WorldWideScience

Sample records for pattern formation process

  1. Signal Processing, Pattern Formation and Adaptation in Neural Oscillators

    Science.gov (United States)

    2016-11-29

    rhythmic patterns. As such, our models are appropriate for describing various phenomena in the auditory system, including critical nonlinear...several distinct intrinsic behaviors available near a Hopf bifurcation or a Bautin (a.k.a. double limit cycle) bifurcation. Stability analysis shows...example the perception of pitch at event timescales (Meddis & O’Mard, 2006) and the perception of pulse and meter at rhythmic timescales (Large

  2. [Study on formation process of honeycomb pattern in dielectric barrier discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Zhu, Ping; Yang, Jing; Zhang, Yu

    2014-04-01

    The authors report on the first investigation of the variations in the plasma parameters in the formation process of the honeycomb pattern in a dielectric barrier discharge by optical emission spectrum in argon and air mixture. The discharge undergoes hexagonal lattice, concentric spot-ring pattern and honeycomb pattern with the applied voltage increasing. The molecular vibration temperature, electron excitation temperature and electronic density of the three kinds of patterns were investigated by the emission spectra of nitrogen band of second positive system (C3pi(u) --> B3 pi(g)), the relative intensity ratio method of spectral lines of Ar I 763.51 nm (2P(6) --> 1S(5)) and Ar I 772.42 nm (2P(2) -->1S(3)) and the broadening of spectral line 696.5 nm respectively. It was found that the molecular vibration temperature and electron excitation temperature of the honeycomb pattern are higher than those of the hexagonal lattice, but the electron density of the former is lower than that of the latter. The discharge powers of the patterns were also measured with the capacitance method. The discharge power of the honeycomb pattern is much higher than that of the hexagonal lattice. These results are of great importance to the formation mechanism of the patterns in dielectric barrier discharge.

  3. Brittle fracture in viscoelastic materials as a pattern-formation process

    Science.gov (United States)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  4. Pattern formation in optical resonators

    International Nuclear Information System (INIS)

    Weiss, C O; Larionova, Ye

    2007-01-01

    We review pattern formation in optical resonators. The emphasis is on 'particle-like' structures such as vortices or spatial solitons. On the one hand, similarities impose themselves with other fields of physics (condensed matter, phase transitions, particle physics, fluds/super fluids). On the other hand the feedback is led by the resonator mirrors to bi- and multi-stability of the spatial field structure, which is the basic ingredient for optical information processing. The spatial dimension or the 'parallelism' is the strength of optics compared to electronics (and will have to be employed to fully use the advantages optics offers in information processing). But even in the 'serial' processing tasks of telecoms (e.g. information buffering) spatial resonator solitons can do better than the schemes proposed so far-including 'slow light'. Pattern formation in optical resonators will likely be the key to brain-like information processing like cognition, learning and association; to complement the precise but limited algorithmic capabilities of electronic processing. But even in the short term it will be useful for solving serial optical processing problems. The prospects for technical uses of pattern formation in resonators are one motivation for this research. The fundamental similarities with other fields of physics, on the other hand, inspire transfer of concepts between fields; something that has always proven fruitful for gaining deeper insights or for solving technical problems

  5. Pattern formation during electropolishing

    International Nuclear Information System (INIS)

    Yuzhakov, V.V.; Chang, H.; Miller, A.E.

    1997-01-01

    Using atomic force microscopy, we find that the surface morphology of a dissolving aluminum anode in a commercial electropolishing electrolyte can exhibit both highly regular and randomly packed stripe and hexagonal patterns with amplitudes of about 5 nm and wavelengths of 100 nm. The driving instability of this pattern formation phenomenon is proposed to be the preferential adsorption of polar or polarizable organic molecules on surface ridges where the contorted double layer produces a higher electric potential gradient. The enhanced relative coverage shields the anode and induces a smaller dissolution rate at the ridges. The instability is balanced by surface diffusion of the adsorbate to yield a length scale of 4π(D s /k d ) 1/2 , where D s is the surface diffusivity and k d is the desorption coefficient of the adsorbate, which correlates well with the measured wavelength. A long-wavelength expansion of the double-layer field yields an interface evolution equation that reproduces all of the observed patterns. In particular, bifurcation analysis and numerical simulation yield a single voltage-dependent dimensionless parameter ξ that measures a balance between smoothing of adsorbate concentration by electric-field-dependent surface diffusion and fluctuation due to interfacial curvature and stretching. Randomly oriented stripes are favored at large ξ (low voltage), while random hills dominate at small ξ (high voltage) with perfectly periodic stripes and hexagonal hill patterns within a small window near ξ=1. These predictions are in qualitative and quantitative agreement with our measurements. copyright 1997 The American Physical Society

  6. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  7. Understanding Alliance Formation Patterns

    Science.gov (United States)

    2015-12-01

    military, transportation, and communications technologies, which caused every place in the world to be politically significant. Second, “divisions of power...test a similar claim about the association between distance and dyadic alliance formation. In their first model, in which they use the complete data...1885 to 1990] are positively related to dyadic trade levels, and that their non- defense-pact counterparts are not significantly related to trade in

  8. A theory of biological pattern formation

    OpenAIRE

    Gierer, Alfred; Meinhardt, H.

    2006-01-01

    The paper addresses the formation of striking patterns within originally near-homogenous tissue, the process prototypical for embryology, and represented in particularly puristic form by cut sections of hydra regenerating a complete animal with head and foot. Essential requirements are autocatalytic, self-enhancing activation, combined with inhibitory or depletion effects of wider range - “lateral inhibition”. Not only de-novo-pattern formation, but also well known, striking features of devel...

  9. Pattern formations and oscillatory phenomena

    CERN Document Server

    Kinoshita, Shuichi

    2013-01-01

    Patterns and their formations appear throughout nature, and are studied to analyze different problems in science and make predictions across a wide range of disciplines including biology, physics, mathematics, chemistry, material science, and nanoscience. With the emergence of nanoscience and the ability for researchers and scientists to study living systems at the biological level, pattern formation research has become even more essential. This book is an accessible first of its kind guide for scientists, researchers, engineers, and students who require a general introduction to thi

  10. The Role of Relative Sea Level Changes in Diagenetic Processes and Stacking Pattern of Kangan Formation Sediments in one of the Persian Gulf Fields

    Directory of Open Access Journals (Sweden)

    حسن اشراقی

    2016-01-01

    Full Text Available The Lower to Middle Triassic aged Kangan Formation is one of the most significant carbonate gas reservoirs in Iranian territory. In this study, thin sections data were used to recognize microfacies, sedimentary environments and the interaction between diagenetic processes and facies stacking pattern in a sequence stratigraphic framework. Petrographic studies leaded to recognition of eight microfacies related to three facies belts including tidal flat, lagoon and shoal. Moreover, the observed microfacies patterns indicate a ramp carbonate platform as depositional environment for this carbonate succession. The main diagenetic processes of Kangan Formation include micritization, isopachous and fibrous cements (primary marine diagenesis, dissolution and moldic porosity (meteoric diagenesis, compaction and stylolitization (secondary diagenesis. Based on facies changes, two third-order sequences were specified, each of which could be divided into two systems tracts including transgressive systems tract (TST and highstand systems tract (HST. In addition, sequence boundaries were identified with bedded, massive and nodular anhydrite. These facies, that are indicative of maximum sea level fall, were deposited in hypersaline lagoons. There is a close association between diagenetic processes and relative sea level changes of Kangan Formation, so that diagenetic processes of studied succession have been controlled by sediments stacking patterns during transgression and regression of sea level. During the transgression, the main diagenetic processes in shoal facies are marine cementation and dolomitization in lagoon and tidal flat facies. However, during the sea level fall, these processes include dissolution in shoal facies and dolomitization, anhydrite nodule formation and cementation in lagoon and tidal flat settings.

  11. Blood drop patterns: Formation and applications.

    Science.gov (United States)

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  12. Vascular pattern formation in plants.

    Science.gov (United States)

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  14. In situ analysis of negative-tone resist pattern formation using organic-solvent-based developer process

    Science.gov (United States)

    Santillan, Julius Joseph; Yamada, Keisaku; Itani, Toshiro

    2014-01-01

    In situ resist “pattern formation” analysis during the development process using high-speed atomic force microscopy has been improved for application not only for conventional aqueous 0.26 N tetramethylammonium hydroxide (aq. TMAH), but also organic solvent n-butyl acetate (nBA) developers. Comparative investigations of resist dissolution in these developers, using the same resist material (hybrid of polyhydroxystyrene and methacrylate), showed a grainlike, uniform dissolution of the “unexposed resist film” in nBA development and uneven dissolution of the “exposed resist film” in aq. TMAH development. These results suggest the importance of dissolution uniformity in further improving the resulting pattern line width roughness.

  15. Analysis of orientation patterns in Olduvai Bed I assemblages using GIS techniques: implications for site formation processes.

    Science.gov (United States)

    Benito-Calvo, Alfonso; de la Torre, Ignacio

    2011-07-01

    Mary Leakey's excavations at Olduvai Beds I and II provided an unparalleled wealth of data on the archaeology of the early Pleistocene. We have been able to obtain axial orientations of the Bed I bone and stone tools by applying GIS methods to the site plans contained in the Olduvai Volume 3 monograph (Leakey, 1971). Our analysis indicates that the Bed I assemblages show preferred orientations, probably caused by natural agents such as water disturbance. These results, based on new GIS techniques applied to paleoanthropological studies, have important implications for the understanding of the formative agents of Olduvai sites and the behavioral meaning of the bone and lithic accumulations in Bed I. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge....

  17. Pattern formation, logistics, and maximum path probability

    Science.gov (United States)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are

  18. THE ALLIANCE FORMATION PROCESS

    OpenAIRE

    Whipple, Judith M.; Frankel, Robert

    1998-01-01

    While interest in developing strategic alliances within the food system continues to increase, there remains considerable risk when firms adopt such a cooperative strategy. The risk is due in part to the lack of concrete guidelines that illustrate the steps or stages of alliance development and the important strategic and operational decisions required at each stage. The existence of such guidelines would facilitate alliance formation and enable managers and researchers to better understand a...

  19. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  20. Regular pattern formation in real ecosystems

    NARCIS (Netherlands)

    Rietkerk, Max; Koppel, Johan van de

    2008-01-01

    Localized ecological interactions can generate striking large-scale spatial patterns in ecosystems through spatial self-organization. Possible mechanisms include oscillating consumer–resource interactions, localized disturbance-recovery processes and scale-dependent feedback. Despite abundant

  1. Pattern formation in superdiffusion Oregonator model

    Science.gov (United States)

    Feng, Fan; Yan, Jia; Liu, Fu-Cheng; He, Ya-Feng

    2016-10-01

    Pattern formations in an Oregonator model with superdiffusion are studied in two-dimensional (2D) numerical simulations. Stability analyses are performed by applying Fourier and Laplace transforms to the space fractional reaction-diffusion systems. Antispiral, stable turing patterns, and travelling patterns are observed by changing the diffusion index of the activator. Analyses of Floquet multipliers show that the limit cycle solution loses stability at the wave number of the primitive vector of the travelling hexagonal pattern. We also observed a transition between antispiral and spiral by changing the diffusion index of the inhibitor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Research Foundation of Education Bureau of Hebei Province, China (Grant Nos. Y2012009 and ZD2015025), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project.

  2. Process for fracturing underground formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O M

    1974-01-25

    This invention concerns a process for fracturing underground formations and has as one object the mixing of viscous compositions. Through a borehole, a fluid is injected into the formation. This fluid contains a complex prepared by the reaction of an aliphatic quaternary ammonium compound with a water-soluble compound chosen from monosaccharides, disaccharides, trisaccharides, polysaccharides, and synthetic hydroxylated polymers with long chains. These complexes are formed at temperatures between 20/sup 0/ and 205/sup 0/C. The process also includes production of formation fluid into the borehole.

  3. Emergent pattern formation in an interstitial biofilm

    Science.gov (United States)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  4. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....

  5. The multifaceted planetesimal formation process

    DEFF Research Database (Denmark)

    Johansen, Anders; Blum, Jürgen; Tanaka, Hidekazu

    2013-01-01

    Accumulation of dust and ice particles into planetesimals is an important step in the planet formation process. Planetesimals are the seeds of both terrestrial planets and the solid cores of gas and ice giants forming by core accretion. Left-over planetesimals in the form of asteroids, trans...... for planetesimal formation where particle growth starts unaided by self-gravity but later proceeds inside gravitationally collapsing pebble clumps to form planetesimals with a wide range of sizes....

  6. Patterns of Software Development Process

    Directory of Open Access Journals (Sweden)

    Sandro Javier Bolaños Castro

    2011-12-01

    Full Text Available "Times New Roman","serif";mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA">This article presents a set of patterns that can be found to perform best practices in software processes that are directly related to the problem of implementing the activities of the process, the roles involved, the knowledge generated and the inputs and outputs belonging to the process. In this work, a definition of the architecture is encouraged by using different recurrent configurations that strengthen the process and yield efficient results for the development of a software project. The patterns presented constitute a catalog, which serves as a vocabulary for communication among project participants [1], [2], and also can be implemented through software tools, thus facilitating patterns implementation [3]. Additionally, a tool that can be obtained under GPL (General Public license is provided for this purpose

  7. Pattern formation and chaos in synergetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Haken, H

    1985-01-01

    A general approach to the reduction of the equations of systems composed of many subsystems of equations for, in general, few order parameters at instability points is sketched. As special case generalized Ginzburg-Landau equations are obtained. Recent results based on these equations, showing pattern formation in the convection instability and flames, are presented. Bifurcations from tori to other tori are treated, and some general conclusions are drawn. Analogies between fluid dynamics and lasers which led to the prediction of laser light chaos by Haken (1975) are pointed out. Finally the suspension of a class of discrete one-dimensional maps is discussed and explicitly presented for a typical case. 21 references.

  8. Pattern formation on Ge by low energy ion beam erosion

    International Nuclear Information System (INIS)

    Teichmann, Marc; Lorbeer, Jan; Frost, Frank; Rauschenbach, Bernd; Ziberi, Bashkim

    2013-01-01

    Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies (⩽ 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection. (paper)

  9. MEDICAL STUDENTS’ FEEDBACK ABOUT FORMATIVE ASSESSMENT PATTERN

    Directory of Open Access Journals (Sweden)

    Navajothi

    2016-03-01

    Full Text Available BACKGROUND Pharmacology is the toughest subject in the II MBBS syllabus. Students have to memorise a lot about the drugs’ name and classification. We are conducting internal assessment exams after completion of each system. Number of failures will be more than 60% in the internal assessments conducted during first six months of II MBBS course. AIM To assess the formative assessment pattern followed in our institution with the students’ feedback and modify the pattern according to the students’ feedback. SETTINGS & DESIGN Prospective Observational Study conducted at Department of Pharmacology, Government Sivagangai Medical College, Sivagangai, Tamil Nadu. MATERIALS AND METHODS Questionnaire was prepared and distributed to the 300 students of Government Sivagangai Medical College and feedback was collected. Data collected was analysed in Microsoft Excel 2007 version. RESULTS Received feedback from 274 students. Most (80% of the students wanted to attend the tests in all systems. Monthly assessment test was preferred by 47% of the students. Students who preferred to finish tests before holidays was 57%. Most (56% of the students preferred tests for 1 hour. Multiple choice question (MCQ type was preferred by 43%, which is not a routine question pattern. Only 7% preferred viva. Recall type of questions was preferred by 41% of the students. CONCLUSION In our institution, internal assessment is conducted as per the students’ mind setup. As the feedback has been the generally followed one, we will add MCQs in the forthcoming tests. Application type questions will be asked for more marks than Recall type of questions.

  10. Dewetting-mediated pattern formation inside the coffee ring

    Science.gov (United States)

    Li, Weibin; Lan, Ding; Wang, Yuren

    2017-04-01

    The rearrangement of particles in the final stage of droplet evaporation has been investigated by utilizing differential interference contrast microscopy and the formation mechanism of a network pattern inside a coffee ring has been revealed. A tailored substrate with a circular hydrophilic domain is prepared to obtain thin liquid film containing monolayer particles. Real-time bottom-view images show that the evolution of a dry patch could be divided into three stages: rupture initiation, dry patch expansion, and drying of the residual liquid. A growing number of dry patches will repeat these stages to form the network patterns inside the ringlike stain. It can be shown that the suction effect promotes the rupture of the liquid film and the formation of the dry patch. The particle-assembling process is totally controlled by the liquid film dewetting and dominated by the surface tension of the liquid film, which eventually determine the ultimate deposition patterns.

  11. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  12. Nuclear processing during star formation

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    A preliminary survey was conducted of the thermonuclear energy release expected during star formation. The destruction of primordial deuterium provides substantial amounts of energy at surprisingly low temperatures, and must be considered in any meaningful treatment of star formation carried to stages in which the internal temperature exceeds a few hundred thousand degrees. Significant energy generation from consumption of initial lithium requires higher temperatures, of the order of a few million degrees. Depletion of primordial beryllium and boron may never provide an important energy source. The approach to equilibrium of the carbon--nitrogen cycle is dominant at temperatures approaching those characteristic of the central regions of main sequence stars. The present calculation should serve as a useful guide in choosing those nuclear processes to be included in a more detailed study. 8 figures, 2 tables

  13. On the physical basis of pattern formation in nonlinear systems

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Lozneanu, E.; Popescu, S.

    2003-01-01

    Spatial, respectively spatiotemporal patterns appear in a gaseous conductor (plasma) when an external constraint produces a local gradient of electron kinetic energy. Under such conditions, collective quantum effects related to the spatial separation of the excitation and ionization cross-sections determine the appearance of adjacent opposite space charges. The state of the resulting space charge configuration depends on the self-enhancement process of positive ions production, which destabilizes the system. Thus, a spatial pattern in the form of a stable double layer appears after self-organization when the above gradient is smaller than that for which the double layer transits into a moving phase (spatiotemporal pattern). The proposed explanation, based on investigations performed on self-organization phenomena observed in gaseous conductors, suggests a new possibility to clarify the challenging problems concerning the actual physical basis of pattern formation in semiconductors

  14. Simulating discrete models of pattern formation by ion beam sputtering

    International Nuclear Information System (INIS)

    Hartmann, Alexander K; Kree, Reiner; Yasseri, Taha

    2009-01-01

    A class of simple, (2+1)-dimensional, discrete models is reviewed, which allow us to study the evolution of surface patterns on solid substrates during ion beam sputtering (IBS). The models are based on the same assumptions about the erosion process as the existing continuum theories. Several distinct physical mechanisms of surface diffusion are added, which allow us to study the interplay of erosion-driven and diffusion-driven pattern formation. We present results from our own work on evolution scenarios of ripple patterns, especially for longer timescales, where nonlinear effects become important. Furthermore we review kinetic phase diagrams, both with and without sample rotation, which depict the systematic dependence of surface patterns on the shape of energy depositing collision cascades after ion impact. Finally, we discuss some results from more recent work on surface diffusion with Ehrlich-Schwoebel barriers as the driving force for pattern formation during IBS and on Monte Carlo simulations of IBS with codeposition of surfactant atoms.

  15. Patterns and Meanings of English Words through Word Formation Processes of Acronyms, Clipping, Compound and Blending Found in Internet-Based Media

    Directory of Open Access Journals (Sweden)

    Rio Rini Diah Moehkardi

    2017-02-01

    Full Text Available This research aims to explore the word-formation process in English new words found in the internet-based media through acronym, compound,  clipping and blending and their meanings. This study applies Plag’s (2002 framework of acronym and compound; Jamet’s (2009 framework of clipping, and Algeo’s framework (1977 in Hosseinzadeh  (2014 for blending. Despite the  formula established in each respective framework,  there could be occurrences  of novelty and modification on how words are formed and  how meaning developed in  the newly formed words. The research shows that well accepted acronyms can become real words by taking lower case and affixation. Some acronyms initialized non-lexical words, used non initial letters, and used letters and numbers that pronounced the same with the words they represent. Compounding also includes numbers as the element member of the compound. The nominal nouns are likely to have metaphorical and idiomatic meanings. Some compounds evolve to new and more specific meaning. The study also finds that back-clipping is the most dominant clipping. In blending, the sub-category clipping of blending, the study finds out that when clipping takes place, the non-head element is back-clipped and the head is fore-clipped.

  16. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...... that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward...... with potentially observable fluctuations in the luminosity profile that are induced by variations in the accretion rate. Considering that gas inside protoplanetary disks is not fully ionized, I implemented a solver that accounts for nonideal MHD effects into a newly developed code framework called dispatch...

  17. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb

    Science.gov (United States)

    Baird, Bill

    1986-10-01

    A mathematical model of the process of pattern recognition in the first olfactory sensory cortex of the rabbit is presented. It explains the formation and alteration of spatial patterns in neural activity observed experimentally during classical Pavlovian conditioning. On each inspiration of the animal, a surge of receptor input enters the olfactory bulb. EEG activity recorded at the surface of the bulb undergoes a transition from a low amplitude background state of temporal disorder to coherent oscillation. There is a distinctive spatial pattern of rms amplitude in this oscillation which changes reliably to a second pattern during each successful recognition by the animal of a conditioned stimulus odor. When a new odor is paired as conditioned stimulus, these patterns are replaced by new patterns that stabilize as the animal adapts to the new environment. I will argue that a unification of the theories of pattern formation and associative memory is required to account for these observations. This is achieved in a model of the bulb as a discrete excitable medium with spatially inhomogeneous coupling expressed by a connection matrix. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of competing unstable oscillatory modes. These may be created in the system by proper coupling and selectively evoked by specific classes of inputs. This allows a view of limit cycle attractors as “stored” fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  18. Negative ion formation processes: A general review

    International Nuclear Information System (INIS)

    Alton, G.D.

    1990-01-01

    The principal negative ion formation processes will be briefly reviewed. Primary emphasis will be placed on the more efficient and universal processes of charge transfer and secondary ion formation through non-thermodynamic surface ionization. 86 refs., 20 figs

  19. Restoring formation after leaching process

    International Nuclear Information System (INIS)

    Barrett, R.B.

    1983-01-01

    A method of restoring a formation which had uranium and other mineral values extracted by an alkaline lixiviant comprises introducing a source of phosphate in an amount sufficient to lower the level of soluble uranium compounds below that previously existing in the formation by the formation of insoluble uranium phosphate compounds

  20. Pattern formation in rotating Bénard convection

    Science.gov (United States)

    Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.

    1992-12-01

    Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.

  1. Workflow Patterns for Business Process Modeling

    NARCIS (Netherlands)

    Thom, Lucineia Heloisa; Lochpe, Cirano; Reichert, M.U.

    For its reuse advantages, workflow patterns (e.g., control flow patterns, data patterns, resource patterns) are increasingly attracting the interest of both researchers and vendors. Frequently, business process or workflow models can be assembeled out of a set of recurrent process fragments (or

  2. Pattern formation by dewetting and evaporating sedimenting suspensions

    NARCIS (Netherlands)

    Habibi, M.; Moller, P.; Fall, A.; Rafaï, S.; Bonn, D.

    2012-01-01

    Pattern formation from drying droplets containing sedimenting particles and dewetting of thin films of such suspensions was studied. The dewetting causes the formation of finger-like patterns near the contact line which leave behind a deposit of branches. We find that the strikingly low speed of

  3. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  4. Evolutionary change - patterns and processes

    Directory of Open Access Journals (Sweden)

    Francisco M. Salzano

    2005-12-01

    Full Text Available The present review considered: (a the factors that conditioned the early transition from non-life to life; (b genome structure and complexity in prokaryotes, eukaryotes, and organelles; (c comparative human chromosome genomics; and (d the Brazilian contribution to some of these studies. Understanding the dialectical conflict between freedom and organization is fundamental to give meaning to the patterns and processes of organic evolution.A presente revisão considerou: (a os fatores que condicionaram a transição inicial entre não-vida e vida; (b a estrutura e complexidade genômica em procariotos, eucariotos e organelas; (c a genômica comparada dos cromossomos humanos; (d a contribuição brasileira a alguns desses estudos. A compreensão do conflito dialético entre liberdade e organização é fundamental para dar significado aos padrões e processos da evolução orgânica.

  5. Pattern formation in reaction diffusion systems with finite geometry

    International Nuclear Information System (INIS)

    Borzi, C.; Wio, H.

    1990-04-01

    We analyze the one-component, one-dimensional, reaction-diffusion equation through a simple inverse method. We confine the system and fix the boundary conditions as to induce pattern formation. We analyze the stability of those patterns. Our goal is to get information about the reaction term out of the preknowledgment of the pattern. (author). 5 refs

  6. Nonlinear pattern formation of Faraday waves

    NARCIS (Netherlands)

    Binks, D.J.; Water, van de W.

    1997-01-01

    A cascade of surface wave patterns with increasing rotational symmetry ranging from simple square to tenfold quasiperiodic is observed for Faraday waves. The experiment concerns the excitation of subharmonic standing surface waves by oscillating vertical acceleration. Our observation agrees with the

  7. Pattern formation - Instabilities in sand ripples

    DEFF Research Database (Denmark)

    Hansen, J. L.; v. Hecke, M.; Haaning, A.

    2001-01-01

    Sand ripples are seen below shallow wavy water and are formed whenever water oscillates over a bed of sand. Here we analyse the instabilities that can upset this perfect patterning when the ripples are subjected to large changes in driving amplitude or frequency, causing them to deform both...

  8. Negative ion formation and neutralization processes, (1)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-01-01

    This review has been made preliminary for the purpose of contribute to the plasma heating by ''negative ion based neutral beam injection'' in the magnetic confinement fusion reactor. A compilation includes the survey of the general processes of negative ion formation, the data of the cross section of H - ion formation and the neutralization of H - ion, and some of new processes of H - ion formation. The data of cross section are mainly experimental, but partly include the results of theoretical calculation. (author)

  9. Inherent-opening-controlled pattern formation in carbon nanotube arrays

    International Nuclear Information System (INIS)

    Huang Xiao; Zhou, Jijie J; Sansom, Elijah; Gharib, Morteza; Haur, Sow Chorng

    2007-01-01

    We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting-dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension. Among short nanotubes, the self-organized patterns are consistent with the shape of the inherent openings, i.e. slender openings lead to elongated trench-like structures, and circular holes result in relatively round nest-like arrangements. Nanotubes in a relatively high mat are more connected, like in an elastic body, than those in a short mat. Small cracks often initialize themselves in a relatively high mat, along two or more adjacent round openings; each of the cracks evolves into a trench as liquid dries up. Self-organized pattern control with inherent openings needs to initiate the dewetting process above the nanotube tips. If there is no liquid on top, inherent openings barely enlarge themselves after the wetting-dewetting treatment

  10. The physics of pattern formation at liquid interfaces

    International Nuclear Information System (INIS)

    Maher, J.V.

    1991-06-01

    This report discusses the following physics of liquid interfaces: pattern formation; perturbing Saffman-Taylor flow with a small gap-gradient; scaling of radial patterns in a viscoelastic solution; dynamic surface tension at an interface between miscible liquids; and random systems

  11. [The physics of pattern formation at liquid interfaces

    International Nuclear Information System (INIS)

    1990-01-01

    This paper discusses pattern formation at liquid interfaces and interfaces within disordered materials. The particular topics discussed are: a racetrack for competing viscous fingers; an experimental realization of periodic boundary conditions; what sets the length scale for patterns between miscible liquids; the fractal dimension of radial Hele-Shaw patterns; detailed analyses of low-contrast Saffman-Taylor flows; and the wetting/absorption properties of polystyrene spheres in binary liquid mixtures

  12. Wavenumber locking and pattern formation in spatially forced systems

    International Nuclear Information System (INIS)

    Manor, Rotem; Meron, Ehud; Hagberg, Aric

    2009-01-01

    We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that produce stationary or traveling stripe patterns when unforced and apply forcing aligned with the stripes. Forcing at close to twice the pattern wavenumber selects, stabilizes, or creates resonant stripes locked at half the forcing wavenumber. If the mismatch between the forcing and pattern wavenumber is high we find that the pattern still locks but develops a wave vector component perpendicular to the forcing direction and forms rectangular and oblique patterns. When the unforced system supports traveling waves, resonant rectangular patterns remain stationary but oblique patterns travel in a direction orthogonal to the traveling waves.

  13. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II.

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10 4 years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields

  14. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II

    1985-01-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding intercloud gas flows leading to nonlinear inhomogeneous cloud structures in an initially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation-driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation-driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in -- 1-3 x 10/sup 4/ yr and could account for the recent evidence for new massive star formation in several ultracompact H II regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multi-dimensional calculations of coupled processes. Important nonlinear interactions include hydrodynamics, radiation transport, and magnetic fields

  15. Bifurcation, pattern formation and chaos in combustion

    International Nuclear Information System (INIS)

    Bayliss, A.; Matkowsky, B.J.

    1991-01-01

    In this paper problems in gaseous combustion and in gasless condensed phase combustion are studied both analytically and numerically. In gaseous combustion we consider the problem of a flame stabilized on a line source of fuel. The authors find both stationary and pulsating axisymmetric solutions as well as stationary and pulsating cellular solutions. The pulsating cellular solutions take the form of either traveling waves or standing waves. Transitions between these patterns occur as parameters related to the curvature of the flame front and the Lewis number are varied. In gasless condensed phase combustion both planar and nonplanar problems are studied. For planar condensed phase combustion we consider two models: accounts for melting and does not. Both models are shown to exhibit a transition from uniformly to pulsating propagating combustion when a parameter related to the activation energy is increased. Upon further increasing this parameter both models undergo a transition to chaos: by intermittency and by a period doubling sequence. In nonplanar condensed phase combustion the nonlinear development of a branch of standing wave solutions is studied and is shown to lead to relaxation oscillations and subsequently to a transition to quasi-periodicity

  16. Topology-generating interfacial pattern formation during liquid metal dealloying.

    Science.gov (United States)

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  17. A Competitive Partnership Formation Process

    OpenAIRE

    Andersson, Tommy; Gudmundsson, Jens; Talman, Adolphus; Yang, Zaifu

    2013-01-01

    A group of heterogeneous agents may form partnerships in pairs. All single agents as well as all partnerships generate values. If two agents choose to cooperate, they need to specify how to split their joint value among one another. In equilibrium, which may or may not exist, no agents have incentives to break up or form new partnerships. This paper proposes a dynamic competitive adjustment process that always either finds an equilibrium or exclusively disproves the existence of any equilibri...

  18. Pattern-formation under acoustic driving forces

    Science.gov (United States)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  19. Tree island pattern formation in the Florida Everglades

    Science.gov (United States)

    Carr, Joel; D'Odorico, P.; Engel, Victor C.; Redwine, Jed

    2016-01-01

    The Florida Everglades freshwater landscape exhibits a distribution of islands covered by woody vegetation and bordered by marshes and wet prairies. Known as “tree islands”, these ecogeomorphic features can be found in few other low gradient, nutrient limited freshwater wetlands. In the last few decades, however, a large percentage of tree islands have either shrank or disappeared in apparent response to altered water depths and other stressors associated with human impacts on the Everglades. Because the processes determining the formation and spatial organization of tree islands remain poorly understood, it is still unclear what controls the sensitivity of these landscapes to altered conditions. We hypothesize that positive feedbacks between woody plants and soil accretion are crucial to emergence and decline of tree islands. Likewise, positive feedbacks between phosphorus (P) accumulation and trees explain the P enrichment commonly observed in tree island soils. Here, we develop a spatially-explicit model of tree island formation and evolution, which accounts for these positive feedbacks (facilitation) as well as for long range competition and fire dynamics. It is found that tree island patterns form within a range of parameter values consistent with field data. Simulated impacts of reduced water levels, increased intensity of drought, and increased frequency of dry season/soil consuming fires on these feedback mechanisms result in the decline and disappearance of tree islands on the landscape.

  20. Mapping spatial patterns with morphological image processing

    Science.gov (United States)

    Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham

    2006-01-01

    We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...

  1. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    Directory of Open Access Journals (Sweden)

    Oscar Rodrigo López-Vaca

    2012-01-01

    Full Text Available We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13 and vascular endothelial growth factor (VEGF. It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification.

  2. Simulation of crystalline pattern formation by the MPFC method

    Directory of Open Access Journals (Sweden)

    Starodumov Ilya

    2017-01-01

    Full Text Available The Phase Field Crystal model in hyperbolic formulation (modified PFC or MPFC, is investigated as one of the most promising techniques for modeling the formation of crystal patterns. MPFC is a convenient and fundamentally based description linking nano-and meso-scale processes in the evolution of crystal structures. The presented model is a powerful tool for mathematical modeling of the various operations in manufacturing. Among them is the definition of process conditions for the production of metal castings with predetermined properties, the prediction of defects in the crystal structure during casting, the evaluation of quality of special coatings, and others. Our paper presents the structure diagram which was calculated for the one-mode MPFC model and compared to the results of numerical simulation for the fast phase transitions. The diagram is verified by the numerical simulation and also strongly correlates to the previously calculated diagrams. The computations have been performed using software based on the effective parallel computational algorithm.

  3. Selective metal pattern formation and its EMI shielding efficiency

    International Nuclear Information System (INIS)

    Lee, Ho-Chul; Kim, Jin-Young; Noh, Chang-Ho; Song, Ki Yong; Cho, Sung-Heon

    2006-01-01

    A novel method for selective metal pattern formation by using an enhanced life-time of photoexcited electron-hole pairs in bilayer thin film of amorphous titanium dioxide and hole-scavenger-containing poly(vinyl alcohol) was proposed. By UV-irradiation through photomask on the bilayer film, the photodefined image of photoelectrons could be easily and simply produced, consequently resulting in selective palladium (Pd) catalyst deposition by reduction. The successive electrolessplating on Pd catalysts and electroplating on electrolessplated pattern were possible. Furthermore, the electromagnetic interference shielding efficiencies of the metal mesh patterns with various characteristic length scales of line width and thickness were investigated

  4. Vegetation pattern formation in a fog-dependent ecosystem.

    Science.gov (United States)

    Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A

    2010-07-07

    Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Overlay metrology for double patterning processes

    Science.gov (United States)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double

  6. Boundary-induced pattern formation from uniform temporal oscillation

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  7. Rethinking pattern formation in reaction-diffusion systems

    Science.gov (United States)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  8. Anomalous patterns of formation and distribution of the brachial ...

    African Journals Online (AJOL)

    block Background: Structural variations in the patterns of formation and distribution of the brachial plexus have drawn attentions both in anatomy and anaesthesia. Method: An observational study. Results: The brachial plexus was carefully inspected in both the right and left arms in 90 Nigerian cadavers, comprising of 74 ...

  9. Modelling Global Pattern Formations for Collaborative Learning Environments

    DEFF Research Database (Denmark)

    Grappiolo, Corrado; Cheong, Yun-Gyung; Khaled, Rilla

    2012-01-01

    We present our research towards the design of a computational framework capable of modelling the formation and evolution of global patterns (i.e. group structures) in a population of social individuals. The framework is intended to be used in collaborative environments, e.g. social serious games...

  10. Pattern formation in three-dimensional reaction-diffusion systems

    Science.gov (United States)

    Callahan, T. K.; Knobloch, E.

    1999-08-01

    Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.

  11. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  12. The formation of labyrinths, spots and stripe patterns in a biochemical approach to cardiovascular calcification

    International Nuclear Information System (INIS)

    Yochelis, A; Tintut, Y; Demer, L L; Garfinkel, A

    2008-01-01

    Calcification and mineralization are fundamental physiological processes, yet the mechanisms of calcification, in trabecular bone and in calcified lesions in atherosclerotic calcification, are unclear. Recently, it was shown in in vitro experiments that vascular-derived mesenchymal stem cells can display self-organized calcified patterns. These patterns were attributed to activator/inhibitor dynamics in the style of Turing, with bone morphogenetic protein 2 acting as an activator, and matrix GLA protein acting as an inhibitor. Motivated by this qualitative activator-inhibitor dynamics, we employ a prototype Gierer-Meinhardt model used in the context of activator-inhibitor-based biological pattern formation. Through a detailed analysis in one and two spatial dimensions, we explore the pattern formation mechanisms of steady state patterns, including their dependence on initial conditions. These patterns range from localized holes to labyrinths and localized peaks, or in other words, from dense to sparse activator distributions (respectively). We believe that an understanding of the wide spectrum of activator-inhibitor patterns discussed here is prerequisite to their biochemical control. The mechanisms of pattern formation suggest therapeutic strategies applicable to bone formation in atherosclerotic lesions in arteries (where it is pathological) and to the regeneration of trabecular bone (recapitulating normal physiological development)

  13. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  14. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  15. Pattern formation in two-dimensional square-shoulder systems

    International Nuclear Information System (INIS)

    Fornleitner, Julia; Kahl, Gerhard

    2010-01-01

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  16. Pattern formation in two-dimensional square-shoulder systems

    Energy Technology Data Exchange (ETDEWEB)

    Fornleitner, Julia [Institut fuer Festkoerperforschung, Forschungsszentrum Juelich, D-52425 Juelich (Germany); Kahl, Gerhard, E-mail: fornleitner@cmt.tuwien.ac.a [Institut fuer Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)

    2010-03-17

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  17. Cellular automaton modeling of biological pattern formation characterization, examples, and analysis

    CERN Document Server

    Deutsch, Andreas

    2017-01-01

    This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In ...

  18. Pattern formation of nanoflowers during the vapor-liquid-solid growth of silicon nanowires

    International Nuclear Information System (INIS)

    Bae, Joonho; Thompson-Flagg, Rebecca; Ekerdt, John G.; Shih, C.-K.

    2008-01-01

    Pattern formation of nanoflowers during the vapor-liquid-solid growth of Si nanowires is reported. Using transmission electron microscopy, scanning electron microscopy, and energy dispersive spectrometer analysis, we show that the flower consists of an Au/SiO x core-shell structure. Moreover, the growth of flower starts at the interface between the gold catalyst and the silicon nanowire, presumably by enhanced oxidation at this interface. The pattern formation can be classified as dense branching morphology (DBM). It is the first observation of DBM in a spherical geometry and at the nanoscale. The analysis of the average branching distance of this pattern shows that the pattern is most likely formed during the growth process, not the cooling process, and that the curvature of the gold droplet plays a crucial role in the frequency of branching

  19. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  20. The LLE, pattern formation and a novel coherent source

    Science.gov (United States)

    Castelli, Fabrizio; Brambilla, Massimo; Gatti, Alessandra; Prati, Franco; Lugiato, Luigi A.

    2017-04-01

    The LLE was introduced in order to provide a paradigmatic model for spontaneous spatial pattern formation in the field of nonlinear optics. In the first part of this paper we describe in details its historical evolution. We underline, first of all, that the multimode instability of optical bistability represents an important precursor of the LLE. Next, we illustrate how the original LLE was conceived in order to describe pattern formation in the planes transverse with respect to the longitudinal direction of propagation of light in the nonlinear medium contained in the optical cavity. We emphasize, in particular, the crucial role of the low transmission limit (also called mean field limit or uniform field limit in the literature) in determining the simplicity of the equation. In discussing transverse pattern formation in the LLE, we underline incidentally the presence of very important quantum aspects related to squeezing of quantum fluctuations and to quantum imaging. We consider not only the case of global patterns but also localized structures (cavity solitons and their control). Then we turn to the temporal/longitudinal version of the LLE, formulated by Haelterman et al. [H. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992)], and to its equivalence with the transverse LLE in 1D, discussing especially the phenomenon of temporal cavity solitons, their experimental observation and their control. Finally for the first part we turn to the very recent topic of broadband frequency combs, observed in a versatile multiwavelength coherent source (driven Kerr microcavity), which is raising a lot of interest and of research activities because of its very favourable physical characteristics, which support quite promising applicative perspectives. Kerr microcavities realize in an ideal manner the basic assumptions of the LLE, and the spontaneous formation of travelling patterns along the microcavity is the crucial mechanism which creates the combs and governs

  1. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models.

