WorldWideScience

Sample records for patient rotational setup

  1. Evaluation of rotational set-up errors in patients with thoracic neoplasms

    International Nuclear Information System (INIS)

    Wang Yanyang; Fu Xiaolong; Xia Bing; Fan Min; Yang Huanjun; Ren Jun; Xu Zhiyong; Jiang Guoliang

    2010-01-01

    Objective: To assess the rotational set-up errors in patients with thoracic neoplasms. Methods: 224 kilovoltage cone-beam computed tomography (KVCBCT) scans from 20 thoracic tumor patients were evaluated retrospectively. All these patients were involved in the research of 'Evaluation of the residual set-up error for online kilovoltage cone-beam CT guided thoracic tumor radiation'. Rotational set-up errors, including pitch, roll and yaw, were calculated by 'aligning the KVCBCT with the planning CT, using the semi-automatic alignment method. Results: The average rotational set-up errors were -0.28 degree ±1.52 degree, 0.21 degree ± 0.91 degree and 0.27 degree ± 0.78 degree in the left-fight, superior-inferior and anterior-posterior axis, respectively. The maximal rotational errors of pitch, roll and yaw were 3.5 degree, 2.7 degree and 2.2 degree, respectively. After correction for translational set-up errors, no statistically significant changes in rotational error were observed. Conclusions: The rotational set-up errors in patients with thoracic neoplasms were all small in magnitude. Rotational errors may not change after the correction for translational set-up errors alone, which should be evaluated in a larger sample future. (authors)

  2. Dosimetric Changes Resulting From Patient Rotational Setup Errors in Proton Therapy Prostate Plans

    International Nuclear Information System (INIS)

    Sejpal, Samir V.; Amos, Richard A.; Bluett, Jaques B.; Levy, Lawrence B.; Kudchadker, Rajat J.; Johnson, Jennifer; Choi, Seungtaek; Lee, Andrew K.

    2009-01-01

    Purpose: To evaluate the dose changes to the target and critical structures from rotational setup errors in prostate cancer patients treated with proton therapy. Methods and Materials: A total of 70 plans were analyzed for 10 patients treated with parallel-opposed proton beams to a dose of 7,600 60 Co-cGy-equivalent (CcGE) in 200 CcGE fractions to the clinical target volume (i.e., prostate and proximal seminal vesicles). Rotational setup errors of +3 o , -3 deg., +5 deg., and -5 deg. (to simulate pelvic tilt) were generated by adjusting the gantry. Horizontal couch shifts of +3 deg. and -3 deg. (to simulate longitudinal setup variability) were also generated. Verification plans were recomputed, keeping the same treatment parameters as the control. Results: All changes shown are for 38 fractions. The mean clinical target volume dose was 7,780 CcGE. The mean change in the clinical target volume dose in the worse case scenario for all shifts was 2 CcGE (absolute range in worst case scenario, 7,729-7,848 CcGE). The mean changes in the critical organ dose in the worst case scenario was 6 CcGE (bladder), 18 CcGE (rectum), 36 CcGE (anterior rectal wall), and 141 CcGE (femoral heads) for all plans. In general, the percentage of change in the worse case scenario for all shifts to the critical structures was <5%. Deviations in the absolute percentage of volume of organ receiving 45 and 70 Gy for the bladder and rectum were <2% for all plans. Conclusion: Patient rotational movements of 3 deg. and 5 deg. and horizontal couch shifts of 3 deg. in prostate proton planning did not confer clinically significant dose changes to the target volumes or critical structures.

  3. Residual setup errors caused by rotation and non-rigid motion in prone-treated cervical cancer patients after online CBCT image-guidance

    International Nuclear Information System (INIS)

    Ahmad, Rozilawati; Hoogeman, Mischa S.; Quint, Sandra; Mens, Jan Willem; Osorio, Eliana M. Vásquez; Heijmen, Ben J.M.

    2012-01-01

    Purpose: To quantify the impact of uncorrected or partially corrected pelvis rotation and spine bending on region-specific residual setup errors in prone-treated cervical cancer patients. Methods and materials: Fifteen patients received an in-room CBCT scan twice a week. CBCT scans were registered to the planning CT-scan using a pelvic clip box and considering both translations and rotations. For daily correction of the detected translational pelvis setup errors by couch shifts, residual setup errors were determined for L5, L4 and seven other points of interest (POIs). The same was done for a procedure with translational corrections and limited rotational correction (±3°) by a 6D positioning device. Results: With translational correction only, residual setup errors were large especially for L5/L4 in AP direction (Σ = 5.1/5.5 mm). For the 7 POIs the residual setup errors ranged from 1.8 to 5.6 mm (AP). Using the 6D positioning device, the errors were substantially smaller (for L5/L4 in AP direction Σ = 2.7/2.2 mm). Using this device, the percentage of fractions with a residual AP displacement for L4 > 5 mm reduced from 47% to 9%. Conclusions: Setup variations caused by pelvis rotations are large and cannot be ignored in prone treatment of cervical cancer patients. Corrections with a 6D positioning device may considerably reduce resulting setup errors, but the residual setup errors should still be accounted for by appropriate CTV-to-PTV margins.

  4. Evaluation of overall setup accuracy and adequate setup margins in pelvic image-guided radiotherapy: Comparison of the male and female patients

    International Nuclear Information System (INIS)

    Laaksomaa, Marko; Kapanen, Mika; Tulijoki, Tapio; Peltola, Seppo; Hyödynmaa, Simo; Kellokumpu-Lehtinen, Pirkko-Liisa

    2014-01-01

    We evaluated adequate setup margins for the radiotherapy (RT) of pelvic tumors based on overall position errors of bony landmarks. We also estimated the difference in setup accuracy between the male and female patients. Finally, we compared the patient rotation for 2 immobilization devices. The study cohort included consecutive 64 male and 64 female patients. Altogether, 1794 orthogonal setup images were analyzed. Observer-related deviation in image matching and the effect of patient rotation were explicitly determined. Overall systematic and random errors were calculated in 3 orthogonal directions. Anisotropic setup margins were evaluated based on residual errors after weekly image guidance. The van Herk formula was used to calculate the margins. Overall, 100 patients were immobilized with a house-made device. The patient rotation was compared against 28 patients immobilized with CIVCO's Kneefix and Feetfix. We found that the usually applied isotropic setup margin of 8 mm covered all the uncertainties related to patient setup for most RT treatments of the pelvis. However, margins of even 10.3 mm were needed for the female patients with very large pelvic target volumes centered either in the symphysis or in the sacrum containing both of these structures. This was because the effect of rotation (p ≤ 0.02) and the observer variation in image matching (p ≤ 0.04) were significantly larger for the female patients than for the male patients. Even with daily image guidance, the required margins remained larger for the women. Patient rotations were largest about the lateral axes. The difference between the required margins was only 1 mm for the 2 immobilization devices. The largest component of overall systematic position error came from patient rotation. This emphasizes the need for rotation correction. Overall, larger position errors and setup margins were observed for the female patients with pelvic cancer than for the male patients

  5. SU-F-P-18: Development of the Technical Training System for Patient Set-Up Considering Rotational Correction in the Virtual Environment Using Three-Dimensional Computer Graphic Engine

    Energy Technology Data Exchange (ETDEWEB)

    Imura, K [Division of Quantum Radiation Science, Department of Health Science, Graduate School of Medical Science, Kyushu University, Fukuoka (Japan); Fujibuchi, T; Hirata, H [Department of Health Science, Graduate School of Medical Science, Kyushu University, Fukuoka (Japan); Kaneko, K [Innovation Center for Educational Resource, Kyushu University, Fukuoka (Japan); Hamada, E [Cancer Treatment Center, Tobata Kyoritsu Hospital, Kitakyushu (Japan)

    2016-06-15

    Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performance by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to

  6. SU-F-P-18: Development of the Technical Training System for Patient Set-Up Considering Rotational Correction in the Virtual Environment Using Three-Dimensional Computer Graphic Engine

    International Nuclear Information System (INIS)

    Imura, K; Fujibuchi, T; Hirata, H; Kaneko, K; Hamada, E

    2016-01-01

    Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performance by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to

  7. Cone beam CT-based set-up strategies with and without rotational correction for stereotactic body radiation therapy in the liver.

    Science.gov (United States)

    Bertholet, Jenny; Worm, Esben; Høyer, Morten; Poulsen, Per

    2017-06-01

    Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction

  8. Infrared-Guided Patient Setup for Lung Cancer Patients

    International Nuclear Information System (INIS)

    Lyatskaya, Yulia; James, Steven; Killoran, Joseph H.; Soto, Ricardo; Mamon, Harvey J.; Chin, Lee; Allen, Aaron M.

    2008-01-01

    Purpose: To evaluate the utility of an infrared-guided patient setup (iGPS) system to reduce the uncertainties in the setup of lung cancer patients. Methods and Materials: A total of 15 patients were setup for lung irradiation using skin tattoos and lateral leveling marks. Daily electronic portal device images and iGPS marker locations were acquired and retrospectively reviewed. The iGPS-based shifts were compared with the daily electronic portal device image shifts using both the central axis iGPS marker and all five iGPS markers. For shift calculation using the five markers, rotational misalignment was included. The level of agreement between the iGPS and portal imaging to evaluate the setup was evaluated as the frequency of the shift difference in the range of 0-5 mm, 5-10 mm, and >10 mm. Results: Data were obtained for 450 treatment sessions for 15 patients. The difference in the isocenter shifts between the weekly vs. daily images was 0-5 mm in 42%, 5-10 mm in 30%, and >10 mm in 10% of the images. The shifts seen using the iGPS data were 0-5 mm in 81%, 5-10 mm in 14%, and >10 mm in 5%. Using only the central axis iGPS marker, the difference between the iGPS and portal images was 10 mm in 7% in the left-right direction and 73%, 18%, and 9% in the superoinferior direction, respectively. When all five iGPS markers were used, the disagreements between the iGPS and portal image shifts >10 mm were reduced from 7% to 2% in the left-right direction and 9% to 3% in the superoinferior direction. Larger reductions were also seen (e.g., a reduction from 50% to 0% in 1 patient). Conclusion: The daily iGPS-based shifts correlated well with the daily electronic portal device-based shifts. When patient movement has nonlinear rotational components, a combination of surface markers and portal images might be particularly beneficial to improve the setup for lung cancer patients

  9. Measurement and analysis of the thoracic patient setup deviations in routine radiotherapy

    International Nuclear Information System (INIS)

    Jia Mingxuan; Zou Huawei; Wu Rong; Sun Jian; Dong Xiaoqi

    2003-01-01

    Objective: To determine the magnitude of the setup deviations of the thoracic patients in routine radiotherapy. Methods: Altogether 408 films for 21 thoracic patients were recorded using the electronic portal imaging device (EPID), and comparison with reference CT simulator digitally-reconstructed radiograph (DRR) for anterior-posterior fields was performed. The deviation of setup for 21 patients in the left-right (RL), superior-inferior (SI) directions and rotation about the anterior-posterior (AP) axis were measured and analyzed. Results: Without immobilization device, the mean translational and rotational setup deviations were (0.7±3.1) mm and (1.5±4.1) mm in the RL and SI directions, respectively, and (0.3±2.4) degree about AP axis. With immobilization device, the mean translational and rotational setup deviations were (0.5±2.4) mm and (0.8±2.7) mm in the RL and SI directions respectively, and (0.2±1.6) degree about AP axis. Conclusion: The setup deviations in thoracic patients irradiation may be reduced with the use of the immobilization device. The setup deviation in the SI direction is greater than that in the RL direction. The setup deviations are mainly random errors

  10. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Laursen, Louise Vagner; Elstrøm, Ulrik Vindelev; Vestergaard, Anne; Muren, Ludvig P.; Petersen, Jørgen Baltzer; Lindegaard, Jacob Christian; Grau, Cai; Tanderup, Kari

    2012-01-01

    Purpose: Due to the often quite extended treatment fields in cervical cancer radiotherapy, uncorrected rotational set-up errors result in a potential risk of target miss. This study reports on the residual rotational set-up error after using daily cone beam computed tomography (CBCT) to position cervical cancer patients for radiotherapy treatment. Methods and materials: Twenty-five patients with locally advanced cervical cancer had daily CBCT scans (650 CBCTs in total) prior to treatment delivery. We retrospectively analyzed the translational shifts made in the clinic prior to each treatment fraction as well as the residual rotational errors remaining after translational correction. Results: The CBCT-guided couch movement resulted in a mean translational 3D vector correction of 7.4 mm. Residual rotational error resulted in a target shift exceeding 5 mm in 57 of the 650 treatment fractions. Three patients alone accounted for 30 of these fractions. Nine patients had no shifts exceeding 5 mm and 13 patients had 5 or less treatment fractions with such shifts. Conclusion: Twenty-two of the 25 patients have none or few treatment fractions with target shifts larger than 5 mm due to residual rotational error. However, three patients display a significant number of shifts suggesting a more systematic set-up error.

  11. Setup accuracy of stereoscopic X-ray positioning with automated correction for rotational errors in patients treated with conformal arc radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Soete, Guy; Verellen, Dirk; Tournel, Koen; Storme, Guy

    2006-01-01

    We evaluated setup accuracy of NovalisBody stereoscopic X-ray positioning with automated correction for rotational errors with the Robotics Tilt Module in patients treated with conformal arc radiotherapy for prostate cancer. The correction of rotational errors was shown to reduce random and systematic errors in all directions. (NovalisBody TM and Robotics Tilt Module TM are products of BrainLAB A.G., Heimstetten, Germany)

  12. A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy

    International Nuclear Information System (INIS)

    Boswell, Sarah A.; Jeraj, Robert; Ruchala, Kenneth J.; Olivera, Gustavo H.; Jaradat, Hazim A.; James, Joshua A.; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T. Rock

    2005-01-01

    An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle

  13. Tools and setups for experiments with AC and rotating magnetic fields

    International Nuclear Information System (INIS)

    Ponikvar, D

    2010-01-01

    A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several experiments and describes setups and tools which are easy to obtain and work with. Free software is offered to generate the required signals by a personal computer. The experiments can be implemented in introductory physics courses on electromagnetism for undergraduates or specialized courses at high schools.

  14. Detection of treatment setup errors between two CT scans for patients with head and neck cancer

    International Nuclear Information System (INIS)

    Ezzell, Leah C.; Hansen, Eric K.; Quivey, Jeanne M.; Xia Ping

    2007-01-01

    Accuracy of treatment setup for head and neck patients undergoing intensity-modulated radiation therapy is of paramount importance. The conventional method using orthogonal portal images can only detect translational setup errors while the most frequent setup errors for head and neck patients could be rotational errors. With the rapid development of image-guided radiotherapy, three-dimensional images are readily acquired and can be used to detect both translational and rotational setup errors. The purpose of this study is to determine the significance of rotational variations between two planning CT scans acquired for each of eight head and neck patients, who experienced substantial weight loss or tumor shrinkage. To this end, using a rigid body assumption, we developed an in-house computer program that utilizes matrix transformations to align point bony landmarks with an incremental best-fit routine. The program returns the quantified translational and rotational shifts needed to align the scans of each patient. The program was tested using a phantom for a set of known translational and rotational shifts. For comparison, a commercial treatment planning system was used to register the two CT scans and estimate the translational errors for these patients. For the eight patients, we found that the average magnitudes and standard deviations of the rotational shifts about the transverse, anterior-posterior, and longitudinal axes were 1.7±2.3 deg., 0.8±0.7 deg., and 1.8±1.1 deg., respectively. The average magnitudes and standard deviations of the translational shifts were 2.5±2.6 mm, 2.9±2.8 mm, 2.7±1.7 mm while the differences detected between our program and the CT-CT fusion method were 1.8±1.3 mm, 3.3±5.4 mm, and 3.0±3.4 mm in the left-right, anterior-posterior, and superior-inferior directions, respectively. A trend of larger rotational errors resulting in larger translational differences between the two methods was observed. In conclusion, conventional

  15. The dose distribution and DVH change analysis wing to effect of the patient setup error

    International Nuclear Information System (INIS)

    Kim, Kyung Tae; Ju, Sang Gyu; Ahn, Jae Hong; Park, Young Hwan

    2004-01-01

    The setup error due to the patient and the staff from radiation treatment as the reason which is important the treatment record could be decided is a possibility of effect. The SET-UP ERROR of the patient analyzes the effect of dose distribution and DVH from radiation treatment of the patient. This test uses human phantom and when C-T scan doing, It rotated the Left direction of the human phantom and it made SET-UP ERROR, Standard plan and 3 mm, 5 mm, 7 mm, 10 mm, 15 mm, 20 mm with to distinguish, it made the C-T scan error. With the result, The SET-UP ERROR got each C-T image Using RTP equipment It used the plan which is used generally from clinical - Box plan, 3 Dimension plan( identical angle 5beam plan) Also, ( CTV+1cm margin, CTV+0.5cm margin, CTV+0.3,cm margin = PTV) it distinguished the standard plan and each set-up error plan and the plan used a dose distribution and the DVH and it analyzed. The Box 4 the plan and 3 Dimension plan which it bites it got similar an dose distribution and DVH in 3 mm, 5 mm From rotation error and Rectilinear movement (0%-2%). Rotation error and rectilinear error 7 mm, 10 mm, 15 mm, 20 mm appeared effect it will go mad to a enough change in treatment (2%-11%) The diminishes the effect of the SET-UP ERROR must reduce move with tension of the patient Also, we are important accessory development and the supply that it reducing of reproducibility and the move.

