy, Iassy (Romania)

    2008-08-25

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties.

  14. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots

    International Nuclear Information System (INIS)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-01-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The “nitrogen compound metabolism” and “cellular component” terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories “cellular metabolic process”, “primary metabolic process” and “secondary metabolic process” were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. - Highlights: • The gene expression patterns of maize exposed to ZnO nanoparticles (nZnO) varied in the shoots and roots. • A majority of the differentially expressed genes induced by nZnO exposure were exclusive to either the shoots or roots. • A similar number of up- and down-regulated genes was observed in the exposed shoots. • More up-regulated than down-regulated genes were found in the exposed roots. • A greater number of GO processes were observed in the nZnO exposed maize roots than in the exposed shoots. • GO terms in the “nitrogen compound metabolic process” category were exclusively and highly expressed in the exposed roots. • GO terms in the “nutrient reservoir” category were exclusively and highly expressed in the exposed roots. • Term “small molecule metabolic process” was also exclusively up-regulated in the exposed roots. • Processes in “cellular metabolic”, “primary metabolic” and “secondary metabolic” were down-regulated in the exposed roots.

  15. The influence of narrow optical gap silver oxide on zinc oxide nanoparticles produced by microwave-assisted colloidal synthesis: photocatalytic studies

    Science.gov (United States)

    Prakoso, S. P.; Paramarta, V.; Tju, H.; Taufik, A.; Saleh, R.

    2016-11-01

    This paper reports a photocatalytic study on wide band gap zinc oxide (ZnO) incorporated by narrow band gap silver oxide (Ag2O), namely Ag2O/ZnO nanocomposites, which were prepared by colloidal synthesis with microwave supports. The Ag2O/ZnO nanocomposites were prepared with three different molar ratios (MR) of Ag2O to ZnO (MR: 0.25, 0.5 and 0.75). In order to confirm qualitatively the concentration ratio of Ag2O in ZnO, crystal phase intensity ratio was executed by peak indexing from x-ray diffraction. The Ag2O/ZnO nanocomposites properties were further investigated using diffuse reflectance spectroscopy. The nanocomposites were tested for the degradation of organic dyes solutions under visible and UV light irradiations. The photocatalytic activity of Ag2O/ZnO nanocomposites under visible light increased with increasing molar ratio of Ag2O to ZnO, while the opposite trends observed under UV light irradiation. The improvement of photoabsorption together with photocatalytic activities might be suspected due to the p-n heterojunction structure in Ag2O/ZnO nanocomposites. The corresponding mechanism will be discussed in detail.

  16. The influence of narrow optical gap silver oxide on zinc oxide nanoparticles produced by microwave-assisted colloidal synthesis: photocatalytic studies

    International Nuclear Information System (INIS)

    Prakoso, S. P.; Paramarta, V.; Tju, H.; Taufik, A.; Saleh, R.

    2016-01-01

    This paper reports a photocatalytic study on wide band gap zinc oxide (ZnO) incorporated by narrow band gap silver oxide (Ag 2 O), namely Ag 2 O/ZnO nanocomposites, which were prepared by colloidal synthesis with microwave supports. The Ag 2 O/ZnO nanocomposites were prepared with three different molar ratios (MR) of Ag 2 O to ZnO (MR: 0.25, 0.5 and 0.75). In order to confirm qualitatively the concentration ratio of Ag 2 O in ZnO, crystal phase intensity ratio was executed by peak indexing from x-ray diffraction. The Ag 2 O/ZnO nanocomposites properties were further investigated using diffuse reflectance spectroscopy. The nanocomposites were tested for the degradation of organic dyes solutions under visible and UV light irradiations. The photocatalytic activity of Ag 2 O/ZnO nanocomposites under visible light increased with increasing molar ratio of Ag 2 O to ZnO, while the opposite trends observed under UV light irradiation. The improvement of photoabsorption together with photocatalytic activities might be suspected due to the p-n heterojunction structure in Ag 2 O/ZnO nanocomposites. The corresponding mechanism will be discussed in detail. (paper)

  17. Interface colloidal robotic manipulator

    Science.gov (United States)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  18. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines.

    Science.gov (United States)

    Jafari, Alireza; Mosavari, Nader; Movahedzadeh, Farahnaz; Nodooshan, Saeedeh Jafari; Safarkar, Roya; Moro, Rossella; Kamalzadeh, Morteza; Majidpour, Ali; Boustanshenas, Mina; Mosavi, Tahereh

