WorldWideScience

Sample records for pattern growth simulation

  1. Fractal pattern growth simulation in electrodeposition and study of the shifting of center of mass

    International Nuclear Information System (INIS)

    Shaikh, Yusuf H.; Khan, A.R.; Pathan, J.M.; Patil, Aruna; Behere, S.H.

    2009-01-01

    We presented simulation of fractal pattern in electrodeposition (Diffusion limited aggregation) using concept of off lattice walk. It is seen that the growth patterns are based on a parameter called 'bias'. This parameter 'bias' controls the growth of patterns similar to that of electric field in electrodeposition technique. In present study the fractal patterns are grown for different values of 'bias'. Dendritic patterns grown at lower value of 'bias' comprises open structure and show limited branching. As the bias is increased the growth tends to be dense and show more crowded branching. Box counting was implemented to calculate fractal dimension. The structural and textural complexities and are compared with the experimental observations. It was also noted that in the evolution of DLA patterns, the center of mass of the growth is shifted slightly. We tracked the position of the center of mass of simulated electro deposits under different electric field conditions. The center of mass exhibit random walk like patterns and it wanders around the origin or the starting point of the growth.

  2. Simulating Spatial Growth Patterns in Developing Countries: A Case of Shama in the Western Region of Ghana.

    Science.gov (United States)

    Inkoom, J. N.; Nyarko, B. K.

    2014-12-01

    The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.

  3. Simulation of Landscape Pattern of Old Growth Forests of Korean Pine by Block Kringing

    Science.gov (United States)

    Wang Zhengquan; Wang Qingcheng; Zhang Yandong

    1997-01-01

    The study area was located in Liangshui Natural Reserve. Xaozing'an Mountains, Northeastern China. Korean pine forests are the typical forest ecosystems and landscapes in this region. It is a high degress of spatial and temporal heterogeneity at different scales, which effected on landscape pattern and processes. In this paper we used the data of 144 plots and...

  4. Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran

    NARCIS (Netherlands)

    Jokar Arsanjani, J.; Helbich, M.; Vaz, E.

    2013-01-01

    Rapid urban growth is becoming a serious problem in most developing countries. Tehran, the capital of Iran, stands out as a vibrant metropolitan area, facing uncontrolled urban expansion. Public authorities and decision makers require planning criteria regarding possible spatial developments. To

  5. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    Science.gov (United States)

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  6. Simulating Spatial Growth Patterns in Developing Countries: an Agent Based Modelling Approach. A Case of Shama in the Western Region of Ghana

    Science.gov (United States)

    Inkoom, J. N.

    2011-12-01

    In Sub-Saharan Africa, rapid urban growth is characterized by prolific expansion of unplanned (informal) structures, and unguided spatial expansion. These unguided expansions by human agents have outstripped the regulatory capacities of Central and Local government. Governmental institutions in finding solutions to the unguided expansion in unplanned use of land have to call for the modelling of what influences the spatial decision and role of human agents in the growth of informal settlement. The objective of the study is to simulate spatial growth pattern of settlements in the Shama district using an agent based model. The study was conducted within a framework of NetLogo. The NetLogo assisted to incorporate and simulate driving forces that affect location decision-making by households and the growth of informal settlement. A survey was conducted to obtain household location decision preferences. The development of unplanned settlement has been a function of land price, proximity to economic centre's, household economic potential, and the location decision-making patterns of households. The exploratory analysis found particularly that majority of spontaneous development took place on areas liable to floods suggesting that some structures fall outside the required building regulations. The application of the proposed model indicates its potential to improve urban planning policies and decision-making processes in emerging cities of developing countries. Also, the result of the simulation suggests potential preferential location for residential development. The research justifies an approach in the area of simulating urban dynamics with agent-based models.

  7. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor.

    Science.gov (United States)

    Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F

    1997-06-01

    Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.

  8. Simulating Population Growth.

    Science.gov (United States)

    Byington, Scott

    1997-01-01

    Presents a strategy to help students grasp the important implications of population growth. Involves an interactive demonstration that allows students to experience exponential and logistic population growth followed by a discussion of the implications of population-growth principles. (JRH)

  9. Computer Simulation of Diffraction Patterns.

    Science.gov (United States)

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  10. Development of micro pattern cutting simulation software

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Seok Gyun; Choi, Jeong Ju; Novandy, Bondhan; Kim, Su Jin; Lee, Dong Yoon; Nam, Sung Ho; Je, Tae Jin

    2008-01-01

    The micro pattern machining on the surface of wide mold is not easy to be simulated by conventional software. In this paper, a software is developed for micro pattern cutting simulation. The 3d geometry of v-groove, rectangular groove, pyramid and pillar patterns are visualized by c++ and OpenGL library. The micro cutting force is also simulated for each pattern

  11. Growth Pattern of Atherosclerotic Calcifications

    DEFF Research Database (Denmark)

    Larsen, Lene Lillemark; Ganz, Melanie; Dam, Erik

    2008-01-01

    of the calcifications are matched longitudinally using thin plate spline registration and area overlap calculations. The growth of the calcifications is measured by the distribution of the geometry statistics of the calcifications. The method was evaluated on 135 subjects with a total number of 611 calcifications. Our...

  12. Body Composition Growth Patterns in Early Infancy

    DEFF Research Database (Denmark)

    Andersen, Gregers Stig; Wibaek, Rasmus; Kaestel, Pernille

    2018-01-01

    OBJECTIVE: The objective of this study was to identify subgroups with distinct fat and fat-free growth patterns in the first 6 months of life and describe predictors of these different patterns. METHODS: A total of 510 apparently healthy Ethiopian infants were followed from birth to 6 months of a...... in regular anthropometric assessment and could be a mechanism linking early growth with later obesity and cardiometabolic risk....

  13. GROWTH PATTERNS AND MATURATION OF CHILDREN WITH ...

    African Journals Online (AJOL)

    GROWTH PATTERNS AND MATURATION OF CHILDREN WITH SICKLE CELL DISEASE IN RELATION TO PLASMA ZINC STATUS. Dr. Salwa R. El Batrawy, Dr. Mervat Tawfik M. Tantawi. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  14. Computer simulation of grain growth in HAZ

    Science.gov (United States)

    Gao, Jinhua

    Two different models for Monte Carlo simulation of normal grain growth in metals and alloys were developed. Each simulation model was based on a different approach to couple the Monte Carlo simulation time to real time-temperature. These models demonstrated the applicability of Monte Carlo simulation to grain growth in materials processing. A grain boundary migration (GBM) model coupled the Monte Carlo simulation to a first principle grain boundary migration model. The simulation results, by applying this model to isothermal grain growth in zone-refined tin, showed good agreement with experimental results. An experimental data based (EDB) model coupled the Monte Carlo simulation with grain growth kinetics obtained from the experiment. The results of the application of the EDB model to the grain growth during continuous heating of a beta titanium alloy correlated well with experimental data. In order to acquire the grain growth kinetics from the experiment, a new mathematical method was developed and utilized to analyze the experimental data on isothermal grain growth. Grain growth in the HAZ of 0.2% Cu-Al alloy was successfully simulated using the EDB model combined with grain growth kinetics obtained from the experiment and measured thermal cycles from the welding process. The simulated grain size distribution in the HAZ was in good agreement with experimental results. The pinning effect of second phase particles on grain growth was also simulated in this work. The simulation results confirmed that by introducing the variable R, degree of contact between grain boundaries and second phase particles, the Zener pinning model can be modified as${D/ r} = {K/{Rf}}$where D is the pinned grain size, r the mean size of second phase particles, K a constant, f the area fraction (or the volume fraction in 3-D) of second phase.

  15. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Simulated annealing algorithm for optimal capital growth

    Science.gov (United States)

    Luo, Yong; Zhu, Bo; Tang, Yong

    2014-08-01

    We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.

  17. OPEN SOURCE APPROACH TO URBAN GROWTH SIMULATION

    Directory of Open Access Journals (Sweden)

    A. Petrasova

    2016-06-01

    Full Text Available Spatial patterns of land use change due to urbanization and its impact on the landscape are the subject of ongoing research. Urban growth scenario simulation is a powerful tool for exploring these impacts and empowering planners to make informed decisions. We present FUTURES (FUTure Urban – Regional Environment Simulation – a patch-based, stochastic, multi-level land change modeling framework as a case showing how what was once a closed and inaccessible model benefited from integration with open source GIS.We will describe our motivation for releasing this project as open source and the advantages of integrating it with GRASS GIS, a free, libre and open source GIS and research platform for the geospatial domain. GRASS GIS provides efficient libraries for FUTURES model development as well as standard GIS tools and graphical user interface for model users. Releasing FUTURES as a GRASS GIS add-on simplifies the distribution of FUTURES across all main operating systems and ensures the maintainability of our project in the future. We will describe FUTURES integration into GRASS GIS and demonstrate its usage on a case study in Asheville, North Carolina. The developed dataset and tutorial for this case study enable researchers to experiment with the model, explore its potential or even modify the model for their applications.

  18. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  19. Growth patterns and annual growth cycle of Acacia karroo Hayne in ...

    African Journals Online (AJOL)

    ... karroo; alice; botany; compensatory growth; condition; development; eastern cape; emergence; environmental conditions; field study; growth cycle; growth initiation; growth patterns; growth strategy; leaf growth; plant growth; savanna; shoot growth; soil depth; soil moisture; south africa; university of fort hare; water stress ...

  20. Numerical Simulation Of Silicon-Ribbon Growth

    Science.gov (United States)

    Woda, Ben K.; Kuo, Chin-Po; Utku, Senol; Ray, Sujit Kumar

    1987-01-01

    Mathematical model includes nonlinear effects. In development simulates growth of silicon ribbon from melt. Takes account of entire temperature and stress history of ribbon. Numerical simulations performed with new model helps in search for temperature distribution, pulling speed, and other conditions favoring growth of wide, flat, relatively defect-free silicon ribbons for solar photovoltaic cells at economically attractive, high production rates. Also applicable to materials other than silicon.

  1. Simulating the growth of tafoni

    NARCIS (Netherlands)

    Huinink, H.P.; Pel, L.; Kopinga, K.

    2004-01-01

    Throughout the world, large caves in rocks (tafoni) are found, which originate from salt weathering. The mechanisms that control their development are poorly understood. The growth of tafoni has been studied with a model that describes how a rock surface, containing a small pit, disintegrates by

  2. Spiral Growth in Plants: Models and Simulations

    Science.gov (United States)

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  3. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  4. Secretory pattern of canine growth hormone

    International Nuclear Information System (INIS)

    French, M.B.; Vaitkus, P.; Cukerman, E.; Sirek, A.; Sirek, O.V.

    1987-01-01

    The aim of this paper was to define the secretory pattern of growth hormone (GH) under basal conditions in fasted, conscious, male dogs accustomed to handling. Blood samples were withdrawn from a cephalic vein at 15-min intervals. In this way, any ultradian rhythms, if present, could be detected within the frequency range of 0.042-2 cycles/h. In addition, samples were drawn at either 1- or 2.5-min intervals for 2.5 or 5 h to determine whether frequency components greater than 2 cycles/h were present. GH was measured by radioimmunoassay and the raw data were submitted to time series analysis employing power spectral estimation by means of fast Fourier transformation techniques. Peak plasma levels were up to 12 times higher than the baseline concentration of ∼ 1 ng/ml. Spectral analysis revealed an endogenous frequency of 0.22 cycles/h, i.e., a periodicity of 4.5 h/cycle. The results indicate that under basal conditions the secretory bursts of canine GH are limited to one peak every 4.5 h

  5. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  6. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  7. Monte Carlo simulation of grain growth

    Directory of Open Access Journals (Sweden)

    Paulo Blikstein

    1999-07-01

    Full Text Available Understanding and predicting grain growth in Metallurgy is meaningful. Monte Carlo methods have been used in computer simulations in many different fields of knowledge. Grain growth simulation using this method is especially attractive as the statistical behavior of the atoms is properly reproduced; microstructural evolution depends only on the real topology of the grains and not on any kind of geometric simplification. Computer simulation has the advantage of allowing the user to visualize graphically the procedures, even dynamically and in three dimensions. Single-phase alloy grain growth simulation was carried out by calculating the free energy of each atom in the lattice (with its present crystallographic orientation and comparing this value to another one calculated with a different random orientation. When the resulting free energy is lower or equal to the initial value, the new orientation replaces the former. The measure of time is the Monte Carlo Step (MCS, which involves a series of trials throughout the lattice. A very close relationship between experimental and theoretical values for the grain growth exponent (n was observed.

  8. Simulating tumor growth in confined heterogeneous environments

    International Nuclear Information System (INIS)

    Gevertz, Jana L; Torquato, Salvatore; Gillies, George T

    2008-01-01

    The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics

  9. Irrigation of grapevines with saline water. II. Mathematical simulation of vine growth and yield

    NARCIS (Netherlands)

    Ben-Asher, J.; Dam, van J.C.; Feddes, R.A.; Jhorar, R.K.

    2006-01-01

    Soil, water, atmosphere and plant (SWAP) model simulates deterministic transport of water and solutes, incorporating a semi-analytical sink function. It enables one to simulate detailed (SAWPd) or simple (SWAPs) crop growth patterns in response to flow patterns in the root zone. The objectives of

  10. Arabidopsis Growth Simulation Using Image Processing Technology

    Directory of Open Access Journals (Sweden)

    Junmei Zhang

    2014-01-01

    Full Text Available This paper aims to provide a method to represent the virtual Arabidopsis plant at each growth stage. It includes simulating the shape and providing growth parameters. The shape is described with elliptic Fourier descriptors. First, the plant is segmented from the background with the chromatic coordinates. With the segmentation result, the outer boundary series are obtained by using boundary tracking algorithm. The elliptic Fourier analysis is then carried out to extract the coefficients of the contour. The coefficients require less storage than the original contour points and can be used to simulate the shape of the plant. The growth parameters include total area and the number of leaves of the plant. The total area is obtained with the number of the plant pixels and the image calibration result. The number of leaves is derived by detecting the apex of each leaf. It is achieved by using wavelet transform to identify the local maximum of the distance signal between the contour points and the region centroid. Experiment result shows that this method can record the growth stage of Arabidopsis plant with fewer data and provide a visual platform for plant growth research.

  11. Variations in growth pattern and predictablity of liveweight growth of ...

    African Journals Online (AJOL)

    The prediction equations results for rate of liveweight growth showed that of the four models used, the quadratic function was the best predictor of liveweight growth, as indicated by the highest and significant R2 value of 90.7 %. This was closely followed by the linear function which had a significant R2 value of 88.1 %.

  12. Phase-field crystal simulation facet and branch crystal growth

    Science.gov (United States)

    Chen, Zhi; Wang, Zhaoyang; Gu, Xinrui; Chen, Yufei; Hao, Limei; de Wit, Jos; Jin, Kexin

    2018-05-01

    Phase-field crystal model with one mode is introduced to describe morphological transition. The relationship between growth morphology and smooth density distribution was investigated. The results indicate that the pattern selection of dendrite growth is caused by the competition between interface energy anisotropy and interface kinetic anisotropy based on the 2D phase diagram. When the calculation time increases, the crystal grows to secondary dendrite at the dimensionless undercooling equal to - 0.4. Moreover, when noise is introduced in the growth progress, the symmetry is broken in the growth mode, and there becomes irregular fractal-like growth morphology. Furthermore, the single crystal shape develops into polycrystalline when the noise amplitude is large enough. When the dimensionless undercooling is less than - 0.3, the noise has a significant effect on the growth shape. In addition, the growth velocity of crystal near to liquid phase line is slow, while the shape far away from the liquid adapts to fast growth. Based on the simulation results, the method was proved to be effective, and it can easily obtain different crystal shapes by choosing the different points in 2D phase diagram.

  13. Maternal Height and Child Growth Patterns

    OpenAIRE

    Addo, O. Yaw; Stein, Aryeh D.; Fall, Caroline H.; Gigante, Denise P.; Guntupalli, Aravinda M.; Horta, Bernardo L.; Kuzawa, Christopher W.; Lee, Nanette; Norris, Shane A.; Prabhakaran, Poornima; Richter, Linda M.; Sachdev, Harshpal S.; Martorell, Reynaldo

    2013-01-01

    OBJECTIVE:\\ud To examine associations between maternal height and child growth during 4 developmental periods: intrauterine, birth to age 2 years, age 2 years to mid-childhood (MC), and MC to adulthood.\\ud \\ud STUDY DESIGN:\\ud Pooled analysis of maternal height and offspring growth using 7630 mother-child pairs from 5 birth cohorts (Brazil, Guatemala, India, the Philippines, and South Africa). We used conditional height measures that control for collinearity in height across periods. We estim...

  14. Pattern transition between periodic Liesegang pattern and crystal growth regime in reaction-diffusion systems

    Science.gov (United States)

    Lagzi, István; Ueyama, Daishin

    2009-01-01

    The pattern transition between periodic precipitation pattern formation (Liesegang phenomenon) and pure crystal growth regimes is investigated in silver nitrate and potassium dichromate system in mixed agarose-gelatin gel. Morphologically different patterns were found depending on the quality of the gel, and transition between these typical patterns can be controlled by the concentration of gelatin in mixed gel. Effect of temperature and hydrodynamic force on precipitation pattern structure was also investigated.

  15. Prognostic Utility of Histological Growth Patterns of Colorectal Lung Oligometastasis.

    Science.gov (United States)

    Yeong, Son Jae; Pak, Min Gyoung; Lee, Hyoun Wook; Ha, Seung Yeon; Roh, Mee Sook

    2018-03-01

    Patients with resectable colorectal lung oligometastasis (CLOM) demonstrate a heterogeneous oncological outcome. However, the parameters for predicting tumor aggressiveness have not yet been fully investigated in CLOM. This study was performed to determine the prognostic value of histological growth patterns in patients who underwent surgery for CLOM. The study included 92 patients who were diagnosed with CLOM among the first resection cases. CLOMs grow according to three histological patterns: aerogenous, pushing, and desmoplastic patterns. The growth patterns were evaluated on archival hematoxylin and eosin-stained tissue sections. The aerogenous pattern was found in 29.4% (n=27) of patients, the pushing pattern in 34.7% (n=32), the desmoplastic pattern in 6.5% (n=6), and a mix of two growth patterns in 29.4% (n=27). The size of the aerogenous pattern was significantly smaller than that of metastases with other patterns (p=.033). Kaplan-Meier analysis demonstrated that patients showing an aerogenous pattern appeared to have a poorer prognosis, which was calculated from the time of diagnosis of the CLOM (p=.044). The 5-year survival rate from the diagnosis of colorectal cancer tended to be lower in patients with an aerogenous pattern than in those who had a non-aerogenous pattern; however, the difference was marginally significant (p=.051). In the multivariate Cox analysis, the aerogenous pattern appeared as an independent predictor of poor overall survival (hazard ratio, 3.122; 95% confidence interval, 1.196 to 8.145; p=.020). These results suggest that the growth patterns may play a part as a histology-based prognostic parameter for patients with CLOM.

  16. Prognostic Utility of Histological Growth Patterns of Colorectal Lung Oligometastasis

    Directory of Open Access Journals (Sweden)

    Son Jae Yeong

    2018-03-01

    Full Text Available Background Patients with resectable colorectal lung oligometastasis (CLOM demonstrate a heterogeneous oncological outcome. However, the parameters for predicting tumor aggressiveness have not yet been fully investigated in CLOM. This study was performed to determine the prognostic value of histological growth patterns in patients who underwent surgery for CLOM. Methods The study included 92 patients who were diagnosed with CLOM among the first resection cases. CLOMs grow according to three histological patterns: aerogenous, pushing, and desmoplastic patterns. The growth patterns were evaluated on archival hematoxylin and eosin–stained tissue sections. Results The aerogenous pattern was found in 29.4% (n=27 of patients, the pushing pattern in 34.7% (n=32, the desmoplastic pattern in 6.5% (n=6, and a mix of two growth patterns in 29.4% (n=27. The size of the aerogenous pattern was significantly smaller than that of metastases with other patterns (p=.033. Kaplan-Meier analysis demonstrated that patients showing an aerogenous pattern appeared to have a poorer prognosis, which was calculated from the time of diagnosis of the CLOM (p=.044. The 5-year survival rate from the diagnosis of colorectal cancer tended to be lower in patients with an aerogenous pattern than in those who had a non-aerogenous pattern; however, the difference was marginally significant (p=.051. In the multivariate Cox analysis, the aerogenous pattern appeared as an independent predictor of poor overall survival (hazard ratio, 3.122; 95% confidence interval, 1.196 to 8.145; p=.020. Conclusions These results suggest that the growth patterns may play a part as a histology-based prognostic parameter for patients with CLOM.

  17. Mesoscopic simulation of recrystallization and grain growth

    International Nuclear Information System (INIS)

    Rollett, A.D.

    2000-01-01

    A brief summary of simulation techniques for recrystallization and grain growth is given. The available methods include surface evolver, front tracking (including finite element methods and vertex methods), networks of curves, phase field, cellular automata, and Monte Carlo. Two of the models that use a regular lattice, the Potts model and the Cellular Automaton (CA) model, have proved to be very useful. Microstructure is represented on a discrete lattice where the value of the field at each point represents the local orientation of the material and boundaries exist between points of unlike orientation. Two issues are discussed: one is a hybrid approach to combining the standard Monte Carlo and cellular automata algorithms for recrystallization modeling. The second is adaptation of the MC method for modeling grain growth (and recrystallization) with physically based boundary properties. Both models have significant limitations in their standard forms. The CA model is very useful and efficient for simulating recrystallization with deterministic motion of the recrystallization fronts. It can be adapted to simulate curvature driven migration provided that multiple sub-lattices are used with a probabilistic switching rule. The Potts model is very successful in modeling curvature driven boundary migration and grain growth. It does not simulate the proportionality between boundary velocity and a stored energy driving force, however, unless rather restricted conditions of stored energy (in relation to the grain boundary energy) and lattice temperature are satisfied. A new approach based on a hybrid of the Potts model (MC) and the Cellular Automaton (CA) model has been developed to obtain the desired limiting behavior for both curvature-driven and stored energy-driven grain boundary migration. The combination of methods is achieved by interleaving the two different types of reorientation event in time. The results show that the hybrid algorithm models the Gibbs

  18. Effects of feed forms on growth pattern, behavioural responses and ...

    African Journals Online (AJOL)

    Effects of feed forms on growth pattern, behavioural responses and feacal microbial load ... load and behavioural activities (eating, drinking, physical pen interaction and ... Total organism counts varied significantly (p<0.05) with pigs on T1, T2, ...

  19. Productivity growth patterns in US dairy products manufacturing plants

    NARCIS (Netherlands)

    Geylani, P.C.; Stefanou, S.E.

    2011-01-01

    We analyse the productivity growth patterns in the US dairy products industry using the Census Bureau's plant-level data set. We decompose Total Factor Productivity (TFP) growth into the scale and technical change components and analyse variability of plants' productivity by constructing transition

  20. Growth pattern and structural nature of amylases produced by some ...

    African Journals Online (AJOL)

    The growth pattern and microbial biomass formed during metabolic activities of the Bacillus species on starchy substrates was determined. The result showed that the strains B. subtilis (WBS), B. licheniformis (WBL) and B. coagulans (MBC) generally had high growth rate. B. circulans (SBC) and B. coagulans (WBC) has ...

  1. Selective growth of gallium nitride nanowires by femtosecond laser patterning

    Energy Technology Data Exchange (ETDEWEB)

    Ng, D.K.T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Hong, M.H. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)], E-mail: HONG_Minghui@dsi.a-star.edu.sg; Tan, L.S. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Zhou, Y. [Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Department of Mechanical Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Chen, G.X. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2008-01-31

    We report on gallium nitride (GaN) nanowires grown using pulsed laser ablation, adopting the vapor-liquid-solid (VLS) growth mechanism. The GaN nanowires are obtained based on the principle that a catalyst is required to initiate the nanowires growth. Locations of the GaN nanowires are patterned using femtosecond laser and focused ion beam. Scanning electron microscopy (SEM) is used to characterize the nanowires. This patterning of GaN nanowires will enable selective growth of nanowires and bottom-up assembly of integrated electronic and photonic devices.

  2. Selective growth of gallium nitride nanowires by femtosecond laser patterning

    International Nuclear Information System (INIS)

    Ng, D.K.T.; Hong, M.H.; Tan, L.S.; Zhou, Y.; Chen, G.X.

    2008-01-01

    We report on gallium nitride (GaN) nanowires grown using pulsed laser ablation, adopting the vapor-liquid-solid (VLS) growth mechanism. The GaN nanowires are obtained based on the principle that a catalyst is required to initiate the nanowires growth. Locations of the GaN nanowires are patterned using femtosecond laser and focused ion beam. Scanning electron microscopy (SEM) is used to characterize the nanowires. This patterning of GaN nanowires will enable selective growth of nanowires and bottom-up assembly of integrated electronic and photonic devices

  3. Patterned solid state growth of barium titanate crystals

    Science.gov (United States)

    Ugorek, Michael Stephen

    An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By

  4. Growth Pattern of Body Dimension of Arfak Children

    Directory of Open Access Journals (Sweden)

    Elda Irma Jeanne Joice Kawulur

    2013-06-01

    Full Text Available Growth pattern of body height and weight reflect the nutritional status and health condition of a population. Assessment of growth pattern and nutritional status of children and adolescence is urgently needed because during this growth period there is a transition period frominfant to adult with fast growth spurt, secondary sexual character maturation, and dramatic body proportion change. A cross-sectional study of the physical growth status was done to 514Arfak children consisted of 231 girls aged 6-19 years and 283 boys aged 6-23 years, in Manokwari, West Papua Province.The study was conducted to find out the growth pattern of the body size of Arfak children. Anthropometry measurement consists of body height (cm and body weight (kg. Growth charts of these variables showed increase with age in both sexes. Growth rate of body weight of Arfak children at juvenile phase was higher than those of other populations, such as India, Purwakarta, and Karawang, except American population.

  5. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    Science.gov (United States)

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  6. Controlling growth density and patterning of single crystalline silicon nanowires

    International Nuclear Information System (INIS)

    Chang, Tung-Hao; Chang, Yu-Cheng; Liu, Fu-Ken; Chu, Tieh-Chi

    2010-01-01

    This study examines the usage of well-patterned Au nanoparticles (NPs) as a catalyst for one-dimensional growth of single crystalline Si nanowires (NWs) through the vapor-liquid-solid (VLS) mechanism. The study reports the fabrication of monolayer Au NPs through the self-assembly of Au NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. Results indicate that the spin coating time of Au NPs plays a crucial role in determining the density of Au NPs on the surface of the silicon substrate and the later catalysis growth of Si NWs. The experiments in this study employed optical lithography to pattern Au NPs, treating them as a catalyst for Si NW growth. The patterned Si NW structures easily produced and controlled Si NW density. This approach may be useful for further studies on single crystalline Si NW-based nanodevices and their properties.

  7. Spatial simulation exploring pattern and process

    CERN Document Server

    O'Sullivan, David

    2013-01-01

    A ground-up approach to explaining dynamic social modelling for an interdisciplinary audience. Across broad areas of the environmental and social sciences, simulation models are  an important way to study systems inaccessible to scientific experimental and observational methods, and also an essential complement to those more conventional approaches.  The contemporary research literature is teeming with abstract simulation models whose presentation is mathematically demanding and requires a high level of knowledge of quantitative and computational methods and approaches.  Furthermore, simulat

  8. Growth of large patterned arrays of neurons using plasma methods

    International Nuclear Information System (INIS)

    Brown, I G; Bjornstad, K A; Blakely, E A; Galvin, J E; Monteiro, O R; Sangyuenyongpipat, S

    2003-01-01

    To understand how large systems of neurons communicate, we need to develop, among other things, methods for growing patterned networks of large numbers of neurons. Success with this challenge will be important to our understanding of how the brain works, as well as to the development of novel kinds of computer architecture that may parallel the organization of the brain. We have investigated the use of metal ion implantation using a vacuum-arc ion source, and plasma deposition with a filtered vacuum-arc system, as a means of forming regions of selective neuronal attachment on surfaces. Lithographic patterns created by the treating surface with ion species that enhance or inhibit neuronal cell attachment allow subsequent proliferation and/or differentiation of the neurons to form desired patterned neural arrays. In the work described here, we used glass microscope slides as substrates, and some of the experiments made use of simple masks to form patterns of ion beam or plasma deposition treated regions. PC-12 rat neurons were then cultured on the treated substrates coated with Type I Collagen, and the growth and differentiation was monitored. Particularly good selective growth was obtained using plasma deposition of diamond-like carbon films of about one hundred Angstroms thickness. Neuron proliferation and the elaboration of dendrites and axons after the addition of nerve growth factor both showed excellent contrast, with prolific growth and differentiation on the treated surfaces and very low growth on the untreated surfaces

  9. Growth of large patterned arrays of neurons using plasma methods

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I G; Bjornstad, K A; Blakely, E A; Galvin, J E; Monteiro, O R; Sangyuenyongpipat, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2003-05-01

    To understand how large systems of neurons communicate, we need to develop, among other things, methods for growing patterned networks of large numbers of neurons. Success with this challenge will be important to our understanding of how the brain works, as well as to the development of novel kinds of computer architecture that may parallel the organization of the brain. We have investigated the use of metal ion implantation using a vacuum-arc ion source, and plasma deposition with a filtered vacuum-arc system, as a means of forming regions of selective neuronal attachment on surfaces. Lithographic patterns created by the treating surface with ion species that enhance or inhibit neuronal cell attachment allow subsequent proliferation and/or differentiation of the neurons to form desired patterned neural arrays. In the work described here, we used glass microscope slides as substrates, and some of the experiments made use of simple masks to form patterns of ion beam or plasma deposition treated regions. PC-12 rat neurons were then cultured on the treated substrates coated with Type I Collagen, and the growth and differentiation was monitored. Particularly good selective growth was obtained using plasma deposition of diamond-like carbon films of about one hundred Angstroms thickness. Neuron proliferation and the elaboration of dendrites and axons after the addition of nerve growth factor both showed excellent contrast, with prolific growth and differentiation on the treated surfaces and very low growth on the untreated surfaces.

  10. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  11. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences.

    Science.gov (United States)

    Ye, Kai; Kosters, Walter A; Ijzerman, Adriaan P

    2007-03-15

    Pattern discovery in protein sequences is often based on multiple sequence alignments (MSA). The procedure can be computationally intensive and often requires manual adjustment, which may be particularly difficult for a set of deviating sequences. In contrast, two algorithms, PRATT2 (http//www.ebi.ac.uk/pratt/) and TEIRESIAS (http://cbcsrv.watson.ibm.com/) are used to directly identify frequent patterns from unaligned biological sequences without an attempt to align them. Here we propose a new algorithm with more efficiency and more functionality than both PRATT2 and TEIRESIAS, and discuss some of its applications to G protein-coupled receptors, a protein family of important drug targets. In this study, we designed and implemented six algorithms to mine three different pattern types from either one or two datasets using a pattern growth approach. We compared our approach to PRATT2 and TEIRESIAS in efficiency, completeness and the diversity of pattern types. Compared to PRATT2, our approach is faster, capable of processing large datasets and able to identify the so-called type III patterns. Our approach is comparable to TEIRESIAS in the discovery of the so-called type I patterns but has additional functionality such as mining the so-called type II and type III patterns and finding discriminating patterns between two datasets. The source code for pattern growth algorithms and their pseudo-code are available at http://www.liacs.nl/home/kosters/pg/.

  12. KMC Simulation of Surface Growth of Semiconductors

    International Nuclear Information System (INIS)

    Esen, M.

    2004-01-01

    In this work we have studied the growth and equilibration of semiconductor surfaces consisting of monoatomic steps separated by flat terraces using kinetic Monte Carlo method. Atomistic processes such as diffusion on terraces, attachment/detachment particles to/from step edges, attachment of particles from an upper terrace to a bounding step, diffusion of particles along step edges are considered. A rate equation for each, these processes is written and the overall transition probabilities are calculated where processes are ordered to make the distinction between slow and fast processes Iractal The interaction of steps is also included in the calculation of rate equations. The growth of such a surface is simulated when there is a particle flux to the surface. The rough of the surface and its dependence on both temperature and kinetic parameters such edge diffusion barrier are investigated. The formation of islands on terraces is prohibited and the distribution of their number and sizes are investigated as a function of temperature and appropriate kinetic parameters. In the absence of a flux to the surface, the equilibration of the surface is investigated paying particular attention to the top of the profile when the initial surface is a periodic profile where parallel monoatomic steps separated by terraces. It is observed that during equilibration of the profile, the topmost step disintegrates quickly and leads to many islands on the top of the profile due to. collision and annihilation of step edges of opposite sign. The islands then quickly disintegrate due to the line tension effect and this scenario repeats itself until the surface completely flattens

  13. The seasonal growth patterns of a Tall Grassveld sward | NFG ...

    African Journals Online (AJOL)

    The growth patterns of a Tall Grassveld sward measured with an inclined point and by clipping and weighing were determined by moisture conditions except in winter when temperature was limiting. The inclined point as a method of determining yield which might replace clipping and weighing, holds promise but is unlikely ...

  14. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    Science.gov (United States)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  15. Elevation Pattern in Growth Coherency on the Southeastern Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Lixin Lyu

    Full Text Available It is generally expected that inter-annual changes in radial growth among trees would be similar to the increase in altitude due to the limitation of increasingly harsher climatic factors. Here, we examine whether this pattern exists in alpine forests on the southeastern Tibetan Plateau. Increment cores were collected from mature trees at the lower, middle and upper limits of balfour spruce (Picea likiangensis var. balfouriana (Rehd. et Wils. Hillier ex Slsvin forests at the Buze and Yela Mountains in Basu County, Changdu Prefecture of Tibet, China. The treeline elevations are 4320 m and 4510 m a.s.l. for Buze and Yela, respectively. Tree-ring widths were measured, crossdated, and detrended to obtain a sequence of ring-width indices for each individual sample. Annual growth rate, climate sensitivity, growth-climate relationships, and growth synchrony among trees were calculated and compared across altitudes. In Buze Mountain, the annual growth rate of trees has no significant difference across altitudes. The mean sensitivity of trees is lower at the treelines than at lower elevations. Tree growth has stronger correlation with winter temperature at upper elevations than at lower elevations, has significant correlation with moisture, not temperature, in the growing season, and the growth response to moisture is lower at the treeline than at lower elevations. The correlation among individual tree-ring sequences is lower at the treeline than at sites at lower elevation. In Yela Mountain, the characterisitics of annual growth rate, mean sensitivity, tree growth-climate relationships, and inter-serial correlation are similar to those in Buze, but their differences along altitudinal gradients are less significant as those in Buze. Our data do not support the general expectation of growth convergence among individuals with increasing altitude. We conclude that individual heterogeneity and microhabitat diversity are important features for treeline trees

  16. Elevation Pattern in Growth Coherency on the Southeastern Tibetan Plateau.

    Science.gov (United States)

    Lyu, Lixin; Deng, Xu; Zhang, Qi-Bin

    It is generally expected that inter-annual changes in radial growth among trees would be similar to the increase in altitude due to the limitation of increasingly harsher climatic factors. Here, we examine whether this pattern exists in alpine forests on the southeastern Tibetan Plateau. Increment cores were collected from mature trees at the lower, middle and upper limits of balfour spruce (Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slsvin) forests at the Buze and Yela Mountains in Basu County, Changdu Prefecture of Tibet, China. The treeline elevations are 4320 m and 4510 m a.s.l. for Buze and Yela, respectively. Tree-ring widths were measured, crossdated, and detrended to obtain a sequence of ring-width indices for each individual sample. Annual growth rate, climate sensitivity, growth-climate relationships, and growth synchrony among trees were calculated and compared across altitudes. In Buze Mountain, the annual growth rate of trees has no significant difference across altitudes. The mean sensitivity of trees is lower at the treelines than at lower elevations. Tree growth has stronger correlation with winter temperature at upper elevations than at lower elevations, has significant correlation with moisture, not temperature, in the growing season, and the growth response to moisture is lower at the treeline than at lower elevations. The correlation among individual tree-ring sequences is lower at the treeline than at sites at lower elevation. In Yela Mountain, the characterisitics of annual growth rate, mean sensitivity, tree growth-climate relationships, and inter-serial correlation are similar to those in Buze, but their differences along altitudinal gradients are less significant as those in Buze. Our data do not support the general expectation of growth convergence among individuals with increasing altitude. We conclude that individual heterogeneity and microhabitat diversity are important features for treeline trees that may dampen

  17. Germanium growth on electron beam lithography patterned Si3N4/Si(001) substrate using molecular beam epitaxy

    Science.gov (United States)

    Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar

    2018-04-01

    It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.

  18. Building the evidence on simulation validity: comparison of anesthesiologists' communication patterns in real and simulated cases.

    Science.gov (United States)

    Weller, Jennifer; Henderson, Robert; Webster, Craig S; Shulruf, Boaz; Torrie, Jane; Davies, Elaine; Henderson, Kaylene; Frampton, Chris; Merry, Alan F

    2014-01-01

    Effective teamwork is important for patient safety, and verbal communication underpins many dimensions of teamwork. The validity of the simulated environment would be supported if it elicited similar verbal communications to the real setting. The authors hypothesized that anesthesiologists would exhibit similar verbal communication patterns in routine operating room (OR) cases and routine simulated cases. The authors further hypothesized that anesthesiologists would exhibit different communication patterns in routine cases (real or simulated) and simulated cases involving a crisis. Key communications relevant to teamwork were coded from video recordings of anesthesiologists in the OR, routine simulation and crisis simulation and percentages were compared. The authors recorded comparable videos of 20 anesthesiologists in the two simulations, and 17 of these anesthesiologists in the OR, generating 400 coded events in the OR, 683 in the routine simulation, and 1,419 in the crisis simulation. The authors found no significant differences in communication patterns in the OR and the routine simulations. The authors did find significant differences in communication patterns between the crisis simulation and both the OR and the routine simulations. Participants rated team communication as realistic and considered their communications occurred with a similar frequency in the simulations as in comparable cases in the OR. The similarity of teamwork-related communications elicited from anesthesiologists in simulated cases and the real setting lends support for the ecological validity of the simulation environment and its value in teamwork training. Different communication patterns and frequencies under the challenge of a crisis support the use of simulation to assess crisis management skills.

  19. A synthesis of radial growth patterns preceding tree mortality

    Science.gov (United States)

    Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M.R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, Juan C. Linares; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; Lopez Rodriguez, Rosana; Makinen, Harri; Mayr, Stefan; Meszaros, IIona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi

    2017-01-01

    Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or

  20. Spatial patterns of cyanobacterial mat growth on sand ripples

    Science.gov (United States)

    Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.

    2016-02-01

    Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.

  1. Is Climate Simulation in Growth Chambers Necessary?

    Science.gov (United States)

    Z.M. Wang; K.H. Johnsen; M.J. Lechowicz

    1999-01-01

    In the expression of their genetic potential as phenotypes, trees respond to environmental cues such as photoperiod, temperature and soil and atmospheric water. However, growth chamber experiments often utilize simple and standard environmental conditions that might not provide these important environmental signals. We conducted a study to compare seedling growth in...

  2. Modeling and simulation of Si crystal growth from melt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2009-07-01

    A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Monte Carlo simulation of continuous-space crystal growth

    International Nuclear Information System (INIS)

    Dodson, B.W.; Taylor, P.A.

    1986-01-01

    We describe a method, based on Monte Carlo techniques, of simulating the atomic growth of crystals without the discrete lattice space assumed by conventional Monte Carlo growth simulations. Since no lattice space is assumed, problems involving epitaxial growth, heteroepitaxy, phonon-driven mechanisms, surface reconstruction, and many other phenomena incompatible with the lattice-space approximation can be studied. Also, use of the Monte Carlo method circumvents to some extent the extreme limitations on simulated timescale inherent in crystal-growth techniques which might be proposed using molecular dynamics. The implementation of the new method is illustrated by studying the growth of strained-layer superlattice (SLS) interfaces in two-dimensional Lennard-Jones atomic systems. Despite the extreme simplicity of such systems, the qualitative features of SLS growth seen here are similar to those observed experimentally in real semiconductor systems

  4. Key variables influencing patterns of lava dome growth and collapse

    Science.gov (United States)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  5. Regression models for linking patterns of growth to a later outcome: infant growth and childhood overweight

    Directory of Open Access Journals (Sweden)

    Andrew K. Wills

    2016-04-01

    Full Text Available Abstract Background Regression models are widely used to link serial measures of anthropometric size or changes in size to a later outcome. Different parameterisations of these models enable one to target different questions about the effect of growth, however, their interpretation can be challenging. Our objective was to formulate and classify several sets of parameterisations by their underlying growth pattern contrast, and to discuss their utility using an expository example. Methods We describe and classify five sets of model parameterisations in accordance with their underlying growth pattern contrast (conditional growth; being bigger v being smaller; becoming bigger and staying bigger; growing faster v being bigger; becoming and staying bigger versus being bigger. The contrasts are estimated by including different sets of repeated measures of size and changes in size in a regression model. We illustrate these models in the setting of linking infant growth (measured on 6 occasions: birth, 6 weeks, 3, 6, 12 and 24 months in weight-for-height-for-age z-scores to later childhood overweight at 8y using complete cases from the Norwegian Childhood Growth study (n = 900. Results In our expository example, conditional growth during all periods, becoming bigger in any interval and staying bigger through infancy, and being bigger from birth were all associated with higher odds of later overweight. The highest odds of later overweight occurred for individuals who experienced high conditional growth or became bigger in the 3 to 6 month period and stayed bigger, and those who were bigger from birth to 24 months. Comparisons between periods and between growth patterns require large sample sizes and need to consider how to scale associations to make comparisons fair; with respect to the latter, we show one approach. Conclusion Studies interested in detrimental growth patterns may gain extra insight from reporting several sets of growth pattern

  6. Simulation of the diffraction pattern of one dimensional quasicrystal ...

    African Journals Online (AJOL)

    The effects of the variation of atomic spacing ratio of a one dimensional quasicrystal material are investigated. The work involves the use of the solid state simulation code, Laue written by Silsbee and Drager. We are able to observe the general features of the diffraction pattern by a quasicrystal. In addition, it has been found ...

  7. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou

    Directory of Open Access Journals (Sweden)

    Ron Moen

    1998-03-01

    Full Text Available We added antler growth and mineral metabolism modules to a previously developed energetics model for ruminants to simulate energy and mineral balance of male and female caribou throughout an annual cycle. Body watet, fat, protein, and ash are monitored on a daily time step, and energy costs associated with reproduction and body mass changes are simulated. In order to simulate antler growth, we had to predict calcium and phosphorus metabolism as it is affected by antler growth, gestation, and lactation. We used data on dietary digestibility, protein, calcium and phosphorus content, and seasonal patterns in body mass to predict the energy, nitrogen, calcium, and phosphorus balances of a "generic" male and female caribou. Antler growth in males increased energy requirements during antler growth by 8 to 16%, depending on the efficiency with which energy was used for antler growth. Female energy requirements for antler growth were proportionately much smaller because of the smaller size of female antlers. Protein requirements for antler growth in both males and females were met by forage intake. Calcium and phosphorus must be resorbed from bone during peak antler growth in males, when > 25 g/day of calcium and > 12 g/day of phosphorus are being deposited in antlers. Females are capable of meeting calcium needs during antler growth without bone resorption, but phosphorus was resorbed from bone during the final stages of antler mineralization. After energy, phosphorus was most likely to limit growth of antlers for both males and females in our simulations. Input parameters can be easily changed to represent caribou from specific geographic regions in which dietary nutrient content or body mass patterns differ from those in our "generic" caribou. The model can be used to quantitatively analyze the evolutionary basis for development of antlers in female caribou, and the relationship between body mass and antler size in the Cervidae.

  8. Population and labour force growth and patterns in ASEAN countries.

    Science.gov (United States)

    Saw, S

    1988-01-01

    "The paper shows that the diverse labor dimensions prevailing in the ASEAN region can be attributed to changes in the structure of the society and economy in the course of recent economic development. It observes the considerable variety in the growth of the population and its effect on the labor force in the ASEAN region.... The paper details the similarity and diversity in the level and type of labor force participation rates. A common feature shared by ASEAN countries is a general pattern in the age-specific participation rate of men. In contrast, the women, aside from participating in the labor force at a much lower level than men at almost all ages, display diverse patterns of participation over the working age range. Lastly, the distribution of the labor force according to major industrial sectors in the six ASEAN countries is presented...." excerpt

  9. Studies on the growth of penaeid prawns. 3. Growth pattern of @iPenaeus indicus@@ and @iMetapenaeus dobsoni@@

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.R; Nair, K.K.C.; Gopalakrishnan, T.C.; Kutty, M.K.

    Experimental studies on the growth of @iPenaeus indicus@@ and @iMetapenaeus dobsoni@@ for three and a half months under different levels of feeding gave a growth pattern different from that of von Bertalanffy. The two distinct growth patterns...

  10. Simulating urban growth in the George town conurbation | Samat ...

    African Journals Online (AJOL)

    Journal of Fundamental and Applied Sciences ... Therefore, this paper aims to develop an urban growth simulation model using GIS-based CA-Markov approach, incorporated with driving forces of urban growth in the Malaysian context. ... Keywords: CA-Markov; Geograpghic Information Sciences (GIS); Land use changes;

  11. Overview of urban Growth Simulation: With examples from different cities

    CSIR Research Space (South Africa)

    Waldeck, L

    2013-08-01

    Full Text Available This presentation provides an overview of Urban Growth Simulation as a risk free means of assessing the future outcome of major policy and investment decisions with some examples of scenarios that were simulated in different South African cities....

  12. Simulation of dendritic growth of magnesium alloys with fluid flow

    Directory of Open Access Journals (Sweden)

    Meng-wu Wu

    2017-11-01

    Full Text Available Fluid flow has a significant impact on the microstructure evolution of alloys during solidification. Based on the previous work relating simulation of the dendritic growth of magnesium alloys with hcp (hexagonal close-packed structure, an extension was made to the formerly established CA (cellular automaton model with the purpose of studying the effect of fluid flow on the dendritic growth of magnesium alloys. The modified projection method was used to solve the transport equations of flow field. By coupling the flow field with the solute field, simulation results of equiaxed and columnar dendritic growth of magnesium alloys with fluid flow were achieved. The simulated results were quantitatively compared with those without fluid flow. Moreover, a comparison was also made between the present work and previous works conducted by others. It can be concluded that a deep understanding of the dendritic growth of magnesium alloys with fluid flow can be obtained by applying the present numerical model.

  13. Spatial variations of growth within domes having different patterns of principal growth directions

    Directory of Open Access Journals (Sweden)

    Jerzy Nakielski

    2014-01-01

    Full Text Available Growth rate variations for two paraboloidal domes: A and B, identical when seen from the outside but differing in the internal pattern of principal growth directions, were modeled by means of the growth tensor and a natural coordinate system. In dome A periclinal trajectories in the axial plane were given by confocal parabolas (as in a tunical dome, in dome B by parabolas converging to the vertex (as in a dome without a tunica. Accordingly, two natural coordinate systems, namely paraboloidal for A and convergent parabolic for B, were used. In both cases, the rate of growth in area on the surfaces of domes was assumed to be isotropic and identical in corresponding points. It appears that distributions of growth rates within domes A and B are similar in their peripheral and central parts and different only in their distal regions. In the latter, growth rates are relatively large; the maximum relative rate of growth in volume is around the geometric focus in dome A, and on the surface around the vertex in dome B.

  14. Simulation of speckle patterns with pre-defined correlation distributions

    Science.gov (United States)

    Song, Lipei; Zhou, Zhen; Wang, Xueyan; Zhao, Xing; Elson, Daniel S.

    2016-01-01

    We put forward a method to easily generate a single or a sequence of fully developed speckle patterns with pre-defined correlation distribution by utilizing the principle of coherent imaging. The few-to-one mapping between the input correlation matrix and the correlation distribution between simulated speckle patterns is realized and there is a simple square relationship between the values of these two correlation coefficient sets. This method is demonstrated both theoretically and experimentally. The square relationship enables easy conversion from any desired correlation distribution. Since the input correlation distribution can be defined by a digital matrix or a gray-scale image acquired experimentally, this method provides a convenient way to simulate real speckle-related experiments and to evaluate data processing techniques. PMID:27231589

  15. The morphological growth patterns of colorectal liver metastases are prognostic for overall survival

    DEFF Research Database (Denmark)

    Nielsen, Kåre; Rolff, Hans C; Eefsen, Rikke L

    2014-01-01

    Colorectal metastases in the liver grow according to three histological patterns: a pushing pattern, a replacement pattern, and a desmoplastic pattern. The objective of the current study was to explore the prognostic significance of these three growth patterns for survival. The study included 217....... Eventually, the growth patterns may contribute to a histology-based prognostic biomarker for patients with colorectal liver metastases.Modern Pathology advance online publication, 23 May 2014; doi:10.1038/modpathol.2014.4....

  16. Numerical simulation of avascular tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)

    2007-11-15

    A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.

  17. Simulation studies of emittance growth in RMS mismatched beams

    International Nuclear Information System (INIS)

    Cucchetti, A.; Wangler, T.; Reiser, M.

    1991-01-01

    As shown in a separate paper, a charged-particle beam, whose rms size is not matched when injected into a transport channel or accelerator, has excess energy compared with that of a matched beam. If nonlinear space-charge forces are present and the mismatched beam transforms to a matched equilibrium state, rms-emittance growth will occur. The theory yields formulas for the possible rms-emittance growth, but not for the time it takes to achieve this growth. In this paper we present the results of systematic simulation studies for a mismatched 2-D round beam in an ideal transport channel with continuous linear focusing. Emittance growth rates obtained from the simulations for different amounts of mismatch and initial charge will be presented and the emittance growth will be compared with the theory. 6 refs., 7 figs

  18. Patterns of communication in high-fidelity simulation.

    Science.gov (United States)

    Anderson, Judy K; Nelson, Kimberly

    2015-01-01

    High-fidelity simulation is commonplace in nursing education. However, critical thinking, decision making, and psychomotor skills scenarios are emphasized. Scenarios involving communication occur in interprofessional or intraprofessional settings. The importance of effective nurse-patient communication is reflected in statements from the American Nurses Association and Quality and Safety Education for Nurses, and in the graduate outcomes of most nursing programs. This qualitative study examined the patterns of communication observed in video recordings of a medical-surgical scenario with 71 senior students in a baccalaureate program. Thematic analysis revealed patterns of (a) focusing on tasks, (b) communicating-in-action, and (c) being therapeutic. Additional categories under the patterns included missing opportunities, viewing the "small picture," relying on informing, speaking in "medical tongues," offering choices…okay?, feeling uncomfortable, and using therapeutic techniques. The findings suggest the importance of using high-fidelity simulation to develop expertise in communication. In addition, the findings reinforce the recommendation to prioritize communication aspects of scenarios and debriefing for all simulations. Copyright 2015, SLACK Incorporated.