  16. An evaluation of setup uncertainties for patients treated to pelvic sites

    International Nuclear Information System (INIS)

    Hunt, Margie A.; Schultheiss, Timothy E.; Desobry, Gregory E.; Hakki, Morgan; Hanks, Gerald E.

    1995-01-01

    Purpose: Successful delivery of conformal fields requires stringent immobilization and treatment verification, as well as knowledge of the setup reproducibility. The purpose of this study was to compare the three-dimensional distribution of setup variations for patients treated to pelvic sites with electronic portal imaging devices (EPID) and portal film. Methods and Materials: Nine patients with genitourinary and gynecological cancers immobilized with custom casts and treated with a four-field whole-pelvis technique were imaged daily using an EPID and filmed once every five to seven treatments. The three-dimensional translational and rotational setup errors were determined using a technique that relies on anatomical landmarks identified on simulation and treatment images. The distributions of the translational and rotational variations in each dimension as well as the total displacement of the treatment isocenter from the simulation isocenter were determined. Results: Grouped analysis of all patients revealed average unidirectional translational deviations of less than 2 mm and a standard deviation of 5.3 mm. The average total undirected distance between the treatment and simulated isocenters was 8.3 mm with a standard deviation of 5 mm. Individual patient analysis revealed eight of nine patients had statistically significant nonzero mean translational variations (p < 0.05). Translational variations measured with film were an average of 1.4 mm less than those measured with EPID, but this difference was not statistically significant. Conclusion: Translational variations measured in this study are in general agreement with previous studies. The use of the EPID in this study was less intrusive and may have resulted in less additional attention being given each imaging setup. This may explain the slightly larger average translational variations observed with EPID vs. film, and suggests that the use of EPIDs is a superior method for assessing the true extent of setup

  17. SU-E-T-463: Quantification of Rotational Variation in Mouse Setup for IGRT

    Energy Technology Data Exchange (ETDEWEB)

    McCarroll, R; Rubinstein, A; Kingsley, C; Yang, J; Yang, P; Court, L [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: New small-animal irradiators include extremely precise IGRT capabilities. However, mouse immobilization and localization remains a challenge. In particular, unlike week-to-week translational displacements, rotational changes in positioning are not easily corrected for in subject setup. Using two methods of setup, we aim to quantify week-to-week rotational variation in mice for the purpose of IGRT planning in small animal studies. Methods: Ten mice were imaged weekly using breath-hold CBCT (X-RAD 225 Cx), with the mouse positioned in a half-pipe support, providing 40 scans. A second group of two mice were positioned in a 3D printed immobilization device, which was created using a CT from a similarly shaped mouse, providing 10 scans. For each mouse, the first image was taken to be the reference image. Subsequent CT images were then rigidly registered, based on bony anatomy. Rotations in the axial (roll), sagittal (pitch), and coronal (yaw) planes were recorded and used to quantify variation in angular setup. Results: For the mice imaged in the half pipe, average magnitude of roll was found to be 5.4±4.6° (range: −12.9:18.86°), of pitch 1.6±1.3° (range: −1.4:4.7°), and of yaw 1.9±1.5° (range −5.4:1.1°). For the mice imaged in the printed setup; average magnitude of roll was found to be 0.64±0.6° (range: −2.1:1.0°), of pitch 0.6±0.4° (range: 0.0:1.3°), and of yaw 0.2±0.1° (range: 0.0:0.4°). The printed setup provided reduction in roll, pitch, and yaw by 88, 62, and 90 percent, respectively. Conclusion: For the typical setup routine, roll in mouse position is the dominant source of rotational variation. However, when a printed device was used, drastic improvements in mouse immobilization were seen. This work provides a promising foundation for mouse immobilization, required for full scale small animal IGRT. Currently, we are making improvements to allo±w the use of a similar system for MR, PET, and bioluminescence.

  18. SU-E-J-170: Dosimetric Consequences of Uncorrected Rotational Setup Errors During Stereotactic Body Radiation Therapy (SBRT) Treatment of Pancreatic Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Di Maso, L [Chicago, IL (United States); Forbang, R Teboh; Zhang, Y; Herman, J; Lee, J [John Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: To explore the dosimetric consequences of uncorrected rotational setup errors during SBRT for pancreatic cancer patients. Methods: This was a retrospective study utilizing data from ten (n=10) previously treated SBRT pancreas patients. For each original planning CT, we applied rotational transformations to derive additional CT images representative of possible rotational setup errors. This resulted in 6 different sets of rotational combinations, creating a total of 60 CT planning images. The patients’ clinical dosimetric plans were then applied to their corresponding rotated CT images. The 6 rotation sets encompassed a 3, 2 and 1-degree rotation in each rotational direction and a 3-degree in just the pitch, a 3-degree in just the yaw and a 3-degree in just the roll. After the dosimetric plan was applied to the rotated CT images, the resulting plan was then evaluated and compared with the clinical plan for tumor coverage and normal tissue sparing. Results: PTV coverage, defined here by V33 throughout all of the patients’ clinical plans, ranged from 92–98%. After an n degree rotation in each rotational direction that range decreased to 68–87%, 85–92%, and 88– 94% for n=3, 2 and 1 respectively. Normal tissue sparing defined here by the proximal stomach V15 throughout all of the patients’ clinical plans ranged from 0–8.9 cc. After an n degree rotation in each rotational direction that range increased to 0–17 cc, 0–12 cc, and 0–10 cc for n=3, 2, and 1 respectively. Conclusion: For pancreatic SBRT, small rotational setup errors in the pitch, yaw and roll direction on average caused under dosage to PTV and over dosage to proximal normal tissue. The 1-degree rotation was on average the least detrimental to the normal tissue and the coverage of the PTV. The 3-degree yaw created on average the lowest increase in volume coverage to normal tissue. This research was sponsored by the AAPM Education Council through the AAPM Education and Research

  19. MO-G-BRE-03: Automated Continuous Monitoring of Patient Setup with Second-Check Independent Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, X; Fox, T; Schreibmann, E [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA (United States)

    2014-06-15

    Purpose: To create a non-supervised quality assurance program to monitor image-based patient setup. The system acts a secondary check by independently computing shifts and rotations and interfaces with Varian's database to verify therapist's work and warn against sub-optimal setups. Methods: Temporary digitally-reconstructed radiographs (DRRs) and OBI radiographic image files created by Varian's treatment console during patient setup are intercepted and used as input in an independent registration module customized for accuracy that determines the optimal rotations and shifts. To deal with the poor quality of OBI images, a histogram equalization of the live images to the DDR counterparts is performed as a pre-processing step. A search for the most sensitive metric was performed by plotting search spaces subject to various translations and convergence analysis was applied to ensure the optimizer finds the global minima. Final system configuration uses the NCC metric with 150 histogram bins and a one plus one optimizer running for 2000 iterations with customized scales for translations and rotations in a multi-stage optimization setup that first corrects and translations and subsequently rotations. Results: The system was installed clinically to monitor and provide almost real-time feedback on patient positioning. On a 2 month-basis uncorrected pitch values were of a mean 0.016° with standard deviation of 1.692°, and couch rotations of − 0.090°± 1.547°. The couch shifts were −0.157°±0.466° cm for the vertical, 0.045°±0.286 laterally and 0.084°± 0.501° longitudinally. Uncorrected pitch angles were the most common source of discrepancies. Large variations in the pitch angles were correlated with patient motion inside the mask. Conclusion: A system for automated quality assurance of therapist's registration was designed and tested in clinical practice. The approach complements the clinical software's automated registration in

  20. MO-G-BRE-03: Automated Continuous Monitoring of Patient Setup with Second-Check Independent Image Registration

    International Nuclear Information System (INIS)

    Jiang, X; Fox, T; Schreibmann, E

    2014-01-01

    Purpose: To create a non-supervised quality assurance program to monitor image-based patient setup. The system acts a secondary check by independently computing shifts and rotations and interfaces with Varian's database to verify therapist's work and warn against sub-optimal setups. Methods: Temporary digitally-reconstructed radiographs (DRRs) and OBI radiographic image files created by Varian's treatment console during patient setup are intercepted and used as input in an independent registration module customized for accuracy that determines the optimal rotations and shifts. To deal with the poor quality of OBI images, a histogram equalization of the live images to the DDR counterparts is performed as a pre-processing step. A search for the most sensitive metric was performed by plotting search spaces subject to various translations and convergence analysis was applied to ensure the optimizer finds the global minima. Final system configuration uses the NCC metric with 150 histogram bins and a one plus one optimizer running for 2000 iterations with customized scales for translations and rotations in a multi-stage optimization setup that first corrects and translations and subsequently rotations. Results: The system was installed clinically to monitor and provide almost real-time feedback on patient positioning. On a 2 month-basis uncorrected pitch values were of a mean 0.016° with standard deviation of 1.692°, and couch rotations of − 0.090°± 1.547°. The couch shifts were −0.157°±0.466° cm for the vertical, 0.045°±0.286 laterally and 0.084°± 0.501° longitudinally. Uncorrected pitch angles were the most common source of discrepancies. Large variations in the pitch angles were correlated with patient motion inside the mask. Conclusion: A system for automated quality assurance of therapist's registration was designed and tested in clinical practice. The approach complements the clinical software's automated registration in

  1. Local Setup Reproducibility of the Spinal Column When Using Intensity-Modulated Radiation Therapy for Craniospinal Irradiation With Patient in Supine Position

    International Nuclear Information System (INIS)

    Stoiber, Eva Maria; Giske, Kristina; Schubert, Kai; Sterzing, Florian; Habl, Gregor; Uhl, Matthias; Herfarth, Klaus; Bendl, Rolf; Debus, Jürgen

    2011-01-01

    Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived from a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right–left and anterior–posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.

  2. A method for patient set-up guidance in radiotherapy using augmented reality

    International Nuclear Information System (INIS)

    Talbot, J.; Meyer, J.; Watts, R.; Grasset, R.

    2009-01-01

    Full text: A system for patient set-up in external beam radiotherapy was developed using Augmented Reality (AR). Live images of the linac treatment couch and patient were obtained with video cameras and displayed on a nearby monitor. A 3D model of the patient's external contour was obtained from planning CT data, and AR tracking software was used to superimpose the model onto the video images in the correct position for treatment. Throughout set-up and treatment, the user can view the monitor and visually confirm that the patient is positioned correctly. To ensure that the virtual contour was displayed in the correct position, a process was devised to register the coordinates of the linac with the camera images. A cube with AR tracking markers attached to its faces was constructed for alignment with the isocentre using room lasers or cone-beam CT. The performance of the system was investigated in a clinical environment by using it to position an anthropomorphic phantom without the aid of additional set-up methods. The positioning errors were determined by means of CBCT and image registration. The translational set-up errors were found to be less than 2.4 mm and the rotational errors less than 0.3 0 . This proof-of-principle study has demonstrated the feasibility of using AR for patient position and pose guidance.

  3. Local Setup Reproducibility of the Spinal Column When Using Intensity-Modulated Radiation Therapy for Craniospinal Irradiation With Patient in Supine Position

    Energy Technology Data Exchange (ETDEWEB)

    Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de [Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg (Germany); Department of Medical Physics, German Cancer Research Center, Heidelberg (Germany); Giske, Kristina [Department of Medical Physics, German Cancer Research Center, Heidelberg (Germany); Schubert, Kai; Sterzing, Florian; Habl, Gregor; Uhl, Matthias; Herfarth, Klaus [Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg (Germany); Bendl, Rolf [Department of Medical Physics, German Cancer Research Center, Heidelberg (Germany); Medical Informatics, Heilbronn University, Heilbronn (Germany); Debus, Juergen [Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg (Germany)

    2011-12-01

    Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived from a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.

  4. SU-E-J-21: Setup Variability of Colorectal Cancer Patients Treated in the Prone Position and Dosimetric Comparison with the Supine Position

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A; Foster, J; Chu, W; Karotki, A [Sunnybrook Health Sciences Centre/Odette Cancer Centre, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: Many cancer centers treat colorectal patients in the prone position on a belly board to minimize dose to the small bowel. That may potentially Result in patient setup instability with corresponding impact on dose delivery accuracy for highly conformal techniques such as IMRT/VMAT. Two aims of this work are 1) to investigate setup accuracy of rectum patients treated in the prone position on a belly board using CBCT and 2) to evaluate dosimetric impact on bladder and small bowel of treating rectum patients in supine vs. prone position. Methods: For the setup accuracy study, 10 patients were selected. Weekly CBCTs were acquired and matched to bone. The CBCT-determined shifts were recorded. For the dosimetric study, 7 prone-setup patients and 7 supine-setup patients were randomly selected from our clinical database. Various clinically relevant dose volume histogram values were recorded for the small bowel and bladder. Results: The CBCT-determined rotational shifts had a wide variation. For the dataset acquired at the time of this writing, the ranges of rotational setup errors for pitch, roll, and yaw were [−3.6° 4.7°], [−4.3° 3.2°], and [−1.4° 1.4°]. For the dosimetric study: the small bowel V(45Gy) and mean dose for the prone position was 5.6±12.1% and 18.4±6.2Gy (ranges indicate standard deviations); for the supine position the corresponding dose values were 12.9±15.8% and 24.7±8.8Gy. For the bladder, the V(30Gy) and mean dose for prone position were 68.7±12.7% and 38.4±3.3Gy; for supine position these dose values were 77.1±13.7% and 40.7±3.1Gy. Conclusion: There is evidence of significant rotational instability in the prone position. The OAR dosimetry study indicates that there are some patients that may still benefit from the prone position, though many patients can be safely treated supine.

  5. Setup Variations in Radiotherapy of Esophageal Cancer: Evaluation by Daily Megavoltage Computed Tomographic Localization

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Han Chunhui; Liu An; Schultheiss, Timothy E.; Kernstine, Kemp H.; Shibata, Stephen; Vora, Nayana L.; Pezner, Richard D.; Wong, Jeffrey Y.C.

    2007-01-01

    Purpose: To use pretreatment megavoltage computed tomography (MVCT) scans to evaluate setup variations in anterior-posterior (AP), lateral, and superior-inferior (SI) directions and rotational variations, including pitch, roll, and yaw, for esophageal cancer patients treated with helical tomotherapy. Methods and Materials: Ten patients with locally advanced esophageal cancer treated by combined chemoradiation using helical tomotherapy were selected. After patients were positioned using their skin tattoos/marks, MVCT scans were performed before every treatment and automatically registered to planning kilovoltage CT scans according to bony landmarks. Image registration data were used to adjust patient setups before treatment. A total of 250 MVCT scans were analyzed. Correlations between setup variations and body habitus, including height, weight, relative weight change, body surface area, and patient age, were evaluated. Results: The standard deviations for systematic setup corrections in AP, lateral, and SI directions and pitch, roll, and yaw rotations were 1.5, 3.7, and 4.8 mm and 0.5 deg., 1.2 deg., and 0.8 deg., respectively. The appropriate averages of random setup variations in AP, lateral, and SI directions and pitch, roll, and yaw rotations were 2.9, 5.2, and 4.4 mm, and 1.0 deg., 1.2 deg., and 1.1 deg., respectively. Setup variations were stable throughout the entire course of radiotherapy in all three translational and three rotational displacements, with little change in magnitude. No significant correlations were found between setup variations and body habitus variables. Conclusions: Daily MVCT scans before each treatment can effectively detect setup errors and thereby reduce planning target volume (PTV) margins. This will reduce radiation dose to critical organs and may translate into lower treatment-related toxicities

  6. Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    International Nuclear Information System (INIS)

    Rudat, Volker; Hammoud, Mohamed; Pillay, Yogin; Alaradi, Abdul Aziz; Mohamed, Adel; Altuwaijri, Saleh

    2011-01-01

    The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM). Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT) or three-dimensional conformal radiotherapy (3D-CRT) of the head and neck (n = 31), chest (n = 72), abdomen (n = 15), and pelvis (n = 30) were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV). In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day. The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day. In patients where high set-up accuracy is desired, daily online verification is highly recommended

  7. Rotational patient setup errors in IGRT with XVI system in Elekta Synergy and their clinical relevance

    International Nuclear Information System (INIS)

    Madhusudhana Sresty, N.V.N.; Muralidhar, K.R.; Raju, A.K.; Sha, R.L.; Ramanjappa

    2008-01-01

    The goal of Image Guided Radiotherapy (IGRT) is to improve the accuracy of treatment delivery. In this technique, it is possible to get volumetric images of patient anatomy before delivery of treatment.XVI( release 3.5) system in Elekta Synergy linear accelerator (Elekta,Crawley,UK) has the potential to ensure that, the relative positions of the target volume is same as in the treatment plan. It involves acquiring planar images produced by a kilo Voltage cone beam rotating about the patient in the treatment position. After 3 dimensional match between reference and localization images, the system gives rotational errors also along with translational shifts. One can easily perform translational shifts with treatment couch. But rotational shifts cannot be performed. Most of the studies dealt with translational shifts only. Few studies reported regarding rotational errors. It is found that in the treatment of elongated targets, even small rotational errors can show difference in results. The main objectives of this study is 1) To verify the magnitude of rotational errors in different clinical sites observed and to compare with the other reports. 2) To find its clinical relevance 3) To find difference in rotational shift results with improper selection of kV collimator

  8. Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    Directory of Open Access Journals (Sweden)

    Mohamed Adel

    2011-08-01

    Full Text Available Abstract Purpose The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM. Methods and materials Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT or three-dimensional conformal radiotherapy (3D-CRT of the head and neck (n = 31, chest (n = 72, abdomen (n = 15, and pelvis (n = 30 were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV. In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day. Results The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day. Conclusion In patients where high set-up accuracy is desired, daily online verification is highly recommended.