    2017-09-01

    The purpose of this research project was to infection of human macrophages (THP-1) cell lines by H 37 Rv strain of Mycobacterium tuberculosis (H 37 RvMTB) and find out the ratio/dilution of mixture silver (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) whose ability to eliminate phagocytized bacteria compared to rifampicin. The colloidal Ag NPs and ZnO NPs were synthesized and their characteristics were evaluated. The THP-1 cell lines were infected with different concentration of H 37 RvMTB. Next, the infected cells were treated with different ratios/dilutions of Ag NPs, ZnO NPs and rifampicin. The THP-1 were lysed and were cultured in Lowenstein-Jensen agar medium, for eight weeks. The TEM and AFM images of NPs and H 37 RvMTB were supplied. It is observed that Ag NPs, 2 Ag :8 ZnO and 8 Ag :2 ZnO did not have any anti-tubercular effects on phagocytized H 37 RvMTB. Conversely, ZnO NPs somehow eliminated 18.7 × 10 4  CFU ml -1 of H 37 RvMTB in concentration of ∼ 0.468 ppm. To compare with 40 ppm of rifampicin, ∼ 0.663 ppm of 5 Ag :5 ZnO had the ability to kill of H 37 RvMTB, too. Based on previous research, ZnO NPs had strong anti-tubercular impact against H 37 RvMTB to in-vitro condition, but it was toxic in concentration of ∼ 0.468 ppm to both of THP-1 and normal lung (MRC-5) cell lines. It also seems that 5 Ag :5 ZnO is justified because in concentration of ∼ 0.663 ppm of 5 Ag :5 ZnO , phagocytized H 37 RvMTB into the THP-1 had died without any toxicity effects against THP-1 and also MRC-5 cell lines. It is obvious that the mixture of colloidal silver and zinc oxide NPs with ratio of 5 Ag :5 ZnO would be trustworthy options as anti-tubercular nano-drugs in future researches. Copyright © 2017. Published by Elsevier Ltd.

  19. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Guus Rijnders

    2010-03-01

    Full Text Available FePt nanoparticles (NPs were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(onates were used as an adsorbate to form self-assembled monolayers (SAMs on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP or phosphonoundecanoic acid (PNDA SAMs or with poly(ethyleneimine (PEI as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2 led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  20. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots.

    Science.gov (United States)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-10-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The "nitrogen compound metabolism" and "cellular component" terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories "cellular metabolic process", "primary metabolic process" and "secondary metabolic process" were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning

    International Nuclear Information System (INIS)

    Son, Yong; Yeo, Junyeob; Ha, Cheol Woo; Lee, Jinhwan; Hong, Sukjoon; Nam, Koo Hyun; Yang, Dong-Yol; Ko, Seung Hwan

    2012-01-01

    Metal nanoparticles exhibit specific electronic, chemical and optical properties due to the thermodynamic size effect, which cannot be observed in bulk materials. Ag NPs show size dependent melting temperature depression phenomena. In this study, the thermal sintering behavior of the self-assembled monolayer protected Ag NPs has been observed using in situ transmission electron microscopy. The thermal characteristics of the Ag NPs have also been examined with a thermogravimetric analysis, a differential scanning calorimetry and a thermal conductivity measurement. These assessments have shown that the melting of the Ag NPs starts at 150 °C, which is much lower than the melting temperature of bulk silver (960 °C). The measured thermal conductivity of the Ag NPs (0.37 W/(m K)) is also lower than that of bulk silver (429 W/(m K)). These specific thermal properties of the Ag NPs can be applied to a low-temperature and a high-resolution direct-metal patterning process.

  2. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    International Nuclear Information System (INIS)

    Chung, Wan-Ho; Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-01-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved

  3. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  4. Frequency up-shift in the stimulated thermal scattering under two-photon absorption in liquids and colloids of metal nanoparticles

    Science.gov (United States)

    Smetanin, I. V.; Erokhin, A. I.; Baranov, A. N.

    2018-07-01

    We report the results of the experimental and theoretical study of stimulated temperature scattering in toluene and hexane solutions of Ag-nanoparticles, as well as in pure toluene in the two-photon absorption regime. A four-wave mixing scheme with two counter-propagating pump waves of the same frequency is utilised to demonstrate the lasing effect and the amplification of the backscattered anti-Stokes signal. For the first time, we have measured anti-Stokes spectral shifts which turn out to appreciably exceed the Rayleigh line widths in those liquids. It is shown that the amplification effect is provided predominantly by thermally induced coherent polarisation oscillations, while the dynamic interference temperature grating causes the formation of a self-induced optical cavity inside the interaction region.

  5. Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes.

    Science.gov (United States)

    Govindarajan, Marimuthu; Kadaikunnan, Shine; Alharbi, Naiyf S; Benelli, Giovanni

    2017-11-01

    Mosquito control is facing key challenges, including outbreaks of new arbovirus threats. We proposed an eco-friendly synthesis of silver nanoparticles (AgNPs) employing a low-cost extract of Hugonia mystax. AgNPs were specified by UV, XRD, FTIR and EDX spectroscopy, SEM and TEM. AgNPs were more toxic to Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus larvae (LC 50 : 14.45, 15.86, and 17.46 μg/mL) if compared to aquatic biocontrol organisms Gambusia affinis, Diplonychus indicus, and Anisops bouvieri (LC 50 : 2567.15, 1075.16, and 829.63 μg/ml). Overall, we shed light on the mosquito larvicidal efficacy of H. mystax, a possible biological resource for low-cost fabrication of AgNPs.

  6. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  7. Synthesis of PVP-stabilized ruthenium colloids with low boiling point alcohols.

    Science.gov (United States)

    Zhang, Yuqing; Yu, Jiulong; Niu, Haijun; Liu, Hanfan

    2007-09-15

    A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD.

  8. Grimsel colloid exercise

    International Nuclear Information System (INIS)

    Degueldre, C.; Longworth, G.; Vilks, P.