    Science.gov (United States)

    Jiang, Ting-Xin; Widelitz, Randall B; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2004-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions ( de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically colocalize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to

  2. A two-step patterning process increases the robustness of periodic patterning in the fly eye.

    Science.gov (United States)

    Gavish, Avishai; Barkai, Naama

    2016-06-01

    Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities ('noise') inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects. Author summary Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need

  3. Hardware format pattern banks for the Associative memory boards in the ATLAS Fast Tracker Trigger System

    CERN Document Server

    Grewcoe, Clay James

    2014-01-01

    The aim of this project is to streamline and update the process of encoding the pattern bank to hardware format in the Associative memory board (AM) of the Fast Tracker (FTK) for the ATLAS detector. The encoding is also adapted to Gray code to eliminate possible misreadings in high frequency devices such as this one, ROOT files are used to store the pattern banks because of the compression utilized in ROOT.

  4. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    Science.gov (United States)

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. © 2013 Wiley Periodicals, Inc.

  5. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin

    2017-11-24

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  6. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin; Dü ring, Bertram; Kreusser, Lisa Maria; Markowich, Peter A.; Schö nlieb, Carola-Bibiane

    2017-01-01

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  7. Numerical approaches to model perturbation fire in turing pattern formations

    Science.gov (United States)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  8. What drives the formation of global oil trade patterns?

    International Nuclear Information System (INIS)

    Zhang, Hai-Ying; Ji, Qiang; Fan, Ying

    2015-01-01

    In this paper, the spatial characteristics of current global oil trade patterns are investigated by proposing a new indicator Moran-F. Meanwhile, the factors that influence the formation of oil trade patterns are identified by constructing four different kinds of spatial econometric models. The findings indicate that most oil exporters have an obvious export focus in North America and a relatively balanced export in Europe and the Asia-Pacific region. Besides supply and demand factors, technological progress and energy efficiency have also significantly influenced the oil trade. Moreover, there is a spillover effect of trade flow among different regions, but its impact is weak. In addition, oil importers in the same region have the potential to cooperate due to their similar import sources. Finally, promotion of oil importers' R&D investments can effectively reduce the demand for global oil trade. - Highlights: • A new spatial association Moran-F indicator that applies to trade flows is proposed. • Driving factors affecting the formation of oil trade patterns are identified. • Oil-exporting countries implement various export strategies in different regions. • Supply, demand and technological factors contribute to the oil trade patterns. • Spillover effect of each factor affecting oil trade flows does exist but is limited

  9. Analysis of pattern formation in systems with competing range interactions

    International Nuclear Information System (INIS)

    Zhao, H J; Misko, V R; Peeters, F M

    2012-01-01

    We analyzed pattern formation and identified various morphologies in a system of particles interacting through a non-monotonic potential with a competing range interaction characterized by a repulsive core (r c ) and an attractive tail (r > r c ), using molecular-dynamics simulations. Depending on parameters, the interaction potential models the inter-particle interaction in various physical systems ranging from atoms, molecules and colloids to vortices in low κ type-II superconductors and in recently discovered ‘type-1.5’ superconductors. We constructed a ‘morphology diagram’ in the plane ‘critical radius r c -density n’ and proposed a new approach to characterizing the different types of patterns. Namely, we elaborated a set of quantitative criteria in order to identify the different pattern types, using the radial distribution function (RDF), the local density function and the occupation factor. (paper)

  10. On the ENDF Formats and Data Processing

    International Nuclear Information System (INIS)

    Trkov, Andrej

    2012-01-01

    The ENDF formats have served the community of nuclear data users from different fields of applications quite well for decades. Enormous effort has been devoted to the development and validation of the processing codes. Although there is no urgent need for a rapid transition to something completely new, there are signs that the current ENDF format is being pushed close to its limits. The time is right to look for a modern replacement, with due consideration for the following: - Development of data processing capabilities, starting from the data in the new format. - Backward compatibility through robust translation codes between the new and the old format until the majority of processing tools have been adequately validated. - Standardisation of the format features on the international level to maintain the possibility of easy data comparison and exchange. The NJOY Data Processing System is the most versatile and widely used code system for generating application libraries. The AMPX system is mainly used for generating libraries for codes from Oak Ridge. The Pre-Pro codes are found to be very robust, but their main purpose is data verification, validation and display. These codes do a good job for the present scope of applications, but current trend rely heavily on Monte Carlo simulations and sensitivity/uncertainty calculations. Further developments in the data processing tools should reflect these trends, focusing on the following: - Further verification and validation of covariance processing methods. - Development of a common tool for generating a global covariance matrix of nuclear data, including all available cross-reaction and cross-material correlations. - Consider if we can move away from histogram covariance representation into a piecewise linear domain. - Having a 'global' covariance matrix (that can include the covariance matrix of the resonance parameters), pursue the development of a common tool for statistical sampling of the cross sections and other

  11. Interfacial wave theory of pattern formation in solidification dendrites, fingers, cells and free boundaries

    CERN Document Server

    Xu, Jian-Jun

    2017-01-01

    This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results. The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much b...

  12. Multidimensional biochemical information processing of dynamical patterns.

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  13. Macroecology of unicellular organisms - patterns and processes.

    Science.gov (United States)

    Soininen, Janne

    2012-02-01

    Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Uranium in a recent phosphorite formation process

    Energy Technology Data Exchange (ETDEWEB)

    Baturin, G N; Dubinchuk, V I; Kochenov, A V

    1986-01-01

    Uranium behaviour in the process of nowadays phosphorite formation in the sediments of Namibia shelf is considered. The material collected during the 3-d trip of the research vessel ''Akademik Kurchatov'' and 26-th trip of the research vessel ''Mikhail Lomonosov'' is used. The samples from three geological stations 2046, 2047 and 2048 from the depths of 78-87 m have been investigated. Each sample (mass from 0.2 to 0.3 kg) is composed of several samples representing unified genetic series: holocene diatomic silts enclosing phosphorites - phosphatized silts - phosphorite concretions. Uranium has been determined by the X-ray spectral method; phosphorus, organic carbon and other components - by the chemical analysis. Uranium forms investigated by the combination of methods of electron microscopy, microdiffraction, microradioautography and microsounding. Uranium content in nowadays phosphorites at the shelf is 3-106 g/t. Uranium accumulation in phosphorites at the initial stages of their formation is controlled by its content in host sediments. In the course of litification of diagenetic phosphate concretions the uranium content in them varies from 40 to 80 g/t. The uranium concentration process in phosphorites is accompanied by formation of independent mineral phases of uranium oxide and ningyoite type.

  15. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2010-01-01

    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  16. Grain processes in massive star formation

    International Nuclear Information System (INIS)

    Wolfire, M.G.; Cassinelli, J.P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

  17. Pattern formation in diffusive excitable systems under magnetic flow effects

    Science.gov (United States)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  18. Formation mechanisms and characteristics of transition patterns in oblique detonations

    Science.gov (United States)

    Miao, Shikun; Zhou, Jin; Liu, Shijie; Cai, Xiaodong

    2018-01-01

    The transition structures of wedge-induced oblique detonation waves (ODWs) in high-enthalpy supersonic combustible mixtures are studied with two-dimensional reactive Euler simulations based on the open-source program AMROC (Adaptive Mesh Refinement in Object-oriented C++). The formation mechanisms of different transition patterns are investigated through theoretical analysis and numerical simulations. Results show that transition patterns of ODWs depend on the pressure ratio Pd/Ps, (Pd, Ps are the pressure behind the ODW and the pressure behind the induced shock, respectively). When Pd/Ps > 1.3, an abrupt transition occurs, while when Pd/Ps 1.02Φ∗ (Φ∗ is the critical velocity ratio calculated with an empirical formula).

  19. Pattern formation of frictional fingers in a gravitational potential

    Science.gov (United States)

    Eriksen, Jon Alm; Toussaint, Renaud; Mâløy, Knut Jørgen; Flekkøy, Eirik; Galland, Olivier; Sandnes, Bjørnar

    2018-01-01

    Aligned finger structures, with a characteristic width, emerge during the slow drainage of a liquid-granular mixture in a tilted Hele-Shaw cell. A transition from vertical to horizontal alignment of the finger structures is observed as the tilting angle and the granular density are varied. An analytical model is presented, demonstrating that the alignment properties are the result of the competition between fluctuating granular stresses and the hydrostatic pressure. The dynamics is reproduced in simulations. We also show how the system explains patterns observed in nature, created during the early stages of a dike formation.

  20. Influence of phase transition on pattern formation during catalytic reactions

    OpenAIRE

    Andrade, Roberto Fernandes Silva; Lima, D.; Cunha, F. B.

    2000-01-01

    p.434–445 We investigate the influence of the order of surface phase transitions on pattern formation during chemical reaction on mono-crystal catalysts. We use a model consisting of two partial differential equations, one of which describes the dynamics of the surface state with the help of a Ginzburg–Landau potential. Second- or first-order transitions are described by decreasing or increasing the relative value of the third-order coefficient of the potential. We concentrate on the stabi...

  1. Class of nonsingular exact solutions for Laplacian pattern formation

    International Nuclear Information System (INIS)

    Mineev-Weinstein, M.B.; Dawson, S.P.

    1994-01-01

    We present a class of exact solutions for the so-called Laplacian growth equation describing the zero-surface-tension limit of a variety of two-dimensional pattern formation problems. These solutions are free of finite-time singularities (cusps) for quite general initial conditions. They reproduce various features of viscous fingering observed in experiments and numerical simulations with surface tension, such as existence of stagnation points, screening, tip splitting, and coarsening. In certain cases the asymptotic interface consists of N separated moving Saffman-Taylor fingers

  2. A high yield process for hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F. [Univ. of Roma La Sapienza, Roma (Italy). Dept. of Chemical Engineering

    2008-07-01

    Due to the large quantities of natural gas stored in deep ocean hydrates, hydrate reservoirs are a substantial energy resource. Hydrates concentrate methane by as much as a factor of 164. As such, several natural gas transportation and storage systems using gas hydrates have been studied, and many of them are nearing practical use. In these systems, the hydrate is produced as a slurry by a spray process at approximately 7 megapascal (MPa), and then shaped into pellets. The use of a spray process, instead of a conventional stirred vessel is necessary in order to reach high hydrate concentrations in the hydrate-ice system. This paper presented a new procedure to produce a bulk of concentrated methane hydrate in a static traditional reactor at moderate pressure, controlling pressure and temperature in the interval between ice melting and the hydrate equilibrium curve. This paper discussed the experimental procedure which included formation of methane hydrate at approximately 5 MPa and 2 degrees Celsius in a reaction calorimeter at a volume of two liters. Results were also discussed. It was concluded that the procedure seemed suitable for the development of a gas hydrate storage and transport technology. It was found that the spray procedure took more time, but could be sped up and made continuous by using two vessels, one for hydrate formation and the other for hydrate concentration. The advantage was the production of a concentrated hydrate, using a simpler equipment and working at lower pressures respect to the spray process. 9 refs., 5 figs.

  3. Regulative feedback in pattern formation: towards a general relativistic theory of positional information.

    Science.gov (United States)

    Jaeger, Johannes; Irons, David; Monk, Nick

    2008-10-01

    Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.

  4. Nonlinear pattern formation in bone growth and architecture

    Directory of Open Access Journals (Sweden)

    Phil eSalmon

    2015-01-01

    Full Text Available The 3D morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatio-temporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic nonlinear pattern formation (NPF – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of group intelligence exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called particle swarm optimization (PSO. This theoretical model could be applicable to the behavior of osteoblasts osteoclasts and osteocytes, seeing them operating socially in response simultaneously to both global and local signals (endocrine, cytokine, mechanical resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in-silico simulation of bone modeling.What insights has NPF provided to bone biology? One example concerns the genetic disorder Juvenile Pagets Disease (JPD or Idiopathic Hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here coupling or feedback between osteoblasts and osteoclasts is the critical element.This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the

  5. Non-linear pattern formation in bone growth and architecture.

    Science.gov (United States)

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  6. Dewetting-mediated pattern formation in nanoparticle assemblies

    International Nuclear Information System (INIS)

    Stannard, Andrew

    2011-01-01

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered. (topical review)

  7. Dewetting-mediated pattern formation in nanoparticle assemblies.

    Science.gov (United States)

    Stannard, Andrew

    2011-03-02

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  8. The effect of the signalling scheme on the robustness of pattern formation in development

    KAUST Repository

    Kang, H.-W.

    2012-03-21

    Pattern formation in development is a complex process which involves spatially distributed signals called morphogens that influence gene expression and thus the phenotypic identity of cells. Usually different cell types are spatially segregated, and the boundary between them may be determined by a threshold value of some state variable. The question arises as to how sensitive the location of such a boundary is to variations in properties, such as parameter values, that characterize the system. Here, we analyse both deterministic and stochastic reaction-diffusion models of pattern formation with a view towards understanding how the signalling scheme used for patterning affects the variability of boundary determination between cell types in a developing tissue.

  9. Trickle-down boundary conditions in aeolian dune-field pattern formation

    Science.gov (United States)

    Ewing, R. C.; Kocurek, G.

    2015-12-01

    One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.

  10. Pattern formation and three-dimensional instability in rotating flows

    Science.gov (United States)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  11. Collective motion of cells mediates segregation and pattern formation in co-cultures.

    Directory of Open Access Journals (Sweden)

    Elod Méhes

    Full Text Available Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion.

  12. Patterning nanostructures to study magnetization processes

    International Nuclear Information System (INIS)

    Atkinson, D

    2005-01-01

    Lithography techniques such as electron-beam lithography and focused-ion-beam milling are widely used to fabricate structures with dimensions well below 1 μm. These techniques have been used to produce planar magnetic structures with sub-micrometer dimensions and well controlled geometry. This has allowed the study of basic magnetic behaviour and the development of structures with potential for applications in magnetic recording and magnetic logic devices. The techniques of electron beam lithography and focused-ion-beam milling for the fabrication of magnetic nanostructures are outlined here. These techniques have been used to fabricate ribbon-like planar nanowires to study the behaviour of the individual magnetic domain walls which mediate the reversal process in such elongated structures. These methods allow the production of structures in which the location of domain wall formation and position can be controlled, allowing separation and study of the domain wall nucleation and propagation processes. Domain wall injection and domain wall propagation behaviour are investigated and shown to be stochastic processes

  13. Physical-chemical mechanisms of pattern formation during gastrulation

    Science.gov (United States)

    Bozorgui, Behnaz; Kolomeisky, Anatoly B.; Teimouri, Hamid

    2018-03-01

    Gastrulation is a fundamental phase during the biological development of most animals when a single layer of identical embryo cells is transformed into a three-layer structure, from which the organs start to develop. Despite a remarkable progress in quantifying the gastrulation processes, molecular mechanisms of these processes remain not well understood. Here we theoretically investigate early spatial patterning in a geometrically confined colony of embryonic stem cells. Using a reaction-diffusion model, a role of Bone-Morphogenetic Protein 4 (BMP4) signaling pathway in gastrulation is specifically analyzed. Our results show that for slow diffusion rates of BMP4 molecules, a new length scale appears, which is independent of the size of the system. This length scale separates the central region of the colony with uniform low concentrations of BMP molecules from the region near the colony edge where the concentration of signaling molecules is elevated. The roles of different components of the signaling pathway are also explained. Theoretical results are consistent with recent in vitro experiments, providing microscopic explanations for some features of early embryonic spatial patterning. Physical-chemical mechanisms of these processes are discussed.

  14. The Formation of Data on Nanotechnological Processes

    Directory of Open Access Journals (Sweden)

    Oleynik Olga Stepanovna

    2015-05-01

    Full Text Available The article presents the statistical monitoring of the main trends of nanotechnology development in Russia, as well as the review of the modern programs and documents devoted to urgent issues of nanotechnology development. The formation of system of statistical monitoring of nanotechnologies development in the Russian Federation includes the development of methodology and tools of statistical supervision over creation, commercialization, the use of nanotechnologies, and also the nanotechnological production. The authors carry out the analysis of the main directions and structure of co-funding of “The Program of nanotech industry development in the Russian Federation till 2015”. The sources of official statistical data on nanotechnologies in Russia are considered. The purpose of forming this essentially new direction of statistics consists in the creation of system of collecting, processing and submission of the regular, systematized and complex data which are adequately reflecting the state, the level of development and the prospects of nanotechnological sphere capacity which provide informational support to state policy and adoption of reasonable administrative decisions. The authors describe the system of statistical observations in the sphere of nanotechnologies. Today the statistics of nanotechnologies in Russia remains at the stage of formation and modernization according to the international standards, being supplemented every year with the new indicators which allow investigating different sides and tendencies of nanotech industry development. Nowadays the following aspects of the activity connected with nanotechnologies have already being studied by means of statistical methods: scientific research and developments; creation and use of nanotechnologies; demand for staff; production, including the innovative one.

  15. Complex temporal and spatial patterns in nonequilibrium processes

    International Nuclear Information System (INIS)

    1992-01-01

    Dynamical systems methods have been used to study bifurcations and pattern formation in nonequilibrium systems. Accomplishments during this period include: information-theoretic methods for analyzing chaos, chemical reactors for studying sustained reaction-diffusion patterns, a reactor exploiting pattern formation to extract short- lived intermediate species, observation of bifurcation from periodic to quasiperiodic rotating chemical spiral patterns, observation of a Turing bifurcation (transition from uniform state to a stationary chemical pattern), method for extracting noise strength in ramped convection, self-similar fractal structure of Zn clusters in electrodeposition, and dynamical instability in crack propagation

  16. Patterns and Processes of Recruitment and Trafficking into sex Work ...

    African Journals Online (AJOL)

    Patterns and Processes of Recruitment and Trafficking into sex Work in Nigeria. ... The recruitment patterns and trafficking processes were characterized with incidences of deception, extortion, violence and ... AJOL African Journals Online.

  17. Time rescaling and pattern formation in biological evolution.

    Science.gov (United States)

    Igamberdiev, Abir U

    2014-09-01

    Biological evolution is analyzed as a process of continuous measurement in which biosystems interpret themselves in the environment resulting in changes of both. This leads to rescaling of internal time (heterochrony) followed by spatial reconstructions of morphology (heterotopy). The logical precondition of evolution is the incompleteness of biosystem's internal description, while the physical precondition is the uncertainty of quantum measurement. The process of evolution is based on perpetual changes in interpretation of information in the changing world. In this interpretation the external biospheric gradients are used for establishment of new features of organization. It is concluded that biological evolution involves the anticipatory epigenetic changes in the interpretation of genetic symbolism which cannot generally be forecasted but can provide canalization of structural transformations defined by the existing organization and leading to predictable patterns of form generation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Secretory processes involved in the formation of milk

    International Nuclear Information System (INIS)

    Knutsson, P.G.

    1976-01-01

    Current knowledge on milk formation is reviewed. Emphasis is given to sites of formation of protein, fat and lactose, and transfer of these compounds into the alveolar lumen. Further, the formation of the water phase of milk is thoroughly discussed, and evidence presented that milk formation includes both secretory and re-absorptive processes as well as diffusion. A short presentation of colostrum formation is included. Neither biochemical processes involved in synthesis of organic compounds nor mammary gland endocrinology are discussed. (author)

  19. Processes governing pinch formation in diodes

    International Nuclear Information System (INIS)

    Blaugrund, A.E.; Cooperstein, G.; Goldstein, S.A.

    1975-01-01

    The process of pinch formation in large aspect ratio diodes has been studied by means of streak photography and time-resolved x-ray detectors. A tight pinch is formed at the anode center by a collapsing thin hollow electron beam. The collapse velocity depends, among other things, on the type of material in the top 1 μm layer of the anode. In a tentative model it is assumed that an anode plasma is at least partially created from gases released from the surface layer of the anode by the heating action of the beam. These gases are ionized by primary, backscattered, and secondary electrons. Ions emitted from this plasma modify the electron trajectories in the diode leading to a radial collapse of the hollow electron beam. The observed monotonic dependence of the collapse velocity on the atomic number of the anode material can be explained by the smooth dependence on Z of both the specific heat and the electron backscatter coefficient. In the case of high-Z anodes the ion expansion time appears to be the factor limiting the collapse velocity. Detailed experimental data are presented

  20. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration

    Science.gov (United States)

    Chang, Cheng; Wu, Ping; Baker, Ruth E.; Maini, Philip K.; Alibardi, Lorenzo; Chuong, Cheng-Ming

    2010-01-01

    The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments. PMID:19557687

  1. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  2. Numerical and Experimental Study on the Formation and Dispersion Patterns of Multiple Explosively Formed Penetrators

    Directory of Open Access Journals (Sweden)

    Jian Feng Liu

    Full Text Available Abstract Three-dimensional numerical simulations and experiments were performed to examine the formation and spatial dispersion patterns of integral multiple explosively formed penetrators (MEFP warhead with seven hemispherical liners. Numerical results had successfully described the formation process and distribution pattern of MEFP. A group of penetrators consisting of a central penetrator surrounded by 6 penetrators is formed during the formation process of MEFP and moves in the direction of aiming position. The maximum divergence angle of the surrounding penetrator group was 7.8°, and the damage area could reach 0.16 m2 at 1.2 m. The laws of perforation dispersion patterns of MEFP were also obtained through a nonlinear fitting of the perforation information on the target at different standoffs. The terminal effects of the MEFP warhead were performed on three #45 steel targets with a dimension of 160cm ( 160cm ( 1.5cm at various standoffs (60, 80, and 120 cm. The simulation results were validated through penetration experiments at different standoffs. It has shown excellent agreement between simulation and experiment results.

  3. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  4. How memory of direct animal interactions can lead to territorial pattern formation.

    Science.gov (United States)

    Potts, Jonathan R; Lewis, Mark A

    2016-05-01

    Mechanistic home range analysis (MHRA) is a highly effective tool for understanding spacing patterns of animal populations. It has hitherto focused on populations where animals defend their territories by communicating indirectly, e.g. via scent marks. However, many animal populations defend their territories using direct interactions, such as ritualized aggression. To enable application of MHRA to such populations, we construct a model of direct territorial interactions, using linear stability analysis and energy methods to understand when territorial patterns may form. We show that spatial memory of past interactions is vital for pattern formation, as is memory of 'safe' places, where the animal has visited but not suffered recent territorial encounters. Additionally, the spatial range over which animals make decisions to move is key to understanding the size and shape of their resulting territories. Analysis using energy methods, on a simplified version of our system, shows that stability in the nonlinear system corresponds well to predictions of linear analysis. We also uncover a hysteresis in the process of territory formation, so that formation may depend crucially on initial space-use. Our analysis, in one dimension and two dimensions, provides mathematical groundwork required for extending MHRA to situations where territories are defended by direct encounters. © 2016 The Author(s).

  5. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  6. Galaxy formation: internal mechanisms and cosmological processes

    International Nuclear Information System (INIS)

    Martig, Marie

    2010-01-01

    This thesis is devoted to galaxy formation and evolution in a cosmological context. Cosmological simulations have unveiled two main modes of galaxy growth: hierarchical growth by mergers and accretion of cold gas from cosmic filaments. However, these simulations rarely take into account small scale mechanisms, that govern internal evolution and that are a key ingredient to understand galaxy formation and evolution. Thanks to a new simulation technique that I have developed, I first studied the colors of galaxies, and in particular the reddening of elliptical galaxies. I showed that the gas disk in an elliptical galaxy could be stabilized against star formation because of the galaxy's stellar component being within a spheroid instead of a disk. This mechanism can explain the red colors of some elliptical galaxies that contain a gas disk. I also studied the formation of spiral galaxies: most cosmological simulations cannot explain the formation of Milky Way-like galaxies, i.e. with a large disk and a small bulge. I showed that this issue could be partly solved by taking into account in the simulations the mass loss from evolved stars through stellar winds, planetary nebulae and supernovae explosions. (author) [fr

  7. Process for recovering oil from subterranean formations

    International Nuclear Information System (INIS)

    Knight, B.; Gogarty, W.B.

    1978-01-01

    Improved flooding of oil-bearing formations is obtained by injecting and displacing through the formation a saline solution containing a water-soluble, substantially linear, high molecular weight polymer obtained by irradiating an aqueous solution of an ethylenically unsaturated monomer and a water-soluble salt under controlled conditions of concentration, radiation intensity, conversion, and total radiation dose. The saline water can contain at least 15,000 ppm of TDS (total dissolved solids) and at least 50 ppm and preferably 300 ppm of polyvalent cations. (Auth.)

  8. Complex temporal and spatial patterns in nonequilibrium processes

    International Nuclear Information System (INIS)

    Swinney, H.L.

    1992-01-01

    We have used dynamical systems methods to study and characterize bifurcations and pattern formation in a variety of nonequilibrium systems. In this paper we describe our work on dynamical systems, chemical oscillations and chaos, chemical spatial patterns, instabilities in fluid dynamics, electrodeposition clusters, the ballast resistor, and crack propagation

  9. Spiral Structure and Global Star Formation Processes in M 51

    Science.gov (United States)

    Gruendl, Robert A.

    1994-12-01

    The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.

  10. Gain-of-function screen for genes that affect Drosophila muscle pattern formation.

    Directory of Open Access Journals (Sweden)

    Nicole Staudt

    2005-10-01

    Full Text Available This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation.

  11. Dynamic spatial pattern formation in the sea urchin embryo.

    Science.gov (United States)

    Riaz, Syed Shahed; Mackey, Michael C

    2014-02-01

    The spatiotemporal evolution of various proteins during the endo-mesodermal specification of the sea urchin embryo in the form of an expanding torus has been known experimentally for some time, and the regulatory network that controls this dynamic evolution of gene expression has been recently partially clarified. In this paper we construct a relatively simple mathematical model of this process that retains the basic features of the gene network and is able to reproduce the spatiotemporal patterns observed experimentally. We show here that a mathematical model based only on the gene-protein interactions so far reported in the literature predicts the origin of the behaviour to lie on a delayed negative feed-back loop due to the protein Blimp1 on the transcription of its corresponding mRNA. However though consistent with earlier results, this contradicts recent findings, where it has been established that the dynamical evolution of Wnt8 protein is independent of Blimp1. This leads us to offer a modified version of the original model based on observations in similar systems, and some more recent work in the sea urchin, assuming the existence of a mechanism involving inhibitory loop on wnt8 transcription. This hypothesis leads to a better match with the experimental results and suggests that the possibility of the existence of such an interaction in the sea urchin should be explored.

  12. An image-processing methodology for extracting bloodstain pattern features.

    Science.gov (United States)

    Arthur, Ravishka M; Humburg, Philomena J; Hoogenboom, Jerry; Baiker, Martin; Taylor, Michael C; de Bruin, Karla G

    2017-08-01

    There is a growing trend in forensic science to develop methods to make forensic pattern comparison tasks more objective. This has generally involved the application of suitable image-processing methods to provide numerical data for identification or comparison. This paper outlines a unique image-processing methodology that can be utilised by analysts to generate reliable pattern data that will assist them in forming objective conclusions about a pattern. A range of features were defined and extracted from a laboratory-generated impact spatter pattern. These features were based in part on bloodstain properties commonly used in the analysis of spatter bloodstain patterns. The values of these features were consistent with properties reported qualitatively for such patterns. The image-processing method developed shows considerable promise as a way to establish measurable discriminating pattern criteria that are lacking in current bloodstain pattern taxonomies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Science.gov (United States)

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  14. Quantum properties of transverse pattern formation in second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Scotto, P.; Zambrini, R.

    2002-01-01

    these equations through extensive numerical simulations and analytically in the linearized limit. Our study, made below and above the threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern formation in second-harmonic generation. Close to the threshold...

  15. Pattern formation in plastic liquid films on elastomers by ratcheting.

    Science.gov (United States)

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation.

  16. Negative ion formation and neutralization processes, (2)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-09-01

    This review is 2nd part of the report published at January 1982 (JAERI-M-9902). A compilation includes the survey of the data of the cross sections of H - and D - ion formations and the neutralization of these ions. This is also presented new information about the photosensitization by laser beam in dissociative-resonance electron capture of sulfur hexafluoride reported by Chen et al., for reference to enhancement of D - ions in discharge. For neutralization, the data of mutual neutralization and photodetachment are also presented. (author)

  17. Patterns and Processes of Vertebrate Evolution

    Science.gov (United States)

    Carroll, Robert Lynn

    1997-04-01

    This new text provides an integrated view of the forces that influence the patterns and rates of vertebrate evolution from the level of living populations and species to those that resulted in the origin of the major vertebrate groups. The evolutionary roles of behavior, development, continental drift, and mass extinctions are compared with the importance of variation and natural selection that were emphasized by Darwin. It is extensively illustrated, showing major transitions between fish and amphibians, dinosaurs and birds, and land mammals to whales. No book since Simpson's Major Features of Evolution has attempted such a broad study of the patterns and forces of evolutionary change. Undergraduate students taking a general or advanced course on evolution, and graduate students and professionals in evolutionary biology and paleontology will find the book of great interest.

  18. Mathematical modeling of biomass fuels formation process

    International Nuclear Information System (INIS)

    Gaska, Krzysztof; Wandrasz, Andrzej J.

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task

  19. Pattern-Directed Processing of Knowledge from Texts.

    Science.gov (United States)

    Thorndyke, Perry W.

    A framework for viewing human text comprehension, memory, and recall is presented that assumes patterns of abstract conceptual relations are used to guide processing. These patterns consist of clusters of knowledge that encode prototypical co-occurrences of situations and events in narrative texts. The patterns are assumed to be a part of a…

  20. Pattern formations in chaotic spatio-temporal systems

    Indian Academy of Sciences (India)

    5Beijing–Hong Kong–Singapore Joint Center of Nonlinear and Complex Systems, ... For theoretical studies most previous work has focused on pattern .... Lyapunov exponents from arbitrary initial conditions, and the plots look rather.

  1. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    Science.gov (United States)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-09-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes.

  2. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    International Nuclear Information System (INIS)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-01-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes. (paper)

  3. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis.

    Science.gov (United States)

    Saudemont, Alexandra; Dray, Nicolas; Hudry, Bruno; Le Gouar, Martine; Vervoort, Michel; Balavoine, Guillaume

    2008-05-15

    NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.

  4. Clastic patterned ground in Lomonosov crater, Mars: examining fracture controlled formation mechanisms

    Science.gov (United States)

    Barrett, Alexander M.; Balme, Matthew R.; Patel, Manish R.; Hagermann, Axel

    2017-10-01

    The area surrounding Lomonosov crater on Mars has a high density of seemingly organised boulder patterns. These form seemingly sorted polygons and stripes within kilometre scale blockfields, patches of boulder strewn ground which are common across the Martian high latitudes. Several hypotheses have been suggested to explain the formation of clastic patterned ground on Mars. It has been proposed that these structures could have formed through freeze-thaw sorting, or conversely by the interaction of boulders with underlying fracture polygons. In this investigation a series of sites were examined to evaluate whether boulder patterns appear to be controlled by the distribution of underlying fractures and test the fracture control hypotheses for their formation. It was decided to focus on this suite of mechanisms as they are characterised by a clear morphological relationship, namely the presence of an underlying fracture network which can easily be evaluated over a large area. It was found that in the majority of examples at these sites did not exhibit fracture control. Although fractures were present at many sites there were very few sites where the fracture network appeared to be controlling the boulder distribution. In general these were not the sites with the best examples of organization, suggesting that the fracture control mechanisms are not the dominant geomorphic process organising the boulders in this area.

  5. Dross formation during laser cutting process

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B S; Aleem, B J Abdul [Mechanical Engineering Department, King Fahd University of Petoleum and Minerals, Dhahran 32161 (Saudi Arabia)

    2006-04-07

    Melt formation during laser cutting of metallic substrates is considered and the melt thickness is formulated using a lump parameter analysis. The droplet diameter is also predicted and compared with the experimental results. A CO{sub 2} laser with variable pulse frequency is used in the experiment. Oxygen, as assisting gas, impinging coaxially with the laser beam, is used at different pressures. SEM and XRD are carried out to obtain micrographs and oxide compounds formed in the dross. It is found that the liquid layer thickness increases with increasing laser output power and reduces with increasing assisting gas velocity. The droplet formed is spherical and the droplet size predicted agrees well with the experimental results.

  6. Are amphitheater headed canyons indicative of a particular formative process?

    Science.gov (United States)

    Ryan, A. J.; Whipple, K. X.; Johnson, J. P.

    2012-12-01

    Tributary canyons with amphitheater-shaped heads have previously been interpreted as evidence for groundwater seepage erosion, particularly in environments where fluvial processes are assumed to be negligible. However, some have questioned whether this canyon morphology is truly diagnostic of a particular formative process. We seek to determine the relative roles of fluvial and groundwater-related processes and the strength of stratigraphic control on the Colorado Plateau through a combination of fieldwork and GIS analysis. Amphitheater valleys may have overhanging or steep-sided headwalls with a semicircular plan-view pattern. It is reasonable to assume that this form is a result of focused erosion at the base of the headwall (i.e. sapping). Two frequently cited agents may lead to undermining: plunge-pool scour at the base of waterfalls and seepage induced weathering and erosion where the groundwater table intersects the land surface. Both processes are enhanced where weaker, less permeable layers underlie stronger cap rock. We conducted preliminary fieldwork in two locations on the Colorado Plateau, where there are many classic examples of amphitheater headed canyons. The Escalante River landscape is highly variable with a range of canyon and valley-head forms, many of which cut through the thick Navajo Sandstone into the underlying shale and sand of the Kayenta Formation. Northeast of Escalante National Monument, at the base of the Henry Mountains, is Tarantula Mesa. The canyons there are also considerably variable, with nearly all containing at least one abrupt amphitheater knickpoint at the valley head or farther downstream. Our observations are presented here with an analysis of the canyon profiles, surrounding topography, and potential structural controls. We have found that nearly all amphitheaters in both locales show signs of groundwater seepage weathering and plausibly seepage erosion. However, many also contain plunge pools and evidence of substantial

  7. Accelerated fluctuation analysis by graphic cards and complex pattern formation in financial markets

    International Nuclear Information System (INIS)

    Preis, Tobias; Virnau, Peter; Paul, Wolfgang; Schneider, Johannes J

    2009-01-01

    The compute unified device architecture is an almost conventional programming approach for managing computations on a graphics processing unit (GPU) as a data-parallel computing device. With a maximum number of 240 cores in combination with a high memory bandwidth, a recent GPU offers resources for computational physics. We apply this technology to methods of fluctuation analysis, which includes determination of the scaling behavior of a stochastic process and the equilibrium autocorrelation function. Additionally, the recently introduced pattern formation conformity (Preis T et al 2008 Europhys. Lett. 82 68005), which quantifies pattern-based complex short-time correlations of a time series, is calculated on a GPU and analyzed in detail. Results are obtained up to 84 times faster than on a current central processing unit core. When we apply this method to high-frequency time series of the German BUND future, we find significant pattern-based correlations on short time scales. Furthermore, an anti-persistent behavior can be found on short time scales. Additionally, we compare the recent GPU generation, which provides a theoretical peak performance of up to roughly 10 12 floating point operations per second with the previous one.

  8. Consumption of processed food dietary patterns in four African populations.

    Science.gov (United States)

    Holmes, Michelle D; Dalal, Shona; Sewram, Vikash; Diamond, Megan B; Adebamowo, Sally N; Ajayi, Ikeoluwapo O; Adebamowo, Clement; Chiwanga, Faraja S; Njelekela, Marina; Laurence, Carien; Volmink, Jimmy; Bajunirwe, Francis; Nankya-Mutyoba, Joan; Guwatudde, David; Reid, Todd G; Willett, Walter C; Adami, Hans-Olov; Fung, Teresa T

    2018-06-01

    To identify predominant dietary patterns in four African populations and examine their association with obesity. Cross-sectional study.Setting/SubjectsWe used data from the Africa/Harvard School of Public Health Partnership for Cohort Research and Training (PaCT) pilot study established to investigate the feasibility of a multi-country longitudinal study of non-communicable chronic disease in sub-Saharan Africa. We applied principal component analysis to dietary intake data collected from an FFQ developed for PaCT to ascertain dietary patterns in Tanzania, South Africa, and peri-urban and rural Uganda. The sample consisted of 444 women and 294 men. We identified two dietary patterns: the Mixed Diet pattern characterized by high intakes of unprocessed foods such as vegetables and fresh fish, but also cold cuts and refined grains; and the Processed Diet pattern characterized by high intakes of salad dressing, cold cuts and sweets. Women in the highest tertile of the Processed Diet pattern score were 3·00 times more likely to be overweight (95 % CI 1·66, 5·45; prevalence=74 %) and 4·24 times more likely to be obese (95 % CI 2·23, 8·05; prevalence=44 %) than women in this pattern's lowest tertile (both Pobesity. We identified two major dietary patterns in several African populations, a Mixed Diet pattern and a Processed Diet pattern. The Processed Diet pattern was associated with obesity.

  9. Export Processing Zones and Global Class Formation

    NARCIS (Netherlands)

    Neveling, Patrick

    2015-01-01

    This chapter is concerned with one of the most striking developments in the global political economy of capitalism after the Second World War; the rise of export processing zones and special economic zones. Building on long-term ethnohistorical research on the zones’ global spread from one zone in

  10. In-Storage Embedded Accelerator for Sparse Pattern Processing

    OpenAIRE

    Jun, Sang-Woo; Nguyen, Huy T.; Gadepally, Vijay N.; Arvind

    2016-01-01

    We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable of handling up to 1TB of data, and experiments show that it can outperform C/C++ software solutions on a 16-core system at a fracti...