  9. Three-dimensional patient setup errors at different treatment sites measured by the Tomotherapy megavoltage CT

    Energy Technology Data Exchange (ETDEWEB)

    Hui, S.K.; Lusczek, E.; Dusenbery, K. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Therapeutic Radiology - Radiation Oncology; DeFor, T. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Biostatistics and Informatics Core; Levitt, S. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Therapeutic Radiology - Radiation Oncology; Karolinska Institutet, Stockholm (Sweden). Dept. of Onkol-Patol

    2012-04-15

    Reduction of interfraction setup uncertainty is vital for assuring the accuracy of conformal radiotherapy. We report a systematic study of setup error to assess patients' three-dimensional (3D) localization at various treatment sites. Tomotherapy megavoltage CT (MVCT) images were scanned daily in 259 patients from 2005-2008. We analyzed 6,465 MVCT images to measure setup error for head and neck (H and N), chest/thorax, abdomen, prostate, legs, and total marrow irradiation (TMI). Statistical comparisons of the absolute displacements across sites and time were performed in rotation (R), lateral (x), craniocaudal (y), and vertical (z) directions. The global systematic errors were measured to be less than 3 mm in each direction with increasing order of errors for different sites: H and N, prostate, chest, pelvis, spine, legs, and TMI. The differences in displacements in the x, y, and z directions, and 3D average displacement between treatment sites were significant (p < 0.01). Overall improvement in patient localization with time (after 3-4 treatment fractions) was observed. Large displacement (> 5 mm) was observed in the 75{sup th} percentile of the patient groups for chest, pelvis, legs, and spine in the x and y direction in the second week of the treatment. MVCT imaging is essential for determining 3D setup error and to reduce uncertainty in localization at all anatomical locations. Setup error evaluation should be performed daily for all treatment regions, preferably for all treatment fractions. (orig.)

  10. Influence of rotational setup error on tumor shift in bony anatomy matching measured with pulmonary point registration in stereotactic body radiotherapy for early lung cancer

    International Nuclear Information System (INIS)

    Suzuki, Osamu; Nishiyama, Kinji; Ueda, Yoshihiro; Miyazaki, Masayoshi; Tsujii, Katsutomo

    2012-01-01

    The objective of this study was to examine the correlation between the patient rotational error measured with pulmonary point registration and tumor shift after bony anatomy matching in stereotactic body radiotherapy for lung cancer. Twenty-six patients with lung cancer who underwent stereotactic body radiotherapy were the subjects. On 104 cone-beam computed tomography measurements performed prior to radiation delivery, rotational setup errors were measured with point registration using pulmonary structures. Translational registration using bony anatomy matching was done and the three-dimensional vector of tumor displacement was measured retrospectively. Correlation among the three-dimensional vector and rotational error and vertebra-tumor distance was investigated quantitatively. The median and maximum rotational errors of the roll, pitch and yaw were 0.8, 0.9 and 0.5, and 6.0, 4.5 and 2.5, respectively. Bony anatomy matching resulted in a 0.2-1.6 cm three-dimensional vector of tumor shift. The shift became larger as the vertebra-tumor distance increased. Multiple regression analysis for the three-dimensional vector indicated that in the case of bony anatomy matching, tumor shifts of 5 and 10 mm were expected for vertebra-tumor distances of 4.46 and 14.1 cm, respectively. Using pulmonary point registration, it was found that the rotational setup error influences the tumor shift. Bony anatomy matching is not appropriate for hypofractionated stereotactic body radiotherapy with a tight margin. (author)

  11. Registration quality evaluator: application to automated patient setup verification in radiotherapy

    Science.gov (United States)

    Wu, Jian; Samant, Sanjiv S.

    2004-05-01

    An image registration quality evaluator (RQE) is proposed to automatically quantify the accuracy of registrations. The RQE, based on an adaptive pattern classifier, is generated from a pair of reference and target images. It is unique to each patient, anatomical site and imaging modality. RQE is applied to patient positioning in cranial radiotherapy using portal/portal and portal/DRR registrations. We adopted 1mm translation and 1° rotation as the maximal acceptable registration errors, reflecting typical clinical setup tolerances. RQE is used to determine the acceptability of a registration. The performance of RQE was evaluated using phantom images containing radio-opaque fiducial markers. Using receiver operating characteristic (ROC) analysis, we estimated the sensitivity and the specificity of the RQE are 0.95 (with 0.89-0.98 confidence interval (CI) at 95% significance level) and 0.95 (with 0.88-0.98 CI at 95% significance level) respectively for intramodal RQE. For intermodal RQE, the sensitivity and the specificity are 0.92 (with 0.81-0.98 CI at 95% significance level) and 0.98 (with 0.89-0.99 CI at 95% significance level) respectively. Clinical use of RQE could significantly reduce the involvement of the oncologist for routine pre-treatment patient positioning verification, while increasing setup accuracy.

  12. Comparison of setup accuracy between exactrac X-ray 6 dimensions and cone-beam computed tomography for intracranial and pelvic image-guided radiotherapy

    International Nuclear Information System (INIS)

    Kudo, Tsuyoshi; Ono, Kaoru; Furukawa, Kengo; Fujimoto, Sachie; Akagi, Yukio; Koyama, Tadashi; Hirokawa, Yutaka

    2012-01-01

    The aim of this study was to compare the setup difference measured with ExacTrac X-ray 6D (ETX6D) and cone-beam computed tomography (CBCT) for non-invasive fractionated radiotherapy. Setup data were collected on a Novalis Tx treatment unit for both a head phantom and patients with intracranial tumors and a pelvic phantom and patients with prostate cancer. Initially, setup was done for a phantom using ETX6D. Secondly, a treatment couch was shifted or rotated by each already known value. Thirdly, ETX6D and CBCT scans were obtained. Finally, setup difference was determined: the registrations of ETX6D images with the corresponding digitally reconstructed radiographs using ETX6D fusion, and registrations of CBCT images with the planning CT using online 6D fusion. The setup difference between ETX6D and CBCT was compared. The impact of shifts and rotations on the difference was evaluated. Patients' setup data was similarly analyzed. In phantom experiments, the root mean square (RMS) of difference of the shift and rotation was less than 0.45 mm for translations, and 0.17 degrees for rotations. In intracranial patients' data, the RMS of that was 0.55 mm and 0.44 degree, respectively. In prostate cancer patients' data, the RMS of that was 0.77 mm and 0.79 degree, respectively. In this study, we observed modest setup differences between ETX6D and CBCT. These differences were generally less than 1.00 mm for translations, and 1.00 degrees for rotations, respectively. (author)

  13. SU-F-J-24: Setup Uncertainty and Margin of the ExacTrac 6D Image Guide System for Patients with Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Oh, S; Yea, J; Park, J [Yeungnam University Medical Center, Daegu, Daegu (Korea, Republic of)

    2016-06-15

    Purpose: This study evaluated the setup uncertainties for brain sites when using BrainLAB’s ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Methods: Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27–33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Results: Optimal PTV margins were calculated based on van Herk et al.’s [margin recipe = 2.5∑ + 0.7σ − 3 mm] and Stroom et al.’s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.’s and Stroom et al.’s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Conclusion: Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.∑σ.

  14. Application of video imaging for improvement of patient set-up

    International Nuclear Information System (INIS)

    Ploeger, Lennert S.; Frenay, Michel; Betgen, Anja; Bois, Josien A. de; Gilhuijs, Kenneth G.A.; Herk, Marcel van

    2003-01-01

    Background and purpose: For radiotherapy of prostate cancer, the patient is usually positioned in the left-right (LR) direction by aligning a single marker on the skin with the projection of a room laser. The aim of this study is to investigate the feasibility of a room-mounted video camera in combination with previously acquired CT data to improve patient set-up along the LR axis. Material and methods: The camera was mounted in the treatment room at the caudal side of the patient. For 22 patients with prostate cancer 127 video and portal images were acquired. The set-up error determined by video imaging was found by matching video images with rendered CT images using various techniques. This set-up error was retrospectively compared with the set-up error derived from portal images. It was investigated whether the number of corrections based on portal imaging would decrease if the information obtained from the video images had been used prior to irradiation. Movement of the skin with respect to bone was quantified using an analysis of variance method. Results: The measurement of the set-up error was most accurate for a technique where outlines and groins on the left and right side of the patient were delineated and aligned individually to the corresponding features extracted from the rendered CT image. The standard deviations (SD) of the systematic and random components of the set-up errors derived from the portal images in the LR direction were 1.5 and 2.1 mm, respectively. When the set-up of the patients was retrospectively adjusted based on the video images, the SD of the systematic and random errors decreased to 1.1 and 1.3 mm, respectively. From retrospective analysis, a reduction of the number of set-up corrections (from nine to six corrections) is expected when the set-up would have been adjusted using the video images. The SD of the magnitude of motion of the skin of the patient with respect to the bony anatomy was estimated to be 1.1 mm. Conclusion: Video

  15. Rotation of the Sacrum During Bellyboard Pelvic Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, Mladen; Faj, Dario; Ivkovic, Ana; Jurkovic, Slaven; Belaj, Nenad

    2010-01-01

    Patients with cervical, uterine, and rectal carcinomas are usually treated in the prone position using the bellyboard positioning device. Specific and uncomfortable prone position gives rise to uncertainties in the daily set-up of patients during the treatment. During investigation of translational movements, rotational movements of the pelvis are observed and investigated. The film portal imaging is used to discover patient positioning errors during treatment. We defined the rotational set-up errors by angle deviations of the sacrum. Thirty-six patients were included in the study; 15 patients were followed during the whole treatment and 21 during the first 5 consecutive treatment days. The image acquisitions were completed in 84%. Systematic and random positioning errors were analyzed in 725 images. Approximately half of the patients had adjusted to the bellyboard in the first few fractions, with sacrum angles remaining the same for the rest of the treatment. The other half had drifts of the sacrum angle during the whole treatment. The rotation of the sacrum during treatment ranged up to 14 deg., causing the usual set-up verification and correction procedure to result in errors up to 15 mm. Rotational movements of the patient pelvis during bellyboard pelvis radiotherapy can introduce considerable patient position error.

  16. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    Energy Technology Data Exchange (ETDEWEB)

    Li, S; Charpentier, P; Sayler, E; Micaily, B; Miyamoto, C [Temple University Hospital, Phila., PA (United States); Geng, J [Xigen LLC, Gaithersburg, MD (United States)

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection and principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable

  17. Couch height–based patient setup for abdominal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Shingo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Ueda, Yoshihiro [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita (Japan); Nishiyama, Kinji [Department of Radiation Oncology, Yao Municipal Hospital, Yao (Japan); Miyazaki, Masayoshi; Isono, Masaru; Tsujii, Katsutomo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Kawanabe, Kiyoto [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Teshima, Teruki, E-mail: teshima-te@mc.pref.osaka.jp [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan)

    2016-04-01

    There are 2 methods commonly used for patient positioning in the anterior-posterior (A-P) direction: one is the skin mark patient setup method (SMPS) and the other is the couch height–based patient setup method (CHPS). This study compared the setup accuracy of these 2 methods for abdominal radiation therapy. The enrollment for this study comprised 23 patients with pancreatic cancer. For treatments (539 sessions), patients were set up by using isocenter skin marks and thereafter treatment couch was shifted so that the distance between the isocenter and the upper side of the treatment couch was equal to that indicated on the computed tomographic (CT) image. Setup deviation in the A-P direction for CHPS was measured by matching the spine of the digitally reconstructed radiograph (DRR) of a lateral beam at simulation with that of the corresponding time-integrated electronic portal image. For SMPS with no correction (SMPS/NC), setup deviation was calculated based on the couch-level difference between SMPS and CHPS. SMPS/NC was corrected using 2 off-line correction protocols: no action level (SMPS/NAL) and extended NAL (SMPS/eNAL) protocols. Margins to compensate for deviations were calculated using the Stroom formula. A-P deviation > 5 mm was observed in 17% of SMPS/NC, 4% of SMPS/NAL, and 4% of SMPS/eNAL sessions but only in one CHPS session. For SMPS/NC, 7 patients (30%) showed deviations at an increasing rate of > 0.1 mm/fraction, but for CHPS, no such trend was observed. The standard deviations (SDs) of systematic error (Σ) were 2.6, 1.4, 0.6, and 0.8 mm and the root mean squares of random error (σ) were 2.1, 2.6, 2.7, and 0.9 mm for SMPS/NC, SMPS/NAL, SMPS/eNAL, and CHPS, respectively. Margins to compensate for the deviations were wide for SMPS/NC (6.7 mm), smaller for SMPS/NAL (4.6 mm) and SMPS/eNAL (3.1 mm), and smallest for CHPS (2.2 mm). Achieving better setup with smaller margins, CHPS appears to be a reproducible method for abdominal patient setup.

  18. Fast evaluation of patient set-up during radiotherapy by aligning features in portal and simulator images

    International Nuclear Information System (INIS)

    Bijhold, J.; Herk, M. van; Vijlbrief, R.; Lebesque, J.V.

    1991-01-01

    A new fast method is presented for the quantification of patient set-up errors during radiotherapy with external photon beams. The set-up errors are described as deviations in relative position and orientation of specified anatomical structures relative to specified field shaping devices. These deviations are determined from parameters of the image transformations that make their features in a portal image align with the corresponding features in a simulator image. Knowledge of some set-up parameters during treatment simulation is required. The method does not require accurate knowledge about the position of the portal imaging device as long as the positions of some of the field shaping devices are verified independently during treatment. By applying this method, deviations in a pelvic phantom set-up can be measured with a precision of 2 mm within 1 minute. Theoretical considerations and experiments have shown that the method is not applicable when there are out-of-plane rotations larger than 2 degrees or translations larger than 1 cm. Inter-observer variability proved to be a source of large systematic errors, which could be reduced by offering a precise protocol for the feature alignment. (author)

  19. Measuring uncertainty in dose delivered to the cochlea due to setup error during external beam treatment of patients with cancer of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Yan, M.; Lovelock, D.; Hunt, M.; Mechalakos, J.; Hu, Y.; Pham, H.; Jackson, A., E-mail: jacksona@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)

    2013-12-15

    Purpose: To use Cone Beam CT scans obtained just prior to treatments of head and neck cancer patients to measure the setup error and cumulative dose uncertainty of the cochlea. Methods: Data from 10 head and neck patients with 10 planning CTs and 52 Cone Beam CTs taken at time of treatment were used in this study. Patients were treated with conventional fractionation using an IMRT dose painting technique, most with 33 fractions. Weekly radiographic imaging was used to correct the patient setup. The authors used rigid registration of the planning CT and Cone Beam CT scans to find the translational and rotational setup errors, and the spatial setup errors of the cochlea. The planning CT was rotated and translated such that the cochlea positions match those seen in the cone beam scans, cochlea doses were recalculated and fractional doses accumulated. Uncertainties in the positions and cumulative doses of the cochlea were calculated with and without setup adjustments from radiographic imaging. Results: The mean setup error of the cochlea was 0.04 ± 0.33 or 0.06 ± 0.43 cm for RL, 0.09 ± 0.27 or 0.07 ± 0.48 cm for AP, and 0.00 ± 0.21 or −0.24 ± 0.45 cm for SI with and without radiographic imaging, respectively. Setup with radiographic imaging reduced the standard deviation of the setup error by roughly 1–2 mm. The uncertainty of the cochlea dose depends on the treatment plan and the relative positions of the cochlea and target volumes. Combining results for the left and right cochlea, the authors found the accumulated uncertainty of the cochlea dose per fraction was 4.82 (0.39–16.8) cGy, or 10.1 (0.8–32.4) cGy, with and without radiographic imaging, respectively; the percentage uncertainties relative to the planned doses were 4.32% (0.28%–9.06%) and 10.2% (0.7%–63.6%), respectively. Conclusions: Patient setup error introduces uncertainty in the position of the cochlea during radiation treatment. With the assistance of radiographic imaging during setup

  20. Local setup errors in image-guided radiotherapy for head and neck cancer patients immobilized with a custom-made device.

    Science.gov (United States)

    Giske, Kristina; Stoiber, Eva M; Schwarz, Michael; Stoll, Armin; Muenter, Marc W; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E; Thieke, Christian; Bendl, Rolf

    2011-06-01

    To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the future. Copyright © 2011 Elsevier Inc. All rights

  1. Precision assessment of model-based RSA for a total knee prosthesis in a biplanar set-up.

    Science.gov (United States)

    Trozzi, C; Kaptein, B L; Garling, E H; Shelyakova, T; Russo, A; Bragonzoni, L; Martelli, S

    2008-10-01

    Model-based Roentgen Stereophotogrammetric Analysis (RSA) was recently developed for the measurement of prosthesis micromotion. Its main advantage is that markers do not need to be attached to the implants as traditional marker-based RSA requires. Model-based RSA has only been tested in uniplanar radiographic set-ups. A biplanar set-up would theoretically facilitate the pose estimation algorithm, since radiographic projections would show more different shape features of the implants than in uniplanar images. We tested the precision of model-based RSA and compared it with that of the traditional marker-based method in a biplanar set-up. Micromotions of both tibial and femoral components were measured with both the techniques from double examinations of patients participating in a clinical study. The results showed that in the biplanar set-up model-based RSA presents a homogeneous distribution of precision for all the translation directions, but an inhomogeneous error for rotations, especially internal-external rotation presented higher errors than rotations about the transverse and sagittal axes. Model-based RSA was less precise than the marker-based method, although the differences were not significant for the translations and rotations of the tibial component, with the exception of the internal-external rotations. For both prosthesis components the precisions of model-based RSA were below 0.2 mm for all the translations, and below 0.3 degrees for rotations about transverse and sagittal axes. These values are still acceptable for clinical studies aimed at evaluating total knee prosthesis micromotion. In a biplanar set-up model-based RSA is a valid alternative to traditional marker-based RSA where marking of the prosthesis is an enormous disadvantage.