    1989-11-01

    The Grimsel Colloid Exercise was an intercomparison exercise which consisted of an in situ sampling phase followed by a colloid characterisation step. The goal of this benchmark exercise, which involved 12 laboratories, was to evaluate both sampling and characterisation techniques with emphasis on the colloid specific size distribution. The sampling phase took place at the Grimsel Test Site between February 1 and 13, 1988 and the participating groups produced colloid samples using the following methods: 1. Cross-flow ultrafiltration with production of membranes loaded with colloids. 2. Tangential diaultrafiltration and production of colloid concentrates. 3. Filtrates produced by each group. 4. Unfiltered water was also collected by PSI in glass bottles, under controlled anaerobic conditions, and by the other sampling groups in various plastic bottles. In addition, on-line monitoring of pH, χ, [O-2] and T of the water and of [O-2] in the atmosphere of the sampling units was carried out routinely. All samples were shipped according to the CoCo Club scheme for characterisation, with emphasis on the size distribution. The exercise differentiates the colloid samples produced on site from those obtained after transfer of the fluid samples to the laboratories. The colloid concentration and size distribution can be determined by scanning electron microscopy (SEM), gravimetry (GRAV), chemical analysis of fluid samples after micro/ultrafiltration (MF/UF) and by transmission single particle counting (PC). The colloid concentration can also be evaluated by transmission electron microscopy (TEM), static and dynamic light scattering (SLS,DLS) and by laser-induced photoacoustic spectroscopy (LPAS). The results are discussed on the basis of the detection limit, lateral resolution and counting conditions of the technique (precision) as well as sample preparation, artefact production and measurement optimisation (accuracy). A good agreement between size distribution results was

  9. Clusters in attractive colloids

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, A [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Arcangelis, L de [Dipartimento di Ingegneria dell' Informazione and CNISM II Universita di Napoli, Aversa (CE) (Italy); Candia, A de [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Gado, E Del [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Fierro, A [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Sator, N [Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie-Paris6, UMR (CNRS) 7600 Case 121, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2006-09-13

    We discuss how the anomalous increase of the viscosity in colloidal systems with short-range attraction can be related to the formation of long-living clusters. Based on molecular dynamics and Monte Carlo numerical simulations of different models, we propose a similar picture for colloidal gelation at low and intermediate volume fractions. On this basis, we analyze the distinct role played by the formation of long-living bonds and the crowding of the particles in the slow dynamics of attractive colloidal systems.

  10. Carbon nanoparticle doped micro-patternable nano-composites for wearable sensing applications (Conference Presentation)

    Science.gov (United States)

    Khosla, Ajit

    2017-04-01

    This talk focuses on preparation, characterization and micropatterning of electrically conducting KETJENBLACK carbon black nanoparticle (80 nm-diameter) doped Polydimethylsiloxane (PDMS) by employing extrusion mixing. Previously, we had reported fabrication of various micropatternable nanocomposites for wearable sensing applications vis solvent assisted ultrasonic mixing technique[1-16] . Extrusion mixing has an advantage as no organic solvents are used and homogenous dispersion of carbon nanoparticles is observed, which is confirmed by SEM analysis. The developed nanocomposite can be micropatterened using standard microfabrication techniques. It is also observed that percolation threshold occurs at 0.51 wt% of carbon nanoparticles in polymer matrix. Examples of developed nano-composites for wearable sensing applications for precision medicine will also be discussed. References: 1.http://summit.sfu.ca/item/12017 A. Khosla. Micropatternable multifunctional nanocomposite polymers for flexible soft MEMS applications. Diss. Applied Science: School of Engineering Science, 2011. 2. A. Khosla ; B. L. Gray; Fabrication of multiwalled carbon nanotube polydimethylsiloxne nanocomposite polymer flexible microelectrodes for microfluidics and MEMS. Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD) 2010, 76421V (April 09, 2010); doi:10.1117/12.847292. 3. Ang Li ; Ajit Khosla ; Connie Drewbrook ; Bonnie L. Gray; Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290G (February 14, 2011); doi:10.1117/12.873197. 4. Khosla, A. and Gray, B. L. (2010), Preparation, Micro-Patterning and Electrical Characterization of Functionalized Carbon-Nanotube Polydimethylsiloxane Nanocomposite Polymer. Macromol. Symp., 297: 210-218. doi:10.1002/masy.200900165 5. A. Khosla ; D. Hilbich ; C. Drewbrook ; D. Chung ; B. L. Gray; Large

  11. Surface chemistry of "unprotected" nanoparticles

    DEFF Research Database (Denmark)

    Schrader, Imke; Warneke, Jonas; Neumann, Sarah

    2015-01-01

    The preparation of colloidal nanoparticles in alkaline ethylene glycol is a powerful approach for the preparation of model catalysts and ligand-functionalized nanoparticles. For these systems the term "unprotected" nanoparticles has been established because no strongly binding stabilizers...... study. "Unprotected" Pt and Ru nanoparticles were characterized by NMR spectroscopy, which does not evidence the presence of any C-H containing species bound to the particle surface. Instead, the colloids were found to be covered by CO, as demonstrated by IR spectroscopy. However, analysis...