  19. Exact quantification of the complexity of spacewise pattern growth in cellular automata

    International Nuclear Information System (INIS)

    Freire, Joana G; Gallas, Jason A C; Brison, Owen J

    2009-01-01

    We analyze the two possible ways of simulating complex systems with cellular automata: by using the familiar timewise updating or by using the complementary spacewise updating. Both updating algorithms operate on identical sets of initial conditions defining the state of the automaton. While timewise growth generally probes just vanishingly small sets of initial conditions producing statistical samples of the asymptotic attractors, spacewise growth operates with much restricted sets which allow one to simulate them all, exhaustively. Our main result is the derivation of an exact analytical formula to quantify precisely one of the two sources of algorithmic complexity of spacewise detection of the complete set of attractors for elementary 1D cellular automata with generic non-periodic architectures of any arbitrary size. The formula gives the total number of initial conditions that need to be investigated to locate rigorously all possible patterns for any given rule. As simple applications, we illustrate how this knowledge may be used (i) to uncover missing patterns in previous classifications in the literature and (ii) to obtain surprisingly novel patterns that are totally unreachable with the time-honored technique of artificially imposing spatially periodic boundary conditions.

  20. Simulated Thin-Film Growth and Imaging

    Science.gov (United States)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  1. Simulating discrete models of pattern formation by ion beam sputtering

    International Nuclear Information System (INIS)

    Hartmann, Alexander K; Kree, Reiner; Yasseri, Taha

    2009-01-01

    A class of simple, (2+1)-dimensional, discrete models is reviewed, which allow us to study the evolution of surface patterns on solid substrates during ion beam sputtering (IBS). The models are based on the same assumptions about the erosion process as the existing continuum theories. Several distinct physical mechanisms of surface diffusion are added, which allow us to study the interplay of erosion-driven and diffusion-driven pattern formation. We present results from our own work on evolution scenarios of ripple patterns, especially for longer timescales, where nonlinear effects become important. Furthermore we review kinetic phase diagrams, both with and without sample rotation, which depict the systematic dependence of surface patterns on the shape of energy depositing collision cascades after ion impact. Finally, we discuss some results from more recent work on surface diffusion with Ehrlich-Schwoebel barriers as the driving force for pattern formation during IBS and on Monte Carlo simulations of IBS with codeposition of surfactant atoms.

  2. Temperature dependence of ordered GeSi island growth on patterned Si (001) substrates

    International Nuclear Information System (INIS)

    ZhongZhenyang; Chen Peixuan; Jiang Zuimin; Bauer, Guenther

    2008-01-01

    Statistical information on GeSi islands grown on two-dimensionally pit-patterned Si substrates at different temperatures is presented. Three growth regimes on patterned substrates are identified: (i) kinetically limited growth at low growth temperatures, (ii) ordered island growth in an intermediate temperature range, and (iii) stochastic island growth within pits at high temperatures. A qualitative model based on growth kinetics is proposed to explain these phenomena. It can serve as a guidance to realize optimum growth conditions for ordered islands on patterned substrates

  3. Growth Kinetics of the Homogeneously Nucleated Water Droplets: Simulation Results

    International Nuclear Information System (INIS)

    Mokshin, Anatolii V; Galimzyanov, Bulat N

    2012-01-01

    The growth of homogeneously nucleated droplets in water vapor at the fixed temperatures T = 273, 283, 293, 303, 313, 323, 333, 343, 353, 363 and 373 K (the pressure p = 1 atm.) is investigated on the basis of the coarse-grained molecular dynamics simulation data with the mW-model. The treatment of simulation results is performed by means of the statistical method within the mean-first-passage-time approach, where the reaction coordinate is associated with the largest droplet size. It is found that the water droplet growth is characterized by the next features: (i) the rescaled growth law is unified at all the considered temperatures and (ii) the droplet growth evolves with acceleration and follows the power law.

  4. Epitaxial growth of Cu on Cu(001): Experiments and simulations

    International Nuclear Information System (INIS)

    Furman, Itay; Biham, Ofer; Zuo, Jiang-Kai; Swan, Anna K.; Wendelken, John

    2000-01-01

    A quantitative comparison between experimental and Monte Carlo simulation results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is presented. The simulations take into account a complete set of hopping processes whose activation energies are derived from semiempirical calculations using the embedded-atom method. The island separation is measured as a function of the incoming flux and the temperature. A good quantitative agreement between the experiment and simulation is found for the island separation, the activation energies for the dominant processes, and the exponents that characterize the growth. The simulation results are then analyzed at lower coverages, which are not accessible experimentally, providing good agreement with theoretical predictions as well

  5. Growth, Fabrication and Characterization of Patterned Semiconductor Nanostructures

    Science.gov (United States)

    Kumari, Archana

    In this work we developed a new technique for the growth of GaAs nanostrcutures and tungsten disulphide (WS2) nanodots, a two dimensional dichalcogenide (2D-TMD). We patterned a thin SiO2 film for the first time by reactive ion etching through the alumina templates and GaAs nanopillars and nanodots were grown through the holes in SiO2 film by MBE. The WS2 nanodots were synthesized by the atomic layer deposition of WS 2 via alumina template. First, WO3 nanodots were deposited through the porous template using e-beam evaporation and then WO3 vapor reacts with sulfur to obtain WS2 nanodots by chemical vapor deposition technique. We studied morphological and optical properties of patterned nanostructures using SEM, TEM photoluminescence(PL) technique, AFM and Raman microscopy. We used different As2/Ga ratio to obtain patterned nanostructures through the holes of the SiO2 film. These nanopillars were epitaxially aligned to the GaAs(111)B substrates. We achieved (111)B oriented nanopillars with typical diameters between 72 nm to 76 nm and lengths between 200 nm- 600 nm. These nanopillars have six {110} side facets. Though there were few defects, but mostly they were following the pattern in SiO 2. We obtained nanopillars with predominantly two types of tops, triangular pyramidal tops and hexagonal flat tops. We find that these nanopillars have a mixed crystal structure of zinc-blende and wurtzite structures. There is a high density of twins and stacking faults. Alternating wurtzite and zinc-blende layers within the nanopillars, however, lead to quantum confinement effect and thus a blue-shift of PL emission. WS2 nanodots precisely controlled in size have potential applications in nanoelectronics due to their unique optical and electrical properties. Most of the nanodots synthesized so far are produced using liquid exfoliation method from the bulk. Here we report the size controlled growth of uniform WS2 nanodots using self -organized alumina templates as a growth mask on

  6. Effects of size at birth, childhood growth patterns and growth hormone treatment on leukocyte telomere length.

    Directory of Open Access Journals (Sweden)

    Carolina C J Smeets

    Full Text Available Small size at birth and rapid growth in early life are associated with increased risk of cardiovascular disease in later life. Short children born small for gestational age (SGA are treated with growth hormone (GH, inducing catch-up in length. Leukocyte telomere length (LTL is a marker of biological age and shorter LTL is associated with increased risk of cardiovascular disease.To investigate whether LTL is influenced by birth size, childhood growth and long-term GH treatment.We analyzed LTL in 545 young adults with differences in birth size and childhood growth patterns. Previously GH-treated young adults born SGA (SGA-GH were compared to untreated short SGA (SGA-S, SGA with spontaneous catch-up to a normal body size (SGA-CU, and appropriate for gestational age with a normal body size (AGA-NS. LTL was measured using a quantitative PCR assay.We found a positive association between birth length and LTL (p = 0.04, and a trend towards a positive association between birth weight and LTL (p = 0.08, after adjustments for gender, age, gestational age and adult body size. Weight gain during infancy and childhood and fat mass percentage were not associated with LTL. Female gender and gestational age were positively associated with LTL, and smoking negatively. After adjustments for gender, age and gestational age, SGA-GH had a similar LTL as SGA-S (p = 0.11, SGA-CU (p = 0.80, and AGA-NS (p = 0.30.Larger size at birth is positively associated with LTL in young adulthood. Growth patterns during infancy and childhood are not associated with LTL. Previously GH-treated young adults born SGA have similar LTL as untreated short SGA, SGA with spontaneous catch-up and AGA born controls, indicating no adverse effects of GH-induced catch-up in height on LTL.

  7. Histopathological growth pattern, proteolysis and angiogenesis in chemonaive patients resected for multiple colorectal liver metastases

    DEFF Research Database (Denmark)

    Eefsen, Rikke Løvendahl; Van den Eynden, Gert G; Høyer-Hansen, Gunilla

    2012-01-01

    The purpose of this study was to characterise growth patterns, proteolysis, and angiogenesis in colorectal liver metastases from chemonaive patients with multiple liver metastases. Twenty-four patients were included in the study, resected for a median of 2.6 metastases. The growth pattern......-type plasminogen activator receptor (P = 0.0008). Angiogenesis was most pronounced in metastases with a pushing growth pattern in comparison to those with desmoplastic (P = 0.0007) and replacement growth pattern (P = 0.021). Although a minor fraction of the patients harboured metastases with different growth...

  8. Social Network Mixing Patterns In Mergers & Acquisitions - A Simulation Experiment

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2011-01-01

    Full Text Available In the contemporary world of global business and continuously growing competition, organizations tend to use mergers and acquisitions to enforce their position on the market. The future organization’s design is a critical success factor in such undertakings. The field of social network analysis can enhance our uderstanding of these processes as it lets us reason about the development of networks, regardless of their origin. The analysis of mixing patterns is particularly useful as it provides an insight into how nodes in a network connect with each other. We hypothesize that organizational networks with compatible mixing patterns will be integrated more successfully. After conducting a simulation experiment, we suggest an integration model based on the analysis of network assortativity. The model can be a guideline for organizational integration, such as occurs in mergers and acquisitions.

  9. Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems

    OpenAIRE

    Perales, Alvaro; Vidal, Guifre

    2007-01-01

    We study the evolution of one-dimensional quantum lattice systems when the ground state is perturbed by altering one site in the middle of the chain. For a large class of models, we observe a similar pattern of entanglement growth during the evolution, characterized by a moderate increase of significant Schmidt coefficients in all relevant bipartite decompositions of the state. As a result, the evolution can be accurately described by a matrix product state and efficiently simulated using the...

  10. Growth Patterns and E-Moderating Supports in Asynchronous Online Discussions in an Undergraduate Blended Course

    Science.gov (United States)

    Ghadirian, Hajar; Ayub, Ahmad Fauzi Mohd; Bakar, Kamariah Binti Abu; Hassanzadeh, Maryam

    2016-01-01

    This study presents a case study of asynchronous online discussions' (AOD) growth patterns in an undergraduate blended course to address the gap in our current understanding of how threads are developed in peer-moderated AODs. Building on a taxonomy of thread pattern proposed by Chan, Hew and Cheung (2009), growth patterns of thirty-six forums…

  11. Growth of nitrogen-doped graphene on copper: Multiscale simulations

    Science.gov (United States)

    Gaillard, P.; Schoenhalz, A. L.; Moskovkin, P.; Lucas, S.; Henrard, L.

    2016-02-01

    We used multiscale simulations to model the growth of nitrogen-doped graphene on a copper substrate by chemical vapour deposition (CVD). Our simulations are based on ab-initio calculations of energy barriers for surface diffusion, which are complemented by larger scale Kinetic Monte Carlo (KMC) simulations. Our results indicate that the shape of grown doped graphene flakes depends on the temperature and deposition flux they are submitted during the process, but we found no significant effect of nitrogen doping on this shape. However, we show that nitrogen atoms have a preference for pyridine-like sites compared to graphite-like sites, as observed experimentally.

  12. Sugar maple and yellow birch seedling growth after simulated browsing.

    Science.gov (United States)

    Frederick T. Metzger

    1977-01-01

    Simulating natural damage to leaders of forest-grown seedlings of yellow birch and sugar maple resulted in no loss of vigor but a loss in net height growth. Leader elongation depended upon seedling, shoot, and bud characteristics rather than on the extent of damage.

  13. Nonlinear pattern formation in bone growth and architecture

    Directory of Open Access Journals (Sweden)

    Phil eSalmon

    2015-01-01

    Full Text Available The 3D morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatio-temporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic nonlinear pattern formation (NPF – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of group intelligence exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called particle swarm optimization (PSO. This theoretical model could be applicable to the behavior of osteoblasts osteoclasts and osteocytes, seeing them operating socially in response simultaneously to both global and local signals (endocrine, cytokine, mechanical resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in-silico simulation of bone modeling.What insights has NPF provided to bone biology? One example concerns the genetic disorder Juvenile Pagets Disease (JPD or Idiopathic Hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here coupling or feedback between osteoblasts and osteoclasts is the critical element.This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the

  14. Non-linear pattern formation in bone growth and architecture.

    Science.gov (United States)

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  15. spsann - optimization of sample patterns using spatial simulated annealing

    Science.gov (United States)

    Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia

    2015-04-01

    There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a

  16. Invited Article: Plasmonic growth of patterned metamaterials with fractal geometry

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takeyasu

    2016-08-01

    Full Text Available Large-scale metallic three-dimensional (3D structures composed of sub-wavelength fine details, called metamaterials, have attracted optical scientists and materials scientists because of their unconventional and extraordinary optical properties that are not seen in nature. However, existing nano-fabrication technologies including two-photon fabrication, e-beam, focused ion-beam, and probe microscopy are not necessarily suitable for fabricating such large-scale 3D metallic nanostructures. In this article, we propose a different method of fabricating metamaterials, which is based on a bottom-up approach. We mimicked the generation of wood forest under the sunlight and rain in nature. In our method, a silver nano-forest is grown from the silver seeds (nanoparticles placed on the glass substrate in silver-ion solution. The metallic nano-forest is formed only in the area where ultraviolet light is illuminated. The local temperature increases at nano-seeds and tips of nano-trees and their branches due to the plasmonic heating as a result of UV light excitation of localized mode of surface plasmon polaritons. We have made experiments of growth of metallic nano-forest patterned by the light distribution. The experimental results show a beautiful nano-forest made of silver with self-similarity. Fractal dimension and spectral response of the grown structure are discussed. The structures exhibit a broad spectral response from ultraviolet to infrared, which was used for surface-enhanced Raman detection of molecules.

  17. Growth patterns for etiolated soybeans germinated under spaceflight conditions

    Science.gov (United States)

    Levine, Howard G.; Piastuch, William C.

    In the GENEX (GENe EXpression) spaceflight experiment (flown on STS-87), six surface sterilized soybean seeds ( Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to initiate the process of seed germination on-orbit and subsequently transferred them to four light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight plants ( N = 177), (2) the corresponding ground control population ( N = 183), plus (3) additional controls grown on the ground under clinostat conditions ( N = 93). No significant morphological differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. Some causes underlying this phenomenon are speculated on.

  18. Airflow Patterns In Nuclear Workplace - Computer Simulation And Qualitative Tests

    International Nuclear Information System (INIS)

    Haim, M.; Szanto, M.; Weiss, Y.; Kravchick, T.; Levinson, S.; German, U.

    1999-01-01

    Concentration of airborne radioactive materials inside a room can vary widely from one location to another, sometimes by orders of magnitude even for locations that are relatively close. Inappropriately placed samplers can give misleading results and. therefore, the location of air samplers is important. Proper placement of samplers cannot be determined simply by observing the position of room air supply and exhaust vents. Airflow studies, such as the release of smoke aerosols, should be used. The significance of airflow pattern studies depends on the purpose of sampling - for estimating worker intakes, warning of high concentrations. defacing airborne radioactive areas, testing for confinement of sealed radioactive materials. etc. When sampling air in rooms with complex airflow patterns, it may be useful to use qualitative airflow studies with smoke tubes, smoke candles or isostatic bubbles. The U.S. Nuclear Regulatory Commission - Regulatory Guide 8.25 [1]. suggests that an airflow study should be conducted after any changes at work area including changes in the setup of work areas, ventilation system changes, etc. The present work presents an airflow patterns study conducted in a typical room using two methods: a computer simulation and a qualitative test using a smoke tube

  19. Modelisation and numerical simulation for bulk crystal growth processes

    International Nuclear Information System (INIS)

    Duffar, F.; Dusserre, P.; Barat, C.; Nabot, J.P.

    1993-01-01

    The aim of this work is to study the relevance of numerical simulation for improving the process control in the field of crystal growth. This investigation focused on the growth of semiconductor and halide crystals by the Bridgman solidification technique, the principle of which is to cool a seeded feed material contained in a crucible, either by pulling the crucible or by decreasing the temperature in the furnace. Calculations are performed with the finite element method, and for comparison, experiments are carried out on Bridgman pulling machines operating either in a laboratory or in industrial plants. Calculations and experimental data have shown a good agreement and a satisfactory reliability

  20. Growth pattern of the surface of fungus Aspergillus colony

    Science.gov (United States)

    Matsuura, Shu; Miyazima, Sasuke

    1992-05-01

    Aspergillus oryzae colonies were grown under various glucose concentrations, temperatures, and agar concentrations, and the effects on the pattern were investigated. Patterns of colony were found to vary from uniform to diffusion-limited aggregation type.

  1. Observation and simulation of crack growth in Zry-4

    International Nuclear Information System (INIS)

    Bertolino, Graciela; Meyer, Gabriel; Perez Ipina, J

    2003-01-01

    Security and life extension of components of nuclear reactors are the most motivating aspects that encourage to study embrittlement processes of zirconium alloys by reaction with hydrogen.Here, the use of fracture mechanics tests are suitable to monitor the material resistance of components under service.Because many times is difficult to obtain normalized probes from real size components, researchers look for alternative experimental techniques or crack growth simulation from the knowledge of particular material properties.In this work we present the results obtained after experimental observation and computer simulation of crack growth in Zry-4 probes.Experimental observation were obtained by performing flexion tests in three point probes SSEN(B) of 3 x 7 x 32 mm 3 located in the chamber of a scanning electron microscope, measuring in situ the crack length and opening when an external load is applied.Using the information obtained from stress-displacement measurements after tensile tests and the empiric relationship between crack opening and crack length, the crack growth process was simulated.Displacement field in the zone close to the crack tip was obtained by finite elements technique (Castem, DMT, CEA) assuming plain stress, a plastic bilinear homogeneous material and neglecting texture or directional anisotropy.To compare experimental observation and simulation, a grid (10 x 10 μm 2 each square) was drawn in the zone close to the crack tip by selective sputtering.Following the movement of two (three) points of the surface allows to compare uni (bi) dimensional deformation.A good agreement between observation and simulation was observed: after the crack opening grew 28 times (from 1.5 to 42 μm) the base-height relationship of a triangle involving the crack tip change 40% (35%) in the experimental observation (simulation)

  2. The molecular dynamics simulation of ion-induced ripple growth

    International Nuclear Information System (INIS)

    Suele, P.; Heinig, K.-H.

    2009-01-01

    The wavelength-dependence of ion-sputtering induced growth of repetitive nanostructures, such as ripples has been studied by molecular dynamics (MD) simulations in Si. The early stage of the ion erosion driven development of ripples has been simulated on prepatterned Si stripes with a wavy surface. The time evolution of the height function and amplitude of the sinusoidal surface profile has been followed by simulated ion-sputtering. According to Bradley-Harper (BH) theory, we expect correlation between the wavelength of ripples and the stability of them. However, we find that in the small ripple wavelength (λ) regime BH theory fails to reproduce the results obtained by molecular dynamics. We find that at short wavelengths (λ 35 nm is stabilized in accordance with the available experimental results. According to the simulations, few hundreds of ion impacts in λ long and few nanometers wide Si ripples are sufficient for reaching saturation in surface growth for for λ>35 nm ripples. In another words, ripples in the long wavelength limit seems to be stable against ion-sputtering. A qualitative comparison of our simulation results with recent experimental data on nanopatterning under irradiation is attempted.

  3. The growth pattern of the human intestine and its mesentery.

    Science.gov (United States)

    Soffers, Jelly H M; Hikspoors, Jill P J M; Mekonen, Hayelom K; Koehler, S Eleonore; Lamers, Wouter H

    2015-08-22

    It remains unclear to what extent midgut rotation determines human intestinal topography and pathology. We reinvestigated the midgut during its looping and herniation phases of development, using novel 3D visualization techniques. We distinguished 3 generations of midgut loops. The topography of primary and secondary loops was constant, but that of tertiary loops not. The orientation of the primary loop changed from sagittal to transverse due to the descent of ventral structures in a body with a still helical body axis. The 1st secondary loop (duodenum, proximal jejunum) developed intraabdominally towards a left-sided position. The 2nd secondary loop (distal jejunum) assumed a left-sided position inside the hernia before returning, while the 3rd and 4th secondary loops retained near-midline positions. Intestinal return into the abdomen resembled a backward sliding movement. Only after return, the 4th secondary loop (distal ileum, cecum) rapidly "slid" into the right lower abdomen. The seemingly random position of the tertiary small-intestinal loops may have a biomechanical origin. The interpretation of "intestinal rotation" as a mechanistic rather than a descriptive concept underlies much of the confusion accompanying the physiological herniation. We argue, instead, that the concept of "en-bloc rotation" of the developing midgut is a fallacy of schematic drawings. Primary, secondary and tertiary loops arise in a hierarchical fashion. The predictable position and growth of secondary loops is pre-patterned and determines adult intestinal topography. We hypothesize based on published accounts that malrotations result from stunted development of secondary loops.

  4. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  5. Growth patterns of fossil vertebrates as deduced from bone

    Indian Academy of Sciences (India)

    2009-10-20

    Oct 20, 2009 ... The dicynodonts on the other hand, were characterized by an overall fast growth with periodic interruptions, variable growth rates dependent on ontogeny and indeterminate growth strategy. A comparative study encompassing several neotherapsid genera including the dicynodonts shows significant ...

  6. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)

    1996-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  7. Mathematical modeling and numerical simulation of Czochralski Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, J; Nieminen, R [Center for Scientific Computing, Espoo (Finland)

    1997-12-31

    A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)

  8. Trunk muscle recruitment patterns in simulated precrash events.

    Science.gov (United States)

    Ólafsdóttir, Jóna Marín; Fice, Jason B; Mang, Daniel W H; Brolin, Karin; Davidsson, Johan; Blouin, Jean-Sébastien; Siegmund, Gunter P

    2018-02-28

    To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. Four subjects (1 female, 3 males) were accelerated at 0.55 g (net Δv = 4.0 m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2-L3 level. Muscle activity evoked by the perturbations was normalized by each muscle's isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600 ms after acceleration onset. EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300 ms time points, the highest EMG amplitudes were observed during perturbations to the left (-90°) and left rearward (-135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior muscles. These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios.

  9. Simulation of crystalline pattern formation by the MPFC method

    Directory of Open Access Journals (Sweden)

    Starodumov Ilya

    2017-01-01

    Full Text Available The Phase Field Crystal model in hyperbolic formulation (modified PFC or MPFC, is investigated as one of the most promising techniques for modeling the formation of crystal patterns. MPFC is a convenient and fundamentally based description linking nano-and meso-scale processes in the evolution of crystal structures. The presented model is a powerful tool for mathematical modeling of the various operations in manufacturing. Among them is the definition of process conditions for the production of metal castings with predetermined properties, the prediction of defects in the crystal structure during casting, the evaluation of quality of special coatings, and others. Our paper presents the structure diagram which was calculated for the one-mode MPFC model and compared to the results of numerical simulation for the fast phase transitions. The diagram is verified by the numerical simulation and also strongly correlates to the previously calculated diagrams. The computations have been performed using software based on the effective parallel computational algorithm.

  10. Characterization of Minnesota lunar simulant for plant growth

    Science.gov (United States)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.

    1993-01-01

    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  11. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-05-14

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  12. Comparison of an empirical forest growth and yield simulator and a forest gap simulator using actual 30-year growth from two even-aged forests in Kentucky

    Science.gov (United States)

    Daniel A. Yaussy

    2000-01-01

    Two individual-tree growth simulators are used to predict the growth and mortality on a 30-year-old forest site and an 80-year-old forest site in eastern Kentucky. The empirical growth and yield model (NE-TWIGS) was developed to simulate short-term (

  13. High Resolution N-Body Simulations of Terrestrial Planet Growth

    Science.gov (United States)

    Clark Wallace, Spencer; Quinn, Thomas R.

    2018-04-01

    We investigate planetesimal accretion with a direct N-body simulation of an annulus at 1 AU around a 1 M_sun star. The planetesimal ring, which initially contains N = 106 bodies is evolved through the runaway growth stage into the phase of oligarchic growth. We find that the mass distribution of planetesimals develops a bump around 1022 g shortly after the oligarchs form. This feature is absent in previous lower resolution studies. We find that this bump marks a boundary between growth modes. Below the bump mass, planetesimals are packed tightly enough together to populate first order mean motion resonances with the oligarchs. These resonances act to heat the tightly packed, low mass planetesimals, inhibiting their growth. We examine the eccentricity evolution of a dynamically hot planetary embryo embedded in an annulus of planetesimals and find that dynamical friction acts more strongly on the embryo when the planetesimals are finely resolved. This effect disappears when the annulus is made narrow enough to exclude most of the mean motion resonances. Additionally, we find that the 1022 g bump is significantly less prominent when we follow planetesimal growth with a skinny annulus.This feature, which is reminiscent of the power law break seen in the size distribution of asteroid belt objects may be an important clue for constraining the initial size of planetesimals in planet formation models.

  14. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is

  15. Simulation of organ patterning on the floral meristem using a polar auxin transport model.

    Directory of Open Access Journals (Sweden)

    Simon van Mourik

    Full Text Available An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.

  16. Pattern of growth of very low birth weight preterm infants, assessed using the WHO Growth Standards, is associated with neurodevelopment.

    Science.gov (United States)

    Nash, Andrea; Dunn, Michael; Asztalos, Elizabeth; Corey, Mary; Mulvihill-Jory, Bridget; O'Connor, Deborah L

    2011-08-01

    Several Canadian professional organizations recently recommended that the growth of preterm infants be monitored using the World Health Organization Growth Standards (WHO-GS) after hospital discharge. The WHO-GS are a prescriptive set of growth charts that describe how term infants should grow under ideal environmental conditions. Whether preterm infants following this pattern of growth have better outcomes than infants that do not has yet to be evaluated. Our aim was to determine whether the pattern of growth of very low birth weight (VLBW) infants during the first 2 years, assessed using the WHO-GS or the traditional Centers for Disease Control and Prevention reference growth charts (CDC-RGC), is associated with neurodevelopment. Pattern of weight, length, and head circumference gain of appropriate-for-gestation VLBW preterm infants (n = 289) from birth to 18-24 months corrected age was classified, using the WHO-GS and CDC-RGC, as sustained (change in Z-score ≤1 SD), decelerated (decline >1 SD), or accelerated (incline >1 SD). Development was assessed using the Bayley Scales of Infant and Toddler Development (BSID)-III at 18-24 months corrected age. Using the WHO-GS, children with a decelerated pattern of weight gain had lower cognitive (10 points), language (6 points), and motor (4 points) scores than infants with sustained weight gain (p growth.

  17. Role of meteorology in simulating methane seasonal cycle and growth rate

    Science.gov (United States)

    Ghosh, A.; Patra, P. K.; Ishijima, K.; Morimoto, S.; Aoki, S.; Nakazawa, T.

    2012-12-01

    Methane (CH4) is the second most important anthropogenically produced greenhouse gas whose radiative effect is comparable to that of carbon dioxide since the preindustrial time. Methane also contributes to formation of tropospheric ozone and water vapor in the stratosphere, further increasing its importance to the Earth's radiative balance. In the present study, model simulation of CH4 for three different emission scenarios has been conducted using the CCSR/NIES/FRCGC Atmospheric General Circulation Model (AGCM) based Chemistry Transport Model (ACTM) with and without nudging of meteorological parameters for the period of 1981-2011. The model simulations are compared with measurements at monthly timescale at surface monitoring stations. We show the overall trends in CH4 growth rate and seasonal cycle at most measurement sites can be fairly successfully modeled by using existing knowledge of CH4 flux trends and seasonality. Detailed analysis reveals the model simulation without nudging has greater seasonal cycle amplitude compared to observation as well as the model simulation with nudging. The growth rate is slightly overestimated for the model simulation without nudging. For better representation of regional/global flux distribution pattern and strength in the future, we are exploring various dynamical and chemical aspects in the forward model with and without nudging.

  18. Optical Characterization of Thick Growth Orientation-Patterned Gallium Arsenide

    National Research Council Canada - National Science Library

    Meyer, Joshua W

    2006-01-01

    .... Orientation patterned gallium arsenide (OPGaAs) is a promising nonlinear conversion material because it has broad transparency and can be engineered for specific pump laser and output wavelengths using quasi-phase matching techniques...

  19. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  20. Stochastic simulation of grain growth during continuous casting

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A. [Department of Aerounatical Engineering, S.E.P.I., E.S.I.M.E., IPN, Instituto Politecnico Nacional (Unidad Profesional Ticoman), Av. Ticoman 600, Col. Ticoman, C.P.07340 (Mexico)]. E-mail: adalop123@mailbanamex.com; Carrillo, F. [Department of Processing Materials, CICATA-IPN Unidad Altamira Tamps (Mexico); Gonzalez, J.L. [Department of Metallurgy and Materials Engineering, E.S.I.Q.I.E.-IPN (Mexico); Lopez, S. [Department of Molecular Engineering of I.M.P., AP 14-805 (Mexico)

    2006-04-15

    The evolution of microstructure is a very important topic in material science engineering because the solidification conditions of steel billets during continuous casting process affect directly the properties of the final products. In this paper a mathematical model is described in order to simulate the dendritic growth using data of real casting operations; here a combination of deterministic and stochastic methods was used as a function of the solidification time of every node in order to create a reconstruction about the morphology of cast structures.

  1. Stochastic simulation of grain growth during continuous casting

    International Nuclear Information System (INIS)

    Ramirez, A.; Carrillo, F.; Gonzalez, J.L.; Lopez, S.

    2006-01-01

    The evolution of microstructure is a very important topic in material science engineering because the solidification conditions of steel billets during continuous casting process affect directly the properties of the final products. In this paper a mathematical model is described in order to simulate the dendritic growth using data of real casting operations; here a combination of deterministic and stochastic methods was used as a function of the solidification time of every node in order to create a reconstruction about the morphology of cast structures

  2. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  3. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    Science.gov (United States)

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Simulating the Impact of Economic and Environmental Strategies on Future Urban Growth Scenarios in Ningbo, China

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2016-10-01

    Full Text Available Coastal cities in China are challenged by multiple growth paths and strategies related to demands in the housing market, economic growth and eco-system protection. This paper examines the effects of conflicting strategies between economic growth and environmental protection on future urban scenarios in Ningbo, China, through logistic-regression-based cellular automata (termed LogCA modeling. The LogCA model is calibrated based on the observed urban patterns in 1990 and 2015, and applied to simulate four future scenarios in 2040, including (a the Norm-scenario, a baseline scenario that maintains the 1990–2015 growth rate; (b the GDP-scenario, a GDP-oriented growth scenario emphasizing the development in city centers and along economic corridors; (c the Slow-scenario, a slow-growth scenario considering the potential downward trend of the housing market in China; and (d the Eco-scenario, a slow-growth scenario emphasizing natural conservation and ecosystem protections. The CA parameters of the Norm- and Slow-scenarios are the same as the calibrated parameters, while the parameters of proximities to economic corridors and natural scenery sites were increased by a factor of 3 for the GDP- and Eco-scenarios, respectively. The Norm- and GDP-scenarios predicted 1950 km2 of new growth for the next 25 years, the Slow-scenario predicted 650 km2, and the Eco-scenario predicted less growth than the Slow-scenario. The locations where the newly built-up area will emerge are significantly different under the four scenarios and the Slow- and Eco-scenarios are preferable to achieve long-term sustainability. The scenarios are not only helpful for exploring sustainable urban development options in China, but also serve as a reference for adjusting the urban planning and land policies.

  5. Patterns of Manufacturing Growth in Sub-Saharan Africa

    NARCIS (Netherlands)

    Austin, G.; Frankema, E.H.P.; Jerven, M.

    2017-01-01

    This chapter reviews the ‘long twentieth-century’ development of ‘modern’ manufacturing in Sub-Saharan Africa from colonization to the present. It argues that classifying Africa generically as a ‘late industrializer’ is inaccurate. To understand the distinctively African pattern of manufacturing

  6. Rapid Urban Growth and Land Use Patterns in Doha, Qatar: Opportunities for Sustainability?

    Directory of Open Access Journals (Sweden)

    Vivek Shandas

    2017-06-01

    Full Text Available Amidst chaotic growth of Asian cities, the expansion of urban infrastructure in the Middle East's Gulf region is arguably outpacing any other region on the planet. Yet we have a limited understanding of the types of urban form or the extent to which this rapid urbanization is giving rise to sustainable patterns of growth. We ask, what is the pace and character of urban growth in one Middle East city, Doha, Qatar. By using remotely sensed imagery from 1987 to 2013, we examined the pace, quality, and characteristics of urban growth. We further use the results to create a typology of urban growth that integrates historical and spatial dimensions for describing the qualitative aspects of growth and its implications on regional landscapes. Our results suggest that Doha is creating development patterns similar to many Western cities, and that planners may need to consider whether the emerging urban form offers opportunities for more sustainable growth in the future.

  7. Pattern of head growth and nutritional status of microcephalic infants ...

    African Journals Online (AJOL)

    2011-07-08

    Jul 8, 2011 ... indicator for both brain development and nutritional status from birth to ... Additionally, studies based on the latest child growth standards of the World ... Gender-specific z-scores for head circumference were obtained from the ...

  8. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    Introduction: Breast cancer is the most common cancer among women globally. With immunohistochemistry (IHC), breast cancer is classified into four groups based on IHC profile of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu) expression, positive (+) and/or ...

  9. Feed intake, growth and feed utilization patterns of pigs highly ...

    African Journals Online (AJOL)

    Mean daily live mass gain was, however, 174 g/day (20,5%) more for the Large White boars and feed conversion16,5% ... of protein and fat in genetically lean and obese pigs, and showed that feed ..... regulation of growth and production.

  10. Simulation of instability growth on ICF capsule ablators

    Science.gov (United States)

    Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    It is believed that the ablation-front instabilities are mainly responsible for the hot-spot mix that impacts the performance of ICF capsules. Understanding the formation of these instabilities is therefore a first step towards a better control of the implosion dynamics and the optimization of the fusion yield. Using the Chimera code currently in development at Imperial College, we have performed several spherical wedge simulations of the low and high adiabat ablation phase pre-imposing different single-mode 2D and 3D perturbations on the capsule surface. Synthetic Sc, Fe and V X-ray backlighter images are generated by the Spk code and used to measure the growth of modes 30-160 with initial amplitude <= 3.4 μm PTV. The growth of imposed 2D perturbations is assessed for both low-foot and high-foot radiation pulse shapes on the National Ignition Facility. Results showing the merger of spike and bubble structures in multi-mode perturbations in both 2D and 3D simulations are explored and preliminary assessments of the difference between 2D and 3D non-linear behaviour is discussed. The sensitivity of shock timing to NLTE changes in opacity is also assessed.

  11. Simulation of fatigue crack growth under large scale yielding conditions

    Science.gov (United States)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  12. Pattern overlap implies runaway growth in hierarchical tile systems

    Directory of Open Access Journals (Sweden)

    David Doty

    2015-11-01

    Full Text Available We show that in the hierarchical tile assembly model, if there is a producible assembly that overlaps a nontrivial translation of itself consistently (i.e., the pattern of tile types in the overlap region is identical in both translations, then arbitrarily large assemblies are producible. The significance of this result is that tile systems intended to controllably produce finite structures must avoid pattern repetition in their producible assemblies that would lead to such overlap.This answers an open question of Chen and Doty (SODA 2012, who showed that so-called "partial-order" systems producing a unique finite assembly and avoiding such overlaps must require time linear in the assembly diameter. An application of our main result is that any system producing a unique finite assembly is automatically guaranteed to avoid such overlaps, simplifying the hypothesis of Chen and Doty's main theorem.

  13. Simulation of wind wave growth with reference source functions

    Science.gov (United States)

    Badulin, Sergei I.; Zakharov, Vladimir E.; Pushkarev, Andrei N.

    2013-04-01

    We present results of extensive simulations of wind wave growth with the so-called reference source function in the right-hand side of the Hasselmann equation written as follows First, we use Webb's algorithm [8] for calculating the exact nonlinear transfer function Snl. Second, we consider a family of wind input functions in accordance with recent consideration [9] ( )s S = ?(k)N , ?(k) = ? ? ?- f (?). in k 0 ?0 in (2) Function fin(?) describes dependence on angle ?. Parameters in (2) are tunable and determine magnitude (parameters ?0, ?0) and wave growth rate s [9]. Exponent s plays a key role in this study being responsible for reference scenarios of wave growth: s = 4-3 gives linear growth of wave momentum, s = 2 - linear growth of wave energy and s = 8-3 - constant rate of wave action growth. Note, the values are close to ones of conventional parameterizations of wave growth rates (e.g. s = 1 for [7] and s = 2 for [5]). Dissipation function Sdiss is chosen as one providing the Phillips spectrum E(?) ~ ?5 at high frequency range [3] (parameter ?diss fixes a dissipation scale of wind waves) Sdiss = Cdissμ4w?N (k)θ(? - ?diss) (3) Here frequency-dependent wave steepness μ2w = E(?,?)?5-g2 makes this function to be heavily nonlinear and provides a remarkable property of stationary solutions at high frequencies: the dissipation coefficient Cdiss should keep certain value to provide the observed power-law tails close to the Phillips spectrum E(?) ~ ?-5. Our recent estimates [3] give Cdiss ? 2.0. The Hasselmann equation (1) with the new functions Sin, Sdiss (2,3) has a family of self-similar solutions of the same form as previously studied models [1,3,9] and proposes a solid basis for further theoretical and numerical study of wave evolution under action of all the physical mechanisms: wind input, wave dissipation and nonlinear transfer. Simulations of duration- and fetch-limited wind wave growth have been carried out within the above model setup to check its

  14. Patterning of hydrogenated microcrystalline silicon growth by magnetic field

    Czech Academy of Sciences Publication Activity Database

    Fejfar, Antonín; Stuchlík, Jiří; Mates, Tomáš; Ledinský, Martin; Honda, Shinya; Kočka, Jan

    2005-01-01

    Roč. 87, č. 1 (2005), 011901/1-011901/3 ISSN 0003-6951 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogenated microcrystalline silicon * magnetic field growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.127, year: 2005

  15. Urban Ecology: Patterns of Population Growth and Ecological Effects

    Science.gov (United States)

    Wayne C. Zipperer; Steward T.A. Pickett

    2012-01-01

    Currently, over 50% of the world’s population lives in urban areas. By 2050, this estimate is expected to be 70%. This urban growth, however, is not uniformly distributed around the world. The majority of it will occur in developing nations and create megacities whose populations exceed at least 10 million people. Not all urban areas, however, are growing. Some are...

  16. Growth patterns in children with intrauterine growth retardation and their correlation to neurocognitive development.

    Science.gov (United States)

    Fattal-Valevski, Aviva; Toledano-Alhadef, Hagit; Leitner, Yael; Geva, Ronny; Eshel, Rina; Harel, Shaul

    2009-07-01

    The relationship between somatic growth and neurocognitive outcome was studied in a cohort of 136 children with intrauterine growth retardation. The children were followed up from birth to 9 to 10 years of age by annual measurements of growth parameters, neurodevelopmental evaluations, and IQ. The rate of catch-up for height between 1 and 2 years of age was significantly higher than the catch-up for weight (P importance for prediction of subsequent neurodevelopmental outcome in children with intrauterine growth retardation.

  17. Cellular and muscular growth patterns during sipunculan development.

    Science.gov (United States)

    Kristof, Alen; Wollesen, Tim; Maiorova, Anastassya S; Wanninger, Andreas

    2011-05-15

    Sipuncula is a lophotrochozoan taxon with annelid affinities, albeit lacking segmentation of the adult body. Here, we present data on cell proliferation and myogenesis during development of three sipunculan species, Phascolosoma agassizii, Thysanocardia nigra, and Themiste pyroides. The first anlagen of the circular body wall muscles appear simultaneously and not subsequently as in the annelids. At the same time, the rudiments of four longitudinal retractor muscles appear. This supports the notion that four introvert retractors were part of the ancestral sipunculan bodyplan. The longitudinal muscle fibers form a pattern of densely arranged fibers around the retractor muscles, indicating that the latter evolved from modified longitudinal body wall muscles. For a short time interval, the distribution of S-phase mitotic cells shows a metameric pattern in the developing ventral nerve cord during the pelagosphera stage. This pattern disappears close to metamorphic competence. Our findings are congruent with data on sipunculan neurogenesis, as well as with recent molecular analyses that place Sipuncula within Annelida, and thus strongly support a segmental ancestry of Sipuncula. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  18. Simulation and theory of island growth on stepped substrates

    International Nuclear Information System (INIS)

    Pownall, C.D.

    1999-10-01

    The nucleation, growth and coalescence of islands on stepped substrates is investigated by Monte Carlo simulations and analytical theories. Substrate steps provide a preferential site for the nucleation of islands, making many of the important processes one-dimensional in nature, and are of potentially major importance in the development of low-dimensional structures as a means of growing highly ordered chains of 'quantum dots' or continuous 'quantum wires'. A model is developed in which island nucleation is entirely restricted to the step edge, islands grow in compact morphologies by monomer capture, and eventually coalesce with one another until a single continuous cluster of islands covers the entire step. A series of analytical theories is developed to describe the dynamics of the whole evolution. The initial nucleation and aggregation regimes are modeled using the traditional approach of rate equations, rooted in mean field theory, but incorporating corrections to account for correlations in the nucleation and capture processes. This approach is found to break down close to the point at which the island density saturates and a new approach is developed based upon geometric and probabilistic arguments to describe the saturation behaviour, including the characteristic dynamic scaling which is found to persist through the coalescence regime as well. A further new theory, incorporating arguments based on the geometry of Capture Zones, is presented which reproduces the dynamics of the coalescence regime. The, latter part of the. thesis considers the spatial properties of the system, in particular the spacing of the islands along the step. An expression is derived which describes the distribution of gap sizes, and this is solved using a recently-developed relaxation method. An important result is the discovery that larger critical island sizes tend to yield more evenly spaced arrays of islands. The extent of this effect is analysed by solving for critical island

  19. Metastatic ocular melanoma to the liver exhibits infiltrative and nodular growth patterns

    DEFF Research Database (Denmark)

    Grossniklaus, Hans E; Zhang, Qing; You, Shuo

    2016-01-01

    We examined liver specimens from 15 patients with uveal melanoma (UM) who had died of their disseminated disease. We found 2 distinct growth patterns of UM metastasis: infiltrative (n = 12) and nodular (n = 3). In the infiltrative pattern, individual UM cells with a CD133+ cancer stem cell-like p...

  20. Simulating pattern-process relationships to validate landscape genetic models

    Science.gov (United States)

    A. J. Shirk; S. A. Cushman; E. L. Landguth

    2012-01-01

    Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...

  1. Simulation of the diffraction pattern of one dimensional quasicrystal ...

    African Journals Online (AJOL)

    In addition, it has been found that each golden mean produces a unique diffraction pattern and that the lower the golden mean the better the diffraction pattern resembles that of a periodic chain. Also the intensity of the central peak was found to decrease as the golden mean increases. However the value of golden mean ...

  2. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  3. Inferring Drosophila gap gene regulatory network: Pattern analysis of simulated gene expression profiles and stability analysis

    OpenAIRE

    Fomekong-Nanfack, Y.; Postma, M.; Kaandorp, J.A.

    2009-01-01

    Abstract Background Inference of gene regulatory networks (GRNs) requires accurate data, a method to simulate the expression patterns and an efficient optimization algorithm to estimate the unknown parameters. Using this approach it is possible to obtain alternative circuits without making any a priori assumptions about the interactions, which all simulate the observed patterns. It is important to analyze the properties of the circuits. Findings We have analyzed the simulated gene expression ...

  4. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    Science.gov (United States)

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree

  5. Effect of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel

    International Nuclear Information System (INIS)

    Palaniandavar, N.; Gnanam, F.D.; Ramasamy, P.

    1986-01-01

    The interrelated effects of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel medium have been investigated. The main parameters are concentration of electrolytes, pH of the medium, density of the gel, the concentration of parasitic electrolyte and the concentration of additives. The pattern formation is explained on the basis of electrical double layer theory coupled with diffusion. Using Shinohara's revised coagulation concept, the flocculation value is calculated. With suitable combinations of parameter values, dendritic growth and spherulitic growth of cadmium hydroxide crystals have been observed. (author)

  6. Analyzing Interaction Patterns to Verify a Simulation/Game Model

    Science.gov (United States)

    Myers, Rodney Dean

    2012-01-01

    In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…

  7. Pattern formation of nanoflowers during the vapor-liquid-solid growth of silicon nanowires

    International Nuclear Information System (INIS)

    Bae, Joonho; Thompson-Flagg, Rebecca; Ekerdt, John G.; Shih, C.-K.

    2008-01-01

    Pattern formation of nanoflowers during the vapor-liquid-solid growth of Si nanowires is reported. Using transmission electron microscopy, scanning electron microscopy, and energy dispersive spectrometer analysis, we show that the flower consists of an Au/SiO x core-shell structure. Moreover, the growth of flower starts at the interface between the gold catalyst and the silicon nanowire, presumably by enhanced oxidation at this interface. The pattern formation can be classified as dense branching morphology (DBM). It is the first observation of DBM in a spherical geometry and at the nanoscale. The analysis of the average branching distance of this pattern shows that the pattern is most likely formed during the growth process, not the cooling process, and that the curvature of the gold droplet plays a crucial role in the frequency of branching

  8. Simulation study on the growth of grains in dusty plasmas

    International Nuclear Information System (INIS)

    Sato, Tetsuya; Watanabe, Kunihiko

    1997-01-01

    A new particle simulation code is developed for studying the dynamics of the grains which are exposed to charging by the background plasma particles. Effects of regular attachment of electrons and ions, effects of secondary electron emission, and coagulation of grains are included in this code. Simulation results show that grains randomly change their charges from negative to positive, or from positive to negative in a 'flip-flop' fashion as a result of competition between the electron attachment and secondary electron emission. It is found that the flip-flop effect becomes remarkable when the radius of grains is of the order of 10 nm, because the attachment of a single electron to a grain is less effective on the surface potential for larger grains, while the average probability of electron attachment is smaller for smaller grains. Grains with opposite charges attract each other to coagulate, so that grains of size of 10 nm are likely to grow in size. The flip-flop effect is found to be essential to the growth of grains. (author)

  9. Computer simulation and interpretation of 45Ca efflux profile patterns

    International Nuclear Information System (INIS)

    Borle, A.B.; Uchikawa, T.; Anderson, J.H.

    1982-01-01

    Stimulations or inhibitions by various agents of 45 Ca efflux from prelabeled cells or tissues display distinct and reproducible profile patterns when the results are plotted against time as fractional efflux ratios (FER). FER is the fractional efflux of 45 Ca from stimulated cells divided by the fractional efflux from a control unstimulated group. These profile patterns fall into three categories: peak patterns, exponential patterns, and mixed patterns. Each category can be positive (stimulation) or negative (inhibition). The interpretation of these profiles is difficult because 45 Ca efflux depends on three variables: the rate of calcium transport out of the cell, the specific activity of the cell compartment from which the calcium originates, and the concentration of free calcium in this compartment. A computer model based on data obtained by kinetic analyses of 45 Ca desaturation curves and consisting of two distinct intracellular pools was designed to follow the concentration of the traced substance ( 40 Ca), the tracer ( 45 Ca), and the specific activity of each compartment before, during, and after the stimulation or the inhibition of calcium fluxes at various pool boundaries. The computer model can reproduce all the FER profiles obtained experimentally and bring information which may be helpful to the interpretation of this type of data. Some predictions of the model were tested experimentally, and the results support the views that a peak pattern may reflect a sustained change in calcium transport across the plasma membrane, that an exponential pattern arises from calcium mobilization from an internal subcellular pool, and that a mixed pattern may be caused by a simultaneous change in calcium fluxes at both compartment boundaries

  10. Spatiotemporal Simulation of Tourist Town Growth Based on the Cellular Automata Model: The Case of Sanpo Town in Hebei Province

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2013-01-01

    Full Text Available Spatiotemporal simulation of tourist town growth is important for research on land use/cover change under the influence of urbanization. Many scholars have shown great interest in the unique pattern of driving urban development with tourism development. Based on the cellular automata (CA model, we simulated and predicted the spatiotemporal growth of Sanpo town in Hebei Province, using the tourism urbanization growth model. Results showed that (1 average annual growth rate of the entire region was 1.5 Ha2 per year from 2005 to 2010, 4 Ha2 per year from 2010 to 2015, and 2.5 Ha2 per year from 2015 to 2020; (2 urban growth rate increased yearly, with regional differences, and had a high degree of correlation with the Euclidean distance of town center, traffic route, attractions, and other factors; (3 Gougezhuang, an important village center in the west of the town, demonstrated traffic advantages and increased growth rate since 2010; (4 Magezhuang village has the largest population in the region, so economic advantages have driven the development of rural urbanization. It showed that CA had high reliability in simulating the spatiotemporal evolution of tourist town, which assists the study of spatiotemporal growth under urbanization and rational protection of tourism resources.