  11. Pattern centric design based sensitive patterns and process monitor in manufacturing

    Science.gov (United States)

    Hsiang, Chingyun; Cheng, Guojie; Wu, Kechih

    2017-03-01

    When design rule is mitigating to smaller dimension, process variation requirement is tighter than ever and challenges the limits of device yield. Masks, lithography, etching and other processes have to meet very tight specifications in order to keep defect and CD within the margins of the process window. Conventionally, Inspection and metrology equipments are utilized to monitor and control wafer quality in-line. In high throughput optical inspection, nuisance and review-classification become a tedious labor intensive job in manufacturing. Certain high-resolution SEM images are taken to validate defects after optical inspection. These high resolution SEM images catch not only optical inspection highlighted point, also its surrounding patterns. However, this pattern information is not well utilized in conventional quality control method. Using this complementary design based pattern monitor not only monitors and analyzes the variation of patterns sensitivity but also reduce nuisance and highlight defective patterns or killer defects. After grouping in either single or multiple layers, systematic defects can be identified quickly in this flow. In this paper, we applied design based pattern monitor in different layers to monitor process variation impacts on all kinds of patterns. First, the contour of high resolutions SEM image is extracted and aligned to design with offset adjustment and fine alignment [1]. Second, specified pattern rules can be applied on design clip area, the same size as SEM image, and form POI (pattern of interest) areas. Third, the discrepancy of contour and design measurement at different pattern types in measurement blocks. Fourth, defective patterns are reported by discrepancy detection criteria and pattern grouping [4]. Meanwhile, reported pattern defects are ranked by number and severity by discrepancy. In this step, process sensitive high repeatable systematic defects can be identified quickly Through this design based process pattern

  12. Viscoelasticity and pattern formations in stock market indices

    Science.gov (United States)

    Gündüz, Güngör; Gündüz, Aydın

    2017-06-01

    The viscoelastic and thermodynamic properties of four stock indices, namely, DJI, Nasdaq-100, Nasdaq-Composite, and S&P were analyzed for a period of 30 years from 1986 to 2015. The asset values (or index) can be placed into Aristotelian `potentiality-actuality' framework by using scattering diagram. Thus, the index values can be transformed into vectorial forms in a scattering diagram, and each vector can be split into its horizontal and vertical components. According to viscoelastic theory, the horizontal component represents the conservative, and the vertical component represents the dissipative behavior. The related storage and the loss modulus of these components are determined and then work-like and heat-like terms are calculated. It is found that the change of storage and loss modulus with Wiener noise (W) exhibit interesting patterns. The loss modulus shows a featherlike pattern, whereas the storage modulus shows figurative man-like pattern. These patterns are formed due to branchings in the system and imply that stock indices do have a kind of `fine-order' which can be detected when the change of modulus values are plotted with respect to Wiener noise. In theoretical calculations it is shown that the tips of the featherlike patterns stay at negative W values, but get closer to W = 0 as the drift in the system increases. The shift of the tip point from W = 0 indicates that the price change involves higher number of positive Wiener number corrections than the negative Wiener. The work-like and heat-like terms also exhibit patterns but with different appearance than modulus patterns. The decisional changes of people are reflected as the arrows in the scattering diagram and the propagation path of these vectors resemble the path of crack propagation. The distribution of the angle between two subsequent vectors shows a peak at 90°, indicating that the path mostly obeys the crack path occurring in hard objects. Entropy mimics the Wiener noise in the evolution

  13. Pattern formation in the bistable Gray-Scott model

    DEFF Research Database (Denmark)

    Mazin, W.; Rasmussen, K.E.; Mosekilde, Erik

    1996-01-01

    The paper presents a computer simulation study of a variety of far-from-equilibrium phenomena that can arise in a bistable chemical reaction-diffusion system which also displays Turing and Hopf instabilities. The Turing bifurcation curve and the wave number for the patterns of maximum linear grow...

  14. Looking at the origin of phenotypic variation from pattern formation ...

    Indian Academy of Sciences (India)

    Prakash

    evolutionary considerations, a large number of researchers, ... This article critically reviews some widespread views about the overall functioning of development. ... Thus, a great deal about the evolution and functioning of ... variants and thus take patterns of phenotypic variation as ..... Evolutionary thinking to the rescue.

  15. Spark formation as a moving boundary process

    Science.gov (United States)

    Ebert, Ute

    2006-03-01

    The growth process of spark channels recently becomes accessible through complementary methods. First, I will review experiments with nanosecond photographic resolution and with fast and well defined power supplies that appropriately resolve the dynamics of electric breakdown [1]. Second, I will discuss the elementary physical processes as well as present computations of spark growth and branching with adaptive grid refinement [2]. These computations resolve three well separated scales of the process that emerge dynamically. Third, this scale separation motivates a hierarchy of models on different length scales. In particular, I will discuss a moving boundary approximation for the ionization fronts that generate the conducting channel. The resulting moving boundary problem shows strong similarities with classical viscous fingering. For viscous fingering, it is known that the simplest model forms unphysical cusps within finite time that are suppressed by a regularizing condition on the moving boundary. For ionization fronts, we derive a new condition on the moving boundary of mixed Dirichlet-Neumann type (φ=ɛnφ) that indeed regularizes all structures investigated so far. In particular, we present compact analytical solutions with regularization, both for uniformly translating shapes and for their linear perturbations [3]. These solutions are so simple that they may acquire a paradigmatic role in the future. Within linear perturbation theory, they explicitly show the convective stabilization of a curved front while planar fronts are linearly unstable against perturbations of arbitrary wave length. [1] T.M.P. Briels, E.M. van Veldhuizen, U. Ebert, TU Eindhoven. [2] C. Montijn, J. Wackers, W. Hundsdorfer, U. Ebert, CWI Amsterdam. [3] B. Meulenbroek, U. Ebert, L. Schäfer, Phys. Rev. Lett. 95, 195004 (2005).

  16. Pattern formation through spatial interactions in a modified Daisyworld model

    Science.gov (United States)

    Alberti, Tommaso; Primavera, Leonardo; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo

    2015-04-01

    The Daisyworld model is based on a hypothetical planet, like the Earth, which receives the radiant energy coming from a Sun-like star, and populated by two kinds of identical plants differing by their colour: white daisies reflecting light and black daisies absorbing light. The interactions and feedbacks between the collective biota of the planet and the incoming radiation form a self-regulating system where the conditions for life are maintained. We investigate a modified version of the Daisyworld model where a spatial dependency on latitude is introduced, and both a variable heat diffusivity along latitude and a simple greenhouse model are included. We show that the spatial interactions between the variables of the system can generate some equilibrium patterns which can locally stabilize the coexistence of the two vegetation types. The feedback on albedo is able to generate new equilibrium solutions which can efficiently self-regulate the planet climate, even for values of the solar luminosity relatively far from the current Earth conditions. The extension to spatial Daisyworld gives room to the possibility of inhomogeneous solar forcing in a curved planet, with explicit differences between poles and equator and the direct use of the heat diffusion equation. As a first approach, to describe a spherical planet, we consider the temperature T(θ,t) and the surface coverage as depending only on time and on latitude θ (-90° ≤ θ ≤ 90°). A second step is the introduction of the greenhouse effect in the model, the process by which outgoing infrared radiation is partly screened by greenhouse gases. This effect can be described by relaxing the black-body radiation hypothesis and by introducing a grayness function g(T) in the heat equation. As a third step, we consider a latitude dependence of the Earth's conductivity, χ = χ(θ). Considering these terms, using spherical coordinates and symmetry with respect to θ, the modified Daisyworld equations reduce to the

  17. Multiple paternity in reptiles: patterns and processes.

    Science.gov (United States)

    Uller, Tobias; Olsson, Mats

    2008-06-01

    The evolution of female promiscuity poses an intriguing problem as benefits of mating with multiple males often have to arise via indirect, genetic, effects. Studies on birds have documented that multiple paternity is common in natural populations but strong evidence for selection via female benefits is lacking. In an attempt to evaluate the evidence more broadly, we review studies of multiple paternity in natural populations of all major groups of nonavian reptiles. Multiple paternity has been documented in all species investigated so far and commonly exists in over 50% of clutches, with particularly high levels in snakes and lizards. Marine turtles and lizards with prolonged pair-bonding have relatively low levels of multiple paternity but levels are nevertheless higher than in many vertebrates with parental care. There is no evidence that high levels of polyandry are driven by direct benefits to females and the evidence that multiple paternity arises from indirect genetic benefits is weak. Instead, we argue that the most parsimonious explanation for patterns of multiple paternity is that it represents the combined effect of mate-encounter frequency and conflict over mating rates between males and females driven by large male benefits and relatively small female costs, with only weak selection via indirect benefits. A crucial step for researchers is to move from correlative approaches to experimental tests of assumptions and predictions of theory under natural settings, using a combination of molecular techniques and behavioural observations.

  18. Patterns of partnership formation among lone mothers in Russia

    OpenAIRE

    Cordula Zabel

    2008-01-01

    This study examines the determinants of partnership formation among lone mothers in Russia, using data from the Russian Generations and Gender Survey (GGS) and the Education and Employment Survey (EES). The central research question is whether difficult economic circumstances pressure lone mothers to enter new partnerships sooner than they would under other circumstances, limiting their freedom of choice of type of living arrangement. The empirical results show that while occupation influence...

  19. Dynamic array generation and pattern formation for optical tweezers

    DEFF Research Database (Denmark)

    Mogensen, P.C.; Glückstad, J.

    2000-01-01

    The generalised phase contrast approach is used for the generation of optical arrays of arbitrary beam shape, suitable for applications in optical tweezers for the manipulation of biological specimens. This approach offers numerous advantages over current techniques involving the use of computer......-generated holograms or diffractive optical elements. We demonstrate a low-loss system for generating intensity patterns suitable for the trapping and manipulation of small particles or specimens....

  20. A simplified memory network model based on pattern formations

    Science.gov (United States)

    Xu, Kesheng; Zhang, Xiyun; Wang, Chaoqing; Liu, Zonghua

    2014-12-01

    Many experiments have evidenced the transition with different time scales from short-term memory (STM) to long-term memory (LTM) in mammalian brains, while its theoretical understanding is still under debate. To understand its underlying mechanism, it has recently been shown that it is possible to have a long-period rhythmic synchronous firing in a scale-free network, provided the existence of both the high-degree hubs and the loops formed by low-degree nodes. We here present a simplified memory network model to show that the self-sustained synchronous firing can be observed even without these two necessary conditions. This simplified network consists of two loops of coupled excitable neurons with different synaptic conductance and with one node being the sensory neuron to receive an external stimulus signal. This model can be further used to show how the diversity of firing patterns can be selectively formed by varying the signal frequency, duration of the stimulus and network topology, which corresponds to the patterns of STM and LTM with different time scales. A theoretical analysis is presented to explain the underlying mechanism of firing patterns.

  1. Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2013-01-01

    Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.

  2. Spatial pattern and ecological process in the coffee agroforestry system.

    Science.gov (United States)

    Perfecto, Ivette; Vandermeer, John

    2008-04-01

    The coffee agroforestry system provides an ideal platform for the study of spatial ecology. The uniform pattern of the coffee plants and shade trees allows for the study of pattern generation through intrinsic biological forces rather than extrinsic habitat patchiness. Detailed studies, focusing on a key mutualism between an ant (Azteca instabilis) and a scale insect (Coccus viridis), conducted in a 45-ha plot in a coffee agroforestry system have provided insights into (1) the quantitative evaluation of spatial pattern of the scale insect Coccus viridis on coffee bushes, (2) the mechanisms for the generation of patterns through the combination of local satellite ant nest formation and regional control from natural enemies, and (3) the consequences of the spatial pattern for the stability of predator-prey (host-parasitoid) systems, for a key coccinelid beetle preying on the scale insects and a phorid fly parasitoid parasitizing the ant.

  3. Radial pattern of nuclear decay processes

    International Nuclear Information System (INIS)

    Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1994-05-01

    At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)

  4. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    Science.gov (United States)

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  5. INSTITUTIONAL ENVIRONMENT OF THE AGRICULTURAL MARKET FORMATION PROCESS

    Directory of Open Access Journals (Sweden)

    S. Revenko

    2013-11-01

    Full Text Available This article considers institutional aspects of the organized agricultural market formation process. Theoretical base to distinguish institute and institutes is given. In order to find out main influential institutes of the “organization” phenomenon author analyses Ukrainian institutional environment that is under construction process. Author considers main processes which are running during the organized market formation. Author researches theoretical approaches to the institutional staff. In order to structure the most common approaches and theoretical knowledge of this problem author proposes few schemes. Author’s points of view for many questions of the organized market formation process are proposed. Researcher analyzes effectiveness of the institutes and governmental regulation of the agricultural market. Readers can find strategically new approach to the agricultural market formation policy from the governmental point of view. Essence of the socioeconomic formation of agricultural market is considered. Main factors of agriculture market formation are outlined. Agricultural market structural parts consideration systematic approach is proposed. Ineffectiveness of the agriculture market relations without regulation process is proved. The most unfavorable reasons of the agricultural market formation are determined.

  6. The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.

  7. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    Science.gov (United States)

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  8. Patterns Formation in a Self-Gravitating Isentropic Gas

    Science.gov (United States)

    Humi, Mayer

    2018-03-01

    In this paper we consider a hydrodynamic model for the matter density distribution in a self gravitating, isentropic 2-d disk of gas where the isentropy coefficient is allowed to be a function of position. For this model we prove analytically the existence of steady state and time dependent solutions in which the matter density in the disk is oscillatory and pattern forming. This research is motivated in part by recent astronomical observations and Laplace conjecture (made in 1796) that planetary systems evolve from a family of isolated rings that are formed within a primitive interstellar gas cloud.

  9. In-situ observation of structure formation in polymer processing

    International Nuclear Information System (INIS)

    Murase, Hiroki

    2009-01-01

    In-situ X-ray scattering in polymer processing is a crucial method to elucidate the mechanism of structure formation in the process. Fiber spinning is one such process primarily imposing extensional deformation on polymeric melt at the spin-line during rapid cooling. In-situ small-angle X-ray scattering using synchrotron radiation on the spinning process allows direct observation of the transient structure developing in the process. (author)

  10. A survey on pattern formation of autonomous mobile robots: asynchrony, obliviousness and visibility

    International Nuclear Information System (INIS)

    Yamauchi, Yukiko

    2013-01-01

    A robot system consists of autonomous mobile robots each of which repeats Look-Compute-Move cycles, where the robot observes the positions of other robots (Look phase), computes the track to the next location (Compute phase), and moves along the track (Move phase). In this survey, we focus on self-organization of mobile robots, especially their power of forming patterns. The formation power of a robot system is the class of patterns that the robots can form, and existing results show that the robot system's formation power is determined by their asynchrony, obliviousness, and visibility. We briefly survey existing results, with impossibilities and pattern formation algorithms. Finally, we present several open problems related to the pattern formation problem of mobile robots

  11. The physics of pattern formation at liquid interface: Progress report, June 1, 1988--May 31, 1989

    International Nuclear Information System (INIS)

    Maher, J.V.

    1989-06-01

    This paper describes pattern formation at liquid interfaces. Results shed light on questions which underlie the theory of solidification. Also reviewed are random system issues of wetting of curved surfaces and fluctuations in swollen polymeric gel

  12. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    Science.gov (United States)

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  13. The dynamics of visual experience, an EEG study of subjective pattern formation.

    Directory of Open Access Journals (Sweden)

    Mark A Elliott

    Full Text Available BACKGROUND: Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. METHODOLOGY/PRINCIPAL FINDINGS: Using independent-component analysis (ICA we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG. The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns or a series of high-frequency harmonics of a delta oscillation (spiral patterns. CONCLUSIONS/SIGNIFICANCE: Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation.

  14. Patterns of Family Formation in Response to Sex Ratio Variation.

    Science.gov (United States)

    Schacht, Ryan; Kramer, Karen L

    2016-01-01

    The impact that unbalanced sex ratios have on health and societal outcomes is of mounting contemporary concern. However, it is increasingly unclear whether it is male- or female-biased sex ratios that are associated with family and social instability. From a socio-demographic perspective, male-biased sex ratios leave many men unable to find a mate, elevating competition among males, disrupting family formation and negatively affecting social stability. In contrast, from a mating-market perspective, males are expected to be less willing to marry and commit to a family when the sex ratio is female-biased and males are rare. Here we use U.S. data to evaluate predictions from these competing frameworks by testing the relationship between the adult sex ratio and measures of family formation. We find that when women are rare men are more likely to marry, be part of a family and be sexually committed to a single partner. Our results do not support claims that male-biased sex ratios lead to negative family outcomes due to a surplus of unmarried men. Rather, our results highlight the need to pay increased attention to female-biased sex ratios.

  15. Pattern formation and firing synchronization in networks of map neurons

    International Nuclear Information System (INIS)

    Wang Qingyun; Duan Zhisheng; Huang Lin; Chen Guanrong; Lu Qishao

    2007-01-01

    Patterns and collective phenomena such as firing synchronization are studied in networks of nonhomogeneous oscillatory neurons and mixtures of oscillatory and excitable neurons, with dynamics of each neuron described by a two-dimensional (2D) Rulkov map neuron. It is shown that as the coupling strength is increased, typical patterns emerge spatially, which propagate through the networks in the form of beautiful target waves or parallel ones depending on the size of networks. Furthermore, we investigate the transitions of firing synchronization characterized by the rate of firing when the coupling strength is increased. It is found that there exists an intermediate coupling strength; firing synchronization is minimal simultaneously irrespective of the size of networks. For further increasing the coupling strength, synchronization is enhanced. Since noise is inevitable in real neurons, we also investigate the effects of white noise on firing synchronization for different networks. For the networks of oscillatory neurons, it is shown that firing synchronization decreases when the noise level increases. For the missed networks, firing synchronization is robust under the noise conditions considered in this paper. Results presented in this paper should prove to be valuable for understanding the properties of collective dynamics in real neuronal networks

  16. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Directory of Open Access Journals (Sweden)

    Hans-Georg Braun

    2013-02-01

    Full Text Available The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO, molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

  17. Two-dimensional colloidal fluids exhibiting pattern formation.

    Science.gov (United States)

    Chacko, Blesson; Chalmers, Christopher; Archer, Andrew J

    2015-12-28

    Fluids with competing short range attraction and long range repulsive interactions between the particles can exhibit a variety of microphase separated structures. We develop a lattice-gas (generalised Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also with density functional theory (DFT). The DFT predictions for the structures formed are in good agreement with the results from the simulations, which occur in the portion of the phase diagram where the theory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT does not correctly describe the transitions between the different morphologies, which the simulations show to be analogous to micelle formation. We determine how the heat capacity varies as the model parameters are changed. There are peaks in the heat capacity at state points where the morphology changes occur. We also map the lattice model onto a continuum DFT that facilitates a simplification of the stability analysis of the uniform fluid.

  18. Spatial pattern formation induced by Gaussian white noise.

    Science.gov (United States)

    Scarsoglio, Stefania; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2011-02-01

    The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  20. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  1. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Duan, Xiaoxi [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  2. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco

    2016-01-01

    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  3. Estimating dew formation in rice, using seasonally averaged diel patterns of weather variables

    NARCIS (Netherlands)

    Luo, W.; Goudriaan, J.

    2004-01-01

    If dew formation cannot be measured it has to be estimated. Available simulation models for estimating dew formation require hourly weather data as input. However, such data are not available for places without an automatic weather station. In such cases the diel pattern of weather variables might

  4. Anode pattern formation in atmospheric pressure air glow discharges with water anode

    NARCIS (Netherlands)

    Verreycken, T.; Bruggeman, P.J.; Leys, C.

    2009-01-01

    Pattern formation in the anode layer at a water electrode in atmospheric pressure glow discharges in air is studied. With increasing current a sequence of different anode spot structures occurs from a constricted homogeneous spot in the case of small currents to a pattern consisting of small

  5. Pattern formation and self-organization in a simple precipitation system

    NARCIS (Netherlands)

    Volford, Andras; Izsak, F.; Ripzam, Matyas; Lagzi, Istvan

    Various types of pattern formation and self-organization phenomena can be observed in biological, chemical, and geochemical systems due to the interaction of reaction with diffusion. The appearance of static precipitation patterns was reported first by Liesegang in 1896. Traveling waves and

  6. Formation of periodic and localized patterns in an oscillating granular layer.

    Energy Technology Data Exchange (ETDEWEB)

    Aranson, I.; Tsimring, L. S.; Materials Science Division; Bar Ilan Univ.; Univ. of California at San Diego

    1998-02-01

    A simple phenomenological model for pattern formation in a vertically vibrated layer of granular particles is proposed. This model exhibits a variety of stable cellular patterns including standing rolls and squares as well as localized excitations (oscillons and worms), similar to recent experimental observations (Umbanhowar et al., 1996). The model is an order parameter equation for the parametrically excited waves coupled to the mass conservation law. The structure and dynamics of the solutions resemble closely the properties of patterns observed in the experiments.

  7. Robust dynamical pattern formation from a multifunctional minimal genetic circuit

    Directory of Open Access Journals (Sweden)

    Carrera Javier

    2010-04-01

    Full Text Available Abstract Background A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control gene expression under variable environments such as the light-dark cycle. Results We propose a new mechanism to generate developmental patterns and oscillations using a minimal number of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal control of protein expression. Here, we show that our minimal system can behave as a biological clock or memory, and it exhibites an inherent robustness due to a quorum sensing mechanism. We analyze this property by accounting for molecular noise in an heterogeneous population. We also show how the period of the oscillations is tunable by environmental signals, and we study the bifurcations of the system by constructing different phase diagrams. Conclusions As this minimal circuit is based on a single transcriptional unit, it provides a new mechanism based on post-translational interactions to generate targeted spatio-temporal behavior.

  8. Perfect pattern formation of neutral atoms in an addressable optical lattice

    International Nuclear Information System (INIS)

    Vala, J.; Whaley, K.B.; Thapliyal, A.V.; Vazirani, U.; Myrgren, S.; Weiss, D.S.

    2005-01-01

    We propose a physical scheme for formation of an arbitrary pattern of neutral atoms in an addressable optical lattice. We focus specifically on the generation of a perfect optical lattice of simple orthorhombic structure with unit occupancy, as required for initialization of a neutral atom quantum computer. The scheme employs a compacting process that is accomplished by sequential application of two types of operations: a flip operator that changes the internal state of the atoms, and a shift operator that selectively moves the atoms in one internal state along the lattice principal axis. Realizations of these elementary operations and their physical limitations are analyzed. The complexity of the compacting scheme is analyzed and we show that this scales linearly with the number of lattice sites per row of the lattice

  9. Pattern formation induced by cross-diffusion in a predator–prey system

    International Nuclear Information System (INIS)

    Sun Guiquan; Jin Zhen; Liu Quanxing; Li Li

    2008-01-01

    This paper considers the Holling–Tanner model for predator–prey with self and cross-diffusion. From the Turing theory, it is believed that there is no Turing pattern formation for the equal self-diffusion coefficients. However, combined with cross-diffusion, it shows that the system will exhibit spotted pattern by both mathematical analysis and numerical simulations. Furthermore, asynchrony of the predator and the prey in the space. The obtained results show that cross-diffusion plays an important role on the pattern formation of the predator–prey system. (general)

  10. Non-linear diffusion and pattern formation in vortex matter

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Griessen, R.; Einfeld, J.; Woerdenweber, R.

    2000-03-01

    Penetration of magnetic flux in YBa_2Cu_3O7 superconducting thin films and crystals in externally applied magnetic fields is visualized with a magneto-optical technique. A variety of flux patterns due to non-linear vortex behavior is observed: 1. Roughening of the flux front^1 with scaling exponents identical to those observed in burning paper^2. Two regimes are found where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. 2. Roughening of the flux profile similar to the Oslo model for rice-piles. 3. Fractal penetration of flux^3 with Hausdorff dimension depending on the critical current anisotropy. 4. Penetration as 'flux-rivers'. 5. The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori^4. By comparison with numerical simulations, it is shown that most of the observed behavior can be explained in terms of non-linear diffusion of vortices. ^1R. Surdeanu, R.J. Wijngaarden, E. Visser, J.M. Huijbregtse, J.H. Rector, B. Dam and R. Griessen, Phys.Rev. Lett. 83 (1999) 2054 ^2J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen, N. Provatas, M.J. Alava, T. Ala-Nissila, Phys. Rev. Lett. 79, 1515 (1997) ^3R. Surdeanu, R.J. Wijngaarden, B. Dam, J. Rector, R. Griessen, C. Rossel, Z.F. Ren and J.H. Wang, Phys Rev B 58 (1998) 12467 ^4C. Reichhardt, C.J. Olson and F. Nori, Phys. Rev. B 58, 6534 (1998)

  11. Mathematics and biology: a Kantian view on the history of pattern formation theory.

    Science.gov (United States)

    Roth, Siegfried

    2011-12-01

    Driesch's statement, made around 1900, that the physics and chemistry of his day were unable to explain self-regulation during embryogenesis was correct and could be extended until the year 1972. The emergence of theories of self-organisation required progress in several areas including chemistry, physics, computing and cybernetics. Two parallel lines of development can be distinguished which both culminated in the early 1970s. Firstly, physicochemical theories of self-organisation arose from theoretical (Lotka 1910-1920) and experimental work (Bray 1920; Belousov 1951) on chemical oscillations. However, this research area gained broader acceptance only after thermodynamics was extended to systems far from equilibrium (1922-1967) and the mechanism of the prime example for a chemical oscillator, the Belousov-Zhabotinski reaction, was deciphered in the early 1970s. Secondly, biological theories of self-organisation were rooted in the intellectual environment of artificial intelligence and cybernetics. Turing wrote his The chemical basis of morphogenesis (1952) after working on the construction of one of the first electronic computers. Likewise, Gierer and Meinhardt's theory of local activation and lateral inhibition (1972) was influenced by ideas from cybernetics. The Gierer-Meinhardt theory provided an explanation for the first time of both spontaneous formation of spatial order and of self-regulation that proved to be extremely successful in elucidating a wide range of patterning processes. With the advent of developmental genetics in the 1980s, detailed molecular and functional data became available for complex developmental processes, allowing a new generation of data-driven theoretical approaches. Three examples of such approaches will be discussed. The successes and limitations of mathematical pattern formation theory throughout its history suggest a picture of the organism, which has structural similarity to views of the organic world held by the philosopher

  12. Diapycnal Transport and Pattern Formation in Double-Diffusive Convection

    Science.gov (United States)

    2015-12-01

    carried out only over the geostrophic interior. By virtue of (2.55), we further simplify (2.58) to * int 0dlw M = ∇∫ . (2.59) The final step is the...The processes discussed in this study could be affected by the nonlinearities of the equation of state (e.g., McDougall 1987). Thus, the quantitative...nonlinear equation of state given in McDougall et al. (2003). Model geometry consisted of a volume comprising 320 grid points in the zonal and 256

  13. Using pattern enumeration to accelerate process development and ramp yield

    Science.gov (United States)

    Zhuang, Linda; Pang, Jenny; Xu, Jessy; Tsai, Mengfeng; Wang, Amy; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua

    2016-03-01

    During a new technology node process setup phase, foundries do not initially have enough product chip designs to conduct exhaustive process development. Different operational teams use manually designed simple test keys to set up their process flows and recipes. When the very first version of the design rule manual (DRM) is ready, foundries enter the process development phase where new experiment design data is manually created based on these design rules. However, these IP/test keys contain very uniform or simple design structures. This kind of design normally does not contain critical design structures or process unfriendly design patterns that pass design rule checks but are found to be less manufacturable. It is desired to have a method to generate exhaustive test patterns allowed by design rules at development stage to verify the gap of design rule and process. This paper presents a novel method of how to generate test key patterns which contain known problematic patterns as well as any constructs which designers could possibly draw based on current design rules. The enumerated test key patterns will contain the most critical design structures which are allowed by any particular design rule. A layout profiling method is used to do design chip analysis in order to find potential weak points on new incoming products so fab can take preemptive action to avoid yield loss. It can be achieved by comparing different products and leveraging the knowledge learned from previous manufactured chips to find possible yield detractors.

  14. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    Science.gov (United States)

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    International Nuclear Information System (INIS)

    Singh, S.; Solak, H.; Cerrina, F.

    1997-01-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi 2 exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 μΩ-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 μΩ-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick open-quotes as isclose quotes industrial samples

  16. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Solak, H.; Cerrina, F. [Univ. of Wisconsin-Madison, Stoughton, WI (United States)] [and others

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  17. Technical Reviews on Pattern Recognition in Process Analytical Technology

    International Nuclear Information System (INIS)

    Kim, Jong Yun; Choi, Yong Suk; Ji, Sun Kyung; Park, Yong Joon; Song, Kyu Seok; Jung, Sung Hee

    2008-12-01

    Pattern recognition is one of the first and the most widely adopted chemometric tools among many active research area in chemometrics such as design of experiment(DoE), pattern recognition, multivariate calibration, signal processing. Pattern recognition has been used to identify the origin of a wine and the time of year that the vine was grown by using chromatography, cause of fire by using GC/MS chromatography, detection of explosives and land mines, cargo and luggage inspection in seaports and airports by using a prompt gamma-ray activation analysis, and source apportionment of environmental pollutant by using a stable isotope ratio mass spectrometry. Recently, pattern recognition has been taken into account as a major chemometric tool in the so-called 'process analytical technology (PAT)', which is a newly-developed concept in the area of process analytics proposed by US Food and Drug Administration (US FDA). For instance, identification of raw material by using a pattern recognition analysis plays an important role for the effective quality control of the production process. Recently, pattern recognition technique has been used to identify the spatial distribution and uniformity of the active ingredients present in the product such as tablet by transforming the chemical data into the visual information

  18. Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80

    Energy Technology Data Exchange (ETDEWEB)

    Hiscocks, J., E-mail: j.hiscocks@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Diak, B.J. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, Waterloo University, Waterloo, Ontario (Canada); Daymond, M.R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, Ontario (Canada)

    2016-12-15

    Many studies of friction stir welding have shown that periodicity of metal flow around the tool pin may result in the formation of periodic differences in microstructure and texture in the weld nugget area correlated with the weld pitch. The current work investigates the periodicity of magnesium weld microtexture in the nugget region and its association with material flow using optical and electron microscopy. Two welds created in AZ80 at different processing conditions are presented in detail, one illustrating periodic longitudinal texture change, and one showing for the first time that periodic variations in texture, grain size, or composition are not defining features of periodic nugget flow. While nugget texture is dominated by shear deformation, it was found here to be affected to a lesser degree by compaction of material behind the welding tool, which led to reduction in intensity of the shear texture fiber. The decreased tendency for magnesium based alloys to form periodic patterns as compared to aluminum based alloys is explained with reference to the shear textures. - Highlights: •It is shown here that periodic material flow in the nugget does not necessitate longitudinal texture patterns. •Longitudinal texture patterns are shown to be present or absent in Mg AZ80 based on processing conditions. •Texture in the nugget is mainly dictated by shear deformation, but has measurable effects from other deformation modes. •Explanation of why longitudinal texture change is frequently reported in aluminum but not magnesium alloys is provided. •A new vector visualization of material flow based on EBSD data analysis is shown.

  19. Differential and coherent processing patterns from small RNAs

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Gorodkin, Jan

    2015-01-01

    Post-transcriptional processing events related to short RNAs are often reflected in their read profile patterns emerging from high-throughput sequencing data. MicroRNA arm switching across different tissues is a well-known example of what we define as differential processing. Here, short RNAs from...

  20. A process pattern language for coordinated software development

    NARCIS (Netherlands)

    Amrit, Chintan; ter Haar, René; Aydin, Mehmet N.; Hillegersberg, Jos Van

    2007-01-01

    In distributed and collocated teams we often find problems in the organizational process structures. Though process patterns have been around for many years, there has been little research in categorizing the different solutions to various problems dealing with coordination, for easy access by

  1. From lag synchronization to pattern formation in one-dimensional open flow models

    International Nuclear Information System (INIS)

    Liu Zengrong; Luo Jigui

    2006-01-01

    In this paper, the relation between synchronization and pattern formation in one-dimensional discrete and continuous open flow models is investigated in detail. Firstly a sufficient condition for globally asymptotical stability of lag/anticipating synchronization among lattices of these models is proved by analytic method. Then, by analyzing and simulating lag/anticipating synchronization in discrete case, three kinds of pattern of wave (it is called wave pattern) travelling in the lattices are discovered. Finally, a proper definition for these kinds of pattern is proposed

  2. High precision patterning of ITO using femtosecond laser annealing process

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying

    2014-01-01

    Highlights: • We have reported a process of fabrication of crystalline indium tin oxide (c-ITO) patterns using femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching. • The experimental results have demonstrated that the ablation and crystallization threshold fluences of a-ITO thin film are well-defined, the line width of the c-ITO patterns is controllable. • Fast fabrication of the two parallel sub-micro (∼0.5 μm) c-ITO line patterns using a single femtosecond laser beam and a single scanning path can be achieved. • A long-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices. - Abstract: High precision patterning of crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching is demonstrated. In the proposed approach, the a-ITO thin film is selectively transformed into a c-ITO structure via a low heat affect zone and the well-defined thresholds (ablation and crystallization) supplied by the femtosecond laser pulse. The experimental results show that by careful control of the laser fluence above the crystallization threshold, c-ITO patterns with controllable line widths and ridge-free characteristics can be accomplished. By careful control of the laser fluence above the ablation threshold, fast fabrication of the two parallel sub-micro c-ITO line patterns using a single femtosecond laser beam and single scanning path can be achieved. Along-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices

  3. Procedural generation of aesthetic patterns from dynamics and iteration processes

    Directory of Open Access Journals (Sweden)

    Gdawiec Krzysztof

    2017-12-01

    Full Text Available Aesthetic patterns are widely used nowadays, e.g., in jewellery design, carpet design, as textures and patterns on wallpapers, etc. Most of the work during the design stage is carried out by a designer manually. Therefore, it is highly useful to develop methods for aesthetic pattern generation. In this paper, we present methods for generating aesthetic patterns using the dynamics of a discrete dynamical system. The presented methods are based on the use of various iteration processes from fixed point theory (Mann, S, Noor, etc. and the application of an affine combination of these iterations. Moreover, we propose new convergence tests that enrich the obtained patterns. The proposed methods generate patterns in a procedural way and can be easily implemented on the GPU. The presented examples show that using the proposed methods we are able to obtain a variety of interesting patterns. Moreover, the numerical examples show that the use of the GPU implementation with shaders allows the generation of patterns in real time and the speed-up (compared with a CPU implementation ranges from about 1000 to 2500 times.

  4. Nanoscale pattern formation at surfaces under ion-beam sputtering: A perspective from continuum models

    International Nuclear Information System (INIS)

    Cuerno, Rodolfo; Castro, Mario; Munoz-Garcia, Javier; Gago, Raul; Vazquez, Luis

    2011-01-01

    Although reports on surface nanostructuring of solid targets by low to medium energy ion irradiation date back to the 1960s, only with the advent of high resolution tools for surface/interface characterization has the high potential of this procedure been recognized as a method for efficient production of surface patterns. Such morphologies are made up of periodic arrangements of nanometric sized features, like ripples and dots, with interest for technological applications due to their electronic, magnetic, and optical properties. Thus, roughly for the last ten years large efforts have been directed towards harnessing this nanofabrication technique. However, and particularly in view of recent experimental developments, we can say that the basic mechanisms controlling these pattern formation processes remain poorly understood. The lack of nanostructuring at low angles of incidence on some pure monoelemental targets, the role of impurities in the surface dynamics and other recent observations are challenging the classic view on the phenomenon as the mere interplay between the curvature dependence of the sputtering yield and surface diffusion. We review the main attempts at a theoretical (continuum) description of these systems, with emphasis on recent developments. Strong hints already exist that the nature of the morphological instability has to be rethought as originating in the material flow that is induced by the ion beam.

  5. TRACKING THE PROCESSES OF MELANODIN FORMATION IN COFFEE

    Directory of Open Access Journals (Sweden)

    Snezhana Ivanova

    2017-06-01

    Full Text Available Melanoidins are high molecular brown colored substances and products of sugar-amine reaction of Maillard. They are formed during roasting a green coffee beans under different thermal regimes of heat treatment. In the technological production of different types coffee beverages, the coffee powder is subjected to after-heat treatment. In these additional operations again become active processes of melanoidin formation and their changing their structures. This is changes of the Melanoidins have different effects on human health. It is therefore important to know their chemical structures and changes. Previous studies have shown that polysaccharides, proteins and chlorogenic acids are included in the formation of these melanoidins. However, the precise structures of coffee melanoidins and mechanisms involved in the formation are not yet clarified. This article systematize available information and provides an overview of research obtained so far on the structure of coffee melanoidins and mechanisms of their formation and potential health effects.

  6. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    Science.gov (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  7. Bifurcation and spatial pattern formation in spreading of disease with incubation period in a phytoplankton dynamics

    Directory of Open Access Journals (Sweden)

    Randhir Singh Baghel

    2012-02-01

    Full Text Available In this article, we propose a three dimensional mathematical model of phytoplankton dynamics with the help of reaction-diffusion equations that studies the bifurcation and pattern formation mechanism. We provide an analytical explanation for understanding phytoplankton dynamics with three population classes: susceptible, incubated, and infected. This model has a Holling type II response function for the population transformation from susceptible to incubated class in an aquatic ecosystem. Our main goal is to provide a qualitative analysis of Hopf bifurcation mechanisms, taking death rate of infected phytoplankton as bifurcation parameter, and to study further spatial patterns formation due to spatial diffusion. Here analytical findings are supported by the results of numerical experiments. It is observed that the coexistence of all classes of population depends on the rate of diffusion. Also we obtained the time evaluation pattern formation of the spatial system.

  8. The mechanism of Turing pattern formation in a positive feedback system with cross diffusion

    International Nuclear Information System (INIS)

    Yang, Xiyan; Liu, Tuoqi; Zhang, Jiajun; Zhou, Tianshou

    2014-01-01

    In this paper, we analyze a reaction–diffusion (R–D) system with a double negative feedback loop and find cases where self diffusion alone cannot lead to Turing pattern formation but cross diffusion can. Specifically, we first derive a set of sufficient conditions for Turing instability by performing linear stability analysis, then plot two bifurcation diagrams that specifically identify Turing regions in the parameter phase plane, and finally numerically demonstrate representative Turing patterns according to the theoretical predictions. Our analysis combined with previous studies actually implies an interesting fact that Turing patterns can be generated not only in a class of monostable R–D systems where cross diffusion is not necessary but also in a class of bistable R–D systems where cross diffusion is necessary. In addition, our model would be a good candidate for experimentally testing Turing pattern formation from the viewpoint of synthetic biology. (paper)

  9. Membrane formation : diffusion induced demixing processes in ternary polymeric systems

    NARCIS (Netherlands)

    Reuvers, Albertus Johannes

    1987-01-01

    In this thesis the mechanism of membrane formation by means of immersion precipitation is studied. Immersion of a concentrated polymer solution film into a nonsolvent bath induces an exchange of solvent and nonsolvent in the film by means of diffusion. This process results in an asymmetric polymer

  10. Emptiness formation probability of XX-chain in diffusion process

    International Nuclear Information System (INIS)

    Ogata, Yoshiko

    2004-01-01

    We study the distribution of emptiness formation probability of XX-model in the diffusion process. There exits a Gaussian decay as well as an exponential decay. The Gaussian decay is caused by the existence of zero point in the Fermi distribution function. The correlation length for each point of scaling factor varies up to the initial condition, monotonically or non-monotonically

  11. Satisfaction Formation Processes in Library Users: Understanding Multisource Effects

    Science.gov (United States)

    Shi, Xi; Holahan, Patricia J.; Jurkat, M. Peter

    2004-01-01

    This study explores whether disconfirmation theory can explain satisfaction formation processes in library users. Both library users' needs and expectations are investigated as disconfirmation standards. Overall library user satisfaction is predicted to be a function of two independent sources--satisfaction with the information product received…

  12. Academic Formation and Formative Research Integration Management for the Culmination of Studies Process in Higher Education

    Directory of Open Access Journals (Sweden)

    Lorna Cruz Rizo

    2016-12-01

    Full Text Available Given the up- dated international difficulties in the completion of studies process, theoretical and practical studies developed in this field are surprisingly scarce. Particularly, there has been a limited quantity of students that support their diploma thesis after completing their credits at the School of Languages and Linguistics at the University of Guayaquil. Consequently, this paper faces the problem of the insufficiencies in the culmination of studies process in relation to the management of the academic and scientific formation. Thus, the objective is: to improve the completion of studies or degree- obtaining processes in university education, through the implementation of a praxiological proposal of academic formation and formative research integration. Accordingly, the author´s experiences systematization is the methodology mainly used. The essential logic for the management of the academic formation and formative research integration was revealed as the main proposal, therefore this is the solution to the problem diagnosed. This is based on a curricular structure, in which each of the subjects was interrelated to each of the essential stages of the scientific research. As main results obtained, the students were able to solve real-life problems diagnosed at educative institutions, also they drew up the draft of their theses.

  13. Formation process of Malaysian modern architecture under influence of nationalism

    OpenAIRE

    宇高, 雄志; 山崎, 大智

    2001-01-01

    This paper examines the Formation Process of Malaysian Modern Architecture under Influence of Nationalism,through the process of independence of Malaysia. The national style as "Malaysian national architecture" which hasengaged on background of political environment under the post colonial situation. Malaysian urban design is alsodetermined under the balance of both of ethnic culture and the national culture. In Malaysia, they decided to choosethe Malay ethnic culture as the national culture....