  12. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    Science.gov (United States)

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  14. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  15. Multiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching

    International Nuclear Information System (INIS)

    Leigh, S J; Bowen, J; Preece, J A

    2015-01-01

    The fabrication of structured polymer/nanoparticle composite films through a combination of additive, subtractive and self-assembly methodologies is investigated. Consumer grade inkjet printing hardware is employed to deposit cationic polyelectrolytes on (i) hydrophilic and (ii) hydrophobised glass substrates. The hydrophobisation process controls the spreading of the droplets and hence the lateral size of printed features. The printed cationic polyelectrolyte regions are used as a template to direct the self-assembly of negatively charged gold nanoparticles onto the surface. Micro-scale features are created in the polyelectrolyte/nanoparticle films using AFM scratching to selectively displace material. The effect of substrate wettability on film morphology is discussed. (paper)

  16. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  17. Confined palladium colloids in mesoporous frameworks for carbon nanotube growth

    NARCIS (Netherlands)

    Berenguer-Murcia, A.; Rebrov, E.V.; Cabaj, M.; Wheatley, A.E.H.; Johnson, B.F.G.; Robertson, J.; Schouten, J.C.

    2009-01-01

    Palladium colloidal nanoparticles with an average size of approximately 2.4 nm have been incorporated into mesoporous inorganic thin films following a multistep approach. This involves the deposition of mesoporous titania thin films with a thickness of 200 nm by spin-coating on titanium plates with

  18. Filtration of polydispersed colloids

    International Nuclear Information System (INIS)

    Nuttall, H.E.

    1988-01-01

    In this study, the dynamic microscopic form of the population balance model is applied to the problem of polydispersed particle capture in one spatial diffusion. This mathematical modeling approach can be applied to the difficult and potentially important problem of particulate (radiocolloid) transport in the groundwater surrounding a nuclear waste disposal site. To demonstrate the population balance methodology, the equations were developed and used to investigate transport and capture of polydispersed colloids in packed columns. Modeling simulations were compared to experimental column data. The multidimensional form of the population balance equation was used to analyze the transport and capture of polydispersed colloids. A numerical model was developed to describe transport of polydispersed colloids through a one-dimensional porous region. The effects of various size distributions were investigated in terms of capture efficiency. For simulating the column data, it was found by trial and error that as part of the population balance model a linear size dependent filtration function gave a good fit to the measured colloid concentration profile. The effects of constant versus size dependent filtration coefficients were compared and the differences illustrated by the calculated colloid profile within the column. Also observed from the model calculations was the dramatically changing liquid-phase colloid-size distribution which was plotted as a function of position down the column. This modeling approach was excellent for describing and understanding microscopic filtration in porous media

  19. A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging

    Czech Academy of Sciences Publication Activity Database

    Kostiv, Uliana; Lobaz, Volodymyr; Kučka, Jan; Švec, Pavel; Sedláček, Ondřej; Hrubý, Martin; Janoušková, Olga; Francová, P.; Kolářová, V.; Šefc, L.; Horák, Daniel

    2017-01-01

    Roč. 9, č. 43 (2017), s. 16680-16688 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-01897S; GA MZd(CZ) NV16-30544A Institutional support: RVO:61389013 Keywords : upconversion nanoparticles * PEG-neridronate * 125I radiolabeling Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.367, year: 2016

  20. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  1. [MAXIMUM SINGLE DOSE OF COLLOIDAL SILVER NEGATIVELY AFFECTS ERYTHROPOIESIS IN VITRO].

    Science.gov (United States)

    Tishevskayal, N V; Zakharovl, Y M; Bolotovl, A A; Arkhipenko, Yu V; Sazontova, T G

    2015-01-01

    Erythroblastic islets (EI) of rat bone marrow were cultured for 24 h in the presence of silver nanoparticles (1.07 · 10(-4) mg/ml; 1.07 · 10(-3) mg/ml; and 1.07 · 10(-2) mg/mL). The colloidal silver at 1.07 · 10(-3) mg/ml concentration inhibited the formation of new Elby disrupting contacts of bone marrow macrophages with CFU-E (erythropoiesis de novo) by 65.3% (p Colloidal silver nanoparticles suppressed the reconstruction of erythropoiesis and inhibited the formation of new EI by disrupting contacts of CFU-E and central macrophages with matured erythroidal "crown" (erythropoiesis de repeto). The colloidal silver concentration of 1.07 · 10(-3) mg/ml in the culture medium also reduced the number of self-reconstructing EI by 67.5% (p colloidal silver reduced this value by 93.7% (p Silver nanoparticles retarded maturation of erythroid cells at the stage of oxiphylic normoblast denucleation: 1.07 · 10(-3) mg/ml colloidal silver increased the number of mature El by 53% (p colloidal silver in concentration equivalent to the maximum single dose is related to the effect of silver nanoparticles rather than glycerol present in the colloidal suspension.

  2. Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops

    Science.gov (United States)

    Sun, Ying; Joshi, Abhijit; Chhasatia, Viral

    2010-11-01

    In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.

  3. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  4. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, J.B., E-mail: javierbm@einstein.br [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil); Costa-Filho, A.J. [Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (Brazil); Cornejo, D.R. [Instituto de Física Universidade de São Paulo, USP, São Paulo (Brazil); Vieira, E.D. [Instituto de Física, Universidade Federal de Goiás, Goiânia (Brazil); Gamarra, L.F. [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil)

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  5. Vacuum-Free, Maskless Patterning of Ni Electrodes by Laser Reductive Sintering of NiO Nanoparticle Ink and Its Application to Transparent Conductors

    KAUST Repository

    Lee, Daeho; Paeng, Dongwoo; Park, Hee K.; Grigoropoulos, Costas P.