  11. Chemotactic preferences govern competition and pattern formation in simulated two-strain microbial communities.

    Science.gov (United States)

    Centler, Florian; Thullner, Martin

    2015-01-01

    Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environment, strains competed for a common substrate and only differed in their chemotactic preference, either responding more sensitively to a chemoattractant excreted by themselves or responding more sensitively to substrate. Starting from homogeneous distributions, three possible behaviors were observed depending on the competitors' chemotactic preferences: (i) distributions remained homogeneous, (ii) patterns formed but dissolved at a later time point, resulting in a shifted community composition, and (iii) patterns emerged and led to the extinction of one strain. When patterns formed, the more aggregating strain populated the core of microbial aggregates where starving conditions prevailed, while the less aggregating strain populated the more productive zones at the fringe or outside aggregates, leading to a competitive advantage of the less aggregating strain. The presence of a competitor was found to modulate a strain's behavior, either suppressing or promoting aggregate formation. This observation provides a potential mechanism by which an aggregated lifestyle might evolve even if it is initially disadvantageous. Adverse effects can be avoided as a competitor hinders aggregate formation by a strain which has just acquired this ability. The presented results highlight both, the importance of microbial motility for competition and pattern formation, and the importance of the temporal evolution, or history, of microbial communities when trying to explain an observed distribution.

  12. Simple growth patterns can create complex trajectories for the ontogeny of constitutive chemical defences in seaweeds.

    Directory of Open Access Journals (Sweden)

    Nicholas A Paul

    Full Text Available All of the theory and most of the data on the ecology and evolution of chemical defences derive from terrestrial plants, which have considerable capacity for internal movement of resources. In contrast, most macroalgae--seaweeds--have no or very limited capacity for resource translocation, meaning that trade-offs between growth and defence, for example, should be localised rather than systemic. This may change the predictions of chemical defence theories for seaweeds. We developed a model that mimicked the simple growth pattern of the red seaweed Asparagopsis armata which is composed of repeating clusters of somatic cells and cells which contain deterrent secondary chemicals (gland cells. To do this we created a distinct growth curve for the somatic cells and another for the gland cells using empirical data. The somatic growth function was linked to the growth function for defence via differential equations modelling, which effectively generated a trade-off between growth and defence as these neighbouring cells develop. By treating growth and defence as separate functions we were also able to model a trade-off in growth of 2-3% under most circumstances. However, we found contrasting evidence for this trade-off in the empirical relationships between growth and defence, depending on the light level under which the alga was cultured. After developing a model that incorporated both branching and cell division rates, we formally demonstrated that positive correlations between growth and defence are predicted in many circumstances and also that allocation costs, if they exist, will be constrained by the intrinsic growth patterns of the seaweed. Growth patterns could therefore explain contrasting evidence for cost of constitutive chemical defence in many studies, highlighting the need to consider the fundamental biology and ontogeny of organisms when assessing the allocation theories for defence.

  13. Monitoring, analyzing and simulating of spatial-temporal changes of landscape pattern over mining area

    Science.gov (United States)

    Liu, Pei; Han, Ruimei; Wang, Shuangting

    2014-11-01

    According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.

  14. Growth pattern and growth dependent mortality of larval and pelagic juvenile North Sea cod Gadus morhua

    DEFF Research Database (Denmark)

    Nielsen, Rune; Munk, Peter

    2004-01-01

    and May 2001), and larval/juvenile growth history from each of the sampling sequences was outlined. Growth rate was estimated by fitting a Laird-Gompertz equation to lengths-at-age, and we found the mean specific growth rate in length at age 20 d was 3.2% d(-1), declining to 1.9% d(-1) at an age of 90 d....... Otolith radius and larval standard length were highly correlated, and otolith growth was used as a measure of larval somatic growth. The larvae were divided into 3 groups dependent on their hatch-date, and for each hatch group, the same period of past growth was compared between fish sampled in April...... and May. A 2-way repeated-measurement ANOVA revealed a significant higher past growth of fish sampled in May in 2 of the 3 hatch-groups, implying a higher mortality of the slow growing larvae. Additionally, otolith size at age differed significantly between the April and May sampling of the oldest larvae...

  15. Altered growth pattern, not altered growth per se, is the hallmark of early lesions preceding cancer development.

    Science.gov (United States)

    Doratiotto, S; Marongiu, F; Faedda, S; Pani, P; Laconi, E

    2009-01-01

    Many human solid cancers arise from focal proliferative lesions that long precede the overt clinical appearance of the disease. The available evidence supports the notion that cancer precursor lesions are clonal in origin, and this notion forms the basis for most of the current theories on the pathogenesis of neoplastic disease. In contrast, far less attention has been devoted to the analysis of the phenotypic property that serves to define these focal lesions, i.e. their altered growth pattern. In fact, the latter is often considered a mere morphological by-product of clonal growth, with no specific relevance in the process. In the following study, evidence will be presented to support the concept that focal growth pattern is an inherent property of altered cells, independent of clonal growth; furthermore, it will be discussed how such a property, far from being merely descriptive, might indeed play a fundamental role in the sequence of events leading to the development of cancer. Within this paradigm, the earliest steps of neoplasia should be considered and analysed as defects in the mechanisms of tissue pattern formation.

  16. Simulation of Growth Trajectories of Childhood Obesity into Adulthood.

    Science.gov (United States)

    Ward, Zachary J; Long, Michael W; Resch, Stephen C; Giles, Catherine M; Cradock, Angie L; Gortmaker, Steven L

    2017-11-30

    Although the current obesity epidemic has been well documented in children and adults, less is known about long-term risks of adult obesity for a given child at his or her present age and weight. We developed a simulation model to estimate the risk of adult obesity at the age of 35 years for the current population of children in the United States. We pooled height and weight data from five nationally representative longitudinal studies totaling 176,720 observations from 41,567 children and adults. We simulated growth trajectories across the life course and adjusted for secular trends. We created 1000 virtual populations of 1 million children through the age of 19 years that were representative of the 2016 population of the United States and projected their trajectories in height and weight up to the age of 35 years. Severe obesity was defined as a body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) of 35 or higher in adults and 120% or more of the 95th percentile in children. Given the current level of childhood obesity, the models predicted that a majority of today's children (57.3%; 95% uncertainly interval [UI], 55.2 to 60.0) will be obese at the age of 35 years, and roughly half of the projected prevalence will occur during childhood. Our simulations indicated that the relative risk of adult obesity increased with age and BMI, from 1.17 (95% UI, 1.09 to 1.29) for overweight 2-year-olds to 3.10 (95% UI, 2.43 to 3.65) for 19-year-olds with severe obesity. For children with severe obesity, the chance they will no longer be obese at the age of 35 years fell from 21.0% (95% UI, 7.3 to 47.3) at the age of 2 years to 6.1% (95% UI, 2.1 to 9.9) at the age of 19 years. On the basis of our simulation models, childhood obesity and overweight will continue to be a major health problem in the United States. Early development of obesity predicted obesity in adulthood, especially for children who were severely obese. (Funded by the JPB

  17. Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis

    Science.gov (United States)

    Bean, J. R.; Hill, T. M.; Guerra, C.

    2007-12-01

    The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to

  18. Monte Carlo simulation of asymmetrical growth of cube-shaped nanoparticles

    International Nuclear Information System (INIS)

    Wang Yuanyuan; Xie Huaqing; Wu Zihua; Xing Jiaojiao

    2016-01-01

    We simulated the asymmetrical growth of cube-shaped nanoparticles by applying the Monte Carlo method. The influence of the specific mechanisms on the crystal growth of nanoparticles has been phenomenologically described by efficient growth possibilities along different directions (or crystal faces). The roles of the thermodynamic and kinetic factors have been evaluated in three phenomenological models. The simulation results would benefit the understanding about the cause and manner of the asymmetrical growth of nanoparticles. (paper)

  19. Application of a Cycle Jump Technique for Acceleration of Fatigue Crack Growth Simulation

    DEFF Research Database (Denmark)

    Moslemian, Ramin; Berggreen, Christian; Karlsson, A.M.

    2010-01-01

    A method for accelerated simulation of fatigue crack growth in a bimaterial interface is proposed. To simulate fatigue crack growth in a bimaterial interface a routine is developed in the commercial finite element code ANSYS and a method to accelerate the simulation is implemented. The proposed m...... of the simulation show that with fair accuracy, using the cycle jump method, more than 70% reduction in computation time can be achieved....

  20. Simulated and measured soil wetting patterns for overlap zone ...

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... Drip irrigation is one of the most useful methods that is widely used in the arid and semi- ... Simulations of the water content and wetting front were close to the observed data. ... many researchers have employed numerical models to ... Field experiments were conducted in 2010 at the management of.

  1. Patterns of Growth in Early Childhood and Infectious Disease and Nutritional Determinants.

    Science.gov (United States)

    Black, Robert E

    2017-01-01

    The physical growth of young children in low- and middle-income countries is reduced compared to international standards. The deviations in growth in both weight and height are greatest in the first 2 years of life and this has serious consequences for child mortality, development, adult stature, and health. The determinants of these patterns of growth faltering include intergenerational factors, such as maternal height, short birth interval, and conditions in pregnancy, including maternal underweight and anemia. These factors contribute to fetal growth restriction and premature delivery, which put many infants on a different growth trajectory. Postnatal exposure to microbes resulting in diarrhea and febrile infectious diseases and poor quality diet further compromise growth. Determinants of growth faltering after birth vary by setting and are not independent of each other. For example, the adverse effects of diarrhea on growth may be mitigated by a high-quality diet. Global estimates suggest that 25% of stunting can be attributed to fetal growth restriction and even more in countries in South Asia with a high prevalence of low birth weight. Infectious diseases may contribute a similar amount and subclinical enteric infections can result in intestinal dysfunction with adverse effects on nutrition and growth. Dietary factors, especially consumption of complementary foods of insufficient quality, have a paramount role in growth faltering in the critical period of infancy. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  2. Gender perceptions predict sex differences in growth patterns of indigenous Guatemalan infants and young children.

    Science.gov (United States)

    Tumilowicz, Alison; Habicht, Jean-Pierre; Pelto, Gretel; Pelletier, David L

    2015-11-01

    Nearly one-half of Guatemalan children experience growth faltering, more so in indigenous than in nonindigenous children. On the basis of ethnographic interviews in Totonicapán, Guatemala, which revealed differences in maternal perceptions about food needs in infant girls and boys, we predicted a cumulative sex difference in favor of girls that occurred at ∼6 mo of age and diminished markedly thereafter. We examined whether the predicted differences in age-sex patterns were observed in the village, replicated the examination nationally for indigenous children, and examined whether the pattern in nonindigenous children was different. Ethnographic interviews (n = 24) in an indigenous village were conducted. Anthropometric measurements of the village children aged 0-35 mo (n = 119) were obtained. National-level growth patterns were analyzed for indigenous (n = 969) and nonindigenous (n = 1374) children aged 0-35 mo with the use of Demographic and Health Survey (DHS) data. Mothers reported that, compared with female infants, male infants were hungrier, were not as satisfied with breastfeeding alone, and required earlier complementary feeding. An anthropometric analysis confirmed the prediction of healthier growth in indigenous girls than in indigenous boys throughout the first year of life, which resulted in a 2.98-cm height-for-age difference (HAD) between sexes in the village and a 1.61-cm HAD (P differences diminished in the second year of life (P differences in the HAD that first favor girls and then favor boys in the indigenous growth patterns are due to feeding patterns on the basis of gendered cultural perceptions. Circumstances that result in differential sex growth patterns need to be elucidated, in particular the favorable growth in girls in the first year of life. © 2015 American Society for Nutrition.

  3. Exchange bias of patterned systems: Model and numerical simulation

    International Nuclear Information System (INIS)

    Garcia, Griselda; Kiwi, Miguel; Mejia-Lopez, Jose; Ramirez, Ricardo

    2010-01-01

    The magnitude of the exchange bias field of patterned systems exhibits a notable increase in relation to the usual bilayer systems, where a continuous ferromagnetic film is deposited on an antiferromagnet insulator. Here we develop a model, and implement a Monte Carlo calculation, to interpret the experimental observations which is consistent with experimental results, on the basis of assuming a small fraction of spins pinned ferromagnetically in the antiferromagnetic interface layer.

  4. Two different in vitro growth patterns for erythroid precursors in 18 patients with pure erythrocytosis

    International Nuclear Information System (INIS)

    Clement, S.; Eberlin, A.; Najean, Y.; Chedeville, A.

    1982-01-01

    Growth patterns of marrow and blood erythroid progenitors were studied in 18 cases of pure erythrocytosis using different doses of erythropoietin. 8 cases demonstrated ''spontaneous'' growth of CFU-E and blood BFU-E as observed in myeloproliferative disorders, but without an excess of circulating CFU-GM. 3 of these patients also had other symptoms of a pan-myelopathy. All these cases showed good sensitivity to 32 P myelo-suppression. 10 cases demonstrated growth patterns of erythroid progenitors similar to those observed in normal subjects, except for an excess of blood BFU-E, which suggests an abnormality of homeostatic regulation. In 5 of these cases, myelo-suppression was not effective. It is suggested that a stem cell study could differentiate patients with pure erythrocytosis due to ''autonomous'' abnormal stem cell growth from cases due to abnormal regulation factors, and that such a discrimination might be usefull for the choice of theraphy. (authors)

  5. High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst.

    Science.gov (United States)

    Beard, James D; Stringer, Jonathan; Ghita, Oana R; Smith, Patrick J

    2013-10-09

    This study reports on the fabrication of vertically aligned carbon nanotubes localized at specific sites on a growth substrate by deposition of a nanoparticle suspension using inkjet printing. Carbon nanotubes were grown with high yield as vertically aligned forests to a length of approximately 400 μm. The use of inkjet printing for catalyst fabrication considerably improves the production rate of vertically aligned patterned nanotube forests compared with conventional patterning techniques, for example, electron beam lithography or photolithography.

  6. Invasive growth patterns of juvenile nasopharyngeal angiofibroma: radiological imaging and clinical implications.

    Science.gov (United States)

    Szymańska, Anna; Szymański, Marcin; Czekajska-Chehab, Elżbieta; Szczerbo-Trojanowska, Małgorzata

    2014-07-01

    Juvenile nasopharyngeal angiofibroma is a benign lesion with locally aggressive nature. Knowledge of its typical growth patterns is crucial for precise preoperative staging and adequate preoperative patient counseling. This pictorial essay focuses on characteristic radiological features and paths of invasive growth of this rare tumor. Also, the impact of accurate preoperative evaluation of tumor extensions on surgical planning and results of treatment are discussed. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics.

    Science.gov (United States)

    Nong, Duong H; Lepczyk, Christopher A; Miura, Tomoaki; Fox, Jefferson M

    2018-01-01

    Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001-2006 and 2006-2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries.

  8. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics

    Science.gov (United States)

    Lepczyk, Christopher A.; Miura, Tomoaki; Fox, Jefferson M.

    2018-01-01

    Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001–2006 and 2006–2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries. PMID:29734346

  9. Temperature-Driven Change in the Unstable Growth Mode on Patterned GaAs(001)

    International Nuclear Information System (INIS)

    Tadayyon-Eslami, T.; Phaneuf, R. J.; Kan, H.-C.; Calhoun, L. C.

    2006-01-01

    We observe a dramatic change in the unstable growth mode during GaAs molecular beam epitaxy on patterned GaAs(001) as the temperature is lowered through approximately 540 deg. C, roughly coincident with the preroughening temperature. Observations of the As 2 flux dependence, however, rule out thermodynamic preroughening as driving the growth mode change. Similar observations rule out the change in surface reconstruction as the cause. Instead, we find evidence that the change in the unstable growth mode can be explained by a competition between the decreased adatom collection rate on small terraces and a small anisotropic barrier to adatom diffusion downward across step bunches

  10. Application of simulated lidar scanning patterns to constrained Gaussian turbulence fields for load validation

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand

    2017-01-01

    We demonstrate a method for incorporating wind velocity measurements from multiple-point scanning lidars into threedimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning patterns are implemented by imposing constraints on randomly gener...

  11. Patterns of Geographic Synchrony in Growth and Reproduction of Oaks Within California and Beyond

    Science.gov (United States)

    Walter D. Koenig; Johannes M.H. Knops

    1997-01-01

    We measured patterns of spatial synchrony in growth and reproduction by oaks using direct acorn surveys, published data on acorn production, and tree-ring chronologies. The two data sets involving acorn production both indicate that acorn crops are detectably synchronous over areas of at least 500 to 1,000 km not only within individual species but among species that...

  12. A Study on the Feeding and Growth Patterns of the Variegated ...

    African Journals Online (AJOL)

    The feeding and growth patterns of the variegated grasshopper, Zonocerus variegatus (L) were studied in the laboratory to ascertain the amount of food intake, food assimilated and faeces excreted by its nymph and adult stages on a mixed diet of Cassava (Manihot esculenta) and Siam weed (Chromolaena odorata) leaves.

  13. Patterns of Manufacturing Growth in Sub-Saharan Africa: From Colonization to the Present

    NARCIS (Netherlands)

    Austin, G.; Frankema, E.H.P.; Jerven, M.

    2015-01-01

    This paper reviews the ‘long twentieth-century’ development of ‘modern’manufacturing in Sub-Saharan Africa from colonization to the present. We argue thatclassifying Africa generically as a ‘late industrializer’ is inaccurate. To understand thedistinctively African pattern of manufacturing growth,

  14. Spatio-temporal growth pattern and patronage level of airline travel ...

    African Journals Online (AJOL)

    This study assesses the growth pattern of airline travel agencies over a period of forty years across locations in Nigeria as well as the patronage level of agency business. The need for the study arises because of the technological marketing of airline tickets through direct online ticket sales that aims at reducing cost by ...

  15. Size- and food-dependent growth drives patterns of competitive dominance along productivity gradients

    NARCIS (Netherlands)

    Huss, M.; Gårdmark, A.; van Leeuwen, A.; de Roos, A.M.

    2012-01-01

    Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a

  16. Growth pattern of preterm and IUGR babies in an urban slum of ...

    African Journals Online (AJOL)

    The present study was carried out to analyze the growth pattern of preterm and IUGR infants from birth up to nine months of age. A longitudinal study was conducted in an urban slum of Chetla, Kolkata, India. Study population comprised of 36 low birth weight babies, out of which 13 were preterms and rest 23 were IUGR ...

  17. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition

    NARCIS (Netherlands)

    Huang, Chengdong; Liu, Quanqing; Gou, Fang; Li, Xiaolin; Zhang, Chaochun; Werf, van der Wopke; Zhang, Fusuo

    2017-01-01

    Intercropping is a promising model for ecological intensification of modern agriculture. Little information is available on how species growth patterns are affected by size-asymmetric above- and belowground competitive interactions, especially in intercrops with more than two species. We studied

  18. MRI growth patterns of plexiform neurofibromas in patients with neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    Mautner, V.F.; Hartmann, M.; Kluwe, L.; Friedrich, R.E. [University Hospital Eppendorf, Section for Phakomatoses, Department of Maxillofacial Surgery, Hamburg (Germany); Fuensterer, C. [MRI Institute Hamburg-Othmarschen, Hamburg (Germany)

    2006-03-15

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with an incidence of 1:3000. Approximately 30% of NF1 patients develop plexiform neurofibromas (PNF) which often cause severe clinical deficits. We studied the growth patterns of 256 plexiform neurofibromas (PNF) by magnetic resonance imaging (MRI) and associated disfigurement and functional deficits to determine whether there are definable growth types of these tumors. Retrospectively, we evaluated MRI scans obtained during 1997 to 2003 of 256 plexiform neurofibromas from 202 patients with NF1. Clinical investigation was carried out at the same time as the MRI scans. We identified three growth patterns: superficial in 59, displacing in 76, and invasive growth in 121 tumors. The majority (52%) of invasive PNF were found in the face, head and neck area. While superficial PNF primarily caused aesthetic problems, displacing PNF led in most cases to aesthetic problems and pain, while invasive PNF led mainly to functional deficits and disfigurement. Our study demonstrates that PNF have different growth patterns that are associated with specific clinical features. Classification of PNF may open new opportunities in clinical management, especially regarding decisions and options associated with surgical intervention. (orig.)

  19. Stacking fault growth of FCC crystal: The Monte-Carlo simulation approach

    International Nuclear Information System (INIS)

    Jian Jianmin; Ming Naiben

    1988-03-01

    The Monte-Carlo method has been used to simulate the growth of the FCC (111) crystal surface, on which is presented the outcrop of a stacking fault. The comparison of the growth rates has been made between the stacking fault containing surface and the perfect surface. The successive growth stages have been simulated. It is concluded that the outcrop of stacking fault on the crystal surface can act as a self-perpetuating step generating source. (author). 7 refs, 3 figs

  20. Simulation of forest growth, applied to douglas fir stands in the Netherlands

    NARCIS (Netherlands)

    Mohren, G.M.J.

    1987-01-01

    Forest growth in relation to weather and soils is studied using a physiological simulation model. Growth potential depends on physiological characteristics of the plant species in combination with ambient weather conditions (mainly temperature and incoming radiation). For a given site, growth may be

  1. Phase field simulation of grain growth in porous uranium dioxide

    International Nuclear Information System (INIS)

    Ahmed, Karim; Pakarinen, Janne; Allen, Todd; El-Azab, Anter

    2014-01-01

    Graphical abstract: Display Omitted -- Abstract: A novel phase field model has been developed to investigate grain growth in porous polycrystalline UO 2 . Based on a system of Cahn–Hilliard and Allen–Cahn equations, the model takes into consideration both the curvature driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the growth process. The phase field model parameters are found in terms of measurable material properties. Hence, quantitative results that can be compared with experiments were obtained. The model has been used to investigate the effect of porosity on the kinetics of grain growth in UO 2 . It is found that, as the amount of porosity increases, grain growth in UO 2 gradually changes from boundary controlled growth to pore controlled growth. For high porosity levels, the grain growth completely stops after a short evolution time. It is also found that the inhomogeneous distribution of pores leads to abnormal grain growth even without taking into account the anisotropy in grain boundary energy and mobility. The effects of porosity, temperature and initial microstructure on grain growth were thoroughly investigated. The model predictions are in good agreement with published experimental results of grain growth in UO 2

  2. Eye size at birth in prosimian primates: life history correlates and growth patterns.

    Directory of Open Access Journals (Sweden)

    Joshua R Cummings

    Full Text Available BACKGROUND: Primates have large eyes relative to head size, which profoundly influence the ontogenetic emergence of facial form. However, growth of the primate eye is only understood in a narrow taxonomic perspective, with information biased toward anthropoids. METHODOLOGY/PRINCIPAL FINDINGS: We measured eye and bony orbit size in perinatal prosimian primates (17 strepsirrhine taxa and Tarsius syrichta to infer the extent of prenatal as compared to postnatal eye growth. In addition, multiple linear regression was used to detect relationships of relative eye and orbit diameter to life history variables. ANOVA was used to determine if eye size differed according to activity pattern. In most of the species, eye diameter at birth measures more than half of that for adults. Two exceptions include Nycticebus and Tarsius, in which more than half of eye diameter growth occurs postnatally. Ratios of neonate/adult eye and orbit diameters indicate prenatal growth of the eye is actually more rapid than that of the orbit. For example, mean neonatal transverse eye diameter is 57.5% of the adult value (excluding Nycticebus and Tarsius, compared to 50.8% for orbital diameter. If Nycticebus is excluded, relative gestation age has a significant positive correlation with relative eye diameter in strepsirrhines, explaining 59% of the variance in relative transverse eye diameter. No significant differences were found among species with different activity patterns. CONCLUSIONS/SIGNIFICANCE: The primate developmental strategy of relatively long gestations is probably tied to an extended period of neural development, and this principle appears to apply to eye growth as well. Our findings indicate that growth rates of the eye and bony orbit are disassociated, with eyes growing faster prenatally, and the growth rate of the bony orbit exceeding that of the eyes after birth. Some well-documented patterns of orbital morphology in adult primates, such as the enlarged orbits

  3. Loading pattern optimization by multi-objective simulated annealing with screening technique

    International Nuclear Information System (INIS)

    Tong, K. P.; Hyun, C. L.; Hyung, K. J.; Chang, H. K.

    2006-01-01

    This paper presents a new multi-objective function which is made up of the main objective term as well as penalty terms related to the constraints. All the terms are represented in the same functional form and the coefficient of each term is normalized so that each term has equal weighting in the subsequent simulated annealing optimization calculations. The screening technique introduced in the previous work is also adopted in order to save computer time in 3-D neutronics evaluation of trial loading patterns. For numerical test of the new multi-objective function in the loading pattern optimization, the optimum loading patterns for the initial and the cycle 7 reload PWR core of Yonggwang Unit 4 are calculated by the simulated annealing algorithm with screening technique. A total of 10 optimum loading patterns are obtained for the initial core through 10 independent simulated annealing optimization runs. For the cycle 7 reload core one optimum loading pattern has been obtained from a single simulated annealing optimization run. More SA optimization runs will be conducted to optimum loading patterns for the cycle 7 reload core and results will be presented in the further work. (authors)

  4. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction.

    Science.gov (United States)

    Szentpéteri, Imre; Rab, Attila; Kornya, László; Kovács, Péter; Joó, József Gábor

    2013-07-01

    In this study, we describe changes in gene expression pattern of vascular endothelial growth factor (VEGF)-A in human placenta obtained from pregnancies with intrauterine growth restriction using placenta from normal pregnancies as control. We compared gene expression of VEGF-A in placental samples from Intrauterine growth restriction (IUGR) pregnancies versus placenta obtained from normal pregnancies. Among potential confounders, important clinical informations were also analyzed. In the IUGR group, the VEGF-A gene was overexpressed compared to the normal pregnancy group (Ln 2(α)β-actin: 1.32; Ln 2(α)GADPH: 1.56). There was no correlation between the degree of growth restriction and VEGF-A gene expression (Ln 2(α)(0-5)percentile: 0.58; Ln 2(α)(5-10)percentile: 0.64). Within the IUGR group, there was a trend toward a positive correlation between placental VEGF-A gene activity and gestational age at delivery (Ln 2(α) 37 weeks: 1.35). Our findings suggest that the increase in placental expression of the VEGF-A gene and the resultant stimulation of angiogenesis are a response to hypoxic environment developing in the placental tissue in IUGR. Thus, it appears to be a secondary event rather than a primary factor in the development of IUGR There is a trend toward a positive correlation between gestational age and placental VEGF-A gene activity.

  5. Landscape Patterns of Exurban Growth in the USA from 1980 to 2020

    Directory of Open Access Journals (Sweden)

    David M. Theobald

    2005-06-01

    Full Text Available In the United States, citizens, policy makers, and natural resource managers alike have become concerned about urban sprawl, both locally and nationally. Most assessments of sprawl, or undesired growth patterns, have focused on quantifying land-use changes in urban and metropolitan areas. It is critical for ecologists to examine and improve understanding of land-use changes beyond the urban fringe - also called exurban sprawl - because of the extensive and widespread changes that are occurring, and which often are located adjacent to or nearby "protected" lands. The primary goal of this paper is to describe the development of a nationwide, fine-grained database of historical, current, and forecasted housing density, which enables these changes to be quantified as a foundation for inference of possible ecological effects. Forecasted patterns were generated by the Spatially Explicit Regional Growth Model, which relates historical growth patterns with accessibility to urban and protected lands. Secondary goals are to report briefly on the status and trend of exurban land-use changes across the U.S., and to introduce a landscape sprawl metric that captures patterns of land-use change. In 2000, there were 125 729 km2 in urban and suburban (

  6. Structural properties of templated Ge quantum dot arrays: impact of growth and pre-pattern parameters.

    Science.gov (United States)

    Tempeler, J; Danylyuk, S; Brose, S; Loosen, P; Juschkin, L

    2018-07-06

    In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 10 10 cm -2 .

  7. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  8. Morphological development and allometric growth patterns of Acipenser persicus Borodin, 1897 (Actinopterygii, Acipenseridae during early development

    Directory of Open Access Journals (Sweden)

    Soheil Eagderi

    2017-06-01

    Full Text Available Morphological development and allometric growth patterns of reared Persian sturgeon, Acipenser persicus, were studied from hatching to 50 days post-hatching (dph. The larvae were sampled, their left sides photographed and seven morphometric characters, including total length, head length, tail length, trunk length, snout length, caudal peduncle and predorsal length were measured. Allometric growth patterns were calculated as a power function of total length and described using the growth coefficient to find important steps in early life history. The total length of the newly hatched larvae and fry were 10.59±0.8 and 38.8±2.9 mm at 1 and 50 dph, respectively. Morphogenesis and differentiation were the highest rates during the first 11 days of early development, i.e. endogenous feeding period. There were higher growth rate of head, snout and tail regions compared with those of other organs from the hatch up to yolk sac absorption, followed by positive or almost isometric patterns, after the begin of exogenous feeding, showing priority to enhance the feeding and swimming capabilities. This study confirmed that most of morphological changes of this species are occurred from hatching until the onset of exogenous feeding i.e. during the lecithotrophic phase.

  9. Growth is required for perception of water availability to pattern root branches in plants.

    Science.gov (United States)

    Robbins, Neil E; Dinneny, José R

    2018-01-23

    Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a "sense-by-growth" mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement. Copyright © 2018 the Author(s). Published by PNAS.

  10. Biogenesis and the growth of DNA-like polymer chains: a computer simulation

    International Nuclear Information System (INIS)

    Herrmann, H.J.; Tsallis, C.

    1987-01-01

    We study, through computer simulation, a crucial step of Biogenesis, namely the growth of self-replicating codified DNA-like polymers starting from a mixture of oligomers. We have adopted the growth scheme that has been recently proposed by Ferreira and Tsallis which incorporates usual ideas of autocatalysis through complementary pairs and within which a central role is played by the hydrogen-like links (characterized by the probabilities p AT and p CG of chemical bonding of the A-T and C-G pairs respectively) between the two chains of the growing polymer. We find that the average equilibrium polymeric length ξ diverges, for any fixed ratio (1-p AT )/(1-p sub (CG)), as ξ ∝ 1/r1-p AT . Selection of patterns may happen at all stages and in particular at chemical equilibrium. Selection occurs via two different mechanisms: (i) away from the critical point p AT = p CG = 1 if p AT ≠ p CG ; (ii) both on and away from the critical point if the initial concentrations of nucleotides (A, T, C and G or their precursors) are different. (author) [pt

  11. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    International Nuclear Information System (INIS)

    Chen Huawei; Tieu, A. Kiet; Liu Qiang; Hagiwara, Ichiro; Lu Cheng

    2007-01-01

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters

  12. Molecular dynamics simulation about porous thin-film growth in secondary deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huawei [School of Mechanical Engineering and Automation, Beihang University, No. 37 Xuyuan Road, Haidian District, Beijing (China) and Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia)]. E-mail: chen_hua_wei@yahoo.com; Tieu, A. Kiet [Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia); Liu Qiang [School of Mechanical Engineering and Automation, Beihang University, No. 37 Xuyuan Road, Haidian District, Beijing (China); Hagiwara, Ichiro [Department of Mechanical Sciences and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo (Japan); Lu Cheng [Mechanical Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, NSW 2522 (Australia)

    2007-07-15

    The thin film growth has been confirmed to be assembled by an enormous number of clusters in experiments of CVD. Sequence of clusters' depositions proceeds to form the thin film at short time as gas fluids through surface of substrate. In order to grow condensed thin film using series of cluster deposition, the effect of initial velocity, substrate temperature and density of clusters on property of deposited thin film, especially appearance of nanoscale pores inside thin film must be investigated. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000 and 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Four clusters and one cluster were used in primary deposition and secondary deposition, respectively. We have clarified that adhesion between clusters and substrate is greatly influenced by initial velocity. As a result, the exfoliation pattern of deposited thin film is dependent on initial velocity and different between them. One borderline dividing whole region into porous region and nonporous region are obtained to show the effect of growth conditions on appearance of nanoscale pores inside thin film. Moreover, we have also shown that the likelihood of porous thin film is dependent on the point of impact of a cluster relative to previously deposited clusters.

  13. Growth and Pattern of Women’s Studies in Malaysia as Reflected by Generated Literature

    OpenAIRE

    Zainab, A.N.

    2008-01-01

    The study uses research-based resources listed in two published bibliographies on “Women in development in Malaysia” produced between the pre 1970 years and 2004 to describe the growth and pattern of women’s studies in Malaysia. A total 4037 resources formed the basis of the study. Bibliometric measure are used to indicate the annual growth of literature over the periods, the preferred publication channels used by the authors, the subject areas of research interests, the active authors and th...

  14. Three-dimensional growth simulation: A study of substrate oriented films

    International Nuclear Information System (INIS)

    Besnard, A; Martin, N; Carpentier, L

    2010-01-01

    Monte Carlo simulations are developed to simulate the growth of three-dimensional columnar microstructure in thin films. We are studying in particular oriented microstructure like those produced with the Glancing Angle Deposition technique (GLAD). Some geometrical characteristics of the particles flux, the organization of defect sites on the substrate surface and the atomic surface diffusion are mainly investigated in order to predict the growth processes and the resulting features of the films. This study reports on simulations of thin film growth exhibiting an oblique and zigzag columnar microstructure. Column angle evolution and density are investigated versus incidence angle α or period number n and compared with experimental measurements.

  15. Conditional Stochastic Models in Reduced Space: Towards Efficient Simulation of Tropical Cyclone Precipitation Patterns

    Science.gov (United States)

    Dodov, B.

    2017-12-01

    Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon

  16. Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396.

    Science.gov (United States)

    Das Gupta, Mainak; Nath, Utpal

    2015-10-01

    Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. © 2015 American Society of Plant Biologists. All rights reserved.

  17. Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Maniam, S.M. [Centre for Quantum Technologies, National University of Singapore (Singapore); Sundaramurthy, J. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Arokiaraj, J. [3M R and D Center (Singapore); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Rajarathnam, D. [CERAR, University of South Australia, Mawson Lakes, SA-5095 (Australia); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Jian, L.K. [Singapore Synchrotron Light Source (SSLS), National University of Singapore (NUS) (Singapore)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Simple integrated chemical process was adopted for specific ZnO nanorod growth. Black-Right-Pointing-Pointer Size and orientation of nanorods are well controlled by optimum reaction time and temperature. Black-Right-Pointing-Pointer Different site-selective ZnO nanorod growths are demonstrated. - Abstract: A simple and cost effective method has been employed for the random growth and oriented ZnO nanorod arrays over as-prepared and patterned seeded glass substrates by low temperature two step growth process and growth specificity by direct laser writing (DLW) process. Scanning electron microscopy (SEM) images and X-ray diffraction analysis confirm the growth of vertical ZnO nanorods with perfect (0 0 2) orientation along c-axis which is in conjunction with optimizing the parameters at different reaction times and temperatures. Transmission electron microscopy (TEM) images show the formation of vertical ZnO nanorods with diameter and length of {approx}120 nm and {approx}400 nm respectively. Photoluminescence (PL) spectroscopic studies show a narrow emission at {approx}385 nm and a broad visible emission from 450 to 600 nm. Further, site-selective ZnO nanorod growth is demonstrated for its high degree of control over size, orientation, uniformity, and periodicity on a positive photoresist ZnO seed layer by simple geometrical (line, circle and ring) patterns of 10 {mu}m and 5 {mu}m dimensions. The demonstrated control over size, orientation and periodicity of ZnO nanorods process opens up an opportunity to develop multifunctional properties which promises their potential applications in sensor, piezoelectric, and optoelectronic devices.

  18. Simulation modeling on the growth of firm's safety management capability

    Institute of Scientific and Technical Information of China (English)

    LIU Tie-zhong; LI Zhi-xiang

    2008-01-01

    Aiming to the deficiency of safety management measure, established simulation model about firm's safety management capability(FSMC) based on organizational learning theory. The system dynamics(SD) method was used, in which level and rate system, variable equation and system structure flow diagram was concluded. Simulation model was verified from two aspects: first, model's sensitivity to variable was tested from the gross of safety investment and the proportion of safety investment; second, variables dependency was checked up from the correlative variable of FSMC and organizational learning. The feasibility of simulation model is verified though these processes.

  19. Patterns in professional growth of science teachers involved in a team-based PD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    and learning and subsequent discussion of this material. Repeated interviews were analyzed using an adapted version of the interconnected model of teachers’ professional growth. The results show various ways of experimenting with new approaches to be important for three of the teachers while a novice teacher...... the participants refer to. Conclusion is that there are professional growth patterns, especially a pattern involving experimenting, which have a forward-pointing potential to be used to inform school based PD. The results implicate that the same PD project can frame experimenting into practice in various tempi...... and with differentiated facilitation aligned to the individual teacher’s current needs and that external support of science resource teachers can be an integrated part of school based PD....

  20. Investigation of the growth patterns of non-functioning pituitary macroadenomas using volumetric assessments on serial MRI investigations

    Directory of Open Access Journals (Sweden)

    Jaco Pieterse

    2016-07-01

    Full Text Available Background: Benign non-functioning pituitary macroadenomas (NFMA often cause mass effect on the optic chiasm necessitating transsphenoidal surgery to prevent blindness.However, surgery is complicated and there is a high tumour recurrence rate. Currently, very little is known about the natural (and residual post-surgical growth patterns of these NFMA. Conflicting data describe decreased growth to exponential growth over various time periods.Due to lack of information on growth dynamics of these NFMA, suitable follow-up imaging protocols have not been described to date. Objective: To determine if NFMA grow or stay quiescent over a time period using serial MRI investigations and a stereo logical method to determine tumour volume. In addition, to evaluate if NFMA adhere to a certain growth pattern or grow at random. Method: Thirteen patients with NFMA had serial MRI investigations over a 73-month period at the Universitas Academic Hospital. Six of the selected patients had undergone previous surgery, while seven patients had received no medical or surgical intervention. By using astereological method, tumour volumes were calculated and plotted over time to demonstrate growth curves. The data were then fitted to tumour growth models already described in literature in order to obtain the best fit by calculating the r2 value. Results: Positive tumour growth was demonstrated in all cases. Tumour growth patterns of nine patients best fitted the exponential growth curve while the growth patterns of three patients best fitted the logistic growth curve. The remaining patient demonstrated a linear growth pattern. Conclusion: A specific growth model best described tumour growth observed in non-surgical and surgical cases. If follow-up imaging confirms positive growth, future growth can be predicted by extrapolation. This information can then be used to determine the relevant follow-up-imaging interval in each individual patient.

  1. Growth, employment patterns and inequality in Asia a case study of India

    OpenAIRE

    Chandrasekhar, C. P; Ghosh, Jayati

    2014-01-01

    This paper argues that economic inequalities in India have been driven by employment patterns and changes in labour markets, which in turn have been affected by macroeconomic policies and processes as well as forms of social discrimination and exclusion. While many Asian economies have shown indications of rising inequality in recent decades, the Indian experience is particularly remarkable in the way inequalities have intertwined with the economic growth process. Structural change (or the re...

  2. Simplified procedure for patterned growth of nanocrystalline diamond micro-structures

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Babchenko, Oleg; Rezek, Bohuslav; Ledinský, Martin; Hruška, Karel; Potměšil, Jiří; Vaněček, Milan

    2009-01-01

    Roč. 518, č. 1 (2009), s. 343-347 ISSN 0040-6090 R&D Projects: GA AV ČR KAN400100701; GA AV ČR KAN400100652; GA AV ČR(CZ) IAAX00100902 Institutional research plan: CEZ:AV0Z1010921 Keywords : atomic force microscopy * Raman spectroscopy * nanocrystalline diamond * selective diamond growth * seed layer * patterning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.727, year: 2009

  3. A new model for simulating growth in fish

    Directory of Open Access Journals (Sweden)

    Johannes Hamre

    2014-01-01

    Full Text Available A real dynamic population model calculates change in population sizes independent of time. The Beverton & Holt (B&H model commonly used in fish assessment includes the von Bertalanffy growth function which has age or accumulated time as an independent variable. As a result the B&H model has to assume constant fish growth. However, growth in fish is highly variable depending on food availability and environmental conditions. We propose a new growth model where the length increment of fish living under constant conditions and unlimited food supply, decreases linearly with increasing fish length until it reaches zero at a maximal fish length. The model is independent of time and includes a term which accounts for the environmental variation. In the present study, the model was validated in zebrafish held at constant conditions. There was a good fit of the model to data on observed growth in Norwegian spring spawning herring, capelin from the Barents Sea, North Sea herring and in farmed coastal cod. Growth data from Walleye Pollock from the Eastern Bering Sea and blue whiting from the Norwegian Sea also fitted reasonably well to the model, whereas data from cod from the North Sea showed a good fit to the model only above a length of 70 cm. Cod from the Barents Sea did not grow according to the model. The last results can be explained by environmental factors and variable food availability in the time under study. The model implicates that the efficiency of energy conversion from food decreases as the individual animal approaches its maximal length and is postulated to represent a natural law of fish growth.

  4. Pattern of growth and 14C-assimilates distributions in relation to photosynthesis in radish plants treated with growth substances

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available In a series of radish plants, with very thin hypocotyl and with a normal storage organ, the rates of photosynthesis, photorespiration and dark respiration did not differ. Therefore, the conclusion may be advanced, that translocation to the swollen hypocotyl is not determinated by the photosynthetic productivity, but rather the by storage capacity. To check it this is connected with an unbalanced hormonal content, plants were treated with lanoline paste, with IAA, GA3, zeatin and all three in mixture or with injections of GA3-water solution into the swollen hypocotyl. In young radish plants, with high rate of growth of aerial parts, treatment with the above mentioned substances stimulated 14CO2-assimilation and increased retention of assimilates in 14C-donors, probably owing to retardation of their senescence. It increased the competition for photosynthates between shoot and storage organ. In older plants, in the stage of accumulation of nutrients in the swollen hypocotyl, IAA +GA3+zeatin did not affect 14CO2-assimilation, but in plants treated with growth regulators separately, assimilation decreased; IAA and GA3 stimulated transport and accumulation of labelled substances in the swollen hypocotyl. On the basis of experimental data the conclusion may be advanced that responsiveness of the particular organs and processes to growth regulators depends on the stage of plant development. Phytohormone did not changed quantitatively the pattern of 14C-assimilates distribution. They stimulated processes with preference for particular stages of development.

  5. Unravelling variation in feeding, social interaction and growth patterns among pigs using an agent-based model.

    Science.gov (United States)

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M

    2018-07-01

    Domesticated pigs, Sus scrofa, vary considerably in feeding, social interaction and growth patterns. This variation originates partly from genetic variation that affects physiological factors and partly from behavioural strategies (avoid or approach) in competitive food resource situations. Currently, it is unknown how variation in physiological factors and in behavioural strategies among animals contributes to variation in feeding, social interaction and growth patterns in animals. The aim of this study was to unravel causation of variation in these patterns among pigs. We used an agent-based model to explore the effects of physiological factors and behavioural strategies in pigs on variation in feeding, social interaction and growth patterns. Model results show that variation in feeding, social interaction and growth patterns are caused partly by chance, such as time effects and coincidence of conflicts. Furthermore, results show that seemingly contradictory empirical findings in literature can be explained by variation in pig characteristics (i.e. growth potential, positive feedback, dominance, and coping style). Growth potential mainly affected feeding and growth patterns, whereas positive feedback, dominance and coping style affected feeding patterns, social interaction patterns, as well as growth patterns. Variation in behavioural strategies among pigs can reduce aggression at group level, but also make some pigs more susceptible to social constraints inhibiting them from feeding when they want to, especially low-ranking pigs and pigs with a passive coping style. Variation in feeding patterns, such as feeding rate or meal frequency, can indicate social constraints. Feeding patterns, however, can say something different about social constraints at group versus individual level. A combination of feeding patterns, such as a decreased feed intake, an increased feeding rate, and an increased meal frequency might, therefore, be needed to measure social constraints

  6. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands.

    Science.gov (United States)

    Pacheco, Arturo; Camarero, J Julio; Ribas, Montse; Gazol, Antonio; Gutierrez, E; Carrer, Marco

    2018-02-15

    Mediterranean climate promotes two distinct growth peaks separated by summer quiescence in trees. This bimodal pattern has been associated to favourable growing conditions during spring and autumn when mild temperatures and soil-water availability enhance cambial activity. Climatic models predict progressive warming and drying for the Mediterranean Basin, which could shorten or shift the spring and autumn growing seasons. We explored this idea by comparing two sites with different Mediterranean climate types (continental/dry and coastal/wet) and studied how climate drives the bimodal growth pattern in Aleppo pine (Pinus halepensis). Specifically we investigated the intra-annual changes in wood anatomy and the corresponding formation of density fluctuations (IADF). Trees on both sites were analyzed by dendrometer monitoring and by developing chronologies of wood anatomical traits. Radial-increment dynamics followed a similar bimodal pattern in both sites but coastal trees showed higher increments during the spring and autumn growth peaks, especially in autumn. The summer rest of cambium activity occurs almost one month earlier in the coastal than in the inland site. Lumen area and cell-wall thickness were significantly smaller in the continental site, while the increment rate of cell-wall thickness during an IADF event was much higher in the coastal pines. The accumulated soil moisture deficit was the main climatic constraint of tracheid enlargement in continental pines. Intra-annual density fluctuations were more frequent in the coastal trees where wood anatomy features recover to average values after such events, meanwhile inland trees presented a much lower recovery rate. Growth bimodality and the formation of density fluctuations were linked, but mild climate of the coastal site allows a longer growing season, which explains why trees in this area showed higher and more variable growth rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Pattern of relative growth in cockle Anadara antiquata in Ihamahu coastal waters, Central Maluku

    Science.gov (United States)

    Siahainenia, L.; Tuhumury, S. F.; Uneputty, P. A.; Tuhumury, N. C.

    2018-03-01

    Anadara antiquata is economically important species for fisheries and belong to phylum mollusc which also found in Maluku. However, the density of population begins to decrease recently due to high exploitation by people. The objective of the present study was to analyze relative growth pattern of A. antiquata including size distribution and growth pattern based on shell dimensions. The study was conducted from December 2016 to February 2017 in Ihamahu coastal waters. Data were collected by using purposive random sampling. All the individuals of A. antiquata found were measured the length, width and height by using a vernier caliper to the nearest 0.01mm. Data were analyzed by using SPSS 20 and Microsoft Excel software. The results indicated that the A. antiquata mostly found in seagrass bed with a muddy substrate. The size distribution of shell dimensions was different during sampling. Overall, the length ranged from 15.87 mm to 57.5 mm, the width from 15.50 mm to 48.60 mm and the height was from 9.36 mm to 35.9 mm. The population of A. antiquata consisted of juvenile and mature size. The mature size (> 30 mm) was more dominant in the population. The A. antiquata showed allometric relative growth pattern based on shell dimensions.

  8. Constitutional growth delay pattern of growth in velo-cardio-facial syndrome: longitudinal follow up and final height of two cases.

    Science.gov (United States)

    Turan, Serap; Ozdemir, Nihal; Güran, Tülay; Akalın, Figen; Akçay, Teoman; Ayabakan, Canan; Yılmaz, Yüksel; Bereket, Abdullah

    2008-01-01

    We report two patients with velo-cardio-facial syndrome (VCFS) who were admitted to our pediatric endocrinology clinic because of short stature and followed longitudinally until attainment of final height. Both patients followed a growth pattern consistent with constitutional delay of puberty with normal and near normal final height. Case 2 also had partial growth hormone (GH) deficiency and severe short stature (height SDS -3.4 SDS), but showed spontaneous catch-up and ended up with a final height of -2 SDS. These cases suggest that short stature in children with VCFS is due to a pattern of growth similar to that observed in constitutional delay of growth and puberty.

  9. Aqueous chemical growth and patterning of ZnO nanopillars on different substrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Kreye, M.; Postels, B.; Wehmann, H.H.; Waag, A. [Institute of Semiconductor Technology, Technical University of Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Institute of Applied Physics, Technical University of Braunschweig, Mendelssohnstrasse 2, 38106 Braunschweig (Germany)

    2006-03-15

    Aqueous chemical growth (ACG) is a low-temperature approach that is only weakly influenced by the substrate and allows for the growth of ZnO nanopillars on various substrates. ACG is an efficient way to generate wafer-scale and densely packed arrays of ZnO nanopillars even on polymer materials. Photoluminescence (PL) characterisation clearly shows a comparatively strong band-edge luminescence even at room temperature that is accompanied with a rather weak visible luminescence in the yellow/orange spectral range. We introduce a rather simple postgrowth lithographic technique. Patterning of ZnO nanopillars even on layered conducting and flexible substrate materials using ACG as a low-temperature growth technique is demonstrated. The economical potential for future applications and devices using ZnO nanopillar arrays is discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. [Pattern of growth and metabolism of thermotolerant microorganisms on media containing carbohydrates and hydrocarbons].

    Science.gov (United States)

    Kvasnikov, E I; Isakova, D M; Eliseeva, G S; Loiko, Z I

    1977-01-01

    Experiments were carried out to examine the growth and metabolism of thermotolerant yeast Candida tropicalis K-41 and bacteria Micrococcus freudenreichii that do not have a single temperature point but instead have an optimal temperature plateau at which the growth rate and biosynthetic activity remain unaltered or change insignificantly. Upon transition from the carbohydrate to the hydrocarbon pattern of nutrition these microorganisms show significant changes in metabolic processes: optimal concentration of biotin in the medium decreases significantly; the synthesis of riboflavin, nicotinic and pantothenic acids increases in yeast; the synthesis of nicotinic acid, biotin and vitamin B12 increases in bacteria. During microbial cultivation on hydrocarbons the content of cell lipids grows; yeast accumulate actively phospholipids and free fatty acids; bacteria build up intensively waxes and phospholipids. With the near-maximal growth rate the total synthesis of lipids decreases on carbohydrates and increases drastically on hydrocarbons, primarily at the expense of the above fractions.