  2. Analysis of patient setup accuracy using electronic portal imaging device

    International Nuclear Information System (INIS)

    Onogi, Yuzo; Aoki, Yukimasa; Nakagawa, Keiichi

    1996-01-01

    Radiation therapy is performed in many fractions, and accurate patient setup is very important. This is more significant nowadays because treatment planning and radiation therapy are more precisely performed. Electronic portal imaging devices and automatic image comparison algorithms let us analyze setup deviations quantitatively. With such in mind we developed a simple image comparison algorithm. Using 2459 electronic verification images (335 ports, 123 treatment sites) generated during the past three years at our institute, we evaluated the results of the algorithm, and analyzed setup deviations according to the area irradiated, use of a fixing device (shell), and arm position. Calculated setup deviation was verified visually and their fitness was classified into good, fair, bad, and incomplete. The result was 40%, 14%, 22%, 24% respectively. Using calculated deviations classified as good (994 images), we analyzed setup deviations. Overall setup deviations described in 1 SD along axes x, y, z, was 1.9 mm, 2.5 mm, 1.7 mm respectively. We classified these deviations into systematic and random components, and found that random error was predominant in our institute. The setup deviations along axis y (cranio-caudal direction) showed larger distribution when treatment was performed with the shell. Deviations along y (cranio-caudal) and z (anterior-posterior) had larger distribution when treatment occurred with the patient's arm elevated. There was a significant time-trend error, whose deviations become greater with time. Within all evaluated ports, 30% showed a time-trend error. Using an electronic portal imaging device and automatic image comparison algorithm, we are able to analyze setup deviations more precisely and improve setup method based on objective criteria. (author)

  3. Evaluation of setup accuracy for NSCLC patients; studying the impact of different types of cone-beam CT matches based on whole thorax, columna vertebralis, and GTV

    DEFF Research Database (Denmark)

    Ottosson, W.; Baker, M.; Hedman, Mattias

    2010-01-01

    Purpose. The aim of this study is to evaluate the patient setup accuracy by investigating the impact of different types of CBCT matches, performed with 3 (translations only) or 6 (including rotations) degrees-of-freedom (DOF). The purpose is also to calculate and compare CTV to PTV margins based...

  4. Analysis of Prostate Patient Setup and Tracking Data: Potential Intervention Strategies

    International Nuclear Information System (INIS)

    Su Zhong; Zhang Lisha; Murphy, Martin; Williamson, Jeffrey

    2011-01-01

    Purpose: To evaluate the setup, interfraction, and intrafraction organ motion error distributions and simulate intrafraction intervention strategies for prostate radiotherapy. Methods and Materials: A total of 17 patients underwent treatment setup and were monitored using the Calypso system during radiotherapy. On average, the prostate tracking measurements were performed for 8 min/fraction for 28 fractions for each patient. For both patient couch shift data and intrafraction organ motion data, the systematic and random errors were obtained from the patient population. The planning target volume margins were calculated using the van Herk formula. Two intervention strategies were simulated using the tracking data: the deviation threshold and period. The related planning target volume margins, time costs, and prostate position 'fluctuation' were presented. Results: The required treatment margin for the left-right, superoinferior, and anteroposterior axes was 8.4, 10.8, and 14.7 mm for skin mark-only setup and 1.3, 2.3, and 2.8 mm using the on-line setup correction, respectively. Prostate motion significantly correlated among the superoinferior and anteroposterior directions. Of the 17 patients, 14 had prostate motion within 5 mm of the initial setup position for ≥91.6% of the total tracking time. The treatment margin decreased to 1.1, 1.8, and 2.3 mm with a 3-mm threshold correction and to 0.5, 1.0, and 1.5 mm with an every-2-min correction in the left-right, superoinferior, and anteroposterior directions, respectively. The periodic corrections significantly increase the treatment time and increased the number of instances when the setup correction was made during transient excursions. Conclusions: The residual systematic and random error due to intrafraction prostate motion is small after on-line setup correction. Threshold-based and time-based intervention strategies both reduced the planning target volume margins. The time-based strategies increased the

  5. Patients setup verification tool for RT (PSVTs): DRR, simulation, portal and digital images

    International Nuclear Information System (INIS)

    Lee, Suk; Seong, Jin Sil; Chu, Sung Sil; Lee, Chang Geol; Suh, Chang Ok; Kwon, Soo Il

    2003-01-01

    To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproducibility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (MRT). The utilization of this system is evaluated through phantom and patient case studies. We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, portal and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT The results show that the localization errors are 0.8±0.2 mm (AP) and 1.0±0.3 mm (Lateral) in the cases relating to the brain and 1.1± 0.5 mm (AP) and 1.0±0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software. A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproducibility of the patients' setup in 3DCRT and IMRT

  6. An analysis of anatomic landmark mobility and setup errors in radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Samson, M.J.; Soernsen de Koste, J.R. van; Boer, J.C.J. de; Tankink, J.J.; Verstraate, M.B.J.; Essers, M.; Visser, A.G.; Senan, S.

    1997-01-01

    Purpose: To identify visible structures in the thorax which exhibit little internal motion during irradiation and, to determine random and systematic setup deviations in lung cancer patients with the use of these structures. Methods: Ten patients with lung cancer were set up in the supine position, and aligned using lasers. No immobilization devices were used. With an electronic portal imaging device (Siemens Beam View PLUS ), 12 sequential images (exposure 0.54 sec.; processing time 1.5 sec.) were obtained during a single fraction of radiotherapy. These 'movie loops' were generated for the A-P fields during each of 3-5 fractions. In order to determine the mobility of internal structures during each fraction, visible structures such as the trachea, carina, the upper chest wall, aortic arch, clavicle and paraspinal line were contoured manually in each image and matched with the first image of the corresponding movie loop by means of a cross-correlation algorithm. Translations in the cranial and lateral directions and in-plane rotations were determined for each structure separately. As the reference image represents a random position, relative movements were determined by comparing the translations and rotation for every image to the calculated means per movie-loop. Standard deviations of the relative movements were determined for each structure and each patient. Patient setup was evaluated for 15 patients with lung cancer. Setup was not corrected at any time during the treatment. The electronic portal images of each fraction were matched with the digitized simulator films by using a combination of the structures which had been determined to be relatively stable in the infra-fractional analysis. Results: In the infra-fractional analysis 120 to 380 matches were made per structure (a total of 1400). The standard deviation (SD) of translations in the lateral direction was small (≤1 mm) for the trachea, thoracic wall, paraspinal line and aortic arch. This was also the

  7. Preliminary Results on Setup Precision of Prone-Lateral Patient Positioning for Whole Breast Irradiation

    International Nuclear Information System (INIS)

    Veldeman, Liv; Speleers, Bruno; Bakker, Marlies; Jacobs, Filip; Coghe, Marc; De Gersem, Werner; Impens, Aline; Nechelput, Sarah; De Wagter, Carlos

    2010-01-01

    Purpose: The aim of this study was to develop a rapid and reproducible technique for prone positioning and to compare dose-volume indices in prone and supine positions. Methods and Materials: Eighteen patients underwent computed tomography imaging for radiotherapy planning in prone and supine position. Experience was gained in the first eight patients, which lead to modifications of the Horizon prone breast board (Civco Medical Solutions, Orange City, Iowa, USA) and the patient setup technique. A unilateral breast holder (U-BH) was developed (Van de Velde, Schellebelle, Belgium) to retract the contralateral breast away from the treated breast. The technique was then applied to an additional 10 patients. The setup precision was evaluated using daily cone-beam CT. Results: Modifications to the breast board were made to secure a prone-lateral rather then a pure prone position. We evolved from a classical setup using laser marks on the patients' body to a direct breast setup using marks on the breast only. The setup precision of the direct positioning procedure with the modified breast board and the U-BH is comparable to supine setup data in the literature. Dose-volume indices for heart and lung show significantly better results for prone than for supine position, and dose homogeneity within the treated breast did not differ according to the treatment position. Conclusions: The setup precision of our prone-lateral positioning technique is comparable to supine data in literature. Our data show the advantage of prone radiotherapy to spare the lung and heart. Further research is necessary to reduce the duration of prone setup.

  8. Interfractional Variations in Patient Setup and Anatomic Change Assessed by Daily Computed Tomography

    International Nuclear Information System (INIS)

    Li, X. Allen; Qi, X. Sharon; Pitterle, Marissa; Kalakota, Kapila; Mueller, Kevin; Erickson, Beth A.; Wang Dian; Schultz, Christopher J.; Firat, Selim Y.; Wilson, J. Frank

    2007-01-01

    Purpose: To analyze the interfractional variations in patient setup and anatomic changes at seven anatomic sites observed in image-guided radiotherapy. Methods and Materials: A total of 152 patients treated at seven anatomic sites using a Hi-Art helical tomotherapy system were analyzed. Daily tomotherapy megavoltage computed tomography images acquired before each treatment were fused to the planning kilovoltage computed tomography images to determine the daily setup errors and organ motions and deformations. The setup errors were corrected before treatment and were used, along with the organ motions, to determine the clinical target volume/planning target volume margins. The organ motions and deformations for 3 representative patient cases (pancreas, uterus, and soft-tissue sarcoma) and for 14 kidneys of 7 patients are presented. Results: Interfractional setup errors in the skull, brain, and head and neck are significantly smaller than those in the chest, abdomen, pelvis, and extremities. These site-specific relationships are statistically significant. The margins required to account for these setup errors range from 3 to 8 mm for the seven sites. The margin to account for both setup errors and organ motions for kidney is 16 mm. Substantial interfractional anatomic changes were observed. For example, the pancreas moved up to ±20 mm and volumes of the uterus and sarcoma varied ≤30% and 100%, respectively. Conclusion: The interfractional variations in patient setup and in shapes, sizes, and positions of both targets and normal structures are site specific and may be used to determine the site-specific margins. The data presented in this work dealing with seven anatomic sites may be useful in developing adaptive radiotherapy

  9. SU-F-P-23: Setup Uncertainties for the Lung Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q; Vigneri, P; Madu, C; Potters, L [Northwell Health, New Hyde Park, NY (United States); Cao, Y; Jamshidi, A [Northwell Health, Lake Success, NY (United States); Klein, E [Long Island Jewish Medical Center, Lake Success, NY (United States)

    2016-06-15

    Purpose: The Exactrack X-ray system with six degree-of-freedom (6DoF) adjustment ability can be used for setup of lung stereotactic body radiation therapy. The setup uncertainties from ExacTrack 6D system were analyzed. Methods: The Exactrack X-ray 6D image guided radiotherapy system is used in our clinic. The system is an integration of 2 subsystems: (1): an infrared based optical position system and (2) a radiography kV x-ray imaging system. The infrared system monitors reflective body markers on the patient’s skin to assistant in the initial setup. The radiographic kV devices were used for patient positions verification and adjustment. The position verification was made by fusing the radiographs with the digitally reconstructed radiograph (DRR) images generated by simulation CT images using 6DoF fusion algorithms. Those results were recorded in our system. Gaussian functions were used to fit the data. Results: For 37 lung SBRT patients, the image registration results for the initial setup by using surface markers and for the verifications, were measured. The results were analyzed for 143 treatments. The mean values for the lateral, longitudinal, vertical directions were 0.1, 0.3 and 0.3mm, respectively. The standard deviations for the lateral, longitudinal and vertical directions were 0.62, 0.78 and 0.75mm respectively. The mean values for the rotations around lateral, longitudinal and vertical directions were 0.1, 0.2 and 0.4 degrees respectively, with standard deviations of 0.36, 0.34, and 0.42 degrees. Conclusion: The setup uncertainties for the lung SBRT cases by using Exactrack 6D system were analyzed. The standard deviations of the setup errors were within 1mm for all three directions, and the standard deviations for rotations were within 0.5 degree.

  10. SU-F-P-23: Setup Uncertainties for the Lung Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Zhang, Q; Vigneri, P; Madu, C; Potters, L; Cao, Y; Jamshidi, A; Klein, E

    2016-01-01

    Purpose: The Exactrack X-ray system with six degree-of-freedom (6DoF) adjustment ability can be used for setup of lung stereotactic body radiation therapy. The setup uncertainties from ExacTrack 6D system were analyzed. Methods: The Exactrack X-ray 6D image guided radiotherapy system is used in our clinic. The system is an integration of 2 subsystems: (1): an infrared based optical position system and (2) a radiography kV x-ray imaging system. The infrared system monitors reflective body markers on the patient’s skin to assistant in the initial setup. The radiographic kV devices were used for patient positions verification and adjustment. The position verification was made by fusing the radiographs with the digitally reconstructed radiograph (DRR) images generated by simulation CT images using 6DoF fusion algorithms. Those results were recorded in our system. Gaussian functions were used to fit the data. Results: For 37 lung SBRT patients, the image registration results for the initial setup by using surface markers and for the verifications, were measured. The results were analyzed for 143 treatments. The mean values for the lateral, longitudinal, vertical directions were 0.1, 0.3 and 0.3mm, respectively. The standard deviations for the lateral, longitudinal and vertical directions were 0.62, 0.78 and 0.75mm respectively. The mean values for the rotations around lateral, longitudinal and vertical directions were 0.1, 0.2 and 0.4 degrees respectively, with standard deviations of 0.36, 0.34, and 0.42 degrees. Conclusion: The setup uncertainties for the lung SBRT cases by using Exactrack 6D system were analyzed. The standard deviations of the setup errors were within 1mm for all three directions, and the standard deviations for rotations were within 0.5 degree.

  11. Feasibility of geometrical verification of patient set-up using body contours and computed tomography data

    International Nuclear Information System (INIS)

    Ploeger, Lennert S.; Betgen, Anja; Gilhuijs, Kenneth G.A.; Herk, Marcel van

    2003-01-01

    Background and purpose: Body contours can potentially be used for patient set-up verification in external-beam radiotherapy and might enable more accurate set-up of patients prior to irradiation. The aim of this study is to test the feasibility of patient set-up verification using a body contour scanner. Material and methods: Body contour scans of 33 lung cancer and 21 head-and-neck cancer patients were acquired on a simulator. We assume that this dataset is representative for the patient set-up on an accelerator. Shortly before acquisition of the body contour scan, a pair of orthogonal simulator images was taken as a reference. Both the body contour scan and the simulator images were matched in 3D to the planning computed tomography scan. Movement of skin with respect to bone was quantified based on an analysis of variance method. Results: Set-up errors determined with body-contours agreed reasonably well with those determined with simulator images. For the lung cancer patients, the average set-up errors (mm)±1 standard deviation (SD) for the left-right, cranio-caudal and anterior-posterior directions were 1.2±2.9, -0.8±5.0 and -2.3±3.1 using body contours, compared to -0.8±3.2, -1.0±4.1 and -1.2±2.4 using simulator images. For the head-and-neck cancer patients, the set-up errors were 0.5±1.8, 0.5±2.7 and -2.2±1.8 using body contours compared to -0.4±1.2, 0.1±2.1, -0.1±1.8 using simulator images. The SD of the set-up errors obtained from analysis of the body contours were not significantly different from those obtained from analysis of the simulator images. Movement of the skin with respect to bone (1 SD) was estimated at 2.3 mm for lung cancer patients and 1.7 mm for head-and-neck cancer patients. Conclusion: Measurement of patient set-up using a body-contouring device is possible. The accuracy, however, is limited by the movement of the skin with respect to the bone. In situations where the error in the patient set-up is relatively large, it is

  12. SU-E-J-217: Accuracy Comparison Between Surface and Volumetric Registrations for Patient Setup of Head and Neck Radiation Therapy

    International Nuclear Information System (INIS)

    Kim, Y; Li, R; Na, Y; Jenkins, C; Xing, L; Lee, R

    2014-01-01

    Purpose: Optical surface imaging has been applied to radiation therapy patient setup. This study aims to investigate the accuracy of the surface registration of the optical surface imaging compared with that of the conventional method of volumetric registration for patient setup in head and neck radiation therapy. Methods: Clinical datasets of planning CT and treatment Cone Beam CT (CBCT) were used to compare the surface and volumetric registrations in radiation therapy patient setup. The Iterative Closest Points based on point-plane closest method was implemented for surface registration. We employed 3D Slicer for rigid volumetric registration of planning CT and treatment CBCT. 6 parameters of registration results (3 rotations and 3 translations) were obtained by the two registration methods, and the results were compared. Digital simulation tests in ideal cases were also performed to validate each registration method. Results: Digital simulation tests showed that both of the registration methods were accurate and robust enough to compare the registration results. In experiments with the actual clinical data, the results showed considerable deviation between the surface and volumetric registrations. The average root mean squared translational error was 2.7 mm and the maximum translational error was 5.2 mm. Conclusion: The deviation between the surface and volumetric registrations was considerable. Special caution should be taken in using an optical surface imaging. To ensure the accuracy of optical surface imaging in radiation therapy patient setup, additional measures are required. This research was supported in part by the KIST institutional program (2E24551), the Industrial Strategic technology development program (10035495) funded by the Ministry of Trade, Industry and Energy (MOTIE, KOREA), and the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission, and the NIH (R01EB016777)