    2014-01-01

    © 2014 American Chemical Society. We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum

  6. Monodisperse, submicrometer-scale platinum colloidal spheres with high electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lixue; Wang, Liang; Guo, Shaojun; Zhai, Junfeng; Dong, Shaojun; Wang, Erkang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 130022 Jilin, Changchun (China)

    2009-02-15

    Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H{sub 2}PtCl{sub 6}) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells. (author)

  7. Wrinkling instability in graphene supported on nanoparticle-patterned SiO2

    Science.gov (United States)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Einstein, Theodore; Fuhrer, Michael

    2012-02-01

    Atomically-thin graphene is arguably the thinnest possible mechanical membrane: graphene's effective thickness (the thickness of an isotropic continuum slab which would have the same elastic and bending stiffness) is significantly less than 1 å, indicating that graphene can distort out-of-plane to conform to sub-nanometer features. Here we study the elastic response of graphene supported on a SiO2 substrate covered with SiO2 nanoparticles. At a low density of nanoparticles, graphene is largely pinned to the substrate due to adhesive interaction. However, with increasing nanoparticle density, graphene's elasticity dominates adhesion and strain is relieved by the formation of wrinkles which connect peaks introduced by the supporting nanoparticles. At a critical density, the wrinkles percolate, resulting in a wrinkle network. We develop a simple elastic model allowing for adhesion which accurately predicts the critical spacing between nanoparticles for wrinkle formation. This work has been supported by the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471 with supplemental funding from NRI, and NSF-DMR 08-04976.

  8. Radiation formation of colloidal metallic particles in aqueous systems

    International Nuclear Information System (INIS)

    Cuba, Vaclav; Nemec, Mojmir; Gbur, Tomas; John, Jan; Pospisil, Milan; Mucka, Viliam

    2008-01-01

    Full text: Radiation and photochemical methods have been successfully utilized in various steps of nanoparticles preparation. Presented study deals with formation of silver nanoparticles in various aqueous solutions initiated by UV and gamma radiation. Silver nitrate and silver cyanide were used as precursors for radiation and/or photochemical reduction of Ag + ions to the metallic form. Influence of various parameters (dose of radiation, dose rate, exposition time) on nucleation and formation of colloid particles was studied. Attention was also focused on composition of irradiated solution. Aliphatic alcohols were used as scavengers of OH radicals and other oxidizing species. Various organic stabilizers of formed nanoparticles were used, among others ethylenediaminetetraacetic acid, citric acid and polyvinyl alcohol. Irradiation effects were evaluated using UV/Vis absorption spectra in colloid solution, solid phase formed after long-term irradiation was analysed via X-ray structural analysis

  9. Complex protein nanopatterns over large areas via colloidal lithography

    DEFF Research Database (Denmark)

    Kristensen, Stine H; Pedersen, Gitte Albinus; Ogaki, Ryosuke

    2013-01-01

    The patterning of biomolecules at the nanoscale provides a powerful method to investigate cellular adhesion processes. A novel method for patterning is presented that is based on colloidal monolayer templating combined with multiple and angled deposition steps. Patterns of gold and SiO2 layers...

  10. Detection of colloidal silver chloride near solubility limit

    Science.gov (United States)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  11. A binomial modeling approach for upscaling colloid transport under unfavorable conditions: organic prediction of extended tailing

    Science.gov (United States)

    Hilpert, Markus; Rasmuson, Anna; Johnson, William

    2017-04-01

    Transport of colloids in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their down-gradient translation relative to colloids in bulk fluid. Near surface fluid domain colloids may re-enter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via strong primary minimum interactions, or they may move along a grain-to-grain contact to the near surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization onto grain surfaces. Colloid movement is described by a sequence of trials in a series of unit cells, and the binomial distribution is used to calculate the probabilities of each possible sequence. Pore-scale simulations provide mechanistically-determined likelihoods and timescales associated with the above pore-scale colloid mass transfer processes, whereas the network-scale model employs pore and grain topology to determine probabilities of transfer from up-gradient bulk and near-surface fluid domains to down-gradient bulk and near-surface fluid domains. Inter-grain transport of colloids in the near surface fluid domain can cause extended tailing.

  12. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    NARCIS (Netherlands)

    Yildirim, O.; Gang, T.; Kinge, S.S.; Reinhoudt, David; Blank, David H.A.; van der Wiel, Wilfred Gerard; Rijnders, Augustinus J.H.M.; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs

  13. Probing Interfacial Water on Nanodiamonds in Colloidal Dispersion.

    Science.gov (United States)

    Petit, Tristan; Yuzawa, Hayato; Nagasaka, Masanari; Yamanoi, Ryoko; Osawa, Eiji; Kosugi, Nobuhiro; Aziz, Emad F

    2015-08-06

    The structure of interfacial water layers around nanoparticles dispersed in an aqueous environment may have a significant impact on their reactivity and on their interaction with biological species. Using transmission soft X-ray absorption spectroscopy in liquid, we demonstrate that the unoccupied electronic states of oxygen atoms from water molecules in aqueous colloidal dispersions of nanodiamonds have a different signature than bulk water. X-ray absorption spectroscopy can thus probe interfacial water molecules in colloidal dispersions. The impacts of nanodiamond surface chemistry and concentration on interfacial water electronic signature are discussed.