  11. A Comparative Study of Growth Patterns in Crested Langurs and Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Debra R. Bolter

    2011-01-01

    Full Text Available The physical growth patterns of crested langurs and vervet monkeys are investigated for several unilinear dimensions. Long bone lengths, trunk height, foot length, epiphyseal fusion of the long bones and the pelvis, and cranial capacity are compared through six dental growth stages in male Trachypithecus cristatus (crested langurs and Cercopithecus aethiops (vervet monkeys. Results show that the body elements of crested langurs mature differently than those of vervets. In some dimensions, langurs and vervets grow comparably, in others vervets attain adult values in advance of crested langurs, and in one feature the langurs are accelerated. Several factors may explain this difference, including phylogeny, diet, ecology, and locomotion. This study proposes that locomotor requirements affect differences in somatic growth between the species.

  12. Treatment of hyperdivergent growth pattern and anterior open bite with posterior metallic bite planes.

    Science.gov (United States)

    Ciavarella, Domenico; Lo Russo, Lucio; Nichelini, Jeffrey; Mastrovincenzo, Mario; Barbato, Ersilia; Laurenziello, Michele; Montaruli, Graziano; Lo Muzio, Lorenzo

    2017-12-01

    In the present paper, the authors analyze the effect of the "Swallowing Occlusal Contact Intercept Appliance" (SOCIA) in treatment of children with hyperdivergent Class II malocclusion. This functional appliance has no intra-oral anchorage, but induces a continuous periodontal, muscular, and articular stimulation. Twenty-six patients with hyperdivergent growth and class II malocclusion were selected and treated with SOCIA appliance. Cephalometric analysis was performed before treatment (T1) and immediately after the treatment (T2). After 24 months treatment authors observed a modification of maxillary growth with a reduction of the divergence with an increase of the posterior facial height, a modification of condylar inclination and forward position of the a hyoid. No modifications was observed about the ANB angle. After treatment the open bite was resolved with a reduction of the inclination of the upper incisors. SOCIA is a reliable functional appliance in growing age patients with a hyperdivergent pattern growth, anterior open bite and class II molar malocclusion.

  13. The simulation model of growth and cell divisions for the root apex with an apical cell in application to Azolla pinnata.

    Science.gov (United States)

    Piekarska-Stachowiak, Anna; Nakielski, Jerzy

    2013-12-01

    In contrast to seed plants, the roots of most ferns have a single apical cell which is the ultimate source of all cells in the root. The apical cell has a tetrahedral shape and divides asymmetrically. The root cap derives from the distal division face, while merophytes derived from three proximal division faces contribute to the root proper. The merophytes are produced sequentially forming three sectors along a helix around the root axis. During development, they divide and differentiate in a predictable pattern. Such growth causes cell pattern of the root apex to be remarkably regular and self-perpetuating. The nature of this regularity remains unknown. This paper shows the 2D simulation model for growth of the root apex with the apical cell in application to Azolla pinnata. The field of growth rates of the organ, prescribed by the model, is of a tensor type (symplastic growth) and cells divide taking principal growth directions into account. The simulations show how the cell pattern in a longitudinal section of the apex develops in time. The virtual root apex grows realistically and its cell pattern is similar to that observed in anatomical sections. The simulations indicate that the cell pattern regularity results from cell divisions which are oriented with respect to principal growth directions. Such divisions are essential for maintenance of peri-anticlinal arrangement of cell walls and coordinated growth of merophytes during the development. The highly specific division program that takes place in merophytes prior to differentiation seems to be regulated at the cellular level.

  14. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two

  15. Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing.

    Science.gov (United States)

    Nagai, Tatsuzo; Honda, Hisao; Takemura, Masahiko

    2018-02-27

    The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells. Copyright © 2018 Biophysical Society. All rights reserved.

  16. The potential impact of urban growth simulation on the long-term planning of our cities

    CSIR Research Space (South Africa)

    Waldeck, L

    2012-10-01

    Full Text Available of urban growth simulation on the long-term planning of our cities 4th Biennial Conference Presented by: Dr Louis Waldeck Date: 10 October 2012 Slide 2 of 17 Why Urban Growth Simulation? ? Reduced carbon footprint ? Reduce resource consumption... of the population concentrated in cities and the opportunities to gain efficiencies, cities are the most important arena for intervention.? Maurice Strong Unabated urbanisation Quest for sustainable development What makes a city sustainable? Slide 3 of 17...

  17. Spatial and temporal patterns of chickpea genotypes (Cicer arietinum L. root growth under waterlogging stress

    Directory of Open Access Journals (Sweden)

    ali ganjali

    2009-06-01

    Full Text Available The dynamic of root growth of chickpea genotypes; including Rupali (Desi and Flip 97-530 (Kabuli were evaluated under waterlogging stress in a Glasshouse experiment at CSIRO, Perth, WA. during 2005. Root growth boxes (0.1×0.24×1.0 m with one wall of glass were used as experimental units. Data were analyzed based on Randomized Complete Block Design with three replications. Waterlogging was induced when the first root reached 50cm. The water level was maintained on the soil surface for 12 days. After that, waterlogging was finished by draining the root growth boxes. In soil profile, root growth rate were calculated based on recorded information on transparent films during growing season. There was positive and strong linear correlation between the root traits that were measured in soil (direct measurment and transparent films (indirect measurment. Decay and death of roots caused a severe decrease on root growth rate during waterlogging, but root growth rate was sharply increased at the end of recovery period on 0-40 cm layer of soil surface. In both genotypes, spatial and temporal patterns of the root growth were different. Root growth rate was highest on distinc time for each layer of soil profile. In both genotypes, RLD decreased with increasing soil depth. Results showed that more distribution of root system on upper soil layers (0-40 cm is a strategy for chickpea plants, and so, soil management is very important on this layer. In stress and non stress environments, Flip 97-530 showed better root characteristics than the Rupali during growing season, so this genotype is probably more tolerate to water logging stress.

  18. Simulation of maize growth under conservation farming in tropical environments.

    NARCIS (Netherlands)

    Stroosnijder, L.; Kiepe, P.

    1998-01-01

    This book is written for students and researchers with a keen interest in the quantification of the field soil water balance in tropical environments and the effect of conservation farming on crop production. Part 1 deals with the potential production, i.e. crop growth under ample supply of water

  19. Phase field simulations of ice crystal growth in sugar solutions

    NARCIS (Netherlands)

    Sman, Van Der R.G.M.

    2016-01-01

    We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make

  20. Numerical simulation of void growth under dynamic loading

    International Nuclear Information System (INIS)

    Iqbal, A.

    1996-01-01

    Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)

  1. Inferring Drosophila gap gene regulatory network: Pattern analysis of simulated gene expression profiles and stability analysis

    NARCIS (Netherlands)

    Fomekong-Nanfack, Y.; Postma, M.; Kaandorp, J.A.

    2009-01-01

    Background: Inference of gene regulatory networks (GRNs) requires accurate data, a method to simulate the expression patterns and an efficient optimization algorithm to estimate the unknown parameters. Using this approach it is possible to obtain alternative circuits without making any a priori

  2. Impacts of spectral nudging on the simulation of present-day rainfall patterns over southern Africa

    CSIR Research Space (South Africa)

    Muthige, Mavhungu S

    2016-10-01

    Full Text Available on the simulation rainfall patterns in Southern Africa. We use the Conformal-Cubic Atmospheric Model (CCAM) as RCM to downscale ERA-interim reanalysis data to a resolution of 50 km in the horizontal over the globe. A scale-selective filter (spectral nudging...

  3. Formation of self-organized anode patterns in arc discharge simulations

    International Nuclear Information System (INIS)

    Trelles, Juan Pablo

    2013-01-01

    Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic non-equilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant dc current between an axi-symmetric electrode configuration in the absence of external forcing. The number of spots, their size and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational requirements for comprehensive arc discharge simulations. The obtained anode patterns qualitatively agree with experimental observations and confirm that the spots originate at the fringes of the arc–anode attachment. The results imply that heavy-species–electron energy equilibration, in addition to thermal instability, has a dominant role in the formation of anode spots in arc discharges. (paper)

  4. Modeling, simulation, and experiments of coating growth on nanofibers

    International Nuclear Information System (INIS)

    Clemons, C. B.; Hamrick, P.; Heminger, J.; Kreider, K. L.; Young, G. W.; Buldum, A.; Evans, E.; Zhang, G.

    2008-01-01

    This work is a comparison of modeling and simulation results with experiments for an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface around an isolated nanofiber. This evolution equation was previously derived and solved under conditions of a nearly circular coating, with a concentration field that was only radially dependent and that was independent of the location of the coating free surface. These assumptions permitted the development of analytical expressions for the concentration field. The present work does not impose the above-mentioned conditions and considers numerical simulations of the concentration field that couple with level set simulations of the evolution equation for the coating free surface. Further, the cases of coating an isolated fiber as well as a multiple fiber mat are considered. Simulation results are compared with experimental results as the reactor pressure and power, as well as the nanofiber mat porosity, are varied

  5. Simulating potential growth and yield of oil palm with PALMSIM

    NARCIS (Netherlands)

    Hoffmann, M.P.; Vera, A.C.; Wijk, van M.T.; Giller, K.E.; Oberthur, R.; Donough, C.; Whitbread, A.M.; Fisher, M.J.

    2014-01-01

    The growing demand for palm oil can be met by reducing the gap between potential yield and actual yield. Simulation models can quantify potential yield, and therefore indicate the scope for intensification. A relatively simple physiological approach was used to develop PALMSIM, which is a model that

  6. GROWTH OF HETROTROPHIC BIOFILMS IN A WATER DISTRIBUTION SYSTEM SIMULATOR

    Science.gov (United States)

    The U.S. EPA has designed and constructed a distribution system simulator (DSS) to evaluate factors which influence water quality within water distribution systems. Six individual 25 meter lengths of 15 cm diameter ductile iron pipe are arranged into loop configurations. Each lo...

  7. Early childhood growth patterns and school-age respiratory resistance, fractional exhaled nitric oxide and asthma.

    Science.gov (United States)

    Casas, Maribel; den Dekker, Herman T; Kruithof, Claudia J; Reiss, Irwin K; Vrijheid, Martine; de Jongste, Johan C; Jaddoe, Vincent W V; Duijts, Liesbeth

    2016-12-01

    Greater infant weight gain is associated with lower lung function and increased risk of childhood asthma. The role of early childhood peak growth patterns is unclear. We assessed the associations of individually derived early childhood peak growth patterns with respiratory resistance, fractional exhaled nitric oxide, wheezing patterns, and asthma until school-age. We performed a population-based prospective cohort study among 5364 children. Repeated growth measurements between 0 and 3 years of age were used to derive standard deviation scores (s.d.s) of peak height and weight velocities (PHV and PWV, respectively), and body mass index (BMI) and age at adiposity peak. Respiratory resistance and fractional exhaled nitric oxide were measured at 6 years of age. Wheezing patterns and asthma were prospectively assessed by annual questionnaires. We also assessed whether any association was explained by childhood weight status. Greater PHV was associated with lower respiratory resistance [Z-score (95% CI): -0.03 (-0.04, -0.01) per s.d.s increase] (n = 3382). Greater PWV and BMI at adiposity peak were associated with increased risks of early wheezing [relative risk ratio (95% CI): 1.11 (1.06, 1.16), 1.26 (1.11, 1.43), respectively] and persistent wheezing [relative risk ratio (95% CI): 1.09 (1.03, 1.16), 1.37 (1.17, 1.60), respectively] (n = 3189 and n = 3005, respectively). Childhood weight status partly explained these associations. No other associations were observed. PWV and BMI at adiposity peak are critical for lung developmental and risk of school-age wheezing. Follow-up studies at older ages are needed to elucidate whether these effects persist at later ages. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Modeling Urban Collaborative Growth Dynamics Using a Multiscale Simulation Model for the Wuhan Urban Agglomeration Area, China

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2018-05-01

    Full Text Available Urban agglomeration has become the predominant form of urbanization in China. In this process, spatial interaction evidently played a significant role in promoting the collaborative development of these correlated cities. The traditional urban model’s focus on individual cities should be transformed to an urban system model. In this study, a multi-scale simulation model has been proposed to simulate the agglomeration development process of the Wuhan urban agglomeration area by embedding the multi-scale spatial interaction into the transition rule system of cellular automata (CA. A system dynamic model was used to predict the demand for new urban land at an aggregated urban agglomeration area scale. A data field approach was adopted to measuring the interaction of intercity at city scale. Neighborhood interaction was interpreted with a logistic regression method at the land parcel scale. Land use data from 1995, 2005, and 2015 were used to calibrate and evaluate the model. The simulation results show that there has been continuing urban growth in the Wuhan urban agglomeration area from 1995 to 2020. Although extension-sprawl was the predominant pattern of urban spatial expansion, the trend of extensive growth to intensive growth is clear during the entire period. The spatial interaction among these cities has been reinforced, which guided the collaborative development and formed the regional urban system network.

  9. Overview of urban growth simulation: With examples of results from three SA cities

    CSIR Research Space (South Africa)

    Waldeck, L

    2013-11-01

    Full Text Available This presentation provides an overview of Urban Growth Simulation as a risk free means of assessing the future outcome of major policy and investment decisions with some examples of scenarios that were simulated in different South African cities...

  10. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Auman, Tzach; Vreede, Barbara M I; Weiss, Aryeh; Hester, Susan D; Williams, Terri A; Nagy, Lisa M; Chipman, Ariel D

    2017-05-15

    We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. © 2017. Published by The Company of Biologists Ltd.

  11. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth.

    Science.gov (United States)

    Kohnen, Markus V; Schmid-Siegert, Emanuel; Trevisan, Martine; Petrolati, Laure Allenbach; Sénéchal, Fabien; Müller-Moulé, Patricia; Maloof, Julin; Xenarios, Ioannis; Fankhauser, Christian

    2016-12-01

    In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs. © 2016 American Society of Plant Biologists. All rights reserved.

  12. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  13. Simulations of roughness initiation and growth on railway rails

    Science.gov (United States)

    Sheng, X.; Thompson, D. J.; Jones, C. J. C.; Xie, G.; Iwnicki, S. D.; Allen, P.; Hsu, S. S.

    2006-06-01

    A model for the prediction of the initiation and growth of roughness on the rail is presented. The vertical interaction between a train and the track is calculated as a time history for single or multiple wheels moving on periodically supported rails, using a wavenumber-based approach. This vertical dynamic wheel/rail force arises from the varying stiffness due to discrete supports (i.e. parametric excitation) and the roughness excitation on the railhead. The tangential contact problem between the wheel and rail is modelled using an unsteady two-dimensional approach and also using the three-dimensional contact model, FASTSIM. This enables the slip and stick regions in the contact patch to be identified from the input geometry and creepage between the wheel and rail. The long-term wear growth is then predicted by applying repeated passages of the vehicle wheelsets, as part of an iterative solution.

  14. Mould growth prediction by computational simulation on historic buildings

    OpenAIRE

    Krus, M.; Kilian, R.; Sedlbauer, K.

    2007-01-01

    Historical buildings are often renovated with a high expenditure of time and money without investigating and considering the causes of the damages. In many cases historic buildings can only be maintained by changing their usage. This change of use may influence the interior climate enormously. To assess the effect on the risk of mould growth on building parts or historic monuments a predictive model has been developed recently, describing the hygrothermal behaviour of the spore. It allows for...

  15. Simulation of the growth dynamics of amorphous and microcrystalline silicon

    OpenAIRE

    Bailat, Julien; Vallat-Sauvain, Evelyne; Vallat, A.; Shah, Arvind

    2008-01-01

    The qualitative description of the major microstructure characteristics of microcrystalline silicon is achieved through a three-dimensional discrete dynamical growth model. The model is based on three fundamental processes that determine surface morphology: (1) random deposition of particles, (2) local relaxation and (3) desorption. In this model, the incoming particle reaching the growing surface takes on a state variable representing a particular way of being incorporated into the material....

  16. Simulating the initial growth of a deposit from colloidal suspensions

    International Nuclear Information System (INIS)

    Oliveira, T J; Aarão Reis, F D A

    2014-01-01

    We study the short time properties of a two-dimensional film growth model in which incident particles execute advective-diffusive motion with a vertical step followed by D horizontal steps. The model represents some features of the deposition of anisotropic colloidal particles of the experiment of Yunker et al (2013 Phys. Rev. Lett. 110 035501), in which wandering particles are attracted to particle-rich regions in the deposit. Height profiles changing from rough to columnar structure are observed as D increases from 0 (ballistic deposition) to 8, with striking similarity to the experimental ones. The effective growth exponents match the experimental estimates and the scaling of those exponents on D shows a remarkable effect of the range of the particle-deposit interaction. The nearly ellipsoidal shape of colloidal particles is represented for the calculation of roughness exponents in conditions that parallel the experimental ones, giving a range of estimates that also includes the experimental values. The effective dynamic exponents calculated from the autocorrelation function are shown to be suitable to decide between a true dynamic scaling or transient behavior, particularly because the latter leads to deviations in an exponent relation. These results are consistent with arguments on short time unstable (columnar) growth of Nicoli et al (2013 Phys. Rev. Lett. 111 209601), indicating that critical quenched KPZ dynamics does not explain that colloidal particle deposition problem. (paper)

  17. Simulating Interface Growth and Defect Generation in CZT – Simulation State of the Art and Known Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gao, Fei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lin, Guang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bylaska, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zabaras, Nicholas [Cornell Univ., Ithaca, NY (United States)

    2012-11-01

    This one-year, study topic project will survey and investigate the known state-of-the-art of modeling and simulation methods suitable for performing fine-scale, fully 3-D modeling, of the growth of CZT crystals at the melt-solid interface, and correlating physical growth and post-growth conditions with generation and incorporation of defects into the solid CZT crystal. In the course of this study, this project will also identify the critical gaps in our knowledge of modeling and simulation techniques in terms of what would be needed to be developed in order to perform accurate physical simulations of defect generation in melt-grown CZT. The transformational nature of this study will be, for the first time, an investigation of modeling and simulation methods for describing microstructural evolution during crystal growth and the identification of the critical gaps in our knowledge of such methods, which is recognized as having tremendous scientific impacts for future model developments in a wide variety of materials science areas.

  18. Size- and food-dependent growth drives patterns of competitive dominance along productivity gradients.

    Science.gov (United States)

    Huss, Magnus; Gårdmark, Anna; Van Leeuwen, Anieke; de Roos, André M

    2012-04-01

    Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a physiologically structured model of competing populations. The influence of degree of resource overlap and the possibility of undergoing ontogenetic diet shifts were studied as functions of zooplankton and zoobenthos productivity. By imposing different size-dependent mortalities, we could study the outcome of competition under contrasting environmental regimes representing poor and favorable growth conditions. We found that the identity of the dominant species shifted between low and high productivity. Adding a herring-exclusive benthos resource only provided a competitive advantage over sprat when size-dependent mortality was high enough to allow for rapid growth in the zooplankton niche. Hence, the importance of a bottom-up effect of varying productivity was dependent on a strong top-down effect. Although herring could depress shared resources to lower levels than could sprat and also could access an exclusive resource, the smaller size at maturation of sprat allowed it to coexist with herring and, in some cases, exclude it. Our model system, characterized by interactions among size cohorts, allowed for consumer coexistence even at full resource overlap at intermediate productivities when size-dependent mortality was low. Observed shifts in community patterns were crucially dependent on the explicit consideration of size- and food-dependent growth. Accordingly, we argue that accounting for food-dependent growth and size-dependent interactions is necessary to better predict changes in community structure and dynamics following changes in major ecosystem drivers such as resource productivity and mortality, which are fundamental for our ability to manage exploitation of

  19. Film growth kinetics and electric field patterning during electrospray deposition of block copolymer thin films

    Science.gov (United States)

    Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum

    The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.

  20. [Hypopituitarism mode in patients with craniopharyngioma in relation to tumor growth pattern].

    Science.gov (United States)

    Qi, S T; Peng, J X; Pan, J; Fan, J; Zhang, S C; Liu, Y; Bao, Y; Qiu, B H; Wu, X Y

    2018-01-02

    Objective: To investigate the pituitary hormone changes of patients with craniopharyngioma of different growth patterns during perioperative period and follow up time. Methods: Retrospective studies were performed on 212 cases of primary craniopharyngioma patient who received total tumor excision surgery in our hospital from January 2001 to May 2012. The characteristics of pituitary hormone and associated clinical manifestation during preoperative, perioperative and postoperative periods were analyzed according to the QST surgical classification. Results: One hundred and seventy-seven (83.5%) of patients present preoperative hypopituitarism, 36 of them were panhypopituitarism. The hypopituitarism condition was exacerbated during the early stage of post-operation period. The abnormal rates of HPA and HPT during the follow up were 60.1% and 58.3% respectively and hormone replacement treatment was needed for these patients. Craniopharyngioma of different growth patterns showed diversities in the characteristics of hypopituitarism. Conclusion: QST surgical classification was closely associated with the pattern of hypopituitarism, it can help to optimize treatment and prognosis estimation, and could be important criterion for improving the clinical practice of neuroendocrine monitoring, treatment and health education of patients with craniopharyngioma.

  1. Describing Growth Pattern of Bali Cows Using Non-linear Regression Models

    Directory of Open Access Journals (Sweden)

    Mohd. Hafiz A.W

    2016-12-01

    Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.

  2. Numerical Simulation of Fatigue Crack Growth in Hip Implants

    Czech Academy of Sciences Publication Activity Database

    Colic, K.; Sedmak, A.; Grbovic, A.; Burzić, M.; Hloch, Sergej; Sedmak, S.

    2016-01-01

    Roč. 149, č. 149 (2016), s. 229-235 E-ISSN 1877-7058. [International Conference on Manufacturing Engineering and Materials, ICMEM 2016. Nový Smokovec, 06.06.2016-10.06.2016] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : biomedical application design * extended finite element method (XFEM) * Ti-6Al-4V alloy * stress intensity factor (SIF) * fatigue crack growth Subject RIV: JQ - Machines ; Tools http://www.sciencedirect.com/science/article/pii/S1877705816311699

  3. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    Science.gov (United States)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  4. Investigation of Au/Au(100) film growth with energetic deposition by kinetic Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zhang Qingyu; Ma Tengcai; Pan Zhengying; Tang Jiayong

    2000-01-01

    The Au/Au(100) epitaxial growth with energetic deposition was simulated by using kinetic Monte Carlo method. The influences of energetic atoms on morphology and atomistic processes in the early stage of film growth were investigated. The reentrant layer-by-layer growth was observed in the temperature range of 450 K to 100 K. The authors found the energetic atoms can promote the nucleation and island growth in the early stages of film growth and enhance the smoothness of film surface at temperatures of film growth in 3-dimensional mode and in quasi-two-dimensional mode. The atomistic mechanism that promotes the nucleation and island growth and enhances the smoothness of film surface is discussed

  5. Shift of biome patterns due to simulated climate variability and climate change

    International Nuclear Information System (INIS)

    Claussen, M.

    1993-01-01

    The variability of simulated equilibrium-response patterns of biomes caused by simulated climate variability and climate shift is analysed. This investigation is based on various realisations of simulated present-day climate and climate shift. It has been found that the difference between biomes computed from three 10-year climatologies and from the corresponding 30-year climatology, simulated by the Hamburg climate model at T21 resolution, amounts to approximately 6% of the total land area, Antarctica excluded. This difference is mainly due to differences in annual moisture availability and winter temperatures. When intercomparing biomes from the 10-year climatologies a 10% difference is seen, but there is no unique difference pattern. In contrast to the interdecadal variability, the shift of conditions favorable for biomes due to a shift in climate in the next 100 years, caused by an increase in sea-surface temperatures and atmospheric CO 2 , reveals a unique trend pattern. It turns out that the strongest and most significant signal is the north-east shift of conditions for boreal biomes. This signal is caused by an increase of annual temperature sums as well as mean temperatures of the coldest and warmest months. Trends in annual moisture availability are of secondary importance globally. Regionally, a decrease in water availability affects biomes in Central and East Europe and an increase of water availability leads to a potential increase in tropical rain forest. In total, all differences amount to roughly 30% of the total land surface, Antarctica excluded. (orig./KW)

  6. Effects of Different Biochar Application Patterns on Rice Growth and Yield

    Directory of Open Access Journals (Sweden)

    WANG Yue-man

    2017-12-01

    Full Text Available Biochar has positive effect on carbon sequestration and soil improvement, consequently biochar application has been attracted more and more attention in recent years. However, so far, few investigations about the effects of biochar application patterns on crop growth, which may have a direct impact on biochar's application and comprehensive environmental effects have been reported. Herein, soil column study was conducted using four biochars, i.e., wheat straw(WBC and wood sawdust(SBC that pyrolyzed at 500℃ and 700℃, respectively, to study the effects of two different biochar application patterns on rice growth. These two typical biochar application patterns were:generally mixed application(mixed treatment and surface application(surface treatment. The results showed that:(1In comparison with CK, all biochar application treatments promoted the growth of rice in terms of plant height and SPAD(Soil Plant Analysis Development value. Plant height of surface treatment was higher than that of mixed treatments at the heading, filling and maturation stages. SPAD and NDVI(Normalized Different Vegetation Index value of surface treatments were slightly lower than mixed treatment.(2Biochar significantly increased rice seeding setting rate by 4.88%~8.39%, moreover, surface treatments were observed higher rice seeding setting rate than mixed treatments. However, no significant difference was observed in the number of effective panicles, grains per spike and 1 000-grain weight between surface and mixed treatment. (3Application of biochar promoted rice yield, and surface treatments were more likely to increase rice yield compared with the conventional mixed treatments. (4All biochar treatments increased rice harvest index by 2.58%~10.56%, and no significant difference was found between surface and mixed treatment.(5All applications of biochar promoted nitrogen, phosphorus and potassium partial productivity, which was 9.81%~36.25% higher than that of CK.

  7. The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    Science.gov (United States)

    Plackett, Andrew R G; Powers, Stephen J; Phillips, Andy L; Wilson, Zoe A; Hedden, Peter; Thomas, Stephen G

    2018-06-01

    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.

  8. Functional patterns obtained by nanoimprinting lithography and subsequent growth of polymer brushes

    International Nuclear Information System (INIS)

    Genua, A; AlduncIn, J A; Pomposo, J A; Grande, H; Kehagias, N; Reboud, V; Sotomayor, C; Mondragon, I; Mecerreyes, D

    2007-01-01

    In this work the growth of polymer brushes was combined with nanoimprint lithography (NIL) in order to obtain new functional nanopatterns. First, a functional thermoplastic methacrylic copolymer poly(methyl methacrylate-co-2-bromoisobutyryl-oxy-ethyl methacrylate) was synthesized. This copolymer was successfully patterned by NIL using a silicon stamp at 160 deg. C and 60 bar. Next, hydrophilic polymer brushes based on poly(3-sulfopropylmethacrylate) and hydrophobic polymer brushes based on a poly(fluorinated methacrylate) were grown on the imprinted surfaces. The surface properties of the patterned polymer were accordingly modified and, as a consequence, the water contact angle was modified from 80.3 deg. to 32.5 deg. in the case of the hydrophilic brushes and to 118.1 deg. in the case of the hydrophobic brushes. As an application we demonstrated the use of hydrophobic polymer brushes in order to modify the surface of polymeric stamps for NIL with self-demoulding properties

  9. Simultaneous inference of selection and population growth from patterns of variation in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H.; Hernandez, Ryan; Fledel-Alon, Adi

    2005-01-01

    Natural selection and demographic forces can have similar effects on patterns of DNA polymorphism. Therefore, to infer selection from samples of DNA sequences, one must simultaneously account for demographic effects. Here we take a model-based approach to this problem by developing predictions fo......-specific methods, and (iii) strong evidence for very recent population growth....... for patterns of polymorphism in the presence of both population size change and natural selection. If data are available from different functional classes of variation, and a priori information suggests that mutations in one of those classes are selectively neutral, then the putatively neutral class can...... this method to a large polymorphism data set from 301 human genes and find (i) widespread negative selection acting on standing nonsynonymous variation, (ii) that the fitness effects of nonsynonymous mutations are well predicted by several measures of amino acid exchangeability, especially site...

  10. growth pattern and the industrial development of the lagos region, nigeria

    Directory of Open Access Journals (Sweden)

    Dickson Dare Ajayi

    2013-07-01

    Full Text Available This paper examines the nature, growth and spatial pattern of industries within the Lagos Region. Industrial activities in this region grew progressively over the year from mere brickwork, palm oil mills, printing press, soap factory, and metal container factory to capital intensive manufacturing. Indeed, the number of industrial establishments increased from 122 in 1962 to 637 in 1993. Lagos developed into Nigeria's leading industrial center; especially following the expansion in its service and administrative sectors. Whereas, chemicals and pharmaceutical; and basic metal, iron and steel and fabricated metal products industry groups dominate in industrial scene, wood and wood products (including furniture; and non-metallic mineral products are rare. The spatial pattern shows that industrial establishments vary amongst the industrial estates/areas, and also among the industry groups. Ikeja/Ogballsheri industrial estate/area dominates the industrial scene.

  11. Investigating Patterns of Automation and Growth Performance among Low Level Users of Manufacturing Automation

    DEFF Research Database (Denmark)

    Matthiesen, Rikke Vestergaard; Kromann, Lene

    instrument with a new, innovative way of characterizing and measuring automation levels in the production process. The survey data is merged with elaborate Danish register data on economic performance, market, and worker characteristics. The data is available from 2000 to 2010 across a broad range......-movers; companies that develop their level of automation further and companies that remain on the 2005 level up until 2010. We compare the presence of drivers and enablers in the 5-year period leading up to 2005 and investigate patterns in growth performance on a range of economic indicators between the two groups....... However, the cross sectional nature of most studies prohibits analysis of direction; is growth and economic performance the driver of manufacturing technology investment or vice versa. Longitudinal data is required to study this. The present study analyses panel data obtained using a retrospective survey...

  12. Relative growth pattern and hard tissue of vertebral centra by microradiography of bluefin tuna

    International Nuclear Information System (INIS)

    Kubo, Y.; Asano, H.

    1989-01-01

    To clarify the growth feature and the structure of hard tissue, we studied the vertebral centrum of three species, bluefin tuna Thunnus thynnus, bigeye tuna T. obesus and skipjack Katsuwonus pelamis (BL: 44.2, 39.5 and 40.0cm respectively). We examined the ratio of cetrum length to diameter in each vertebral centrum and obtained the value of 0.9-1.3 in most centra among three species. This indicates that the examined species belong to the equivalent type of the relative growth pattern of vertebral centra. The hard tissue was observed by microradiography, with the longitudinal and cross sections (about 100 μm) cut through the center of notochordal pore. The major centra of the vertebral column were composed of characteristic simple structure like a cross, when seen in the microradiographs of cross sections. Microradiographs indicated that the bone has complicated canals with minute spaces like the bone cavities

  13. Volume Changes After Stereotactic LINAC Radiotherapy in Vestibular Schwannoma: Control Rate and Growth Patterns

    International Nuclear Information System (INIS)

    Langenberg, Rick van de; Dohmen, Amy J.C.; Bondt, Bert J. de; Nelemans, Patty J.; Baumert, Brigitta G.; Stokroos, Robert J.

    2012-01-01

    Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention after radiotherapy was defined as “no additional intervention group, ” absence of radiological growth was defined as “radiological control group. ” Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% ± 0.03; the 4-year radiological control probability was 85.4% ± 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.

  14. Urban vegetation and thermal patterns following city growth in different socio-economic contexts

    Science.gov (United States)

    Dronova, I.; Clinton, N.; Yang, J.; Radke, J.; Marx, S. S.; Gong, P.

    2015-12-01

    Urban expansion accompanied by losses of vegetated spaces and their ecological services raises significant concerns about the future of humans in metropolitan "habitats". Despite recent growth of urban studies globally, it is still not well understood how environmental effects of urbanization vary with the rate and socioeconomic context of development. Our study hypothesized that with urban development, spatial patterns of surface thermal properties and green plant cover would shift towards higher occurrence of relatively warmer and less vegetated spaces such as built-up areas, followed by losses of greener and cooler areas such as urban forests, and that these shifts would be more pronounced with higher rate of economic and/or population growth. To test these ideas, we compared 1992-2011 changes in remotely sensed patterns of green vegetation and surface temperature in three example cities that experienced peripheral growth under contrasting socio-economic context - Dallas, TX, USA, Beijing, China and Kyiv, Ukraine. To assess their transformation, we proposed a metric of thermal-vegetation angle (TVA) estimated from per-pixel proxies of vegetation greenness and surface temperature from Landsat satellite data and examined changes in TVA distributions within each city's core and two decadal zones of peripheral sprawl delineated from nighttime satellite data. We found that higher economic and population growth were coupled with more pronounced changes in TVA distributions, and more urbanized zones often exhibited higher frequencies of warmer, less green than average TVA values with novel patterns such as "cooler" clusters of building shadows. Although greener and cooler spaces generally diminished with development, they remained relatively prevalent in low-density residential areas of Dallas and peripheral zones of Kyiv with exurban subsistence farming. Overall, results indicate that the effects of modified green space and thermal patterns within growing cities

  15. Growth pattern of colorectal liver metastasis as a marker of recurrence risk

    DEFF Research Database (Denmark)

    Eefsen, R L; Vermeulen, P B; Christensen, I J

    2015-01-01

    from patient and pathology records. Histological GP were evaluated and related to recurrence free and OS. Kaplan-Meier curves, log-rank test and Cox regression analysis were used. The 5-year OS was 41.8% (95% CI 33.8-49.8%). Growth pattern evaluation of the largest liver metastasis was possible in 224...... free survival (RFS) than patients resected for non-desmoplastic liver metastases (p=0.05). When patients were stratified according to neo-adjuvant treatment in the multivariate Cox regression model, hazard ratios for RFS compared to desmoplastic were: pushing (HR=1.37, 95% CI 0.93-2.02, p=0...

  16. ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-09-25

    In Arabidopsis thaliana, an atypical leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), is required for multiple developmental processes including root epidermal cell fate determination, silique dehiscence, inflorescence growth, ovule morphogenesis, and tissue morphology. Previous work suggested that SCM regulates these multiple pathways using distinct mechanisms via interactions with specific downstream factors. ANGUSTIFOLIA (AN) is known to regulate cell and tissue morphogenesis by influencing cortical microtubule arrangement, and recently, the AN protein was reported to interact with the SCM protein. Therefore, we examined whether AN might be responsible for mediating some of the SCM-dependent phenotypes. We discovered that both scm and an mutant lines cause an abnormal spiral or twisting growth of roots, but only the scm mutant affected root epidermal patterning. The siliques of the an and scm mutants also exhibited spiral growth, as previously reported, but only the scm mutant altered silique dehiscence. Interestingly, we discovered that the spiral growth of roots and siliques of the scm mutant is rescued by a truncated SCM protein that lacks its kinase domain, and that a juxtamembrane domain of SCM was sufficient for AN binding in the yeast two-hybrid analysis. These results suggest that the AN protein is one of the critical downstream factors of SCM pathways specifically responsible for mediating its effects on cell/tissue morphogenesis through cortical microtubule arrangement. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Synthesis of Patterned Vertically Aligned Carbon Nanotubes by PECVD Using Different Growth Techniques: A Review.

    Science.gov (United States)

    Gangele, Aparna; Sharma, Chandra Shekhar; Pandey, Ashok Kumar

    2017-04-01

    Immense development has been taken place not only to increase the bulk production, repeatability and yield of carbon nanotubes (CNTs) in last 25 years but preference is also given to acknowledge the basic concepts of nucleation and growth methods. Vertically aligned carbon nanotubes (VAC-NTs) are forest of CNTs accommodated perpendicular on a substrate. Their exceptional chemical and physical properties along with sequential arrangement and dense structure make them suitable in various fields. The effect of different type of selected substrate, carbon precursor, catalyst and their physical and chemical status, reaction conditions and many other key parameters have been thoroughly studied and analysed. The aim of this paper is to specify the trend and summarize the effect of key parameters instead of only presenting all the experiments reported till date. The identified trends will be compared with the recent observations on the growth of different types of patterned VACNTs. In this review article, we have presented a comprehensive analysis of different techniques to precisely determine the role of different parameters responsible for the growth of patterned vertical aligned carbon nanotubes. We have covered various techniques proposed in the span of more than two decades to fabricate the different structures and configurations of carbon nanotubes on different types of substrates. Apart from a detailed discussion of each technique along with their specific process and implementation, we have also provided a critical analysis of the associated constraints, benefits and shortcomings. To sum it all for easy reference for researchers, we have tabulated all the techniques based on certain main key factors. This review article comprises of an exhaustive discussion and a handy reference for researchers who are new in the field of synthesis of CNTs or who wants to get abreast with the techniques of determining the growth of VACNTs arrays.

  18. Growth patterns and cerebro-placental hemodynamics in fetuses with congenital heart disease.

    Science.gov (United States)

    Mebius, M J; Clur, S A B; Vink, A S; Pajkrt, E; Kalteren, W S; Kooi, E M W; Bos, A F; du Marchie Sarvaas, G J; Bilardo, C M

    2018-05-28

    Congenital heart disease (CHD) has been associated with a reduced fetal head circumference (HC). The underlying pathophysiological background remains undetermined. We aimed to define trends in fetal growth and cerebro-placental Doppler flow, and to investigate the association between head growth and cerebro-placental flow in fetuses with CHD. Fetuses with CHD and serial measurements of HC, abdominal circumference (AC), middle cerebral artery pulsatility index (MCA-PI), umbilical artery pulsatility index (UA-PI), and cerebro-placental ratio (CPR) were included. CHD was categorized into 3 groups based on expected cerebral arterial oxygen saturation: normal, mild to moderately reduced, and severely reduced. Trends over time in Z-scores were analyzed using a linear mixed-effects model. 181 fetuses fulfilled the inclusion criteria. Expected cerebral arterial oxygen saturation in CHD was classified as normal in 44, mild to moderately reduced in 84 and severely reduced in 53 cases. HC z-scores showed a tendency to decrease until 23 weeks, then to increase until 33 weeks, followed by a decrease again in the late third trimester. AC increased progressively with advancing gestation. MCA-PI and UA-PI showed significant trends throughout pregnancy, but CPR did not. There were no associations between expected cerebral arterial oxygen saturation and fetal growth. Average trends in MCA-PI were significantly different in the three subgroups (P=0.010), whereas average trends in UA-PI and CPR were similar (P=0.530 and P=0.285). Furthermore, there was no significant association between MCA-PI and HC (P=0.284). Fetal biometry and Doppler flow patterns are within normal ranges in fetuses with CHD, but show trends over time. Fetal head growth is not associated with the cerebral blood flow pattern or placental function and HC is not influenced by the cerebral arterial oxygen saturation. This article is protected by copyright. All rights reserved. This article is protected by copyright

  19. Patterns of radial and shoot growth of five tree species in a gamma-irradiated northern Wisconsin forest

    International Nuclear Information System (INIS)

    Zavitkovski, J.; Buech, R.R.; Rudolph, T.D.; Bauer, E.O.

    1977-01-01

    Patterns of radial and shoot growth of Abies balsamea, Acer rubrum, A. saccharum, Betula papyrifera, and Populus tremuloides were observed before (1970) and during (1972) gamma-irradiation of forest communities in the Enterprise Radiation Forest. Measurements were made during the growing season along the radiation gradient, and year days (YD) of 10, 25, 50, 75, and 90 percent of total growth were obtained by interpolation. The experimental area was divided into an ''affected'' and a ''no-effect'' zone. The boundary of the affected zone coincided with radiation exposures that effectively reduced the 1972 radial growth of a given species in comparison to the preirradiation growth. In 1970 and in the no-effect zone in 1972, shoot growth of the four broadleaved species started and terminated earlier than the radial growth. In A. balsamea the radial growth started earlier and terminated later than the shoot growth. In all five species, duration of radial growth was significantly longer than that of shoot growth. Radial growth of A. rubrum, A. saccharum, and B. papyrifera started significantly earlier in 1972 than in 1970, but no difference between years was found in the early-starting A. balsamea and P. tremuloides. In contrast, shoot growth of all five species started earlier in 1970 than in 1972. It is suggested that temperature regimes during the early developmental stages were probably responsible for the difference. In the affected zone in 1972, the radiation depressed radial growth and changed its normal pattern in all five species

  20. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Tjun Kit; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  1. M-center growth in alkali halides: computer simulation

    International Nuclear Information System (INIS)

    Aguilar, M.; Jaque, F.; Agullo-Lopez, F.

    1983-01-01

    The heterogeneous interstitial nucleation model previously proposed to explain F-center growth curves in irradiated alkali halides has been extended to account for M-center kinetics. The interstitials produced during the primary irradiation event are assumed to be trapped at impurities and interstitial clusters or recombine with F and M centers. For M-center formation two cases have been considered: (a) diffusion and aggregation of F centers, and (b) statistical generation and pairing of F centers. Process (b) is the only one consistent with the quadratic relationship between M and F center concentrations. However, to account for the F/M ratios experimentally observed as well as for the role of dose-rate, a modified statistical model involving random creation and association of F + -F pairs has been shown to be adequate. (author)

  2. [Population development and economic growth. A simulation analysis for Switzerland].

    Science.gov (United States)

    Schmidt, C; Straubhaar, T

    1996-01-01

    "A simulation exercise of a general equilibrium model for Switzerland makes clear that the macroeconomic impacts of aging populations are not very strong. There is no need for urgent policy actions to avoid severe negative economic consequences....However, the aging of population affects negatively the net income of the active labor force. An increasing share of their gross salaries goes to the retirement system to finance the pension payments of a growing number of pensioners. Attempts to moderate the elderly dependency ratio would lower this burden for the active labor force. Options are an increase of the female participation rate, an increase of the labor participation rate of the elderly--[which] also means a higher retirement age--and an increasing flow of immigrants. But socioeconomic problems might probably generate practical limits on the extent to which immigration can be increased." (SUMMARY IN ENG AND FRE) excerpt

  3. Modeling and simulation of axisymmetric coating growth on nanofibers

    International Nuclear Information System (INIS)

    Moore, K.; Clemons, C. B.; Kreider, K. L.; Young, G. W.

    2007-01-01

    This work is a modeling and simulation extension of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin film materials using plasma enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with metallic materials under different operating conditions to observe changes in the coating morphology. The modeling effort focuses on linking simple models at the reactor level, nanofiber level, and atomic level to form a comprehensive model. The comprehensive model leads to the definition of an evolution equation for the coating free surface. This equation was previously derived and solved under a single-valued assumption in a polar geometry to determine the coating morphology as a function of operating conditions. The present work considers the axisymmetric geometry and solves the evolution equation without the single-valued assumption and under less restrictive assumptions on the concentration field than the previous work

  4. Numerical simulations of crystal growth in a transdermal drug delivery system

    Science.gov (United States)

    Zeng, Jianming; Jacob, Karl I.; Tikare, Veena

    2004-02-01

    Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.

  5. Inter-cohort growth patterns of pharaoh cuttlefish Sepia pharaonis (Sepioidea: Sepiidae in Eastern Arabian Sea

    Directory of Open Access Journals (Sweden)

    Geetha Sasikumar

    2013-03-01

    Full Text Available Sepia pharaonis is an important commercial species endemic to the tropical Indo-Pacific region. Despite its commercial significance, only few information on natural populations is available. This study was aimed to describe the aspects of size-composition, length-weight relationship, catch rates, seasonal recruitment and inter-cohort growth patterns of S. pharaonis population (Clade C, distributed along the Eastern Arabian Sea (South-West coast of India. For this, the Dorsal Mantle Length (DML and weight of cuttlefishes was obtained from commercial trawl catches, from April 2002 to October 2006. Data was analyzed by normal length-weight methods such as von Bertalanffy. A total of 12 454 cuttlefishes, ranging in length from four to 41cm were analyzed. Size-composition patterns discriminated two pulses in recruitment to the fishery, discernible by a decrease in the monthly mean size of the population. The DMLs of the two seasonal cohorts were subjected to modalprogression analysis using the Bhattacharya’s method for the estimation of growth. The estimated parameters L∞ and K in von Bertalanffy Growth Function (VBGF were used to model growth curves in length for the cohorts. The first cohort, (post-monsoon cohort which supports the major fishery, was composed of mediumsized, fast growing individuals, whereas the second cohort (pre-monsoon cohort, comprised of slow growing and large-sized individuals. There were differential growth characteristics between the sexes and the life span was estimated at less than 2.3years for males and 2.1years for females. Negative allometric growth in weight (W with length (L was observed for males (W=0.33069.L2.5389 and females (W=0.32542.L2.6057. The females were heavier compared to males at any given mantle length, and the males were found to attain larger ultimate lengths. The major fishing season for cuttlefish was from May to November, when higher monthly catch rates of 1.67-13.02kg/h were observed in

  6. Inter-cohort growth patterns of pharaoh cuttlefish Sepia pharaonis (Sepioidea: Sepiidae) in Eastern Arabian Sea.

    Science.gov (United States)

    Sasikumarl, Geetha; Mohamed, K S; Bhat, U S

    2013-03-01

    Sepia pharaonis is an important commercial species endemic to the tropical Indo-Pacific region. Despite its commercial significance, only few information on natural populations is available. This study was aimed to describe the aspects of size-composition, length-weight relationship, catch rates, seasonal recruitment and inter-cohort growth patterns of S. pharaonis population (Clade C), distributed along the Eastern Arabian Sea (South-West coast of India). For this, the Dorsal Mantle Length (DML) and weight of cuttlefishes was obtained from commercial trawl catches, from April 2002 to October 2006. Data was analyzed by normal length-weight methods such as von Bertalanffy. A total of 12454 cuttlefishes, ranging in length from four to 41cm were analyzed. Size-composition patterns discriminated two pulses in recruitment to the fishery, discernible by a decrease in the monthly mean size of the population. The DMLs of the two seasonal cohorts were subjected to modal-progression analysis using the Bhattacharya's method for the estimation of growth. The estimated parameters Linfinity and K in von Bertalanffy Growth Function (VBGF) were used to model growth curves in length for the cohorts. The first cohort, (post-monsoon cohort) which supports the major fishery, was composed of medium-sized, fast growing individuals, whereas the second cohort (pre-monsoon cohort), comprised of slow growing and large-sized individuals. There were differential growth characteristics between the sexes and the life span was estimated at less than 2.3 years for males and 2.1 years for females. Negative allometric growth in weight (W) with length (L) was observed for males (W=0.33069.L2.5389) and females (W=0.32542.L26057). The females were heavier compared to males at any given mantle length, and the males were found to attain larger ultimate lengths. The major fishing season for cuttlefish was from May to November, when higher monthly catch rates of 1.67-13.02kg/h were observed in comparison

  7. Interfacing VPSC with finite element codes. Demonstration of irradiation growth simulation in a cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-23

    This Milestone report shows good progress in interfacing VPSC with the FE codes ABAQUS and MOOSE, to perform component-level simulations of irradiation-induced deformation in Zirconium alloys. In this preliminary application, we have performed an irradiation growth simulation in the quarter geometry of a cladding tube. We have benchmarked VPSC-ABAQUS and VPSC-MOOSE predictions with VPSC-SA predictions to verify the accuracy of the VPSCFE interface. Predictions from the FE simulations are in general agreement with VPSC-SA simulations and also with experimental trends.

  8. Extended pattern recognition scheme for self-learning kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Shah, Syed Islamuddin; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S

    2012-01-01

    We report the development of a pattern recognition scheme that takes into account both fcc and hcp adsorption sites in performing self-learning kinetic Monte Carlo (SLKMC-II) simulations on the fcc(111) surface. In this scheme, the local environment of every under-coordinated atom in an island is uniquely identified by grouping fcc sites, hcp sites and top-layer substrate atoms around it into hexagonal rings. As the simulation progresses, all possible processes, including those such as shearing, reptation and concerted gliding, which may involve fcc-fcc, hcp-hcp and fcc-hcp moves are automatically found, and their energetics calculated on the fly. In this article we present the results of applying this new pattern recognition scheme to the self-diffusion of 9-atom islands (M 9 ) on M(111), where M = Cu, Ag or Ni.

  9. Protein patterns of black fungi under simulated Mars-like conditions.

    Science.gov (United States)

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-05-29

    Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.

  10. Maternal Dietary Patterns and Fetal Growth: A Large Prospective Cohort Study in China.

    Science.gov (United States)

    Lu, Min-Shan; Chen, Qiao-Zhu; He, Jian-Rong; Wei, Xue-Ling; Lu, Jin-Hua; Li, Sheng-Hui; Wen, Xing-Xuan; Chan, Fan-Fan; Chen, Nian-Nian; Qiu, Lan; Mai, Wei-Bi; Zhang, Rui-Fang; Hu, Cui-Yue; Xia, Hui-Min; Qiu, Xiu

    2016-04-28

    There was limited evidence revealing the association of Chinese maternal dietary patterns with fetal growth. We aimed to examine the relationship of maternal dietary patterns during pregnancy to neonatal birth weight and birth weight for gestational age in a Chinese population. A total of 6954 mother-child pairs were included from the Born in Guangzhou Cohort Study. Maternal diet during pregnancy was assessed using a self-administered food frequency questionnaire. Cluster analysis was used to identify dietary patterns. The following six dietary patterns were identified: "Cereals, eggs, and Cantonese soups" (n 1026, 14.8%), "Dairy" (n 1020, 14.7%), "Fruits, nuts, and Cantonese desserts" (n 799, 11.5%), "Meats" (n 1066, 15.3%), "Vegetables" (n 1383, 19.9%), and "Varied" (n 1224, 17.6%). The mean neonatal birth weight Z scores of women in the above patterns were 0.02, 0.07, 0.20, 0.01, 0.06, and 0.14, respectively. Women in the "Fruits, nuts, and Cantonese desserts" and "Varied" groups had significantly heavier infants compared with those in the "Cereals, eggs, and Cantonese soups" group. Compared with women in the "Cereals, eggs, and Cantonese soups" group, those in the "Varied" group had marginally significantly lower odds of having a small-for-gestational age (SGA) infant after adjustment for other confounders (OR 0.77, 95% CI 0.57, 1.04, p = 0.08). These findings suggest that compared to a traditional Cantonese diet high in cereals, eggs, and Cantonese soups, a diet high in fruits, nuts, and Cantonese desserts might be associated with a higher birth weight, while a varied diet might be associated with a greater birth weight and also a decreased risk of having a SGA baby.