  13. SU-E-J-217: Accuracy Comparison Between Surface and Volumetric Registrations for Patient Setup of Head and Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y [Stanford University School of Medicine, Stanford, CA (United States); Korea Institute of Science and Technology, Seoul (Korea, Republic of); Li, R; Na, Y; Jenkins, C; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Lee, R [Ewha Womans University, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: Optical surface imaging has been applied to radiation therapy patient setup. This study aims to investigate the accuracy of the surface registration of the optical surface imaging compared with that of the conventional method of volumetric registration for patient setup in head and neck radiation therapy. Methods: Clinical datasets of planning CT and treatment Cone Beam CT (CBCT) were used to compare the surface and volumetric registrations in radiation therapy patient setup. The Iterative Closest Points based on point-plane closest method was implemented for surface registration. We employed 3D Slicer for rigid volumetric registration of planning CT and treatment CBCT. 6 parameters of registration results (3 rotations and 3 translations) were obtained by the two registration methods, and the results were compared. Digital simulation tests in ideal cases were also performed to validate each registration method. Results: Digital simulation tests showed that both of the registration methods were accurate and robust enough to compare the registration results. In experiments with the actual clinical data, the results showed considerable deviation between the surface and volumetric registrations. The average root mean squared translational error was 2.7 mm and the maximum translational error was 5.2 mm. Conclusion: The deviation between the surface and volumetric registrations was considerable. Special caution should be taken in using an optical surface imaging. To ensure the accuracy of optical surface imaging in radiation therapy patient setup, additional measures are required. This research was supported in part by the KIST institutional program (2E24551), the Industrial Strategic technology development program (10035495) funded by the Ministry of Trade, Industry and Energy (MOTIE, KOREA), and the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission, and the NIH (R01EB016777)

  14. Evaluation of Setup Error Correction for Patients Using On Board Imager in Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Kang, Soo Man

    2008-01-01

    To reduce side effects in image guided radiation therapy (IGRT) and to improve the quality of life of patients, also to meet accurate SETUP condition for patients, the various SETUP correction conditions were compared and evaluated by using on board imager (OBI) during the SETUP. Each 30 cases of the head, the neck, the chest, the belly, and the pelvis in 150 cases of IGRT patients was corrected after confirmation by using OBI at every 2-3 day. Also, the difference of the SETUP through the skin-marker and the anatomic SETUP through the OBI was evaluated. General SETUP errors (Transverse, Coronal, Sagittal) through the OBI at original SETUP position were Head and Neck: 1.3 mm, Brain: 2 mm, Chest: 3 mm, Abdoman: 3.7 mm, Pelvis: 4 mm. The patients with more that 3 mm in the error range were observed in the correction devices and the patient motions by confirming in treatment room. Moreover, in the case of female patients, the result came from the position of hairs during the Head and Neck, Brain tumor. Therefore, after another SETUP in each cases of over 3 mm in the error range, the treatment was carried out. Mean error values of each parts estimated after the correction were 1 mm for the head, 1.2 mm for the neck, 2.5 mm for the chest, 2.5 mm for the belly, and 2.6 mm for the pelvis. The result showed the correction of SETUP for each treatment through OBI is extremely difficult because of the importance of SETUP in radiation treatment. However, by establishing the average standard of the patients from this research result, the better patient satisfaction and treatment results could be obtained.

  15. Evaluation of Setup Error Correction for Patients Using On Board Imager in Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soo Man [Dept. of Radiation Oncology, Kosin University Gospel Hospital, Busan (Korea, Republic of)

    2008-09-15

    To reduce side effects in image guided radiation therapy (IGRT) and to improve the quality of life of patients, also to meet accurate SETUP condition for patients, the various SETUP correction conditions were compared and evaluated by using on board imager (OBI) during the SETUP. Each 30 cases of the head, the neck, the chest, the belly, and the pelvis in 150 cases of IGRT patients was corrected after confirmation by using OBI at every 2-3 day. Also, the difference of the SETUP through the skin-marker and the anatomic SETUP through the OBI was evaluated. General SETUP errors (Transverse, Coronal, Sagittal) through the OBI at original SETUP position were Head and Neck: 1.3 mm, Brain: 2 mm, Chest: 3 mm, Abdoman: 3.7 mm, Pelvis: 4 mm. The patients with more that 3 mm in the error range were observed in the correction devices and the patient motions by confirming in treatment room. Moreover, in the case of female patients, the result came from the position of hairs during the Head and Neck, Brain tumor. Therefore, after another SETUP in each cases of over 3 mm in the error range, the treatment was carried out. Mean error values of each parts estimated after the correction were 1 mm for the head, 1.2 mm for the neck, 2.5 mm for the chest, 2.5 mm for the belly, and 2.6 mm for the pelvis. The result showed the correction of SETUP for each treatment through OBI is extremely difficult because of the importance of SETUP in radiation treatment. However, by establishing the average standard of the patients from this research result, the better patient satisfaction and treatment results could be obtained.

  16. A Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom

    Directory of Open Access Journals (Sweden)

    Payam Samadi Miandoab

    2016-12-01

    Full Text Available Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion of dynamic organs, a phantom employs non-uniform rational B-splines (NURBS-based Cardiac-Torso method with spline-based model to generate 4D computed tomography (CT images. First, to generate all the possible roto-translation positions, the 4D CT images were imported to Medical Image Data Examiner (AMIDE. Then, for automatic, real time verification of geometrical setup, an artificial neural network (ANN was proposed to estimate patient displacement, using training sets. Moreover, three external motion markers were synchronized with a patient couch position as reference points. In addition, the technique was validated through simulated activities by using reference 4D CT data acquired from five patients. Results The results indicated that patient geometrical set-up is highly depended on the comprehensiveness of training set. By using ANN model, the average patient setup error in XCAT phantom was reduced from 17.26 mm to 0.50 mm. In addition, in the five real patients, these average errors were decreased from 18.26 mm to 1.48 mm various breathing phases ranging from inhalation to exhalation were taken into account for patient setup. Uncertainty error assessment and different setup errors were obtained from each respiration phase. Conclusion This study proposed a new method for alignment of patient setup error using ANN model. Additionally, our correlation model (ANN could estimate true patient position with less error.

  17. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter

    2012-01-01

    Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position

  18. Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded foam immobilization devices

    International Nuclear Information System (INIS)

    Halperin, Ross; Roa, Wilson; Field, Melissa; Hanson, John; Murray, Brad

    1999-01-01

    Purpose: Physiologic and non-physiologic tumor motion complicates the use of tight margins in three-dimensional (3D) conformal radiotherapy. Setup reproducibility is an important non-physiologic cause of tumor motion. The objective of this study is to evaluate and compare patient setup reproducibility using the reusable T-bar and the disposable expanded foam immobilization device (EFID) in radiation therapy for lung cancer. Methods and Materials: Two hundred forty-four portal films were taken from 16 prospectively accrued patients treated for lung cancer. Patients were treated with either a pair of anterior and posterior parallel opposing fields (POF), or a combination of POF and a three-field isocentric technique. Each patient was treated in a supine position using either the T-bar setup or EFID. Six patients were treated in both devices over their treatment courses. Field placement analysis was used to evaluate 3D setup reproducibility, by comparing positions of bony landmarks relative to the radiation field edges in digitized simulator and portal images. Anterior-posterior, lateral, and longitudinal displacements, as well as field rotations along coronal and sagittal planes were measured. Statistical analyses of variance were applied to the deviations among portal films of all patients and the subgroup treated with both immobilization methods. Results: For the T-bar immobilization device, standard deviations of the setup reproducibility were 5.1, 3.7, and 5.1 mm in the anterior-posterior, lateral, and longitudinal dimensions, respectively. Rotations in the coronal plane and the sagittal plane were 0.9 deg. and 1.0 deg. , respectively. For the EFID, corresponding standard deviations of set up reproducibility were 3.6 mm, 5.3 mm, 5.4 mm, 0.7 deg. and 1.4 deg. , respectively. There was no statistically significant difference (p = 0.22) in the 3D setup reproducibility between T-bar and EFID. Subgroup analysis for the patients who were treated with both

  19. Effectiveness of couch height-based patient set-up and an off-line correction protocol in prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Lin, Emile N.J.Th. van; Nijenhuis, Edwin; Huizenga, Henk; Vight, Lisette van der; Visser, Andries

    2001-01-01

    Purpose: To investigate set-up improvement caused by applying a couch height-based patient set-up method in combination with a technologist-driven off-line correction protocol in nonimmobilized radiotherapy of prostate patients. Methods and Materials: A three-dimensional shrinking action level correction protocol is applied in two consecutive patient cohorts with different set-up methods: the traditional 'laser set-up' group (n=43) and the 'couch height set-up' group (n=112). For all directions, left-right, ventro-dorsal, and cranio-caudal, random and systematic set-up deviations were measured. Results: The couch height set-up method improves the patient positioning compared to the laser set-up method. Without application of the correction protocol, both systematic and random errors reduced to 2.2-2.4 mm (1 SD) and 1.7-2.2 mm (1 SD), respectively. By using the correction protocol, systematic errors reduced further to 1.3-1.6 mm (1 SD). One-dimensional deviations were within 5 mm for >90% of the measured fractions. The required number of corrections per patient in the off-line correction protocol was reduced significantly during the course of treatment from 1.1 to 0.6 by the couch height set-up method. The treatment time was not prolonged by application of the correction protocol. Conclusions: The couch height set-up method improves the set-up significantly, especially in the ventro-dorsal direction. Combination of this set-up method with an off-line correction strategy, executed by technologists, reduces the number of set-up corrections required

  20. Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy

    International Nuclear Information System (INIS)

    Zhang Lifei; Garden, Adam S.; Lo, Justin; Ang, K. Kian; Ahamad, Anesa; Morrison, William H.; Rosenthal, David I.; Chambers, Mark S.; Zhu, X. Ronald; Mohan, Radhe; Dong Lei

    2006-01-01

    Purpose: To analyze three-dimensional setup uncertainties for multiple regions of interest (ROIs) in head-and-neck region. Methods and Materials: In-room computed tomography (CT) scans were acquired using a CT-on-rails system for 14 patients. Three separate bony ROIs were defined: C2 and C6 vertebral bodies and the palatine process of the maxilla. Translational shifts of 3 ROIs were calculated relative to the marked isocenter on the immobilization mask. Results: The shifts for all 3 ROIs were highly correlated. However, noticeable differences on the order of 2-6 mm existed between any 2 ROIs, indicating the flexibility and/or rotational effect in the head-and-neck region. The palatine process of the maxilla had the smallest right-left shifts because of the tight lateral fit in the face mask, but the largest superior-inferior movement because of in-plane rotation and variations in jaw positions. The neck region (C6) had the largest right-left shifts. The positioning mouthpiece was found effective in reducing variations in the superior-inferior direction. There was no statistically significant improvement for using the S-board (8 out of 14 patients) vs. the short face mask. Conclusions: We found variability in setup corrections for different regions of head-and-neck anatomy. These relative positional variations should be considered when making setup corrections or designing treatment margins

  1. Setup uncertainties in linear accelerator based stereotactic radiosurgery and a derivation of the corresponding setup margin for treatment planning.

    Science.gov (United States)

    Zhang, Mutian; Zhang, Qinghui; Gan, Hua; Li, Sicong; Zhou, Su-min

    2016-02-01

    In the present study, clinical stereotactic radiosurgery (SRS) setup uncertainties from image-guidance data are analyzed, and the corresponding setup margin is estimated for treatment planning purposes. Patients undergoing single-fraction SRS at our institution were localized using invasive head ring or non-invasive thermoplastic masks. Setup discrepancies were obtained from an in-room x-ray patient position monitoring system. Post treatment re-planning using the measured setup errors was performed in order to estimate the individual target margins sufficient to compensate for the actual setup errors. The formula of setup margin for a general SRS patient population was derived by proposing a correlation between the three-dimensional setup error and the required minimal margin. Setup errors of 104 brain lesions were analyzed, in which 81 lesions were treated using an invasive head ring, and 23 were treated using non-invasive masks. In the mask cases with image guidance, the translational setup uncertainties achieved the same level as those in the head ring cases. Re-planning results showed that the margins for individual patients could be smaller than the clinical three-dimensional setup errors. The derivation of setup margin adequate to address the patient setup errors was demonstrated by using the arbitrary planning goal of treating 95% of the lesions with sufficient doses. With image guidance, the patient setup accuracy of mask cases can be comparable to that of invasive head rings. The SRS setup margin can be derived for a patient population with the proposed margin formula to compensate for the institution-specific setup errors. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. A dual centre study of setup accuracy for thoracic patients based on Cone-Beam CT data

    DEFF Research Database (Denmark)

    Nielsen, Tine B; Hansen, Vibeke N; Westberg, Jonas

    2011-01-01

    BACKGROUND AND PURPOSE: To compare setup uncertainties at two different institutions by using identical imaging and analysis techniques for thoracic patients with different fixation equipments. METHODS AND MATERIALS: Patient registration results from Cone-Beam CT (CBCT) scans of 174 patients were...... increase of the systematic setup uncertainties in between imaging fractions. A margin reduction of ⩾0.2cm can be achieved for patients with peak-to-peak respiration amplitudes of ⩾1.2cm when changing from 4D-CT to Active Breathing Coordinator™ (ABC). CONCLUSIONS: The setup uncertainties at the two...

  3. Patient set-up verification by infrared optical localization and body surface sensing in breast radiation therapy

    International Nuclear Information System (INIS)

    Spadea, Maria Francesca; Baroni, Guido; Riboldi, Marco; Orecchia, Roberto; Pedotti, Antonio; Tagaste, Barbara; Garibaldi, Cristina

    2006-01-01

    Background and purpose: The aim of the study was to investigate the clinical application of a technique for patient set-up verification in breast cancer radiotherapy, based on the 3D localization of a hybrid configuration of surface control points. Materials and methods: An infrared optical tracker provided the 3D position of two passive markers and 10 laser spots placed around and within the irradiation field on nine patients. A fast iterative constrained minimization procedure was applied to detect and compensate patient set-up errors, through the control points registration with reference data coming from treatment plan (markers reference position, CT-based surface model). Results: The application of the corrective spatial transformation estimated by the registration procedure led to significant improvement of patient set-up. Median value of 3D errors affecting three additional verification markers within the irradiation field decreased from 5.7 to 3.5 mm. Errors variability (25-75%) decreased from 3.2 to 2.1 mm. Laser spots registration on the reference surface model was documented to contribute substantially to set-up errors compensation. Conclusions: Patient set-up verification through a hybrid set of control points and constrained surface minimization algorithm was confirmed to be feasible in clinical practice and to provide valuable information for the improvement of the quality of patient set-up, with minimal requirement of operator-dependant procedures. The technique combines conveniently the advantages of passive markers based methods and surface registration techniques, by featuring immediate and robust estimation of the set-up accuracy from a redundant dataset

  4. Setup error in radiotherapy: on-line correction using electronic kilovoltage and megavoltage radiographs

    International Nuclear Information System (INIS)

    Pisani, Laura; Lockman, David; Jaffray, David; Yan Di; Martinez, Alvaro; Wong, John

    2000-01-01

    Purpose: We hypothesize that the difference in image quality between the traditional kilovoltage (kV) prescription radiographs and megavoltage (MV) treatment radiographs is a major factor hindering our ability to accurately measure, thus correct, setup error in radiation therapy. The objective of this work is to study the accuracy of on-line correction of setup errors achievable using either kV- or MV-localization (i.e., open-field) radiographs. Methods and Materials: Using a gantry mounted kV and MV dual-beam imaging system, the accuracy of on-line measurement and correction of setup error using electronic kV- and MV-localization images was examined based on anthropomorphic phantom and patient imaging studies. For the phantom study, the user's ability to accurately detect known translational shifts was analyzed. The clinical study included 14 patients with disease in the head and neck, thoracic, and pelvic regions. For each patient, 4 orthogonal kV radiographs acquired during treatment simulation from the right lateral, anterior-to-posterior, left lateral, and posterior-to-anterior directions were employed as reference prescription images. Two-dimensional (2D) anatomic templates were defined on each of the 4 reference images. On each treatment day, after positioning the patient for treatment, 4 orthogonal electronic localization images were acquired with both kV and 6-MV photon beams. On alternate weeks, setup errors were determined from either the kV- or MV-localization images but not both. Setup error was determined by aligning each 2D template with the anatomic information on the corresponding localization image, ignoring rotational and nonrigid variations. For each set of 4 orthogonal images, the results from template alignments were averaged. Based on the results from the phantom study and a parallel study of the inter- and intraobserver template alignment variability, a threshold for minimum correction was set at 2 mm in any direction. Setup correction was

  5. SU-E-T-659: Quantitative Evaluation of Patient Setup Accuracy of Stereotactic Radiotherapy with the Frameless 6D-ExacTrac System Using Statistical Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, V; Jin, H; Hossain, S; Algan, O; Ahmad, S; Ali, I [University of Oklahoma Health Science Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless-6D-ExacTrac system. Methods: A statistical model was used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the BrainLAB 6D-ExacTrac system using the positioning shifts of 35 patients having cranial lesions (49 total lesions treated in 1, 3, 5 fractions). All these patients were immobilized with rigid head-and-neck masks, simulated with BrainLAB-localizer and planned with iPlan treatment planning system. Infrared imaging (IR) was used initially to setup patients. Then, stereoscopic x-ray images (XC) were acquired and registered to corresponding digitally-reconstructed-radiographs using bony-anatomy matching to calculate 6D-translational and rotational shifts. When the shifts were within tolerance (0.7mm and 1°), treatment was initiated. Otherwise corrections were applied and additional x-rays were acquired (XV) to verify that patient position was within tolerance. Results: The uncertainties from the mask, localizer, IR-frame, x-ray imaging, MV and kV isocentricity were quantified individually. Mask uncertainty (Translational: Lateral, Longitudinal, Vertical; Rotational: Pitch, Roll, Yaw) was the largest and varied with patients in the range (−1.05−1.50mm, −5.06–3.57mm, −5.51−3.49mm; −1.40−2.40°, −1.24−1.74°, and −2.43−1.90°) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88,2.12,1.40mm, and 0.64,0.83,0.96°) was extracted from standard-deviation of XC. Systematic uncertainties of the localizer (−0.03,−0.01,0.03mm, and −0.03,0.00,−0.01°) and frame (0.18,0.25,−1.27mm,−0.32,0.18, and 0.47°) were extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the

  6. Patient setup aid with wireless CCTV system in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Kyun; Cho, Woong; Park, Jong Min [Seoul National University Graduate School, Seoul (Korea, Republic of); Ha, Sung Whan; Ye, Sung Joon [Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Suk Won [Chung-Ang University Cellege of Medicine, Seoul (Korea, Republic of); Huh, Soon Nyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2006-12-15

    To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal ( {approx} 2.4 GHz and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images in investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of 1.5 {+-} 0.7 mm with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of {approx} 0.7 sec. The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.