  14. Influence of temperature and precursor concentration on the synthesis of HDA-capped Ag{sub 2}Se nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mlambo, M. [Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Moloto, M.J., E-mail: makwenam@vut.ac.za [Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Moloto, N. [Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Mdluli, P.S. [Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125 (South Africa)

    2013-06-01

    Graphical abstract: The temperature effect on the growth and size of silver selenide nanoparticles with the size distribution and XRD patterns. Highlights: ► The HDA-capped Ag{sub 2}Se nanoparticles were synthesized via the colloidal route. ► Temperature and monomer concentration of the reaction were varied. ► The concentration as a factor influenced particles with a decrease observed as the amount of Ag{sup +} ion source is increased. ► Temperature has expected influence on the growth of particles resulting in increase as the temperature is increased. ► TEM images shows spherical particles and their orthorhombic phase from structural analysis by XRD. - Abstract: The size dependent of temperature and precursor concentration on the synthesis of hexadecylamine capped Ag{sub 2}Se nanoparticles via the colloidal route were studied using the combination of optical and structural analysis. The as-prepared Ag{sub 2}Se nanoparticles showed the quantum confinement with all the obtained absorption band edges blue-shifted from the bulk and their corresponding emission maxima displaying a red-shift from band edges characterised by UV–vis absorption and photoluminescence spectroscopy. The particle sizes were obtained from transmission electron microscopy analysis. The increase in precursor concentration resulted in a decrease in nanoparticle sizes. The increase in reaction temperature showed an increase in the nanoparticle sizes, when the critical temperature at 160 °C was reached, the nanoparticle sizes decreased.

  15. Medical applications of colloids

    CERN Document Server

    Matijevic, Egon

    2008-01-01

    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  16. Simulation of dense colloids

    NARCIS (Netherlands)

    Herrmann, H.J.; Harting, J.D.R.; Hecht, M.; Ben-Naim, E.

    2008-01-01

    We present in this proceeding recent large scale simulations of dense colloids. On one hand we simulate model clay consisting of nanometric aluminum oxide spheres in water using realistic DLVO potentials and a combination of MD and SRD. We find pronounced cluster formation and retrieve the shear

  17. Nano-colloid printing of functionalized PLA-b-PEO copolymers: tailoring the surface pattern of adhesive motif and its effect on cell attachment

    Czech Academy of Sciences Publication Activity Database

    Mázl Chánová, Eliška; Knotek, P.; Yang, Y.; Machová, Luďka; Proks, Vladimír; Kučka, Jan; Popelka, Štěpán; Pop-Georgievski, Ognen; El Haj, A.; Kubies, Dana; Rypáček, František

    2015-01-01

    Roč. 64, Suppl. 1 (2015), S61-S73 ISSN 0862-8408 R&D Projects: GA ČR GPP108/12/P624; GA ČR(CZ) GA13-08336S; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : tissue engineering * surface pattern * AFM Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.643, year: 2015 http://www.biomed.cas.cz/physiolres/pdf/64%20Suppl%201/64_S61.pdf

  18. Spontaneous decoration of Au nanoparticles on micro-patterned reduced graphene oxide shaped by focused laser beam

    International Nuclear Information System (INIS)

    Wan, Y. C.; Tok, E. S.; Teoh, H. F.; Sow, C. H.

    2015-01-01

    We report a facile, two-step method for the micro-landscaping of Au nanoparticles(NPs) on reduced graphene oxide (rGO) film en route to micro-patterned Au(NPs)-rGO hybrid functional materials. This method employs a focused laser beam to first locally convert GO to rGO before immersing the micro-patterned GO-rGO film into HAuCl 4 solution. The rGO micro-pattern, shaped by the focused laser beam, serves as nucleation sites for the reduction of Au ions. The reduction mechanism that governs the decoration of Au NPs on rGO films is akin to electroless deposition process. In this instance, surface charges that are formed during laser reduction of GO to rGO provide active nucleation sites for Au 3+ ions to form Au NPs when HAuCl 4 solution is introduced. The number density, the size, and size distribution of the Au NPs can thus be directly tuned and preferentially anchored onto the rGO micro-pattern by varying the incident laser power, the scanning speed of the laser, or the concentration of HAuCl 4 . The resulting hybrid materials can be used as a substrate for Surface Enhanced Raman Spectroscopy (SERS). Using Rhodamine 6G as the test subject, we found an improvement of SERS enhancement over bare rGO of up to four times, depending on the size of the Au NPs

  19. Spontaneous decoration of Au nanoparticles on micro-patterned reduced graphene oxide shaped by focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y. C.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Teoh, H. F. [Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456 (Singapore); Sow, C. H. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456 (Singapore)

    2015-02-07

    We report a facile, two-step method for the micro-landscaping of Au nanoparticles(NPs) on reduced graphene oxide (rGO) film en route to micro-patterned Au(NPs)-rGO hybrid functional materials. This method employs a focused laser beam to first locally convert GO to rGO before immersing the micro-patterned GO-rGO film into HAuCl{sub 4} solution. The rGO micro-pattern, shaped by the focused laser beam, serves as nucleation sites for the reduction of Au ions. The reduction mechanism that governs the decoration of Au NPs on rGO films is akin to electroless deposition process. In this instance, surface charges that are formed during laser reduction of GO to rGO provide active nucleation sites for Au{sup 3+} ions to form Au NPs when HAuCl{sub 4} solution is introduced. The number density, the size, and size distribution of the Au NPs can thus be directly tuned and preferentially anchored onto the rGO micro-pattern by varying the incident laser power, the scanning speed of the laser, or the concentration of HAuCl{sub 4}. The resulting hybrid materials can be used as a substrate for Surface Enhanced Raman Spectroscopy (SERS). Using Rhodamine 6G as the test subject, we found an improvement of SERS enhancement over bare rGO of up to four times, depending on the size of the Au NPs.