  14. Effect of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel

    International Nuclear Information System (INIS)

    Palaniandavar, N.; Gnanam, F.D.; Ramasamy, P.

    1986-01-01

    The interrelated effects of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel medium have been investigated. The main parameters are concentration of electrolytes, pH of the medium, density of the gel, the concentration of parasitic electrolyte and the concentration of additives. The pattern formation is explained on the basis of electrical double layer theory coupled with diffusion. Using Shinohara's revised coagulation concept, the flocculation value is calculated. With suitable combinations of parameter values, dendritic growth and spherulitic growth of cadmium hydroxide crystals have been observed. (author)

  15. Formation of self-organized anode patterns in arc discharge simulations

    International Nuclear Information System (INIS)

    Trelles, Juan Pablo

    2013-01-01

    Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic non-equilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant dc current between an axi-symmetric electrode configuration in the absence of external forcing. The number of spots, their size and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational requirements for comprehensive arc discharge simulations. The obtained anode patterns qualitatively agree with experimental observations and confirm that the spots originate at the fringes of the arc–anode attachment. The results imply that heavy-species–electron energy equilibration, in addition to thermal instability, has a dominant role in the formation of anode spots in arc discharges. (paper)

  16. Processing biological literature with customizable Web services supporting interoperable formats.

    Science.gov (United States)

    Rak, Rafal; Batista-Navarro, Riza Theresa; Carter, Jacob; Rowley, Andrew; Ananiadou, Sophia

    2014-01-01

    Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specifications. We use the formats in the context of customizable Web services created in our Web-based, text-mining workbench Argo that features an ever-growing library of elementary analytics and capabilities to build and deploy Web services straight from a convenient graphical user interface. We demonstrate a 2-fold customization of Web services: by building task-specific processing pipelines from a repository of available analytics, and by configuring services to accept and produce a combination of input and output data interchange formats. We provide qualitative evaluation of the formats as well as quantitative evaluation of automatic analytics. The latter was carried out as part of our participation in the fourth edition of the BioCreative challenge. Our analytics built into Web services for recognizing biochemical concepts in BioC collections achieved the highest combined scores out of 10 participating teams. Database URL: http://argo.nactem.ac.uk. © The Author(s) 2014. Published by Oxford University Press.

  17. Processing of complex auditory patterns in musicians and nonmusicians.

    Science.gov (United States)

    Boh, Bastiaan; Herholz, Sibylle C; Lappe, Claudia; Pantev, Christo

    2011-01-01

    In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain.

  18. Processing of complex auditory patterns in musicians and nonmusicians.

    Directory of Open Access Journals (Sweden)

    Bastiaan Boh

    Full Text Available In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain.

  19. THE FEATURES OF PROCESSES OF SKILLS (SPECIAL COMPETENCIES FORMATION

    Directory of Open Access Journals (Sweden)

    A. N. Pechnikov

    2018-01-01

    Full Text Available Introduction. The present article continues a series of the authors’ publications devoted to key problems of a modern educational process organization and ensuring its efficiency. A starting point of the latest investigation stage has been a gap between the available models of formation and diagnostics of special competencies and the tasks for predicting a degree of success of development student’s skills in order to take adequate decisions on managing the process.The aim of the article is justification of a new methodological approach to formation of skills (special competencies of students.Methodology and research methods. The methods of analysis and synthesis; fundamental principles of didactics, qualimetry, the efficiency theory and the decision-making theory were used.Results and scientific novelty. The theoretical bases of evaluation procedures of pupils’ skills created during training are stated. Reference points for the choice of learning process characteristics are designated; by following those characteristics it is possible to provide better development of skills. The tasks of analysis of the studied problem, information acquisition and modeling of the “situation mechanism” of special competencies formation are considered. It is proved that for educational process management optimization it is necessary to evaluate not only its result, but also its quality process, as well its quality system that provides the organization process. The combination of factors to exert the dominating influence over educational process effectiveness are singled out: a type of the applied pedagogical influence; a type of the realized didactic system; a set of personal trainee characteristics which include levels of his/her educational motivation, learning ability, creativity and enables to model and predict training results. It is shown that each of possible combinations of the leading factors represents separate version of a solution to the

  20. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  1. Do deterministic processes influence the phenotypic patterns of ...

    African Journals Online (AJOL)

    Although urbanization is perhaps the most damaging, persistent, and rapidly expanding form of anthropogenic pressure on natural ecosystems, data on the patterns and processes of sympatric bat species in urban landscapes are relatively scant. We quantified the packing and dispersion of sympatric animalivorous bats ...

  2. Landscape moderation of biodiversity patterns and processes - eight hypotheses

    NARCIS (Netherlands)

    Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batary, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.; Ewers, R.M.; Frund, J.; Holt, R.D.; Holzschuh, A.; Klein, A.M.; Kleijn, D.; Kremen, C.; Landis, D.A.; Laurance, W.F.; Lindenmayer, D.B.; Scherber, C.; Sodhi, N.; Steffan-Dewenter, I.; Thies, C.; Putten, van der W.H.; Westphal, C.

    2012-01-01

    Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which

  3. Dynamic monitoring of landscape patterns and ecological processes

    Indian Academy of Sciences (India)

    Landscape patterns and ecological processes have been in long-term research focus in the field of landscape ecology, but how to measure their quantitative relations is still open. This work chooses the Hulunbeier grassland as the study area where ecosystem shows high vulnerability, frequent evolvement of landscape ...

  4. Multidimensional pattern formation has an infinite number of constants of motion

    International Nuclear Information System (INIS)

    Mineev-Weinstein, M.B.

    1993-01-01

    Extending our previous work on two-dimensional growth for the Laplace equation [M. B. Mineev, Physica D 43, 288 (1990)] we study here multidimensional growth for arbitrary elliptic equations, describing inhomogeneous and anisotropic pattern-formation processes. We find that these nonlinear processes are governed by an infinite number of conservation laws. Moreover, in many cases all 2 dynamics of the interface can be reduced to the linear time dependence of only one ''moment'' M 0 , which corresponds to the changing volume, while all higher moments M l are constant in time. These moments have a purely geometrical nature, and thus carry information about the moving shape. These conserved quantities [Eqs. (7) and (8) of this article] are interpreted as coefficients of the multipole expansion of the Newtonian potential created by the mass uniformly occupying the domain enclosing the moving interface. Thus the question of how to recover the moving shape using these conserved quantities is reduced to the classical inverse potential problem of reconstructing the shape of a body from its exterior gravitational potential. Our results also suggest the possibility of controlling a moving interface by appropriately varying the location and strength of sources and sinks

  5. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  6. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  7. Stress-driven pattern formation in living and non-living matter

    DEFF Research Database (Denmark)

    Christensen, Amalie

    . On the smallest scale of nanometers, we study thin films of block copolymers, which have potential applications as self-organizing templates for microelectronics. By performing a thin-shell expansion of a well-known model for block copolymers, we develop an effective model for the impact of curvature on pattern......Spatial pattern formation is abundant in nature and occurs in both living and non-living matter. Familiar examples include sand ripples, river deltas, zebra fur and snail shells. In this thesis, we focus on patterns induced by mechanical stress, and develop continuum theories for three systems...

  8. Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films

    International Nuclear Information System (INIS)

    Smith, Archie P.; Douglas, Jack F.; Meredith, J. Carson; Amis, Eric J.; Karim, Alamgir

    2001-01-01

    Surface pattern formation in diblock copolymer films is investigated as a function of film thickness h and molecular mass M . Smooth films are observed for certain h ranges centered about multiples of the lamellar thickness L 0 , and we attribute this effect to an increase in the surface chain density with h in the outer brushlike copolymer layer. We also observe apparently stable labyrinthine surface patterns for other h ranges, and the average size of these patterns is found to scale as λ∼L -2.5 0 . Hole and island patterns occur for h ranges between those of the labyrinthine patterns and the smooth regions, and their size similarly decreases with L 0 and M

  9. Formation of quasistationary vortex and transient hole patterns through vortex merger

    International Nuclear Information System (INIS)

    Ganesh, R.; Lee, J.K.

    2002-01-01

    Collection of point-like intense vortices arranged symmetrically outside of a uniform circular vortex patch, both enclosed in a free-slip circular boundary, are numerically time evolved for up to 10-15 patch turnover times. These patterns are found to merge with the patch by successively inducing nonlinear dispersive modes (V-states) on the surface of the patch, draw off fingers of vorticity (filamentation), trap the irrotational regions as the fingers symmetrize under the shear flow of the patch and point-like vortices (wave breaking) followed by the vortex-hole capture. While the hole patterns are observed to break up over several turnover periods the vortex patterns appear to evolve into quasistationary patterns for some cases of an initial number of point-like vortices N pv . The bounded V-states, filamentation, and vortex (hole) pattern formation are discussed in some detail and their possible connection to recently observed vortex 'crystals' is pointed out

  10. Study of pattern formation at liquid interfaces: Progress report, November 1986-October 1987

    International Nuclear Information System (INIS)

    Maher, J.V.

    1987-10-01

    This paper summarizes the work done on the following topics at the University of Pittsburgh: the behavior of a tip-splitting, viscous-fingering system and the role of interfacial noise in pattern formation on planar interfaces; the search for instability on a quenched liquid interface; and binary liquid gels and polymer solutions

  11. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...

  12. Category Formation in Autism: Can Individuals with Autism Form Categories and Prototypes of Dot Patterns?

    Science.gov (United States)

    Gastgeb, Holly Zajac; Dundas, Eva M.; Minshew, Nancy J.; Strauss, Mark S.

    2012-01-01

    There is a growing amount of evidence suggesting that individuals with autism have difficulty with categorization. One basic cognitive ability that may underlie this difficulty is the ability to abstract a prototype. The current study examined prototype and category formation with dot patterns in high-functioning adults with autism and matched…

  13. COMMUNICATION COMPONENT FORMATION OF TEACHERS’ COMPETENCE IN THE MENTORING PROCESS

    Directory of Open Access Journals (Sweden)

    Vera T. Sopegina

    2016-01-01

    Full Text Available The aim of this article is to present the integration process and special pedagogical competence in solving production and pedagogical challenges in the educational organizations and production enterprises engaged in the training of mentors.Methods. The methods involve the analysis of psycho-pedagogical and methodological literature on the issue; analysis of the Federal State Educational Standards and professional standards; modeling of processes.Results and scientific novelty. The problems of formation of communicative competence in the preparation of teachers are considered. The characteristic of the formation levels of mentoring such as «mentor-formal»; «mentor-theoretician», a «mentor-coach»; «mentor-adviser»; «mentor-professional» are given. The pedagogical potential of the phenomenon of «mentoring» is disclosed; an innovative way of mentoring within the competence approach is shown. The integrative activity of the teacher in solving production and pedagogical problems is analysed.Practical significance. The results can be used by trainers and mentors in the formation of communicative competence of students. The implementation of integration model of pedagogical and production tasks will provide the formation of communicative competence as part of vocational training. Using the obtained results can improve the effectiveness of vocational teacher education.

  14. TRACKING THE PROCESSES OF MELANODIN FORMATION IN COFFEE

    OpenAIRE

    Snezhana Ivanova

    2017-01-01

    Melanoidins are high molecular brown colored substances and products of sugar-amine reaction of Maillard. They are formed during roasting a green coffee beans under different thermal regimes of heat treatment. In the technological production of different types coffee beverages, the coffee powder is subjected to after-heat treatment. In these additional operations again become active processes of melanoidin formation and their changing their structures. This is changes of the Melanoidins have ...

  15. Universal stability curve for pattern formation in pulsed gas-solid fluidized beds of sandlike particles

    Science.gov (United States)

    de Martín, Lilian; Ottevanger, Coen; van Ommen, J. Ruud; Coppens, Marc-Olivier

    2018-03-01

    A granular layer can form regular patterns, such as squares, stripes, and hexagons, when it is fluidized with a pulsating gas flow. These structures are reminiscent of the well-known patterns found in granular layers excited through vibration, but, contrarily to them, they have been hardly explored since they were first discovered. In this work, we investigate experimentally the conditions leading to pattern formation in pulsed fluidized beds and the dimensionless numbers governing the phenomenon. We show that the onset to the instability is universal for Geldart B (sandlike) particles and governed by the hydrodynamical parameters Γ =ua/(utϕ ¯) and f /fn , where ua and f are the amplitude and frequency of the gas velocity, respectively, ut is the terminal velocity of the particles, ϕ ¯ is the average solids fraction, and fn is the natural frequency of the bed. These findings suggest that patterns emerge as a result of a parametric resonance between the kinematic waves originating from the oscillating gas flow and the bulk dynamics. Particle friction plays virtually no role in the onset to pattern formation, but it is fundamental for pattern selection and stabilization.

  16. Electromagnetic correlates of musical expertise in processing of tone patterns.

    Science.gov (United States)

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2012-01-01

    Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training.

  17. Self-organized control in cooperative robots using a pattern formation principle

    International Nuclear Information System (INIS)

    Starke, Jens; Ellsaesser, Carmen; Fukuda, Toshio

    2011-01-01

    Self-organized modular approaches proved in nature to be robust and optimal and are a promising strategy to control future concepts of flexible and modular manufacturing processes. We show how this can be applied to a model of flexible manufacturing based on time-dependent robot-target assignment problems where robot teams have to serve manufacturing targets such that an objective function is optimized. Feasibility of the self-organized solutions can be guaranteed even for unpredictable situations like sudden changes in the demands or breakdowns of robots. As example an uncrewed space mission is visualized in a simulation where robots build a space station. - Highlights: → Adapting a pattern formation principle to control cooperative robots in a robust way. → Flexible manufacturing systems are modelled by time-dependent assignment problems. → Coupled selection equations guarantee feasibility of solutions. → Solution structure (permutations) is not destroyed by inhomogeneous growth rates. → Example of an uncrewed space mission shows effectivity and robustness.

  18. From patterns to emerging processes in mechanistic urban ecology.

    Science.gov (United States)

    Shochat, Eyal; Warren, Paige S; Faeth, Stanley H; McIntyre, Nancy E; Hope, Diane

    2006-04-01

    Rapid urbanization has become an area of crucial concern in conservation owing to the radical changes in habitat structure and loss of species engendered by urban and suburban development. Here, we draw on recent mechanistic ecological studies to argue that, in addition to altered habitat structure, three major processes contribute to the patterns of reduced species diversity and elevated abundance of many species in urban environments. These activities, in turn, lead to changes in animal behavior, morphology and genetics, as well as in selection pressures on animals and plants. Thus, the key to understanding urban patterns is to balance studying processes at the individual level with an integrated examination of environmental forces at the ecosystem scale.

  19. Testing for coevolutionary diversification: linking pattern with process.

    Science.gov (United States)

    Althoff, David M; Segraves, Kari A; Johnson, Marc T J

    2014-02-01

    Coevolutionary diversification is cited as a major mechanism driving the evolution of diversity, particularly in plants and insects. However, tests of coevolutionary diversification have focused on elucidating macroevolutionary patterns rather than the processes giving rise to such patterns. Hence, there is weak evidence that coevolution promotes diversification. This is in part due to a lack of understanding about the mechanisms by which coevolution can cause speciation and the difficulty of integrating results across micro- and macroevolutionary scales. In this review, we highlight potential mechanisms of coevolutionary diversification, outline approaches to examine this process across temporal scales, and propose a set of minimal requirements for demonstrating coevolutionary diversification. Our aim is to stimulate research that tests more rigorously for coevolutionary diversification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Microfabrication process for patterning metallic lithium encapsulated electrodes

    International Nuclear Information System (INIS)

    Oukassi, Sami; Dunoyer, Nicolas; Salot, Raphael; Martin, Steve

    2009-01-01

    This work presents recent achievements concerning thin film encapsulation of metallic lithium negative electrode. In the context of this study, the encapsulation stack includes polymer and dielectric layers combined in such way to optimize barrier performances of the whole structure towards oxygen and water vapor permeation. The first part of this work is dedicated to the description of the barrier stack architecture and properties. A second part presents the application of a microfabrication process to the metallic lithium negative electrode and barrier stack so as to have very small features (100 μm x 100 μm patterns). The microfabrication process includes several steps of photolithography and etching (dry and wet) blocks, which allows us to reach the target critical dimensions. These results show a method of patterning functional metallic lithium. It demonstrates the feasibility of energy sources miniaturization which is an important issue in the field of autonomous and wireless sensor networks.

  1. Patterning of PMMA microfluidic parts using screen printing process

    Science.gov (United States)

    Ahari Kaleibar, Aminreza; Rahbar, Mona; Haiducu, Marius; Parameswaran, Ash M.

    2010-02-01

    An inexpensive and rapid micro-fabrication process for producing PMMA microfluidic components has been presented. Our proposed technique takes advantages of commercially available economical technologies such as the silk screen printing and UV patterning of PMMA substrates to produce the microfluidic components. As a demonstration of our proposed technique, we had utilized a homemade deep-UV source, λ=254nm, a silk screen mask made using a local screen-printing shop and Isopropyl alcohol - water mixture (IPA-water) as developer to quickly define the microfluidic patterns. The prototyped devices were successfully bonded, sealed, and the device functionality tested and demonstrated. The screen printing based technique can produce microfluidic channels as small as 50 micrometers quite easily, making this technique the most cost-effective, fairly high precision and at the same time an ultra economical plastic microfluidic components fabrication process reported to date.

  2. Destruction and formation of organic micropollutants in incineration process

    International Nuclear Information System (INIS)

    Mascolo, G.; Bagnuolo, G.; Lotito, V.; Spinosa, L.; Mininni, G.

    2001-01-01

    In this paper are presented the results obtained from a lab-scale investigation carried out with a system for Thermal Diagnostic Studies (STDS) aimed to study the effect of some process variables during incineration. The study has been focused on (I) gas phase dioxins formation during precursors thermal degradation, (II) thermal degradation of toxic organic compounds, (III) products of incomplete combustion (PICs) formation during thermal degradation of urban sludge spiked with toxic organics, (IV) PICs formation during process failure modes, (V) polynuclear aromatic hydrocarbons (PAHs) formation during urban sludge thermal degradation and (VI) influence of conditioning polymer on PICs emission during sludge incineration. The study about gas phase dioxins formation during precursors thermal degradation has been carried out with 2, 4, 6-trichloro- and 2, 4, 6 -tribromo-phenol that were thermal degraded at temperatures between 300 and 800 0 C in an air atmosphere. Both phenols showed the formation of the same tetra-halo-dioxin isomers that were further degraded at higher temperature. Furthermore, chlorine-containing dioxins showed higher thermal stability than bromine-containing dioxins. The study about thermal degradation of toxic organic compounds has been carried out with chlorobenzene, tetrachloroethylene and toluene that were thermal degraded at temperatures between 300 and 1000 0 C in an inert as well as air atmosphere. Results show that in all experimental conditions tetrachloroethylene and toluene are the most and less thermal stable compounds respectively. Also, all compounds are more thermal resistant during pyrolytic experiments and less thermal resistant when they are treated as a whole mixture. The study about PICs formation during thermal degradation of urban sludge spiked with toxic organics has been carried out by thermally degrading urban sludge alone or spiked with the above reported three organics at different conditions of temperature and oxygen

  3. Processes Leading to Beaded Channels Formation in Central Yakutia

    Science.gov (United States)

    Tarbeeva, A. M.; Lebedeva, L.; Efremov, V. S.; Krylenko, I. V.; Surkov, V. V.

    2017-12-01

    Beaded channels, consisting of deepened and widened pools and connecting narrow runs, are common fluvial forms in permafrost regions. Recent studies have shown that beaded channels are very important for connecting alluvial rivers with headwater lakes allowing fish passage and foraging habitats, as well as regulating river runoff. Beaded channels are known as typical thermokarst landforms; however, there is no evidence of their origin and formative processes. Geomorphological analyzes of beaded channels have been completed in several permafrost regions including field observations of Shestakovka River in Central Yakutia. The study aims to recognize the modern exogenic processes and formative mechanisms of beaded river channels. We show that beaded channel of Shestakovka River form in the perennially frozen sand with low ice content, leading us to hypothesize that thermokarst is not the main process of formation. Due to the significant volume of water, the pools don't freeze over entirely during winters, even under harsh climatic conditions. As a result, lenses of pressurized water remain under surface ice underlain by perennially thawed sediments. The presence of thawed sediments under the pools and frozen sediments under the runs leads to uneven thermoerosion of the riverbed during floods, providing the beaded form of the channel. In addition, freezing of pools during winter leads to pressure increasing under ice cover and formation of ice mounds, which crack several times during winter leading to disturbance of riverbanks. Many 1st to 3rd order streams have a specific transitional meandering-to-beaded form resembling the shape of unconfined meandering rivers, but consisting of pools and runs. However, such channels exhibit no evidences of present-day erosion of concave banks and sediment accumulation at the convex banks as typically being observed in normally meandering rivers. Such forms of channels indicates that their formation occurred by the greater channel

  4. Haze Formation and Behavior in Liquid-Liquid Extraction Processes

    International Nuclear Information System (INIS)

    Arm, Stuart T.; Jenkins, J. A.

    2006-01-01

    Aqueous haze formation and behavior was studied in the liquid-liquid system tri-n-butyl phosphate in odorless kerosene and 3M nitric acid with uranyl nitrate and cesium nitrate representing the major solute and an impurity, respectively. A pulsed column, mixer-settler and centrifugal contactor were chosen to investigate the effect of different turbulence characteristics on the manifestation of haze since these contactors exhibit distinct mixing phenomena. The dispersive processes of drop coalescence and breakage, and water precipitation in the organic phase were observed to lead to the formation of haze drops of ∼1 um in diameter. The interaction between the haze and primary drops of the dispersion was critical to the separation efficiency of the liquid-liquid extraction equipment. Conditions of high power input and spatially homogeneous mixing enabled the haze drops to become rapidly assimilated within the dispersion to maximize the scrub performance and separation efficiency of the equipment

  5. Pattern Recognition and Natural Language Processing: State of the Art

    Directory of Open Access Journals (Sweden)

    Mirjana Kocaleva

    2016-05-01

    Full Text Available Development of information technologies is growing steadily. With the latest software technologies development and application of the methods of artificial intelligence and machine learning intelligence embededs in computers, the expectations are that in near future computers will be able to solve problems themselves like people do. Artificial intelligence emulates human behavior on computers. Rather than executing instructions one by one, as theyare programmed, machine learning employs prior experience/data that is used in the process of system’s training. In this state of the art paper, common methods in AI, such as machine learning, pattern recognition and the natural language processing (NLP are discussed. Also are given standard architecture of NLP processing system and the level thatisneeded for understanding NLP. Lastly the statistical NLP processing and multi-word expressions are described.

  6. The role of irradiated tissue during pattern formation in the regenerating limb

    International Nuclear Information System (INIS)

    Maden, M.

    1979-01-01

    The amphibian limb regeneration blastema is used here to examine whether irradiated, non-dividing tissue can participate in the development of new patterns of morphogenesis. Irradiated blastemas were rotated 180 0 on normal stumps and normal blastemas rotated on irradiated stumps. In both cases supernumerary elements developed from the unirradiated tissue. The supernumeraries were defective but this did not seem to be due to a lack of tissue. Rather it suggested that this could be a realization of compartments in vertebrate development or simply reflect the limited regulative ability of the blastema. The results are also discussed in relation to a recent model of pattern formation. (author)

  7. Nonmonotonic Behavior of Supermultiplet Pattern Formation in a Noisy Lotka-Volterra System

    International Nuclear Information System (INIS)

    Fiasconaro, A.; Valenti, D.; Spagnolo, B.

    2004-01-01

    The noise-induced pattern formation in a population dynamical model of three interacting species in the coexistence regime is investigated. A coupled map lattice of Lotka-Volterra equations in the presence of multiplicative noise is used to analyze the spatiotemporal evolution. The spatial correlation of the species concentration as a function of time and of the noise intensity is investigated. A nonmonotonic behavior of the area of the patterns as a function of both noise intensity and evolution time is found. (author)

  8. Cross-correlation patterns in social opinion formation with sequential data

    Science.gov (United States)

    Chakrabarti, Anindya S.

    2016-11-01

    Recent research on large-scale internet data suggests existence of patterns in the collective behavior of billions of people even though each of them may pursue own activities. In this paper, we interpret online rating activity as a process of forming social opinion about individual items, where people sequentially choose a rating based on the current information set comprising all previous ratings and own preferences. We construct an opinion index from the sequence of ratings and we show that (1) movie-specific opinion converges much slower than an independent and identically distributed (i.i.d.) sequence of ratings, (2) rating sequence for individual movies shows lesser variation compared to an i.i.d. sequence of ratings, (3) the probability density function of the asymptotic opinions has more spread than that defined over opinion arising from i.i.d. sequence of ratings, (4) opinion sequences across movies are correlated with significantly higher and lower correlation compared to opinion constructed from i.i.d. sequence of ratings, creating a bimodal cross-correlation structure. By decomposing the temporal correlation structures from panel data of movie ratings, we show that the social effects are very prominent whereas group effects cannot be differentiated from those of surrogate data and individual effects are quite small. The former explains a large part of extreme positive or negative correlations between sequences of opinions. In general, this method can be applied to any rating data to extract social or group-specific effects in correlation structures. We conclude that in this particular case, social effects are important in opinion formation process.

  9. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation

    Energy Technology Data Exchange (ETDEWEB)

    Farshchian, Bahador [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Gatabi, Javad R. [Materials Science, Engineering and Commercialization, Texas State University, San Marcos, TX 78666 (United States); Bernick, Steven M.; Park, Sooyeon [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Lee, Gwan-Hyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Droopad, Ravindranath [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Materials Science, Engineering and Commercialization, Texas State University, San Marcos, TX 78666 (United States); Kim, Namwon, E-mail: n_k43@txstate.edu [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States)

    2017-02-28

    Highlights: • Superhydrophobic grid patterns were processed on the surface of PDMS using a pulsed nanosecond laser. • Droplet arrays form instantly on the laser-patterned PDMS with the superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water. • Droplet size can be controlled by controlling the pitch size of superhydrophobic grid and the withdrawal speed. - Abstract: We demonstrate a facile single step laser treatment process to render a polydimethylsiloxane (PDMS) surface superhydrophobic. By synchronizing a pulsed nanosecond laser source with a motorized stage, superhydrophobic grid patterns were written on the surface of PDMS. Hierarchical micro and nanostructures were formed in the irradiated areas while non-irradiated areas were covered by nanostructures due to deposition of ablated particles. Arrays of droplets form spontaneously on the laser-patterned PDMS with superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water due to different wetting properties of the irradiated and non-irradiated areas. The effects of withdrawal speed and pitch size of superhydrophobic grid on the size of formed droplets were investigated experimentally. The droplet size increases initially with increasing the withdrawal speed and then does not change significantly beyond certain points. Moreover, larger droplets are formed by increasing the pitch size of the superhydrophobic grid. The droplet arrays formed on the laser-patterned PDMS with wettability contrast can be used potentially for patterning of particles, chemicals, and bio-molecules and also for cell screening applications.

  10. Collective Behavior of Chiral Active Matter: Pattern Formation and Enhanced Flocking

    Science.gov (United States)

    Liebchen, Benno; Levis, Demian

    2017-08-01

    We generalize the Vicsek model to describe the collective behavior of polar circle swimmers with local alignment interactions. While the phase transition leading to collective motion in 2D (flocking) occurs at the same interaction to noise ratio as for linear swimmers, as we show, circular motion enhances the polarization in the ordered phase (enhanced flocking) and induces secondary instabilities leading to structure formation. Slow rotations promote macroscopic droplets with late time sizes proportional to the system size (indicating phase separation) whereas fast rotations generate patterns consisting of phase synchronized microflocks with a controllable characteristic size proportional to the average single-particle swimming radius. Our results defy the viewpoint that monofrequent rotations form a vapid extension of the Vicsek model and establish a generic route to pattern formation in chiral active matter with possible applications for understanding and designing rotating microflocks.

  11. Pattern and process of biotic homogenization in the New Pangaea.

    Science.gov (United States)

    Baiser, Benjamin; Olden, Julian D; Record, Sydne; Lockwood, Julie L; McKinney, Michael L

    2012-12-07

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.

  12. Carbon formation and metal dusting in advanced coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  13. SWARM-BOT: Pattern Formation in a Swarm of Self-Assembling Mobile Robots

    OpenAIRE

    El Kamel, A.; Mellouli, K.; Borne, P.; Sahin, E.; Labella, T.H.; Trianni, V.; Deneubourg, J.-L.; Rasse, P.; Floreano, D.; Gambardella, L.M.; Mondada, F.; Nolfi, S.; Dorigo, M.

    2002-01-01

    In this paper we introduce a new robotic system, called swarm-bot. The system consists of a swarm of mobile robots with the ability to connect to/disconnect from each other to self-assemble into different kinds of structures. First, we describe our vision and the goals of the project. Then we present preliminary results on the formation of patterns obtained from a grid-world simulation of the system.

  14. Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile)

    OpenAIRE

    Perna, Andrea; Granovskiy, Boris; Garnier, Simon; Nicolis, Stamatios C.; Labédan, Marjorie; Theraulaz, Guy; Fourcassié, Vincent; Sumpter, David J. T.

    2012-01-01

    We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations,...

  15. Antibiotic Resistance Pattern and Biofilm Formation Ability of Clinically Isolates of Salmonella enterica Serotype typhimurium

    Directory of Open Access Journals (Sweden)

    Hadi Ghasemmahdi

    2015-05-01

    Full Text Available Background: The emergence of antimicrobial-resistant bacteria with biofilm formation ability may be a major threat to public health and food safety and sanitation. Objectives: The aim of this study was to determine antibiotic resistance patterns and biofilm production characteristics of Salmonella typhimurium isolated from different species of birds. Materials and Methods: The antibiotic resistance patterns of 38 pre-identified isolates were screened by standard Kirby-Bauer disc-diffusion method performed on Mueller–Hinton agar to a panel of 17 antibiotics. The extent of biofilm formation was measured by Microtiter plate (MTP-based systems. Results: The highest antimicrobial resistance was detected against nalidixic acid (97%, followed by doxycycline (86%, colistin (84%, streptomycin (84% and tetracycline (84%. All isolates were sensitive to amikacin (100% and 97% and 95% of the isolates were sensitive to ceftazidime and ceftriaxone, respectively. Twenty one different antibiotic resistance patterns were observed among S. typhimurium isolates. According to the results of the microtitre plate biofilm assay, there was a wide variation in biofilm forming ability among S. typhimurium isolates. Most of the isolates (60.52% were not capable of producing biofilm, while 26.31%, 7.89%, and 5.26% isolates were weak, strong and moderate biofilm producers, respectively. Conclusions: It was concluded that nearly all S. typhimurium isolates revealed a high multiple antibiotic resistant with low biofilm forming capabilities which proposed low association between biofilm formation and antibiotic resistance of a major food important pathogen.

  16. Coarsening and pattern formation during true morphological phase separation in unstable thin films under gravity

    Science.gov (United States)

    Kumar, Avanish; Narayanam, Chaitanya; Khanna, Rajesh; Puri, Sanjay

    2017-12-01

    We address in detail the problem of true morphological phase separation (MPS) in three-dimensional or (2 +1 )-dimensional unstable thin liquid films (>100 nm) under the influence of gravity. The free-energy functionals of these films are asymmetric and show two points of common tangency, which facilitates the formation of two equilibrium phases. Three distinct patterns formed by relative preponderance of these phases are clearly identified in "true MPS". Asymmetricity induces two different pathways of pattern formation, viz., defect and direct pathway for true MPS. The pattern formation and phase-ordering dynamics have been studied using statistical measures such as structure factor, correlation function, and growth laws. In the late stage of coarsening, the system reaches into a scaling regime for both pathways, and the characteristic domain size follows the Lifshitz-Slyozov growth law [L (t ) ˜t1 /3] . However, for the defect pathway, there is a crossover of domain growth behavior from L (t ) ˜t1 /4→t1 /3 in the dynamical scaling regime. We also underline the analogies and differences behind the mechanisms of MPS and true MPS in thin liquid films and generic spinodal phase separation in binary mixtures.

  17. Master stability functions reveal diffusion-driven pattern formation in networks

    Science.gov (United States)

    Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo

    2018-03-01

    We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.

  18. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie; Zhang, Xinpu [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China); Pan, Yuyang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com [College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China)

    2014-11-15

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. It is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.

  19. The Policy Formation Process: A Conceptual Framework for Analysis. Ph.D. Thesis

    Science.gov (United States)

    Fuchs, E. F.

    1972-01-01

    A conceptual framework for analysis which is intended to assist both the policy analyst and the policy researcher in their empirical investigations into policy phenomena is developed. It is meant to facilitate understanding of the policy formation process by focusing attention on the basic forces shaping the main features of policy formation as a dynamic social-political-organizational process. The primary contribution of the framework lies in its capability to suggest useful ways of looking at policy formation reality. It provides the analyst and the researcher with a group of indicators which suggest where to look and what to look for when attempting to analyze and understand the mix of forces which energize, maintain, and direct the operation of strategic level policy systems. The framework also highlights interconnections, linkage, and relational patterns between and among important variables. The framework offers an integrated set of conceptual tools which facilitate understanding of and research on the complex and dynamic set of variables which interact in any major strategic level policy formation process.

  20. PSEUDOBULGE FORMATION AS A DYNAMICAL RATHER THAN A SECULAR PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella [Institute for Astronomy, ETH Zuerich, Wolgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-07-20

    We investigate the formation and evolution of the pseudobulge in 'Eris', a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M{sub vir} {approx_equal} 8 Multiplication-Sign 10{sup 11} M{sub Sun }, a photometric stellar mass M{sub *} = 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z {approx} 3, re-formed shortly after, and weakened again following a steady gas inflow at z {approx}< 1. The gradual dissolution of the bar ensued at z {approx} 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  1. Concept formation: a supportive process for early career nurses.

    Science.gov (United States)

    Thornley, Tracey; West, Sandra

    2010-09-01

    Individuals come to understand abstract constructs such as that of the 'expert' through the formation of concepts. Time and repeated opportunity for observation to support the generalisation and abstraction of the developing concept are essential if the concept is to form successfully. Development of an effective concept of the 'expert nurse' is critical for early career nurses who are attempting to integrate theory, values and beliefs as they develop their clinical practice. This study explores the use of a concept development framework in a grounded theory study of the 'expert nurse'. Qualitative. Using grounded theory methods for data collection and analysis, semi-structured interviews were conducted with registered nurses. The participants were asked to describe their concept of the 'expert nurse' and to discuss their experience of developing this. Participants reported forming their concept of the 'expert nurse', after multiple opportunities to engage with nurses identified as 'expert'. This identification did not necessarily relate to the designated position of the 'expert nurse' or assigned mentors. When the early career nurse does not successfully form a concept of the 'expert nurse', difficulties in personal and professional development including skill/knowledge development may arise. To underpin development of their clinical practice effectively, early career nurses need to be provided with opportunities that facilitate the purposive formation of their own concept of the 'expert nurse'. Formation of this concept is not well supported by the common practice of assigning mentors. Early career nurses must be provided with the time and the opportunity to individually develop and refine their concept of the 'expert nurse'. To achieve this, strategies including providing opportunities to engage with expert nurses and discussion of the process of concept formation and its place in underpinning personal judgments may be of assistance. © 2010 Blackwell Publishing

  2. Pattern formation in individual-based systems with time-varying parameters

    Science.gov (United States)

    Ashcroft, Peter; Galla, Tobias

    2013-12-01

    We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon when the symmetry-breaking bifurcation is triggered by population growth.

  3. Impact of mitochondrial Ca2+ cycling on pattern formation and stability.

    Science.gov (United States)

    Falcke, M; Hudson, J L; Camacho, P; Lechleiter, J D

    1999-07-01

    Energization of mitochondria significantly alters the pattern of Ca2+ wave activity mediated by activation of the inositol (1,4,5) trisphosphate (IP3) receptor (IP3R) in Xenopus oocytes. The number of pulsatile foci is reduced and spiral Ca2+ waves are no longer observed. Rather, target patterns of Ca2+ release predominate, and when fragmented, fail to form spirals. Ca2+ wave velocity, amplitude, decay time, and periodicity are also increased. We have simulated these experimental findings by supplementing an existing mathematical model with a differential equation for mitochondrial Ca2+ uptake and release. Our calculations show that mitochondrial Ca2+ efflux plays a critical role in pattern formation by prolonging the recovery time of IP3Rs from a refractory state. We also show that under conditions of high energization of mitochondria, the Ca2+ dynamics can become bistable with a second stable stationary state of high resting Ca2+ concentration.

  4. Particle Formation by Supercritical Fluid Extraction and Expansion Process

    Directory of Open Access Journals (Sweden)

    Sujuan Pan

    2013-01-01

    Full Text Available Supercritical fluid extraction and expansion (SFEE patented technology combines the advantages of both supercritical fluid extraction (SFE and rapid expansion of supercritical solution (RESS with on-line coupling, which makes the nanoparticle formation feasible directly from matrix such as Chinese herbal medicine. Supercritical fluid extraction is a green separation technology, which has been developed for decades and widely applied in traditional Chinese medicines or natural active components. In this paper, a SFEE patented instrument was firstly built up and controlled by LABVIEW work stations. Stearic acid was used to verify the SFEE process at optimized condition; via adjusting the preexpansion pressure and temperature one can get different sizes of particles. Furthermore, stearic acid was purified during the SFEE process with HPLC-ELSD detecting device; purity of stearic acid increased by 19%, and the device can purify stearic acid.

  5. Tube formation by complex cellular processes in Ciona intestinalis notochord.

    Science.gov (United States)

    Dong, Bo; Horie, Takeo; Denker, Elsa; Kusakabe, Takehiro; Tsuda, Motoyuki; Smith, William C; Jiang, Di

    2009-06-15

    In the course of embryogenesis multicellular structures and organs are assembled from constituent cells. One structural component common to many organs is the tube, which consists most simply of a luminal space surrounded by a single layer of epithelial cells. The notochord of ascidian Ciona forms a tube consisting of only 40 cells, and serves as a hydrostatic "skeleton" essential for swimming. While the early processes of convergent extension in ascidian notochord development have been extensively studied, the later phases of development, which include lumen formation, have not been well characterized. Here we used molecular markers and confocal imaging to describe tubulogenesis in the developing Ciona notochord. We found that during tubulogenesis each notochord cell established de novo apical domains, and underwent a mesenchymal-epithelial transition to become an unusual epithelial cell with two opposing apical domains. Concomitantly, extracellular luminal matrix was produced and deposited between notochord cells. Subsequently, each notochord cell simultaneously executed two types of crawling movements bi-directionally along the anterior/posterior axis on the inner surface of notochordal sheath. Lamellipodia-like protrusions resulted in cell lengthening along the anterior/posterior axis, while the retraction of trailing edges of the same cell led to the merging of the two apical domains. As a result, the notochord cells acquired endothelial-like shape and formed the wall of the central lumen. Inhibition of actin polymerization prevented the cell movement and tube formation. Ciona notochord tube formation utilized an assortment of common and fundamental cellular processes including cell shape change, apical membrane biogenesis, cell/cell adhesion remodeling, dynamic cell crawling, and lumen matrix secretion.

  6. Fuzzy social choice models explaining the government formation process

    CERN Document Server

    C Casey, Peter; A Goodman, Carly; Pook, Kelly Nelson; N Mordeson, John; J Wierman, Mark; D Clark, Terry

    2014-01-01

    This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made.  The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems.  Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties’ fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the pre...