  7. Patient setup aid with wireless CCTV system in radiation therapy

    International Nuclear Information System (INIS)

    Park, Yang Kyun; Cho, Woong; Park, Jong Min; Ha, Sung Whan; Ye, Sung Joon; Park, Suk Won; Huh, Soon Nyung

    2006-01-01

    To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal ( ∼ 2.4 GHz and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images in investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of 1.5 ± 0.7 mm with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ∼ 0.7 sec. The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful

  8. Effect of Body Mass Index on Magnitude of Setup Errors in Patients Treated With Adjuvant Radiotherapy for Endometrial Cancer With Daily Image Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lilie L., E-mail: lin@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Hertan, Lauren; Rengan, Ramesh; Teo, Boon-Keng Kevin [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    2012-06-01

    Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed. To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23-62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI {>=}25 to <30); 26.7% (n = 8) were mildly obese (BMI {>=}30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI {>=} 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.

  9. Effect of Body Mass Index on Magnitude of Setup Errors in Patients Treated With Adjuvant Radiotherapy for Endometrial Cancer With Daily Image Guidance

    International Nuclear Information System (INIS)

    Lin, Lilie L.; Hertan, Lauren; Rengan, Ramesh; Teo, Boon-Keng Kevin

    2012-01-01

    Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed. To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23–62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI ≥25 to <30); 26.7% (n = 8) were mildly obese (BMI ≥30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI ≥ 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.

  10. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen; Williamson, Jeffrey F.; Schmidt-Ullrich, Rupert K.

    2005-01-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errors of σ = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with Σ = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for σ = Σ = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D 98 ), clinical target volume (CTV) D 90 , nodes D 90 , cord D 2 , and parotid D 50 and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error σ exceeded 3 mm. Simulated systematic setup errors with Σ = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a Σ = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error

  11. 21 CFR 890.5180 - Manual patient rotation bed.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5180 Manual patient rotation bed. (a) Identification. A manual patient rotation bed is a device that turns a patient who is... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual patient rotation bed. 890.5180 Section 890...

  12. 21 CFR 890.5225 - Powered patient rotation bed.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5225 Powered patient rotation bed. (a) Identification. A powered patient rotation bed is a device that turns a patient who is... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered patient rotation bed. 890.5225 Section 890...

  13. Cone Beam Computed Tomography Guidance for Setup of Patients Receiving Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    White, Elizabeth A.; Cho, John; Vallis, Katherine A.; Sharpe, Michael B.; Lee, Grace B.Sc.; Blackburn, Helen; Nageeti, Tahani; McGibney, Carol; Jaffray, David A.

    2007-01-01

    Purpose: To evaluate the role of cone-beam CT (CBCT) guidance for setup error reduction and soft tissue visualization in accelerated partial breast irradiation (APBI). Methods and Materials: Twenty patients were recruited for the delivery of radiotherapy to the postoperative cavity (3850 cGy in 10 fractions over 5 days) using an APBI technique. Cone-beam CT data sets were acquired after an initial skin-mark setup and before treatment delivery. These were registered online using the ipsilateral lung and external contours. Corrections were executed for translations exceeding 3 mm. The random and systematic errors associated with setup using skin-marks and setup using CBCT guidance were calculated and compared. Results: A total of 315 CBCT data sets were analyzed. The systematic errors for the skin-mark setup were 2.7, 1.7, and 2.4 mm in the right-left, anterior-posterior, and superior-inferior directions, respectively. These were reduced to 0.8, 0.7, and 0.8 mm when CBCT guidance was used. The random errors were reduced from 2.4, 2.2, and 2.9 mm for skin-marks to 1.5, 1.5, and 1.6 mm for CBCT guidance in the right-left, anterior-posterior, and superior-inferior directions, respectively. Conclusion: A skin-mark setup for APBI patients is sufficient for current planning target volume margins for the population of patients studied here. Online CBCT guidance minimizes the occurrence of large random deviations, which may have a greater impact for the accelerated fractionation schedule used in APBI. It is also likely to permit a reduction in planning target volume margins and provide skin-line visualization and dosimetric evaluation of cardiac and lung volumes

  14. Calculation errors of Set-up in patients with tumor location of prostate. Exploratory study; Calculo de errores de Set-up en pacientes con localizacion tumoral de prostata. Estudio exploratorio

    Energy Technology Data Exchange (ETDEWEB)

    Donis Gil, S.; Robayna Duque, B. E.; Jimenez Sosa, A.; Hernandez Armas, O.; Gonzalez Martin, A. E.; Hernandez Armas, J.

    2013-07-01

    The calculation of SM is done from errors in positioning (set-up). These errors are calculated from movements in 3D of the patient. This paper is an exploratory study of 20 patients with tumor location of prostate in which errors of set-up for two protocols of work are evaluated. (Author)

  15. Set-up errors in patients undergoing image guided radiation treatment. Relationship to body mass index and weight loss

    DEFF Research Database (Denmark)

    Johansen, Jørgen; Bertelsen, Anders; Hansen, Christian Rønn

    2008-01-01

    by the relative weight change over time. Results: The SD of the translational and rotational random set-up errors during the first three sessions for H&N were 0.9 mm (Left-Right), 1.1mm (Anterior-Posterior), 0.7 mm (Cranio-Caudal) and 0.7 degrees (LR-axis), 0.5 degrees (AP-axis), and 0.7 degrees (CC......-axis). The equivalent data for lung cancer patients were 1.1 mm (LR), 1.1mm (AP), 1.5 mm (CC) and 0.5 degrees (LR-axis), 0.6 degrees (AP-axis), and 0.4 degrees (CC-axis). The median BMI for H&N and lung was 25.8 (17.6-39.7) and 23.7 (17.4-38.8), respectively. The median weekly weight change for H&N was -0.3% (-2.0 to 1...... (H&N) and 20 lung cancer patients were investigated. Patients were positioned using customized immobilization devices consisting of vacuum cushions and thermoplastic shells. Treatment was given on an Elekta Synergy accelerator. Cone-beam acquisitions were obtained according to a standardized Action...

  16. Rotational dynamics with Tracker

    International Nuclear Information System (INIS)

    Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

  17. Evaluation of set-up deviations during the irradiation of patients suffering from breast cancer treated with two different techniques

    International Nuclear Information System (INIS)

    KukoIowicz, Pawel Franciszek; Debrowski, Andrzej; Gut, Piotr; Chmielewski, Leszek; Wieczorek, Andrzej; Kedzierawski, Piotr

    2005-01-01

    Purpose: To compare reproducibility of set-up for two different treatment techniques for external irradiation of the breast. Methods and materials: In total, the analysis comprised 56 pairs of portal and simulator films for 14 consecutive patients treated following breast conserving therapy and 98 pairs of portal and simulator films for 20 consecutive patients treated after mastectomy. For the first group the tangential field technique (TF technique) was used, for the second the inverse hockey stick technique (IHS technique). Evaluation of the treatment reproducibility was performed in terms of systematic and random error calculated for the whole groups, comparison of set-up accuracy by means of comparison of cumulative distribution of the length of the displacement vector. Results: In the IHS and TF techniques for medial and lateral fields, displacement larger than 5 mm occurred in 28.3, 15.8 and 25.4%, respectively. For the IHS technique, the systematic errors for lateral and cranial-caudal direction were 1.9 and 1.7 mm, respectively (1 SD), the random errors for lateral and cranial-caudal direction were 2.0 and 2.5 mm. For the TF technique, the systematic errors for ventral-dorsal and cranial-caudal direction were 2.6 and 1.3 mm for medial field and 3.7 and 0.7 mm for lateral fields, respectively, the random errors for lateral and cranial-caudal direction were 2.2 and 1.0 mm for medial field and 2.9 and 1.1 for lateral field, respectively. Rotations were negligible in the IHS technique. For the TF technique the systematic and random components amounted to about 2.0 degrees (1 SD). Conclusions: Both the inverse hockey stick and standard tangential techniques showed good reproducibility of patients' set-up with respect to cranial-caudal direction. For the TF technique, the accuracy should be improved for the medial field with respect to the ventral-dorsal direction

  18. Automated evaluation of setup errors in carbon ion therapy using PET: Feasibility study

    International Nuclear Information System (INIS)

    Kuess, Peter; Hopfgartner, Johannes; Georg, Dietmar; Helmbrecht, Stephan; Fiedler, Fine; Birkfellner, Wolfgang; Enghardt, Wolfgang

    2013-01-01

    Purpose: To investigate the possibility of detecting patient mispositioning in carbon-ion therapy with particle therapy positron emission tomography (PET) in an automated image registration based manner. Methods: Tumors in the head and neck (H and N), pelvic, lung, and brain region were investigated. Biologically optimized carbon ion treatment plans were created with TRiP98. From these treatment plans, the reference β + -activity distributions were calculated using a Monte Carlo simulation. Setup errors were simulated by shifting or rotating the computed tomography (CT). The expected β + activity was calculated for each plan with shifts. Finally, the reference particle therapy PET images were compared to the “shifted” β + -activity distribution simulations using the Pearson's correlation coefficient (PCC). To account for different PET monitoring options the inbeam PET was compared to three different inroom scenarios. Additionally, the dosimetric effects of the CT misalignments were investigated. Results: The automated PCC detection of patient mispositioning was possible in the investigated indications for cranio-caudal shifts of 4 mm and more, except for prostate tumors. In the rather homogeneous pelvic region, the generated β + -activity distribution of the reference and compared PET image were too much alike. Thus, setup errors in this region could not be detected. Regarding lung lesions the detection strongly depended on the exact tumor location: in the center of the lung tumor misalignments could be detected down to 2 mm shifts while resolving shifts of tumors close to the thoracic wall was more challenging. Rotational shifts in the H and N and lung region of +6° and more could be detected using inroom PET and partly using inbeam PET. Comparing inroom PET to inbeam PET no obvious trend was found. However, among the inroom scenarios a longer measurement time was found to be advantageous. Conclusions: This study scopes the use of various particle therapy

  19. Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases

    International Nuclear Information System (INIS)

    Herfarth, K.K.; Debus, J.; Lohr, F.; Bahner, M.L.; Fritz, P.; Hoess, A.; Schlegel, W. Ph.D.; Wannenmacher, M.F.

    2000-01-01

    Purpose: Patients with liver metastases might benefit from high-dose conformal radiation therapy. A high accuracy of repositioning and a reduction of target movement are necessary for such an approach. The set-up accuracy of patients with liver metastases treated with stereotactic single dose radiation was evaluated. Methods and Materials: Twenty-four patients with liver metastases were treated with single dose radiation therapy on 26 occasions using a self-developed stereotactic frame. Liver movement was reduced by abdominal pressure. The effectiveness was evaluated under fluoroscopy. CT scans were performed on the planning day and directly before treatment. Representative reference marks were chosen and the coordinates were calculated. In addition, the target displacement was quantitatively evaluated after treatment. Results: Diaphragmal movement was reduced to median 7 mm (range: 3-13 mm). The final set-up accuracy of the body was limited to all of median 1.8 mm in latero-lateral direction (range: 0.3-5.0 mm) and 2.0 mm in anterior-posterior direction (0.8-3.8 mm). Deviations of the body in cranio-caudal direction were always less than the thickness of one CT slice (<5 mm). However, a repositioning was necessary in 16 occasions. The final target shift was median 1.6 mm (0.2-7.0 mm) in latero-lateral and 2.3 mm in anterior-posterior direction (0.0-6.3 mm). The median shift in cranio-caudal direction was 4.4 mm (0.0-10.0 mm). Conclusions: In patients with liver metastases, a high set-up accuracy of the body and the target can be achieved. This allows a high-dose focal radiotherapy of these lesions. However, a control CT scan should be performed directly before therapy to confirm set-up accuracy and possibly prompt necessary corrections

  20. Accuracy in tangential breast treatment set-up

    International Nuclear Information System (INIS)

    Tienhoven, G. van; Lanson, J.H.; Crabeels, D.; Heukelom, S.; Mijnheer, B.J.

    1991-01-01

    To test accuracy and reproducibility of tangential breast treatment set-up used in The Netherlands Cancer Institute, a portal imaging study was performed in 12 patients treated for early stage breast cancer. With an on-line electronic portal imaging device (EPID) images were obtained of each patient in several fractions and compared with simulator films and with each other. In 5 patients multiple images (on the average 7) per fraction were obtained to evaluate set-up variations due to respiratory movement. The central lung distance (CLD) and other set-up parameters varied within 1 fraction about 1mm (1SD). The average variation of these parameters between various fractions was about 2 mm (1SD). The differences between simulator and treatment set-up over all patients and all fractions was on the average 2-3mm for the central beam edge to skin distance and CLD. It can be concluded that the tangential breast treatment set-up is very stable and reproducible and that respiration does not have a significant influence on treatment volume. EPID appears to be an adequate tool for studies of treatment set-up accuracy like this. (author). 35 refs.; 2 figs.; 3 tabs

  1. Maxillary molar derotation and distalization by using a nickel-titanium wire fabricated on a setup model.

    Science.gov (United States)

    Jung, Jong Moon; Wi, Young Joo; Koo, Hyun Mo; Kim, Min Ji; Chun, Youn Sic

    2017-07-01

    The purpose of this article is to introduce a simple appliance that uses a setup model and a nickel-titanium (Ni-Ti) wire for correcting the mesial rotation and drift of the permanent maxillary first molar. The technique involves bonding a Ni-Ti wire to the proper position of the target tooth on a setup model, followed by the fabrication of the transfer cap for indirect bonding and its transfer to the patient's teeth. This appliance causes less discomfort and provides better oral hygiene for the patients than do conventional appliances such as the bracket, pendulum, and distal jet. The treatment time is also shorter with the new appliance than with full-fixed appliances. Moreover, the applicability of the new appliance can be expanded to many cases by using screws or splinting with adjacent teeth to improve anchorage.

  2. Quantifying Appropriate PTV Setup Margins: Analysis of Patient Setup Fidelity and Intrafraction Motion Using Post-Treatment Megavoltage Computed Tomography Scans

    International Nuclear Information System (INIS)

    Drabik, Donata M.; MacKenzie, Marc A.; Fallone, Gino B.

    2007-01-01

    Purpose: To present a technique that can be implemented in-house to evaluate the efficacy of immobilization and image-guided setup of patients with different treatment sites on helical tomotherapy. This technique uses an analysis of alignment shifts between kilovoltage computed tomography and post-treatment megavoltage computed tomography images. The determination of the shifts calculated by the helical tomotherapy software for a given site can then be used to define appropriate planning target volume internal margins. Methods and Materials: Twelve patients underwent post-treatment megavoltage computed tomography scans on a helical tomotherapy machine to assess patient setup fidelity and net intrafraction motion. Shifts were studied for the prostate, head and neck, and glioblastoma multiforme. Analysis of these data was performed using automatic and manual registration of the kilovoltage computed tomography and post-megavoltage computed tomography images. Results: The shifts were largest for the prostate, followed by the head and neck, with glioblastoma multiforme having the smallest shifts in general. It appears that it might be more appropriate to use asymmetric planning target volume margins. Each margin value reported is equal to two standard deviations of the average shift in the given direction. Conclusion: This method could be applied using individual patient post-image scanning and combined with adaptive planning to reduce or increase the margins as appropriate

  3. Set-up errors in radiotherapy for oesophageal cancers - Is electronic portal imaging or conebeam more accurate?

    International Nuclear Information System (INIS)

    Hawkins, Maria A.; Aitken, Alexandra; Hansen, Vibeke N.; McNair, Helen A.; Tait, Diana M.