  11. Maternal Dietary Patterns and Fetal Growth: A Large Prospective Cohort Study in China

    Directory of Open Access Journals (Sweden)

    Min-Shan Lu

    2016-04-01

    Full Text Available There was limited evidence revealing the association of Chinese maternal dietary patterns with fetal growth. We aimed to examine the relationship of maternal dietary patterns during pregnancy to neonatal birth weight and birth weight for gestational age in a Chinese population. A total of 6954 mother-child pairs were included from the Born in Guangzhou Cohort Study. Maternal diet during pregnancy was assessed using a self-administered food frequency questionnaire. Cluster analysis was used to identify dietary patterns. The following six dietary patterns were identified: “Cereals, eggs, and Cantonese soups” (n 1026, 14.8%, “Dairy” (n 1020, 14.7%, “Fruits, nuts, and Cantonese desserts” (n 799, 11.5%, “Meats” (n 1066, 15.3%, “Vegetables” (n 1383, 19.9%, and “Varied” (n 1224, 17.6%. The mean neonatal birth weight Z scores of women in the above patterns were 0.02, 0.07, 0.20, 0.01, 0.06, and 0.14, respectively. Women in the “Fruits, nuts, and Cantonese desserts” and “Varied” groups had significantly heavier infants compared with those in the “Cereals, eggs, and Cantonese soups” group. Compared with women in the “Cereals, eggs, and Cantonese soups” group, those in the “Varied” group had marginally significantly lower odds of having a small-for-gestational age (SGA infant after adjustment for other confounders (OR 0.77, 95% CI 0.57, 1.04, p = 0.08. These findings suggest that compared to a traditional Cantonese diet high in cereals, eggs, and Cantonese soups, a diet high in fruits, nuts, and Cantonese desserts might be associated with a higher birth weight, while a varied diet might be associated with a greater birth weight and also a decreased risk of having a SGA baby.

  12. AlGaInAs narrow stripe selective growth on substrates patterned with different mask designs

    International Nuclear Information System (INIS)

    Feng, W; Pan, J Q; Yang, H; Hou, L P; Zhou, F; Zhao, L J; Zhu, H L; Wang, W

    2006-01-01

    We have performed a narrow stripe selective growth of oxide-free AlGaInAs waveguides on InP substrates patterned with pairs of SiO 2 mask stripes under optimized growth conditions. The mask stripe width varied from 0 to 40 μm, while the window region width between a pair of mask stripes was fixed at 1.5, 2.5 or 3.5 μm. Flat and smooth AlGaInAs waveguides covered by specific InP layers are successfully grown on substrates patterned with different mask designs. The thickness enhancement ratio and the photoluminescence (PL) spectrum of the AlGaInAs narrow stripe waveguides are strongly dependent on the mask stripe width and the window region width. In particular, a large PL wavelength shift of 79 nm and a PL FWHM of less than 64 meV are obtained simultaneously with a small mask stripe width varying from 0 to 40 μm when the window region width is 1.5 μm. We present some possible interpretations of the experimental observations in considering both the migration effect from a masked region and the lateral vapour diffusion effect

  13. Growth and demographic patterns of marriages of foreign population in Spain

    Directory of Open Access Journals (Sweden)

    Clara Cortina

    2014-11-01

    Full Text Available The dramatic growth of international immigration in Spain during the last decade has considerably increased the number of marriages with at least one foreign national. Between 1989 and 2004, the proportion of these marriages increased from 4% to12%, totalling 25.618 unions in 2004. However, marriage patterns of foreign nationals have attracted little attention among researcher spartly because of the small number of cases that were available until recently. Within this context, this paper examines the growth and demographic patterns of marriages of foreign populationin Spain, compared to those of only Spanish nationals, taking into account the age at marriage, type of union (religious or civil,first and later order of marriages, and degree of endogamy. We use microdata from the Spanish vital statistics on marriages (Movimiento Natural de la Población between 1989 and 2004. Results show that marriages of foreign population in Spain, particularly those that involve one Spanish partner, present some distinct characteristics, in particular associated with gender, in contrast to those marriages that only involve Spanish nationals.

  14. Global patterns and clines in the growth of common carp Cyprinus carpio.

    Science.gov (United States)

    Vilizzi, L; Copp, G H

    2017-07-01

    This review provides a meta-analytical assessment of the global patterns and clines in the growth of Cyprinus carpio as measured by length-at-age (L t ) or von Bertalanffy growth function (VBGF) parameters, mass-length relationship (W-L t ) and condition factor, based on literature data. In total, 284 studies were retrieved spanning 91 years of research and carried out on 381 waterbodies-locations in 50 countries in all five continents. Although native C. carpio achieved larger (asymptotic) size relative to its non-native counterpart, the latter grew faster during the first 7 years of life. Lentic populations (especially in natural lakes) also achieved larger sizes relative to lotic ones and the same was true for populations in cold and temperate v. arid climates. Unlike previous studies (on much more restricted datasets), only weak latitudinal clines in instantaneous growth rate, L t at age 3 and mortality were observed globally and this was probably due to the presence of counter-gradient growth variation at all representative age classes (i.e. 1-10 years). Slightly negative allometry was revealed by the W-L t and the related form factor tended to distinguish the more elongated and torpedo-shaped body typical of the wild form from the deeper body of feral-domesticated C. carpio. Existing population dynamics models for C. carpio will benefit from the comprehensive range of waterbody type × climate class-specific VBGF parameters provided in the present study; whereas, more studies are needed on the species' growth in tropical regions and to unravel the possibility of confounding effects on age estimation due to both historical and methodological reasons. © 2017 The Fisheries Society of the British Isles.

  15. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  16. Simulating spatial patterns of land-use change in Rondonia, Brazil

    International Nuclear Information System (INIS)

    Dale, V.H.; Southworth, F.; O'Neill, R.V.; Rosen, A.

    1992-01-01

    Large scale deforestation in the Brazilian state of Rondonia has resulted from massive colonization and has caused increases in atmospheric CO 2 , soil degradation, loss of extractive resources, and disruption of indigenous populations. A simulation model has been developed that integrates colonization, socioeconomic, and ecological submodels to estimate spatial patterns and rates of deforestation under different immigration policies, land tenure practices, and road development scenarios. It is used to model the socioeconomic causes and ecological impacts of rapid deforestation in Rondonia. The simulation can be used to identify scenarios that might optimize economic and agricultural sustainability or reduce emigration. Spatial analysis of the simulation projections shows that very different patterns of deforestation can result depending on whether soil suitability, distance to market or lot size is the prime factor affecting a colonist's choice of a lot. Projections of the amount and pattern of deforestation under specific scenarios of land-use choice and management can be used to explore the socioeconomic and ecological implications of land-use change

  17. Benchmarking of measurement and simulation of transverse rms-emittance growth

    Directory of Open Access Journals (Sweden)

    L. Groening

    2008-09-01

    Full Text Available Transverse emittance growth along the Alvarez drift tube linac (DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth, appropriate tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different transverse phase advances along the DTL. Special emphasis is put on the modeling of the initial distribution for the simulations. The concept of rms equivalence is expanded from full intensity to fractions of less than 100% of the beam. The experimental setup, data reduction, preparation of the simulations, and the evaluation of the simulations are described. In the experiments and in the simulations, a minimum of the rms-emittance growth was observed at zero current phase advances of about 60°. In general, good agreement was found between simulations and experiment for the mean values of horizontal and vertical emittances at the DTL exit.

  18. 12 weeks of simulated barefoot running changes foot-strike patterns in female runners.

    Science.gov (United States)

    McCarthy, C; Fleming, N; Donne, B; Blanksby, B

    2014-05-01

    To investigate the effect of a transition program of simulated barefoot running (SBR) on running kinematics and foot-strike patterns, female recreational athletes (n=9, age 29 ± 3 yrs) without SBR experience gradually increased running distance in Vibram FiveFingers SBR footwear over 12 weeks. Matched controls (n=10, age 30 ± 4 yrs) continued running in standard footwear. A 3-D motion analysis of treadmill running at 12 km/h(-1) was performed by both groups, barefoot and shod, pre- and post-intervention. Post-intervention data indicated a more-forefoot strike pattern in the SBR group compared to controls; both running barefoot (P>0.05), and shod (Pstrike (Pforefoot strike pattern and "barefoot" kinematics, regardless of preferred footwear. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Study of molecular-beam epitaxy growth on patterned GaAs (311)A substrates with different mesa height

    NARCIS (Netherlands)

    Gong, Q.; Nötzel, R.; Schönherr, H.-P.; Ploog, K.

    2000-01-01

    We report on the evolution of the growth front during molecular-beam epitaxy on GaAs (3 1 1)A substrates stripe patterned along the [ ] direction as a function of the mesa height. During growth (1 0 0) and (2 1 1)A facets are formed and expand at the corners near the two opposite lying ( )A and (1 1

  20. Fetal and infant growth patterns associated with total and abdominal fat distribution in school-age children

    NARCIS (Netherlands)

    Gishti, O.; Gaillard, R.; Manniesing, R.; Abrahamse-Berkeveld, M.; Beek, E.M. van der; Heppe, D.H.M.; Steegers, E.A.P.; Hofman, A.; Duijts, L.; Durmus, B.u.; Jaddoe, V.W.

    2014-01-01

    Context: Higher infant growth rates are associated with an increased risk of obesity in later life. Objective: We examined the associations of longitudinally measured fetal and infant growth patterns with total and abdominal fat distribution in childhood. Design, Settings and participants:We

  1. Early growth patterns are associated with intelligence quotient scores in children born small-for-gestational age.

    Science.gov (United States)

    Varella, Marcia H; Moss, William J

    2015-08-01

    To assess whether patterns of growth trajectory during infancy are associated with intelligence quotient (IQ) scores at 4 years of age in children born small-for-gestational age (SGA). Children in the Collaborative Perinatal Project born SGA were eligible for analysis. The primary outcome was the Stanford-Binet IQ score at 4 years of age. Growth patterns were defined based on changes in weight-for-age z-scores from birth to 4 months and 4 to 12 months of age and consisted of steady, early catch-up, late catch-up, constant catch-up, early catch-down, late catch-down, constant catch-down, early catch-up & late catch-down, and early catch-down & late catch-up. Multivariate linear regression was used to assess associations between patterns of growth and IQ. We evaluated patterns of growth and IQ in 5640 children. Compared with children with steady growth, IQ scores were 2.9 [standard deviation (SD)=0.54], 1.5 (SD=0.63), and 2.2 (SD=0.9) higher in children with early catch-up, early catch-up and later catch-down, and constant catch-up growth patterns, respectively, and 4.4 (SD=1.4) and 3.9 (SD=1.5) lower in children with early catch-down & late catch-up, and early catch-down growth patterns, respectively. Patterns in weight gain before 4 months of age were associated with differences in IQ scores at 4 years of age, with children with early catch-up having slightly higher IQ scores than children with steady growth and children with early catch-down having slightly lower IQ scores. These findings have implications for early infant nutrition in children born SGA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.

    Science.gov (United States)

    Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang

    2016-12-01

    E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

  3. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-01-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface. - Highlights: • Dislocation mechanism of void growth at TB of nanotwinned nickel is investigated. • Deformation of the nanotwinned nickel is dominated by leading and trailing partials. • Growth of void at TB is caused by successive emission and escape of these partials.

  4. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  5. The global pattern of urbanization and economic growth: evidence from the last three decades.

    Science.gov (United States)

    Chen, Mingxing; Zhang, Hua; Liu, Weidong; Zhang, Wenzhong

    2014-01-01

    The relationship between urbanization and economic growth has been perplexing. In this paper, we identify the pattern of global change and the correlation of urbanization and economic growth, using cross-sectional, panel estimation and geographic information systems (GIS) methods. The analysis has been carried out on a global geographical scale, while the timescale of the study spans the last 30 years. The data shows that urbanization levels have changed substantially during these three decades. Empirical findings from cross-sectional data and panel data support the general notion of close links between urbanization levels and GDP per capita. However, we also present significant evidence that there is no correlation between urbanization speed and economic growth rate at the global level. Hence, we conclude that a given country cannot obtain the expected economic benefits from accelerated urbanization, especially if it takes the form of government-led urbanization. In addition, only when all facets are taken into consideration can we fully assess the urbanization process.

  6. Multidisciplinary characterization of the long-bone cortex growth patterns through sheep's ontogeny.

    Science.gov (United States)

    Cambra-Moo, Oscar; Nacarino-Meneses, Carmen; Díaz-Güemes, Idoia; Enciso, Silvia; García Gil, Orosia; Llorente Rodríguez, Laura; Rodríguez Barbero, Miguel Ángel; de Aza, Antonio H; González Martín, Armando

    2015-07-01

    Bone researches have studied extant and extinct taxa extensively trying to disclose a complete view of the complex structural and chemical transformations that model and remodel the macro and microstructure of bone during growth. However, to approach bone growth variations is not an easy task, and many aspects related with histological transformations during ontogeny remain unresolved. In the present study, we conduct a holistic approach using different techniques (polarized microscopy, Raman spectroscopy and X-ray diffraction) to examine the histomorphological and histochemical variations in the cortical bone of sheep specimens from intrauterine to adult stages, using environmentally controlled specimens from the same species. Our results suggest that during sheep bone development, the most important morphological (shape and size) and chemical transformations in the cortical bone occur during the first weeks of life; synchronized but dissimilar variations are established in the forelimb and hind limb cortical bone; and the patterns of bone tissue maturation in both extremities are differentiated in the adult stage. All of these results indicate that standardized histological models are useful not only for evaluating many aspects of normal bone growth but also to understand other important influences on the bones, such as pathologies that remain unknown. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The global pattern of urbanization and economic growth: evidence from the last three decades.

    Directory of Open Access Journals (Sweden)

    Mingxing Chen

    Full Text Available The relationship between urbanization and economic growth has been perplexing. In this paper, we identify the pattern of global change and the correlation of urbanization and economic growth, using cross-sectional, panel estimation and geographic information systems (GIS methods. The analysis has been carried out on a global geographical scale, while the timescale of the study spans the last 30 years. The data shows that urbanization levels have changed substantially during these three decades. Empirical findings from cross-sectional data and panel data support the general notion of close links between urbanization levels and GDP per capita. However, we also present significant evidence that there is no correlation between urbanization speed and economic growth rate at the global level. Hence, we conclude that a given country cannot obtain the expected economic benefits from accelerated urbanization, especially if it takes the form of government-led urbanization. In addition, only when all facets are taken into consideration can we fully assess the urbanization process.

  8. Patterns and causes of species richness: a general simulation model for macroecology

    DEFF Research Database (Denmark)

    Gotelli, Nicholas J; Anderson, Marti J; Arita, Hector T

    2009-01-01

    to a mechanistic understanding of the patterns. During the past two decades, macroecologists have successfully addressed technical problems posed by spatial autocorrelation, intercorrelation of predictor variables and non-linearity. However, curve-fitting approaches are problematic because most theoretical models...... in macroecology do not make quantitative predictions, and they do not incorporate interactions among multiple forces. As an alternative, we propose a mechanistic modelling approach. We describe computer simulation models of the stochastic origin, spread, and extinction of species' geographical ranges...... in an environmentally heterogeneous, gridded domain and describe progress to date regarding their implementation. The output from such a general simulation model (GSM) would, at a minimum, consist of the simulated distribution of species ranges on a map, yielding the predicted number of species in each grid cell...

  9. System dynamics modelling and simulating the effects of intellectual capital on economic growth

    Directory of Open Access Journals (Sweden)

    Ivona Milić Beran

    2015-10-01

    Full Text Available System dynamics modelling is one of the best scientific methods for modelling complex, nonlinear natural, economic and technical system dynamics as it enables both monitoring and assessment of the effects of intellectual capital on economic growth. Intellectual capital is defined as “the ability to transform knowledge and intangible assets into resources to create wealth for a company and a country.” Transformation of knowledge is crucial. Knowledge increases a country’s wealth only if its importance is recognized and applied differently from existing work practices. The aim of this paper is to show the efficiency of modelling system dynamics and simulating the effects of intellectual capital on economic growth. A computer simulation provided a mathematical model, providing practical insight into the dynamic behavior of the observed system, i.e. the analysis of economic growth and observation of mutual correlation between individual parameters. The results of the simulation are presented in graphical form. The dynamic model of the effects of intellectual capital on Croatia’s economic growth has been verified by comparing simulation results with existing data on economic growth.

  10. Crack growth simulation for plural crack using hexahedral mesh generation technique

    International Nuclear Information System (INIS)

    Orita, Y; Wada, Y; Kikuchi, M

    2010-01-01

    This paper describes a surface crack growth simulation using a new mesh generation technique. The generated mesh is constituted of all hexahedral elements. Hexahedral elements are suitable for an analysis of fracture mechanics parameters, i.e. stress intensity factor. The advantage of a hexahedral mesh is good accuracy of an analysis and less number of degrees of freedoms than a tetrahedral mesh. In this study, a plural crack growth simulation is computed using the hexahedral mesh and its distribution of stress intensity factor is investigated.

  11. Computer simulation of the emittance growth due to noise in large hadron colliders

    International Nuclear Information System (INIS)

    Lebedev, V.

    1993-03-01

    The problem of emittance growth due to random fluctuations of the magnetic field in a hadron collider is considered. The results of computer simulations are compared with the analytical theory developed earlier. A good agreement was found between the analytical theory predictions and the computer simulations for the collider tunes located far enough from high order betatron resonances. The dependencies of the emittance growth rate on noise spectral density, beam separation at the Interaction Point (IP) and value of beam separation at long range collisions are studied. The results are applicable to the Superconducting Super Collider (SSC)

  12. Kinetic Monte Carlo simulation of growth of Ge quantum dot multilayers with amorphous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Jan, E-mail: endres.jan@gmail.com; Holý, Václav; Daniš, Stanislav [Charles University, Faculty of Mathematics and Physics (Czech Republic); Buljan, Maja [Ruđer Bošković Institute (Croatia)

    2017-04-15

    Kinetic Monte Carlo method is used to simulate the growth of germanium quantum dot multilayers with amorphous matrix. We modified a model for self-assembled growth of quantum dots in crystalline matrix for the case of the amorphous one. The surface morphology given as hills above the buried dots is the main driving force for the ordering of the quantum dots. In the simulations, we observed a short-range self-ordering in the lateral direction. The ordering in lateral and vertical direction depends strongly on the surface morphology, mostly on the strength how the deposited material replicates previous surfaces.

  13. Monte-Carlo simulation of crystallographical pore growth in III-V-semiconductors

    International Nuclear Information System (INIS)

    Leisner, Malte; Carstensen, Juergen; Foell, Helmut

    2011-01-01

    The growth of crystallographical pores in III-V-semiconductors can be understood in the framework of a simple model, which is based on the assumption that the branching of pores is proportional to the current density at the pore tips. The stochastic nature of this model allows its implementation into a three-dimensional Monte-Carlo-simulation of pore growth. The simulation is able to reproduce the experimentally observed crysto pore structures in III-V-semiconductors in full quantitative detail. The different branching probabilities for different semiconductors, as well as doping levels, can be deduced from the specific passivation behavior of the semiconductor-electrolyte-interface at the pore tips.

  14. Photonic simulation of entanglement growth and engineering after a spin chain quench.

    Science.gov (United States)

    Pitsios, Ioannis; Banchi, Leonardo; Rab, Adil S; Bentivegna, Marco; Caprara, Debora; Crespi, Andrea; Spagnolo, Nicolò; Bose, Sougato; Mataloni, Paolo; Osellame, Roberto; Sciarrino, Fabio

    2017-11-17

    The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.

  15. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    Science.gov (United States)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  16. Monte carlo simulation of anisotropic grain growth in liquid phase sintering

    International Nuclear Information System (INIS)

    Han, Yoon Soo; Kim, Do Kyung

    2003-01-01

    One of the key techniques in modern engineering ceramic system is microstructural control of anisotropic grain growth because grain orientation and shape proved to have an influence on mechanic, dielectric and electric behavior of ceramics. But until now, computer simulation for grain growth has not sufficiently addressed to this subject. The reason is that simulation algorithm was laborious because it has to contain mass transfer through liquid phase and especially anisotropic grain growth has to be considered based on interfacial properties in real system. The goal of present study is simulation of anisotropic grain growth in liquid phase by Q-states model. To give anisotropic inherency to grains, constraint on mobility to specific boundaries was applied. For comparison, we measured grain size distribution and deduced grain growth kinetics from relation ship between average grain size and time. As a result, the grain size distribution functions become broader and the peak height decreases as the anisotropy is increased. The growth exponent 0.67 and 0.47 found by linear fitting have slightly different values in comparison with work of Grest et al. but similar is trend to the decrease of exponent with anisotropy

  17. Rheo-electrical approximate simulation of monocrystal growth from the melt

    International Nuclear Information System (INIS)

    Vernois, G.

    1969-01-01

    On a two-dimensional model, the advantages of rheo-electrical simulation for studying monocrystal growth from the melt are pointed out. In the case of an opaque body, it is always possible to make a fairly exact model. As regards a transparent body, the simulation of radiation thermal exchange is fairly difficult. It is shown how the plans of a constant level complex crucible are established. (author) [fr

  18. Excel simulations

    CERN Document Server

    Verschuuren, Gerard M

    2013-01-01

    Covering a variety of Excel simulations, from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.

  19. Referral patterns of children with poor growth in primary health care

    Directory of Open Access Journals (Sweden)

    van Buuren Stef

    2007-05-01

    Full Text Available Abstract Background To promote early diagnosis and treatment of short stature, consensus meetings were held in the mid nineteen nineties in the Netherlands and the UK. This resulted in guidelines for referral. In this study we evaluate the referral pattern of short stature in primary health care using these guidelines, comparing it with cut-off values mentioned by the WHO. Methods Three sets of referral rules were tested on the growth data of a random sample (n = 400 of all children born between 01-01-1985 and 31-12-1988, attending school doctors between 1998 and 2000 in Leiden and Alphen aan den Rijn (the Netherlands: the screening criteria mentioned in the Dutch Consensus Guideline (DCG, those of the UK Consensus Guideline (UKCG and the cut-off values mentioned in the WHO Global Database on Child growth and Malnutrition. Results Application of the DCG would lead to the referral of too many children (almost 80%. The largest part of the referrals is due to the deflection of height, followed by distance to target height and takes primarily place during the first 3 years. The deflection away from the parental height would also lead to too many referrals. In contrast, the UKCG only leads to 0.3% referrals and the WHO-criteria to approximately 10%. Conclusion The current Dutch consensus guideline leads to too many referrals, mainly due to the deflection of length during the first 3 years of life. The UKCG leads to far less referrals, but may be relatively insensitive to detect clinically relevant growth disorders like Turner syndrome. New guidelines for growth monitoring are needed, which combine a low percentage of false positive results with a good sensitivity.

  20. Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya.

    Science.gov (United States)

    Manish, Kumar; Pandit, Maharaj K; Telwala, Yasmeen; Nautiyal, Dinesh C; Koh, Lian Pin; Tiwari, Sudha

    2017-09-01

    Despite decades of research, ecologists continue to debate how spatial patterns of species richness arise across elevational gradients on the Earth. The equivocal results of these studies could emanate from variations in study design, sampling effort and data analysis. In this study, we demonstrate that the richness patterns of 2,781 (2,197 non-endemic and 584 endemic) angiosperm species along an elevational gradient of 300-5,300 m in the Eastern Himalaya are hump-shaped, spatial scale of extent (the proportion of elevational gradient studied) dependent and growth form specific. Endemics peaked at higher elevations than non-endemics across all growth forms (trees, shrubs, climbers, and herbs). Richness patterns were influenced by the proportional representation of the largest physiognomic group (herbs). We show that with increasing spatial scale of extent, the richness patterns change from a monotonic to a hump-shaped pattern and richness maxima shift toward higher elevations across all growth forms. Our investigations revealed that the combination of ambient energy (air temperature, solar radiation, and potential evapo-transpiration) and water availability (soil water content and precipitation) were the main drivers of elevational plant species richness patterns in the Himalaya. This study highlights the importance of factoring in endemism, growth forms, and spatial scale when investigating elevational gradients of plant species distributions and advances our understanding of how macroecological patterns arise.

  1. Constitutional Growth Delay Pattern of Growth in Velo−Cardio−Facial Syndrome: Longitudinal follow up and final height of two cases

    Science.gov (United States)

    Özdemir, Nihal; Güran, Tülay; Akalın, Figen; Akçay, Teoman; Ayabakan, Canan; Yılmaz, Yüksel; Bereket, Abdullah

    2008-01-01

    We report two patients with velo−cardio−facial syndrome (VCFS) who were admitted to our pediatric endocrinology clinic because of short stature and followed longitudinally until attainment of final height. Both patients followed a growth pattern consistent with constitutional delay of puberty with normal and near normal final height. Case 2 also had partial growth hormone (GH) deficiency and severe short stature (height SDS −3.4 SDS), but showed spontaneous catch−up and ended up with a final height of −2 SDS. These cases suggest that short stature in children with VCFS is due to a pattern of growth similar to that observed in constitutional delay of growth and puberty. Conflict of interest:None declared. PMID:21318064

  2. Growth patterns of survivors of retinoblastoma treated with ophthalmic artery chemosurgery.

    Directory of Open Access Journals (Sweden)

    Sruti S Akella

    Full Text Available Although studies from pediatric cancers (largely acute lymphoblastic leukemia have shown that patients undergoing systemic chemotherapy may experience decreased growth velocity during the treatment phase, no such data exist for retinoblastoma patients treated with systemic chemotherapy or ophthalmic artery chemosurgery (OAC. The purpose of this study is to report growth patterns of our retinoblastoma (Rb population who were treated with OAC in a retrospective, single center (Memorial Sloan Kettering Cancer Center review of 341 patients treated between 2006 and 2016. Children who only received OAC were classified as naive; those who were treated initially with systemic chemotherapy and subsequently presented to our center for OAC were termed secondary; and a small group of patients who received single-agent systemic chemotherapy prior to OAC were labeled bridge. For all patients, height and weight were recorded at monthly intervals during OAC (short-term and then annually during a follow-up period (long-term up to 3 years after treatment. Excluded from this study were children who received external radiation therapy and those with genetic syndromes, which are independently associated with growth derangements. During OAC, there was no significant difference in growth velocity between the naïve and secondary groups. In either group, number of treatments also did not affect growth rate. Three years after the end of OAC, naïve patients were in the 68th percentile by height (95% CI 61.30, 74.63 compared to secondary patients in the 61st percentile (95% CI 51.1, 71.47. Both groups were in the same weight percentiles during the first two years of follow-up but at the three-year follow-up period, naïve patients were in the 63rd percentile (95% CI 57.4, 69.4 and secondary patients were in the 60th percentile (95% CI 50.4, 69.7. OAC for retinoblastoma does not appear to impact short-term growth velocity, weight gain during the treatment period or after

  3. The importance of hormonal circadian rhythms in daily feeding patterns: An illustration with simulated pigs.

    Science.gov (United States)

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; la Fleur, Susanne E; Bokkers, Eddie A M

    2017-07-01

    The interaction between hormonal circadian rhythms and feeding behaviour is not well understood. This study aimed to deepen our understanding of mechanisms underlying circadian feeding behaviour in animals, using pigs, Sus scrofa, as a case study. Pigs show an alternans feeding pattern, that is, a small peak of feed intake at the beginning of the day and a larger peak at the end of the day. We simulated the feeding behaviour of pigs over a 24h period. The simulation model contained mechanisms that regulate feeding behaviour of animals, including: processing of feed in the gastrointestinal tract, fluctuation in energy balance, circadian rhythms of melatonin and cortisol and motivational decision-making. From the interactions between these various processes, feeding patterns (e.g. feed intake, meal frequency, feeding rate) emerge. These feeding patterns, as well as patterns for the underlying mechanisms (e.g. energy expenditure), fitted empirical data well, indicating that our model contains relevant mechanisms. The circadian rhythms of cortisol and melatonin explained the alternans pattern of feeding in pigs. Additionally, the timing and amplitude of cortisol peaks affected the diurnal and nocturnal peaks in feed intake. Furthermore, our results suggest that circadian rhythms of other hormones, such as leptin and ghrelin, are less important in circadian regulation of feeding behaviour than previously thought. These results are relevant to animal species with a metabolic and endocrine system similar to that of pigs, such as humans. Moreover, the modelling approach to understand feeding behaviour can be applied to other animal species. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Simulation of hydrogen bubble growth in tungsten by a hybrid model

    International Nuclear Information System (INIS)

    Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Wang, L.; Wang, Dezhen

    2015-01-01

    A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering

  5. Orchestrated structure evolution: accelerating direct-write nanomanufacturing by combining top-down patterning with bottom-up growth

    Energy Technology Data Exchange (ETDEWEB)

    Kitayaporn, Sathana; Baneyx, Francois; Schwartz, Daniel T [Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750 (United States); Hoo, Ji Hao; Boehringer, Karl F, E-mail: dts@uw.edu [Department of Electrical Engineering, University of Washington, Seattle, WA 98195-1750 (United States)

    2010-05-14

    Direct-write nanomanufacturing with scanning beams and probes is flexible and can produce high quality products, but it is normally slow and expensive to raster point-by-point over a pattern. We demonstrate the use of an accelerated direct-write nanomanufacturing method called 'orchestrated structure evolution' (OSE), where a direct-write tool patterns a small number of growth 'seeds' that subsequently grow into the final thin film pattern. Through control of seed size and spacing, it is possible to vary the ratio of 'top-down' to 'bottom-up' character of the patterning processes, ranging from conventional top-down raster patterning to nearly pure bottom-up space-filling via seed growth. Electron beam lithography (EBL) and copper electrodeposition were used to demonstrate trade-offs between process time and product quality over nano- to microlength scales. OSE can reduce process times for high-cost EBL patterning by orders of magnitude, at the expense of longer (but inexpensive) copper electrodeposition processing times. We quantify the degradation of pattern quality that accompanies fast OSE patterning by measuring deviations from the desired patterned area and perimeter. We also show that the density of OSE-induced grain boundaries depends upon the seed separation and size. As the seed size is reduced, the uniformity of an OSE film becomes more dependent on details of seed nucleation processes than normally seen for conventionally patterned films.

  6. Multiscale Simulation and Modeling of Multilayer Heteroepitactic Growth of C60 on Pentacene.

    Science.gov (United States)

    Acevedo, Yaset M; Cantrell, Rebecca A; Berard, Philip G; Koch, Donald L; Clancy, Paulette

    2016-03-29

    We apply multiscale methods to describe the strained growth of multiple layers of C60 on a thin film of pentacene. We study this growth in the presence of a monolayer pentacene step to compare our simulations to recent experimental studies by Breuer and Witte of submonolayer growth in the presence of monolayer steps. The molecular-level details of this organic semiconductor interface have ramifications on the macroscale structural and electronic behavior of this system and allow us to describe several unexplained experimental observations for this system. The growth of a C60 thin film on a pentacene surface is complicated by the differing crystal habits of the two component species, leading to heteroepitactical growth. In order to probe this growth, we use three computational methods that offer different approaches to coarse-graining the system and differing degrees of computational efficiency. We present a new, efficient reaction-diffusion continuum model for 2D systems whose results compare well with mesoscale kinetic Monte Carlo (KMC) results for submonolayer growth. KMC extends our ability to simulate multiple layers but requires a library of predefined rates for event transitions. Coarse-grained molecular dynamics (CGMD) circumvents KMC's need for predefined lattices, allowing defects and grain boundaries to provide a more realistic thin film morphology. For multilayer growth, in this particularly suitable candidate for coarse-graining, CGMD is a preferable approach to KMC. Combining the results from these three methods, we show that the lattice strain induced by heteroepitactical growth promotes 3D growth and the creation of defects in the first monolayer. The CGMD results are consistent with experimental results on the same system by Conrad et al. and by Breuer and Witte in which C60 aggregates change from a 2D structure at low temperature to 3D clusters along the pentacene step edges at higher temperatures.

  7. Induction of Metamorphosis Causes Differences in Sex-Specific Allocation Patterns in Axolotls (Ambystoma mexicanum) that Have Different Growth Histories.

    Science.gov (United States)

    Clarkson, Pamela M; Beachy, Christopher K

    2015-12-01

    We tested the hypothesis that salamanders growing at different rates would have allocation patterns that differ among male and female metamorphic and larval salamanders. We raised individual axolotls, Ambystoma mexicanum , on four food regimes: constant high growth (throughout the experiment), constant low growth (restricted throughout the experiment), high growth switched to low growth (ad libitum switched after 140 d to restricted), and low growth switched to high growth (restricted switched after 140 d to ad libitum). Because axolotls are obligate paedomorphs, we exposed half of the salamanders to thyroid hormone to induce metamorphosis. We assayed growth and dissected and weighed gonads and fat bodies. Salamanders that were switched from restricted to ad libitum food regime delayed metamorphosis. In all treatment groups, females had larger gonads than males and males had larger fat bodies than females. The association between storage and reproduction differed between larvae and metamorphs and depended on sex.

  8. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    International Nuclear Information System (INIS)

    Kim, Sang-Koog

    2010-01-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  9. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    Science.gov (United States)

    Kim, Sang-Koog

    2010-07-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  10. Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors

    International Nuclear Information System (INIS)

    Tuomela, Johanna; Valta, Maija; Seppänen, Jani; Tarkkonen, Kati; Väänänen, H Kalervo; Härkönen, Pirkko

    2009-01-01

    Prostate cancer metastasizes to regional lymph nodes and distant sites but the roles of lymphatic and hematogenous pathways in metastasis are not fully understood. We studied the roles of VEGF-C and VEGFR3 in prostate cancer metastasis by blocking VEGFR3 using intravenous adenovirus-delivered VEGFR3-Ig fusion protein (VEGFR3-Ig) and by ectopic expression of VEGF-C in PC-3 prostate tumors in nude mice. VEGFR3-Ig decreased the density of lymphatic capillaries in orthotopic PC-3 tumors (p < 0.05) and inhibited metastasis to iliac and sacral lymph nodes. In addition, tumor volumes were smaller in the VEGFR3-Ig-treated group compared with the control group (p < 0.05). Transfection of PC-3 cells with the VEGF-C gene led to a high level of 29/31 kD VEGF-C expression in PC-3 cells. The size of orthotopic and subcutaneous PC-3/VEGF-C tumors was significantly greater than that of PC-3/mock tumors (both p < 0.001). Interestingly, while most orthotopic PC-3 and PC-3/mock tumors grown for 4 weeks metastasized to prostate-draining lymph nodes, orthotopic PC-3/VEGF-C tumors primarily metastasized to the lungs. PC-3/VEGF-C tumors showed highly angiogenic morphology with an increased density of blood capillaries compared with PC-3/mock tumors (p < 0.001). The data suggest that even though VEGF-C/VEGFR3 pathway is primarily required for lymphangiogenesis and lymphatic metastasis, an increased level of VEGF-C can also stimulate angiogenesis, which is associated with growth of orthotopic prostate tumors and a switch from a primary pattern of lymph node metastasis to an increased proportion of metastases at distant sites

  11. Traumatic ulcerative granuloma with stromal eosinophilia of the palate showing an angiocentric/angiodestructive growth pattern

    Directory of Open Access Journals (Sweden)

    Bernardo Ferreira Brasileiro

    2012-01-01

    Full Text Available Traumatic ulcerative granuloma with stromal eosinophilia (TUGSE is a benign, self-limiting lesion of the oral mucosa with unknown pathogenesis. A 65-year-old male patient presented with an ulcerative palate lesion, which on microscopic examination exhibited an exuberant polymorphic lymphoid proliferation, numerous eosinophils, and extensive vascular destruction. The atypical lymphoid cells infiltrating the medium-sized vessels showed positivity for CD3, CD30, and granzyme B, implicating an activated cytotoxic T-cell phenotype. The lesion diagnosed as TUGSE achieved complete resolution within 3 months. This unusual presentation has expanded the spectrum of oral CD30+ T-cell atypical infiltrates and must be distinguished from lymphomas showing angiocentric/angiodestructive growth pattern.

  12. Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area

    KAUST Repository

    Li, Henan

    2016-10-31

    Two-dimensional transition metal dichalcogenides (TMDCs) have shown great promise in electronics and optoelectronics due to their unique electrical and optical properties. Heterostructured TMDC layers such as the laterally stitched TMDCs offer the advantages of better electronic contact and easier band offset tuning. Here, we demonstrate a photoresist-free focused ion beam (FIB) method to pattern as-grown TMDC monolayers by chemical vapor deposition, where the exposed edges from FIB etching serve as the seeds for growing a second TMDC material to form desired lateral heterostructures with arbitrary layouts. The proposed lithographic and growth processes offer better controllability for fabrication of the TMDC heterostrucuture, which enables the construction of devices based on heterostructural monolayers. © 2016 American Chemical Society.

  13. RNA interference silencing of CHS greatly alters the growth pattern of apple (Malus x domestica).

    Science.gov (United States)

    Dare, Andrew P; Hellens, Roger P

    2013-08-01

    Plants produce a vast array of phenolic compounds which are essential for their survival on land. One major class of polyphenols are the flavonoids and their formation is dependent on the enzyme chalcone synthase (CHS). In a recent study we silenced the CHS genes of apple (Malus × domestica Borkh.) and observed a loss of pigmentation in the fruit skin, flowers and stems. More surprisingly, highly silenced lines were significantly reduced in size, with small leaves and shortened internode lengths. Chemical analysis also revealed that the transgenic shoots contained greatly reduced concentrations of flavonoids which are known to modulate auxin flow. An auxin transport study verified this, with an increased auxin transport in the CHS-silenced lines. Overall, these findings suggest that auxin transport in apple has adapted to take place in the presence of high endogenous concentrations of flavonoids. Removal of these compounds therefore results in abnormal auxin movement and a highly disrupted growth pattern.

  14. Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts

    Science.gov (United States)

    Chen, Y.; Yu, J.

    2005-07-01

    Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000°C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.

  15. Density and white shrimp growth pattern (penaeus merguiensis) in kampung nipah waters of perbaungan north sumatera

    Science.gov (United States)

    Natalia Silaen, Sri; Budi Mulya, Miswar

    2018-03-01

    The purpose of the study was to determine the density and pattern of growth of white shrimp (Penaeus merguiensis)of the village Nipah waters. The data collection was conducted by sampling using nets and fishing gear “Langge” (a tool) to determine the density of the three observation stations. The result showed that the distribution of white shrimp in the waters of the estuary and surrounding degraded over the past ten years. The highest density at station II is 0.56 and 5/m2 and at least at the third station as much as 0.42 and 6/m2 The correlation between the density of shrimp with depth as well as the fraction of the base substrate showed that only the depth of the waters who has any significant correlation with the density of shrimp, although the closeness of the relationship is small.

  16. Molecular dynamics modeling and simulation of void growth in two dimensions

    Science.gov (United States)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  17. Molecular dynamics modeling and simulation of void growth in two dimensions

    International Nuclear Information System (INIS)

    Chang, H-J; Segurado, J; LLorca, J; Rodríguez de la Fuente, O; Pabón, B M

    2013-01-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids. (paper)

  18. Computer simulation of the vertical growth of subsurface cobalt nanoclusters in gold

    NARCIS (Netherlands)

    Kulikov, D.V.; Kurnosikov, O.; Sicot, M.V.; Trushin, Yu.V.

    2009-01-01

    The vertical growth of nanodimensional cobalt clusters buried under the surface of a gold substrate has been studied using computer simulation methods with allowance for the interdiffusion of Au and Co atoms and the fields of elastic stresses generated by cobalt clusters in the gold matrix. The

  19. Three-dimensional geometric simulations of random anisotropic growth during transformation phenomena

    DEFF Research Database (Denmark)

    Godiksen, Rasmus Brauner; Rios, P.R.; Vandermeer, Roy Allen

    2008-01-01

    In this paper, the effects of anisotropic growth during transformation processes are investigated by geometric simulations of randomly oriented shape preserved ellipsoids in three dimensions and the applicability of idealized models are tested. Surprisingly, the results show that the models can...

  20. Biochar-compost mixtures added to simulated golf greens increase creeping bentgrass growth

    Science.gov (United States)

    Mixtures of 85% sand and 15% mixtures of peat (control), a commercial biochar, a commercial biochar-compost product (CarbonizPN), and seven biochar-commercial compost mixtures were tested on the growth of creeping bentgrass (Agrostis stolonifera L. "007") in simulated golf greens. Physical properti...

  1. Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Min

    2016-06-01

    Full Text Available A new two-dimensional cellular automata and finite difference (CA-FD model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.

  2. A MapReduce-Based Parallel Frequent Pattern Growth Algorithm for Spatiotemporal Association Analysis of Mobile Trajectory Big Data

    Directory of Open Access Journals (Sweden)

    Dawen Xia

    2018-01-01

    Full Text Available Frequent pattern mining is an effective approach for spatiotemporal association analysis of mobile trajectory big data in data-driven intelligent transportation systems. While existing parallel algorithms have been successfully applied to frequent pattern mining of large-scale trajectory data, two major challenges are how to overcome the inherent defects of Hadoop to cope with taxi trajectory big data including massive small files and how to discover the implicitly spatiotemporal frequent patterns with MapReduce. To conquer these challenges, this paper presents a MapReduce-based Parallel Frequent Pattern growth (MR-PFP algorithm to analyze the spatiotemporal characteristics of taxi operating using large-scale taxi trajectories with massive small file processing strategies on a Hadoop platform. More specifically, we first implement three methods, that is, Hadoop Archives (HAR, CombineFileInputFormat (CFIF, and Sequence Files (SF, to overcome the existing defects of Hadoop and then propose two strategies based on their performance evaluations. Next, we incorporate SF into Frequent Pattern growth (FP-growth algorithm and then implement the optimized FP-growth algorithm on a MapReduce framework. Finally, we analyze the characteristics of taxi operating in both spatial and temporal dimensions by MR-PFP in parallel. The results demonstrate that MR-PFP is superior to existing Parallel FP-growth (PFP algorithm in efficiency and scalability.

  3. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats.

    Science.gov (United States)

    Legerlotz, Kirsten; Elliott, Bradley; Guillemin, Bernard; Smith, Heather K

    2008-06-01

    The aims of this study were to characterize the pattern of voluntary activity of young rats in response to resistance loading on running wheels and to determine the effects of the activity on the growth of six limb skeletal muscles. Male Sprague-Dawley rats (4 weeks old) were housed individually with a resistance running wheel (R-RUN, n = 7) or a conventional free-spinning running wheel (F-RUN, n = 6) or without a wheel, as non-running control animals (CON, n = 6). The torque required to move the wheel in the R-RUN group was progressively increased, and the activity (velocity, distance and duration of each bout) of the two running wheel groups was recorded continuously for 45 days. The R-RUN group performed many more, shorter and faster bouts of running than the F-RUN group, yet the mean daily distance was not different between the F-RUN (1.3 +/- 0.2 km) and R-RUN group (1.4 +/- 0.6 km). Only the R-RUN resulted in a significantly (P RUN and R-RUN led to a significantly greater wet mass relative to increase in body mass and muscle fibre cross-sectional area in the soleus muscle compared with CON. We conclude that the pattern of voluntary activity on a resistance running wheel differs from that on a free-spinning running wheel and provides a suitable model to induce physiological muscle hypertrophy in rats.

  4. Competitive grain growth in directional solidification investigated by phase field simulation

    International Nuclear Information System (INIS)

    Li Junjie; Wang Zhijun; Wang Jincheng; Yang Yujuan

    2012-01-01

    During directional solidification, the competitive dendritic growth between various oriented grains is a key factor to obtain desirable texture. In order to understand the mechanism of competitive dendritic growth, the phase field method was adopted to simulate the microstructure evolution of bicrystal samples. The simulation has well reproduced the whole competitive growth process for both diverging and converging dendrites. In converging case, besides the block of the unfavorably oriented dendrite by the favorably oriented one, the unfavorably oriented dendrite is also able to overgrow the favorable one under the condition of relatively low pulling velocity. This unusual overgrowth is dictated by the solute interaction of the converging dendrite tips. In diverging case, it was found that the grain boundary can be either inclined or parallel to the favorably oriented grain depending on the disposition of two grains.

  5. Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs.

    Science.gov (United States)

    Prondvai, Edina; Godefroit, Pascal; Adriaens, Dominique; Hu, Dong-Yu

    2018-01-10

    With their elongated forelimbs and variable aerial skills, paravian dinosaurs, a clade also comprising modern birds, are in the hotspot of vertebrate evolutionary research. Inferences on the early evolution of flight largely rely on bone and feather morphology, while osteohistological traits are usually studied to explore life-history characteristics. By sampling and comparing multiple homologous fore- and hind limb elements, we integrate for the first time qualitative and quantitative osteohistological approaches to get insight into the intraskeletal growth dynamics and their functional implications in five paravian dinosaur taxa, Anchiornis, Aurornis, Eosinopteryx, Serikornis, and Jeholornis. Our qualitative assessment implies a considerable diversity in allometric/isometric growth patterns among these paravians. Quantitative analyses show that neither taxa nor homologous elements have characteristic histology, and that ontogenetic stage, element size and the newly introduced relative element precocity only partially explain the diaphyseal histovariability. Still, Jeholornis, the only avialan studied here, is histologically distinct from all other specimens in the multivariate visualizations raising the hypothesis that its bone tissue characteristics may be related to its superior aerial capabilities compared to the non-avialan paravians. Our results warrant further research on the osteohistological correlates of flight and developmental strategies in birds and bird-like dinosaurs.

  6. Long bone histology and growth patterns in ankylosaurs: implications for life history and evolution.

    Directory of Open Access Journals (Sweden)

    Martina Stein

    Full Text Available The ankylosaurs are one of the major dinosaur groups and are characterized by unique body armor. Previous studies on other dinosaur taxa have revealed growth patterns, life history and evolutionary mechanisms based on their long bone histology. However, to date nothing is known about long bone histology in the Ankylosauria. This study is the first description of ankylosaurian long bone histology based on several limb elements, which were sampled from different individuals from the Ankylosauridae and Nodosauridae. The histology is compared to that of other dinosaur groups, including other Thyreophora and Sauropodomorpha. Ankylosaur long bone histology is characterized by a fibrolamellar bone architecture. The bone matrix type in ankylosaurs is closest to that of Stegosaurus. A distinctive mixture of woven and parallel-fibered bone together with overall poor vascularization indicates slow growth rates compared to other dinosaurian taxa. Another peculiar characteristic of ankylosaur bone histology is the extensive remodeling in derived North American taxa. In contrast to other taxa, ankylosaurs substitute large amounts of their primary tissue early in ontogeny. This anomaly may be linked to the late ossification of the ankylosaurian body armor. Metabolically driven remodeling processes must have liberated calcium to ossify the protective osteodermal structures in juveniles to subadult stages, which led to further remodeling due to increased mechanical loading. Abundant structural fibers observed in the primary bone and even in remodeled bone may have improved the mechanical properties of the Haversian bone.

  7. Landscape analysis of urban growth patterns in Seremban, Malaysia, using spatio-temporal data

    Science.gov (United States)

    Aburas, Maher M.; Abdullah, Sabrina H.; Ramli, Mohammad F.; As'shari, Zulfa H.

    2016-06-01

    Urban growth is one of the major issues that have played a significant role in destroying the ecosystem in recent years. Landscape analysis is an important technique widely used to evaluate urban growth patterns. In this study, four land-use maps from 1984, 1990, 2000, and 2010 have been used to analyze an urban landscape. The values of a built-up area were initially computed using a geographic information system environment based on the spatial gradient approach. Mathematical matrices were then used to determine the amount of change in urban patches in each direction. Results of the number of patches, landscape shape index, aggregation index, and total edges confirmed that the urban patches in Seremban, Malaysia, have become more dispersed from 2000 to 2010. The urban patches have also become more continuous, especially in the north-western part of Seremban as a result of the urban development in the Nilai District. These results indicate the necessity to create new policies in the city to protect the sustainability of the land use of Seremban.

  8. Monitoring of Water Spectral Pattern Reveals Differences in Probiotics Growth When Used for Rapid Bacteria Selection.

    Directory of Open Access Journals (Sweden)

    Aleksandar Slavchev

    Full Text Available Development of efficient screening method coupled with cell functionality evaluation is highly needed in contemporary microbiology. The presented novel concept and fast non-destructive method brings in to play the water spectral pattern of the solution as a molecular fingerprint of the cell culture system. To elucidate the concept, NIR spectroscopy with Aquaphotomics were applied to monitor the growth of sixteen Lactobacillus bulgaricus one Lactobacillus pentosus and one Lactobacillus gasseri bacteria strains. Their growth rate, maximal optical density, low pH and bile tolerances were measured and further used as a reference data for analysis of the simultaneously acquired spectral data. The acquired spectral data in the region of 1100-1850nm was subjected to various multivariate data analyses - PCA, OPLS-DA, PLSR. The results showed high accuracy of bacteria strains classification according to their probiotic strength. Most informative spectral fingerprints covered the first overtone of water, emphasizing the relation of water molecular system to cell functionality.

  9. MAXILLARY GROWTH PATTERNS IN ROMANIAN CHILDREN WITH CLEFT PALATE DURING THE FIRST 6 YEARS OF LIFE

    Directory of Open Access Journals (Sweden)

    Liliana-Gabriela Halitchi

    2012-12-01

    Full Text Available In order to visualize, evaluate and measure the maxillary growth in patients with cleft palate and to identify the reactive morphological pattern that could be identified from the dimensional changes produced along the first six years of life, maxillary impressions were made in two groups of study, by means of standard trays and silicone impression materials. The maxillary casts resulted had been 3D scanned at Multinr, in Sf. Gheorghe. The study was carried on a number of 34 patients with cleft palate, 16 boys and 18 girls, with ages between 2 months and 6 years, operated by the same surgical team in “St. Mary” University Children Hospital of Iaşi, as well as on 60 normal children. Bivariate Student’s t test established statistically significant negative differences between the mean values of the anterior and posterior width of the maxillary alveolar arch, positive non significant differences for the length and positive differences for the depth of the dehiscent palate in the experimental group, comparatively with normal children. Cleft palate patients have narrowed and shorter maxillary alveolar arch and flattened palate. At least therapeutically, the cleft palate group, operated at different ages, from 2 to 4 years, could not react like other groups of study from important European Cleft Centers and benefit from a good residual growth.