  7. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    Science.gov (United States)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  8. Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

    Directory of Open Access Journals (Sweden)

    Ron S. Kenett

    2013-11-01

    Full Text Available The National Institute of Standards and Technology in the US has estimated that software defects and problems annually cost 59.5 billions the U.S. economy (http://www.abeacha.com/NIST_press_release_bugs_cost.htm. The study is only one of many that demonstrate the need for significant improvements in software development processes and practices. US Federal agencies, that depend on IT to support their missions and spent at least $76 billion on IT in fiscal year 2011, experienced numerous examples of lengthy IT projects that incurred cost overruns and schedule delays while contributing little to mission-related outcomes (www.gao.gov/products/GAO-12-681. To reduce the risk of such problems, the US Office of Management and Budget recommended deploying an agile software delivery, which calls for producing software in small, short increments (GAO, 2012. Consistent with this recommendation, this paper is about the application of Business Process Management to the improvement of software and system development through SCRUM or agile techniques. It focuses on how organizational behavior and process management techniques can be integrated with knowledge management approaches to deploy agile development. The context of this work is a global company developing software solutions for service operators such as cellular phone operators. For a related paper with a comprehensive overview of agile methods in project management see Stare (2013. Through this comprehensive case study we demonstrate how such an integration can be achieved. SCRUM is a paradigm shift in many organizations in that it results in a new balance between focus on results and focus on processes. In order to describe this new paradigm of business processes this work refers to Enterprise Knowledge Development (EKD, a comprehensive approach to map and document organizational patterns. In that context, the paper emphasizes the concept of patterns, reviews the main elements of SCRUM and shows how

  9. Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites.

    Directory of Open Access Journals (Sweden)

    Javier Ortega-Hernández

    Full Text Available Trilobites have a rich and abundant fossil record, but little is known about the intrinsic mechanisms that orchestrate their body organization. To date, there is disagreement regarding the correspondence, or lack thereof, of the segmental units that constitute the trilobite trunk and their associated exoskeletal elements. The phylogenetic position of trilobites within total-group Euarthropoda, however, allows inferences about the underlying organization in these extinct taxa to be made, as some of the fundamental genetic processes for constructing the trunk segments are remarkably conserved among living arthropods. One example is the expression of the segment polarity gene engrailed, which at embryonic and early postembryonic stages is expressed in extant panarthropods (i.e. tardigrades, onychophorans, euarthropods as transverse stripes that define the posteriormost region of each trunk segment. Due to its conservative morphology and allegedly primitive trunk tagmosis, we have utilized the centipede Strigamia maritima to study the correspondence between the expression of engrailed during late embryonic to postembryonic stages, and the development of the dorsal exoskeletal plates (i.e. tergites. The results corroborate the close correlation between the formation of the tergite borders and the dorsal expression of engrailed, and suggest that this association represents a symplesiomorphy within Euarthropoda. This correspondence between the genetic and phenetic levels enables making accurate inferences about the dorsoventral expression domains of engrailed in the trunk of exceptionally preserved trilobites and their close relatives, and is suggestive of the widespread occurrence of a distinct type of genetic segmental mismatch in these extinct arthropods. The metameric organization of the digestive tract in trilobites provides further support to this new interpretation. The wider evolutionary implications of these findings suggest the presence of a

  10. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    International Nuclear Information System (INIS)

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-01-01

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.

  11. POX 186: A Dwarf Galaxy in the Process of Formation?

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.

    2002-12-01

    We present deep U-, V-, and I-band images of the ``ultracompact'' blue dwarf galaxy POX 186 obtained with the Planetary Camera 2 of the Hubble Space Telescope. We have also obtained a near-ultraviolet spectrum of the object with the Space Telescope Imaging Spectrograph and combine this with a new ground-based optical spectrum. The images confirm the galaxy to be extremely small, with a maximum extent of only 300 pc, a luminosity of ~10-4L*, and an estimated mass of ~107 Msolar. Its morphology is highly asymmetric, with a tail of material on its western side that may be tidal in origin. The U-band image shows this tail to be part of a stream of material in which stars have recently formed. Most of the star formation in the galaxy is, however, concentrated in a central, compact (d~10-15 pc) star cluster. We estimate this cluster to have a total mass of ~105 Msolar, to be forming stars at a rate of less than 0.05 yr-1, and to have a maximum age of a few million years. The outer regions of the galaxy are significantly redder than the cluster, with V-I colors consistent with a population dominated by K and M stars. From our analysis of the optical spectrum we find the galaxy to have a metallicity Z~=0.06 Zsolar and to contain a significant amount of internal dust [E(B-V)~=0.28] both values agree with previous estimates. While these results rule out earlier speculation that POX 186 is a protogalaxy, its morphology, mass, and active star formation suggest that it represents a recent (within ~108 yr) collision between two clumps of stars of subgalactic size (~100 pc). POX 186 may thus be a very small dwarf galaxy that, dynamically speaking, is still in the process of formation. This interpretation is supported by the fact that it resides in a void, so its morphology cannot be explained as the result of an encounter with a more massive galaxy. Clumps of stars this small may represent the building blocks required by hierarchical models of galaxy formation, and these results

  12. Chemotactic preferences govern competition and pattern formation in simulated two-strain microbial communities.

    Science.gov (United States)

    Centler, Florian; Thullner, Martin

    2015-01-01

    Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environment, strains competed for a common substrate and only differed in their chemotactic preference, either responding more sensitively to a chemoattractant excreted by themselves or responding more sensitively to substrate. Starting from homogeneous distributions, three possible behaviors were observed depending on the competitors' chemotactic preferences: (i) distributions remained homogeneous, (ii) patterns formed but dissolved at a later time point, resulting in a shifted community composition, and (iii) patterns emerged and led to the extinction of one strain. When patterns formed, the more aggregating strain populated the core of microbial aggregates where starving conditions prevailed, while the less aggregating strain populated the more productive zones at the fringe or outside aggregates, leading to a competitive advantage of the less aggregating strain. The presence of a competitor was found to modulate a strain's behavior, either suppressing or promoting aggregate formation. This observation provides a potential mechanism by which an aggregated lifestyle might evolve even if it is initially disadvantageous. Adverse effects can be avoided as a competitor hinders aggregate formation by a strain which has just acquired this ability. The presented results highlight both, the importance of microbial motility for competition and pattern formation, and the importance of the temporal evolution, or history, of microbial communities when trying to explain an observed distribution.

  13. TEACHER ROLE IN FORMATION POLITENESS OF STUDENT LEARNING PROCESS

    Directory of Open Access Journals (Sweden)

    Wahyuni Oktavia

    2016-09-01

    Full Text Available Language as a communication tool has an important role in human interaction. Language can be used to convey ideas, ideas, feelings, desires, and so forth to others. To be able to communicate well certainly should be able to adjust the language used. One of the main functions of communication is to maintain the continuity of the relationship between the narrator and hearer. Language is an important pillar in the formation of character, in addition to religious education and moral education. In education, teachers must have pedagogical, professional, personal, and social. Teachers who have a good competence speech acts certainly have a good and well mannered to students. In the learning process, teachers and students communicate in give and receive course materials. The learning process is certainly not only provides knowledge alone, but give the values of character to students. In this case, the teacher must have a principle that must be controlled properly, correctly and precisely. Thus, teachers are expected to master the communication and understanding the principles of politeness in speaking well and correctly. The goal is a description of a form of politeness in the learning process. This research is a descriptive study which seeks to describe a form of politeness in the learning process. Data collection method used is the method refer to the data collection techniques are 1 recording technique using a tape recorder, and 2 technical note on the data card. Furthermore, methods of data analysis using pragmatic frontier.

  14. RELABEL2007, Labels FORTRAN Statements in ENDF Format Processing Programs

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: RELABEL labels a ENDF/B pre-processing program so that statement labels are in increasing order in increments of 10 within each routine, and cards are identified in columns 73-80 by three alphanumeric characters in columns 73-75 and sequence numbers in columns 76-80 in increments of 10. IAEA1314/10: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: Relabel VERS. 2007-1 (JAN. 2007): No change since March 2004 version 2 - Method of solution: 3 - Restrictions on the complexity of the problem: RELABEL is designed to maintain ENDF/B processing programs which use a restricted set of FORTRAN statements. As such, this program is not completely general

  15. Social Group Dynamics and Patterns of Latin American Integration Processes

    Directory of Open Access Journals (Sweden)

    Sébastien Dubé

    2017-04-01

    Full Text Available This article proposes to incorporate social psychology elements with mainstream political science and international relations theories to help understand the contradictions related to the integration processes in Latin America. Through a theoretical analysis, it contributes to the challenge proposed by Dabène (2009 to explain the “resilience” of the Latin American regional integration process in spite of its “instability and crises.” Our main proposition calls for considering Latin America as a community and its regional organizations as “social groups.” In conclusion, three phenomena from the field of social psychology and particularly social group dynamics shed light on these contradictory patterns: the value of the group and the emotional bond, groupthink, and cognitive dissonance.

  16. Using templates and linguistic patterns to define process performance indicators

    Science.gov (United States)

    del-Río-Ortega, Adela; Resinas, Manuel; Durán, Amador; Ruiz-Cortés, Antonio

    2016-02-01

    Process performance management (PPM) aims at measuring, monitoring and analysing the performance of business processes (BPs), in order to check the achievement of strategic and operational goals and to support decision-making for their optimisation. PPM is based on process performance indicators (PPIs), so having an appropriate definition of them is crucial. One of the main problems of PPIs definition is to express them in an unambiguous, complete, understandable, traceable and verifiable manner. In practice, PPIs are defined informally - usually in ad hoc, natural language, with its well-known problems - or they are defined from an implementation perspective, hardly understandable to non-technical people. In order to solve this problem, in this article we propose a novel approach to improve the definition of PPIs using templates and linguistic patterns. This approach promotes reuse, reduces both ambiguities and missing information, is understandable to all stakeholders and maintains traceability with the process model. Furthermore, it enables the automated processing of PPI definitions by its straightforward translation into the PPINOT metamodel, allowing the gathering of the required information for their computation as well as the analysis of the relationships between them and with BP elements.

  17. Forest declines: Some perspectives on linking processes and patterns

    International Nuclear Information System (INIS)

    McLaughlin, S.B.

    1992-01-01

    The regional decline in vigor of some species of forest trees has become an important component in the ecological, aesthetic, and economic criteria by which the costs of anthropogenic pollution are weighed. Because declines are often complex and virtually never without significant natural environmental modifiers, determining the role of specific anthropogenic stresses in initiating or enhancing the rate and direction of change in forest condition represents a significant research challenge. Separation of primary mechanisms that point to principal causes from secondary responses that result from internal feedbacks and the milieu of modifying agents is a critical issue in diagnosing forest decline. Air pollutant stress may have its most significant effects on forest processes by accelerating or amplifying natural stresses. Studies of changes in forest metabolic processes have played an important role in evaluating the role of air pollution in four regional forest declines that are the focus of this paper. The decline of ponderosa pine in the San Bernardino Mountains of California, Norway spruce and silver fir in Europe, loblolly and shortleaf pine in the Southeastern United States, and red spruce in the Eastern Appalachian Mountains provide case studies in which physiological responses to air pollutants under field and laboratory conditions have provided important analytical tools for assessing likely causes. These tools are most effective when both mechanistic explanations and larger scale patterns of response are evaluated in an iterative feedback loop that examines plausible mechanisms and patterns of response at levels ranging from cell membranes to plant populations

  18. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  19. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  20. Self-similar pattern formation and continuous mechanics of self-similar systems

    Directory of Open Access Journals (Sweden)

    A. V. Dyskin

    2007-01-01

    Full Text Available In many cases, the critical state of systems that reached the threshold is characterised by self-similar pattern formation. We produce an example of pattern formation of this kind – formation of self-similar distribution of interacting fractures. Their formation starts with the crack growth due to the action of stress fluctuations. It is shown that even when the fluctuations have zero average the cracks generated by them could grow far beyond the scale of stress fluctuations. Further development of the fracture system is controlled by crack interaction leading to the emergence of self-similar crack distributions. As a result, the medium with fractures becomes discontinuous at any scale. We develop a continuum fractal mechanics to model its physical behaviour. We introduce a continuous sequence of continua of increasing scales covering this range of scales. The continuum of each scale is specified by the representative averaging volume elements of the corresponding size. These elements determine the resolution of the continuum. Each continuum hides the cracks of scales smaller than the volume element size while larger fractures are modelled explicitly. Using the developed formalism we investigate the stability of self-similar crack distributions with respect to crack growth and show that while the self-similar distribution of isotropically oriented cracks is stable, the distribution of parallel cracks is not. For the isotropically oriented cracks scaling of permeability is determined. For permeable materials (rocks with self-similar crack distributions permeability scales as cube of crack radius. This property could be used for detecting this specific mechanism of formation of self-similar crack distributions.

  1. High repeatability from 3D experimental platform for quantitative analysis of cellular branch pattern formations.

    Science.gov (United States)

    Hagiwara, Masaya; Nobata, Rina; Kawahara, Tomohiro

    2018-04-24

    Three-dimensional (3D) cell and tissue cultures more closely mimic biological environments than two-dimensional (2D) cultures and are therefore highly desirable in culture experiments. However, 3D cultures often fail to yield repeatable experimental results because of variation in the initial culture conditions, such as cell density and distribution in the extracellular matrix, and therefore reducing such variation is a paramount concern. Here, we present a 3D culture platform that demonstrates highly repeatable experimental results, obtained by controlling the initial cell cluster shape in the gel cube culture device. A micro-mould with the desired shape was fabricated by photolithography or machining, creating a 3D pocket in the extracellular matrix contained in the device. Highly concentrated human bronchial epithelial cells were then injected in the pocket so that the cell cluster shape matched the fabricated mould shape. Subsequently, the cubic device supplied multi-directional scanning, enabling high-resolution capture of the whole tissue structure with only a low-magnification lens. The proposed device significantly improved the repeatability of the developed branch pattern, and multi-directional scanning enabled quantitative analysis of the developed branch pattern formations. A mathematical simulation was also conducted to reveal the mechanisms of branch pattern formation. The proposed platform offers the potential to accelerate any research field that conducts 3D culture experiments, including tissue regeneration and drug development.

  2. Formation of mixed and patterned self-assembled films of alkylphosphonates on commercially pure titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudzka, Katarzyna; Sanchez Treviño, Alda Y.; Rodríguez-Valverde, Miguel A., E-mail: marodri@ugr.es; Cabrerizo-Vílchez, Miguel A.

    2016-12-15

    Highlights: • Chemically-tailored titanium surfaces were prepared by self-assembly of alkylphosphonates. • Mixed self-assembled films were prepared with aqueous mixtures of two alkylphosphonates. • Single self-assembled films were altered by laser abrasion. • Mixed and patterned self-assembled films on titanium may guide the bone-like formation. - Abstract: Titanium is extensively employed in biomedical devices, in particular as implant. The self-assembly of alkylphosphonates on titanium surfaces enable the specific adsorption of biomolecules to adapt the implant response against external stimuli. In this work, chemically-tailored cpTi surfaces were prepared by self-assembly of alkylphosphonate molecules. By bringing together attributes of two grafting molecules, aqueous mixtures of two alkylphosphonates were used to obtain mixed self-assembled films. Single self-assembled films were also altered by laser abrasion to produce chemically patterned cpTi surfaces. Both mixed and patterned self-assembled films were confirmed by AFM, ESEM and X-ray photoelectron spectroscopy. Water contact angle measurements also revealed the composition of the self-assembly films. Chemical functionalization with two grafting phosphonate molecules and laser surface engineering may be combined to guide the bone-like formation on cpTi, and the future biological response in the host.

  3. Secondary organic aerosol formation through cloud processing of aromatic VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.; Ervens, B.

    2010-12-01

    Field observations have shown substantial concentrations (20-5,500 ng L-1) of aromatic volatile organic compounds (VOC) in cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric laboratory conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction rates decreased with increasing organic carbon content. Kinetic data derived from these experiments were used as input to a multiphase box model in order to evaluate the secondary organic aerosol (SOA) mass formation potential of cloud processing of BTEX. Model results will be presented that quantify the SOA amounts from these aqueous phase pathways. The efficiency of this multiphase SOA source will be compared to SOA yields from the same aromatics as treated in traditional SOA models that are restricted to gas phase oxidation and subsequent condensation on particles.

  4. Galaxy formation-a condensation process just after recombination

    International Nuclear Information System (INIS)

    Lessner, G.

    1998-01-01

    A scenario of galaxy formation is put forward which is a process of sudden condensation just after recombination. It is essentially based on the fact that the cosmic-matter gas after recombination is a general relativistic Boltzmann gas which runs within a few 10 6 years into a tate very close to collision-dominated equilibrium. The mass spectrum of axially symmetric condensation 'drops' extends from the lower limit M ≅ 10 5 M to the upper limit M ≅ 10 12 M. The lower-limit masses are spheres whereas the upper-limit masses are thin pancakes. These pancakes contract within a time of about 2.5 · 10 9 y to rotating spiral galaxies with ordinary proportions. In this final state they have a redshift z ≅ 3. At an earlier time during their contraction they are highly active and are observed with a redshift z ≅ 5

  5. Factor analysis of processes of corporate culture formation at industrial enterprises of Ukraine

    Directory of Open Access Journals (Sweden)

    Illiashenko Sergii

    2016-06-01

    Full Text Available Authors have analyzed and synthesized the features of formation and development of the corporate culture at industrial enterprises of Ukraine and on this basis developed recommendations for application in the management of strategic development. During the research authors used the following general scientific methods: at research of patterns of interaction national culture, corporate culture and the culture of the individual authors used logical generalization method; for determining factors influencing corporate culture formation with the level of occurrence authors used factor analysis; for trend analysis of the corporate culture development at appropriate levels authors used comparative method. Results of the analysis showed that macro- and microfactors are external and mezofaktors (adaptability of business and corporate governance, corporate ethics, corporate social responsibility and personnel policies, corporate finance are internal for an enterprise. Authors have identified areas for each of the factors, itemized obstacles to the establishment and development of corporate culture at Ukrainian industrial enterprises and proposed recommendations for these processes management.

  6. On the external relations of Purepecha : an investigation into classification, contact and patterns of word formation

    NARCIS (Netherlands)

    Bellamy, K.R.

    2018-01-01

    This thesis considers Purepecha from the perspectives of genealogy and contact, as well as offering insight into word formation processes. The genealogy study re-visits the most prominent classification proposals for Purepecha, concluding on the basis of a quantitative lexical comparison and

  7. Near-infrared image formation and processing for the extraction of hand veins

    Science.gov (United States)

    Bouzida, Nabila; Hakim Bendada, Abdel; Maldague, Xavier P.

    2010-10-01

    The main objective of this work is to extract the hand vein network using a non-invasive technique in the near-infrared region (NIR). The visualization of the veins is based on a relevant feature of the blood in relation with certain wavelengths of the electromagnetic spectrum. In the present paper, we first introduce the image formation in the NIR spectral band. Then, the acquisition system will be presented as well as the method used for the image processing in order to extract the vein signature. Extractions of this pattern on the finger, on the wrist and on the dorsal hand are achieved after exposing the hand to an optical stimulation by reflection or transmission of light. We present meaningful results of the extracted vein pattern demonstrating the utility of the method for a clinical application like the diagnosis of vein disease, of primitive varicose vein and also for applications in vein biometrics.

  8. Disappearing scales in carps: re-visiting Kirpichnikov's model on the genetics of scale pattern formation.

    Directory of Open Access Journals (Sweden)

    Laura Casas

    Full Text Available The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the 'S' gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called 'N' has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude × nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype, those with two Hungarian nude parents did not. We further extended Kirpichnikov's work by correlating changes in phenotype (scale-pattern to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here. We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dose-dependent effect probably due to a concerted action of multiple pathways involved in scale formation.

  9. Disappearing scales in carps: Re-visiting Kirpichnikov's model on the genetics of scale pattern formation

    KAUST Repository

    Casas, Laura; Szűcs, Ré ka; Vij, Shubha; Goh, Chin Heng; Kathiresan, Purushothaman; Né meth, Sá ndor; Jeney, Zsigmond; Bercsé nyi, Mikló s; Orbá n, Lá szló

    2013-01-01

    The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n) regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the 'S' gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called 'N' has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude x nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s) showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype), those with two Hungarian nude parents did not. We further extended Kirpichnikov's work by correlating changes in phenotype (scale-pattern) to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here). We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dosedependent effect) probably due to a concerted action of multiple pathways involved in scale formation. 2013 Casas et al.

  10. Disappearing scales in carps: Re-visiting Kirpichnikov's model on the genetics of scale pattern formation

    KAUST Repository

    Casas, Laura

    2013-12-30

    The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n) regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the \\'S\\' gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called \\'N\\' has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude x nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s) showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype), those with two Hungarian nude parents did not. We further extended Kirpichnikov\\'s work by correlating changes in phenotype (scale-pattern) to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here). We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dosedependent effect) probably due to a concerted action of multiple pathways involved in scale formation. 2013 Casas et al.

  11. E × B shear pattern formation by radial propagation of heat flux waves

    Energy Technology Data Exchange (ETDEWEB)

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)

    2014-05-15

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.

  12. Laser-induced hydrodynamic instability and pattern formation in metallic nanofilms

    Science.gov (United States)

    Sureshkumar, R.; Trice, J.; Favazza, C.; Kalyanaraman, R.

    2007-11-01

    Cost effective methodologies for the robust generation of nanoscale patterns in thin films and at interfaces are crucial in photonic, opto-electronic and solar energy harvesting applications. When ultrathin metal films are exposed to a series of short (ns) laser pulses, spontaneous pattern formation results with spatio-temporal scales that depend on the film height and thermo-physical properties of the film/substrate bilayer. Various self-organization mechanisms have been identified, including a dewetting instability due to a competition between surface tension and dispersion forces, and intrinsic and/or extrinsic thermocapillary effects. We will discuss these mechanisms as well as the evolution of surface perturbations which have been explored using experiments, linear stability analysis and nonlinear dynamical simulations (Trice et al. Phys. Rev. B, 75, 235439 (2007); Favazza et al. Appl. Phys. Lett., 91, 043105 (2007); 88, 153118 (2006)).

  13. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes

    Directory of Open Access Journals (Sweden)

    Dehua Mao

    2018-02-01

    Full Text Available High-altitude inland-drainage lakes on the Tibetan Plateau (TP, the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures.

  14. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  15. Formation factor of regular porous pattern in poly-α-methylstyrene film

    International Nuclear Information System (INIS)

    Yang Ruizhuang; Xu Jiajing; Gao Cong; Ma Shuang; Chen Sufen; Luo Xuan; Fang Yu; Li Bo

    2015-01-01

    Regular poly-α-methylstyrene (PAMS) porous film with macron-sized cells was prepared by casting the solution in the condition with high humidity. In this paper, the effects of the molecular weight of PAMS, PAMS concentration, humidity, temperature, volatile solvents and the thickness of liquid of solution on formation of regular porous pattern in PAMS film were discussed. The results show that these factors significantly affect the pore size and the pore distribution. The capillary force and Benard-Marangoni convection are main driving forces for the water droplet moving and making pores regular arrangement. (authors)

  16. A linear process-algebraic format for probabilistic systems with data (extended version)

    NARCIS (Netherlands)

    Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette; Timmer, Mark

    2010-01-01

    This paper presents a novel linear process-algebraic format for probabilistic automata. The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorporate data into this linear format while preserving strong probabilistic bisimulation. This generalises similar

  17. A linear process-algebraic format for probabilistic systems with data

    NARCIS (Netherlands)

    Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette; Timmer, Mark; Gomes, L.; Khomenko, V.; Fernandes, J.M.

    This paper presents a novel linear process algebraic format for probabilistic automata. The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorporate data into this linear format while preserving strong probabilistic bisimulation. This generalises similar

  18. Complex temporal and spatial patterns in nonequilibrium processes. Final report, December 1, 1987--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Dynamical systems methods have been used to study bifurcations and pattern formation in nonequilibrium systems. Accomplishments during this period include: information-theoretic methods for analyzing chaos, chemical reactors for studying sustained reaction-diffusion patterns, a reactor exploiting pattern formation to extract short- lived intermediate species, observation of bifurcation from periodic to quasiperiodic rotating chemical spiral patterns, observation of a Turing bifurcation (transition from uniform state to a stationary chemical pattern), method for extracting noise strength in ramped convection, self-similar fractal structure of Zn clusters in electrodeposition, and dynamical instability in crack propagation.

  19. Level of processing modulates the neural correlates of emotional memory formation

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176

  20. Level of processing modulates the neural correlates of emotional memory formation.

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2011-04-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.

  1. The formation and the evolution process of the Jilin meteorite

    International Nuclear Information System (INIS)

    Duyang, Z.Y.

    1983-01-01

    Based on the data from an integrated study by a multidisciplinary group on the Jilin meteorite, we discuss the following aspects concerning its formation and evolution: (1) The fractionation-condensation of the solar nebula was examined based on the condensation and solidification age and the mineral composition of the Jilin meteorite. (2) The thermometamorphic history of the Jilin parent body was discussed based on the data on the loss of rare gases, the chemical composition of the whole rock, the self-purification of rare-earth elements and the composition stability of olivine and orthopyroxene. (3) The cooling process of the Jilin parent body was analyzed according to the Ni content and the width of taenite, and the retentivity of argon and fission tracks in the minerals. (4) The breakup of the Jilin parent body and its cosmic ray irradiation history: Based on the measurements of the cosmogenic nuclides as He 3 , Ne/sup 20,21,22/, Ar 38 , Na 22 , Al 26 , Mn 54 , Mn 53 , Co 60 etc., a two-stage model of the irradiation history of the Jilin meteorite was proposed. From the data on the Jilin meteorite parent body of the first stage (the age = 10--11 MY and r = 10 m) and that of the second stage (the age = 0.3--0.5 MY and r = 80--90 cm). The relative positions of samples in the parent body, their burial depths as well as the post-atmospheric loss by ignition were determined. (5) The falling process of the Jilin meteorite: The orbits of the Jilin meteor in the solar system and in the atmosphere, and its falling process were discussed

  2. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    Science.gov (United States)

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  3. Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities

    International Nuclear Information System (INIS)

    Wang, L; Liu, L; Magome, N; Agladze, K; Chen, Y

    2013-01-01

    In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell cluster homogeneity and the beating regularity, patterned topographic features were used to guide the cellular growth and the cell layer formation. On the substrate with an array of broadly spaced cross features made of photoresist, cells grew on the places that were not occupied by the crosses and thus formed a cell layer with interconnected cell clusters. Accordingly, spatially coordinated regular beating could be recorded over the whole patterned area. In contrast, when cultured on the substrate with broadly spaced but inter-connected cross features, the cardiac cell layer showed beatings which were neither coordinated in space nor regular in time. Finally, when cultured on the substrate with narrowly spaced features, the cell beating became spatially coordinated but still remained irregular. Our results suggest a way to improve the rhythmic property of cultured cardiac cell layers which might be useful for further investigations. (paper)

  4. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process

    KAUST Repository

    Park, J. B.; Yoo, J.-H.; Grigoropoulos, C. P.

    2012-01-01

    A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes

  5. Landscape moderation of biodiversity patterns and processes - eight hypotheses.

    Science.gov (United States)

    Tscharntke, Teja; Tylianakis, Jason M; Rand, Tatyana A; Didham, Raphael K; Fahrig, Lenore; Batáry, Péter; Bengtsson, Janne; Clough, Yann; Crist, Thomas O; Dormann, Carsten F; Ewers, Robert M; Fründ, Jochen; Holt, Robert D; Holzschuh, Andrea; Klein, Alexandra M; Kleijn, David; Kremen, Claire; Landis, Doug A; Laurance, William; Lindenmayer, David; Scherber, Christoph; Sodhi, Navjot; Steffan-Dewenter, Ingolf; Thies, Carsten; van der Putten, Wim H; Westphal, Catrin

    2012-08-01

    Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on

  6. 3D physical modeling for patterning process development

    Science.gov (United States)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  7. Effect of TMAH Etching Duration on the Formation of Silicon Nano wire Transistor Patterned by AFM Nano lithography

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Lew, K.C.

    2012-01-01

    Atomic force microscopy (AFM) lithography was applied to produce nano scale pattern for silicon nano wire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nano patterns. A conductive AFM tip was used to grow the silicon oxide nano patterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nano wire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nano wire transistor structure has been investigated. A completed silicon nano wire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nano wire transistor consists of a silicon nano wire that acts as a channel with source and drain pads. A lateral gate pad with a nano wire head was fabricated very close to the channel in the formation of transistor structures. (author)

  8. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  9. Physical processes in thin-film electroluminescent structures based on ZnS:Mn showing self-organized patterns

    International Nuclear Information System (INIS)

    Zuccaro, S.; Raker, Th.; Niedernostheide, F.-J.; Kuhn, T.; Purwins, H.-G.

    2003-01-01

    Physical processes in thin ZnS:Mn films and their relation to the formation of dynamical patterns in the electroluminescence of AC driven films are investigated. The technique of photo-depolarization-spectroscopy is used to investigate defect states in these films and it is shown that specific features in the spectra correlate with the observed self-organized patterns. Furthermore, the time dependence of the dissipative current is measured at the same samples and compared with current waveforms obtained from numerical simulations of a drift-diffusion model. The results are used to discuss the origin of the self-organized processes in ZnS:Mn-films

  10. Simulation of the radiography formation process from CT patient volume

    Energy Technology Data Exchange (ETDEWEB)

    Bifulco, P; Cesarelli, M; Verso, E; Roccasalva Firenze, M; Sansone, M; Bracale, M [University of Naples, Federico II, Electronic Engineering Department, Bioengineering Unit, Via Claudio, 21 - 80125 Naples (Italy)

    1999-12-31

    The aim of this work is to develop an algorithm to simulate the radiographic image formation process using volumetric anatomical data of the patient, obtained from 3D diagnostic CT images. Many applications, including radiographic driven surgery, virtual reality in medicine and radiologist teaching and training, may take advantage of such technique. The designed algorithm has been developed to simulate a generic radiographic equipment, whatever oriented respect to the patient. The simulated radiography is obtained considering a discrete number of X-ray paths departing from the focus, passing through the patient volume and reaching the radiographic plane. To evaluate a generic pixel of the simulated radiography, the cumulative absorption along the corresponding X-ray is computed. To estimate X-ray absorption in a generic point of the patient volume, 3D interpolation of CT data has been adopted. The proposed technique is quite similar to those employed in Ray Tracing. A computer designed test volume has been used to assess the reliability of the radiography simulation algorithm as a measuring tool. From the errors analysis emerges that the accuracy achieved by the radiographic simulation algorithm is largely confined within the sampling step of the CT volume. (authors) 16 refs., 12 figs., 1 tabs.

  11. FORMATION PROCESS AND HISTORICAL FUNCTIONS OF OLD AKIHA ROAD

    Science.gov (United States)

    Nakane, Yoji; Okuda, Masao; Kani, Yukihiko; Hayakawa, Kiyoshi; Matsui, Tamotsu

    An object of this study is the old Akiha road located along the southern parts of the Akaishi Mountains in Sizuoka Prefecture. The old Akiha road between Hamamatsu city in Enshu and Iida city in Shinshu had been utilized by people for the purposes of making a pilgrimage, megalithic faith, transporting obsidian since the primitive age, practicing the mountaineering asceticism, operating the military activities in the warlike age, transporting salt from coastal area to mountainous area and so on. Through the investigation of literature, site reconnaissance and hearing, the formation process and the historical functions of the old Akiha road were studied, including the situation in medieval times or before. As the results, it was elucidated that the oldest road between two cities had located over the Hyoukoshi Pass, the road routes had the lowering trend from mountainside to riverside, and the historical functions of old Akiha road were the passage for transportation of various kinds of goods and human being, faith and culture.

  12. Simulation of the radiography formation process from CT patient volume

    International Nuclear Information System (INIS)

    Bifulco, P.; Cesarelli, M.; Verso, E.; Roccasalva Firenze, M.; Sansone, M.; Bracale, M.

    1998-01-01

    The aim of this work is to develop an algorithm to simulate the radiographic image formation process using volumetric anatomical data of the patient, obtained from 3D diagnostic CT images. Many applications, including radiographic driven surgery, virtual reality in medicine and radiologist teaching and training, may take advantage of such technique. The designed algorithm has been developed to simulate a generic radiographic equipment, whatever oriented respect to the patient. The simulated radiography is obtained considering a discrete number of X-ray paths departing from the focus, passing through the patient volume and reaching the radiographic plane. To evaluate a generic pixel of the simulated radiography, the cumulative absorption along the corresponding X-ray is computed. To estimate X-ray absorption in a generic point of the patient volume, 3D interpolation of CT data has been adopted. The proposed technique is quite similar to those employed in Ray Tracing. A computer designed test volume has been used to assess the reliability of the radiography simulation algorithm as a measuring tool. From the errors analysis emerges that the accuracy achieved by the radiographic simulation algorithm is largely confined within the sampling step of the CT volume. (authors)

  13. Enhancing oil rate in solvent vapour extraction processes through tee-well pattern

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, F.; Knorr, K.D.; Wilton, R.R. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Saskatchewan Research Council, Saskatoon, SK (Canada)

    2008-10-15

    In order for the vapour extraction (VAPEX) process to be considered commercially viable, the production flow rate in classical VAPEX must be increased. The low flow rate can be attributed to the fact that the classical VAPEX process uses forces of buoyancy to distribute the solvent and gravity to drain the diluted oil to the producer. This paper presented a new well pattern, referred to as the tee-SVX process, that may enhance the oil flow rate two to ten times over the classical approach. Additional horizontal injectors, perpendicular to the injector and the producer in classical VAPEX were placed in the top-most region of the reservoir in the new well pattern. The paper described the model development which involved conducting a series of simulation runs in order to evaluate the performance of the new well pattern. The paper also presented a comparison of the performance of the tee-SVX and the classical VAPEX and lateral-SVX. A sensitivity analysis was also performed to further evaluate the performance of tee-SVX and provide the boundaries of the application of the process. Two types of factors affecting the performance of tee-SVX were outlined, notably design factors; and formation and fluid uncertainties. The performance of tee-SVX in thinner reservoirs and in reservoirs with a gas cap were also examined. It was concluded that compared with the lateral-SVX process, the tee-SVX process could significantly reduce the time to solvent breakthrough. 12 refs., 2 tabs., 30 figs.

  14. THE ROLE OF CRYOGENIC PROCESSES IN THE FORMATION OF LOESS DEPOSITS

    Directory of Open Access Journals (Sweden)

    Vyacheslav N. Konishchev

    2015-01-01

    Full Text Available The paper describes a new approach to the analysis of the genetic nature of mineral substances in loess deposits. In permafrost under the influence of multiple alternate freezing and thawing in dispersed deposits, quartz particles accumulate the 0.05-0.01 mm fraction, while feldspars are crushed to a coarse fraction of 0.1-0.05 mm. In dispersed sediments formed in temperate and warm climatic zones, the granulometric spectrum of quartz and feldspar has the opposite pattern. The proposed methodology is based on a differential analysis of the distribution of these minerals by the granulometric spectrum. We have proposed two criteria - the coefficient of cryogenic contrast (CCC and the coefficient of distribution of heavy minerals, which allow determination of the degree of participation of cryogenic processes in the formation of loess sediments and processes of aeolian or water sedimentation.

  15. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Science.gov (United States)

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  16. Improving the process of process modelling by the use of domain process patterns

    NARCIS (Netherlands)

    Koschmider, A.; Reijers, H.A.

    2015-01-01

    The use of business process models has become prevalent in a wide area of enterprise applications. But while their popularity is expanding, concerns are growing with respect to their proper creation and maintenance. An obvious way to boost the efficiency of creating high-quality business process

  17. Nano-scale pattern formation on the surface of HgCdTe produced by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.B.; Gudymenko, A.I.; Kladko, V.P.; Korchevyi, A.A.; Savkina, R.K.; Sizov, F.F.; Udovitska, R.S. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kiev (Ukraine)

    2015-08-15

    Presented in this work are the results concerning formation of nano-scale patterns on the surface of a ternary compound Hg{sub 1-x}Cd{sub x}Te (x ∝ 0.223). Modification of this ternary chalcogenide semiconductor compound was performed using the method of oblique-incidence ion bombardment with silver ions, which was followed by low-temperature treatment. The energy and dose of implanted ions were 140 keV and 4.8 x 10{sup 13} cm{sup -2}, respectively. Atomic force microscopy methods were used for the surface topography characterization. The structural properties of MCT-based structure was analyzed using double and triple crystal X-ray diffraction to monitor the disorder and strain of the implanted region as a function of processing conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Information processing in patterned magnetic nanostructures with edge spin waves.

    Science.gov (United States)

    Lara, Antonio; Robledo Moreno, Javier; Guslienko, Konstantin Y; Aliev, Farkhad G

    2017-07-17

    Low dissipation data processing with spins is one of the promising directions for future information and communication technologies. Despite a significant progress, the available magnonic devices are not broadband yet and have restricted capabilities to redirect spin waves. Here we propose a breakthrough approach to spin wave manipulation in patterned magnetic nanostructures with unmatched characteristics, which exploits a spin wave analogue to edge waves propagating along a water-wall boundary. Using theory, micromagnetic simulations and experiment we investigate spin waves propagating along the edges in magnetic structures, under an in-plane DC magnetic field inclined with respect to the edge. The proposed edge spin waves overcome important challenges faced by previous technologies such as the manipulation of the spin wave propagation direction, and they substantially improve the capability of transmitting information at frequencies exceeding 10 GHz. The concept of the edge spin waves allows to design a broad of logic devices such as splitters, interferometers, or edge spin wave transistors with unprecedented characteristics and a potentially strong impact on information technologies.

  19. Image processing and pattern recognition algorithms for evaluation of crossed immunoelectrophoretic patterns (crossed radioimmunoelectrophoresis analysis manager; CREAM)

    DEFF Research Database (Denmark)

    Søndergaard, I; Poulsen, L K; Hagerup, M

    1987-01-01

    points along the precipitation curve in the curve-fitting process. The system has been tested on crossed immunoelectrophoretic patterns as well as crossed radioimmunoelectrophoretic patterns and it has been shown that the system can recognize the same precipitation curves on different immunoplates...

  20. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    Science.gov (United States)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  1. Evidence of biogeochemical processes in iron duricrust formation

    Science.gov (United States)

    Levett, Alan; Gagen, Emma; Shuster, Jeremiah; Rintoul, Llew; Tobin, Mark; Vongsvivut, Jitraporn; Bambery, Keith; Vasconcelos, Paulo; Southam, Gordon

    2016-11-01

    Canga is a moderately hard iron-rich duricrust primarily composed of goethite as a result of the weathering of banded iron formations. Canga duricrusts lack a well-developed soil profile and consequently form an innate association with rupestrian plants that may become ferruginised, contributing to canga possessing macroscopic biological features. Examination of polished canga using a field emission scanning electron microscope (FE-SEM) revealed the biological textures associated with canga extended to the sub-millimetre scale in petrographic sections and polished blocks. Laminae that formed by abiotic processes and regions where goethite cements were formed in association with microorganisms were observed in canga. Biological cycling of iron within canga has resulted in two distinct forms of microbial fossilisation: permineralisation of multispecies biofilms and mineralisation of cell envelopes. Goethite permineralised biofilms frequently formed around goethite-rich kaolinite grains in close proximity to goethite bands and were composed of micrometre-scale rod-shaped, cocci and filamentous microfossils. In contrast, the cell envelopes immobilised by authigenic iron oxides were primarily of rod-shaped microorganisms, were not permineralised and occurred in pore spaces within canga. Complete mineralisation of intact rod-shaped casts and the absence of permineralisation suggested mineralised cell envelopes may represent fossilised iron-oxidising bacteria in the canga ecosystem. Replication of these iron-oxidising bacteria appeared to infill the porous regions within canga. Synchrotron-based Fourier transform infrared (FTIR) microspectroscopy demonstrated that organic biomarkers were poorly preserved with only weak bands indicative of aliphatic methylene (CH2) associated with permineralised microbial biofilms. High resolution imaging of microbial fossils in canga that had been etched with oxalic acid supported the poor preservation of organic biomarkers within canga

  2. Types of tectonic structures, sedimentary volcanogenetic formations of a mantle, favourable processes for exogenetic and polygenetic uranium deposits formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Komarnitskij, G.M.; Levin, V.N.; Shumlyanskij, V.A.