    2011-01-01

    Purpose: To compare kV computed tomography (CBCT) with electronic portal imaging (EPI) and evaluate set-up variations in the anterior-posterior (AP), right-left (LR) and cranio-caudal (CC) directions and rotational variations: pitch, roll, and yaw, for oesophageal cancer patients treated with radical radiotherapy. Methods and materials: Twenty patients with locally advanced oesophageal cancer treated with chemoradiation were consented for this prospective ethics approved protocol. Patients were positioned using skin marks/tattoos, kV-CBCT scans (XVI) and EPI's were performed prior to treatment and registered to the planning CT scans and digitally reconstructed radiographs, respectively. XVI data was used to adjust patient setups before treatment delivery. A total of 122 EPI pairs and 207 CBCT scans were analysed. The systematic and random errors were calculated. Results: The systematic and random errors (mm) for XVI were 1.3, 1.7, 1.4 and 2.6, 3.9, 2.0 in RL, CC and AP direction, respectively, with EPI of similar magnitude. There was no correlation between the 2 modalities of imaging as 31.7% of all image pairs were discordant >3 mm and 12.5% >5 mm. XVI identified rotations >3 o in 44 images. Conclusions: EPI results in different position correction for verification of radiotherapy in oesophageal malignancies when compared with CBCT. CBCT verification offers adequate 3D volumetric image quality to improve the accuracy of treatment delivery for oesophageal malignancies in radiotherapy and should be used for image guidance.

  4. Comparison of setup deviations for two thermoplastic immobilization masks in glottis cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Hong [Dept. of Biomedical Engineering, College of Medicine, The Catholic University, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was compare to the patient setup deviation of two different type thermoplastic immobilization masks for glottis cancer in the intensity-modulated radiation therapy (IMRT). A total of 16 glottis cancer cases were divided into two groups based on applied mask type: standard or alternative group. The mean error (M), three-dimensional setup displacement error (3D-error), systematic error (Σ), random error (σ) were calculated for each group, and also analyzed setup margin (mm). The 3D-errors were 5.2 ± 1.3 mm and 5.9 ± 0.7 mm for the standard and alternative groups, respectively; the alternative group was 13.6% higher than the standard group. The systematic errors in the roll angle and the x, y, z directions were 0.8°, 1.7 mm, 1.0 mm, and 1.5 mm in the alternative group and 0.8°, 1.1 mm, 1.8 mm, and 2.0 mm in the alternative group. The random errors in the x, y, z directions were 10.9%, 1.7%, and 23.1% lower in the alternative group than in the standard group. However, absolute rotational angle (i.e., roll) in the alternative group was 12.4% higher than in the standard group. For calculated setup margin, the alternative group in x direction was 31.8% lower than in standard group. In contrast, the y and z direction were 52.6% and 21.6% higher than in the standard group. Although using a modified thermoplastic immobilization mask could be affect patient setup deviation in terms of numerical results, various point of view for an immobilization masks has need to research in terms of clinic issue.

  5. Automated Patient Identification and Localization Error Detection Using 2-Dimensional to 3-Dimensional Registration of Kilovoltage X-Ray Setup Images

    International Nuclear Information System (INIS)

    Lamb, James M.; Agazaryan, Nzhde; Low, Daniel A.

    2013-01-01

    Purpose: To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Methods and Materials: Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. Results: A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. Conclusions: An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments

  6. Automated Patient Identification and Localization Error Detection Using 2-Dimensional to 3-Dimensional Registration of Kilovoltage X-Ray Setup Images

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, James M., E-mail: jlamb@mednet.ucla.edu; Agazaryan, Nzhde; Low, Daniel A.

    2013-10-01

    Purpose: To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Methods and Materials: Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. Results: A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. Conclusions: An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments.

  7. Automated patient identification and localization error detection using 2-dimensional to 3-dimensional registration of kilovoltage x-ray setup images.

    Science.gov (United States)

    Lamb, James M; Agazaryan, Nzhde; Low, Daniel A

    2013-10-01

    To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The current status of the MASHA setup

    Science.gov (United States)

    Vedeneev, V. Yu.; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D.; Kliman, J.; Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2017-11-01

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction 48Ca+242Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  9. The current status of the MASHA setup

    International Nuclear Information System (INIS)

    Vedeneev, V. Yu.; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D.; Kliman, J.; Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2017-01-01

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction "4"8Ca+"2"4"2Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  10. The current status of the MASHA setup

    Energy Technology Data Exchange (ETDEWEB)

    Vedeneev, V. Yu., E-mail: vvedeneyev@gmail.com; Rodin, A. M.; Krupa, L.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Kamas, D. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kliman, J. [Slovak Academy of Sciences, Institute of Physics (Slovakia); Komarov, A. B.; Motycak, S.; Novoselov, A. S.; Salamatin, V. S.; Stepantsov, S. V.; Podshibyakin, A. V.; Yukhimchuk, S. A. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions (Russian Federation); Granja, C.; Pospisil, S. [Czech Technical University in Prague, Institute of Experimental and Applied Physics (Czech Republic)

    2017-11-15

    The MASHA setup designed as the mass-separator with the resolving power of about 1700, which allows mass identification of superheavy nuclides is described. The setup uses solid ISOL (Isotope Separation On-Line) method. In the present article the upgrade of some parts of MASHA are described: target box (rotating target + hot catcher), ion source based on electron cyclotron resonance, data acquisition, beam diagnostics and control systems. The upgrade is undertaken in order to increase the total separation efficiency, reduce the separation time, of the installation and working stability and make possible continuous measurements at high beam currents. Ion source efficiency was measured in autonomous regime with using calibrated gas leaks of Kr and Xe injected directly to ion source. Some results of the first experiments for production of radon isotopes using the multi-nucleon transfer reaction {sup 48}Ca+{sup 242}Pu are described in the present article. The using of TIMEPIX detector with MASHA setup for neutron-rich Rn isotopes identification is also described.

  11. Analysis of Daily Setup Variation With Tomotherapy Megavoltage Computed Tomography

    International Nuclear Information System (INIS)

    Zhou Jining; Uhl, Barry; Dewit, Kelly; Young, Mark; Taylor, Brian; Fei Dingyu; Lo, Y-C

    2010-01-01

    The purpose of this study was to evaluate different setup uncertainties for various anatomic sites with TomoTherapy (registered) pretreatment megavoltage computed tomography (MVCT) and to provide optimal margin guidelines for these anatomic sites. Ninety-two patients with tumors in head and neck (HN), brain, lung, abdominal, or prostate regions were included in the study. MVCT was used to verify patient position and tumor target localization before each treatment. With the anatomy registration tool, MVCT provided real-time tumor shift coordinates relative to the positions where the simulation CT was performed. Thermoplastic facemasks were used for HN and brain treatments. Vac-Lok TM cushions were used to immobilize the lower extremities up to the thighs for prostate patients. No respiration suppression was administered for lung and abdomen patients. The interfractional setup variations were recorded and corrected before treatment. The mean interfractional setup error was the smallest for HN among the 5 sites analyzed. The average 3D displacement in lateral, longitudinal, and vertical directions for the 5 sites ranged from 2.2-7.7 mm for HN and lung, respectively. The largest movement in the lung was 2.0 cm in the longitudinal direction, with a mean error of 6.0 mm and standard deviation of 4.8 mm. The mean interfractional rotation variation was small and ranged from 0.2-0.5 deg., with the standard deviation ranging from 0.7-0.9 deg. Internal organ displacement was also investigated with a posttreatment MVCT scan for HN, lung, abdomen, and prostate patients. The maximum 3D intrafractional displacement across all sites was less than 4.5 mm. The interfractional systematic errors and random errors were analyzed and the suggested margins for HN, brain, prostate, abdomen, and lung in the lateral, longitudinal, and vertical directions were between 4.2 and 8.2 mm, 5.0 mm and 12.0 mm, and 1.5 mm and 6.8 mm, respectively. We suggest that TomoTherapy (registered) pretreatment

  12. Analysis of daily setup variation with tomotherapy megavoltage computed tomography.

    Science.gov (United States)

    Zhou, Jining; Uhl, Barry; Dewit, Kelly; Young, Mark; Taylor, Brian; Fei, Ding-Yu; Lo, Yeh-Chi

    2010-01-01

    The purpose of this study was to evaluate different setup uncertainties for various anatomic sites with TomoTherapy pretreatment megavoltage computed tomography (MVCT) and to provide optimal margin guidelines for these anatomic sites. Ninety-two patients with tumors in head and neck (HN), brain, lung, abdominal, or prostate regions were included in the study. MVCT was used to verify patient position and tumor target localization before each treatment. With the anatomy registration tool, MVCT provided real-time tumor shift coordinates relative to the positions where the simulation CT was performed. Thermoplastic facemasks were used for HN and brain treatments. Vac-Lok cushions were used to immobilize the lower extremities up to the thighs for prostate patients. No respiration suppression was administered for lung and abdomen patients. The interfractional setup variations were recorded and corrected before treatment. The mean interfractional setup error was the smallest for HN among the 5 sites analyzed. The average 3D displacement in lateral, longitudinal, and vertical directions for the 5 sites ranged from 2.2-7.7 mm for HN and lung, respectively. The largest movement in the lung was 2.0 cm in the longitudinal direction, with a mean error of 6.0 mm and standard deviation of 4.8 mm. The mean interfractional rotation variation was small and ranged from 0.2-0.5 degrees, with the standard deviation ranging from 0.7-0.9 degrees. Internal organ displacement was also investigated with a posttreatment MVCT scan for HN, lung, abdomen, and prostate patients. The maximum 3D intrafractional displacement across all sites was less than 4.5 mm. The interfractional systematic errors and random errors were analyzed and the suggested margins for HN, brain, prostate, abdomen, and lung in the lateral, longitudinal, and vertical directions were between 4.2 and 8.2 mm, 5.0 mm and 12.0 mm, and 1.5 mm and 6.8 mm, respectively. We suggest that TomoTherapy pretreatment MVCT can be used to

  13. Dose variations caused by setup errors in intracranial stereotactic radiotherapy: A PRESAGE study

    International Nuclear Information System (INIS)

    Teng, Kieyin; Gagliardi, Frank; Alqathami, Mamdooh; Ackerly, Trevor; Geso, Moshi

    2014-01-01

    Stereotactic radiotherapy (SRT) requires tight margins around the tumor, thus producing a steep dose gradient between the tumor and the surrounding healthy tissue. Any setup errors might become clinically significant. To date, no study has been performed to evaluate the dosimetric variations caused by setup errors with a 3-dimensional dosimeter, the PRESAGE. This research aimed to evaluate the potential effect that setup errors have on the dose distribution of intracranial SRT. Computed tomography (CT) simulation of a CIRS radiosurgery head phantom was performed with 1.25-mm slice thickness. An ideal treatment plan was generated using Brainlab iPlan. A PRESAGE was made for every treatment with and without errors. A prescan using the optical CT scanner was carried out. Before treatment, the phantom was imaged using Brainlab ExacTrac. Actual radiotherapy treatments with and without errors were carried out with the Novalis treatment machine. Postscan was performed with an optical CT scanner to analyze the dose irradiation. The dose variation between treatments with and without errors was determined using a 3-dimensional gamma analysis. Errors are clinically insignificant when the passing ratio of the gamma analysis is 95% and above. Errors were clinically significant when the setup errors exceeded a 0.7-mm translation and a 0.5° rotation. The results showed that a 3-mm translation shift in the superior-inferior (SI), right-left (RL), and anterior-posterior (AP) directions and 2° couch rotation produced a passing ratio of 53.1%. Translational and rotational errors of 1.5 mm and 1°, respectively, generated a passing ratio of 62.2%. Translation shift of 0.7 mm in the directions of SI, RL, and AP and a 0.5° couch rotation produced a passing ratio of 96.2%. Preventing the occurrences of setup errors in intracranial SRT treatment is extremely important as errors greater than 0.7 mm and 0.5° alter the dose distribution. The geometrical displacements affect dose delivery

  14. SU-E-J-90: MRI-Based Treatment Simulation and Patient Setup for Radiation Therapy of Brain Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y [UCLA School of Medicine, Los Angeles, AA (United States); Cao, M; Han, F; Santhanam, A; Neylon, J; Gomez, C; Kaprealian, T; Sheng, K; Agazaryan, N; Low, D; Hu, P

    2014-06-01

    Purpose: Traditional radiation therapy of cancer is heavily dependent on CT. CT provides excellent depiction of the bones but lacks good soft tissue contrast, which makes contouring difficult. Often, MRIs are fused with CT to take advantage of its superior soft tissue contrast. Such an approach has drawbacks. It is desirable to perform treatment simulation entirely based on MRI. To achieve MR-based simulation for radiation therapy, bone imaging is an important challenge because of the low MR signal intensity from bone due to its ultra-short T2 and T1, which presents difficulty for both dose calculation and patient setup in terms of digitally reconstructed radiograph (DRR) generation. Current solutions will either require manual bone contouring or multiple MR scans. We present a technique to generate DRR using MRI with an Ultra Short Echo Time (UTE) sequence which is applicable to both OBI and ExacTrac 2D patient setup. Methods: Seven brain cancer patients were scanned at 1.5 Tesla using a radial UTE sequence. The sequence acquires two images at two different echo times. The two images were processed using in-house software. The resultant bone images were subsequently loaded into commercial systems to generate DRRs. Simulation and patient clinical on-board images were used to evaluate 2D patient setup with MRI-DRRs. Results: The majority bones are well visualized in all patients. The fused image of patient CT with the MR bone image demonstrates the accuracy of automatic bone identification using our technique. The generated DRR is of good quality. Accuracy of 2D patient setup by using MRI-DRR is comparable to CT-based 2D patient setup. Conclusion: This study shows the potential of DRR generation with single MR sequence. Further work will be needed on MR sequence development and post-processing procedure to achieve robust MR bone imaging for other human sites in addition to brain.

  15. Accuracy of robotic patient positioners used in ion beam therapy

    International Nuclear Information System (INIS)

    Nairz, Olaf; Winter, Marcus; Heeg, Peter; Jäkel, Oliver

    2013-01-01

    In this study we investigate the accuracy of industrial six axes robots employed for patient positioning at the Heidelberg Ion Beam Therapy Center. In total 1018 patient setups were monitored with a laser tracker and subsequently analyzed. The measurements were performed in the two rooms with a fixed horizontal beam line. Both, the 3d translational errors and the rotational errors around the three table axes were determined. For the first room the 3d error was smaller than 0.72 mm in 95 percent of all setups. The standard deviation of the rotational errors was at most 0.026° for all axes. For the second room Siemens implemented an improved approach strategy to the final couch positions. The 95 percent quantile of the 3d error could in this room be reduced to 0.53 mm; the standard deviation of the rotational errors was also at most 0.026°. Robots are very flexible tools for patient positioning in six degrees of freedom. This study proved that the robots are able to achieve clinically acceptable accuracy in real patient setups, too

  16. Differences in Risk Factors for Rotator Cuff Tears between Elderly Patients and Young Patients.

    Science.gov (United States)

    Watanabe, Akihisa; Ono, Qana; Nishigami, Tomohiko; Hirooka, Takahiko; Machida, Hirohisa

    2018-02-01

    It has been unclear whether the risk factors for rotator cuff tears are the same at all ages or differ between young and older populations. In this study, we examined the risk factors for rotator cuff tears using classification and regression tree analysis as methods of nonlinear regression analysis. There were 65 patients in the rotator cuff tears group and 45 patients in the intact rotator cuff group. Classification and regression tree analysis was performed to predict rotator cuff tears. The target factor was rotator cuff tears; explanatory variables were age, sex, trauma, and critical shoulder angle≥35°. In the results of classification and regression tree analysis, the tree was divided at age 64. For patients aged≥64, the tree was divided at trauma. For patients agedrotator cuff tears in this study. However, these risk factors showed different trends according to age group, not a linear relationship.

  17. Pragmatic setup for bioparticle responses by dielectrophoresis for resource limited environment application

    Science.gov (United States)

    Ali, Mohd Anuar Md; Yeop Majlis, Burhanuddin; Kayani, Aminuddin Ahmad

    2017-12-01

    Various dielectrophoretic responses of bioparticles, including cell-chain, spinning, rotation and clustering, are of high interest in the field due to their benefit into application for biomedical and clinical implementation potential. Numerous attempts using sophisticated equipment setup have been studied to perform those dielectrophoretic responses, however, for development into resource limited environment application, such as portable, sustainable and environmental friendly diagnostic tools, establishment of pragmatic setup using standard, non-sophisticated and low-cost equipment is of important task. Here we show the advantages in the judicious design optimization of tip microelectrode, also with selection of suspending medium and optimization of electric signal configuration in establishing setup that can promote the aforementioned dielectrophoretic responses within standard equipments, i.e. pragmatic setup.

  18. Thresholds for human detection of patient setup errors in digitally reconstructed portal images of prostate fields

    International Nuclear Information System (INIS)

    Phillips, Brooke L.; Jiroutek, Michael R.; Tracton, Gregg; Elfervig, Michelle; Muller, Keith E.; Chaney, Edward L.

    2002-01-01

    Purpose: Computer-assisted methods to analyze electronic portal images for the presence of treatment setup errors should be studied in controlled experiments before use in the clinical setting. Validation experiments using images that contain known errors usually report the smallest errors that can be detected by the image analysis algorithm. This paper offers human error-detection thresholds as one benchmark for evaluating the smallest errors detected by algorithms. Unfortunately, reliable data are lacking describing human performance. The most rigorous benchmarks for human performance are obtained under conditions that favor error detection. To establish such benchmarks, controlled observer studies were carried out to determine the thresholds of detectability for in-plane and out-of-plane translation and rotation setup errors introduced into digitally reconstructed portal radiographs (DRPRs) of prostate fields. Methods and Materials: Seventeen observers comprising radiation oncologists, radiation oncology residents, physicists, and therapy students participated in a two-alternative forced choice experiment involving 378 DRPRs computed using the National Library of Medicine Visible Human data sets. An observer viewed three images at a time displayed on adjacent computer monitors. Each image triplet included a reference digitally reconstructed radiograph displayed on the central monitor and two DRPRs displayed on the flanking monitors. One DRPR was error free. The other DRPR contained a known in-plane or out-of-plane error in the placement of the treatment field over a target region in the pelvis. The range for each type of error was determined from pilot observer studies based on a Probit model for error detection. The smallest errors approached the limit of human visual capability. The observer was told what kind of error was introduced, and was asked to choose the DRPR that contained the error. Observer decisions were recorded and analyzed using repeated

  19. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    Energy Technology Data Exchange (ETDEWEB)

    Batin, E; Depauw, N; MacDonald, S; Lu, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°.