  20. Patchy particles made by colloidal fusion

    Science.gov (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-01

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  1. Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Patete, J.m.; Wong, S.; Peng, X.; Serafin, J.M.

    2011-05-17

    As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.

  2. Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces

    International Nuclear Information System (INIS)

    Patete, J.M.; Wong, S.; Peng, X.; Serafin, J.M.

    2011-01-01

    As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.

  3. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)

    Unknown

    platinum cation used. ... Particle size increased with low reagent concentration. ... 2,100) was added separately to the starting solution. Argon gas was bubbled in the solution for 20 min. Later, reduction of platinum ions was carried out by bubbling hydrogen gas ... plex to aquate (Cl– → H2O ligand exchange). ... copper grid.

  4. The Fate of Inhaled Nanoparticles: Detection and Measurement by Enhanced Dark-field Microscopy.

    Science.gov (United States)

    Mercer, Robert R; Scabilloni, James F; Wang, Liying; Battelli, Lori A; Antonini, James M; Roberts, Jenny R; Qian, Yong; Sisler, Jennifer D; Castranova, Vincent; Porter, Dale W; Hubbs, Ann F

    2018-01-01

    Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles.

  5. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    Science.gov (United States)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  6. On the nature of fibres grown from nanodiamond colloids

    Energy Technology Data Exchange (ETDEWEB)

    Batsanov, Stepan S., E-mail: batsanov@mail.ru [National Research Institute of Physical-Technical Measurements, Moscow Region (Russian Federation); Guriev, Dmitry L.; Gavrilkin, Sergey M. [National Research Institute of Physical-Technical Measurements, Moscow Region (Russian Federation); Hamilton, Katherine A.; Lindsey, Keith [School of Biological and Biomedical Sciences, Durham University, Durham (United Kingdom); Mendis, Budhika G. [Physics Department, Durham University, Durham (United Kingdom); Riggs, Helen J.; Batsanov, Andrei S. [Chemistry Department, Durham University, Durham (United Kingdom)

    2016-04-15

    Contrary to earlier assumptions, the fibres spontaneously forming in aqueous colloids of detonation-produced nanodiamond (ND), do not consist purely of ND particles but are agglomerates of the latter with water and/or soft matter of biological (probably fungal) origin, as shown by elemental analysis, IR and Raman spectroscopy, X-ray diffraction, optical refractometry, optical and electron (TEM and ESEM)microscopy, as well as biological staining tests. - Graphical abstract: Fibres spontaneously formed in water colloids of nanodiamond, consist of diamond nanoparticles dispersed in bioorganic matter. - Highlights: • Entangled fibres slowly grow in dilute (∼0.1%) colloids of nanodiamond in water. • Refractive index (∼1.56), electron microscopy and CHN analysis indicate nanodiamond dispersed in organic matter. • Explanation: nanodiamond grains help the growth of fungi which assemble them.

  7. Overview of the phase diagram of ionic magnetic colloidal dispersions

    International Nuclear Information System (INIS)

    Cousin, F.; Dubois, E.; Cabuil, V.; Boue, F.; Perzynski, R.

    2001-01-01

    We study ionic magnetic colloidal dispersions, which are constituted of γ-Fe 2 O 3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion. The phase diagram PV versus Φ (P: osmotic pressure, V: particle volume, Φ: particle volume fraction) is explored, especially in the range of high Π and high Φ. The osmotic pressure P of the colloidal dispersion is known either by a measurement either because it is imposed during the sample preparation by osmotic compression. The structure of the colloidal dispersion is determined from Small Angle Neutron Scattering. Two regimes can be distinguished. At high pressure, fluid and solid phases can exist. Their structure is governed by strong electrostatic repulsion, the range of which is here evaluated. At low pressure, gas, liquid and glassy solids can exist. Their structure results from a sticky hard sphere potential. (author)

  8. On the nature of fibres grown from nanodiamond colloids

    International Nuclear Information System (INIS)

    Batsanov, Stepan S.; Guriev, Dmitry L.; Gavrilkin, Sergey M.; Hamilton, Katherine A.; Lindsey, Keith; Mendis, Budhika G.; Riggs, Helen J.; Batsanov, Andrei S.

    2016-01-01

    Contrary to earlier assumptions, the fibres spontaneously forming in aqueous colloids of detonation-produced nanodiamond (ND), do not consist purely of ND particles but are agglomerates of the latter with water and/or soft matter of biological (probably fungal) origin, as shown by elemental analysis, IR and Raman spectroscopy, X-ray diffraction, optical refractometry, optical and electron (TEM and ESEM)microscopy, as well as biological staining tests. - Graphical abstract: Fibres spontaneously formed in water colloids of nanodiamond, consist of diamond nanoparticles dispersed in bioorganic matter. - Highlights: • Entangled fibres slowly grow in dilute (∼0.1%) colloids of nanodiamond in water. • Refractive index (∼1.56), electron microscopy and CHN analysis indicate nanodiamond dispersed in organic matter. • Explanation: nanodiamond grains help the growth of fungi which assemble them.