    1985-01-01

    Factors, affecting mineralization processes are considered. Characteristic features of uranium-bearing provinces are as follows: the presence of crust of continental type; deep-seated tectonic structures-rises and saggings, roofs, gneiss domes, rift zones and transform fractures; specialization for uranium of sedimentary and magmatic formations; the presence of manifestation regions of deep thermal and gaseous flow, etc. In uranium-bearing provinces territories favourable for the manifestation of different types of uranium mineralization: metamorphogenetic, polygenetic and exogenetic ones, are singled out. Different epochs of uranium ore formation are established. In sedimentary masses tectonic regime and climate are of special importance, and for epigenetic deposits, formed with an aid of underground waters-hydrogeological conditions. In the limits of the main structural elements of the Earth crust and geotectonic structures of higher orders the following types of sedimentary and volcanic formations can be singled out: 1-formations with exogenous uranium mineralization; 2-formations, accumulated in the epochs of epigenous ore formation; 3-formations fav ourable for epigenous uranium deposit formation; 4-formations unfavourable for the formation and localization of uranium mineralization

  3. Pattern Recognition in Optical Remote Sensing Data Processing

    Science.gov (United States)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  4. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    Science.gov (United States)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  5. From pattern formation to material computation multi-agent modelling of physarum polycephalum

    CERN Document Server

    Jones, Jeff

    2015-01-01

    This book addresses topics of mobile multi-agent systems, pattern formation, biological modelling, artificial life, unconventional computation, and robotics. The behaviour of a simple organism which is capable of remarkable biological and computational feats that seem to transcend its simple component parts is examined and modelled. In this book the following question is asked: How can something as simple as Physarum polycephalum - a giant amoeboid single-celled organism which does not possess any neural tissue, fixed skeleton or organised musculature - can approximate complex computational behaviour during its foraging, growth and adaptation of its amorphous body plan, and with such limited resources? To answer this question the same apparent limitations as faced by the organism are applied: using only simple components with local interactions. A synthesis approach is adopted and a mobile multi-agent system with very simple individual behaviours is employed. It is shown their interactions yield emergent beha...

  6. Spatio-temporal pattern formation in predator-prey systems with fitness taxis

    DEFF Research Database (Denmark)

    Heilmann, Irene T.; Thygesen, Uffe Høgsbro; Sørensen, Mads Peter

    2018-01-01

    We pose a spatial predator–prey model in which the movement of animals is not purely diffusive, but also contains a drift term in the direction of higher specific growth rates. We refer to this as fitness taxis. We conduct a linear stability analysis of the resulting coupled reaction–advection–di......We pose a spatial predator–prey model in which the movement of animals is not purely diffusive, but also contains a drift term in the direction of higher specific growth rates. We refer to this as fitness taxis. We conduct a linear stability analysis of the resulting coupled reaction...... of diffusive motion, is ecologically plausible, and provides an alternative mechanism for formation of patterns in spatially explicit ecosystem models, with emphasis on non-stationary spatio-temporal dynamics....

  7. Simulating pattern-process relationships to validate landscape genetic models

    Science.gov (United States)

    A. J. Shirk; S. A. Cushman; E. L. Landguth

    2012-01-01

    Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...

  8. Acinetobacter baumannii in Southern Croatia: clonal lineages, biofilm formation, and resistance patterns.

    Science.gov (United States)

    Kaliterna, Vanja; Kaliterna, Mariano; Hrenović, Jasna; Barišić, Zvonimir; Tonkić, Marija; Goic-Barisic, Ivana

    2015-01-01

    Acinetobacter baumannii is one of the most prevalent causes of severe hospital-acquired infections and is responsible for the dramatic increase in carbapenem resistance in Croatia in the last 5 years. Such data have encouraged multicenter research focused on the organism's ability to form biofilm, susceptibility to antibiotics, and particular genotype lineage. Biofilm formation in 109 unrelated clinical isolates of A. baumannii recovered in six cities of Southern Croatia was investigated. Genotyping was performed by pulsed-field gel electrophoresis and antibiotic profile was tested by applying the disc diffusion method and confirmed by determining the minimum inhibitory concentrations. The ability to form biofilm in vitro was determined from overnight cultures of the collected isolates on microtiter plates, after staining with crystal violet, and quantified at 570 nm after solubilization with ethanol. The statistical relevance was calculated in an appropriate program with level of statistical confidence. There was no significant difference in biofilm formation due to the genotype lineage. Isolates collected from intensive care units (ICUs) and isolated from respiratory samples were more likely to create a biofilm compared with isolates from other departments and other samples. There was a significant difference in the ability to produce biofilm in relation to antibiotic resistance pattern. A large proportion of A. baumannii isolates that were resistant to ampicillin/sulbactam, carbapenems, and amikacin were found to be biofilm-negative. In contrast, isolates susceptible and intermediately susceptible to ampicillin/sulbactam, carbapenems, and amikacin were biofilm producers. Clinical isolates of A. baumannii from respiratory samples in ICUs with a particular susceptibility pattern are more prone to form biofilm.

  9. Phase-Transition-Induced Pattern Formation Applied to Basic Research on Homeopathy: A Systematic Review.

    Science.gov (United States)

    Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan

    2018-05-16

     Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review.  Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria.  The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon.  Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.

  10. Formation of ring-patterned nanoclusters by laser–plume interaction

    International Nuclear Information System (INIS)

    Sivayoganathan, Mugunthan; Tan Bo; Venkatakrishnan, Krishnan

    2013-01-01

    This article reports for the first time a unique study performed to regulate the ring diameter of nanoclusters fabricated during femtosecond laser ablation of solids and a mechanism is proposed for the formation of those ring clusters. The ring nanoclusters are made out of nanoparticles with a range of 10–30 nm. Our experimental studies showed the synthesis of ring nanoclusters with random diameter distribution on metals, nonmetals, and semiconductors, such as titanium, aluminum, glasses, ceramics, graphite, and silicon. To regulate the ring size, the effects of laser parameters, such as wavelength, pulse duration, pulse energy, and repetition rate on the ring diameter are analyzed. The influence of ablated materials and the background gas on ring size is also elaborated in this article. The motion of plume species under the influence of ponderomotive force on free electrons possibly played a key role in the formation of the ring-patterned nanoclusters. This study could help to understand the fundamentals in laser ablative nanosynthesis as well as to produce nanostructures with organized ring diameter that controls the density and porosity of those 3D nanostructures.

  11. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation.

    Science.gov (United States)

    Lamb, Damon G; Calabrese, Ronald L

    2013-01-01

    Neurons can have widely differing intrinsic membrane properties, in particular the density of specific conductances, but how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. We then examined the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics.

  12. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    Science.gov (United States)

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer.

    Science.gov (United States)

    Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun

    2007-03-14

    In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.

  14. Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation

    Directory of Open Access Journals (Sweden)

    Bensimon-Brito Anabela

    2012-10-01

    Oc signals were clearly produced both by the notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1. Conclusions If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.

  15. Distinct patterns of notochord mineralization in zebrafish coincide with the localization of Osteocalcin isoform 1 during early vertebral centra formation.

    Science.gov (United States)

    Bensimon-Brito, Anabela; Cardeira, João; Cancela, Maria Leonor; Huysseune, Ann; Witten, Paul Eckhard

    2012-10-09

    notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1). If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.

  16. Geographical ranges in macroecology: Processes, patterns and implications

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe

    , are distributed over the entire Earth. Species’ ranges are one of the basic units of the science of macroecology, which deals with patterns in the distribution of life on Earth. An example of such patterns is the large geographic variation in species richness between areas. These patterns are closely linked...... for this relationship. In going through the mechanisms, I distinguish between ‘structural’ causes, such as differences between the niches of species; and ‘dynamic’ causes, such as dispersal of individuals among populations. A central conclusion is that both of these types of mechanisms contribute to creating...... group includes a popularly written book chapter, where the causes and consequences of the spatial distribution of organisms are introduced more generally. The second group consists of several papers investigating the link between ranges and richness patterns. Variation in species richness is probably...

  17. Simple and effective graphene laser processing for neuron patterning application

    Science.gov (United States)

    Lorenzoni, Matteo; Brandi, Fernando; Dante, Silvia; Giugni, Andrea; Torre, Bruno

    2013-06-01

    A straightforward fabrication technique to obtain patterned substrates promoting ordered neuron growth is presented. Chemical vapor deposition (CVD) single layer graphene (SLG) was machined by means of single pulse UV laser ablation technique at the lowest effective laser fluence in order to minimize laser damage effects. Patterned substrates were then coated with poly-D-lysine by means of a simple immersion in solution. Primary embryonic hippocampal neurons were cultured on our substrate, demonstrating an ordered interconnected neuron pattern mimicking the pattern design. Surprisingly, the functionalization is more effective on the SLG, resulting in notably higher alignment for neuron adhesion and growth. Therefore the proposed technique should be considered a valuable candidate to realize a new generation of highly specialized biosensors.

  18. Generalization of the photo process window and its application to OPC test pattern design

    Science.gov (United States)

    Eisenmann, Hans; Peter, Kai; Strojwas, Andrzej J.

    2003-07-01

    From the early development phase up to the production phase, test pattern play a key role for microlithography. The requirement for test pattern is to represent the design well and to cover the space of all process conditions, e.g. to investigate the full process window and all other process parameters. This paper shows that the current state-of-the-art test pattern do not address these requirements sufficiently and makes suggestions for a better selection of test pattern. We present a new methodology to analyze an existing layout (e.g. logic library, test pattern or full chip) for critical layout situations which does not need precise process data. We call this method "process space decomposition", because it is aimed at decomposing the process impact to a layout feature into a sum of single independent contributions, the dimensions of the process space. This is a generalization of the classical process window, which examines defocus and exposure dependency of given test pattern, e.g. CD value of dense and isolated lines. In our process space we additionally define the dimensions resist effects, etch effects, mask error and misalignment, which describe the deviation of the printed silicon pattern from its target. We further extend it by the pattern space using a product based layout (library, full chip or synthetic test pattern). The criticality of pattern is defined by their deviation due to aerial image, their sensitivity to the respective dimension or several combinations of these. By exploring the process space for a given design, the method allows to find the most critical patterns independent of specific process parameters. The paper provides examples for different applications of the method: (1) selection of design oriented test pattern for lithography development (2) test pattern reduction in process characterization (3) verification/optimization of printability and performance of post processing procedures (like OPC) (4) creation of a sensitive process

  19. Formation of hydrocarbons in irradiated Brazilian beans: gas chromatographic analysis to detect radiation processing

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Hartmann, M.; Ammon, J.; Delincee, H.

    1997-01-01

    Radiation processing of beans, which are a major source of dietary protein in Brazil, is a valuable alternative to chemical fumigation to combat postharvest losses due to insect infestation. To ensure free consumer choice, irradiated food will be labeled as such, and to enforce labeling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In two varieties of Brazilian beans, Carioca and Macacar beans, the radiolytic formation of hydrocarbons formed after alpha and beta cleavage, with regard to the carbonyl group in triglycerides, have been studied. Using gas chromatographic analysis of these radiolytic hydrocarbons, different yields per precursor fatty acid are observed for the two types of beans. However, the typical degradation pattern allows the identification of the irradiation treatment in both bean varieties, even after 6 months of storage

  20. Complex temporal and spatial patterns in nonequilibrium processes. Progress report, December 1, 1987--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Swinney, H.L.

    1992-10-01

    We have used dynamical systems methods to study and characterize bifurcations and pattern formation in a variety of nonequilibrium systems. In this paper we describe our work on dynamical systems, chemical oscillations and chaos, chemical spatial patterns, instabilities in fluid dynamics, electrodeposition clusters, the ballast resistor, and crack propagation.

  1. Dislocation processes in quasicrystals-Kink-pair formation control or jog-pair formation control

    International Nuclear Information System (INIS)

    Takeuchi, Shin

    2005-01-01

    A computer simulation of dislocation in a model quasiperiodic lattice indicates that the dislocation feels a large Peierls potential when oriented in particular directions. For a dislocation with a high Peierls potential, the glide velocity and the climb velocity of the dislocation can be described almost in parallel in terms of the kink-pair formation followed by kink motion and the jog-pair formation followed by jog motion, respectively. The activation enthalpy of the kink-pair formation is the sum of the kink-pair formation enthalpy and the atomic jump activation enthalpy, while the activation enthalpy of the jog-pair formation involves the jog-pair enthalpy and the self-diffusion enthalpy. Since the kink-pair energy can be considerably larger than the jog-pair energy, the climb velocity can be faster than the glide velocity, so that the plastic deformation of quasicrystals can be brought not by dislocation glide but by dislocation climb at high temperatures

  2. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation.

    Science.gov (United States)

    Adams, Farzana; Nolte, Fred; Colton, James; De Beer, John; Weddig, Lisa

    2018-02-23

    An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna ( Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.

  3. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buf...... from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces...

  4. Single molecule image formation, reconstruction and processing: introduction.

    Science.gov (United States)

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis.

  5. Defining Sustainable Universities Following Public Opinion Formation Process

    Science.gov (United States)

    Zaptcioglu Celikdemir, Deniz; Gunay, Gonca; Katrinli, Alev; Penbek Alpbaz, Sebnem

    2017-01-01

    Purpose: The purpose of this paper is to define the sustainable university in Turkey, by considering perspectives of various stakeholders such as experts, intellectual, public, political parties and media using public opinion formation analysis. The paper aims to re-define the "sustainable university" with all dimensions including…

  6. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Sëma

    2015-05-14

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  7. The process of Danish nurses’ professionalization and patterns of thought in the 20th century

    DEFF Research Database (Denmark)

    Beedholm, Kirsten; Frederiksen, Kirsten

    2015-01-01

    1904 and 1996. The analysis was inspired by the work of Michel Foucault, in particular the concepts of rupture and rules of formation. First, we explain how the dominating role of the human body in nursing textbooks disappears in the mid-20th century. This transformation can of course be attributed......In this article, we address how the professionalization process is reflected in the way Danish nursing textbooks present 'nursing' to new members of the profession during the 20th century. The discussion is based on a discourse analysis of seven Danish textbooks on basic nursing published between...... and not causes. The second part of the analysis shows that along with 'the disappearance of the body', a second discursive change appears: the role of doctors and medicine changes fundamentally from about mid-20th century. Finally, we argue that this discursive reorganization enabling new patterns of thought...

  8. A Multiscale Survival Process for Modeling Human Activity Patterns.

    Science.gov (United States)

    Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang

    2016-01-01

    Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.

  9. Vegetation pattern formation in semiarid systems induced by long-range competition in the absence of facilitation mechanisms.

    Science.gov (United States)

    Martinez-Garcia, Ricardo; Calabrese, Justin M.; Hernandez-Garcia, Emilio; Lopez, Cristobal

    2014-05-01

    Regular patterns and spatial organization of vegetation have been observed in many arid and semiarid ecosystems worldwide, covering a diverse range of plant taxa and soil types. A key common ingredient in these systems is that plant growth is severely limited by water availability, and thus plants likely compete strongly for water. The study of such patterns is especially interesting because their features may reveal much about the underlying physical and biological processes that generated them in addition to giving information on the characteristics of the ecosystem. It is possible, for instance, to infer their resilience against anthropogenic disturbances or climatic changes that could cause abrupt shifts in the system and lead it to a desert state. Therefore much research has focused on identifying the underlying mechanisms that can produce spatial patterning in water-limited systems (Klausmeier, 1999). They are believed to arise from the interplay between long-range competition and facilitation processes acting at smaller distances (Borgogno et al., 2009). This combination of mechanisms is justified by arguing that water percolates more readily through the soil in vegetated areas (short range), and that plants compete for water resources over greater distances via long lateral roots (long range). However, recent studies have shown that even in the limit of local facilitation patterns may still appear (Martinez-Garcia et al., 2013). In this work (Martinez-Garcia et al., 2013b), we show that, under rather general conditions, long-range competition alone is the minimal ingredient to shape gapped and stripped vegetation patterns typical of models that also account for facilitation in addition to competition. To this end we propose a simple, general model for the dynamics of vegetation, which includes only long-range competition between plants. Competition is introduced through a nonlocal term, where the kernel function quantifies the intensity of the interaction

  10. Sp6 and Sp8 Transcription Factors Control AER Formation and Dorsal-Ventral Patterning in Limb Development

    Science.gov (United States)

    Haro, Endika; Delgado, Irene; Junco, Marisa; Yamada, Yoshihiko; Mansouri, Ahmed; Oberg, Kerby C.; Ros, Marian A.

    2014-01-01

    The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6−/−;Sp8+/−) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning. PMID:25166858

  11. Individual Rules for Trail Pattern Formation in Argentine Ants (Linepithema humile)

    Science.gov (United States)

    Perna, Andrea; Granovskiy, Boris; Garnier, Simon; Nicolis, Stamatios C.; Labédan, Marjorie; Theraulaz, Guy; Fourcassié, Vincent; Sumpter, David J. T.

    2012-01-01

    We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed. PMID:22829756

  12. Individual rules for trail pattern formation in Argentine ants (Linepithema humile.

    Directory of Open Access Journals (Sweden)

    Andrea Perna

    Full Text Available We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990. However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed.

  13. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke

    2009-01-01

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  14. Influence of Process Parameters on Nitrogen Oxide Formation in

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1997-01-01

    This paper describes the influence of burner operating conditions, burner geometry and fuel parameters on the formation of nitrogen oxide during combustion of pulverized coal. Main attention has been paid to combustion test facilities with self-sustaining flames, while extensions have been made...... to full scale boilers and furnace modeling. Since coal combustion and flame aerodynamics have been reviewed earlier, these phenomena are only treated briefly....

  15. The molecular basis of speciation: from patterns to processes, rules ...

    Indian Academy of Sciences (India)

    male; large X-effect; meiotic drive; genomic conflict. Abstract. The empirical study of speciation has brought us closer to unlocking the origins of life's vast diversity. By examining recently formed species, a number of general patterns, or rules, ...

  16. Artificial Intelligence in ADA: Pattern-Directed Processing. Final Report.

    Science.gov (United States)

    Reeker, Larry H.; And Others

    To demonstrate to computer programmers that the programming language Ada provides superior facilities for use in artificial intelligence applications, the three papers included in this report investigate the capabilities that exist within Ada for "pattern-directed" programming. The first paper (Larry H. Reeker, Tulane University) is…

  17. Polar Pattern Formation in Driven Filament Systems Require Non-Binary Particle Collisions.

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A; Frey, Erwin; Bausch, Andreas R

    2015-10-01

    Living matter has the extraordinary ability to behave in a concerted manner, which is exemplified throughout nature ranging from the self-organisation of the cytoskeleton to flocks of animals [1-4]. The microscopic dynamics of constituents have been linked to the system's meso- or macroscopic behaviour in silico via the Boltzmann equation for propelled particles [5-10]. Thereby, simplified binary collision rules between the constituents had to be assumed due to the lack of experimental data. We report here experimentally determined binary collision statistics by studying the recently introduced molecular system, the high density actomyosin motility assay [11-13]. We demonstrate that the alignment effect of the binary collision statistics is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, which indicates that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. The presented findings demonstrate that the unique properties of biological active matter systems require a description that goes well beyond a gas-like picture developed in the framework of kinetic theories.

  18. Polar pattern formation in driven filament systems requires non-binary particle collisions

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2015-10-01

    From the self-organization of the cytoskeleton to the synchronous motion of bird flocks, living matter has the extraordinary ability to behave in a concerted manner. The Boltzmann equation for self-propelled particles is frequently used in silico to link a system’s meso- or macroscopic behaviour to the microscopic dynamics of its constituents. But so far such studies have relied on an assumption of simplified binary collisions owing to a lack of experimental data suggesting otherwise. We report here experimentally determined binary-collision statistics by studying a recently introduced molecular system, the high-density actomyosin motility assay. We demonstrate that the alignment induced by binary collisions is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, indicating that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. Our findings demonstrate that the unique properties of biological active-matter systems require a description that goes well beyond that developed in the framework of kinetic theories.

  19. Pattern formation, social forces, and diffusion instability in games with success-driven motion

    Science.gov (United States)

    Helbing, Dirk

    2009-02-01

    A local agglomeration of cooperators can support the survival or spreading of cooperation, even when cooperation is predicted to die out according to the replicator equation, which is often used in evolutionary game theory to study the spreading and disappearance of strategies. In this paper, it is shown that success-driven motion can trigger such local agglomeration and may, therefore, be used to supplement other mechanisms supporting cooperation, like reputation or punishment. Success-driven motion is formulated here as a function of the game-theoretical payoffs. It can change the outcome and dynamics of spatial games dramatically, in particular as it causes attractive or repulsive interaction forces. These forces act when the spatial distributions of strategies are inhomogeneous. However, even when starting with homogeneous initial conditions, small perturbations can trigger large inhomogeneities by a pattern-formation instability, when certain conditions are fulfilled. Here, these instability conditions are studied for the prisoner’s dilemma and the snowdrift game. Furthermore, it is demonstrated that asymmetrical diffusion can drive social, economic, and biological systems into the unstable regime, if these would be stable without diffusion.

  20. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    Science.gov (United States)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  1. Application of Hydroforming Process in Sheet Metal Formation

    OpenAIRE

    GRIZELJ, Branko; CUMIN, Josip; ERGIĆ, Todor

    2009-01-01

    This article deals with the theory and application of a hydroforming process. Nowadays automobile manufacturers use high strength sheet metal plates. This high strength steel sheet metal plates are strain hardened in the process of metal forming. With the use of high strength steel, cars are made lightweight, which is intended for low fuel consumption because of high energy prices. Some examples of application of a hydroforming process are simulated with FEM.

  2. Growth specificity of vertical ZnO nanorods on patterned seeded substrates through integrated chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Maniam, S.M. [Centre for Quantum Technologies, National University of Singapore (Singapore); Sundaramurthy, J. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Arokiaraj, J. [3M R and D Center (Singapore); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Rajarathnam, D. [CERAR, University of South Australia, Mawson Lakes, SA-5095 (Australia); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore (NUS) (Singapore); Jian, L.K. [Singapore Synchrotron Light Source (SSLS), National University of Singapore (NUS) (Singapore)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Simple integrated chemical process was adopted for specific ZnO nanorod growth. Black-Right-Pointing-Pointer Size and orientation of nanorods are well controlled by optimum reaction time and temperature. Black-Right-Pointing-Pointer Different site-selective ZnO nanorod growths are demonstrated. - Abstract: A simple and cost effective method has been employed for the random growth and oriented ZnO nanorod arrays over as-prepared and patterned seeded glass substrates by low temperature two step growth process and growth specificity by direct laser writing (DLW) process. Scanning electron microscopy (SEM) images and X-ray diffraction analysis confirm the growth of vertical ZnO nanorods with perfect (0 0 2) orientation along c-axis which is in conjunction with optimizing the parameters at different reaction times and temperatures. Transmission electron microscopy (TEM) images show the formation of vertical ZnO nanorods with diameter and length of {approx}120 nm and {approx}400 nm respectively. Photoluminescence (PL) spectroscopic studies show a narrow emission at {approx}385 nm and a broad visible emission from 450 to 600 nm. Further, site-selective ZnO nanorod growth is demonstrated for its high degree of control over size, orientation, uniformity, and periodicity on a positive photoresist ZnO seed layer by simple geometrical (line, circle and ring) patterns of 10 {mu}m and 5 {mu}m dimensions. The demonstrated control over size, orientation and periodicity of ZnO nanorods process opens up an opportunity to develop multifunctional properties which promises their potential applications in sensor, piezoelectric, and optoelectronic devices.

  3. Geometric anisotropic spatial point pattern analysis and Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Toftaker, Håkon

    . In particular we study Cox process models with an elliptical pair correlation function, including shot noise Cox processes and log Gaussian Cox processes, and we develop estimation procedures using summary statistics and Bayesian methods. Our methodology is illustrated on real and synthetic datasets of spatial...

  4. Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation.

    Directory of Open Access Journals (Sweden)

    Minghua Nie

    2009-06-01

    Full Text Available SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development.

  5. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    Science.gov (United States)

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  6. Searching for fossil fragments of the Galactic bulge formation process

    Science.gov (United States)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  7. Deriving Process-Driven Collaborative Editing Pattern from Collaborative Learning Flow Patterns

    Science.gov (United States)

    Marjanovic, Olivera; Skaf-Molli, Hala; Molli, Pascal; Godart, Claude

    2007-01-01

    Collaborative Learning Flow Patterns (CLFPs) have recently emerged as a new method to formulate best practices in structuring the flow of activities within various collaborative learning scenarios. The term "learning flow" is used to describe coordination and sequencing of learning tasks. This paper adopts the existing concept of CLFP and argues…

  8. Display process compatible accurate graphene patterning for OLED applications

    Science.gov (United States)

    Shin, Jin-Wook; Han, Jun-Han; Cho, Hyunsu; Moon, Jaehyun; Kwon, Byoung-Hwa; Cho, Seungmin; Yoon, Taeshik; Kim, Taek-Soo; Suemitsu, Maki; Lee, Jeong-Ik; Cho, Nam Sung

    2018-01-01

    Graphene film can be used as transparent electrodes in display and optoelectronic applications. However, achieving residue free graphene film pixel arrays with geometrical precision on large area has been a difficult challenge. By utilizing the liquid bridging concept, we realized photolithographic patterning of graphene film with dimensional correctness and absence of surface contaminant. On a glass substrate of 100  ×  100 mm2 size, we demonstrate our patterning method to fabricate an addressable two-color OLED module of which graphene film pixel size is 170  ×  300 µm2. Our results strongly suggest graphene film as a serviceable component in commercial display products. The flexible and foldable display applications are expected to be main beneficiaries of our method.

  9. Processing of Complex Auditory Patterns in Musicians and Nonmusicians

    OpenAIRE

    Boh, Bastiaan; Herholz, Sibylle C.; Lappe, Claudia; Pantev, Christo

    2011-01-01

    In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) w...

  10. Quantum noise and spatio-temporal pattern formation in nonlinear optics

    DEFF Research Database (Denmark)

    Bache, Morten

    2002-01-01

    a nondegenerate parametric oscillation. We find that this model may completely stabilize the instabilities normally expected in SHG, but it may also give rise to entirely new phenomena, such as oscillating cavity solitons, intensity spirals and self-pulsing solutions. Especially the self-pulsing is important...... rise to spatially modulated structures, patterns. The two main parts of the thesis are the classical model and the quantum mechanical model, the latter being an extension of the former by including the inherent quantum fluctuations of light. From a theoretical point of view the classical dynamics...... are investigated with an experimental implementation in mind. Thus, we study the internally pumped optical parametric oscillator (IPOPO) as an experimentally more realistic model than the usual SHG model. In the IPOPO a competing process to SHG is taken into account, where the generated second harmonic drives...

  11. Two tree-formation methods for fast pattern search using nearest-neighbour and nearest-centroid matching

    NARCIS (Netherlands)

    Schomaker, Lambertus; Mangalagiu, D.; Vuurpijl, Louis; Weinfeld, M.; Schomaker, Lambert; Vuurpijl, Louis

    2000-01-01

    This paper describes tree­based classification of character images, comparing two methods of tree formation and two methods of matching: nearest neighbor and nearest centroid. The first method, Preprocess Using Relative Distances (PURD) is a tree­based reorganization of a flat list of patterns,

  12. Using Templates and Linguistic Patterns to Define Process Performance Indicators

    OpenAIRE

    Río Ortega, Adela del; Resinas Arias de Reyna, Manuel; Durán Toro, Amador; Ruiz Cortés, Antonio

    2014-01-01

    Process performance management (PPM) aims at measuring, monitoring and analysing the performance of business processes (BPs), in order to check the achievement of strategic and operational goals and to support decision making for their optimisation. PPM is based on process performance indicators (PPIs), so having an appropriate definition of them is crucial. One of the main problems of PPIs definition is to express them in an unambiguous, complete, understandable, traceable ...

  13. Dataflow Interchange Format and a Framework for Processing Dataflow Graphs

    National Research Council Canada - National Science Library

    Keceli, Fuat

    2004-01-01

    Digital Signal Processing (DSP) applications are often designed with tools based on dataflow graphs and the increasing number of such tools shows the need for a common intermediate graph representation for exchanging dataflow information...

  14. Modeling of Cloud/Radiation Processes for Cirrus Cloud Formation

    National Research Council Canada - National Science Library

    Liou, K

    1997-01-01

    This technical report includes five reprints and pre-prints of papers associated with the modeling of cirrus cloud and radiation processes as well as remote sensing of cloud optical and microphysical...

  15. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells

    Directory of Open Access Journals (Sweden)

    Jacob Eshel

    2008-02-01

    Full Text Available Abstract Background Swarming motility allows microorganisms to move rapidly over surfaces. The Gram-positive bacterium Paenibacillus vortex exhibits advanced cooperative motility on agar plates resulting in intricate colonial patterns with geometries that are highly sensitive to the environment. The cellular mechanisms that underpin the complex multicellular organization of such a simple organism are not well understood. Results Swarming by P. vortex was studied by real-time light microscopy, by in situ scanning electron microscopy and by tracking the spread of antibiotic-resistant cells within antibiotic-sensitive colonies. When swarming, P. vortex was found to be peritrichously flagellated. Swarming by the curved cells of P. vortex occurred on an extremely wide range of media and agar concentrations (0.3 to 2.2% w/v. At high agar concentrations (> 1% w/v rotating colonies formed that could be detached from the main mass of cells by withdrawal of cells into the latter. On lower percentage agars, cells moved in an extended network composed of interconnected "snakes" with short-term collision avoidance and sensitivity to extracts from swarming cells. P. vortex formed single Petri dish-wide "supercolonies" with a colony-wide exchange of motile cells. Swarming cells were coupled by rapidly forming, reversible and non-rigid connections to form a loose raft, apparently connected via flagella. Inhibitors of swarming (p-Nitrophenylglycerol and Congo Red were identified. Mitomycin C was used to trigger filamentation without inhibiting growth or swarming; this facilitated dissection of the detail of swarming. Mitomycin C treatment resulted in malcoordinated swarming and abortive side branch formation and a strong tendency by a subpopulation of the cells to form minimal rotating aggregates of only a few cells. Conclusion P. vortex creates complex macroscopic colonies within which there is considerable reflux and movement and interaction of cells. Cell

  16. Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis.

    Science.gov (United States)

    Xin, Wei; Wang, Zhicai; Liang, Yan; Wang, Yonghong; Hu, Yuxin

    2017-07-01

    Seed plants have a remarkable capability to produce axillary meristems (AM) in the leaf axils, however, the dynamic establishment of a stem cell niche in AM is largely uncharacterized. We comprehensively examined the dynamic patterning of WUSCHEL (WUS) and CLAVATA3 (CLV3), the two key marker genes defining the shoot stem cell niches, during AM formation in Arabidopsis, and we found that a two-step patterning of WUS and CLV3 occurred during AM stem cell niche establishment. Our further work on the wus and clv3 mutants implicates that such two-step patterning is likely critical for the maintenance of AM progenitor cells and the specification of AM stem cell niche. These data provide a cytological frame for how a stem cell niche is established during AM formation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Chondritic Meteorites: Nebular and Parent-Body Formation Processes

    Science.gov (United States)

    Rubin, Alan E.; Lindstrom, David (Technical Monitor)

    2002-01-01

    It is important to identify features in chondrites that formed as a result of parent-body modification in order to disentangle nebular and asteroidal processes. However, this task is difficult because unmetamorphosed chondritic meteorites are mixtures of diverse components including various types of chondrules, chondrule fragments, refractory and mafic inclusions, metal-sulfide grains and fine-grained matrix material. Shocked chondrites can contain melt pockets, silicate-darkened material, metal veins, silicate melt veins, and impact-melt-rock clasts. This grant paid for several studies that went far in helping to distinguish primitive nebular features from those produced during asteroidal modification processes.

  18. Vascular Adaptation: Pattern Formation and Cross Validation between an Agent Based Model and a Dynamical System.

    Science.gov (United States)

    Garbey, Marc; Casarin, Stefano; Berceli, Scott A

    2017-09-21

    Myocardial infarction is the global leading cause of mortality (Go et al., 2014). Coronary artery occlusion is its main etiology and it is commonly treated by Coronary Artery Bypass Graft (CABG) surgery (Wilson et al, 2007). The long-term outcome remains unsatisfactory (Benedetto, 2016) as the graft faces the phenomenon of restenosis during the post-surgery, which consists of re-occlusion of the lumen and usually requires secondary intervention even within one year after the initial surgery (Harskamp, 2013). In this work, we propose an extensive study of the restenosis phenomenon by implementing two mathematical models previously developed by our group: a heuristic Dynamical System (DS) (Garbey and Berceli, 2013), and a stochastic Agent Based Model (ABM) (Garbey et al., 2015). With an extensive use of the ABM, we retrieved the pattern formations of the cellular events that mainly lead the restenosis, especially focusing on mitosis in intima, caused by alteration in shear stress, and mitosis in media, fostered by alteration in wall tension. A deep understanding of the elements at the base of the restenosis is indeed crucial in order to improve the final outcome of vein graft bypass. We also turned the ABM closer to the physiological reality by abating its original assumption of circumferential symmetry. This allowed us to finely replicate the trigger event of the restenosis, i.e. the loss of the endothelium in the early stage of the post-surgical follow up (Roubos et al., 1995) and to simulate the encroachment of the lumen in a fashion aligned with histological evidences (Owens et al., 2015). Finally, we cross-validated the two models by creating an accurate matching procedure. In this way we added the degree of accuracy given by the ABM to a simplified model (DS) that can serve as powerful predictive tool for the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling.

    Science.gov (United States)

    Poloz, Yekaterina; O'Day, Danton H

    2012-04-01

    Previous work, verified here, showed that colchicine affects Dictyostelium pattern formation, disrupts morphogenesis, inhibits spore differentiation and induces terminal stalk cell differentiation. Here we show that colchicine specifically induces ecmB expression and enhances accumulation of ecmB-expressing cells at the posterior end of multicellular structures. Colchicine did not induce a nuclear translocation of DimB, a DIF-1 responsive transcription factor in vitro. It also induced terminal stalk cell differentiation in a mutant strain that does not produce DIF-1 (dmtA-) and after the treatment of cells with DIF-1 synthesis inhibitor cerulenin (100 μM). This suggests that colchicine induces the differentiation of ecmB-expressing cells independent of DIF-1 production and likely through a signaling pathway that is distinct from the one that is utilized by DIF-1. Depending on concentration, colchicine enhanced random cell motility, but not chemotaxis, by 3-5 fold (10-50 mM colchicine, respectively) through a Ca(2+)-mediated signaling pathway involving phospholipase C, calmodulin and heterotrimeric G proteins. Colchicine's effects were not due to microtubule depolymerization as other microtubule-depolymerizing agents did not have these effects. Finally normal morphogenesis and stalk and spore cell differentiation of cells treated with 10 mM colchicine were rescued through chelation of Ca2+ by BAPTA-AM and EDTA and calmodulin antagonism by W-7 but not PLC inhibition by U-73122. Morphogenesis or spore cell differentiation of cells treated with 50 mM colchicine could not be rescued by the above treatments but terminal stalk cell differentiation was inhibited by BAPTA-AM, EDTA and W-7, but not U-73122. Thus colchicine disrupts morphogenesis and induces stalk cell differentiation through a Ca(2+)-mediated signaling pathway involving specific changes in gene expression and cell motility. Copyright © 2011 International Society of Differentiation. Published by Elsevier B

  20. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    International Nuclear Information System (INIS)

    Yépez, L.D.; Carrillo, J.L.; Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P.

    2016-01-01

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  1. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    Energy Technology Data Exchange (ETDEWEB)

    Yépez, L.D.; Carrillo, J.L. [Instituto de Física de la Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. 110 A, Puebla 72570 (Mexico); Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P. [Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo, Pachuca 42090, Pachuca (Mexico)

    2016-06-15

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  2. Effects of pattern characteristics on the copper electroplating process

    International Nuclear Information System (INIS)

    Ruan Wenbiao; Chen Lan; Li Zhigang; Ye Tianchun; Ma Tianyu; Wang Qiang

    2011-01-01

    The non-planarity of a surface post electroplating process is usually dependent on variations of key layout characteristics including line width, line spacing and metal density. A test chip is designed and manufactured in a semiconductor foundry to test the layout dependency of the electroplating process. By checking test data such as field height, array height, step height and SEM photos, some conclusions are made. Line width is a critical factor of topographical shapes such as the step height and height difference. After the electroplating process, the fine line has a thicker copper thickness, while the wide line has the greatest step height. Three typical topographies, conformal-fill, supper-fill and over-fill, are observed. Moreover, quantified effects are found using the test data and explained by theory, which can be used to develop electroplating process modeling and design for manufacturability (DFM) research. (semiconductor integrated circuits)

  3. Defining Process Performance Indicators By Using Templates and Patterns

    OpenAIRE

    Río Ortega, Adela del; Resinas Arias de Reyna, Manuel; Durán Toro, Amador; Ruiz Cortés, Antonio

    2012-01-01

    Process Performance Indicators (PPIs) are a key asset for the mea- 2 surement of the achievement of strategic and operational goals in process–oriented 3 organisations. Ideally, the definition of PPIs should not only be unambiguous, 4 complete, and understandable to non–technical stakeholders, but also traceable 5 to business processes and verifiable by means of automated analysis. in practice, 6 PPIs are defined either informally in natural language, with its well–known prob- 7 lems, or at a...

  4. Thermoplastic processing of proteins for film formation--a review.

    Science.gov (United States)

    Hernandez-Izquierdo, V M; Krochta, J M

    2008-03-01

    Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability.

  5. The Physics of Weldpool Formation: Phase Transition Process In ...

    African Journals Online (AJOL)

    ... phase transition took place but did not significantly alter the microstructure of the weldment. This study also supports the claims made by different investigators about the different heat treatments given to metals to determine a particular hardenability level. This heat treatment process is an indicator of phase change.