  10. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    Science.gov (United States)

    Wilroy, Jacob Aaron

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment, rapid-prototyped grooves based on the scale geometry of the Monarch butterfly (Danaus plexippus) were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth plate case in an experiment where the plate translated vertically through a 2 x 3 x 5 cubic foot tow tank. The plate was impulsively started in quiescent water and flow fields at Rec = 1416, 2833, and 5667 are examined using Digital Particle Image Velocimetry (DPIV). The maximum vortex formation number is 2.8 and is based on the flat plate travel length and chord length. Flow fields from each case show the generation of a secondary vortex whose interaction with the shear layer and LEV caused different behaviors depending upon the surface type. The vortex development process varied for each Reynolds number and it was found that for the lowest Reynolds number case a significant difference does not exist between surface types, however, for the other two cases the grooves affected the secondary vortex's behavior and the LEV's ability to grow at a rate similar to the smooth plate case.

  11. Investigation of Pr I lines by a simulation of their hyperfine patterns: discovery of new levels

    International Nuclear Information System (INIS)

    Uddin, Zaheer; Siddiqui, Imran; Shamim, Khan; Windholz, L; Zafar, Roohi; Sikander, Rubeka

    2012-01-01

    Hyperfine structure (hf) patterns of unclassified spectral lines of the praseodymium atom, as appear in a high-resolution Fourier transform spectrum, have been simulated. In this way, the J-values and hf constants of the levels involved in the transitions were determined. Assuming that so far only one unknown level is participating in the transition, these constants were used to identify the known level. The second unknown level was found by performing subtraction or addition of the wave number of the transition to the wave number of the known level. The existence of the new level was then checked by explaining other unclassified lines with respect to the wave number and the hf pattern. In this way, 19 new levels of the praseodymium atom were discovered and are presented in this paper. In some cases, the accuracy of the hf constants was improved by laser-induced fluorescence spectroscopy.

  12. Urban growth patterns in major Southeast Asian cities: Toward exposure mapping and vulnerability assessment

    Science.gov (United States)

    Mandapaka, Pradeep; Kamarajugedda, Shankar A.; Lo, Edmond Y. M.

    2017-04-01

    Southeast Asia (SEA) is undergoing rapid urbanization, with urban population percentage increasing from 32% in 1990 to 48% in 2015. It is projected that by the year 2040, urban regions in SEA account for 60% of its total population. The region is home to 600 million people, with many densely populated cities, including megacities such as Jakarta, Bangkok, and Manila. The region has more than 20,000 islands, and many cities lie on coastal low-lands and floodplains. These geographical characteristics together with the increasing population, infrastructure growth, and changing climate makes the region highly vulnerable to natural hazards. This study assessed urban growth dynamics in major (defined as population exceeding 1 million) SEA cities using remotely sensed night-time lights (NTL) data. A recently proposed brightness gradient approach was applied on 21 years (1992-2012) of NTL annual composites to derive core-urban (CU) and peri-urban (PU) regions within each city. The study also assessed the sensitivity of above extracted urban categories to different NTL thresholds. The temporal trends in CU and PU regions were quantified, and compared with trends in socio-economic indicators. The spatial expansion of CU and PU regions were found to depend on geographical constraints and socio-economic factors. Quantification of urban growth spatial-temporal patterns, as conducted here contributes towards the understanding of exposure and vulnerability of people and infrastructures to natural hazards, as well as the evolving trends for assessment under projected urbanization conditions. This will underpin better risk assessment efforts for present and future planning.

  13. Simulating Growth Kinetics in a Data-Parallel 3D Lattice Photobioreactor

    Directory of Open Access Journals (Sweden)

    A. V. Husselmann

    2013-01-01

    Full Text Available Though there have been many attempts to address growth kinetics in algal photobioreactors, surprisingly little have attempted an agent-based modelling (ABM approach. ABM has been heralded as a method of practical scientific inquiry into systems of a complex nature and has been applied liberally in a range of disciplines including ecology, physics, social science, and microbiology with special emphasis on pathogenic bacterial growth. We bring together agent-based simulation with the Photosynthetic Factory (PSF model, as well as certain key bioreactor characteristics in a visual 3D, parallel computing fashion. Despite being at small scale, the simulation gives excellent visual cues on the dynamics of such a reactor, and we further investigate the model in a variety of ways. Our parallel implementation on graphical processing units of the simulation provides key advantages, which we also briefly discuss. We also provide some performance data, along with particular effort in visualisation, using volumetric and isosurface rendering.

  14. Steel billet reheat simulation with growth of oxide layer and investigation on zone temperature sensitivity

    International Nuclear Information System (INIS)

    Dubey, Satish Kumar; Srinivasan, P.

    2014-01-01

    This paper presents a three-dimensional heat conduction numerical model and simulation of steel billet reheating in a reheat furnace. The model considers the growth of oxide scale on the billet surfaces. Control-volume approach and implicit scheme of finite difference method are used to discretize the transient heat conduction equation. The model is validated with analytical results subject to limited conditions. Simulations are carried out for predictions of three-dimensional temperature filed in the billet and oxide scale growth on the billet surfaces. The model predictions are in agreement with expected trends. It was found that the effect of oxide scale on billet heating is considerable. In order to investigate the effect of zone temperatures on the responses, a parametric sensitivity subject to six responses of interest are carried out using analysis of mean approach. The simulation approach and parametric study presented will be useful and applicable to the steel industry.

  15. Artificial collisions, entropy and emittance growth in computer simulations of intense beams

    Energy Technology Data Exchange (ETDEWEB)

    Boine-Frankenheim, O., E-mail: o.boine-frankenheim@gsi.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Hofmann, I. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Struckmeier, J.; Appel, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-01-11

    Artificial collisions during particle tracking with self-consistent space charge lead to diffusion-like, numerical effects. The artificial collisions generate a stochastic noise spectrum. As a consequence the entropy and the emittance can grow along periodic focusing structures. The growth rates depend on the number of simulation macro-particles and on the space charge tune shifts. In our study we present analytical predictions for the numerical friction and diffusion in 2D simulations. For simple focusing structures we derive a relation between the friction coefficient and the entropy growth. The scaling of the friction coefficient with the macro-particle number and the space charge tune shift is obtained from 2D simulations and compared to the analytic predictions.

  16. A simulation model of Rosa hybrida growth response to constant irradiance and day and night temperatures

    International Nuclear Information System (INIS)

    Hopper, D.A.; Hammer, P.A.; Wilson, J.R.

    1994-01-01

    This paper details the development and verification of ROSESIM, a computer simulation model of the growth of ‘Royalty’ roses (Rosa hybrida L.) based on experimentally observed growth responses from pinch until flowering under 15 combinations of constant photosynthetic photon flux (PPF), day temperature (DT), and night temperature (NT). Selected according to a rotatable central composite design, these treatment combinations represent commercial greenhouse conditions during the winter and spring in the midwestern United States; each selected condition was maintained in an environmental growth chamber having 12-hour photoperiods. ROSESIM incorporates regression models of four flower development characteristics (days from pinch to visible bud, first color, sepal reflex, and flowering) that are full quadratic polynomials in PPF, DT, and NT. ROSESIM also incorporates mathematical models of nine plant growth characteristics (stem length and the following fresh and dry weights: stem, leaf, flower, and total) based on data recorded every 10 days and at flowering. At each design point, a cubic regression in time (days from pinch) estimated the plant growth characteristics on intermediate days; then difference equations were developed to predict the resulting daily growth increments as third-degree polynomial functions of days from pinch, PPF, DT, and NT. ROSESIM was verified by plotting against time each simulated plant growth characteristic and the associated experimental observations for the eight factorial design points defining the region of interest. Moreover, one-way analysis of variance procedures were applied to the differences between ROSESIM predictions and the corresponding observed means for all 15 treatment combinations. At 20 days from pinch, significant differences (P < 0.05) were observed for all nine plant growth characteristics. At 30 and 40 days from pinch, only flower fresh and dry weights yielded significant differences; at flowering, none of the 13

  17. A simulation model of Rosa hybrida growth response to constant irradiance and day and night temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, D. A. [Colorado State University, Fort Collin, CO. (United States); Hammer, P. A.; Wilson, J. R.

    1994-09-15

    This paper details the development and verification of ROSESIM, a computer simulation model of the growth of ‘Royalty’ roses (Rosa hybrida L.) based on experimentally observed growth responses from pinch until flowering under 15 combinations of constant photosynthetic photon flux (PPF), day temperature (DT), and night temperature (NT). Selected according to a rotatable central composite design, these treatment combinations represent commercial greenhouse conditions during the winter and spring in the midwestern United States; each selected condition was maintained in an environmental growth chamber having 12-hour photoperiods. ROSESIM incorporates regression models of four flower development characteristics (days from pinch to visible bud, first color, sepal reflex, and flowering) that are full quadratic polynomials in PPF, DT, and NT. ROSESIM also incorporates mathematical models of nine plant growth characteristics (stem length and the following fresh and dry weights: stem, leaf, flower, and total) based on data recorded every 10 days and at flowering. At each design point, a cubic regression in time (days from pinch) estimated the plant growth characteristics on intermediate days; then difference equations were developed to predict the resulting daily growth increments as third-degree polynomial functions of days from pinch, PPF, DT, and NT. ROSESIM was verified by plotting against time each simulated plant growth characteristic and the associated experimental observations for the eight factorial design points defining the region of interest. Moreover, one-way analysis of variance procedures were applied to the differences between ROSESIM predictions and the corresponding observed means for all 15 treatment combinations. At 20 days from pinch, significant differences (P < 0.05) were observed for all nine plant growth characteristics. At 30 and 40 days from pinch, only flower fresh and dry weights yielded significant differences; at flowering, none of the 13

  18. Co-immobilization of semaphorin3A and nerve growth factor to guide and pattern axons.

    Science.gov (United States)

    McCormick, Aleesha M; Jarmusik, Natalie A; Leipzig, Nic D

    2015-12-01

    Immobilization of axon guidance cues offers a powerful tissue regenerative strategy to control the presentation and spatial location of these biomolecules. We use our previously developed immobilization strategy to specifically tether recombinant biotinylated nerve growth factor (bNGF) and biotinylated semaphorin3A (bSema3A) to chitosan films as an outgrowth and guidance platform. DRG neurite length and number for a range of single cues of immobilized bNGF or bSema3A were examined to determine a concentration response. Next single and dual cues of bNGF and bSema3A were immobilized and DRG guidance was assessed in response to a step concentration change from zero. Overall, immobilized groups caused axon extension, retraction and turning depending on the ratio of bNGF and bSema3A immobilized in the encountered region. This response indicated the exquisite sensitivity of DRG axons to both attractive and repulsive tethered cues. bSema3A concentrations of 0.10 and 0.49 ng/mm(2), when co-immobilized with bNGF (at 0.86 and 0.43 ng/mm(2) respectively), caused axons to turn away from the co-immobilized region. Immunocytochemical analysis showed that at these bSema3A concentrations, axons inside the co-immobilized region display microtubule degradation and breakdown of actin filaments. At the lowest bSema3A concentration (0.01 ng/mm(2)) co-immobilized with a higher bNGF concentration (2.16 ng/mm(2)), neurite lengths are shorter in the immobilized area, but bNGF dominates the guidance mechanism as neurites are directed toward the immobilized region. Future applications can pattern these cues in various geometries and gradients in order to better modulate axon guidance in terms of polarity, extension and branching. Nervous system formation and regeneration requires key molecules for guiding the growth cone and nervous system patterning. In vivo these molecules work in conjunction with one another to modulate axon guidance, and often they are tethered to limit spatial

  19. An novel frequent probability pattern mining algorithm based on circuit simulation method in uncertain biological networks

    Science.gov (United States)

    2014-01-01

    Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism

  20. Simulation of small-angle scattering patterns using a CPU-efficient algorithm

    Science.gov (United States)

    Anitas, E. M.

    2017-12-01

    Small-angle scattering (of neutrons, x-ray or light; SAS) is a well-established experimental technique for structural analysis of disordered systems at nano and micro scales. For complex systems, such as super-molecular assemblies or protein molecules, analytic solutions of SAS intensity are generally not available. Thus, a frequent approach to simulate the corresponding patterns is to use a CPU-efficient version of the Debye formula. For this purpose, in this paper we implement the well-known DALAI algorithm in Mathematica software. We present calculations for a series of 2D Sierpinski gaskets and respectively of pentaflakes, obtained from chaos game representation.

  1. Simulating Visual Pattern Detection and Brightness Perception Based on Implicit Masking

    Directory of Open Access Journals (Sweden)

    Yang Jian

    2007-01-01

    Full Text Available A quantitative model of implicit masking, with a front-end low-pass filter, a retinal local compressive nonlinearity described by a modified Naka-Rushton equation, a cortical representation of the image in the Fourier domain, and a frequency-dependent compressive nonlinearity, was developed to simulate visual image processing. The model algorithm was used to estimate contrast sensitivity functions over 7 mean illuminance levels ranging from 0.0009 to 900 trolands, and fit to the contrast thresholds of 43 spatial patterns in the Modelfest study. The RMS errors between model estimations and experimental data in the literature were about 0.1 log unit. In addition, the same model was used to simulate the effects of simultaneous contrast, assimilation, and crispening. The model results matched the visual percepts qualitatively, showing the value of integrating the three diverse perceptual phenomena under a common theoretical framework.

  2. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth

    International Nuclear Information System (INIS)

    Yoshikawa, Taro; Kodama, Hideyuki; Kono, Shozo; Suzuki, Kazuhiro; Sawabe, Atsuhito

    2015-01-01

    The potential of patterned nucleation growth (PNG) technique to control the wafer bowing of free-standing heteroepitaxial diamond films was investigated. The heteroepitaxial diamond (100) films were grown on an Ir(100) substrate via PNG technique with different patterns of nucleation regions (NRs), which were dot-arrays with 8 or 13 μm pitch aligned to < 100 > or < 110 > direction of the Ir(100) substrate. The wafer bows and the local stress distributions of the free-standing films were measured using a confocal micro-Raman spectrometer. For each NR pattern, the stress evolutions within the early stage of diamond growth were also studied together with a scanning electron microscopic observation of the coalescing diamond particles. These investigations revealed that the NR pattern, in terms of pitch and direction of dot-array, strongly affects the compressive stress on the nucleation side of the diamond film and dominantly contributes to the elastic deformation of the free-standing film. This indicates that the PNG technique with an appropriate NR pattern is a promising solution to fabricate free-standing heteroepitaxial diamond films with extremely small bows. - Highlights: • Wafer bowing control of free-standing heteroepitaxial diamond (100) films • Effect of patterned nucleation and growth (PNG) technique on wafer bowing reduction • Influence of nucleation region patterns of PNG on wafer bowing • Internal stress analysis of PNG films via confocal micro-Raman spectroscopy

  3. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha from Diverse Genetic Stocks and a Large Spatial Extent.

    Directory of Open Access Journals (Sweden)

    Pascale A L Goertler

    Full Text Available Life history variation in Pacific salmon (Oncorhynchus spp. supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha from the Columbia River estuary over a two-year period (2010-2012. We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.

  4. Utilization and growth patterns of sacroiliac joint injections from 2000 to 2011 in the medicare population.

    Science.gov (United States)

    Manchikanti, Laxmaiah; Hansen, Hans; Pampati, Vidyasagar; Falco, Frank J E

    2013-01-01

      The high prevalence of persistent low back pain and growing number of diagnostic and therapeutic modalities employed to manage chronic low back pain and the subsequent impact on society and the economy continue to hold sway over health care policy. Among the multiple causes responsible for chronic low back pain, the contributions of the sacroiliac joint have been a subject of debate albeit a paucity of research. At present, there are no definitive conservative, interventional or surgical management options for managing sacroiliac joint pain. It has been shown that the increases were highest for facet joint interventions and sacroiliac joint blocks with an increase of 310% per 100,000 Medicare beneficiaries from 2000 to 2011. There has not been a systematic assessment of the utilization and growth patterns of sacroiliac joint injections. Analysis of the growth patterns of sacroiliac joint injections in Medicare beneficiaries from 2000 to 2011. To evaluate the utilization and growth patterns of sacroiliac joint injections. This assessment was performed utilizing Centers for Medicare and Medicaid Services (CMS) Physician/Supplier Procedure Summary (PSPS) Master data from 2000 to 2011. The findings of this assessment in Medicare beneficiaries from 2000 to 2011 showed a 331% increase per 100,000 Medicare beneficiaries with an annual increase of 14.2%, compared to an increase in the Medicare population of 23% or annual increase of 1.9%. The number of procedures increased from 49,554 in 2000 to 252,654 in 2011, or a rate of 125 to 539 per 100,000 Medicare beneficiaries. Among the various specialists performing sacroiliac joint injections, physicians specializing in physical medicine and rehabilitation have shown the most increase, followed by neurology with 1,568% and 698%, even though many physicians from both specialties have been enrolling in interventional pain management and pain management. Even though the numbers were small for nonphysician providers including

  5. Computer Simulations of Contact Forces for Airbags with Different Folding Patterns During Deployment Phase

    Directory of Open Access Journals (Sweden)

    King H. Yang

    1995-01-01

    Full Text Available An explicit finite element method was used to study the neck load and the contact force between an occupant and an airbag during an out-of-position frontal automobile crash. Two different folding patterns and two different mounting angles of the airbag were simulated. For the four cases simulated, the occupant’s neck axial force ranged from 156 to 376% of the data obtained from in-position sled tests using the Hybrid III dummy. The neck shear force ranged from 87 to 229% and the neck flexion moment ranged from 68 to 127% of in-position experimental results. In both 300 mounting angle simulations, the neck axial forces were higher than that of the two simulations with 00 mounting angles, but the trend for the neck shear force was the opposite. Although the kinematics of the model appear reasonable, the numbers generated by the model must be reviewed with great caution because the model has not been fully validated.

  6. Physiological pattern changes in response to a simulated competition in elite women artistic gymnasts.

    Science.gov (United States)

    Isacco, Laurie; Ennequin, Gaël; Cassirame, Johan; Tordi, Nicolas

    2017-08-04

    The outstanding progress in women's artistic gymnastics in recent decades has led to increased technical and physiological demands. The aim of this study was to investigate i) the physiological demands of elite French gymnasts and ii) the impact of a competitive routine on physiological pattern changes. Fourteen French elite female gymnasts performed anthropometric measurements, physical fitness tests and a simulated four event competition. Heart rate (HR) was continuously recorded throughout the duration of the simulated competition. Blood lactate concentrations were assessed at rest, before the beginning and at 2, 4 and 10 min after completion of the routine on each apparatus. Isometric handgrip strength and anaerobic endurance and power were assessed during the simulated competition. The highest values of HR and blood lactate concentrations were reached during the floor and uneven bar exercises. Blood lactate concentrations and HR kinetics were apparatus dependent and values remained significantly increased at 10 min of recovery compared with resting data. Anaerobic endurance and power decreased significantly as the competition progressed (P <0.001). The present results show specifically cardiorespiratory and anaerobic apparatus- dependent responses throughout a simulated competition. Recovery approaches appear relevant to prevent and/or minimize fatigue and optimize performance in these athletes.

  7. Towards an integrative computational model for simulating tumor growth and response to radiation therapy

    Science.gov (United States)

    Marrero, Carlos Sosa; Aubert, Vivien; Ciferri, Nicolas; Hernández, Alfredo; de Crevoisier, Renaud; Acosta, Oscar

    2017-11-01

    Understanding the response to irradiation in cancer radiotherapy (RT) may help devising new strategies with improved tumor local control. Computational models may allow to unravel the underlying radiosensitive mechanisms intervening in the dose-response relationship. By using extensive simulations a wide range of parameters may be evaluated providing insights on tumor response thus generating useful data to plan modified treatments. We propose in this paper a computational model of tumor growth and radiation response which allows to simulate a whole RT protocol. Proliferation of tumor cells, cell life-cycle, oxygen diffusion, radiosensitivity, RT response and resorption of killed cells were implemented in a multiscale framework. The model was developed in C++, using the Multi-formalism Modeling and Simulation Library (M2SL). Radiosensitivity parameters extracted from literature enabled us to simulate in a regular grid (voxel-wise) a prostate cell tissue. Histopathological specimens with different aggressiveness levels extracted from patients after prostatectomy were used to initialize in silico simulations. Results on tumor growth exhibit a good agreement with data from in vitro studies. Moreover, standard fractionation of 2 Gy/fraction, with a total dose of 80 Gy as a real RT treatment was applied with varying radiosensitivity and oxygen diffusion parameters. As expected, the high influence of these parameters was observed by measuring the percentage of survival tumor cell after RT. This work paves the way to further models allowing to simulate increased doses in modified hypofractionated schemes and to develop new patient-specific combined therapies.

  8. Practice-oriented optical thin film growth simulation via multiple scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Turowski, Marcus, E-mail: m.turowski@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); Jupé, Marco [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); QUEST: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Melzig, Thomas [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54e, Braunschweig 30108 (Germany); Moskovkin, Pavel [Research Centre for Physics of Matter and Radiation (PMR-LARN), University of Namur (FUNDP), 61 rue de Bruxelles, Namur 5000 (Belgium); Daniel, Alain [Centre for Research in Metallurgy, CRM, 21 Avenue du bois Saint Jean, Liège 4000 (Belgium); Pflug, Andreas [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54e, Braunschweig 30108 (Germany); Lucas, Stéphane [Research Centre for Physics of Matter and Radiation (PMR-LARN), University of Namur (FUNDP), 61 rue de Bruxelles, Namur 5000 (Belgium); Ristau, Detlev [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); QUEST: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany)

    2015-10-01

    Simulation of the coating process is a very promising approach for the understanding of thin film formation. Nevertheless, this complex matter cannot be covered by a single simulation technique. To consider all mechanisms and processes influencing the optical properties of the growing thin films, various common theoretical methods have been combined to a multi-scale model approach. The simulation techniques have been selected in order to describe all processes in the coating chamber, especially the various mechanisms of thin film growth, and to enable the analysis of the resulting structural as well as optical and electronic layer properties. All methods are merged with adapted communication interfaces to achieve optimum compatibility of the different approaches and to generate physically meaningful results. The present contribution offers an approach for the full simulation of an Ion Beam Sputtering (IBS) coating process combining direct simulation Monte Carlo, classical molecular dynamics, kinetic Monte Carlo, and density functional theory. The simulation is performed exemplary for an existing IBS-coating plant to achieve a validation of the developed multi-scale approach. Finally, the modeled results are compared to experimental data. - Highlights: • A model approach for simulating an Ion Beam Sputtering (IBS) process is presented. • In order to combine the different techniques, optimized interfaces are developed. • The transport of atomic species in the coating chamber is calculated. • We modeled structural and optical film properties based on simulated IBS parameter. • The modeled and the experimental refractive index data fit very well.

  9. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  10. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Machine Tools and Factory Management, Technical University of Berlin, Pascalstraße 8 – 9, 10587, Berlin (Germany); Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Kannengiesser, Thomas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Institute of Materials and Joining Technology, Otto von Guericke University Magdeburg, Universitetsplatz 2, 39106, Magdeburg (Germany)

    2014-09-08

    The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results.

  11. Numerical simulation of two-dimensional late-stage coarsening for nucleation and growth

    International Nuclear Information System (INIS)

    Akaiwa, N.; Meiron, D.I.

    1995-01-01

    Numerical simulations of two-dimensional late-stage coarsening for nucleation and growth or Ostwald ripening are performed at area fractions 0.05 to 0.4 using the monopole and dipole approximations of a boundary integral formulation for the steady state diffusion equation. The simulations are performed using two different initial spatial distributions. One is a random spatial distribution, and the other is a random spatial distribution with depletion zones around the particles. We characterize the spatial correlations of particles by the radial distribution function, the pair correlation functions, and the structure function. Although the initial spatial correlations are different, we find time-independent scaled correlation functions in the late stage of coarsening. An important feature of the late-stage spatial correlations is that depletion zones exist around particles. A log-log plot of the structure function shows that the slope at small wave numbers is close to 4 and is -3 at very large wave numbers for all area fractions. At large wave numbers we observe oscillations in the structure function. We also confirm the cubic growth law of the average particle radius. The rate constant of the cubic growth law and the particle size distribution functions are also determined. We find qualitatively good agreement between experiments and the present simulations. In addition, the present results agree well with simulation results using the Cahn-Hilliard equation

  12. Different effects of continuous and intermittent patterns of growth hormone administration on lipoprotein levels in growth hormone-deficient patients

    DEFF Research Database (Denmark)

    Laursen, Torben; Lemming, Lone; Jørgensen, Jens Otto Lunde

    1998-01-01

    with acromegaly. Studies in rats have demonstrated differential effects of constant and intermittent GH patterns on levels of certain lipoproteins. The aim of the present studies was to describe the impact of intermittent and continuous patterns of GH delivery to GHD patients on serum levels of Lp(a) and other...

  13. Simulating urban growth by emphasis on connective routes network (case study: Bojnourd city

    Directory of Open Access Journals (Sweden)

    Mehdi Saadat Novin

    2017-06-01

    Full Text Available Development of urban construction and ever-increasing growth of population lead to landuse changes especially in agricultural lands, which play an important role in providing human food. According to this issue, a proper landuse planning is required to protecting and preserving the valuable agricultural lands and environment, in today’s world. The prediction of urban growth can help in understanding the potential impacts on a region’s water resource, economy and people. One of the effective parameters in development of cities is connective routes network and their different types and qualities that play an important role in decreasing or increasing the growth of the city. On the other hand, the type of the connective routes network is an important factor for the speed and quality of development. In this paper, two different scenarios were used to simulate landuse changes and analyzing their results. In first scenario, modeling is based on the effective parameters in urban growth without classification of connective routes network. In the second scenario, effective parameters in urban growth were considered and connective routes were classified in 6 different classes with different weights in order to examine their effect on urban development. Simulation of landuse has been carried out for 2020–2050. The results clearly showed the effect of the connective routes network classification in output maps so that the effect of the first and second main routes network in development, is conspicuous.

  14. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, A.

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design. [Author

  15. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, Andrew; Vogstad, Klaus; Flynn, Hilary

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design

  16. Analyses and simulation to spatial pattern of land utilization in Guangzhu City

    Science.gov (United States)

    Zhang, Xin-chang; Zhang, Wen-jiang; Ma, Kun

    2006-10-01

    Based on Landsat TM remote sensing images in 1990 and 2000, we analyses the temporal and spatial pattern Characters of land use in the 1990s in Guangzhou city. We also simulate the scenarios of land-use pattern in 2010 by integrating the Markov process into cellular automata model. The results show that the area of constructions was rapid increasing during the last ten years of the 20th century, at the same time the arable land, woodland and unused land areas were decreasing, the orchard and water areas were rarely changed; In the first ten years of 21st century, land use pattern keep the change trend in the 1990s, land of constructions continue rapid increasing; arable land and unused land areas continue rapid decreasing; woodland, orchard and water areas keep steadily. Research shows that the extent of urban area has increased exponentially in Guangzhou city, no evidences show that the arable land decreasing rate will slow down in the near future. So, it is necessary to enhance the control functions of land use planning and take actives measures to protect arable land.

  17. Flexural Capability of Patterned Transparent Conductive Substrate by Performing Electrical Measurements and Stress Simulations

    Directory of Open Access Journals (Sweden)

    Chang-Chun Lee

    2016-10-01

    Full Text Available The suitability of stacked thin films for next-generation display technology was analyzed based on their properties and geometrical designs to evaluate the mechanical reliability of transparent conducting thin films utilized in flexural displays. In general, the high bending stress induced by various operation conditions is a major concern regarding the mechanical reliability of indium–tin–oxide (ITO films deposited on polyethylene terephthalate (PET substrates; mechanical reliability is commonly used to estimate the flexibility of displays. However, the pattern effect is rarely investigated to estimate the mechanical reliability of ITO/PET films. Thus, this study examined the flexible content of patterned ITO/PET films with two different line widths by conducting bending tests and sheet resistance measurements. Moreover, a stress–strain simulation enabled by finite element analysis was performed on the patterned ITO/PET to explore the stress impact of stacked film structures under various levels of flexural load. Results show that the design of the ITO/PET film can be applied in developing mechanically reliable flexible electronics.

  18. Crystallographic fatigue crack growth in a polycrystal: simulations based on FEM and discrete dislocation dynamics

    International Nuclear Information System (INIS)

    Bertolino, G.; Sauzay, M.; Bertolino, G.; Doquet, V.

    2003-01-01

    An attempt to model the variability of short cracks development in high-cycle fatigue is made by coupling finite element calculations of the stresses ahead of a microcrack in a polycrystal with simulations of crack growth along slip planes based on discrete dislocations dynamics. The model predicts a large scatter in growth rates related to the roughness of the crack path. It also describes the influence of the mean grain size and the fact that overloads may suppress the endurance limit by allowing arrested cracks to cross the grain boundaries. (authors)

  19. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Zhijun; Wang, Qing

    Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.

  20. Simulation and characterization of the crystal growth by photoemission; Simulation et caracterisation de la croissance cristalline par photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Fazouan, N

    1994-05-16

    In this thesis, we argue in favour of photoemission as an in-situ characterization tool for the homo-epitaxial growth of GaAs. The first part, is concerned with the interpretation of the origin of the photoemission oscillations as first observed by J.N. Eckstein and al during MBE growth of GaAs. To study this effect, two approaches have been used. These approaches are based on reaction surface and roughness observations to study the growth mode. They associate the photoemission current with the presence of uncovered gallium adatoms, i.e. those which do not have an arsenic atom above them. The first approach is based on chemical rate theory, whereas the second is based on an atomistic simulation of GaAs homo-epitaxy. This last approach introduces the notion of interlayer migration processes and uses a Monte Carlo technique to look at the temporal evolution of the configuration and hence the morphology. It is shown with these two approaches that the photoemission current has similar characteristics as to those of RHEED, c.g.the same oscillation period. The results obtained have shown the relationship between the photoemission oscillations amplitude and the growth mode which are determined by the mechanisms of absorption and diffusion of gallium atoms and arsenic atoms of molecules. Finally, the study of the effect of the surface reactions shows the importance of these in the case where arsenic is supplied in molecular form (As{sub 2}). The last part concerns the experimental measurements at the threshold photoemission current during epitaxial growth of GaAs by metal-organic vapour phase epitaxy (MOVPE). The objective of this experimental study is to test the good running of the photo-assisted MOVPE low pressure system and to study the possibilities offered by this as an in-situ diagnostic tool for MOVPE. (author). 101 refs., 80 figs., 6 tabs.

  1. Variability of Shelf Growth Patterns along the Iberian Mediterranean Margin: Sediment Supply and Tectonic Influences

    Directory of Open Access Journals (Sweden)

    Ruth Durán

    2018-05-01

    Full Text Available Clinoform depositional features along the Iberian Mediterranean margin are investigated in this study, with the aim of establishing the causes of their varied shapes and other characteristics. We have analyzed the broad-scale margin physiography and seismic stratigraphic patterns based on high-resolution bathymetric data and previously interpreted seismic data. In addition, we have evaluated regional supply conditions and the uplift-subsidence regime of the different shelf sectors. The upper Quaternary record is strongly dominated by shelf-margin regressive wedges affected by the prevailing 100 ka cyclicity. However, the margins exhibit considerable lateral variability, as the result of the balance between the amount of sediment supply and the uplift-subsidence relationship. Three major shelf sectors with distinct morpho-sedimentary features have been defined. The relatively narrow northern shelves (Roses, La Planassa and Barcelona are supplied by discrete river outlets that collectively constitute a linear source and are mainly affected by tectonic tilting. The wide middle shelves (Ebro Shelf, the Gulf of Valencia, and the Northern Arc receive the sediment supply from the large Ebro River and other medium rivers. Although the tectonic regime changes laterally (strong subsidence in the north and uplift in the south, shelf growth is maintained by lateral advection of sediments. The southern shelves (the Southern Arc and the northern Alboran Shelf are very abrupt and narrow because of the uplifting Betic Cordillera, and the torrential fluvial regimes that determine a very efficient sediment by-pass toward the deep basin. Submarine canyons deeply incised in the continental margin constitute a key physiographic feature that may enhance the transport of sediment to the deep sea or individualize shelf sectors with specific sedimentation patterns, as occurs in the Catalan margin.

  2. Impact of fertilizing pattern on the biodiversity of a weed community and wheat growth.

    Science.gov (United States)

    Tang, Leilei; Cheng, Chuanpeng; Wan, Kaiyuan; Li, Ruhai; Wang, Daozhong; Tao, Yong; Pan, Junfeng; Xie, Juan; Chen, Fang

    2014-01-01

    Weeding and fertilization are important farming practices. Integrated weed management should protect or improve the biodiversity of farmland weed communities for a better ecological environment with not only increased crop yield, but also reduced use of herbicides. This study hypothesized that appropriate fertilization would benefit both crop growth and the biodiversity of farmland weed communities. To study the effects of different fertilizing patterns on the biodiversity of a farmland weed community and their adaptive mechanisms, indices of species diversity and responses of weed species and wheat were investigated in a 17-year field trial with a winter wheat-soybean rotation. This long term field trial includes six fertilizing treatments with different N, P and K application rates. The results indicated that wheat and the four prevalent weed species (Galium aparine, Vicia sativa, Veronica persica and Geranium carolinianum) showed different responses to fertilizer treatment in terms of density, plant height, shoot biomass, and nutrient accumulations. Each individual weed population exhibited its own adaptive mechanisms, such as increased internode length for growth advantages and increased light interception. The PK treatment had higher density, shoot biomass, Shannon-Wiener and Pielou Indices of weed community than N plus P fertilizer treatments. The N1/2PK treatment showed the same weed species number as the PK treatment. It also showed higher Shannon-Wiener and Pielou Indices of the weed community, although it had a lower wheat yield than the NPK treatment. The negative effects of the N1/2PK treatment on wheat yield could be balanced by the simultaneous positive effects on weed communities, which are intermediate in terms of the effects on wheat and weeds.

  3. Age, growth, and recruitment patterns of juvenile ladyfish (Elops sp from the east coast of Florida (USA

    Directory of Open Access Journals (Sweden)

    Juan C. Levesque

    2015-11-01

    Full Text Available Ladyfish (Elops sp are a common and economically valuable coastal nearshore species found along coastal beaches, bays, and estuaries of the southeastern United States, and subtropical and tropical regions worldwide. Previously, ladyfish were a substantial bycatch in Florida’s commercial fisheries, but changes in regulations significantly reduced commercial landings. Today, ladyfish are still taken in commercial fisheries in Florida, but many are also taken by recreational anglers. Life-history information and research interest in ladyfish is almost non-existent, especially information on age and growth. Thus, the overarching purpose of this study was to expand our understanding of ladyfish age and growth characteristics. The specific objectives were to describe, for the first time, age, growth, and recruitment patterns of juvenile ladyfish from the east coast of Florida (USA. In the Indian River Lagoon (IRL, annual monthly length-frequency distributions were confounded because a few small individuals recruited throughout the year; monthly length-frequency data generally demonstrated a cyclical pattern. The smallest were collected in September and the largest in May. Post-hoc analysis showed no significant difference in length between August and May, or among the other months. In Volusia County (VC, annual monthly length-frequency distribution demonstrated growth generally occurred from late-winter and spring to summer. The smallest ladyfish were collected in February and the largest in August. On average, the absolute growth rate in the IRL was 36.3 mm in 60 days or 0.605 mm day−1. Cohort-specific daily growth rates, elevations, and coincidentals were similar among sampling years. Cohort-specific growth rates ranged from 1.807 in 1993 to 1.811 mm day−1 in 1994. Overall, growth was best (i.e., goodness of fit described by exponential regression. On average, the absolute growth rate in VC was 28 mm in 150 days or 0.1866 mm day−1. Cohort

  4. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  5. Extension of the Johnson-Mehl-Avrami-Kolmogorov theory incorporating anisotropic growth studied by Monte Carlo simulations

    NARCIS (Netherlands)

    Kooi, BJ

    An analytical theory has been developed, based on Monte Carlo (MC) simulations, describing the kinetics of isothermal phase transformations proceeding by nucleation and subsequent growth for d-1 dimensional growth in d dimensional space (with d 2 or 3). This type of growth is of interest since it is

  6. [Growth patterns of appropriate for gestational age infants of gestational diabetic mothers during the first year].

    Science.gov (United States)

    Zhao, Y L; Ma, R M; Zhang, Y; Mo, Y X; Chen, Z; Sun, Y H; Ding, Z B

    2016-08-02

    To explore the growth pattern of appropriate for gestational age (AGA) infants of mother with gestational diabetes mellitus (GDM). The objects of this study were offspring of women who delivered in our hospital from January to December 2011. The GDM group included 70 AGA infants (36 male cases and 34 female cases) of mother with GDM. The control group included 154 AGA infants (66 male cases and 88 female cases) of women with normal glucose tolerance. The data of demographic characteristics of mothers of two groups were collected. Body weight and length of infants in two groups were measured at 3, 6 and 12 months age respectively. Body mass index (BMI), weight and height gain during infancy (0-3 months, 3-6 months and 6-12 months) of infants in two groups were also calculated. Body weight, length and BMI of male AGA infants in GDM group were less than that of control group at 3 months and 6 months age, but more than that of control group at 12 months age, however, there were no significant differences between two group(P>0.05). The weight and height gain during infancy (0-3 months, 3-6 months) of male AGA infants in GDM group were lower than that of control group, but the difference was statistically significant only at 3-6 months[(1.1±0.4) vs (1.4±0.4) kg, P=0.040; (4.9±2.3) vs (6.3±1.2) cm, P=0.026]. The weight and height gain during infancy (6-12 months) of male AGA infants of gestational diabetic mothers were higher than that of control group, but the difference was not statistically significant[(2.1±0.5) vs (1.8±0.5) kg, P=0.361; (8.4±1.3) vs (7.8±1.4) cm, P=0.464]. Male infants of gestational diabetic mothers grew slowly during their infancy of 0-6 months, and then their growth became increasingly fast, which suggested that the influence of intrauterine hyperglycemia environment of GDM mothers on fetal growth might continue after birth.

  7. Regional patterns of increasing Swiss needle cast impacts on Douglas-fir growth with warming temperatures.

    Science.gov (United States)

    Lee, E Henry; Beedlow, Peter A; Waschmann, Ronald S; Tingey, David T; Cline, Steven; Bollman, Michael; Wickham, Charlotte; Carlile, Cailie

    2017-12-01

    The fungal pathogen, Phaeocryptopus gaeumannii , causing Swiss needle cast (SNC) occurs wherever Douglas-fir is found but disease damage is believed to be limited in the U.S. Pacific Northwest (PNW) to the Coast Range of Oregon and Washington (Hansen et al., Plant Disease , 2000, 84 , 773; Rosso & Hansen, Phytopathology , 2003, 93 , 790; Shaw, et al., Journal of Forestry , 2011, 109 , 109). However, knowledge remains limited on the history and spatial distribution of SNC impacts in the PNW. We reconstructed the history of SNC impacts on mature Douglas-fir trees based on tree-ring width chronologies from western Oregon. Our findings show that SNC impacts on growth occur wherever Douglas-fir is found and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 12-40 years, and strongly correlated with winter and summer temperatures and summer precipitation. The primary climatic factor limiting pathogen dynamics varied spatially by location, topography, and elevation. SNC impacts were least severe in the first half of the 20th century when climatic conditions during the warm phase of the Pacific Decadal Oscillation (1924-1945) were less conducive to pathogen development. At low- to mid-elevations, SNC impacts were most severe in 1984-1986 following several decades of warmer winters and cooler, wetter summers including a high summer precipitation anomaly in 1983. At high elevations on the west slope of the Cascade Range, SNC impacts peaked several years later and were the greatest in the 1990s, a period of warmer winter temperatures. Climate change is predicted to result in warmer winters and will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Our findings indicate that SNC may become a significant

  8. Quantitative Phase-Field Approach for Simulating Grain Growth in Anisotropic Systems with Arbitrary Inclination and Misorientation Dependence

    International Nuclear Information System (INIS)

    Moelans, N.; Blanpain, B.; Wollants, P.

    2008-01-01

    A phase-field approach for quantitative simulations of grain growth in anisotropic systems is introduced, together with a new methodology to derive appropriate model parameters that reproduce given misorientation and inclination dependent grain boundary energy and mobility in the simulations. The proposed model formulation and parameter choice guarantee a constant diffuse interface width and consequently give high controllability of the accuracy in grain growth simulations

  9. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    Science.gov (United States)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  10. Domain-growth kinetics and aspects of pinning: A Monte Carlo simulation study

    DEFF Research Database (Denmark)

    Castán, T.; Lindgård, Per-Anker

    1991-01-01

    By means of Monte Carlo computer simulations we study the domain-growth kinetics after a quench across a first-order line to very low and moderate temperatures in a multidegenerate system with nonconserved order parameter. The model is a continuous spin model relevant for martensitic transformati......By means of Monte Carlo computer simulations we study the domain-growth kinetics after a quench across a first-order line to very low and moderate temperatures in a multidegenerate system with nonconserved order parameter. The model is a continuous spin model relevant for martensitic...... to cross over from n = 1/4 at T approximately 0 to n = 1/2 with temperature for models with pinnings of types (a) and (b). For topological pinnings at T approximately 0, n is consistent with n = 1/8, a value conceivable for several levels of hierarchically interrelated domain-wall movement. When...

  11. Optimization of source pencil deployment based on plant growth simulation algorithm

    International Nuclear Information System (INIS)

    Yang Lei; Liu Yibao; Liu Yujuan

    2009-01-01

    A plant growth simulation algorithm was proposed for optimizing source pencil deployment for a 60 Co irradiator. A method used to evaluate the calculation results was presented with the objective function defined by relative standard deviation of the exposure rate at the reference points, and the method to transform two kinds of control variables, i.e., position coordinates x j and y j of source pencils in the source plaque, into proper integer variables was also analyzed and solved. The results show that the plant growth simulation algorithm, which possesses both random and directional search mechanism, has good global search ability and can be used conveniently. The results are affected a little by initial conditions, and improve the uniformity in the irradiation fields. It creates a dependable field for the optimization of source bars arrangement at irradiation facility. (authors)

  12. Municipal property acquisition patterns in a shrinking city: Evidence for the persistence of an urban growth paradigm in Buffalo, NY

    Directory of Open Access Journals (Sweden)

    Robert Mark Silverman

    2015-12-01

    Full Text Available The purpose of this article is to examine municipal property acquisition patterns in shrinking cities. We use data from the City of Buffalo’s municipal property auction records to analyze the spatial distribution of properties offered for sale in its annual tax foreclosure auction. In addition to these data, we examine demolition and building permit records. Our analysis suggests that cities like Buffalo follow strategies based on an urban growth paradigm when responding to abandonment. This paradigm operates under the assumption that growth is a constant and urban development is only limited by fiscal constraints, underdeveloped systems of urban governance, environmental degradation, and resistance by anti-growth coalitions. We recommend that planners in shrinking cities de-emphasize growth-based planning and focus on rightsizing strategies. These strategies are based on the assumption that growth is not a constant. Consequently, urban revitalization is concentrated in a smaller urban footprint.

  13. Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia

    Directory of Open Access Journals (Sweden)

    E. Petter Axelsson

    2014-09-01

    Full Text Available Aboveground competition is often argued to be the main process determining patterns of natural forest regeneration. However, the theory of multiple resource limitation suggests that seedling performance also depends on belowground competition and, thus, that their relative influence is of fundamental importance. Two approaches were used to address the relative importance of above- and below-ground competition on regeneration in a nutrient-poor pine (Pinus sylvestris boreal forest. Firstly, seedling establishment beneath trees stem-girdled 12 years ago show that a substantial proportion of the seedlings were established within two years after girdling, which corresponds to a time when nutrient uptake by tree roots was severely reduced without disrupting water transport to the tree canopy, which consequently was maintained. The establishment during these two years also corresponds to abundances high enough for normal stand replacement. Secondly, surveys of regeneration within forest gaps showed that surrounding forests depressed seedlings, so that satisfactory growth occurred only more than 5 m from forest edges and that higher solar radiation in south facing edges was not enough to mediate these effects. We conclude that disruption of belowground competitive interactions mediates regeneration and, thus, that belowground competition has a strong limiting influence on seedling establishment in these forests.

  14. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate.

    Science.gov (United States)

    Rountrey, Adam N; Coulson, Peter G; Meeuwig, Jessica J; Meekan, Mark

    2014-08-01

    Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries. © 2014 John Wiley & Sons Ltd.

  15. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Terachi, T.; Yamada, T.; Miyamoto, T.; Arioka, K.

    2012-07-01

    The rates of SCC growth were measured under simulated PWR primary water conditions (500 ppm B + 2 ppm Li + 30 cm3/kg-H2O-STP DH2) using cold worked 316SS and 304SS. The direct current potential drop method was applied to measure the crack growth rates for 53 specimens. Dependence of the major engineering factors, such as yield strength, temperature and stress intensity was systematically examined. The rates of crack growth were proportional to the 2.9 power of yield strength, and directly proportional to the apparent yield strength. The estimated apparent activation energy was 84 kJ/mol. No significant differences in the SCC growth rates and behaviors were identified between 316SS and 304SS. Based on the measured results, an empirical equation for crack growth rate was proposed for engineering applications. Although there were deviations, 92.8% of the measured crack growth rates did not exceed twice the value calculated by the empirical equation.

  16. Gender differences in scalp hair growth rates are maintained but reduced in pattern hair loss compared to controls.

    Science.gov (United States)

    Van Neste, D J J; Rushton, D H

    2016-08-01

    Hair loss is related to follicular density, programmed regrowth and hair productivity. The dissatisfaction with hair growth in patients experiencing hair loss might be due to slower linear hair growth rate (LHGR). LHGR and hair diameter was evaluated in Caucasian controls and patients with patterned hair loss employing the validated non-invasive, contrast-enhanced-phototrichogram with exogen collection. We evaluated 59,765 anagen hairs (controls 24,609, patients 35,156) and found thinner hairs grew slower than thicker hairs. LHGR in normal women was generally higher than in normal men. LHGR correlates with hair diameter (P hair of equal thickness in controls, subjects affected with patterned hair loss showed reduced hair growth rates, an observation found in both male and female patients. Males with pattern hair loss showed further reduction in growth rates as clinical severity worsened. However, sample size limitations prevented statistical evaluation of LHGR in severely affected females. Caucasian ethnicity. In pattern hair loss, LHGR significantly contributes to the apparent decrease in hair volume in affected areas. In early onset, LHRG might have a prognostic value in females but not in males. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels

    Science.gov (United States)

    Huyan, Fei; Yan, Jia-Yi; Höglund, Lars; Ågren, John; Borgenstam, Annika

    2018-04-01

    As part of an ongoing development of third-generation advanced high-strength steels with acceptable cost, austenite reversion treatment of medium Mn steels becomes attractive because it can give rise to a microstructure of fine mixture of ferrite and austenite, leading to both high strength and large elongation. The growth of austenite during intercritical annealing is crucial for the final properties, primarily because it determines the fraction, composition, and phase stability of austenite. In the present work, the growth of austenite from as-quenched lath martensite in medium Mn steels has been simulated using the DICTRA software package. Cementite is added into the simulations based on experimental observations. Two types of systems (cells) are used, representing, respectively, (1) austenite and cementite forming apart from each other, and (2) austenite forming on the cementite/martensite interface. An interfacial dissipation energy has also been added to take into account a finite interface mobility. The simulations using the first type of setup with an addition of interfacial dissipation energy are able to reproduce the observed austenite growth in medium Mn steels reasonably well.

  18. Multiscale simulations of the early stages of the growth of graphene on copper

    Science.gov (United States)

    Gaillard, P.; Chanier, T.; Henrard, L.; Moskovkin, P.; Lucas, S.

    2015-07-01

    We have performed multiscale simulations of the growth of graphene on defect-free copper (111) in order to model the nucleation and growth of graphene flakes during chemical vapour deposition and potentially guide future experimental work. Basic activation energies for atomic surface diffusion were determined by ab initio calculations. Larger scale growth was obtained within a kinetic Monte Carlo approach (KMC) with parameters based on the ab initio results. The KMC approach counts the first and second neighbours to determine the probability of surface diffusion. We report qualitative results on the size and shape of the graphene islands as a function of deposition flux. The dominance of graphene zigzag edges for low deposition flux, also observed experimentally, is explained by its larger dynamical stability that the present model fully reproduced.

  19. Growth and Survival of Some Probiotic Strains in Simulated Ice Cream Conditions

    Science.gov (United States)

    Homayouni, A.; Ehsani, M. R.; Azizi, A.; Razavi, S. H.; Yarmand, M. S.

    A Completely Randomized Design (CRD) experiment was applied in triplicates to evaluate the survival of four probiotic strains in simulated ice cream conditions. The growth and survival rate of these probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum and Bifidobacterium longum) in varying amount of sucrose (10, 15, 20 and 25%), oxygen scavenging components (0.05% L-cysteine and 0.05% L-ascorbate) and temperatures (4 and -20°C) during different periods of time (1, 2 and 3 months) were evaluated in MRS-broth medium. Optical density at 580 nm was used to measure growth. Lactobacilli strains proved to be highly resistant in comparison with Biffidobacteria strains. The viable cell number of Lactobacillus casei in different sucrose concentrations, different oxidoreduction potentials and refrigeration temperature was 1x1010, 2x108 and 5x107 cfu mL-1, respectively. Growth and survival rate of Lactobacillus casei showed to be the highest.