  9. Flocking ferromagnetic colloids.

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  10. Colloid migration in fractured media

    International Nuclear Information System (INIS)

    Hunt, J.R.

    1989-01-01

    Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs

  11. Two-dimensional assemblies of soft repulsive colloids confined at fluid interfaces

    Science.gov (United States)

    Isa, L.; Buttinoni, I.; Fernandez-Rodriguez, M. A.; Vasudevan, S. A.

    2017-07-01

    Colloidal systems are an excellent example of a materials class for which interrogating fundamental questions leads to answers of direct applied relevance. In our group, we in particular focus on two-dimensional assemblies of micro- and nano-particles confined at the interface between two fluids, e.g., oil-water. Here, we review our work on systems interacting through soft repulsive forces of different origin, i.e., electrostatic and steric. By starting from the paradigmatic case of charged colloids at an interface, we show how they are both offering great opportunities as model systems to investigate the structural and mechanical response of materials and as versatile patterning tools for surface nanostructuring. We then move to the case of deformable particles interacting via steric contacts. We first examine microgel particles, which we also demonstrate as very promising models for structural investigations and robust elements for tunable nanolithography. We conclude by briefly discussing the case of particles comprising a hard inorganic core and a deformable polymer shell, which maintain some of the advantageous features of microgel particles, but also enable the realization of two-dimensional functional materials. This article offers our perspective on a very active field of research, where many interesting developments are expected in the near future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  12. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  13. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  14. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    Science.gov (United States)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  15. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf

    Science.gov (United States)

    Philip, Daizy

    2010-11-01

    This paper reports the rapid biological synthesis of spherical gold nanoparticles at room temperature using fresh/dry leaf extract of Mangifera indica. This is a simple, cost-effective, stable for long time and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au nanoparticles of size ˜20 nm and 17 nm. The nanoparticles were obtained within 2 min of addition of the extract to the solution of HAuCl 4·3H 2O and the colloid is found to be stable for more than 5 months. Smaller and more uniformly distributed particles could be obtained with dried leaf extract. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Crystalline nature of the nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. The possible biomolecules responsible for efficient stabilization are suggested by studying the FTIR spectrum of the sample. This environmentally benign method provides much faster synthesis and colloidal stability comparable to those of chemical reduction.

  16. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    OpenAIRE

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-01-01

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidi...

  17. Preparation and dispersive properties of Ag colloid by electrical explosion of wire

    International Nuclear Information System (INIS)

    Yun, G.S.; Bac, L.H.; Kim, J.S.; Kwon, Y.S.; Choi, H.S.; Kim, J.C.

    2011-01-01

    Research highlights: → Wire diameter and synthetic temperature affect on properties of Ag colloid by EEW. → The lower temperature and smaller diameter make smaller size and narrower size distribution. → Ag colloid are more stable at lower synthetic temperature and smaller size. - Abstract: In this work, Ag colloid was prepared by electrical explosion of wire in deionized water with 0.2 mm and 0.3 mm wire diameter. The temperature of water used for medium of explosion process was change from 20 deg. C to 80 deg. C. Morphology and particle size of nanoparticles was observed by transmission electron microscope. The particle size and size distribution of nanoparticles was found to shift to a smaller size with a decrease of temperature and smaller wire diameter. Surface plasmon resonance of the silver colloids was studied by UV-vis spectroscopy. Stability of silver colloids was investigated by zeta-potential and Turbiscan techniques. The results indicated that temperature of medium during explosion affects much on the stability of Ag colloid. The silver colloidal stability prepared at lower temperature and smaller wire diameter was more stable.

  18. Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field

    International Nuclear Information System (INIS)

    Chao-Rong, Li; Shu-Wen, Li; Jie, Mei; Qing, Xu; Ying-Ying, Zheng; Wen-Jun, Dong

    2011-01-01

    A fascinating colloid phenomenon was observed in a specially designed template-assisted cell under an alternating electrical field. Most colloidal particles experienced the processes of aggregation, dispersion and climbing up to the plateaus of the patterns pre-lithographed on the indium tin oxide glass as the frequency of the alternating electrical field increased. Two critical frequencies f crit1 ≈ 15 kHz and f crit2 ≈ 40 kHz, corresponding to the transitions of the colloid behaviour were observed. When f < 15 kHz, the particles were forced to aggregate along the grooves of the negative photoresist patterned template. When 15 kHz < f < 40 kHz, the particle clusters became unstable and most particles started to disperse and were blocked by the fringes of the negative photoresist patterns. As the frequency increased to above 40 kHz, the majority of particles started to climb up to the plateaus of the patterns. Furthermore, the dynamics analysis for the behaviour of the colloids was given and we found out that positive or negative dielectrophoresis force, electrohydrodynamic force, particle—particle interactions and Brownian motion change with the frequency of the alternating electric field. Thus, changes of the related forces affect or control the behaviour of the colloids. (interdisciplinary physics and related areas of science and technology)

  19. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)