  6. Novelty processing and memory formation in Parkinson's disease.

    Science.gov (United States)

    Schomaker, J; Berendse, H W; Foncke, E M J; van der Werf, Y D; van den Heuvel, O A; Theeuwes, J; Meeter, M

    2014-09-01

    Parkinson's disease (PD) is characterized by a degeneration of nigrostriatal dopaminergic cells, resulting in dopamine depletion. This depletion is counteracted through dopamine replacement therapy (DRT). Dopamine has been suggested to affect novelty processing and memory, which suggests that these processes are also implicated in PD and that DRT could affect them. To investigate word learning and novelty processing in patients with PD as indexed by the P2 and P3 event-related potential components, and the role of DRT in these processes. 21 patients with PD and 21 matched healthy controls were included. Patients with PD were tested on and off DRT in two sessions in a counterbalanced design, and healthy controls were tested twice without intervention. Electroencephalogram (EEG) was measured while participants performed a word learning Von Restorff task. Healthy controls showed the typical Von Restorff effect, with better memory for words that were presented in novel fonts, than for words presented in standard font. Surprisingly, this effect was reversed in the patients with PD. In line with the behavioral findings, the P3 was larger for novel than for standard font words in healthy controls, but not in patients with PD. For both groups the P2 and P3 event-related components were larger for recalled versus forgotten words. DRT did not affect these processes. Learning of novel information is compromised in patients with PD. Likewise, the P2 and P3 components that predict successful memory encoding are reduced in PD patients. This was true both on and off DRT, suggesting that these findings reflect abnormalities in learning and memory in PD that are not resolved by dopaminergic medication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Bayesian image processing of data from fuzzy pattern sources

    International Nuclear Information System (INIS)

    Liang, Z.; Hart, H.

    1986-01-01

    In some radioisotopic organ image applications, a priori or supplementary source information may exist and can be characterized in terms of probability density functions P (phi) of the source elements {phi/sub j/} = phi (where phi/sub j/ (j = 1,2,..α) is the estimated average photon emission in voxel j per unit time at t = 0). For example, in cardiac imaging studies it is possible to evaluate the radioisotope concentration of the blood filling the cardiac chambers independently as a function of time by peripheral measurement. The blood concentration information in effect serves to limit amplitude uncertainty to the chamber boundary voxels and thus reduces the extent of amplitude ambiguities in the overall cardiac imaging reconstruction. The a priori or supplementary information may more generally be spatial, amplitude-dependent probability distributions P(phi), fuzzy patterns superimposed upon a background

  8. Transmission of data: Digital processing of isodose patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tsien, K C [Department of Radiology, Temple University School of Medicine and Hospital, Philadelphia, PA (United States)

    1966-06-15

    Communication technology has now reached a stage in which we can transmit almost any form of data from one place to another. While television is the best general form of transmission for visual data, the simplest and least expensive way is by coding the data into numerals. Transmission of data by numerical coding, however, requires decoding at the receiving end to restore it to the original form. The transmission of line curves is done most often by translating the curve into a series of points and then determining the co-ordinates of the I points for transmission. The decoding of these data is generally time-consuming if there is no automatic plotter available. A new method of digitizing line drawings has been developed for use in pattern recognition, which simplifies greatly both coding and decoding in the transmission of line curves. This system can be readily adopted for use with isodose curves.

  9. FORMATION OF SIX SIGMA INFRASTRUCTURE FOR THE CORONARY STENTING PROCESS

    Directory of Open Access Journals (Sweden)

    Mehmet Tolga Taner

    2013-10-01

    Full Text Available The purpose of this study is to show how a tertiary care center in Turkey operating mainly in cardiology initiated Six Sigma principles to reduce the number of complications occuring during coronary stent insertion process. A Six Sigma’s Define-Measure-Analyze-Improve-Control (DMAIC model for coronary stent insertion is suggested. Data were collected for 24-months. Twenty-two Critical-to-Quality (CTQ factors were identified for successful coronary stent insertion. The most frequent causes of complications in the process were found to be patients with previous bypass surgery or PCI, inexperience of staff members, highly damaged vessel structure, thin and/or long vessel diameter, inappropriate selection of stent type, inappropriate selection of balloon type and poor image quality.

  10. Process-induced formation of imidazoles in selected foods.

    Science.gov (United States)

    Mottier, Pascal; Mujahid, Claudia; Tarres, Adrienne; Bessaire, Thomas; Stadler, Richard H

    2017-08-01

    The presence of 4-methylimidazole (4-MEI), 2-methylimidazole (2-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in some foods may result from the usage of caramel colorants E150c and E150d as food additives. This study demonstrates that alkylimidazoles are also byproducts formed from natural constituents in foods during thermal processes. A range of heat-processed foods that are known not to contain caramel colorants were analyzed by isotope dilution LC-MS/MS to determine the contamination levels. Highest 4-MEI concentrations (up to 466µg/kg) were observed in roasted barley, roasted malt and cocoa powders, with the concomitant presence of 2-MEI and/or THI in some cases, albeit at significantly lower levels. Low amounts of 4-MEI (foods such as breakfast cereals and bread toasted to a brown color (medium toasted). The occurrence of 4-MEI in certain processed foods is therefore not a reliable indicator of the presence of the additives E150c or E150d. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Stimulation of Changes, Collective Commitment and The Patterns of Group Formation in Community Development in South Sulawesi

    Science.gov (United States)

    Saleh, Syafiuddin

    2018-05-01

    This study aims to examine the pattern of group formation, related to the stimulation of change through the empowerment of farmers and poor fishermen The pattern of group formation is the basis for sustainable development. The research method used is qualitative descriptive method and relevant research type such as case study and triangulasi. The results of the study showed that (1) stimulation of changes made through development programs or community empowerment in the areas studied both among farm households and poor fishermen households for some programs received positive response from farmers and fishermen. However, the collective commitment to the breeding is relatively weak, since the group formed in each program is not done through good planning and concepts. (2) there are two patterns of group formation that are natural and formed formations initiated by outsiders. Groups that are naturally formed are more institutionalized and have characteristics such as intense and relatively routine interaction, strong mutual trust, and have a common form or mechanism shared for common purposes. The group can form the basis for sustainable development in improving the welfare of the poor.

  12. In-Storage Embedded Accelerator for Sparse Pattern Processing

    Science.gov (United States)

    2016-09-13

    learning, and graph processing. [5][6][7]. A recent effort, the GraphBLAS [8], aims to standardize some of these computational kernels in order to...to perform analysis of enterprise and research problems in such environments. We are also currently developing GraphBLAS compliant operations in our

  13. Formalizing and appling compliance patterns for business process compliance

    NARCIS (Netherlands)

    Elgammal, A.; Turetken, O.; van den Heuvel, W.; Papazoglou, M.

    2016-01-01

    Today’s enterprises demand a high degree of compliance of business processes to meet diverse regulations and legislations. Several industrial studies have shown that compliance management is a daunting task, and organizations are still struggling and spending billions of dollars annually to ensure

  14. Formalizing and applying compliance patterns for business process compliance

    NARCIS (Netherlands)

    Elgammal, A.F.S.A.; Türetken, O.; van den Heuvel, W.J.A.M.; Papazoglou, M.

    Today’s enterprises demand a high degree of compliance of business processes to meet diverse regulations and legislations. Several industrial studies have shown that compliance management is a daunting task, and organizations are still struggling and spending billions of dollars annually to ensure

  15. Patterns to Enable Mass-Customized Business Process Monitoring

    NARCIS (Netherlands)

    Jochem Vonk; dr Marco Comuzzi; dr. Samuil Angelov

    2012-01-01

    Mass-customization challenges the one-size-fits-all assumption of mass production, allowing customers to specify the options that best fit their requirements when choosing a product or a service. In business process management, to achieve mass-customization, providers offer to their customers the

  16. Patterns to enable mass-customized business process monitoring

    NARCIS (Netherlands)

    Comuzzi, M.; Angelov, S.A.; Vonk, J.; Ralyté, J,; Franch, X.; Brinkkemper, S.; Wrycza, S.

    2012-01-01

    Mass-customization challenges the one-size-fits-all assumption of mass production, allowing customers to specify the options that best fit their requirements when choosing a product or a service. In business process management, to achieve mass-customization, providers offer to their customers the

  17. Secondary organic aerosol formation through fog processing of VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.

    2010-07-01

    Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene and xylenes (BTEX) have been determined in highly concentrated amounts (>1 ug/L) in intercepted clouds in northern Arizona (USA). These VOCs are found in concentrations much higher than predicted by partitioning alone. The reactivity of BTEX in the fog/cloud aqueous phase was investigated through laboratory studies. BTEX species showed fast degradation in the aqueous phase in the presence of peroxides and light. Observed half-lives ranged from three and six hours, substantially shorter than the respective gas phase half-lives (several days). The observed reaction rates were on the order of 1 ppb/min but decreased substantially with increasing concentrations of organic matter (TOC). The products of BTEX oxidation reactions were analyzed using HPLC-UV and LCMS. The first generation of products identified included phenol and cresols which correspond to the hydroxyl-addition reaction to benzene and toluene. Upon investigating of multi-generational products, smaller, less volatile species are predominant although a large variety of products is found. Most reaction products have substantially lower vapor pressure and will remain in the particle phase upon droplet evaporation. The SOA generation potential of cloud and fog processing of BTEX was evaluated using simple calculations and showed that in ideal situations these reactions could add up to 9% of the ambient aerosol mass. In more conservative scenarios, the contribution of the processing of BTEX was around 1% of ambient aerosol concentrations. Overall, cloud processing of VOC has the potential to contribute to the atmospheric aerosol mass. However, the contribution will depend upon many factors such as the irradiation, organic matter content in the droplets and droplet lifetime.

  18. Liquid Argon TPC Signal Formation, Signal Processing and Hit Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Baller, Bruce [Fermilab

    2017-03-11

    This document describes the early stage of the reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions requires knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise.

  19. Land processes lead to surprising patterns in atmospheric residence time

    Science.gov (United States)

    van der Ent, R.; Tuinenburg, O.

    2017-12-01

    Our research using atmospheric moisture tracking methods shows that the global average atmospheric residence time of evaporation is 8-10 days. This residence time appears to be Gamma distributed with a higher probability of shorter than average residence times and a long tail. As a consequence the median of this residence time is around 5 days. In some places in the world the first few hours/days after evaporation there seems to be a little chance for a moisture particle to precipitate again, which is reflected by a Gamma distribution having a shape parameter below 1. In this study we present global maps of this parameter using different datasets (GLDAS and ERA-Interim). The shape parameter is as such also a measure for the land-atmospheric coupling strength along the path of the atmospheric water particle. We also find that different evaporation components: canopy interception, soil evaporation and transpiration appear to have different residence time distributions. We find a daily cycle in the residence time distribution over land, which is not present over the oceans. In this paper we will show which of the evaporation components is mainly responsible for this daily pattern and thus exhibits the largest daily cycle of land-atmosphere coupling strength.

  20. Network formation determined by the diffusion process of random walkers

    International Nuclear Information System (INIS)

    Ikeda, Nobutoshi

    2008-01-01

    We studied the diffusion process of random walkers in networks formed by their traces. This model considers the rise and fall of links determined by the frequency of transports of random walkers. In order to examine the relation between the formed network and the diffusion process, a situation in which multiple random walkers start from the same vertex is investigated. The difference in diffusion rate of random walkers according to the difference in dimension of the initial lattice is very important for determining the time evolution of the networks. For example, complete subgraphs can be formed on a one-dimensional lattice while a graph with a power-law vertex degree distribution is formed on a two-dimensional lattice. We derived some formulae for predicting network changes for the 1D case, such as the time evolution of the size of nearly complete subgraphs and conditions for their collapse. The networks formed on the 2D lattice are characterized by the existence of clusters of highly connected vertices and their life time. As the life time of such clusters tends to be small, the exponent of the power-law distribution changes from γ ≅ 1-2 to γ ≅ 3

  1. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process

    KAUST Repository

    Park, J. B.

    2012-01-01

    A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes. The short pulse nature of a femtosecond laser on a graphene/copper sheet enables fabrication of high-resolution graphene patterns. Thanks to the scale up, fast, direct writing, multi-scale with high resolution, and reliable process characteristics, it can be an alternative pathway to the multi-step photolithography methods for printing arbitrary graphene patterns on desired substrates. We also demonstrate transparent strain devices without expensive photomasks and multi-step patterning process. © 2012 American Institute of Physics.

  2. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma

    OpenAIRE

    Hammel, J. U.; Herzen, J.; Beckmann, F.; Nickel, M.

    2009-01-01

    Abstract Background Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation ...

  3. Attention Matters: Pitch vs. Pattern Processing in Adolescence

    OpenAIRE

    Sussman, Elyse S.

    2013-01-01

    From the moment we wake up, we are flooded with more sensory inputs than we can possibly process. Selective attention mechanisms serve to limit the sensory onslaught, while facilitating the ability to perform everyday tasks. However, not much is known about the typical development of selective attention mechanisms during childhood even though impairments of attention are commonly noted in neurodevelopmental disorders. The current study focuses on a transitional time in child development, adol...

  4. Processes of hypernuclei formation in relativistic ion collisions

    Directory of Open Access Journals (Sweden)

    Botvina Alexander

    2018-01-01

    Full Text Available The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like, and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt and NICA (Dubna.

  5. Processes of hypernuclei formation in relativistic ion collisions

    Science.gov (United States)

    Botvina, Alexander; Bleicher, Marcus

    2018-02-01

    The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like), and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt) and NICA (Dubna).

  6. Liquid argon TPC signal formation, signal processing and reconstruction techniques

    Science.gov (United States)

    Baller, B.

    2017-07-01

    This document describes a reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions benefits from the knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise. A unique clustering algorithm reconstructs line-like trajectories and vertices in two dimensions which are then matched to create of 3D objects. These techniques and algorithms are available to all experiments that use the LArSoft suite of software.

  7. Multifunctional surfaces with biomimetic nanofibres and drug-eluting micro-patterns for infection control and bone tissue formation

    Directory of Open Access Journals (Sweden)

    XN Chen

    2012-09-01

    Full Text Available For long-term orthopaedic implants, the creation of a surface that is repulsive to bacteria while adhesive to tissue cells represents a promising strategy to control infection. To obtain such multifunctional surfaces, two possible approaches were explored to incorporate a model antibiotic, rifampicin (Rf, into the osteogenic polycaprolactone (PCL/chitosan (CHS biomimetic nanofibre meshes by (1 blending Rf into the electrospinning solutions and then electrospinning into nanofibres (i.e., Rf-incorporating fibres, or (2 depositing Rf-containing poly(D,L-lactic-co-glycolic acid (PLGA micro-patterns onto the PCL/chitosan nanofibre meshes via ink-jet printing (i.e., Rf-eluting micro-pattern/fibre. Rapid release of Rf from both meshes was measured even though a relatively slower release rate was obtained from the Rf-eluting micro-pattern ones. Antibacterial assay with Staphylococcus epidermidis showed that both mesh surfaces could effectively kill bacteria and prevent biofilm formation. However, only Rf-eluting micro-pattern meshes favoured the attachment, spreading and metabolic activity of preosteoblasts in the cell culture study. Furthermore, the Rf-eluting micro-pattern meshes could better support the osteogenic differentiation of preosteoblasts by up-regulating the gene expression of bone markers (type I collagen and alkaline phosphatase. Clearly, compared to Rf-incorporating nanofibre meshes, Rf-eluting micro-patterns could effectively prevent biofilm formation without sacrificing the osteogenic properties of PCL/chitosan nanofibre surfaces. This finding provides an innovative avenue to design multifunctional surfaces for enhancing bone tissue formation while controlling infection.

  8. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  9. Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers

    KAUST Repository

    El Labban, Abdulrahman

    2014-11-26

    (Figure Presented) Alkyl substituents appended to the π-conjugated main chain account for the solution-processability and film-forming properties of most π-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-b′]dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the π-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., "face-on" vs "edge-on"). Oriented crystallites, specifically crystallites that are well-ordered in the π-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells.

  10. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics

    Science.gov (United States)

    Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-02-01

    We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

  11. An experimental study on atomizing formation process of diesel spray

    International Nuclear Information System (INIS)

    Kim, Ki Bong

    2000-02-01

    In this study, the experiment has, been conducted to investigate the spray characteristics under the parameter of an ambient pressure with a single hole nozzle having aspect ratio(L/D) of 5 and diameter of 0.45mm. Under the condition of the injection pressure of 14Mpa, the initial disintegrating process of a diesel spray is investigated and analysized according to change of the ambient pressures, 0.1, 1, 2 and 3Mpa. The double flash method has been employed to visualize the process of the diesel sprays. The results obtained in this study are as follows: 1) After spray starts, the spray is shown as non-disturbance liquid column within about 1∼2mm from the nozzle tip, whose diameter is similar to that of a nozzle. For the same injection pressure, the increase of the ambient pressure makes the length of the non-disturbance liquid column become short. 2) Due to the surface wave, ligaments of the shape thread appear at the boundary of liquid column right after spray. The more developed wave together the progress of spray transforms ligaments into droplets that have generally the uniformed size. 3) In case spraying into chambers having different ambient pressures, 1, 2, and 3Mpa, the spray tip velocities reach up to 1.5, 1.2, and 0.6ms, respectively, and decrease with lapse of time. The spray angle keeps increasing for 0.6, 1.2, and 1.4ms after spray under the various ambient pressures, 3, 2, and 1Mpa, respectively, and begins to decrease and maintains the constant value. Therefore, the transition points appear near the point where the velocity decreases and the spray angle increases, simultaneously. The higher ambient pressure leads to fast appearance of transition under the same spray pressure. 4) The disintegrating mechanism of the liquid spray is two combined effects: a) friction forces between the surface waves generated at the surface of the liquid column and the ambient gas, b) the collisions of liquid droplets and ligaments by spray were overtaking

  12. Evolutionary patterns and processes in the radiation of phyllostomid bats

    Directory of Open Access Journals (Sweden)

    Monteiro Leandro R

    2011-05-01

    Full Text Available Abstract Background The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed. We used a combination of morphometric and comparative methods to test hypotheses regarding the evolutionary processes behind the diversification of phenotype (mandible shape and size and diet during the phyllostomid radiation. Results The different phyllostomid lineages radiate in mandible shape space, with each feeding specialisation evolving towards different axes. Size and shape evolve quite independently, as the main directions of shape variation are associated with mandible elongation (nectarivores or the relative size of tooth rows and mandibular processes (sanguivores and frugivores, which are not associated with size changes in the mandible. The early period of phyllostomid diversification is marked by a burst of shape, size, and diet disparity (before 20 Mya, larger than expected by neutral evolution models, settling later to a period of relative phenotypic and ecological stasis. The best fitting evolutionary model for both mandible shape and size divergence was an Ornstein-Uhlenbeck process with five adaptive peaks (insectivory, carnivory, sanguivory, nectarivory and frugivory. Conclusions The radiation of phyllostomid bats presented adaptive and non-adaptive components nested together through the time frame of the family's evolution. The first 10 My of the radiation were marked by strong phenotypic and ecological divergence among ancestors of modern lineages, whereas the

  13. Evolutionary patterns and processes in the radiation of phyllostomid bats

    Science.gov (United States)

    2011-01-01

    Background The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed. We used a combination of morphometric and comparative methods to test hypotheses regarding the evolutionary processes behind the diversification of phenotype (mandible shape and size) and diet during the phyllostomid radiation. Results The different phyllostomid lineages radiate in mandible shape space, with each feeding specialisation evolving towards different axes. Size and shape evolve quite independently, as the main directions of shape variation are associated with mandible elongation (nectarivores) or the relative size of tooth rows and mandibular processes (sanguivores and frugivores), which are not associated with size changes in the mandible. The early period of phyllostomid diversification is marked by a burst of shape, size, and diet disparity (before 20 Mya), larger than expected by neutral evolution models, settling later to a period of relative phenotypic and ecological stasis. The best fitting evolutionary model for both mandible shape and size divergence was an Ornstein-Uhlenbeck process with five adaptive peaks (insectivory, carnivory, sanguivory, nectarivory and frugivory). Conclusions The radiation of phyllostomid bats presented adaptive and non-adaptive components nested together through the time frame of the family's evolution. The first 10 My of the radiation were marked by strong phenotypic and ecological divergence among ancestors of modern lineages, whereas the remaining 20 My were

  14. Spillover processes in the development of a sustainable consumption pattern

    DEFF Research Database (Denmark)

    Thøgersen, John

    1998-01-01

    Hypotheses about possible mechanisms for spillover processes between pro-environmental behaviours are developed and tested by means of structural equation modelling. Data were collected by means of telephone interviews with a representative sample Danish adults. Personal norms concerning recycling...... and packaging waste prevention are found to be rooted in the same more general, internalised values. Further, a predicted positive spillover effect from recycling to packaging waste prevention is confirmed. However, whereas a positive spillover effect from re-cycling to personal norms concerning packaging waste...

  15. Spillover processes in the development of a sustainable consumption pattern

    DEFF Research Database (Denmark)

    Thøgersen, John

    1999-01-01

    recycling and packaging waste prevention are found to be rooted in the same more general, internalised values. Further, a predicted positive spillover effect from recycling to packaging waste prevention is confirmed. However, whereas a positive spillover effect from re-cycling to personal norms concerning......Hypotheses about possible mechanisms for spillover processes between pro-environmental behaviours are developed and tested by means of structural equation modelling. Data were collected by means of telephone interviews with a representative sample of Danish adults. Personal norms concerning...

  16. Implementing SCRUM using Business Process Management and Pattern Analysis Methodologies

    OpenAIRE

    Ron S. Kenett

    2013-01-01

    The National Institute of Standards and Technology in the US has estimated that software defects and problems annually cost 59.5 billions the U.S. economy (http://www.abeacha.com/NIST_press_release_bugs_cost.htm). The study is only one of many that demonstrate the need for significant improvements in software development processes and practices. US Federal agencies, that depend on IT to support their missions and spent at least $76 billion on IT in fiscal year 2011, experienced numerous examp...

  17. Enhancing and accelarating flavour formation by salt-tolerant yeasts in Japanese soy-sauce processes

    NARCIS (Netherlands)

    Sluis, van der C.; Tramper, J.; Wijffels, R.H.

    2001-01-01

    In soy-sauce processes salt-tolerant yeasts are very important for the flavour formation. This flavour formation is, however, slow and poorly understood. In the last decades, a concerted research effort has increased the understanding and resulted in the derivation of mutants with an enhanced

  18. Process Approach to Formation of the Strategy of Innovation Development of Enterprises

    Directory of Open Access Journals (Sweden)

    Yukhymenko Vita V.

    2013-12-01

    Full Text Available The article considers the process of formation of the strategy of innovation development on the basis of the process approach. The author studies and identifies the most significant cause-effect interrelations between the factors that influence efficiency of the process of formation of the strategy of innovation development of enterprises and their consequences. The article offers a process approach to building the K. Ishikawa diagram based on empirical assessment of management of business processes at railway engineering enterprises. The author’s approach would help solving multiple problems of railway engineering and also could be used in other sectors of economy.

  19. [The effect of encoding on false memory: examination on levels of processing and list presentation format].

    Science.gov (United States)

    Hamajima, Hideki

    2004-04-01

    Using the Deese/Roediger-McDermott paradigm, the effects of lists presentation format (blocked/random) and levels of processing of critical nonpresented lures were examined. A levels-of-processing effect in a blocked presentation order was not observed for lures. Rates of false recognition and remember judgments for lures in a shallow level of processing were significantly lower than those in a deep level of processing when items from various themes were inter-mixed instead of blocked. Results showed an interaction between levels of processing and list presentation format. It is thus concluded that encoding of each word and whole list should be both considered in understanding false memory.

  20. Nanoscale E-Cadherin ligand patterns show threshold size for cellular adhesion and adherence junction formation

    DEFF Research Database (Denmark)

    Kristensen, Stine H; Pedersen, Gitte Albinus; Nejsum, Lene Niemann

    2012-01-01

    The role of ligand spatial distribution on the formation of cadherin mediated cell-cell contacts is studied utilizing nanopatterns of E-cadherin ligands. Protein patches ranging in size from 100 nm to 800 nm prepared by colloidal lithography critically influence adhesion, spreading and formation ...

  1. Pattern formation in urbanism : A critical reflection on urban morphology, planning and design

    NARCIS (Netherlands)

    Çaliskan, O.

    2013-01-01

    This thesis is all about urban patterns, what we see through the windows of the plane with an admiration of their relief-like scenery covering the land surface. In a sense, the spatial pattern within our cities is the biggest collectively produced artifact of human beings. It is both the originator

  2. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    International Nuclear Information System (INIS)

    Kleyböcker, A.; Liebrich, M.; Kasina, M.; Kraume, M.; Wittmaier, M.; Würdemann, H.

    2012-01-01

    Highlights: ► Mechanism of process recovery with calcium oxide. ► Formation of insoluble calcium salts with long chain fatty acids and phosphate. ► Adsorption of VFAs by the precipitates resulting in the formation of aggregates. ► Acid uptake and phosphate release by the phosphate-accumulating organisms. ► Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance

  3. Pattern formation under residual compressive stress in free sustained aluminum films

    International Nuclear Information System (INIS)

    Yu Senjiang; Ye Quanlin; Zhang Yongju; Cai Pinggen; Xu Xiaojun; Chen Jiangxing; Ye Gaoxiang

    2005-01-01

    A nearly free sustained aluminum (Al) film system has been successfully fabricated by vapor phase deposition of Al atoms on silicone oil surfaces and an unusual type of ordered patterns at the micrometer scale has been systematically studied. The ordered patterns are composed of a large number of parallel key-shaped domains and possess a sandwiched structure. The nucleation and growth of the patterns are very susceptible to the growth period, deposition rate, nominal film thickness and location of the film. The experiment shows that the ordered patterns are induced by the residual compressive stress in the film owing to contraction of the liquid surface after deposition. The appearance of these stress relief patterns generally represents the stress distribution in the nearly free sustained Al films, which mainly results from the characteristic boundary condition and the nearly zero adhesion of the solid-liquid interface

  4. Finite element simulation of dynamic wetting flows as an interface formation process

    KAUST Repository

    Sprittles, J.E.; Shikhmurzaev, Y.D.

    2013-01-01

    A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem

  5. [The ethic dimension of daily tasks in the formation process of nurses].

    Science.gov (United States)

    Fernandes, Josicélia Dumêt; Rosa, Darci de Oliveira Santa; Vieira, Therezinha Teixeira; Sadigursky, Dora

    2008-06-01

    This theoretical article had as its object of study the ethic dimension of the formation process of nurses taking in consideration the National Curricular Directives for Nursing Courses. It was based on the presuppositions of ethics and their relationship with the implementation of changes in the formation process of nurses, using as reference elements of ethical behavior in the formation and attempting to bring the reflection to current times and thus contribute to define a direction to Nursing education. It was concluded that the ethical dimension in the formation of nurses involves values that permeate the relations between the subjects of this process and nature itself. The study points out the need to transform the practices of students and teachers and change the current curriculum framework, highlighting elements that indicate that the concern with ethics when developing the curriculum framework is not limited to how a discipline is taught, but pass through as practices that take place in the education process.

  6. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement

  7. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Katayeva

    2012-12-01

    Full Text Available The complex formation process of hydroxypropylcellulose (HPC with polymethacrylic acid (PMA have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  8. Investigation of complex formation processes of hydroxypropylmethylcellulose and polymethacrylic acid in aqueous solutions

    OpenAIRE

    M. Katayeva; R. Mangazbayeva; R. Abdykalykova

    2012-01-01

    The complex formation process of hydroxypropylcellulose (HPC) with polymethacrylic acid (PMA) have been studied using methods of turbidimetric and viscosimetric titration. Position of maximum depending on polymer concentration and molecular mass of polysaccharide have different values.

  9. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs

    OpenAIRE

    Choi, Kyung-Suk; Harfe, Brian D.

    2011-01-01

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Remo...

  10. The actor set-up of TV advertising. A new process for hybrid formats

    OpenAIRE

    von Rimscha, M Bjørn; Rademacher, Patrick

    2008-01-01

    The paper introduces a basic description of the advertising process in TV advertising and discusses how this process might be altered when 30 second spots are replaced by hybrid advertising formats such as sponsoring and placements. For each actor in the process the potential benefit of hybrid advertising is identified and the respective interest in changing the process is deduced. A qualitative interview study with representatives from each actor in the process is used to illustrate that con...

  11. Patterns and processes in the California Current System

    Science.gov (United States)

    Checkley, David M., Jr.; Barth, John A.

    2009-12-01

    The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (∼50°N) to off Baja California, Mexico (∼15-25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.

  12. Instructional Style, Cognitive Processing, and Achievement Behavior Patterns of Schoolchildren

    Directory of Open Access Journals (Sweden)

    Atasi Mohanty

    2015-03-01

    Full Text Available The objective of the study was to examine the performance characteristics and differences between English and Oriya medium school children on various cognitive processing, reading, academic achievement, and teacher perception measures. The sample consists of 243 schoolchildren, 120 from Grade IV and 123 from Grade VII from three different schools of Cuttack city in Orissa, India. The children were individually administered the Figure-Copying, Raven’s Progressive Matrices, Matching Familiar Figure Task, Serial Recall, Digit-Span, Wechsler’s Intelligence Scale for Children, Block Design, Cloze Reading Comprehension, and Oral Reading tasks. Classroom Achievement scores on different subjects and the teachers’ ratings about their students were also taken. Results revealed that children reading in English medium schools outperformed their Oriya medium counterparts in some cognitive measures such as Figure Copying, MFFT, RPM, and Digit-Span tasks irrespective of levels. However, the children studying in Oriya medium schools scored higher in Reading Comprehension task and commit less error compared with their English medium counterparts. However, in case of academic achievement measures at primary level, the Oriya medium children performed better in social science, whereas the English medium students excelled in first language and mathematics. The teachers of Oriya medium schools also rated their children better in general conduct, motivation, and effort in schoolwork, whereas, at the secondary level, there was no difference between these two groups in academic achievement or teacher perception measures.

  13. A minimally processed dietary pattern is associated with lower odds of metabolic syndrome among Lebanese adults.

    Science.gov (United States)

    Nasreddine, Lara; Tamim, Hani; Itani, Leila; Nasrallah, Mona P; Isma'eel, Hussain; Nakhoul, Nancy F; Abou-Rizk, Joana; Naja, Farah

    2018-01-01

    To (i) estimate the consumption of minimally processed, processed and ultra-processed foods in a sample of Lebanese adults; (ii) explore patterns of intakes of these food groups; and (iii) investigate the association of the derived patterns with cardiometabolic risk. Cross-sectional survey. Data collection included dietary assessment using an FFQ and biochemical, anthropometric and blood pressure measurements. Food items were categorized into twenty-five groups based on the NOVA food classification. The contribution of each food group to total energy intake (TEI) was estimated. Patterns of intakes of these food groups were examined using exploratory factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of derived patterns with cardiometabolic risk factors. Greater Beirut area, Lebanon. Adults ≥18 years (n 302) with no prior history of chronic diseases. Of TEI, 36·53 and 27·10 % were contributed by ultra-processed and minimally processed foods, respectively. Two dietary patterns were identified: the 'ultra-processed' and the 'minimally processed/processed'. The 'ultra-processed' consisted mainly of fast foods, snacks, meat, nuts, sweets and liquor, while the 'minimally processed/processed' consisted mostly of fruits, vegetables, legumes, breads, cheeses, sugar and fats. Participants in the highest quartile of the 'minimally processed/processed' pattern had significantly lower odds for metabolic syndrome (OR=0·18, 95 % CI 0·04, 0·77), hyperglycaemia (OR=0·25, 95 % CI 0·07, 0·98) and low HDL cholesterol (OR=0·17, 95 % CI 0·05, 0·60). The study findings may be used for the development of evidence-based interventions aimed at encouraging the consumption of minimally processed foods.

  14. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-06-01

    Full Text Available The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes, and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays.

  15. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Science.gov (United States)

    Ji, Ran

    2011-01-01

    Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445

  16. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Epitaxial Islands on Crystalline Conducting Substrates

    Science.gov (United States)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).

  17. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  18. Patterning of gold nano-octahedra using electron irradiation combined with thermal treatment and post-cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Nam; Kum, Jong Min [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering (Korea, Republic of); Lee, Hyeok Moo [Korea Atomic Energy Research Institute (KAERI), Research Division for Industry and Environment (Korea, Republic of); Cho, Sung Oh, E-mail: socho@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering (Korea, Republic of)

    2012-03-15

    A novel approach to pattern nanocrystalline gold (Au) octahedra is presented based on electron irradiation combined with thermal treatment and post-cleaning process using HAuCl{sub 4}-loaded poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymer (BCP) as a precursor material. The BCP tends to cross-link under electron irradiation, and thus a patterned film can be prepared by selectively irradiating an electron beam onto a precursor film using a shadow mask. A post-thermal treatment leads to the formation of crystalline Au nano-octahedra inside the patterned film with a help of the BCP acting as a capping agent. Subsequently, the BCP can be removed by O{sub 2} plasma etching combined with oxidative degradation, with the Au nanoparticles remaining. As a result, a patterned film consisting of high-purity nanocrystalline Au octahedra is fabricated. The sizes of the Au octahedral nanoparticles can be readily controlled from 49 to 101 nm by changing the thickness of the precursor film. The patterned Au nano-octahedra films exhibit excellent surface-enhanced Raman scattering behavior with the maximum enhancement factor of {approx}10{sup 6}.

  19. Various processes occurring in strong interactions between heavy ions: Compound nucleus formation, incomplete fusion, and quasifission

    International Nuclear Information System (INIS)

    Lefort, M.

    1975-01-01

    This paper deals with the problem of various deep processes occurring when two complex nuclei enter in collision. It is suggested that very deep inelastic processes may lead to either a compound nucleus or a composite system which shortly decays into two fission fragments (quasifission process). Particularly for heavy projectiles and targets, the predominant Coulomb potential inhibits the compound nucleus formation for low l waves. Then a critical angular momentum can be defined as the limit below which both processes (quasifission and compound nucleus formation) occur. For the heaviest nuclei, nearly all l waves below l) contribute to the quasifission phenomenon

  20. Mask patterning process using the negative tone chemically amplified resist TOK OEBR-CAN024

    Science.gov (United States)

    Irmscher, Mathias; Beyer, Dirk; Butschke, Joerg; Hudek, Peter; Koepernik, Corinna; Plumhoff, Jason; Rausa, Emmanuel; Sato, Mitsuru; Voehringer, Peter

    2004-08-01

    Optimized process parameters using the TOK OEBR-CAN024 resist for high chrome load patterning have been determined. A tight linearity tolerance for opaque and clear features, independent on the local pattern density, was the goal of our process integration work. For this purpose we evaluated a new correction method taking into account electron scattering and process influences. The method is based on matching of measured pattern geometry by iterative back-simulation using multiple Gauss and/or exponential functions. The obtained control function acts as input for the proximity correction software PROXECCO. Approaches with different pattern oversize and two Cr thicknesses were accomplished and the results have been reported. Isolated opaque and clear lines could be realized in a very tight linearity range. The increasing line width of small dense lines, induced by the etching process, could be corrected only partially.

  1. Directed formation of micro- and nanoscale patterns of functional light-harvesting LH2 complexes.

    Science.gov (United States)

    Reynolds, Nicholas P; Janusz, Stefan; Escalante-Marun, Maryana; Timney, John; Ducker, Robert E; Olsen, John D; Otto, Cees; Subramaniam, Vinod; Leggett, Graham J; Hunter, C Neil

    2007-11-28

    The precision placement of the desired protein components on a suitable substrate is an essential prelude to any hybrid "biochip" device, but a second and equally important condition must also be met: the retention of full biological activity. Here we demonstrate the selective binding of an optically active membrane protein, the light-harvesting LH2 complex from Rhodobacter sphaeroides, to patterned self-assembled monolayers at the micron scale and the fabrication of nanometer-scale patterns of these molecules using near-field photolithographic methods. In contrast to plasma proteins, which are reversibly adsorbed on many surfaces, the LH2 complex is readily patterned simply by spatial control of surface polarity. Near-field photolithography has yielded rows of light-harvesting complexes only 98 nm wide. Retention of the native optical properties of patterned LH2 molecules was demonstrated using in situ fluorescence emission spectroscopy.

  2. Module-based complexity formation: periodic patterning in feathers and hairs.

    Science.gov (United States)

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2013-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.

  3. Spatial statistics of pitting corrosion patterning: Quadrat counts and the non-homogeneous Poisson process

    International Nuclear Information System (INIS)

    Lopez de la Cruz, J.; Gutierrez, M.A.

    2008-01-01

    This paper presents a stochastic analysis of spatial point patterns as effect of localized pitting corrosion. The Quadrat Counts method is studied with two empirical pit patterns. The results are dependent on the quadrat size and bias is introduced when empty quadrats are accounted for the analysis. The spatially inhomogeneous Poisson process is used to improve the performance of the Quadrat Counts method. The latter combines Quadrat Counts with distance-based statistics in the analysis of pit patterns. The Inter-Event and the Nearest-Neighbour statistics are here implemented in order to compare their results. Further, the treatment of patterns in irregular domains is discussed

  4. Modelling spatiotemporal distribution patterns of earthworms in order to indicate hydrological soil processes

    Science.gov (United States)

    Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris

    2010-05-01

    Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant

  5. Spilitization processes in the Proterozoic Ongeluk Andesite Formation in Griqualand West, South Africa

    International Nuclear Information System (INIS)

    Schuette, S.S.; Cornell, D.H.

    1990-01-01

    The Ongeluk Formation is a thick succession of lavas which crops out over a large portion of the region. The formation thickness is poorly constrained and considered to be equivalent to the Hekpoort Basalts in the Transvaal, but large facies changes in the sedimentary formations obscure the correlation. At least two alteration events can be recognized in the Ongeluk Lava: a spilitization process, and a locally restricted hydrothermal event and oxidation process which obscures the spilitization process. The Ongeluk lavas probably covered a much greater area of Griqualand West than at present and could have provided a significant source of manganese, deposited in the Kalahari Manganese Field. A connection between the volcanic origin and alteration of the Ongeluk Formation and the Kalahari Manganese-type mineralization is demonstrated by Gresens' equations. 2 figs., 1 tab

  6. Cluster ion formation during sputtering processes: a complementary investigation by ToF-SIMS and plasma ion mass spectrometry

    International Nuclear Information System (INIS)

    Welzel, T; Ellmer, K; Mändl, S

    2014-01-01

    Plasma ion mass spectrometry using a plasma process monitor (PPM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been complementarily employed to investigate the sputtering and ion formation processes of Al-doped zinc oxide. By comparing the mass spectra, insights on ion formation and relative cross-sections have been obtained: positive ions as measured during magnetron sputtering by PPM are originating from the plasma while those in SIMS start at the surface leading to large differences in the mass spectra. In contrast, negative ions originating at the surface will be accelerated through the plasma sheath. They arrive at the PPM after traversing the plasma nearly collisionless as seen from the rather similar spectra. Hence, it is possible to combine the high mass resolution of ToF-SIMS to obtain insight for separating cluster ions, e.g. Zn x and ZnO y , and the energy resolution of PPM to find fragmentation patterns for negative ions. While the ion formation processes during both experiments can be assumed to be similar, differences may arise due to the lower volume probed by SIMS. In the latter case, there is a chance of small target inhomogeneities being able to be enhanced and lower surface temperatures leading to less outgassing and, thus, retention of volatile compounds. (paper)

  7. Analysis of the packet formation process in packet-switched networks

    Science.gov (United States)

    Meditch, J. S.

    Two new queueing system models for the packet formation process in packet-switched telecommunication networks are developed, and their applications in process stability, performance analysis, and optimization studies are illustrated. The first, an M/M/1 queueing system characterization of the process, is a highly aggregated model which is useful for preliminary studies. The second, a marked extension of an earlier M/G/1 model, permits one to investigate stability, performance characteristics, and design of the packet formation process in terms of the details of processor architecture, and hardware and software implementations with processor structure and as many parameters as desired as variables. The two new models together with the earlier M/G/1 characterization span the spectrum of modeling complexity for the packet formation process from basic to advanced.

  8. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.