  20. Growth and characterization of semi-polar (11-22) GaN on patterned (113) Si substrates

    International Nuclear Information System (INIS)

    Bai, J; Yu, X; Gong, Y; Hou, Y N; Zhang, Y; Wang, T

    2015-01-01

    Patterned (113) Si substrates have been fabricated for the growth of (11-22) semi-polar GaN, which completely eliminates one of the great issues in the growth of semi-polar GaN on silicon substrates, ‘Ga melting-back’. Furthermore, unlike any other mask patterning approaches which normally lead to parallel grooves along a particular orientation, our approach is to form periodic square window patterns. As a result, crack-free semi-polar (11-22) GaN with a significant improvement in crystal quality has been achieved, in particular, basal stacking faults (BSFs) have been significantly reduced. The mechanism for the defect suppression has been investigated based on detailed transmission electron microscopy measurements. It has been found that the BSFs can be impeded effectively at an early growth stage due to the priority growth along the 〈0001〉 direction. The additional 〈1-100〉 lateral growth above the masks results in a further reduction in dislocation density. The significant reduction in BSFs has been confirmed by low temperature photoluminescence measurements. (paper)

  1. Inter-cohort growth patterns of pharaoh cuttlefish Sepia pharaonis (Sepioidea: Sepiidae in Eastern Arabian Sea

    Directory of Open Access Journals (Sweden)

    Geetha Sasikumar

    2013-03-01

    Full Text Available Sepia pharaonis is an important commercial species endemic to the tropical Indo-Pacific region. Despite its commercial significance, only few information on natural populations is available. This study was aimed to describe the aspects of size-composition, length-weight relationship, catch rates, seasonal recruitment and inter-cohort growth patterns of S. pharaonis population (Clade C, distributed along the Eastern Arabian Sea (South-West coast of India. For this, the Dorsal Mantle Length (DML and weight of cuttlefishes was obtained from commercial trawl catches, from April 2002 to October 2006. Data was analyzed by normal length-weight methods such as von Bertalanffy. A total of 12 454 cuttlefishes, ranging in length from four to 41cm were analyzed. Size-composition patterns discriminated two pulses in recruitment to the fishery, discernible by a decrease in the monthly mean size of the population. The DMLs of the two seasonal cohorts were subjected to modalprogression analysis using the Bhattacharya’s method for the estimation of growth. The estimated parameters L∞ and K in von Bertalanffy Growth Function (VBGF were used to model growth curves in length for the cohorts. The first cohort, (post-monsoon cohort which supports the major fishery, was composed of mediumsized, fast growing individuals, whereas the second cohort (pre-monsoon cohort, comprised of slow growing and large-sized individuals. There were differential growth characteristics between the sexes and the life span was estimated at less than 2.3years for males and 2.1years for females. Negative allometric growth in weight (W with length (L was observed for males (W=0.33069.L2.5389 and females (W=0.32542.L2.6057. The females were heavier compared to males at any given mantle length, and the males were found to attain larger ultimate lengths. The major fishing season for cuttlefish was from May to November, when higher monthly catch rates of 1.67-13.02kg/h were observed in

  2. SIMULATION OF MICROALGAL GROWTH IN A CONTINUOUS PHOTOBIOREACTOR WITH SEDIMENTATION AND PARTIAL BIOMASS RECYCLING

    Directory of Open Access Journals (Sweden)

    C. E. de Farias Silva

    Full Text Available Abstract Microalgae are considered as promising feedstocks for the third generation of biofuels. They are autotrophic organisms with high growth rate and can stock an enormous quantity of lipids (about 20 - 40% of their dried cellular weight. This work was aimed at studying the cultivation of Scenedesmus obliquus in a two-stage system composed of a photobioreactor and a settler to concentrate and partially recycle the biomass as a way to enhance the microalgae cellular productivity. It was attempted to specify by simulation and experimental data a relationship between the recycling rate, kinetic parameters of microalgal growth and photobioreactor operating conditions. Scenedesmus obliquus cells were cultivated in a lab-scale flat-plate reactor, homogenized by aeration, and running in continuous flow with a residence time of 1.66 day. Experimental data for the microalgal growth were used in a semi-empirical simulation model. The best results were obtained for Fw=0.2FI, when R = 1 and kd = 0 and 0.05 day-1, with the biomass production in the reactor varying between 8 g L -1 and 14 g L-1, respectively. The mathematical model fitted to the microalgal growth experimental data was appropriate for predicting the efficiency of the reactor in producing Scenedesmus obliquus cells, establishing a relation between cellular productivity and the minimum recycling rate that must be used in the system.

  3. Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.

    Science.gov (United States)

    Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean

    2009-10-01

    Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can

  4. Analysis of instability growth and collisionless relaxation in thermionic converters using 1-D PIC simulations

    International Nuclear Information System (INIS)

    Kreh, B.B.

    1994-12-01

    This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 x 10 -11 seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 x 10 -10 seconds. Since the electron-electron collision rate of 10 9 Hz and the electron atom collision rate of 10 7 Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism

  5. Uncovering molecular processes in crystal nucleation and growth by using molecular simulation.

    Science.gov (United States)

    Anwar, Jamshed; Zahn, Dirk

    2011-02-25

    Exploring nucleation processes by molecular simulation provides a mechanistic understanding at the atomic level and also enables kinetic and thermodynamic quantities to be estimated. However, whilst the potential for modeling crystal nucleation and growth processes is immense, there are specific technical challenges to modeling. In general, rare events, such as nucleation cannot be simulated using a direct "brute force" molecular dynamics approach. The limited time and length scales that are accessible by conventional molecular dynamics simulations have inspired a number of advances to tackle problems that were considered outside the scope of molecular simulation. While general insights and features could be explored from efficient generic models, new methods paved the way to realistic crystal nucleation scenarios. The association of single ions in solvent environments, the mechanisms of motif formation, ripening reactions, and the self-organization of nanocrystals can now be investigated at the molecular level. The analysis of interactions with growth-controlling additives gives a new understanding of functionalized nanocrystals and the precipitation of composite materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    Directory of Open Access Journals (Sweden)

    V.S. Neverov

    2017-01-01

    Full Text Available XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D diffraction patterns and pair-distribution functions (PDF for amorphous or crystalline nanoparticles (up to ∼107 atoms of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  7. XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles

    Science.gov (United States)

    Neverov, V. S.

    XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.

  8. Microsecond MD Simulations of Nano-patterned Polymer Brushes on Self-Assembled Monolayers

    Science.gov (United States)

    Buie, Creighton; Qiu, Liming; Cheng, Kwan; Park, Soyeun

    2010-03-01

    Nano-patterned polymer brushes end-grafted onto self-assembled monolayers have gained increasing research interests due to their unique thermodynamic properties and their chemical and biomedical applications in colloids, biosensing and tissue engineering. So far, the interactions between the polymer brushes with the surrounding environments such as the floor and solvent at the nanometer length scale and microsecond time scale are still difficult to obtained experimentally and computationally. Using a Coarse-Grained MD approach, polymer brushes of different monomeric lengths, grafting density and hydrophobicity of the monomers grafted on self-assembled monolayers and in explicit solvent were studied. Molecular level information, such as lateral diffusion, transverse height and volume contour of the brushes, were calculated from our microsecond-MD simulations. Our results demonstrated the significance of the hydration of the polymer in controlling the conformational arrangement of the polymer brushes.

  9. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    International Nuclear Information System (INIS)

    Sakane, S; Takaki, T; Ohno, M; Shimokawabe, T; Aoki, T

    2015-01-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated. (paper)

  10. Large scale statistics for computational verification of grain growth simulations with experiments

    International Nuclear Information System (INIS)

    Demirel, Melik C.; Kuprat, Andrew P.; George, Denise C.; Straub, G.K.; Misra, Amit; Alexander, Kathleen B.; Rollett, Anthony D.

    2002-01-01

    It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. We have previously showed a strong similarity between small-scale grain growth experiments and anisotropic three-dimensional simulations obtained from the Electron Backscattered Diffraction (EBSD) measurements. Using the same technique, we obtained 5170-grain data from an Aluminum-film (120 (micro)m thick) with a columnar grain structure. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 C. Characterization of the structures and properties of grain boundary networks (GBN) to produce desirable microstructures is one of the fundamental problems in interface science. There is an ongoing research for the development of new experimental and analytical techniques in order to obtain and synthesize information related to GBN. The grain boundary energy and mobility data were characterized by Electron Backscattered Diffraction (EBSD) technique and Atomic Force Microscopy (AFM) observations (i.e., for ceramic MgO and for the metal Al). Grain boundary energies are extracted from triple junction (TJ) geometry considering the local equilibrium condition at TJ's. Relative boundary mobilities were also extracted from TJ's through a statistical/multiscale analysis. Additionally, there are recent theoretical developments of grain boundary evolution in microstructures. In this paper, a new technique for three-dimensional grain growth simulations was used to simulate interface migration

  11. Effect of Kangaroo Mother Care on Growth and Morbidity Pattern in Low Birth Weight Infants

    Directory of Open Access Journals (Sweden)

    Keerti Swarnkar

    2016-01-01

    Full Text Available Background: Kangaroo Mother Care (KMC is dened as skin-to-skin contact between a mother and her newborn baby derived from practical similarities to marsupial care giving, proximately exclusive breastfeeding and early discharge from hospital. This concept was proposed as an alternative to conventional methods of care for low birth weight (LBW infants, and in replication to quandaries of earnest overcrowding in Neonatal Intensive Care Units (NICUs. KMC essentially utilizes the mother as a natural incubator Aim and Objectives: The aim was to assess the feasibility, acceptability and the effectiveness of KMC in LBW infants. It avoids agitation routinely experienced in busy ward. Material and Methods: A pilot open-labeled quasi-randomised clinical trial was conducted in Level III NICU of a teaching institution. 60 newborn infants <2500 g, meeting inclusion criteria were alternatively randomised into two groups: Kangaroo Mother Care (KMC and Conventional Methods of Care (CMC. Kangaroo mother care was practiced with minimum total period of eight hours a day intermittently for the intervention group while the controls remained in incubators or cots. Weight, head circumference, length, morbidity episodes, hospital stay, feeding patterns were monitored for all infants till postmenstrual age of 42 weeks in preterm babies or till a weight of 2500 g is achieved in term SGA babies. Results: The pilot study conrmed that trial processes were efcient, the intervention was acceptable (to mothers and nurses and that the outcome measures were appropriate; KMC babies achieved signicantly better growth at the end of the study (For preterm babies, weight, length and head circumference gain were signicantly higher in the KMC group (weight 19.28±2.9g/day, length 0.99±0.56cm/week and head circumference 0.72±0.07 cm/week than in the CMC group (P <0.001. A signicantly higher number of babies in the CMC group suffered from hypothermia, hypoglycemia, and

  12. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization

    Science.gov (United States)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban

    2017-11-01

    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  13. Hybridization between Yellowstone cutthroat trout and rainbow trout alters the expression of muscle growth-related genes and their relationships with growth patterns

    Science.gov (United States)

    Ostberg, Carl O.; Chase, Dorothy M.; Hauser, Lorenz

    2015-01-01

    Hybridization creates novel gene combinations that may generate important evolutionary novelty, but may also reduce existing adaptation by interrupting inherent biological processes, such as genotype-environment interactions. Hybridization often causes substantial change in patterns of gene expression, which, in turn, may cause phenotypic change. Rainbow trout (Oncorhynchus mykiss) and cutthroat trout (O. clarkii) produce viable hybrids in the wild, and introgressive hybridization with introduced rainbow trout is a major conservation concern for native cutthroat trout. The two species differ in body shape, which is likely an evolutionary adaptation to their native environments, and their hybrids tend to show intermediate morphology. The characterization of gene expression patterns may provide insights on the genetic basis of hybrid and parental morphologies, as well as on the ecological performance of hybrids in the wild. Here, we evaluated the expression of eight growth-related genes (MSTN-1a, MSTN-1b, MyoD1a, MyoD1b, MRF-4, IGF-1, IGF-2, and CAST-L) and the relationship of these genes with growth traits (length, weight, and condition factor) in six line crosses: both parental species, both reciprocal F1 hybrids, and both first-generation backcrosses (F1 x rainbow trout and F1 x cutthroat trout). Four of these genes were differentially expressed among rainbow, cutthroat, and their hybrids. Transcript abundance was significantly correlated with growth traits across the parent species, but not across hybrids. Our findings suggest that rainbow and cutthroat trout exhibit differences in muscle growth regulation, that transcriptional networks may be modified by hybridization, and that hybridization disrupts intrinsic relationships between gene expression and growth patterns that may be functionally important for phenotypic adaptations.

  14. Fetal and infant growth patterns associated with total and abdominal fat distribution in school-age children.

    Science.gov (United States)

    Gishti, Olta; Gaillard, Romy; Manniesing, Rashindra; Abrahamse-Berkeveld, Marieke; van der Beek, Eline M; Heppe, Denise H M; Steegers, Eric A P; Hofman, Albert; Duijts, Liesbeth; Durmuş, Büşra; Jaddoe, Vincent W V

    2014-07-01

    Higher infant growth rates are associated with an increased risk of obesity in later life. We examined the associations of longitudinally measured fetal and infant growth patterns with total and abdominal fat distribution in childhood. We performed a population-based prospective cohort study among 6464 children. We measured growth characteristics in the second and third trimesters of pregnancy, at birth, and at 6, 12, and 24 months. Body mass index, fat mass index (body fat mass/height(2)), lean mass index (body lean mass/height(2)), android/gynoid fat ratio measured by dual-energy x-ray absorptiometry, and sc and preperitoneal abdominal fat measured by ultrasound at the median age of 6.0 years (90% range, 5.7-7.4). We observed that weight gain in the second and third trimesters of fetal life and in early, mid, and late infancy were independently and positively associated with childhood body mass index (P fat mass index, android/gynoid fat ratio, and abdominal fat in childhood (P Children with both fetal and infant growth acceleration had the highest childhood body mass index, fat mass index, and sc abdominal fat, whereas children with fetal growth deceleration and infant growth acceleration had the highest value for android/gynoid fat ratio and the lowest value for lean mass index (P fat. Fetal growth deceleration followed by infant growth acceleration may lead to an adverse body fat distribution in childhood.

  15. Comparative Study of Mandibular Morphology in Patients with Hypodivergent and Hyperdivergent Growth Patterns: A Cephalometric Study

    Directory of Open Access Journals (Sweden)

    Roopa Sidde Gowda

    2013-01-01

    Materials and methods: As sample of 60 subjects in the age group of 12 to 18 years were selected, out of them 20 subjects were average growing patients, 20 subjects were hypodivergent patterns and 20 subjects were hyperdivergent patterns. Bjork′s signs of mandibular rotation were used to differentiate between them. Mandibular morphological differences were exhibited by the hypodivergent and hyperdivergent groups. Results and conclusion: According to the results, condylar head is inclined more backwardly in hyperdivergent patterns and more forwardly in hypodivergent pattern. Inferior border of mandible has a notched appearance in hyperdivergent and is almost flat in hypodivergent patterns. Anterior lower facial height is increased in hyperdivergent and decreased in hypodivergent patterns. Interincisal and intermolar angles are more mesially inclined in hyperdivergent than hypodivergent patterns. Symphysis is more forwardly inclined in case of hypodivergent and backwardly inclined in hyperdivergent patterns.

  16. Quantification and differentiation of nuclear tracks in SSNTD by simulation of their diffraction pattern

    International Nuclear Information System (INIS)

    Palacios, D.; Palacios, F.; Vitoria, T.

    2001-01-01

    An alternative method to count and differentiate nuclear tracks in SSNTD is described. The method is based on the simulation and analysis of Fraunhofer diffraction pattern formed when coherent light passes through tracks of an etched detector. Transformation of the optical system was carried out by a digital procedure of Fourier Transform. Spectral analysis of the radial intensity distribution facilitated to quantify and differentiate tracks for its diameters. The formalism outlined is also applicable to elliptic tracks. Different components of the developed software (TRACKS) are shown. Results obtained by simulation and by the theoretical model gave satisfactory concordance. With the purpose of optimizing the proposed method, technical variants of optic microscopy are discussed. A model that considers the correction for track overlapping was developed and applied. Count error is small when track distribution changes in the field of view. The proposed method can differentiate genuine tracks from defects and anomalies of the detector. Analyzing the influence of illumination conditions and focus of the microscope on track counting and discrimination, the preliminary treatment of images obtained by the CCD camera was established. The proposed method allows, with low cost and operation simplicity, guaranteeing high speed in the obtaining of results, to calculate with good approximation track density in CR-39 detectors and to differentiate the energy of incident ions by track diameters with satisfactory accuracy and precision

  17. Texture Based Quality Analysis of Simulated Synthetic Ultrasound Images Using Local Binary Patterns

    Directory of Open Access Journals (Sweden)

    Prerna Singh

    2017-12-01

    Full Text Available Speckle noise reduction is an important area of research in the field of ultrasound image processing. Several algorithms for speckle noise characterization and analysis have been recently proposed in the area. Synthetic ultrasound images can play a key role in noise evaluation methods as they can be used to generate a variety of speckle noise models under different interpolation and sampling schemes, and can also provide valuable ground truth data for estimating the accuracy of the chosen methods. However, not much work has been done in the area of modeling synthetic ultrasound images, and in simulating speckle noise generation to get images that are as close as possible to real ultrasound images. An important aspect of simulated synthetic ultrasound images is the requirement for extensive quality assessment for ensuring that they have the texture characteristics and gray-tone features of real images. This paper presents texture feature analysis of synthetic ultrasound images using local binary patterns (LBP and demonstrates the usefulness of a set of LBP features for image quality assessment. Experimental results presented in the paper clearly show how these features could provide an accurate quality metric that correlates very well with subjective evaluations performed by clinical experts.

  18. Correlation between Doppler flow patterns in growth-restricted fetuses and neonatal circulation

    NARCIS (Netherlands)

    Tanis, J. C.; Boelen, M. R.; Schmitz, D. M.; Casarella, L.; van der Laan, M. E.; Bos, A. F.; Bilardo, C. M.

    Objectives To investigate whether prenatal Doppler parameters in growth-restricted fetuses are correlated with neonatal circulatory changes. Methods In 43 cases of suspected fetal growth restriction (FGR), serial Doppler measurements of umbilical artery (UA) and middle cerebral artery (MCA)

  19. Divergent epidermal growth factor receptor mutation patterns between smokers and non-smokers with lung adenocarcinoma.

    Science.gov (United States)

    Tseng, Jeng-Sen; Wang, Chih-Liang; Yang, Tsung-Ying; Chen, Chih-Yi; Yang, Cheng-Ta; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tsai, Chi-Ren; Chang, Gee-Chen

    2015-12-01

    Smoking status is an important determinant of the prevalence of epidermal growth factor receptor (EGFR) mutations in lung cancer patients. However, it is unclear whether smoking status could also influence the spectrum of EGFR mutations. We enrolled patients with lung adenocarcinoma from three medical centers in Taiwan. EGFR mutations were assessed by Sanger direct sequencing. The objective of this study was to evaluate the influence of smoking status on both the frequency and patterns of EGFR mutations. From 2001 to 2013, a total of 1175 patients with lung adenocarcinoma were enrolled for EGFR mutation analysis. The overall EGFR mutation rate was 59.6%, which was significantly higher in females than males (69.1% vs. 49.8%) and in non-smokers than current/former smokers (73.8% vs. 29.8%) (both Psmokers expressed L858R mutation less frequently (35.2% vs. 50.2%, P=0.005) and exon 19 deletions more frequently (52.8% vs 38.8%, P=0.008) than non-smokers. Smokers and non-smokers also had divergent exon 19 deletions subtypes (Del E746-A750 82.5% vs. 57.6%, respectively, Psmokers were associated with a higher rate of complex mutations than non-smokers (34.2% vs. 8.4%, P<0.001). Our results suggested that smoking status could influence not only the frequency but also the spectrum of EGFR mutations. These findings provide a clue for further investigation of EGFR mutagenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Population Growth in the 1990s: Patterns within the United States.

    Science.gov (United States)

    Perry, Marc

    2002-01-01

    Examines population growth during the 1990s for a variety of geographic levels including regions, divisions, states, metropolitan areas, counties, and large cities. Compares growth rates for the 1990s with earlier decades to provide an historical context for present-day trends in population growth and decline. Discusses how differential population…

  1. Simulating the growth process of aromatic polyamide layer by monomer concentration controlling method

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yan [Vontron Technology Co., Ltd., Guiyang 550018, Guizhou (China); Liang, Songmiao, E-mail: liangsongmiao@vontron.com.cn [Vontron Technology Co., Ltd., Guiyang 550018, Guizhou (China); Wu, Zongce; Cai, Zhiqi [Vontron Technology Co., Ltd., Guiyang 550018, Guizhou (China); Zhao, Ning [National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190 (China)

    2014-09-30

    Highlights: • A concentration controlling method to simulate the growth process of polyamide layer was developed. • The surface structure features and properties of polyamide layer at its different growth stages were systematically investigated. • Structure transition from spherical aggregator to leaf-like to typical ridge-and-valley was observed. • The performance of RO membrane is closely related to the structure of polyamide. - Abstract: With the wide distribution and gradual increase of TMC concentration (C{sub TMC}) from 1 × 10{sup −4} wt% to 2.5 × 10{sup −1} wt%, the main purpose of this work is to simulate the surface structure and properties of polyamide layer of reverse osmosis membranes at its different growth stage. The surface structure and properties of the resulted membranes were then characterized by atomic force microscopy (AFM), scanning electron microscope (SEM), attenuated total reflectance infrared (ATR-IR) spectroscopy, drop shape analysis system and electrokinetic analyzer. The structure growth of polyamide layer underwent in turn three different stages including spherical aggregator, leaf-like and typical ridge-valley structure. Spherical aggregator is the intrinsic structure in the inner layer of polyamide while leaf-like structure is transitional on the outmost polyamide layer. Furthermore, to clarify the effect of the structure change on the properties of polyamide layer, contact angle and zeta potential in the surface of polyamide layer were studied. Hydrophilic surface of polyamide layer is accessible at higher TMC concentration because of the presence of negative charged groups. Performances of the membranes were further measured with an emphasis on studying its structure–performance relationship during the growth process of polyamide layer.

  2. Examination of the Pattern of Growth of Cerebral Tissue Volumes From Hospital Discharge to Early Childhood in Very Preterm Infants.

    Science.gov (United States)

    Monson, Brian B; Anderson, Peter J; Matthews, Lillian G; Neil, Jeffrey J; Kapur, Kush; Cheong, Jeanie L Y; Doyle, Lex W; Thompson, Deanne K; Inder, Terrie E

    2016-08-01

    Smaller cerebral volumes at hospital discharge in very preterm (VPT) infants are associated with poor neurobehavioral outcomes. Brain growth from the newborn period to middle childhood has not been explored because longitudinal data have been lacking. To examine the pattern of growth of cerebral tissue volumes from hospital discharge to childhood in VPT infants and to determine perinatal risk factors for impaired brain growth and associations with neurobehavioral outcomes at 7 years. Prospective cohort study of VPT infants (childhood and outcomes in VPT infants. Low brain volumes observed in VPT infants are exaggerated at 7 years. Low brain volume in infancy is associated with long-term functional outcomes, emphasizing the persisting influence of early brain development on subsequent growth and outcomes.

  3. An EKC-pattern in historical perspective. Carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997

    International Nuclear Information System (INIS)

    Lindmark, Magnus

    2002-01-01

    The environmental Kuznets curve (EKC) has been subject to research and debate since the early 1990s. This article examines the inverted-U trajectory of Swedish CO 2 emissions during an extended time period beginning in 1870. The basis for the investigation is a structural time series approach that utilizes a stochastic trend as an indicator of technological and structural change, and GDP growth and changes in the price of fuel and cement price as independent variables. Finally, the development of technological and structural change with respect to CO 2 emissions is interpreted within the context of growth regimes. The result suggests that the period 1920-1960, with high, sustained growth rates was associated with less technological and structural changes relating to CO 2 emissions than periods with lower growth rates, such as the late 1800s and the post-1970 period. Furthermore, it is suggested that time-specific technological clusters may affect EKC patterns

  4. Study of foetal heart rate patterns in pregnancy with intra-uterine growth restriction during antepartum period

    International Nuclear Information System (INIS)

    Fardiazar, Z.; Abassalizade, F.

    2013-01-01

    Objectives: To evaluate foetal heart rate pattern during antepartum period in pregnancies suffering from intra-uterine growth restriction. Methods: The case control study was conducted at the Alzahra Hospital, Tabriz, Iran from April 2008 to April 2011. It comprised 100 pregnancies with intra-uterine growth restriction and 92 normal pregnancies. The foetal heart rate pattern including basal heart rate, beat-to-beat variation, non-stress test (NST) result and acceleration and deceleration patterns of the heart rate were determined in both groups during the antepartum period. Findings were compared between the two groups and their relation with pregnancy-foetal outcomes was specified in the case group. SPSS 15 was used for statistical analysis. Results: There was no statistically significant difference between the foetus mean basal heart rate in the two groups (p <0.960). Frequency of cases with non-reactive non-stress test in the Cases was significantly higher than Controls (p <0.005). The difference in heart rate acceleration was also not statistically significant (p <0.618). Frequency of cases with low birth weight and caesarian was non-significantly but borderline higher among the Cases (p <0.081 and 0.060, respectively). Conclusion: Abnormal foetal heart rate pattern is more common in pregnancies marked by intra-uterine growth restriction and is directly associated with worse pregnancy/foetal outcomes. (author)

  5. Simulation of AZ-PN100 resist pattern fluctuation in X-ray lithography, including synchrotron beam polarization

    International Nuclear Information System (INIS)

    Scheckler, E.W.; Ogawa, Taro; Tanaka, Toshihiko; Takeda, Eiji; Oizumi, Hiroaki.

    1993-01-01

    A new simulation model for nanometer-scale pattern fluctuation in X-ray lithography is presented and applied to a study of AZ-PN100 negative chemical amplification resist. The exposure simulation considers polarized photons from a synchrotron radiation (SR) source. Monte Carlo simulation of Auger and photoelectron generation is followed by electron scattering simulation to determine the deposited energy distribution at the nanometer scale, including beam polarization effects. An acid-catalyst random walk model simulates the post-exposure bake (PEB) step. Fourier transform infrared (FTIR) spectroscopy and developed resist thickness measurements are used to fit PEB and rate models for AZ-PN100. A polymer removal model for development simulation predicts the macroscopic resist shape and pattern roughness. The simulated 3σ linewidth variation is in excess of 24 nm. Simulation also shows a detrimental effect if the beam polarization is perpendicular to the line. Simulation assuming a theoretical ideal exposure yields a 50 nm minimum line for standard process conditions. (author)

  6. MATERNAL HEIGHT AND PRE-PREGNANCY WEIGHT STATUS ARE ASSOCIATED WITH FETAL GROWTH PATTERNS AND NEWBORN SIZE.

    Science.gov (United States)

    Pölzlberger, Eva; Hartmann, Beda; Hafner, Erich; Stümpflein, Ingrid; Kirchengast, Sylvia

    2017-05-01

    The impact of maternal height, pre-pregnancy weight status and gestational weight gain on fetal growth patterns and newborn size was analysed using a dataset of 4261 singleton term births taking place at the Viennese Danube Hospital between 2005 and 2013. Fetal growth patterns were reconstructed from three ultrasound examinations carried out at the 11th/12th, 20th/21th and 32th/33th weeks of gestation. Crown-rump length, biparietal diameter, fronto-occipital diameter, head circumference, abdominal transverse diameter, abdominal anterior-posterior diameter, abdominal circumference and femur length were determined. Birth weight, birth length and head circumference were measured immediately after birth. The vast majority of newborns were of normal weight, i.e. between 2500 and 4000 g. Maternal height showed a just-significant but weak positive association (r=0.03: p=0.039) with crown-rump length at the first trimester and with the majority of fetal parameters at the second trimester (r>0.06; p0.09; p0.08; p0.17; p0.13; p0.13; pnewborn size. Some of these associations were quite weak and the statistical significance was mainly due to the large sample size. The association patterns between maternal height and pre-pregnancy weight status with fetal growth patterns (pnewborn size (p<0.001), were independent of maternal age, nicotine consumption and fetal sex. In general, taller and heavier women gave birth to larger infants. This association between maternal size and fetal growth patterns was detectable from the first trimester onwards.

  7. Growing into obesity: patterns of height growth in those who become normal weight, overweight, or obese as young adults.

    Science.gov (United States)

    Stovitz, Steven D; Demerath, Ellen W; Hannan, Peter J; Lytle, Leslie A; Himes, John H

    2011-01-01

    To study whether patterns of height growth differ by adult obesity status, and determine the contribution of subcutaneous fatness as an explanatory variable for any differences. A multicenter, prospective longitudinal cohort assessed in 3rd grade (8.8 years), 5th grade (11.1 years), 8th grade (14.1 years), and 12th grade (18.3 years). Exposures were young adult obesity status classified by CDC adult BMI categories at 12th grade. Skinfolds were measured in third, fifth, and eighth grades. Outcome was mean height (cm) at the four measurements using repeated-measures ANCOVA for young adult obesity status, and height increments between grades by adult obesity status in sequential models including initial height and, secondarily, initial skinfolds. Adjusted for age, and race/ethnicity, young adult obesity status explained a small, but statistically significant amount of height growth among both females and males within each of the three intervals. Compared with normal weight young adults, overweight or obese young adults stood taller in childhood, but had relatively less growth in height throughout the teenage years. There was no association between adult height and weight status. Skinfolds explained only a small amount of the height patterns in the three weight groups. Childhood and adolescent height growth patterns differ between those who become young adults who are normal weight and those who become overweight or obese. Since differences in fatness explain only a small amount of these height growth patterns, research is needed to identify other determinants. Copyright © 2011 Wiley-Liss, Inc.

  8. Liquid phase electro epitaxy growth kinetics of GaAs-A three-dimensional numerical simulation study

    International Nuclear Information System (INIS)

    Mouleeswaran, D.; Dhanasekaran, R.

    2006-01-01

    A three-dimensional numerical simulation study for the liquid phase electro epitaxial growth kinetic of GaAs is presented. The kinetic model is constructed considering (i) the diffusive and convective mass transport, (ii) the heat transfer due to thermoelectric effects such as Peltier effect, Joule effect and Thomson effect, (iii) the electric current distribution with electromigration and (iv) the fluid flow coupled with concentration and temperature fields. The simulations are performed for two configurations namely (i) epitaxial growth from the arsenic saturated gallium rich growth solution, i.e., limited solution model and (ii) epitaxial growth from the arsenic saturated gallium rich growth solution with polycrystalline GaAs feed. The governing equations of liquid phase electro epitaxy are solved numerically with appropriate initial and boundary conditions using the central difference method. Simulations are performed to determine the following, a concentration profiles of solute atoms (As) in the Ga-rich growth solution, shape of the substrate evolution, the growth rate of the GaAs epitaxial film, the contributions of Peltier effect and electromigration of solute atoms to the growth with various experimental growth conditions. The growth rate is found to increase with increasing growth temperature and applied current density. The results are discussed in detail

  9. Comparison in Schemes for Simulating Depositional Growth of Ice Crystal between Theoretical and Laboratory Data

    Science.gov (United States)

    Zhai, Guoqing; Li, Xiaofan

    2015-04-01

    The Bergeron-Findeisen process has been simulated using the parameterization scheme for the depositional growth of ice crystal with the temperature-dependent theoretically predicted parameters in the past decades. Recently, Westbrook and Heymsfield (2011) calculated these parameters using the laboratory data from Takahashi and Fukuta (1988) and Takahashi et al. (1991) and found significant differences between the two parameter sets. There are two schemes that parameterize the depositional growth of ice crystal: Hsie et al. (1980), Krueger et al. (1995) and Zeng et al. (2008). In this study, we conducted three pairs of sensitivity experiments using three parameterization schemes and the two parameter sets. The pre-summer torrential rainfall event is chosen as the simulated rainfall case in this study. The analysis of root-mean-squared difference and correlation coefficient between the simulation and observation of surface rain rate shows that the experiment with the Krueger scheme and the Takahashi laboratory-derived parameters produces the best rain-rate simulation. The mean simulated rain rates are higher than the mean observational rain rate. The calculations of 5-day and model domain mean rain rates reveal that the three schemes with Takahashi laboratory-derived parameters tend to reduce the mean rain rate. The Krueger scheme together with the Takahashi laboratory-derived parameters generate the closest mean rain rate to the mean observational rain rate. The decrease in the mean rain rate caused by the Takahashi laboratory-derived parameters in the experiment with the Krueger scheme is associated with the reductions in the mean net condensation and the mean hydrometeor loss. These reductions correspond to the suppressed mean infrared radiative cooling due to the enhanced cloud ice and snow in the upper troposphere.

  10. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

    Directory of Open Access Journals (Sweden)

    Janani Murallidharan

    2016-08-01

    Full Text Available Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI model and, within this model, the bubble is characterized using three main parameters: departure diameter (D, nucleation site density (N, and departure frequency (f. Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

  11. 3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Malcolm J [Los Alamos National Laboratory

    2008-01-01

    The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

  12. Overcoming artificial spatial correlations in simulations of superstructure domain growth with parallel Monte Carlo algorithms

    International Nuclear Information System (INIS)

    Schleier, W.; Besold, G.; Heinz, K.

    1992-01-01

    The authors study the applicability of parallelized/vectorized Monte Carlo (MC) algorithms to the simulation of domain growth in two-dimensional lattice gas models undergoing an ordering process after a rapid quench below an order-disorder transition temperature. As examples they consider models with 2 x 1 and c(2 x 2) equilibrium superstructures on the square and rectangular lattices, respectively. They also study the case of phase separation ('1 x 1' islands) on the square lattice. A generalized parallel checkerboard algorithm for Kawasaki dynamics is shown to give rise to artificial spatial correlations in all three models. However, only if superstructure domains evolve do these correlations modify the kinetics by influencing the nucleation process and result in a reduced growth exponent compared to the value from the conventional heat bath algorithm with random single-site updates. In order to overcome these artificial modifications, two MC algorithms with a reduced degree of parallelism ('hybrid' and 'mask' algorithms, respectively) are presented and applied. As the results indicate, these algorithms are suitable for the simulation of superstructure domain growth on parallel/vector computers. 60 refs., 10 figs., 1 tab

  13. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    Science.gov (United States)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  14. Identifying shared genetic structure patterns among Pacific Northwest forest taxa: insights from use of visualization tools and computer simulations.

    Directory of Open Access Journals (Sweden)

    Mark P Miller

    2010-10-01

    Full Text Available Identifying causal relationships in phylogeographic and landscape genetic investigations is notoriously difficult, but can be facilitated by use of multispecies comparisons.We used data visualizations to identify common spatial patterns within single lineages of four taxa inhabiting Pacific Northwest forests (northern spotted owl: Strix occidentalis caurina; red tree vole: Arborimus longicaudus; southern torrent salamander: Rhyacotriton variegatus; and western white pine: Pinus monticola. Visualizations suggested that, despite occupying the same geographical region and habitats, species responded differently to prevailing historical processes. S. o. caurina and P. monticola demonstrated directional patterns of spatial genetic structure where genetic distances and diversity were greater in southern versus northern locales. A. longicaudus and R. variegatus displayed opposite patterns where genetic distances were greater in northern versus southern regions. Statistical analyses of directional patterns subsequently confirmed observations from visualizations. Based upon regional climatological history, we hypothesized that observed latitudinal patterns may have been produced by range expansions. Subsequent computer simulations confirmed that directional patterns can be produced by expansion events.We discuss phylogeographic hypotheses regarding historical processes that may have produced observed patterns. Inferential methods used here may become increasingly powerful as detailed simulations of organisms and historical scenarios become plausible. We further suggest that inter-specific comparisons of historical patterns take place prior to drawing conclusions regarding effects of current anthropogenic change within landscapes.

  15. Postnatal mandible growth in wild and laboratory mice: Differences revealed from bone remodeling patterns and geometric morphometrics.

    Science.gov (United States)

    Martínez-Vargas, Jessica; Muñoz-Muñoz, Francesc; Martinez-Maza, Cayetana; Molinero, Amalia; Ventura, Jacint

    2017-08-01

    Comparative information on the variation in the temporospatial patterning of mandible growth in wild and laboratory mice during early postnatal ontogeny is scarce but important to understand variation among wild rodent populations. Here, we compare mandible growth between two ontogenetic series from the second to the eighth week of postnatal life, corresponding to two different groups of mice reared under the same conditions: the classical inbred strain C57BL/6J, and Mus musculus domesticus. We characterize the ontogenetic patterns of bone remodeling of the mandibles belonging to these laboratory and wild mice by analyzing bone surface, as well as examine their ontogenetic form changes and bimodular organization using geometric morphometrics. Through ontogeny, the two mouse groups display similar directions of mandible growth, according to the temporospatial distribution of bone remodeling fields. The allometric shape variation of the mandibles of these mice entails the relative enlargement of the ascending ramus. The organization of the mandible into two modules is confirmed in both groups during the last postnatal weeks. However, especially after weaning, the mandibles of wild and laboratory mice differ in the timing and localization of several remodeling fields, in addition to exhibiting different patterns of shape variation and differences in size. The stimulation of dentary bone growth derived from the harder post-weaning diet might account for some features of postnatal mandible growth common to both groups. Nonetheless, a large component of the postnatal growth of the mouse mandible appears to be driven by the inherent genetic programs, which might explain between-group differences. © 2017 Wiley Periodicals, Inc.

  16. AIRFLOW PATTERNS AND STACK PRESSURE SIMULATION IN A HIGH RISE RESIDENTIAL BUILDING LOCATED IN SEOUL

    Directory of Open Access Journals (Sweden)

    Khoukhi Maatouk

    2007-07-01

    Full Text Available Buoyancy forces due to air density difference between outdoor air and indoor air cause stack effect in high-rise buildings in cold climates. This stack effect occurs mainly at the core of the building such as the stairway and elevator shafts and causes many problems such as the energy loss caused by air flow, the blocked elevator door and discomfort due to inflowing of strong outdoor air. The main purpose of this work is to model the airflow pattern in a highrise building during the winter period by mean of COMIS. The presented building which is situated in Korea contains 30 floors above the ground level and 5 basement floors. Using COMIS, the simulation has been carried out for the entire building. However, the simulation failed due to the huge number of zones and interactions between them. Therefore, a model of building which contains 14 floors with 5 floors in the basement has been considered; and a simplified model based on the considered one has been constructed and compared with the 14 floors model. The simplified model consists on reducing the number of floors by combining a certain number of stories into one so that to enable the simulation to be carried on with a minimum number of zones and links. The result of the simulation shows that this approach could be used with accuracy still being satisfied. Therefore, the simplified procedure has been extended and applied to the high rise building model with 30 stories above the ground level and 5 stories in the basement. The effect of the exterior wall air-tightness of the building with 30 stories on the stack pressure and airflow by infiltration and/or by exfiltration has been investigated. The result shows that the total air by infiltration and/or exfiltration within the elevator shafts increases with the decrease of the level of the air-tightness of the exterior wall of the building. It has been also shown that a huge amount of air infiltrates through the shuttle and emergency elevator

  17. Multiagent-Based Simulation of Temporal-Spatial Characteristics of Activity-Travel Patterns Using Interactive Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Min Yang

    2014-01-01

    Full Text Available We propose a multiagent-based reinforcement learning algorithm, in which the interactions between travelers and the environment are considered to simulate temporal-spatial characteristics of activity-travel patterns in a city. Road congestion degree is added to the reinforcement learning algorithm as a medium that passes the influence of one traveler’s decision to others. Meanwhile, the agents used in the algorithm are initialized from typical activity patterns extracted from the travel survey diary data of Shangyu city in China. In the simulation, both macroscopic activity-travel characteristics such as traffic flow spatial-temporal distribution and microscopic characteristics such as activity-travel schedules of each agent are obtained. Comparing the simulation results with the survey data, we find that deviation of the peak-hour traffic flow is less than 5%, while the correlation of the simulated versus survey location choice distribution is over 0.9.

  18. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy’s Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanning calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  19. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    International Nuclear Information System (INIS)

    Fox, K.; Amoroso, J.; Mcclane, D.

    2017-01-01

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy's Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanning calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  20. Simulation of uranium oxides reduction kinetics by hydrogen. Reactivities of germination and growth

    International Nuclear Information System (INIS)

    Brun, C.

    1997-01-01

    The aim of this work is to simulate the reduction by hydrogen of the tri-uranium octo-oxide U 3 O 8 (obtained by uranium trioxide calcination) into uranium dioxide. The kinetics curves have been obtained by thermal gravimetric analysis, the hydrogen and steam pressures being defined. The geometrical modeling which has allowed to explain the trend of the kinetics curves and of the velocity curves is an anisotropic germination-growth modeling. The powder is supposed to be formed of spherical grains with the same radius. The germs of the new UO 2 phase appear at the surface of the U 3 O 8 grains with a specific germination frequency. The growth reactivity is anisotropic and is very large in the tangential direction to the grains surface. Then, the uranium dioxide growths inside the grain and the limiting step is the grain surface. The variations of the growth reactivity and of the germination specific frequency in terms of the gases partial pressures and of the temperature have been explained by two different mechanisms. The limiting step of the growth mechanism is the desorption of water in the uranium dioxide surface. Concerning the germination mechanism the limiting step is a water desorption too but in the tri-uranium octo-oxide surface. The same geometrical modeling and the same germination and growth mechanisms have been applied to the reduction of a tri-uranium octo-oxide obtained by calcination of hydrated uranium trioxide. The values of the germination specific frequency of this solid are nevertheless weaker than those of the solid obtained by direct calcination of the uranium trioxide. (O.M.)

  1. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle

    International Nuclear Information System (INIS)

    He Yizhu; Ding Hanlin; Liu Liufa; Shin, Keesam

    2006-01-01

    The morphology, topology and kinetics of normal grain growth in two-dimension were studied by computer simulation using a cellular automata (Canada) model based on the lowest energy principle. The thermodynamic energy that follows Maxwell-Boltzmann statistics has been introduced into this model for the calculation of energy change. The transition that can reduce the system energy to the lowest level is chosen to occur when there is more than one possible transition direction. The simulation results show that the kinetics of normal grain growth follows the Burke equation with the growth exponent m = 2. The analysis of topology further indicates that normal grain growth can be simulated fairly well by the present CA model. The vanishing of grains with different number of sides is discussed in the simulation

  2. Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy

    Directory of Open Access Journals (Sweden)

    Hanson Jesse E

    2010-08-01

    Full Text Available Abstract Background Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1 Strength of long-term potentiation (LTP, 2 Strength of long-term depression (LTD, 3 Relative inhibition levels (Inhibition, and 4 Excitatory connectivity levels (Connectivity. Results To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties. Conclusions Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.

  3. Examination Of Si-Ge Heterostructure Nanowire Growth Using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Nastovjak, A. G.; Neizvestny, I. G.; Shwartz, N. L.

    2011-01-01

    The process of Si-Ge heterostructures formation in nanowires (NWs) grown by vapor-liquid-solid mechanism was investigated using Monte Carlo simulation. Dependences of catalyst drop composition on temperature, flux intensity and nanowire diameter were obtained. Periodical oscillations of drop composition near mean value were observed. Oscillation results from layer-by-layer growth at the drop-whisker interface and necessity of supersaturation onset to start new layer formation. It was demonstrated that it is impossible to grow atomically abrupt axial heterojunctions via classical vapor-liquid-solid mechanism due to gradual change of catalyst drop composition when switching the fluxes. This phenomenon is the main reason of heterojunction blurriness. Junction abruptness was found to be dependent on nanowhisker diameter: in adsorption-induced growth mode abruptness of heterojunction decreases with diameter and in diffusion-induced mode it increases.

  4. The impact of boundary layer turbulence on snow growth and precipitation: Idealized Large Eddy Simulations

    Science.gov (United States)

    Chu, Xia; Xue, Lulin; Geerts, Bart; Kosović, Branko

    2018-05-01

    Ice particles and supercooled droplets often co-exist in planetary boundary-layer (PBL) clouds. The question examined in this numerical study is how large turbulent PBL eddies affect snow growth and surface precipitation from mixed-phase PBL clouds. In order to simplify this question, this study assumes an idealized BL with well-developed turbulence but no surface heat fluxes or radiative heat exchanges. Large Eddy Simulations with and without resolved PBL turbulence are compared. This comparison demonstrates that the impact on snow growth in mixed-phase clouds is controlled by two opposing mechanisms, a microphysical and a dynamical one. The cloud microphysical impact of large turbulent eddies is based on the difference in saturation vapor pressure over water and over ice. The net outcome of alternating turbulent up- and downdrafts is snow growth by diffusion and/or accretion (riming). On the other hand, turbulence-induced entrainment and detrainment may suppress snow growth. In the case presented herein, the net effect of these microphysical and dynamical processes is positive, but in general the net effect depends on ambient conditions, in particular the profiles of temperature, humidity, and wind.

  5. Growth Simulation and Discrimination of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum Using Hyperspectral Reflectance Imaging.

    Directory of Open Access Journals (Sweden)

    Ye Sun

    Full Text Available This research aimed to develop a rapid and nondestructive method to model the growth and discrimination of spoilage fungi, like Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum, based on hyperspectral imaging system (HIS. A hyperspectral imaging system was used to measure the spectral response of fungi inoculated on potato dextrose agar plates and stored at 28°C and 85% RH. The fungi were analyzed every 12 h over two days during growth, and optimal simulation models were built based on HIS parameters. The results showed that the coefficients of determination (R2 of simulation models for testing datasets were 0.7223 to 0.9914, and the sum square error (SSE and root mean square error (RMSE were in a range of 2.03-53.40×10(-4 and 0.011-0.756, respectively. The correlation coefficients between the HIS parameters and colony forming units of fungi were high from 0.887 to 0.957. In addition, fungi species was discriminated by partial least squares discrimination analysis (PLSDA, with the classification accuracy of 97.5% for the test dataset at 36 h. The application of this method in real food has been addressed through the analysis of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum inoculated in peaches, demonstrating that the HIS technique was effective for simulation of fungal infection in real food. This paper supplied a new technique and useful information for further study into modeling the growth of fungi and detecting fruit spoilage caused by fungi based on HIS.

  6. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.

    Science.gov (United States)

    Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi

    2014-04-11

    Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming

  7. Contribution of numerical simulation to silicon carbide bulk growth and epitaxy

    International Nuclear Information System (INIS)

    Meziere, Jerome; Pons, Michel; Cioccio, Lea Di; Blanquet, Elisabeth; Ferret, Pierre; Dedulle, Jean-Marc; Baillet, Francis; Pernot, Etienne; Anikin, Michail; Madar, Roland; Billon, Thierry

    2004-01-01

    High temperature epitaxial processes for SiC bulk and thin films by physical vapour transport and chemical vapour deposition are reviewed from an academic point of view using heat and mass transfer modelling and simulation. The objective is to show that this modelling approach could provide information on fabrication and characterization for the improvement of the knowledge of the growth history. Recent results of our integrated research programme on SiC, taking into account the fabrication, process modelling and characterization, will be presented

  8. Numerical Simulation of Entropy Growth for a Nonlinear Evolutionary Model of Random Markets

    Directory of Open Access Journals (Sweden)

    Mahdi Keshtkar

    2016-01-01

    Full Text Available In this communication, the generalized continuous economic model for random markets is revisited. In this model for random markets, agents trade by pairs and exchange their money in a random and conservative way. They display the exponential wealth distribution as asymptotic equilibrium, independently of the effectiveness of the transactions and of the limitation of the total wealth. In the current work, entropy of mentioned model is defined and then some theorems on entropy growth of this evolutionary problem are given. Furthermore, the entropy increasing by simulation on some numerical examples is verified.

  9. Seasonal Patterns of Sporophyte Growth, Fertility, Fouling, and Mortality of Saccharina latissima in Skagerrak, Norway: Implications for Forest Recovery

    Directory of Open Access Journals (Sweden)

    Guri Sogn Andersen

    2011-01-01

    Full Text Available On the Skagerrak coast the kelp Saccharina latissima has suffered severe stand reductions over the last decade, resulting in loss of important habitats. In the present study, healthy kelp plants were transplanted into four deforested areas and their patterns of growth, reproduction, and survival were monitored through subsequent seasons. Our main objective was to establish whether the kelp plants were able to grow and mature in deforested areas. We observed normal patterns of growth and maturation at all study sites. However, heavy fouling by epiphytes occurred each summer, followed by high kelp mortality. The study shows that the seasonal variations and the life stage timing of S. latissima make formation of self-sustainable populations impossible in the present environment. Most noteworthy, we suggest that fouling by epiphytes is involved in the lack of kelp forest recovery in Skagerrak, Norway.

  10. Universal principles governing multiple random searchers on complex networks: The logarithmic growth pattern and the harmonic law

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Harandizadeh, Bahareh; Hui, Pan

    2018-03-01

    We propose a unified framework to evaluate and quantify the search time of multiple random searchers traversing independently and concurrently on complex networks. We find that the intriguing behaviors of multiple random searchers are governed by two basic principles—the logarithmic growth pattern and the harmonic law. Specifically, the logarithmic growth pattern characterizes how the search time increases with the number of targets, while the harmonic law explores how the search time of multiple random searchers varies relative to that needed by individual searchers. Numerical and theoretical results demonstrate these two universal principles established across a broad range of random search processes, including generic random walks, maximal entropy random walks, intermittent strategies, and persistent random walks. Our results reveal two fundamental principles governing the search time of multiple random searchers, which are expected to facilitate investigation of diverse dynamical processes like synchronization and spreading.