    Science.gov (United States)

    Beil, Michael; Lück, Sebastian; Fleischer, Frank; Portet, Stéphanie; Arendt, Wolfgang; Schmidt, Volker

    2009-02-21

    Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable source of information since they can describe known mechanisms of network evolution while reflecting the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble keratin filament precursors fueling various network formation processes. Instants of network formation events are determined by a stochastic point process on the time axis. A probability distribution controlled by model parameters exercises control over the frequency of different mechanisms of network formation to be triggered. Locations of the network formation events are assigned dependent on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach, simulation studies revealed that the architecture of keratin networks mostly depends on the balance between filament elongation and branching processes. The spatial distribution of network mesh size, which strongly influences the mechanical characteristics of filament networks, is modulated by lateral annealing processes. This mechanism which is a specific feature of intermediate filament networks appears to be a major and fast regulator of cell mechanics.

  9. Separating macroecological pattern and process: comparing ecological, economic, and geological systems.

    Directory of Open Access Journals (Sweden)

    Benjamin Blonder

    Full Text Available Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form ('first-order effects', these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns ('second-order effects'. These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.

  10. Separating macroecological pattern and process: comparing ecological, economic, and geological systems.

    Science.gov (United States)

    Blonder, Benjamin; Sloat, Lindsey; Enquist, Brian J; McGill, Brian

    2014-01-01

    Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form ('first-order effects'), these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns ('second-order effects'). These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.

  11. Process comparison for fracture-induced formation of surface structures on polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan (China); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-01-01

    Using three different splitting approaches such as point-load splitting, tension-splitting and peeling–splitting, different surface ripples were produced on poly(methyl methacrylate) (PMMA)-based polymer films. Independent of the splitting approaches, the spatial wavelength of the surface structures is a linear function of the film thickness with the approximately same differential ratio of the spatial wavelength to the film thickness. The apparent surface residual stress was calculated from the thickness dependence of the spatial frequency, and the magnitude of the apparent surface stress increased with the increase of the film thickness. After exposing the aged PMMA-based photoresist at liquid state to gamma-irradiation, the effects of aging and the gamma-irradiation were investigated on the splitting-induced formation of surface structures. For the peeling–splitting process, the differential ratio of the spatial wavelength to the film thickness for the aged samples is larger than that for non-aged samples. The point-load splitting could not produce any surface pattern on the gamma-irradiated films. None of the splitting approaches could form surface structures for polymer films exposed to irradiation of high dose. Both the spatial wavelength and the apparent surface stress increased with the film thickness for the irradiated polymer films. - Highlights: • Using splitting processes, surface ripples were formed on polymer films. • The surface ripples were induced by compressively apparent surface stress. • The spatial wavelength of the ripples is a linear function of the film thickness. • The spatial wavelength of the ripples is affected by gamma-ray irradiation. • The spatial wavelength of the ripples is affected by aging.

  12. Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format.

    Science.gov (United States)

    Ismail, Mahmoud; Philbin, James

    2015-04-01

    The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies' metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata.

  13. Evidence of different underlying processes in pattern recall and decision-making.

    Science.gov (United States)

    Gorman, Adam D; Abernethy, Bruce; Farrow, Damian

    2015-01-01

    The visual search characteristics of expert and novice basketball players were recorded during pattern recall and decision-making tasks to determine whether the two tasks shared common visual-perceptual processing strategies. The order in which participants entered the pattern elements in the recall task was also analysed to further examine the nature of the visual-perceptual strategies and the relative emphasis placed upon particular pattern features. The experts demonstrated superior performance across the recall and decision-making tasks [see also Gorman, A. D., Abernethy, B., & Farrow, D. (2012). Classical pattern recall tests and the prospective nature of expert performance. The Quarterly Journal of Experimental Psychology, 65, 1151-1160; Gorman, A. D., Abernethy, B., & Farrow, D. (2013a). Is the relationship between pattern recall and decision-making influenced by anticipatory recall? The Quarterly Journal of Experimental Psychology, 66, 2219-2236)] but a number of significant differences in the visual search data highlighted disparities in the processing strategies, suggesting that recall skill may utilize different underlying visual-perceptual processes than those required for accurate decision-making performance in the natural setting. Performance on the recall task was characterized by a proximal-to-distal order of entry of the pattern elements with participants tending to enter the players located closest to the ball carrier earlier than those located more distal to the ball carrier. The results provide further evidence of the underlying perceptual processes employed by experts when extracting visual information from complex and dynamic patterns.

  14. Formation of Globular Clusters with Internal Abundance Spreads in r -Process Elements: Strong Evidence for Prolonged Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan)

    2017-07-20

    Several globular clusters (GCs) in the Galaxy are observed to show internal abundance spreads in r -process elements (e.g., Eu). We propose a new scenario that explains the origin of these GCs (e.g., M5 and M15). In this scenario, stars with no/little abundance variations first form from a massive molecular cloud (MC). After all of the remaining gas of the MC is expelled by numerous supernovae, gas ejected from asymptotic giant branch stars can be accumulated in the central region of the GC to form a high-density intracluster medium (ICM). Merging of neutron stars then occurs to eject r -process elements, which can be efficiently trapped in and subsequently mixed with the ICM. New stars formed from the ICM can have r -process abundances that are quite different from those of earlier generations of stars within the GC. This scenario can explain both (i) why r -process elements can be trapped within GCs and (ii) why GCs with internal abundance spreads in r -process elements do not show [Fe/H] spreads. Our model shows (i) that a large fraction of Eu-rich stars can be seen in Na-enhanced stellar populations of GCs, as observed in M15, and (ii) why most of the Galactic GCs do not exhibit such internal abundance spreads. Our model demonstrates that the observed internal spreads of r -process elements in GCs provide strong evidence for prolonged star formation (∼10{sup 8} yr).

  15. Experimental study on flame pattern formation and combustion completeness in a radial microchannel

    Science.gov (United States)

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2007-12-01

    Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.

  16. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Homoepitaxial Islands on Crystalline Conducting Substrates

    Science.gov (United States)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    2017-07-01

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.

  17. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.

    Science.gov (United States)

    Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni

    2015-01-01

    This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.

  18. First union formation in Estonia, Latvia and Lithuania: patterns across countries and gender

    Directory of Open Access Journals (Sweden)

    Luule Sakkeus

    2007-11-01

    Full Text Available This article examines the transformation of first union formation in the Baltic countries between the late 1960s and early 1990s, in the context of societal and family-level gender relations. The analyses employ microdata from the European Family and Fertility Surveys program. Our results on the trends indicate that in Estonia and Latvia the shift from direct marriage to cohabitation started well before the fall of socialist regime. Event-history models provide support for a hypothesised association between union formation and gender system, with Lithuania showing more traditional features in both respect, plausibly embedded in long-standing cultural differences between the countries.

  19. Pattern destabilization and emotional processing in cognitive therapy for personality disorders.

    Science.gov (United States)

    Hayes, Adele M; Yasinski, Carly

    2015-01-01

    Clinical trials of treatments for personality disorders can provide a medium for studying the process of therapeutic change with particularly entrenched and self-perpetuating systems and might reveal important principles of system transition. We examined the extent to which maladaptive personality patterns were destabilized in a trial of cognitive therapy personality disorders (CT-PD) and how destabilization was associated with emotional processing and treatment outcomes. Dynamic systems theory was used as a theoretical framework for studying change. Participants were 27 patients diagnosed with Avoidant or Obsessive Compulsive Personality Disorder (AVPD or OCPD), who completed an open trial of CT-PD. Raters coded treatment sessions using a coding system that operationalizes emotional processing, as well as cognitive, affective, behavioral, and somatic components of pathological (negative) and more adaptive (positive) patterns of functioning. Pattern destabilization (dispersion) scores during the early phase of treatment (phase 1: session 1-10) and the schema-focused phase (phase 2: session 11-34) were calculated using a program called GridWare. More pattern destabilization and emotional processing in the schema-focused phase of CT-PD predicted more improvement in personality disorder symptoms and positive pattern strength at the end of treatment, whereas these variables in phase 1 did not predict outcome. In addition to illustrating a quantitative method for studying destabilization and change of patterns of psychopathology, we present findings that are consistent with recent updates of emotional processing theory and with principles from dynamic systems theory.

  20. Pattern destabilization and emotional processing in cognitive therapy for personality disorders

    Directory of Open Access Journals (Sweden)

    Adele M. Hayes

    2015-02-01

    Full Text Available Clinical trials of treatments for personality disorders can provide a medium for studying the process of therapeutic change with particularly entrenched and self-perpetuating systems and might reveal important principles of system transition. We examined the extent to which maladaptive personality patterns were destabilized in a trial of cognitive therapy personality disorders (CT-PD and how destabilization was associated with emotional processing and treatment outcomes. Dynamic systems theory was used as a theoretical framework for studying change. Method: Participants were 27 patients diagnosed with Avoidant or Obsessive Compulsive Personality Disorder, who completed an open trial of CT-PD. Raters coded treatment sessions using a coding system that operationalizes emotional processing, as well as cognitive, affective, behavioral, and somatic components of pathological (negative and more adaptive (positive patterns of functioning. Pattern destabilization (dispersion scores during the early phase of treatment (phase 1: session 1-10 and the schema-focused phase (phase 2: session 11-34 were calculated using a program called GridWare. Results: More pattern destabilization and emotional processing in the schema-focused phase of CT-PD predicted more improvement in personality disorder symptoms and positive pattern strength at the end of treatment, whereas these variables in phase 1 did not predict outcome. Conclusions: In addition to illustrating a quantitative method for studying destabilization and change of patterns of psychopathology, we present findings that are consistent with recent updates of emotional processing theory and with principles from dynamic systems theory.

  1. Dual-process theory and consumer response to front-of-package nutrition label formats.

    Science.gov (United States)

    Sanjari, S Setareh; Jahn, Steffen; Boztug, Yasemin

    2017-11-01

    Nutrition labeling literature yields fragmented results about the effect of front-of-package (FOP) nutrition label formats on healthy food choice. Specifically, it is unclear which type of nutrition label format is effective across different shopping situations. To address this gap, the present review investigates the available nutrition labeling literature through the prism of dual-process theory, which posits that decisions are made either quickly and automatically (system 1) or slowly and deliberately (system 2). A systematically performed review of nutrition labeling literature returned 59 papers that provide findings that can be explained according to dual-process theory. The findings of these studies suggest that the effectiveness of nutrition label formats is influenced by the consumer's dominant processing system, which is a function of specific contexts and personal variables (eg, motivation, nutrition knowledge, time pressure, and depletion). Examination of reported findings through a situational processing perspective reveals that consumers might prefer different FOP nutrition label formats in different situations and can exhibit varying responses to the same label format across situations. This review offers several suggestions for policy makers and researchers to help improve current FOP nutrition label formats. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Uranium behaviour in the process of tectonite formation in zones of abyssal factures

    International Nuclear Information System (INIS)

    Dmitriev, V.I.; Berezina, L.A.; Sannikova, L.A.

    1977-01-01

    The patterns of distribution, concentration and manifestation of uranium and thorium in tectonic formations of different ages, in deep fault zones, have been determined. It has been established that the stage of plastic deformations was not accompanied by a supply of U. The state of brittle deformations, accompanied by an intensive supply of U, is characterized by superimposed U concentrated, primarily, in melanocratic rock-forming minerals, as well as in fissures, in the form of brannerite and pitchblende

  3. Standard format and content of license applications for plutonium processing and fuel fabrication plants

    International Nuclear Information System (INIS)

    1976-01-01

    The standard format suggested for use in applications for licenses to possess and use special nuclear materials in Pu processing and fuel fabrication plants is presented. It covers general description of the plant, summary safety assessment, site characteristics, principal design criteria, plant design, process systems, waste confinement and management, radiation protection, accident safety analysis, conduct of operations, operating controls and limits, and quality assurance

  4. Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Van Dijk, P.J.; Biere, A.

    2010-01-01

    DNA methylation is an epigenetic mechanism that has the potential to affect plant phenotypes and that is responsive to environmental and genomic stresses such as hybridization and polyploidization. We explored de novo methylation variation that arises during the formation of triploid asexual

  5. The influence of projectile ion induced chemistry on surface pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Satpati, Biswarup [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2016-07-14

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  6. Czech alien flora and the historical pattern of its formation: what came first to Central Europe?

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Sádlo, Jiří; Mandák, Bohumil; Jarošík, V.

    2003-01-01

    Roč. 135, - (2003), s. 122-130 ISSN 0029-8549 R&D Projects: GA AV ČR KSK6005114; GA ČR GA206/99/1239 Institutional research plan: CEZ:AV0Z6005908 Keywords : alien flora * immigration pattern * invasion history Subject RIV: EF - Botanics Impact factor: 3.128, year: 2003

  7. Modern limnology, sediment accumulation and varve formation processes in Lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record

    Directory of Open Access Journals (Sweden)

    Alicja Bonk

    2014-12-01

    Full Text Available Reconstructions of paleoclimatic and paleoenvironmental data from sediment records require a thorough knowledge of the physical, chemical and biological factors that influence sediment-formation processes and signal preservation in lake sediments. Lake Żabińskie, an eutrophic hardwater lake located in northeastern Poland (Masurian Lake District, provides an unique environment for the investigation of processes that lead to the varve formation. During a two-year long observation period we investigated limnological and hydrochemical conditions within the water column, recent sediment fluxes and laminations preserved in the sediments of this lake to understand the relationship between the lake water properties and the sediment formation processes. We demonstrate that different mixing patterns may occur in Lake Żabińskie, from dimictic to meromictic depending on the meteorological conditions. Regardless of the water mixing pattern, the lake was stratified during much of the year which led to significant differences between surface and near-bottom water environments. The hypolimnion was characterized by higher conductivity and anoxic conditions with only short periods of better oxygenation, which created conditions ideal for the formation and preservation of biogenic varves. The material collected from the sediment trap revealed notable changes in sediment fluxes with characteristic spring maxima and, optionally, a second late fall maxima. Considerable variability was also observed for the fluxes of total organic carbon, biogenic silica and calcite. Microscopic investigation of the topmost sediments revealed a complex structure of the varves showing a distinct spring calcite lamina followed by several fine calcite laminae interbedded with diatom-rich laminae and, finally, by an organic-rich lamina with minerogenic admixtures deposited during winter. This seasonal variability was also reflected in the chemical composition inferred from high

  8. "Formative ""Use"" of Assessment Information: It's a Process, so Let's Say What We Mean"

    Directory of Open Access Journals (Sweden)

    Robert Good

    2011-02-01

    Full Text Available The term formative assessment is often used to describe a type of assessment. The purpose of this paper is to challenge the use of this phrase given that formative assessment as a noun phrase ignores the well-established understanding that it is a process more than an object. A model that combines content, context, and strategies is presented as one way to view the process nature of assessing formatively. The alternate phrase formative use of assessment information is suggested as a more appropriate way to describe how content, context, and strategies can be used together in order to close the gap between where a student is performing currently and the intended learning goal.

  9. hPDB – Haskell library for processing atomic biomolecular structures in protein data bank format

    OpenAIRE

    Gajda, Michał Jan

    2013-01-01

    Background Protein DataBank file format is used for the majority of biomolecular data available today. Haskell is a lazy functional language that enjoys a high-level class-based type system, a growing collection of useful libraries and a reputation for efficiency. Findings I present a fast library for processing biomolecular data in the Protein Data Bank format. I present benchmarks indicating that this library is faster than other frequently used Protein Data Bank parsing programs. The propo...

  10. Structural modification of silicon during the formation process of porous silicon

    International Nuclear Information System (INIS)

    Martin-Palma, R.J.; Pascual, L.; Landa-Canovas, A.R.; Herrero, P.; Martinez-Duart, J.M.

    2005-01-01

    Direct examination of porous silicon (PS) by the use of high resolution transmission electron microscopy (HRTEM) allowed us to perform a deep insight into the formation mechanisms of this material. In particular, the structure of the PS/Si interface and that of the silicon nanocrystals that compose porous silicon were analyzed in detail. Furthermore, image processing was used to study in detail the structure of PS. The mechanism of PS formation and lattice matching between the PS layer and the Si substrate is analyzed and discussed. Finally, a formation mechanism for PS based on the experimental observations is proposed

  11. Managing fear in public health campaigns: a theory-based formative evaluation process.

    Science.gov (United States)

    Cho, Hyunyi; Witte, Kim

    2005-10-01

    The HIV/AIDS infection rate of Ethiopia is one of the world's highest. Prevention campaigns should systematically incorporate and respond to at-risk population's existing beliefs, emotions, and perceived barriers in the message design process to effectively promote behavior change. However, guidelines for conducting formative evaluation that are grounded in proven risk communication theory and empirical data analysis techniques are hard to find. This article provides a five-step formative evaluation process that translates theory and research for developing effective messages for behavior change. Guided by the extended parallel process model, the five-step process helps message designers manage public's fear surrounding issues such as HIV/AIDS. An entertainment education project that used the process to design HIV/AIDS prevention messages for Ethiopian urban youth is reported. Data were collected in five urban regions of Ethiopia and analyzed according to the process to develop key messages for a 26-week radio soap opera.

  12. Pattern recognition and expert image analysis systems in biomedical image processing (Invited Paper)

    Science.gov (United States)

    Oosterlinck, A.; Suetens, P.; Wu, Q.; Baird, M.; F. M., C.

    1987-09-01

    This paper gives an overview of pattern recoanition techniques (P.R.) used in biomedical image processing and problems related to the different P.R. solutions. Also the use of knowledge based systems to overcome P.R. difficulties, is described. This is illustrated by a common example ofabiomedical image processing application.

  13. Integration of Individual Processes and Information Demand Patterns: A Conceptual Analysis

    Directory of Open Access Journals (Sweden)

    Michael Leyer

    2017-12-01

    Full Text Available Individuals need a variety of information when performing their personal processes. However, companies typically know little about the underlying individual demand patterns in these processes. Conceptualizing information demand patterns of individuals is expected to allow for using these as foundation to extend the traditional internal information logistic perspective of companies. Digital options could then be used to align individual and organizational information leading not only to new product and service offers, but also to new work structures in organizations. Thus, we extend prior literature regarding business process management and information logistics by highlighting how information demand patterns (IDP have to be adapted to individual processes. Our exploratory approach is to demonstrate conceptually the conditions and implications of individual IDPs.

  14. How pattern formation in ring networks of excitatory and inhibitoryspiking neurons depends on the input current regime

    Directory of Open Access Journals (Sweden)

    Birgit eKriener

    2014-01-01

    Full Text Available Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics,specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningfulproperties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily.When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supercritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- orfluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability.In particular, if neurons are mean-driven, the linearization has a very simple form and becomesindependent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance areimportant parameters in the determination of the critical weight.We demonstrate that interestingly even in ``intermediate'' regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical couplingstrength. We moreover analyze the effects of structural randomness by rewiring individualsynapses or redistributing weights, as well as coarse-graining on pattern

  15. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime.

    Science.gov (United States)

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T

    2013-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of

  16. Predicting the distribution of spiral waves from cell properties in a developmental-path model of Dictyostelium pattern formation.

    Directory of Open Access Journals (Sweden)

    Daniel Geberth

    2009-07-01

    Full Text Available The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers. This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path.

  17. Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study.

    Science.gov (United States)

    Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K W; Zhang, Yong-Wei

    2016-09-01

    We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures.

  18. Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates.

    Science.gov (United States)

    Bardbari, Ali Mohammadi; Arabestani, Mohammad Reza; Karami, Manoochehr; Keramat, Fariba; Alikhani, Mohammad Yousef; Bagheri, Kamran Pooshang

    2017-07-01

    Acinetobacter baumannii potential to form biofilm and exhibit multiple antibiotic resistances may be responsible in its survival in hospital environment. Accordingly, our study was aimed to determine the correlation between ability of biofilm formation and the frequency of biofilm related genes with antibiotic resistance phenotypes, and also the categorization of their patterns in clinical and environmental isolates. A total of 75 clinical and 32 environmental strains of the A. baumannii were collected and identified via API 20NE. Antibiotic susceptibility was evaluated by disk diffusion and microdilution broth methods. Biofilm formation assay was performed by microtiter plate method. OXA types and biofilm related genes including Bla OXA-51 , Bla OXA-23 , Bla OXA-24 , Bla OXA-58 , bap, bla PER-1 , and ompA were amplified by PCR. The rate of MDR A. baumannii in clinical isolates (100%) was higher than environmental (81.2%) isolates (p baumannii isolates was associated with biofilm formation. There was a significant correlation between multiple drug resistance and biofilm formation. The clinical isolates had a higher ability to form strong biofilms compared to the environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The microscopic origin of self-organized nanostripe pattern formation on an electropolished aluminium surface

    International Nuclear Information System (INIS)

    Sarkar, Jaya; Basumallick, A; Khan, Gobinda Gopal

    2009-01-01

    By correlating the experimental evidence obtained from atomic force microscopy, conventional x-ray diffraction, and a surface sensitive modified x-ray diffraction technique with the results of density functional theory based computations, we demonstrate that self-organized nanostripe patterns formed on the electropolished surface of aluminium originate as a consequence of relaxation and reconstruction of the new surfaces exposed and textural changes at the surface caused by the dissolution during polishing.

  20. Radiographic evaluation and unusual bone formations in different genetic patterns in synpolydactyly

    International Nuclear Information System (INIS)

    Yucel, Aylin; Acar, Murat; Kuru, Ilhami; Bozan, M. Eray; Solak, Mustafa

    2005-01-01

    To compare the radiological findings of heterozygous and homozygous subjects with synpolydactyly (SPD) and to discuss their unusual bone formations. Families with hand and foot SPD were examined. Genetic analysis was performed with blood samples and the pedigree was constructed. The affected individuals, especially those with distinctive phenotypic features, were invited to our orthopaedics clinic for further diagnostic studies. All participants underwent detailed clinical and X-ray examinations. Of the invited patients, 16 (five female and 11 male; age range 4-37 years, mean age 10.75 years) were included in our study, and hand and foot radiographs were obtained. All subjects had bilateral hand radiographs (32 hands), and 14 had bilateral foot radiographs (28 feet). Genetic analysis revealed 12 heterozygote (75%) and four (25%) homozygote phenotypes. Among patients enrolled into the study nine (three homozygotes, six heterozygotes) had SPD of both hands and feet bilaterally (tetrasynpolydactyly). Six unusual bone formations were observed in the hands and feet: delta phalanx, delta metacarpal/metatarsal, kissing delta phalanx, true double epiphysis, pseudoepiphysis and cone-shaped epiphysis. There were major differences in radiological and clinical manifestations of homozygote and heterozygote phenotypes. The homozygous SPD presented with very distinctive unusual bone formations. The existence and variety of unusual bones may indicate the severity of penetrance and expressivity of SPD. (orig.)

  1. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish

    Science.gov (United States)

    Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane

    2014-01-01

    Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001 PMID:25535837

  2. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate.

    Science.gov (United States)

    Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian

    2017-03-21

    When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.

  3. Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids

    Science.gov (United States)

    Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus

    2017-11-01

    The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.

  4. Socio-psychological processes of identity formation among EE/ESD enthusiast

    DEFF Research Database (Denmark)

    Læssøe, Jeppe; Lysgaard, Jonas Greve

    Introduction: When engaging with normative educational ideals such as education for sustainable development (ESD), such ideals heavily influence socio-psychological processes of identity formation among individuals and groups. This is especially important when looking into enthusiasts...... developing educational participatory activities. Describing group dynamics and how they draw on the normative and ideological discourse qualities is one thing, but through this paper we also want to stress the importance of the individual and subjective identity formation and meaning making processes when...... navigating the often contradictionary field of ESD, Methods: This paper is a theoretical study drawing on theories focusing on socio-psychological processes of identity formation such as psychoanalysis, European-continental social psychology and micro-sociology. The paper also draws on recent empirical...

  5. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid

    Science.gov (United States)

    Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi

    2015-03-01

    Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields.

  6. Numerical investigation of micro-pore formation during substrate impact of molten droplets in spraying processes

    International Nuclear Information System (INIS)

    Liu, H.; Lavernia, E.J.; Rangel, R.H.; Muehlberger, E.; Sickinger, A.

    1994-01-01

    The porosity that is commonly associated with discrete droplet processes, such as plasma spraying and spray deposition, effectively degrades the quality of the sprayed material. In the present study, micro-pore formation during the deformation and interaction of molten tungsten droplets impinging onto a flat substrate in spraying processes is numerically investigated. The numerical simulation is accomplished on the basis of the full Navier-Stokes equations and the Volume Of Fluid (VOF) function by using a 2-domain method for the thermal field and solidification problem and a two-phase flow continuum model for the flow problem with a growing solid layer. The possible mechanisms governing the formation of micro-pores are discussed. The effects of important processing parameters, such as droplet impact velocity, droplet temperature, substrate temperature, and droplet viscosity, on the micro-pore formation are addressed

  7. Automated CBED processing: Sample thickness estimation based on analysis of zone-axis CBED pattern

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, M., E-mail: klinger@post.cz; Němec, M.; Polívka, L.; Gärtnerová, V.; Jäger, A.

    2015-03-15

    An automated processing of convergent beam electron diffraction (CBED) patterns is presented. The proposed methods are used in an automated tool for estimating the thickness of transmission electron microscopy (TEM) samples by matching an experimental zone-axis CBED pattern with a series of patterns simulated for known thicknesses. The proposed tool detects CBED disks, localizes a pattern in detected disks and unifies the coordinate system of the experimental pattern with the simulated one. The experimental pattern is then compared disk-by-disk with a series of simulated patterns each corresponding to different known thicknesses. The thickness of the most similar simulated pattern is then taken as the thickness estimate. The tool was tested on [0 1 1] Si, [0 1 0] α-Ti and [0 1 1] α-Ti samples prepared using different techniques. Results of the presented approach were compared with thickness estimates based on analysis of CBED patterns in two beam conditions. The mean difference between these two methods was 4.1% for the FIB-prepared silicon samples, 5.2% for the electro-chemically polished titanium and 7.9% for Ar{sup +} ion-polished titanium. The proposed techniques can also be employed in other established CBED analyses. Apart from the thickness estimation, it can potentially be used to quantify lattice deformation, structure factors, symmetry, defects or extinction distance. - Highlights: • Automated TEM sample thickness estimation using zone-axis CBED is presented. • Computer vision and artificial intelligence are employed in CBED processing. • This approach reduces operator effort, analysis time and increases repeatability. • Individual parts can be employed in other analyses of CBED/diffraction pattern.

  8. Processed red meat contribution to dietary patterns and the associated cardio-metabolic outcomes.

    Science.gov (United States)

    Lenighan, Yvonne M; Nugent, Anne P; Li, Kaifeng F; Brennan, Lorraine; Walton, Janette; Flynn, Albert; Roche, Helen M; McNulty, Breige A

    2017-08-01

    Evidence suggests that processed red meat consumption is a risk factor for CVD and type 2 diabetes (T2D). This analysis investigates the association between dietary patterns, their processed red meat contributions, and association with blood biomarkers of CVD and T2D, in 786 Irish adults (18-90 years) using cross-sectional data from a 2011 national food consumption survey. All meat-containing foods consumed were assigned to four food groups (n 502) on the basis of whether they contained red or white meat and whether they were processed or unprocessed. The remaining foods (n 2050) were assigned to twenty-nine food groups. Two-step and k-means cluster analyses were applied to derive dietary patterns. Nutrient intakes, plasma fatty acids and biomarkers of CVD and T2D were assessed. A total of four dietary patterns were derived. In comparison with the pattern with lower contributions from processed red meat, the dietary pattern with greater processed red meat intakes presented a poorer Alternate Healthy Eating Index (21·2 (sd 7·7)), a greater proportion of smokers (29 %) and lower plasma EPA (1·34 (sd 0·72) %) and DHA (2·21 (sd 0·84) %) levels (Pprocessed red meat consumption as a risk factor for CVD and T2D may need to be re-assessed.

  9. Application of gas hydrate formation in separation processes: A review of experimental studies

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique; Naidoo, Paramespri; Ramjugernath, Deresh

    2012-01-01

    Highlights: ► Review of gas hydrate technology applied to separation processes. ► Gas hydrates have potential to be a future sustainable separation technology. ► More theoretical, simulation, and economic studies needed. - Abstract: There has been a dramatic increase in gas hydrate research over the last decade. Interestingly, the research has not focussed on only the inhibition of gas hydrate formation, which is of particular relevance to the petroleum industry, but has evolved into investigations on the promotion of hydrate formation as a potential novel separation technology. Gas hydrate formation as a separation technology shows tremendous potential, both from a physical feasibility (in terms of effecting difficult separations) as well as an envisaged lower energy utilization criterion. It is therefore a technology that should be considered as a future sustainable technology and will find wide application, possibly replacing a number of current commercial separation processes. In this article, we focus on presenting a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology. Although many investigations have been undertaken on the positive application of gas hydrates to date, there is a need to perform more theoretical, experimental, and economic studies to clarify various aspects of separation processes using clathrate/semi-clathrate hydrate formation phenomena, and to conclusively prove its sustainability.

  10. Novel micro-patterning processes for thin film NiTi vascular devices

    International Nuclear Information System (INIS)

    Chun, Y J; Mohanchandra, K P; Carman, G P; Levi, D S; Fishbein, M C

    2010-01-01

    In order to create microscale features in thin film NiTi for use in vascular endografts, a novel 'lift-off process' was developed for use with deep reactive ion etching. A wet etching approach is compared to two variations of this new 'lift-off' process. The first lift-off process (lift-off I) used Si posts to define the features of NiTi film deposited on the Si substrate. This method produced fractures in the NiTi when the film was released. The lift-off II process used Si islands as substrate for the film while the Si wafer defined the specific geometric features. Lift-off II process allowed for the creation of various shape patterns (i.e., ellipse, diamond, circle, square, etc) in the range of 5–180 µm. The lift-off II process produced smooth and well aligned micro-patterns in thin film NiTi without the undercutting found in wet etching techniques. The micro-patterned thin film NiTi formed from the lift-off II process was used to cover a stent. In vivo tests were performed to evaluate the endothelialization though patterned thin films. Angiography, histopathology and SEM showed patency of the artery and uniformly promoted endothelial layer covering without thrombosis in both a medium and small artery

  11. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    Science.gov (United States)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  12. Cliché fabrication method using precise roll printing process with 5 um pattern width

    Science.gov (United States)

    Shin, Yejin; Kim, Inyoung; Oh, Dong-Ho; Lee, Taik-Min

    2016-09-01

    Among the printing processes for printed electronic devices, gravure offset and reverse offset method have drawn attention for its fine pattern printing possibility. These printing methods use cliché, which has critical effect on the final product precision and quality. In this research, a novel precise cliché replica method is proposed. It consists of copper sputtering, precise mask pattern printing with 5 um width using reverse offset printing, Ni electroplating, lift-off, etching, and DLC coating. We finally compare the fabricated replica cliché with the original one and print out precise patterns using the replica cliché.

  13. The spatial distribution of microfabric around gravel grains: indicator of till formation processes

    Science.gov (United States)

    KalväNs, Andis; Saks, Tomas

    2010-05-01

    Till micromorphology studies in thin sections is an established tool in the field of glacial geology. Often the thin sections are inspected only visually with help of mineralogical microscope. This can lead to subjective interpretation of observed structures. More objective method used in till micromorphology is measurement of apparent microfabric, usually seen as preferred orientation of elongated sand grains. In theses studies only small fraction of elongated sand grains often confined to small area of thin section usually are measured. We present a method for automated measurement of almost all elongated sand grains across the full area of the thin section. Apparently elongated sand grains are measured using simple image analysis tools, the data are processed in a way similar to regular till fabric data and visualised as a grid of rose diagrams. The method allows to draw statistical information about spatial variation of microfabric preferred orientation and fabric strength with resolution as fine as 1 mm. Late Weichselian tills from several sites in Western Latvia were studied and large variations in fabric strength and spatial distribution were observed in macroscopically similar till units. The observed types of microfabric spatial distributions include strong, monomodal and uniform distribution; weak and highly variable in small distances distribution; consistently bimodal distribution and domain-like pattern of preferred sand grain orientation. We suggest that the method can be readily used to identify the basic deformation and sedimentation processes active during the final stages of till formation. It is understood that the microfabric orientation will be significant affected by nearby large particles. The till is highly heterogonous sediment and the source of microfabric perturbations observed in thin section might lie outside the section plane. Therefore we suggest that microfabric distribution around visible sources of perturbation - gravel grains cut

  14. Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode

    International Nuclear Information System (INIS)

    Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-01-01

    Self-organized luminous pattern formation is observed in the liquid surface of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. The factors affecting pattern formation are the gap length, discharge current, helium mass flow rate and polarity. The pattern shape depends on the conductivity and temperature of the liquid electrode. A variety of patterns were observed by changing the conductivity and temperature of the liquid. We clarified that the self-organized pattern formation depends on the amount of electronegative gas, such as oxygen, in the gas in the electrode gap. When an oxygen gas flow was fed to the liquid surface from the outside in an obliquely downward direction, namely, the amount of oxygen gas on the liquid surface was increased locally, self-organized pattern formation was observed in the region with the increased amount of oxygen gas. When the amount of oxygen in the gas in the gap was changed by using a sheath flow system, the appearance of the pattern changed. The presence of oxygen gas strongly affected the self-organized pattern formation of the atmospheric dc discharge using a liquid anode. (paper)

  15. Energy-saving management modelling and optimization for lead-acid battery formation process

    Science.gov (United States)

    Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.

    2017-11-01

    In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.

  16. The study on the effect of pattern density distribution on the STI CMP process

    Science.gov (United States)

    Sub, Yoon Myung; Hian, Bernard Yap Tzen; Fong, Lee It; Anak, Philip Menit; Minhar, Ariffin Bin; Wui, Tan Kim; Kim, Melvin Phua Twang; Jin, Looi Hui; Min, Foo Thai

    2017-08-01

    The effects of pattern density on CMP characteristics were investigated using specially designed wafer for the characterization of pattern-dependencies in STI CMP [1]. The purpose of this study is to investigate the planarization behavior based on a direct STI CMP used in cerium (CeO2) based slurry system in terms of pattern density variation. The minimal design rule (DR) of 180nm generation technology node was adopted for the mask layout. The mask was successfully applied for evaluation of a cerium (CeO2) abrasive based direct STI CMP process. In this study, we described a planarization behavior of the loading-effects of pattern density variation which were characterized with layout pattern density and pitch variations using masks mentioned above. Furthermore, the characterizing pattern dependent on the variations of the dimensions and spacing features, in thickness remaining after CMP, were analyzed and evaluated. The goal was to establish a concept of library method which will be used to generate design rules reducing the probability of CMP-related failures. Details of the characterization were measured in various layouts showing different pattern density ranges and the effects of pattern density on STI CMP has been discussed in this paper.

  17. Spatial pattern formation and intraspecific competition of anabasis aphylla l. population in the diluvial fan of junggar basin, nw china

    International Nuclear Information System (INIS)

    Wang, M.; Li, Y.Y.; Niu, P.X.

    2015-01-01

    Using conventional nearest neighbour analysis and Ripley's L-function, the goal of this study was to analyze spatial patterns of Anabasis aphylla plants in order to investigate underlying competitive processes that shape the population spatial structure from diluvial fan in Junggar Basin, NW China. We found that the spatial patterns of all growth stages were aggregated in the three study plots, and seedling and juvenile plants were more aggregated than expected by chance. Positive associations among growth stages of A. aphylla population were found at a small scale while negative associations of seedling and juvenile relative to adult plants were shown at a larger scale. The processes such as dispersal, seedling establishment, environmental heterogeneity, plant interactions and disturbance may have acted individually or in concert with other processes to produce the aggregated patterns and competitive relationship. Moreover, these findings suggested that the aggregated distribution and the competitive interaction between A. aphylla plants in the diluvial fan reflected not only in mortality, but also in decreased performance (smaller canopy) that was an important characteristic of drought-enduring plant, thus preventing a regular distribution pattern. (author)

  18. Dorsoventral patterning by the Chordin-BMP pathway: a unified model from a pattern-formation perspective for Drosophila, vertebrates, sea urchins and Nematostella.

    Science.gov (United States)

    Meinhardt, Hans

    2015-09-01

    Conserved from Cnidarians to vertebrates, the dorsoventral (DV) axis is patterned by the Chordin-BMP pathway. However, the functions of the pathway's components are very different in different phyla. By modeling it is shown that many observations can be integrated by the assumption that BMP, acting as an inhibitory component in more ancestral systems, became a necessary and activating component for the generation of a secondary and antipodal-located signaling center. The different realizations seen in vertebrates, Drosophila, sea urchins and Nematostella allow reconstruction of a chain of modifications during evolution. BMP-signaling is proposed to be based on a pattern-forming reaction of the activator-depleted substrate type in which BMP-signaling acts via pSmad as the local self-enhancing component and the depletion of the highly mobile BMP-Chordin complex as the long-ranging antagonistic component. Due to the rapid removal of the BMP/Chordin complex during BMP-signaling, an oriented transport and "shuttling" results, although only ordinary diffusion is involved. The system can be self-organizing, allowing organizer formation even from near homogeneous initial situations. Organizers may regenerate after removal. Although connected with some losses of self-regulation, for large embryos as in amphibians, the employment of maternal determinants is an efficient strategy to make sure that only a single organizer of each type is generated. The generation of dorsoventral positional information along a long-extended anteroposterior (AP) axis cannot be achieved directly by a single patch-like organizer. Nature found different solutions for this task. Corresponding models provide a rationale for the well-known reversal in the dorsoventral patterning between vertebrates and insects. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Evaluating the role of reentrant output-to-input feedback in simultaneous pattern processing

    Energy Technology Data Exchange (ETDEWEB)

    Achler, Tsvi [Los Alamos National Laboratory

    2010-01-01

    Simultaneous Pattern Processing (SPP) is defined as the ability to identify simultaneous-intermixed patterns without isolating them individually (e.g. without separating each pattern in space and processing it individually). Enhanced SPP ability is beneficial for many real-life applications such as scene understanding, separating simultaneous voices, and identifying odorant or taste mixes. The first part of this work identifies how SPP scenarios are problematic to models which train synaptic connections or implement lateral inhibition and quantifies how subtle difficulties lead to complex combinatorial issues. The second part of this work proposes and tests an algorithm motivated by Ubiquitous re-entrant 'output to input' connections found throughout sensory processing regions of the brain. Through these connections the model proposes a dynamic gain mechanism that can provide functionality normally achieved through variable synaptic connections. The re-entrant structure combined with enhanced perfonnance suggests the brain may utilize this configuration for SPP flexibility.

  20. Investigation of fabrication process for sub 20-nm dense pattern of non-chemically amplified electron beam resist based on acrylic polymers

    Science.gov (United States)

    Ochiai, Shunsuke; Takayama, Tomohiro; Kishimura, Yukiko; Asada, Hironori; Sonoda, Manae; Iwakuma, Minako; Hoshino, Ryoichi

    2016-10-01

    In this study, we examine exposure characteristics of a positive tone electron beam resist consisting of methyl α- chloroacrylate and α-methylstyrene by changing the development process conditions. 25/25 nm and 30/30 nm line-andspace (L/S) patterns (design value) are developed in amyl and heptyl acetates. The resist patterns developed at 0ºC for 120 s show the better shapes having the vertical sidewalls than those developed at 22 °C for 60 s. The dose margins of pattern formation for 0°C development become wider, although the sensitivities are lower. The effect of post exposure baking (PEB) on exposure characteristics is also investigated. Adding PEB process performed at 120°C for 2 min, the dose margin also becomes wider although the sensitivity is lower. 20/20 nm L/S patterns are fabricated by using PEB and/or 0°C development. Though the required exposure dose is larger, the resist pattern is improved by PEB and/or 0°C development. The formation of 35 nm pitch pattern is also presented.