  11. Effects of sexually dimorphic growth hormone secretory patterns on arachidonic acid metabolizing enzymes in rodent heart

    International Nuclear Information System (INIS)

    Zhang, Furong; Yu, Xuming; He, Chunyan; Ouyang, Xiufang; Wu, Jinhua; Li, Jie; Zhang, Junjie; Duan, Xuejiao; Wan, Yu; Yue, Jiang

    2015-01-01

    The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in both the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels. - Highlights: • The transcription of heart Cyp1a1, Cyp1b1 and Cyp2j genes is sexually dimorphic. • There are no sex differences in the mRNA levels of heart COXs, LOXs, or CYP2E1. • GHR-STAT5B pathway is involved in sexually dimorphic transcription of heart Cpy2j genes. • Heart CYPs-mediated metabolism pathway of arachidonic acid may be sex

  12. Detection and Growth Pattern of Arcuate Fasciculus from Newborn to Adult

    Directory of Open Access Journals (Sweden)

    Molly Wilkinson

    2017-07-01

    Full Text Available Fractional anisotropy (FA threshold is commonly used to perform diffusion MRI tractography. However, FA threshold may be one aspect of tractography that needs additional scrutiny in accurately assessing pathways in immature, developing brains, as well as in adult brains. Using high-angular resolution diffusion MRI (HARDI tractography without an FA threshold, we identified the arcuate fasciculus (AF of 83 healthy subjects ranging in age from 40 gestational weeks (GW (newborns to 28-year-old adults. The AF was identified in both hemispheres in all subjects with high inter-rater reliability. The detected AF included regions with very low FA values. The entire AF was segmented into anterior, posterior, and long tracts. Growth and laterality patterns were investigated using tract count (number of detected streamlines, total volume of imaging voxels (touched by the detected streamlines, mean length, mean FA, and mean apparent diffusion coefficient (ADC. Comparison of subjects under 3 years old, to those that were older, revealed the three AF tracts that took different developmental courses. As expected, the anterior and long tracts showed lower ADC values in subjects over 3 years old, while the posterior tract showed higher ADC in that same age range. The posterior tract did not show age-related effect in terms of FA, tract count, length, and volume. These results suggest that the posterior AF tract shows a matured state, indexed by most of the used measurements in early postnatal developmental ages, and ADC is a measurement that can detect further maturation of the posterior tract. Interestingly, in all tracts, hemispheric asymmetries were found in raw (leftright tract count, as well as in raw volume (left

  13. Effects of sexually dimorphic growth hormone secretory patterns on arachidonic acid metabolizing enzymes in rodent heart

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Furong; Yu, Xuming [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); He, Chunyan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Ouyang, Xiufang; Wu, Jinhua; Li, Jie; Zhang, Junjie; Duan, Xuejiao [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wan, Yu [Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yue, Jiang, E-mail: yuejiang@whu.edu.cn [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-12-15

    The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in both the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels. - Highlights: • The transcription of heart Cyp1a1, Cyp1b1 and Cyp2j genes is sexually dimorphic. • There are no sex differences in the mRNA levels of heart COXs, LOXs, or CYP2E1. • GHR-STAT5B pathway is involved in sexually dimorphic transcription of heart Cpy2j genes. • Heart CYPs-mediated metabolism pathway of arachidonic acid may be sex

  14. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  15. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS.

    Directory of Open Access Journals (Sweden)

    Chrispine Nyamweya

    Full Text Available Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May and mixing (June-August. Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  16. Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths

    Science.gov (United States)

    Barnes, Bryan M.; Zhou, Hui; Henn, Mark-Alexander; Sohn, Martin Y.; Silver, Richard M.

    2017-06-01

    The sizes of non-negligible defects in the patterning of a semiconductor device continue to decrease as the dimensions for these devices are reduced. These "killer defects" disrupt the performance of the device and must be adequately controlled during manufacturing, and new solutions are required to improve optics-based defect inspection. To this end, our group has reported [Barnes et al., Proc. SPIE 1014516 (2017)] our initial five-wavelength simulation study, evaluating the extensibility of defect inspection by reducing the inspection wavelength from a deep-ultraviolet wavelength to wavelengths in the vacuum ultraviolet and the extreme ultraviolet. In that study, a 47 nm wavelength yielded enhancements in the signal to noise (SNR) by a factor of five compared to longer wavelengths and in the differential intensities by as much as three orders-of-magnitude compared to 13 nm. This paper briefly reviews these recent findings and investigates the possible sources for these disparities between results at 13 nm and 47 nm wavelengths. Our in-house finite-difference time-domain code (FDTD) is tested in both two and three dimensions to determine how computational conditions contributed to the results. A modified geometry and materials stack is presented that offers a second viewpoint of defect detectability as functions of wavelength, polarization, and defect type. Reapplication of the initial SNR-based defect metric again yields no detection of a defect at λ = 13 nm, but additional image preprocessing now enables the computation of the SNR for λ = 13 nm simulated images and has led to a revised defect metric that allows comparisons at all five wavelengths.

  17. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    Science.gov (United States)

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  18. Which Diet-Related Behaviors in Childhood Influence a Healthier Dietary Pattern? From the Ewha Birth and Growth Cohort.

    Science.gov (United States)

    Lee, Hye Ah; Hwang, Hyo Jeong; Oh, Se Young; Park, Eun Ae; Cho, Su Jin; Kim, Hae Soon; Park, Hyesook

    2016-12-23

    This study was performed to examine how childhood dietary patterns change over the short term and which changes in diet-related behaviors influence later changes in individual dietary patterns. Using food frequency questionnaire data obtained from children at 7 and 9 years of age from the Ewha Birth and Growth Cohort, we examined dietary patterns by principal component analysis. We calculated the individual changes in dietary pattern scores. Changes in dietary habits such as eating a variety of food over two years were defined as "increased", "stable", or "decreased". The dietary patterns, termed "healthy intake", "animal food intake", and "snack intake", were similar at 7 and 9 years of age. These patterns explained 32.3% and 39.1% of total variation at the ages of 7 and 9 years, respectively. The tracking coefficient of snack intake had the highest coefficient (γ = 0.53) and that of animal food intake had the lowest (γ = 0.21). Intra-individual stability in dietary habits ranged from 0.23 to 0.47, based on the sex-adjusted weighted kappa values. Of the various behavioral factors, eating breakfast every day was most common in the "stable" group (83.1%), whereas consuming milk or dairy products every day was the least common (49.0%). Moreover, changes in behavior that improved the consumption of milk or dairy products or encouraged the consumption of vegetables with every meal had favorable effects on changes in healthy dietary pattern scores over two years. However, those with worsened habits, such as less food variety and more than two portions of fried or stir-fried food every week, had unfavorable effects on changes in healthy dietary pattern scores. Our results suggest that diet-related behaviors can change, even over a short period, and these changes can affect changes in dietary pattern.

  19. Numerical simulation of bubble growth and departure during flow boiling period by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Sun, Tao; Li, Weizhong; Yang, Shuai

    2013-01-01

    Highlights: • The bubble departure diameter is proportional to g −0.425 in quiescent fluid. • The bubble release frequency is proportional to g 0.678 in quiescent fluid. • The simulation result supports the transient micro-convection model. • The bubble departure diameter has exponential relation with inlet velocity. • The bubble release frequency has linear relation with inlet velocity. -- Abstract: Nucleate boiling flows on a horizontal plate are studied in this paper by a hybrid lattice Boltzmann method, where both quiescent and slowly flowing ambient are concerned. The process of a single bubble growth on and departure from the superheated wall is simulated. The simulation result supports the transient micro-convection model. The bubble departure diameter and the release frequency are investigated from the simulation result. It is found that the bubble departure diameter and the release frequency are proportional to g −0.425 and g 0.678 in quiescent fluid, respectively, where g is the gravitational acceleration. Nucleate boiling in slowly flowing ambient is also calculated in consideration of forced convection. It is presented that the bubble departure diameter and the release frequency have exponential relationship and linear relationship with inlet velocity in slowly flowing fluid, respectively

  20. Three-dimensional evaluation of pharyngeal airway in individuals with varying growth patterns using cone beam computed tomography

    OpenAIRE

    Rohan Diwakar; Maninder Singh Sidhu; Mona Prabhakar; Seema Grover; Ritu Phogat

    2015-01-01

    Introduction: The purpose of this study was to evaluate the pharyngeal airway volume in individuals with different vertical growth patterns. Methods: Cone beam computed tomography scans were evaluated of 40 subjects with the age range from 14 to 25 years and were divided into three groups. Horizontal growers consisted of 13 subjects, normal growers consisted of 14 subjects, and the vertical growers consisted of 13 subjects. The pharyngeal airway volume was measured using In Vivo Dental 5.1 so...

  1. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates.

    Science.gov (United States)

    Sangüesa-Barreda, Gabriel; Linares, Juan Carlos; Camarero, J Julio

    2012-05-01

    Forest decline has been attributed to the interaction of several stressors including biotic factors such as mistletoes and climate-induced drought stress. However, few data exist on how mistletoes are spatially arranged within trees and how this spatial pattern is related to changes in radial growth, responses to drought stress and carbon use. We used dendrochronology to quantify how mistletoe (Viscum album L.) infestation and drought stress affected long-term growth patterns in Pinus sylvestris L. at different heights. Basal area increment (BAI) trends and comparisons between trees of three different infestation degrees (without mistletoe, ID1; moderately infested trees, ID2; and severely infested trees, ID3) were performed using linear mixed-effects models. To identify the main climatic drivers of tree growth tree-ring widths were converted into indexed chronologies and related to climate data using correlation functions. We performed spatial analyses of the 3D distribution of mistletoe individuals and their ages within the crowns of three severely infested pines to describe their patterns. Lastly, we quantified carbohydrate and nitrogen concentrations in needles and sapwood of branches from severely infested trees and from trees without mistletoe. Mistletoe individuals formed strongly clustered groups of similar age within tree crowns and their age increased towards the crown apex. Mistletoe infestation negatively impacted growth but this effect was stronger near the tree apex than in the rest of sampled heights, causing an average loss of 64% in BAI (loss of BAI was ∼51% at 1.3 m or near the tree base). We found that BAI of severely infested trees and moderately or non-infested trees diverged since 2001 and such divergence was magnified by drought. Infested trees had lower concentrations of soluble sugars in their needles than non-infested ones. We conclude that mistletoe infestation causes growth decline and increases the sensitivity of trees to drought

  2. Use of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.

    Science.gov (United States)

    Watson, Robert A

    2014-08-01

    To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.

  3. Numerical simulation of fatigue crack growth rate and crack retardation due to an overload using a cohesive zone model

    NARCIS (Netherlands)

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2014-01-01

    In this work, a numerical method is pursued based on a cohesive zone model (CZM). The method is aimed at simulating fatigue crack growth as well as crack growth retardation due to an overload. In this cohesive zone model, the degradation of the material strength is represented by a variation of the

  4. Long-term mortality rates and spatial patterns in an old-growth forest

    Science.gov (United States)

    Emily J. Silver; Shawn Fraver; Anthony W. D' Amato; Tuomas Aakala; Brian J. Palik

    2013-01-01

    Understanding natural mortality patterns and processes of forest tree species is increasingly important given projected changes in mortality owing to global change. With this need in mind, the rate and spatial pattern of mortality was assessed over an 89-year period in a natural-origin Pinus resinosa (Aiton)-dominated system to assess these processes...

  5. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate

    International Nuclear Information System (INIS)

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-01

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10 10 cm −2 , and that the lateral and the vertical interdot spacing were ∼10 and ∼2.5 nm, respectively. (paper)

  6. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate.

    Science.gov (United States)

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-11

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10(10) cm(-2), and that the lateral and the vertical interdot spacing were ~10 and ~2.5 nm, respectively.

  7. Height and seasonal growth pattern of jack pine full-sib families

    Science.gov (United States)

    Don E. Riemenschneider

    1981-01-01

    Total tree height, seasonal shoot elongation, dates of growth initiation and cessation, and mean daily growth rate were measured and analyzed for a population of jack pine full-sib families derived from inter-provenance crosses. Parental provenance had no effect on these variables although this may have been due to small sample size. Progenies differed significantly...

  8. Patterns of tree growth in relation to environmental variability in the ...

    Indian Academy of Sciences (India)

    Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and ...

  9. Dendrochronological analysis of white oak growth patterns across a topographic moisture gradient in southern Ohio

    Science.gov (United States)

    Alexander K. Anning; Darrin L. Rubino; Elaine K. Sutherland; Brian C. McCarthy

    2013-01-01

    Moisture availability is a key factor that influences white oak (Quercus alba L.) growth and wood production. In unglaciated eastern North America, available soil moisture varies greatly along topographic and edaphic gradients. This study was aimed at determining the effects of soil moisture variability and macroclimate on white oak growth in mixed-oak forests of...

  10. Longterm Changes in BMI Growth Charts Pattern for Czech Children and Adolescents

    Czech Academy of Sciences Publication Activity Database

    Vignerová, J.; Paulová, M.; Brabec, Marek; Bláha, P.

    2008-01-01

    Roč. 32, Suppl 1 (2008), S188-S188 ISSN 0307-0565. [European Congress on Obesity. 14.05.2008-17.05.2008, Geneva] R&D Projects: GA MZd NR7857 Institutional research plan: CEZ:AV0Z10300504 Keywords : growth charts * growth curves * BMI Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  11. Patterns of absolute and relative pro-poor growth in Cameroon ...

    African Journals Online (AJOL)

    Our findings should provide input to policy debate aimed at fostering pro-poor growth and redistributive policies in the context of designing poverty alleviation strategies, the enhancement of participatory approaches in the development of poverty strategies and the encouragement of broad-based pro-poor growth strategies ...

  12. Cultural variation in early feeding pattern and maternal perceptions of infant growth

    NARCIS (Netherlands)

    Eijsden, M.; Meijers, C.M.C.; Jansen, J.E.; de Kroon, M.L.A.; Vrijkotte, T.G.M.

    2015-01-01

    The perception of healthy growth and weight may differ between cultures, which could influence feeding practises and consequently affect the development of overweight. The present study examined ethnic variation in maternal perceptions of growth and their influence on feeding practises among Turkish

  13. Impact of Thermal Plumes Generated by Occupant Simulators with Different Complexity of Body Geometry on Airflow Pattern in Rooms

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew

    2008-01-01

    The impact of thermal plumes generated by human body simulators with different geometry on the airflow pattern in a full scale room with displacement ventilation (supply air temperature 21.6°C, total flow rate 80 L/s) was studied when two seated occupants were simulated first by two thermal...... manikins resembling accurately human body shape and then by two heated cylinders. The manikins and the cylinders had the same surface area of 1.63 m2 and the same heat generation of 73 W. CO2 supplied from the top of the heat sources was used for simulating bio-effluents. CO2 concentration was measured...

  14. Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems

    International Nuclear Information System (INIS)

    Owolabi, Kolade M.

    2016-01-01

    The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and compare it with that of classical or standard diffusive processes in two-component fractional reaction-diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an efficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine precision regardless of the fractional order α, owing to the fact that our approach is able to give full diagonal representation of the fractional operator. The complexity of the dynamics in this system is theoretically discussed and graphically displayed with some examples and numerical simulations in one, two and three dimensions.

  15. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    Directory of Open Access Journals (Sweden)

    D. Milan

    2018-04-01

    Full Text Available Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  16. Direct dimethyl-ether (DME) synthesis by spatial patterned catalyst arrangement. A modeling and simulation study

    Energy Technology Data Exchange (ETDEWEB)

    McBride, K.; Turek, T.; Guettel, R. [Clausthal Univ. of Technology (Germany). Inst. of Chemical Process Engineering

    2011-07-01

    The effect of spatially patterned catalyst beds was investigated for direct DME synthesis from synthesis gas as an example. A layered arrangement of methanol synthesis and dehydration catalyst was chosen and studied by numerical simulation under typical operating conditions for single-step DME synthesis. It was revealed that catalyst layers significantly influence the DME productivity. With an increasing number of layers from 2 to 40, an increase in DME productivity was observed approaching the performance of a physical catalyst mixture for an infinite number of layers. The results prove that a physical mixture of methanol synthesis and dehydration catalyst achieves the highest DME productivity under operating conditions chosen in this study. This can be explained by the higher average methanol concentration for the layered catalyst arrangement and thus stronger equilibrium constraints for the methanol synthesis reaction. Essentially, the layered catalyst arrangement is comparable to a cascade model of the two-step process, which is less efficient in terms of DME yield than the single-step process. However, since a significant effect was found, the layered catalyst arrangement could be beneficial for other reaction systems. (orig.)

  17. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    Science.gov (United States)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2018-04-01

    Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  18. Coupled climate model simulations of Mediterranean winter cyclones and large-scale flow patterns

    Directory of Open Access Journals (Sweden)

    B. Ziv

    2013-03-01

    Full Text Available The study aims to evaluate the ability of global, coupled climate models to reproduce the synoptic regime of the Mediterranean Basin. The output of simulations of the 9 models included in the IPCC CMIP3 effort is compared to the NCEP-NCAR reanalyzed data for the period 1961–1990. The study examined the spatial distribution of cyclone occurrence, the mean Mediterranean upper- and lower-level troughs, the inter-annual variation and trend in the occurrence of the Mediterranean cyclones, and the main large-scale circulation patterns, represented by rotated EOFs of 500 hPa and sea level pressure. The models reproduce successfully the two maxima in cyclone density in the Mediterranean and their locations, the location of the average upper- and lower-level troughs, the relative inter-annual variation in cyclone occurrences and the structure of the four leading large scale EOFs. The main discrepancy is the models' underestimation of the cyclone density in the Mediterranean, especially in its western part. The models' skill in reproducing the cyclone distribution is found correlated with their spatial resolution, especially in the vertical. The current improvement in model spatial resolution suggests that their ability to reproduce the Mediterranean cyclones would be improved as well.

  19. A spatial analysis of patterns of growth and concentration of population based on homogeneous population censuses: Spain (1877-2001

    Directory of Open Access Journals (Sweden)

    Xavier Franch Auladell

    2013-01-01

    Full Text Available This work constitutes a contribution to the analysis of long term patterns of population concentration applied to the case of Spain. The proposed methodology is based on the homogenisation of both data and administrative units which takes the municipal structure of the 2001 census as its base reference. This work seeks to show how applying spatial analysis techniques to this type of homogeneous data series allows us to make more detailed studies of population patterns within a given territory. The most important conclusions that we reached was that, in Spain, sustained population growth has followed a spatial pattern that has become increasingly consolidated over time. The tendencies observed have produced an uneven distribution of population within the national territory marked by the existence of a series of well-defined, and often very localised, areas that spread beyond the limits of the official administrative boundaries.

  20. [Spatial pattern analysis and associations of Quercus aquifolioides population at different growth stages in Southeast Tibet, China].

    Science.gov (United States)

    Shen, Zhi-qiang; Hua, Min; Dan, Qu; Lu, Jie; Fang, Jiang-ping

    2016-02-01

    This article analyzed the spatial pattern and its correlation of Quercus aquifolioides, Southeast Tibet at different growing stages by using Ripley' s L function in the method of point pattern, analysis. The results showed the diameter structure of Q. aquifolioides population in Southeast Tibet followed a 'single peak' shape and the saplings and medium trees predominated in number in the whole population. The population had a high regeneration rate and was of increase type. In the growth process of Q. aquifolioides from saplings to large trees, saplings and medium trees showed aggregation distribution at.small scale, while large trees showed basically random distribution at whole scale. There was significant correlation between saplings with medium or large trees at small scale, however, there was no correlation between medium and large trees. In the growth process of Q. aquifolioides population from saplings, medium trees to large trees, its spatial pattern developed from aggregative distribution to random distribution. The natural regeneration of Q. aquifolioides population was affected not only by interspecific competition, but also by intraspecific competition. In the similar natural environment, the most important factors affecting the spatial pattern of Q. aquifoioides population were its own biological and ecological characteristics.

  1. Numerical simulation of MH growth/dissociation by hot water injection on the Lab. experiment

    Science.gov (United States)

    Temma, N.; Sakamoto, Y.; Komai, T.; Yamaguchi, T.; Pawar, R.; Zyvoloski, G.

    2005-12-01

    Methane Hydrate (MH) is considered to be one of the new-generation energy resources. Aiming to develop the method of extraction of methane gas from MH, laboratory experiments have been performed in order to grasp the MH property in the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba in Japan. In this paper, we present the results of the numerical simulation of experiment using by the hot water injection. In this calculation, FEHM (Finite Element Heat and Mass transfer) code is used. This code is developed at Los Alamos National Laboratory. In this experiment, temperature, pressure and cumulative gas production were measured. From these data, we suppose that MH growth/dissociation occurred by the flow of the hot water. And we make the model of the growth/dissociation. As this model consist of many parameters, it is difficult to determine parameters. Thus, we use PEST (Parameter ESTimation ) in order to determine parameters for the model of the MH growth/ dissociation. We use temperature data of experiment, as observed data. We make two observed data sets at the beginning and later term of experiment. At the results of PEST, we obtain two sets of parameters to get good match the observed data. We think that these sets indicate both the maximum and the minimum values of the MH growth/dissociation model. And, on this range, we continue to calculate until we get the good match. Finally, we obtain the numerical model of the experiment. Also, we conducted the sensitive analysis for the MH growth/ dissociation using this model.

  2. SARAPAN-A simulated-annealing-based tool to generate random patterned-channel-age in CANDU fuel management analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kastanya, Doddy [Safety and Licensing Department, Candesco Division of Kinectrics Inc., Toronto (Canada)

    2017-02-15

    In any reactor physics analysis, the instantaneous power distribution in the core can be calculated when the actual bundle-wise burnup distribution is known. Considering the fact that CANDU (Canada Deuterium Uranium) utilizes on-power refueling to compensate for the reduction of reactivity due to fuel burnup, in the CANDU fuel management analysis, snapshots of power and burnup distributions can be obtained by simulating and tracking the reactor operation over an extended period using various tools such as the *SIMULATE module of the Reactor Fueling Simulation Program (RFSP) code. However, for some studies, such as an evaluation of a conceptual design of a next-generation CANDU reactor, the preferred approach to obtain a snapshot of the power distribution in the core is based on the patterned-channel-age model implemented in the *INSTANTAN module of the RFSP code. The objective of this approach is to obtain a representative snapshot of core conditions quickly. At present, such patterns could be generated by using a program called RANDIS, which is implemented within the *INSTANTAN module. In this work, we present an alternative approach to derive the patterned-channel-age model where a simulated-annealing-based algorithm is used to find such patterns, which produce reasonable power distributions.

  3. SARAPAN—A Simulated-Annealing-Based Tool to Generate Random Patterned-Channel-Age in CANDU Fuel Management Analyses

    Directory of Open Access Journals (Sweden)

    Doddy Kastanya

    2017-02-01

    Full Text Available In any reactor physics analysis, the instantaneous power distribution in the core can be calculated when the actual bundle-wise burnup distribution is known. Considering the fact that CANDU (Canada Deuterium Uranium utilizes on-power refueling to compensate for the reduction of reactivity due to fuel burnup, in the CANDU fuel management analysis, snapshots of power and burnup distributions can be obtained by simulating and tracking the reactor operation over an extended period using various tools such as the *SIMULATE module of the Reactor Fueling Simulation Program (RFSP code. However, for some studies, such as an evaluation of a conceptual design of a next-generation CANDU reactor, the preferred approach to obtain a snapshot of the power distribution in the core is based on the patterned-channel-age model implemented in the *INSTANTAN module of the RFSP code. The objective of this approach is to obtain a representative snapshot of core conditions quickly. At present, such patterns could be generated by using a program called RANDIS, which is implemented within the *INSTANTAN module. In this work, we present an alternative approach to derive the patterned-channel-age model where a simulated-annealing-based algorithm is used to find such patterns, which produce reasonable power distributions.

  4. X-ray convergent beam pattern simulation using the Moodie-Wagenfeld equations: 3-beam Laue case

    International Nuclear Information System (INIS)

    Liu, L.; Goodman, P.

    1998-01-01

    Pattern simulations for 3-beam X-ray diffraction are presented, by multi-slice calculations based on Moodie and Wagenfeld's formulation of the X-ray equations, which factorise Maxwell's equations into Dirac format, using circular-polarisation bases. The results are presented in the form of convergent-beam patterns for each diffraction order, using experience gained from CBED (convergent beam electron diffraction) and LACBED (large-angle CBED), since this displays the results in the most compact form. The acronym CBXRAD (convergent-beam X-ray-diffraction) is used for these patterns. Although optics required for the complete patterns is not currently available, capillary focussing is undergoing rapid development, and our simulations define critical angular ranges within reach of current designs. Simulations for light and heavy-atoms structures belonging to the enantiomorphic space-group pair P3 1 21 and P3 2 21, provide clear evidence of chiral interaction between radiation and structure, highlighting divergences from the well studied CBED pattern symmetries. MoKα 1 and TaKα 1 wavelengths were used to minimise absorption for the two structures respectively, although 'anomalous absorption' is always important due to the large thicknesses required (up to 20 mm)

  5. Direct Numerical Simulation of a Compressible Reacting Boundary Layer using a Temporal Slow Growth Homogenization

    Science.gov (United States)

    Topalian, Victor; Oliver, Todd; Ulerich, Rhys; Moser, Robert

    2013-11-01

    A DNS of a compressible, reacting boundary layer flow at Reθ ~ 430 was performed using a temporal slow-growth homogenization, for a multispecies flow model of air at supersonic regime. The overall scenario parameters are related to those of the flow over an ablating surface of a space capsule upon Earth's atmospheric re-entry. The simulation algorithm features Fourier spatial discretization in the streamwise and spanwise directions, B-splines in the wall normal direction, and is marched semi-implicitly in time using the SMR91 scheme. Flow statistics will be presented for relevant flow quantities, in particular those related with RANS modeling. Since analogous slow growth computations can be performed using RANS to predict the flow mean profiles, the use of data gathered from this type of simulation as a vehicle for the calibration and uncertainty quantification of RANS models will be discussed. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

  6. A high precision extrapolation method in multiphase-field model for simulating dendrite growth

    Science.gov (United States)

    Yang, Cong; Xu, Qingyan; Liu, Baicheng

    2018-05-01

    The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.

  7. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    Science.gov (United States)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  8. Optimization of parameters in the simulation of the interdiffusion layer growth in Al-U couples

    International Nuclear Information System (INIS)

    Kniznik, Laura; Alonso, Paula R.; Gargano, Pablo H.; Rubiolo, Gerardo H.

    2009-01-01

    U-Mo alloy dispersed in aluminum is considered as a high U density fuel for research reactors. In and out of pile experiments showed a reaction layer in U-Mo/Al interphase with formation of intermetallics compounds: Al 2 U, Al 3 U and Al 4 U. Under irradiation, porosities originate an unacceptable swelling of the fuel plate. The kinetics of growth of the intermetallic compounds in the U-Mo/Al interphase is treated in the Al 3 U/Al couple as a planar moving boundary problem due to diffusion of Al and U atoms in the direction perpendicular to the interphase surface. Using data from literature, we built a thermodynamic database to be read by the Thermocalc code to calculate phase equilibria. The diffusion problem was carried out by the DICTRA simulation package which articulates data evaluated by Thermocalc with a mobility database. In a previous work we built preliminary databases, for both free energy and mobilities. In the present work, we adjust the parameters from experimental thermodynamic equilibria and concentration profiles existing in literature, and we simulate satisfactorily the growth of the Al 4 U phase. (author)

  9. Inter-dependent tissue growth and Turing patterning in a model for long bone development

    International Nuclear Information System (INIS)

    Tanaka, Simon; Iber, Dagmar

    2013-01-01

    The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH–PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand–receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand–receptor based Turing mechanisms can also result from BMP–receptor, SHH–receptor, and GDNF–receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor–ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature. (paper)

  10. Inter-dependent tissue growth and Turing patterning in a model for long bone development

    Science.gov (United States)

    Tanaka, Simon; Iber, Dagmar

    2013-10-01

    The development of long bones requires a sophisticated spatial organization of cellular signalling, proliferation, and differentiation programs. How such spatial organization emerges on the growing long bone domain is still unresolved. Based on the reported biochemical interactions we developed a regulatory model for the core signalling factors IHH, PTCH1, and PTHrP and included two cell types, proliferating/resting chondrocytes and (pre-)hypertrophic chondrocytes. We show that the reported IHH-PTCH1 interaction gives rise to a Schnakenberg-type Turing kinetics, and that inclusion of PTHrP is important to achieve robust patterning when coupling patterning and tissue dynamics. The model reproduces relevant spatiotemporal gene expression patterns, as well as a number of relevant mutant phenotypes. In summary, we propose that a ligand-receptor based Turing mechanism may control the emergence of patterns during long bone development, with PTHrP as an important mediator to confer patterning robustness when the sensitive Turing system is coupled to the dynamics of a growing and differentiating tissue. We have previously shown that ligand-receptor based Turing mechanisms can also result from BMP-receptor, SHH-receptor, and GDNF-receptor interactions, and that these reproduce the wildtype and mutant patterns during digit formation in limbs and branching morphogenesis in lung and kidneys. Receptor-ligand interactions may thus constitute a general mechanism to generate Turing patterns in nature.

  11. Population Growth and Its Expression in Spatial Built-up Patterns: The Sana’a, Yemen Case Study

    Directory of Open Access Journals (Sweden)

    Gunter Zeug

    2010-04-01

    Full Text Available In light of rapid global urbanisation, monitoring and mapping of urban and population growth is of great importance. Population growth in Sana’a was investigated for this reason. The capital of the Republic of Yemen is a rapidly growing middle sized city where the population doubles almost every ten years. Satellite data from four different sensors were used to explore urban growth in Sana’a between 1989 and 2007, assisted by topographic maps and cadastral vector data. The analysis was conducted by delineating the built-up areas from the various optical satellite data, applying a fuzzy-rule-based composition of anisotropic textural measures and interactive thresholding. The resulting datasets were used to analyse urban growth and changes in built-up density per district, qualitatively as well as quantitatively, using a geographic information system. The built-up area increased by 87 % between 1989 and 2007. Built-up density has increased in all areas, but particularly in the northern and southern suburban districts, also reflecting the natural barrier of surrounding mountain ranges. Based on long-term population figures, geometric population growth was assumed. This hypothesis was used together with census data for 1994 and 2004 to estimate population figures for 1989 and 2007, resulting in overall growth of about 240%. By joining population figures to district boundaries, the spatial patterns of population distribution and growth were examined. Further, urban built-up growth and population changes over time were brought into relation in order to investigate changes in population density per built-up area. Population densities increased in all districts, with the greatest density change in the peripheral areas towards the North. The results reflect the pressure on the city’s infrastructure and natural resources and could contribute to sustainable urban planning in the city of Sana’a.

  12. Numerical simulation of airway dimension effects on airflow patterns and odorant deposition patterns in the rat nasal cavity.

    Directory of Open Access Journals (Sweden)

    Zehong Wei

    Full Text Available The sense of smell is largely dependent on the airflow and odorant transport in the nasal cavity, which in turn depends on the anatomical structure of the nose. In order to evaluate the effect of airway dimension on rat nasal airflow patterns and odorant deposition patterns, we constructed two 3-dimensional, anatomically accurate models of the left nasal cavity of a Sprague-Dawley rat: one was based on high-resolution MRI images with relatively narrow airways and the other was based on artificially-widening airways of the MRI images by referencing the section images with relatively wide airways. Airflow and odorant transport, in the two models, were determined using the method of computational fluid dynamics with finite volume method. The results demonstrated that an increase of 34 µm in nasal airway dimension significantly decreased the average velocity in the whole nasal cavity by about 10% and in the olfactory region by about 12% and increased the volumetric flow into the olfactory region by about 3%. Odorant deposition was affected to a larger extent, especially in the olfactory region, where the maximum odorant deposition difference reached one order of magnitude. The results suggest that a more accurate nasal cavity model is necessary in order to more precisely study the olfactory function of the nose when using the rat.

  13. Effects of simulated Mars conditions on the survival and growth of Escherichia coli and Serratia liquefaciens.

    Science.gov (United States)

    Berry, Bonnie J; Jenkins, David G; Schuerger, Andrew C

    2010-04-01

    Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30 degrees C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl(2), MgSO(4), NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20 degrees C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO(4) maintained at 20 or 30 degrees C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and -50 degrees C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m(-2) for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive

  14. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.

    Science.gov (United States)

    di Stasio, Stefano; Konstandopoulos, Athanasios G; Kostoglou, Margaritis

    2002-03-01

    The agglomeration kinetics of growing soot generated in a diffusion atmospheric flame are here studied in situ by light scattering technique to infer cluster morphology and size (fractal dimension D(f) and radius of gyration R(g)). SEM analysis is used as a standard reference to obtain primary particle size D(P) at different residence times. The number N(P) of primary particles per aggregate and the number concentration n(A) of clusters are evaluated on the basis of the measured angular patterns of the scattered light intensity. The major finding is that the kinetics of the coagulation process that yields to the formation of chain-like aggregates by soot primary particles (size 10 to 40 nm) can be described with a constant coagulation kernel beta(c,exp)=2.37x10(-9) cm3/s (coagulation constant tau(c) approximately = 0.28 ms). This result is in nice accord with the Smoluchowski coagulation equation in the free molecular regime, and, vice versa, it is in contrast with previous studies conducted by invasive (ex situ) techniques, which claimed the evidence in flames of coagulation rates much larger than the kinetic theory predictions. Thereafter, a number of numerical simulations is implemented to compare with the experimental results on primary particle growth rate and on the process of aggregate reshaping that is observed by light scattering at later residence times. The restructuring process is conjectured to occur, for not well understood reasons, as a direct consequence of the atomic rearrangement in the solid phase carbon due to the prolonged residence time within the flame. Thus, on one side, it is shown that the numerical simulations of primary size history compare well with the values of primary size from SEM experiment with a growth rate constant of primary diameter about 1 nm/s. On the other side, the evolution of aggregate morphology is found to be predictable by the numerical simulations when the onset of a first-order "thermal" restructuring mechanism is

  15. Agent-Based Simulation of School Choice in Bandung, Indonesia: The Emergence of Enrolment Pattern Trough Individual Preferences

    Directory of Open Access Journals (Sweden)

    Dhanan Sarwo Utomo

    2012-01-01

    Full Text Available This study is motivated by the reality that school choice programs that is currently implemented in Bandung that, always resulting student deficit (lack of student in some schools. In this study, a mechanism that can describe how the enrollment pattern in a school choice program emerge as a result of individual preferences of the prospective students, is constructed. Using computer simulation, virtual experiments are conducted. In these experiments, the enrollment patterns and the number of student deficit that were resulted by various school choice program configurations are analyzed. Based on the experiment results, modification of the current program that can minimize the number of student deficit can be purposed.Keywords: agent-based simulation, school choice, computer simulation

  16. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun

    2014-06-25

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  17. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun; Attili, Antonio; Alshaarawi, Amjad; Bisetti, Fabrizio

    2014-01-01

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  18. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    Science.gov (United States)

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.

  19. Justification of a Monte Carlo Algorithm for the Diffusion-Growth Simulation of Helium Clusters in Materials

    International Nuclear Information System (INIS)

    Yu-Lu, Zhou; Ai-Hong, Deng; Qing, Hou; Jun, Wang

    2009-01-01

    A theoretical analysis of a Monte Carlo (MC) method for the simulation of the diffusion-growth of helium clusters in materials is presented. This analysis is based on an assumption that the diffusion-growth process consists of first stage, during which the clusters diffuse freely, and second stage in which the coalescence occurs with certain probability. Since the accuracy of MC simulation results is sensitive to the coalescence probability, the MC calculations in the second stage is studied in detail. Firstly, the coalescence probability is analytically formulated for the one-dimensional diffusion-growth case. Thereafter, the one-dimensional results are employed to justify the MC simulation. The choice of time step and the random number generator used in the MC simulation are discussed

  20. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA Model

    Directory of Open Access Journals (Sweden)

    Courage Kamusoko

    2015-04-01

    Full Text Available Sustainable urban planning and management require reliable land change models, which can be used to improve decision making. The objective of this study was to test a random forest-cellular automata (RF-CA model, which combines random forest (RF and cellular automata (CA models. The Kappa simulation (KSimulation, figure of merit, and components of agreement and disagreement statistics were used to validate the RF-CA model. Furthermore, the RF-CA model was compared with support vector machine cellular automata (SVM-CA and logistic regression cellular automata (LR-CA models. Results show that the RF-CA model outperformed the SVM-CA and LR-CA models. The RF-CA model had a Kappa simulation (KSimulation accuracy of 0.51 (with a figure of merit statistic of 47%, while SVM-CA and LR-CA models had a KSimulation accuracy of 0.39 and −0.22 (with figure of merit statistics of 39% and 6%, respectively. Generally, the RF-CA model was relatively accurate at allocating “non-built-up to built-up” changes as reflected by the correct “non-built-up to built-up” components of agreement of 15%. The performance of the RF-CA model was attributed to the relatively accurate RF transition potential maps. Therefore, this study highlights the potential of the RF-CA model for simulating urban growth.

  1. Study on the Growth of Holes in Cold Spraying via Numerical Simulation and Experimental Methods

    Directory of Open Access Journals (Sweden)

    Guosheng Huang

    2016-12-01

    Full Text Available Cold spraying is a promising method for rapid prototyping due to its high deposition efficiency and high-quality bonding characteristic. However, many researchers have noticed that holes cannot be replenished and will grow larger and larger once formed, which will significantly decrease the deposition efficiency. No work has yet been done on this problem. In this paper, a computational simulation method was used to investigate the origins of these holes and the reasons for their growth. A thick copper coating was deposited around the pre-drilled, micro-size holes using a cold spraying method on copper substrate to verify the simulation results. The results indicate that the deposition efficiency inside the hole decreases as the hole become deeper and narrower. The repellant force between the particles perpendicular to the impaction direction will lead to porosity if the particles are too close. There is a much lower flattening ratio for successive particles if they are too close at the same location, because the momentum energy contributes to the former particle’s deformation. There is a high probability that the above two phenomena, resulting from high powder-feeding rate, will form the original hole, which will grow larger and larger once it is formed. It is very important to control the powder feeding rate, but the upper limit is yet to be determined by further simulation and experimental investigation.

  2. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    Science.gov (United States)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  3. Longitudinal burnout-collaboration patterns in Japanese medical care workers at special needs schools: a latent class growth analysis

    Directory of Open Access Journals (Sweden)

    Kanayama M

    2016-06-01

    Full Text Available Mieko Kanayama,1 Machiko Suzuki,1 Yoshikazu Yuma2 1Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan; 2Department of Human Development Education, Graduate School of Education, Hyogo University of Teacher Education, Kato, Hyogo, Japan Abstract: The present study aimed to identify and characterize potential burnout types and the relationship between burnout and collaboration over time. Latent class growth analysis and the growth mixture model were used to identify and characterize heterogeneous patterns of longitudinal stability and change in burnout, and the relationship between burnout and collaboration. We collected longitudinal data at three time points based on Japanese academic terms. The 396 study participants included academic teachers, yogo teachers, and registered nurses in Japanese special needs schools. The best model included four types of both burnout and collaboration in latent class growth analysis with intercept, slope, and quadratic terms. The four types of burnout were as follows: low stable, moderate unstable, high unstable, and high decreasing. They were identified as involving inverse collaboration function. The results indicated that there could be dynamic burnout types, namely moderate unstable, high unstable, and high decreasing, when focusing on growth trajectories in latent class analyses. The finding that collaboration was dynamic for dynamic burnout types and stable for stable burnout types is of great interest. This was probably related to the inverse relationship between the two constructs. Keywords: burnout, collaboration, latent class growth analysis, interprofessional care, special needs schools

  4. Spatio-temporal landscape modeling of urban growth patterns in Dhanbad Urban Agglomeration, India using geoinformatics techniques

    Directory of Open Access Journals (Sweden)

    Kanhaiya Lal

    2017-06-01

    Full Text Available The study deals with the quantification of urban sprawl and land transformation of Dhanbad Urban Agglomeration (DUA using geoinformatics and gradient modeling during last four decades (1972–2011. Various multi-temporal satellite images viz., MSS (1972, ETM+ (1999, 2011 and digital elevation model (CARTOSAT I, 2006 were used to analyse the urban expansion, land transformation, growth directions, and spatial segregations within the urban landscape to develop an understanding the nature of built-up growth in DUA. The urban area increased from 10.33 km2 to 46.70 km2 (352.08% along with high rate of population growth (160.07% during 1972–2011 exhibiting population densification in DUA. The study reveals that coal mining based city faced significant land use transformation converting vegetation (−41.33% into built-up land (352.08% exhibiting loss of productive lands for the expansion of impervious surface. The per year urban growth exhibited increasing urban growth from 0.4 km2/year to 1.51 km2/year during 1972–1999 and 1999–2011 periods with overall growth of 332.73%. The built-up growth on varied elevation zones exhibits that the elevation zones 150–200 m is the most preferred (79.01% for urban development with high growth (541.74%. The gradient modeling represents that the percentage of land (built-up gradually increased from 3.48% to 15.74% during 1972–2011. The result exhibited that the major growth took place in south-west direction followed by south direction in haphazard manner during 1971–99 period, whereas predominant built-up development was observed in north, south and south-west direction during 1999–2011 period, majorly within the municipal limits. The study provides an analytical method to evaluate the built-up growth patterns of an urban milieu combining geoinformatics and landscape matrix. The built-up growth in DUA indicates urgent imposition of building bylaws along with zoning (land use, height and density

  5. Effect of Strain Restored Energy on Abnormal Grain Growth in Mg Alloy Simulated by Phase Field Methods

    Science.gov (United States)

    Wu, Yan; Huang, Yuan-yuan

    2018-03-01

    Abnormal grain growth of single phase AZ31 Mg alloy in the spatio-temporal process has been simulated by phase field models, and the influencing factors of abnormal grain growth are studied in order to find the ways to control secondary recrystallization in the microstructure. The study aims to find out the mechanisms for abnormal grain growth in real alloys. It is shown from the simulated results that the abnormal grain growth can be controlled by the strain restored energy. Secondary recrystallization after an annealing treatment can be induced if there are grains of a certain orientation in the microstructure with local high restored energy. However, if the value of the local restored energy at a certain grain orientation is not greater than 1.1E 0, there may be no abnormal grain growth in the microstructure.

  6. Numerical simulation of variance of solar radiation and its influence on wheat growth

    Science.gov (United States)

    Zhang, Xuefen; Wang, Chunyi; Du, Zixuan; Zhai, Wei

    2007-09-01

    The growth of crops is directly related to solar radiation whose variances influence the photosynthesis of crops and the growth momentum thereof. This dissertation has Zhengzhou, which located in the Huanghuai Farmland Ecological System of China, as an example to analyze the rules of variances of total solar radiation, direct radiation and diffusive radiation. With the help of linear trend fitting, it is identified that total radiation (TR) drops as a whole at a rate of 1.6482J/m2. Such drop has been particularly apparent in recent years with a period of 7 to 16 years; diffusive radiation (DF) tends to increase at a rate of 15.149 J/m2 with a period of 20 years; direct radiation (DR) tends to drop at a rate of 15.843 J/m2 without apparent period. The total radiation has been on the decrease ever since 1980 during the growth period of wheat. Having modified relevant Parameter in the Carbon and Nitrogen Biogeochemistry in Agroecosystems Model (DNDC) model and simulated the influence of solar radiation variances on the development phase, leaf area index (LAI), grain weight, etc during the growth period of wheat, it is found that solar radiation is in positive proportion to LAI and grain weight (GRNWT) but not apparently related to development phase (DP). The change of total radiation delays the maximization of wheat LAI, reduces wheat LAI before winter but has no apparent effect in winter and decreases wheat LAI from jointing period to filling period; it has no apparent influence on grain formation at the early stage of grain formation, slows down the weight increase of grains during the filling period and accelerates the weight increase of grains at the end of filling period. Variance of radiations does not affect the DP of wheat much.

  7. Chronotype, sleep loss, and diurnal pattern of salivary cortisol in a simulated daylong driving.

    Science.gov (United States)

    Oginska, Halszka; Fafrowicz, Magdalena; Golonka, Krystyna; Marek, Tadeusz; Mojsa-Kaja, Justyna; Tucholska, Kinga

    2010-07-01

    The study focused on chronotype-related differences in subjective load assessment, sleepiness, and salivary cortisol pattern in subjects performing daylong simulated driving. Individual differences in work stress appraisal and psychobiological cost of prolonged load seem to be of importance in view of expanding compressed working time schedules. Twenty-one healthy, male volunteers (mean +/- SD: 27.9 +/- 4.9 yrs) were required to stay in semiconstant routine conditions. They performed four sessions (each lasting approximately 2.5 h) of simulated driving, i.e., completed chosen tasks from computer driving games. Saliva samples were collected after each driving session, i.e., at 10:00-11:00, 14:00-15:00, 18:00-19:00, and 22:00-23:00 h as well as 10-30 min after waking (between 05:00 and 06:00 h) and at bedtime (after 00:00 h). Two subgroups of subjects were distinguished on the basis of the Chronotype Questionnaire: morning (M)- and evening (E)-oriented types. Subjective data on sleep need, sleeping time preferences, sleeping problems, and the details of the preceding night were investigated by questionnaire. Subjective measures of task load (NASA Task Load Index [NASA-TLX]), activation (Thayer's Activation-Deactivation Adjective Check List [AD ACL]), and sleepiness (Karolinska Sleepiness Scale [KSS]) were applied at times of saliva samples collection. M- and E-oriented types differed significantly as to their ideal sleep length (6 h 54 min +/- 44 versus 8 h 13 min +/- 50 min), preferred sleep timing (midpoint at 03:19 versus 04:26), and sleep index, i.e., 'real-to-ideal' sleep ratio, before the experimental day (0.88 versus 0.67). Sleep deficit proved to be integrated with eveningness. M and E types exhibited similar diurnal profiles of energy, tiredness, tension, and calmness assessed by AD ACL, but E types estimated higher their workload (NASA-TLX) and sleepiness (KSS). M types exhibited a trend of higher mean cortisol levels than E types (F = 4.192, p < .056) and

  8. Growth Patterns of HIV Infected Indian Children in Response to ART: A Clinic Based Cohort Study.

    Science.gov (United States)

    Parchure, Ritu S; Kulkarni, Vinay V; Darak, Trupti S; Mhaskar, Rahul; Miladinovic, Branko; Emmanuel, Patricia J

    2015-06-01

    To describe catch-up growth after antiretroviral therapy (ART) initiation among children living with human immunodeficiency virus (CLHIV), attending a private clinic in India. This is a retrospective analysis of data of CLHIV attending Prayas clinic, Pune, India. Height and weight z scores (HAZ, WAZ) were calculated using WHO growth charts. Catch-up growth post-ART was assessed using a mixed method model in cases where baseline and at least one subsequent follow-up HAZ/WAZ were available. STATA 12 was used for statistical analysis. During 1998 to 2011, 466 children were enrolled (201 girls and 265 boys; median age = 7 y). A total of 302 children were ever started on ART; of which 73 and 76 children were included for analysis for catch up growth in WAZ and HAZ respectively. Median WAZ and HAZ increased from -2.14 to -1.34 (p = 0.007) and -2.42 to -1.94 (p = 0.34), respectively, 3 y post ART. Multivariable analysis using mixed model (adjusted for gender, guardianship, baseline age, baseline WAZ/HAZ, baseline and time varying WHO clinical stage) showed gains in WAZ (coef = 0.2, 95 % CI: -0.06 to 0.46) and HAZ (coef = 0.49, 95 % CI: 0.21 to 0.77) with time on ART. Lower baseline WAZ/HAZ and older age were associated with impaired catch-up growth. Children staying in institutions and with baseline advanced clinical stage showed higher gain in WAZ. The prevalence of stunting and underweight was high at ART initiation. Sustained catch-up growth was seen with ART. The study highlights the benefit of early ART in achieving normal growth in CLHIV.

  9. Growth

    Science.gov (United States)

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  10. Simulating the mammalian blastocyst--molecular and mechanical interactions pattern the embryo.

    Directory of Open Access Journals (Sweden)

    Pawel Krupinski

    2011-05-01

    Full Text Available Mammalian embryogenesis is a dynamic process involving gene expression and mechanical forces between proliferating cells. The exact nature of these interactions, which determine the lineage patterning of the trophectoderm and endoderm tissues occurring in a highly regulated manner at precise periods during the embryonic development, is an area of debate. We have developed a computational modeling framework for studying this process, by which the combined effects of mechanical and genetic interactions are analyzed within the context of proliferating cells. At a purely mechanical level, we demonstrate that the perpendicular alignment of the animal-vegetal (a-v and embryonic-abembryonic (eb-ab axes is a result of minimizing the total elastic conformational energy of the entire collection of cells, which are constrained by the zona pellucida. The coupling of gene expression with the mechanics of cell movement is important for formation of both the trophectoderm and the endoderm. In studying the formation of the trophectoderm, we contrast and compare quantitatively two hypotheses: (1 The position determines gene expression, and (2 the gene expression determines the position. Our model, which couples gene expression with mechanics, suggests that differential adhesion between different cell types is a critical determinant in the robust endoderm formation. In addition to differential adhesion, two different testable hypotheses emerge when considering endoderm formation: (1 A directional force acts on certain cells and moves them into forming the endoderm layer, which separates the blastocoel and the cells of the inner cell mass (ICM. In this case the blastocoel simply acts as a static boundary. (2 The blastocoel dynamically applies pressure upon the cells in contact with it, such that cell segregation in the presence of differential adhesion leads to the endoderm formation. To our knowledge, this is the first attempt to combine cell-based spatial

  11. Simulating The Change In Agricultural Fruit Patterns In The Context of River Basin Modelling

    Science.gov (United States)

    Kloecking, B.; Laue, K.; Stroebl, B.

    A new concept has been developed for the integrated analysis of impacts of Global Change and direct human activities on the environment and the society in mesoscale river basins. The main steps of this approach are: (1) Developing a set of regional scenarios of change considering expected changes in climate, economic, demographic and social development, (2) Identification of indicators of sustainability for the impact assessment, (3) Impact analysis of the defined scenarios of development, (4) Evalu- ation of the different scenarios on the basis of the impact analysis to elaborate new stategies in regional development. All steps include consultations with actors and stakeholders. The concept is applied in the western part of Thuringia (7.500 km2), covering the basin of the Unstrut river. This part of the German Elbe river basin is highly suited for food production under the present conditions. Therefore it is a good site for vulnerability studies focused on agriculture. The development of agricultural land-use scenarios for the Unstrut region will be done in form of a bottom-up approach based on adaptation reactions of example farms within the expected boundary condi- tions such as the global food markets and other global economic trends as well as in- ternational agreements. Representing the present conditions in Thuringia, a referential land-use scenario was developed, assuming a complete realisation of the AGENDA 2000 resolutions. Impacts of changed land use in combination with climate change scenarios on plant production and on availability and quality of water are been inves- tigated with the help of a spatial distributed river basin model. A GIS-based approach was developed to locate the spatially not explicit land use scenarios. This approach allows to reproduce the agricultural fruit patterns of a region in a river basin model without taking into account the real field boundaries. First simulation results for the referential climate and land-use scenario

  12. The memory template in Drosophila pattern vision at the flight simulator.

    Science.gov (United States)

    Ernst, R;