  20. SU-C-204-06: Surface Imaging for the Set-Up of Proton Post-Mastectomy Chestwall Irradiation: Gated Images Vs Non Gated Images

    International Nuclear Information System (INIS)

    Batin, E; Depauw, N; MacDonald, S; Lu, H

    2015-01-01

    Purpose: Historically, the set-up for proton post-mastectomy chestwall irradiation at our institution started with positioning the patient using tattoos and lasers. One or more rounds of orthogonal X-rays at gantry 0° and beamline X-ray at treatment gantry angle were then taken to finalize the set-up position. As chestwall targets are shallow and superficial, surface imaging is a promising tool for set-up and needs to be investigated Methods: The orthogonal imaging was entirely replaced by AlignRT™ (ART) images. The beamline X-Ray image is kept as a confirmation, based primarily on three opaque markers placed on skin surface instead of bony anatomy. In the first phase of the process, ART gated images were used to set-up the patient and the same specific point of the breathing curve was used every day. The moves (translations and rotations) computed for each point of the breathing curve during the first five fractions were analyzed for ten patients. During a second phase of the study, ART gated images were replaced by ART non-gated images combined with real-time monitoring. In both cases, ART images were acquired just before treatment to access the patient position compare to the non-gated CT. Results: The average difference between the maximum move and the minimum move depending on the chosen breathing curve point was less than 1.7 mm for all translations and less than 0.7° for all rotations. The average position discrepancy over the course of treatment obtained by ART non gated images combined to real-time monitoring taken before treatment to the planning CT were smaller than the average position discrepancy obtained using ART gated images. The X-Ray validation images show similar results with both ART imaging process. Conclusion: The use of ART non gated images combined with real time imaging allows positioning post-mastectomy chestwall patients in less than 3 mm / 1°

  1. Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy

    International Nuclear Information System (INIS)

    Cho, Jeong Hee; Lee, Sang Kyu; Kim, Sei Joon; Na, Soo Kyung

    2007-01-01

    The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the

  2. Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Hee; Lee, Sang Kyu [Dept. of Radiation Oncology, Yensei Univesity Health System, Seoul (Korea, Republic of); Kim, Sei Joon [Dept. of Radiation Oncology,Yongdong Severance Hospital , Seoul (Korea, Republic of); Na, Soo Kyung [Dept. of Radiological Science, Gimcheon College, Gimcheon (Korea, Republic of)

    2007-09-15

    The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were

  3. Pitch, roll, and yaw variations in patient positioning

    International Nuclear Information System (INIS)

    Kaiser, Adeel; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.; Smith, David D.; Han, Chunhui; Vora, Nayana L.; Pezner, Richard D.; Chen Yijen; Radany, Eric H.

    2006-01-01

    Purpose: To use pretreatment megavoltage-computed tomography (MVCT) scans to evaluate positioning variations in pitch, roll, and yaw for patients treated with helical tomotherapy. Methods and Materials: Twenty prostate and 15 head-and-neck cancer patients were selected. Pretreatment MVCT scans were performed before every treatment fraction and automatically registered to planning kilovoltage CT (KVCT) scans by bony landmarks. Image registration data were used to adjust patient setups before treatment. Corrections for pitch, roll, and yaw were recorded after bone registration, and data from fractions 1-5 and 16-20 were used to analyze mean rotational corrections. Results: For prostate patients, the means and standard deviations (in degrees) for pitch, roll, and yaw corrections were -0.60 ± 1.42, 0.66 ± 1.22, and -0.33 ± 0.83. In head-and-neck patients, the means and standard deviations (in degrees) were -0.24 ± 1.19, -0.12 ± 1.53, and 0.25 ± 1.42 for pitch, roll, and yaw, respectively. No significant difference in rotational variations was observed between Weeks 1 and 4 of treatment. Head-and-neck patients had significantly smaller pitch variation, but significantly larger yaw variation, than prostate patients. No difference was found in roll corrections between the two groups. Overall, 96.6% of the rotational corrections were less than 4 deg. Conclusions: The initial rotational setup errors for prostate and head-and-neck patients were all small in magnitude, statistically significant, but did not vary considerably during the course of radiotherapy. The data are relevant to couch hardware design for correcting rotational setup variations. There should be no theoretical difference between these data and data collected using cone beam KVCT on conventional linacs

  4. Controlling Mechatronic Set-up Using Real-time Linux and CTC ++

    NARCIS (Netherlands)

    Broenink, Johannes F.; Jovanovic, D.S.; Hilderink, G.H.; van Amerongen, J.; Jonker, B.; Regtien, P.; Stramigioli, S.

    2002-01-01

    The development of control software for mechatronic systems is presented by means of a case study: a 2 DOF mechanical rotational set-up usable as a camera-positioning device. The control software is generated using the code generation facility of 20-SIM, thus guaranteeing the generated code being

  5. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    International Nuclear Information System (INIS)

    Worm, Esben S.; Høyer, Morten; Fledelius, Walther; Nielsen, Jens E.; Larsen, Lars P.; Poulsen, Per R.

    2012-01-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 ± 0.50 pixels (mean ± SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing (≤21 mm) that induced an absolute three-dimensional setup error of 1.6 ± 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  6. Objected constrained registration and manifold learning: A new patient setup approach in image guided radiation therapy of thoracic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning [Radiation Oncology Department, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08901 (United States); Qin Songbing [Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2013-04-15

    Purpose: The management of thoracic malignancies with radiation therapy is complicated by continuous target motion. In this study, a real time motion analysis approach is proposed to improve the accuracy of patient setup. Methods: For 11 lung cancer patients a long training fluoroscopy was acquired before the first treatment, and multiple short testing fluoroscopies were acquired weekly at the pretreatment patient setup of image guided radiotherapy (IGRT). The data analysis consisted of three steps: first a 4D target motion model was constructed from 4DCT and projected to the training fluoroscopy through deformable registration. Then the manifold learning method was used to construct a 2D subspace based on the target motion (kinetic) and location (static) information in the training fluoroscopy. Thereafter the respiratory phase in the testing fluoroscopy was determined by finding its location in the subspace. Finally, the phase determined testing fluoroscopy was registered to the corresponding 4DCT to derive the pretreatment patient position adjustment for the IGRT. The method was tested on clinical image sets and numerical phantoms. Results: The registration successfully reconstructed the 4D motion model with over 98% volume similarity in 4DCT, and over 95% area similarity in the training fluoroscopy. The machine learning method derived the phase values in over 98% and 93% test images of the phantom and patient images, respectively, with less than 3% phase error. The setup approach achieved an average accumulated setup error less than 1.7 mm in the cranial-caudal direction and less than 1 mm in the transverse plane. All results were validated against the ground truth of manual delineations by an experienced radiation oncologist. The expected total time for the pretreatment setup analysis was less than 10 s. Conclusions: By combining the registration and machine learning, the proposed approach has the potential to improve the accuracy of pretreatment setup for

  7. Objected constrained registration and manifold learning: A new patient setup approach in image guided radiation therapy of thoracic cancer

    International Nuclear Information System (INIS)

    Chen Ting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning; Qin Songbing

    2013-01-01

    Purpose: The management of thoracic malignancies with radiation therapy is complicated by continuous target motion. In this study, a real time motion analysis approach is proposed to improve the accuracy of patient setup. Methods: For 11 lung cancer patients a long training fluoroscopy was acquired before the first treatment, and multiple short testing fluoroscopies were acquired weekly at the pretreatment patient setup of image guided radiotherapy (IGRT). The data analysis consisted of three steps: first a 4D target motion model was constructed from 4DCT and projected to the training fluoroscopy through deformable registration. Then the manifold learning method was used to construct a 2D subspace based on the target motion (kinetic) and location (static) information in the training fluoroscopy. Thereafter the respiratory phase in the testing fluoroscopy was determined by finding its location in the subspace. Finally, the phase determined testing fluoroscopy was registered to the corresponding 4DCT to derive the pretreatment patient position adjustment for the IGRT. The method was tested on clinical image sets and numerical phantoms. Results: The registration successfully reconstructed the 4D motion model with over 98% volume similarity in 4DCT, and over 95% area similarity in the training fluoroscopy. The machine learning method derived the phase values in over 98% and 93% test images of the phantom and patient images, respectively, with less than 3% phase error. The setup approach achieved an average accumulated setup error less than 1.7 mm in the cranial-caudal direction and less than 1 mm in the transverse plane. All results were validated against the ground truth of manual delineations by an experienced radiation oncologist. The expected total time for the pretreatment setup analysis was less than 10 s. Conclusions: By combining the registration and machine learning, the proposed approach has the potential to improve the accuracy of pretreatment setup for

  8. SU-F-T-92: Clinical Benefit for Breast and Chest Wall Setup in Using a Breast Board

    Energy Technology Data Exchange (ETDEWEB)

    Li, S; Miyamoto, C; Serratore, D; Liang, Q; Dziemianowicz, E [Temple University Hospital, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To validate benefit of using a breast board (BB) by analyzing the geometry and dosimetry changes of the regions of interest (ROIs) between CT scans with and without BB. Methods: Seven patients, two chest walls (CW) and five breasts, use BB at CT simulation and no BB at diagnostic CT were included. By using deformable image registration software (Velocity AI), diagnostic CT and planning CT were rigidly co-registered according to the thoracic cage at the target. The heart and the target were then deformedly matched and the contours of the planned ROIs were transferred to the diagnostic CT. Which were brought back to the planning CT data set though the initial rigid co-registration in order to keep the deformed ROIs redefined in the diagnostic CT. Anatomic shifts and volume changes of a ROI beyond the rigid translation were recorded and dosimetry changes to ROIs were compared with recalculated DVHs. Results: Patient setup without the BB had small but systematic heart shifts superiorly by ∼5 mm. Torso rotations in two cases moved the heart in opposite directions by ∼10 mm. The breast target volume, shape, and locations were significantly changed with arm extension over the head but not in cases with the arm extended laterally. Breast setup without BB could increase the mean dose to the heart and the maximal dose to the anterior ventricle wall by 1.1 and 6.7 Gy, respectively. Conclusion: A method for evaluation of breast setup technique is introduced and applied for patients. Results of systematic heart displacement without using the BB and the potential increase of heart doses encourage us to further investigate the current trend of not using a BB for easy setup and CT scans. Using a BB would likely increase patient sag during prolonged IMRT and real-time patient position monitoring is clinically desired.

  9. The preliminary study of setup errors' impact on dose distribution of image guide radiation therapy for head and neck cancer

    International Nuclear Information System (INIS)

    Xu Luying; Pan Jianji; Wang Xiaoliang; Bai Penggang; Li Qixin; Fei Zhaodong; Chen Chuanben; Ma Liqin; Tang Tianlan

    2011-01-01

    Objective: To measure the set-up errors of patients with head and neck (H and N) cancer during the image guided intensity-modulated radiotherapy (IMRT) treatment and analyze the impact of setup errors on dose distribution; then to further investigate the necessity of adjustment online for H and N cancer during IMRT treatment. Methods: Cone-beam CT (CBCT) scanning of thirty patients with H and N cancer were acquired by once weekly with a total of 6 times during IMRT treatment. The CBCT images and the original planning CT images were matched by the bony structure and worked out the translational errors of the x, y, z axis, as well as rotational errors. The dose distributions were recalculated based on the data of each setup error. The dose of planning target volume (PTV) and organs at risk were calculated in the re-planning, and than compared with the original plan by paired t-test. Results: The mean value of x, y, z axis translational set-up errors were (1.06 ± 0.95)mm, (0.95 ± 0.77)mm and (1.31 ± 1.07)mm, respectively. The rotational error of x, y, z axis were (1.04 ±0.791), (1.06 ±0.89) and (0.81 ±0.61 ), respectively. PTV 95% volume dose (D 95 ) and PTV minimal dose of re-planning for 6 times set-up were lower than original plan (6526.6 cGy : 6630.3 cGy, t =3.98, P =0.000 and 5632.6 cGy : 5792.5 cGy, t =- 2.89, P =0.007). Brain stem received 45 Gydose volume (V 45 ) and 1% brain stem volume dose (D 01 )were higher than original plan (3.54% : 2.75%, t =3.84, P =0.001 and 5129.7 cGy : 4919.3 cGy, t =4.36, P =0.000). Conclusions: The set-up errors led to the dose of PTV D 95 obviously insufficient and significantly increased V 45 , D 01 of the brainstem. So, adjustment online is necessary for H and N cancer during IMRT treatment. (authors)

  10. In-bore setup and software for 3T MRI-guided transperineal prostate biopsy

    International Nuclear Information System (INIS)

    Tokuda, Junichi; Tuncali, Kemal; Song, Sang-Eun; Fedorov, Andriy; Oguro, Sota; Fennessy, Fiona M; Tempany, Clare M; Hata, Nobuhiko; Iordachita, Iulian; Lasso, Andras

    2012-01-01

    MRI-guided prostate biopsy in conventional closed-bore scanners requires transferring the patient outside the bore during needle insertion due to the constrained in-bore space, causing a safety hazard and limiting image feedback. To address this issue, we present our custom-made in-bore setup and software to support MRI-guided transperineal prostate biopsy in a wide-bore 3 T MRI scanner. The setup consists of a specially designed tabletop and a needle-guiding template with a Z-frame that gives a physician access to the perineum of the patient at the imaging position and allows the physician to perform MRI-guided transperineal biopsy without moving the patient out of the scanner. The software and Z-frame allow registration of the template, target planning and biopsy guidance. Initially, we performed phantom experiments to assess the accuracy of template registration and needle placement in a controlled environment. Subsequently, we embarked on our clinical trial (N = 10). The phantom experiments showed that the translational errors of the template registration along the right–left (RP) and anterior–posterior (AP) axes were 1.1 ± 0.8 and 1.4 ± 1.1 mm, respectively, while the rotational errors around the RL, AP and superior–inferior axes were (0.8 ± 1.0)°, (1.7 ± 1.6)° and (0.0 ± 0.0)°, respectively. The 2D root-mean-square (RMS) needle-placement error was 3 mm. The clinical biopsy procedures were safely carried out in all ten clinical cases with a needle-placement error of 5.4 mm (2D RMS). In conclusion, transperineal prostate biopsy in a wide-bore 3T scanner is feasible using our custom-made tabletop setup and software, which supports manual needle placement without moving the patient out of the magnet. (paper)

  11. High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging

    International Nuclear Information System (INIS)

    Bel, Arjan; Vos, Pieter H.; Rodrigus, Patrick T. R.; Creutzberg, Carien L.; Visser, Andries G.; Stroom, Joep C.; Lebesque, Joos V.

    1996-01-01

    Purpose: To investigate in three institutions, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Huis [AvL]), Dr. Daniel den Hoed Cancer Center (DDHC), and Dr, Bernard Verbeeten Institute (BVI), how much the patient setup accuracy for irradiation of prostate cancer can be improved by an offline setup verification and correction procedure, using portal imaging. Methods and Materials: The verification procedure consisted of two stages. During the first stage, setup deviations were measured during a number (N max ) of consecutive initial treatment sessions. The length of the average three dimensional (3D) setup deviation vector was compared with an action level for corrections, which shrunk with the number of setup measurements. After a correction was applied, N max measurements had to be performed again. Each institution chose different values for the initial action level (6, 9, and 10 mm) and N max (2 and 4). The choice of these parameters was based on a simulation of the procedure, using as input preestimated values of random and systematic deviations in each institution. During the second stage of the procedure, with weekly setup measurements, the AvL used a different criterion ('outlier detection') for corrective actions than the DDHC and the BVI ('sliding average'). After each correction the first stage of the procedure was restarted. The procedure was tested for 151 patients (62 in AvL, 47 in DDHC, and 42 in BVI) treated for prostate carcinoma. Treatment techniques and portal image acquisition and analysis were different in each institution. Results: The actual distributions of random and systematic deviations without corrections were estimated by eliminating the effect of the corrections. The percentage of mean (systematic) 3D deviations larger than 5 mm was 26% for the AvL and the DDHC, and 36% for the BVI. The setup accuracy after application of the procedure was considerably improved (percentage of mean 3D deviations larger than 5 mm was 1.6% in the

  12. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    Science.gov (United States)

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  13. TU-H-CAMPUS-TeP1-02: Seated Treatment: Setup Uncertainty Comparable to Supine

    Energy Technology Data Exchange (ETDEWEB)

    McCarroll, R [UT MD Anderson Cancer Center, Houston, TX (United States); UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX (United States); Beadle, B; Fullen, D; Balter, P; Followill, D; Stingo, F; Yang, J; Court, L [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: For some head and neck patients, positioning in the supine position is not well tolerated. For these patients, treatment in a seated position would be preferred. We have evaluated inter- and intra- fraction uncertainty of patient set-up in a novel treatment chair which is compatible with modern linac designs. Methods: Five head-and-neck cancer patients were positioned in the chair, fitted with immobilization devices, and imaged with orthogonal X-rays. The couch (with chair attached) was rotated to simulate delivery (without actual treatment), another set of images were acquired, providing a measure of intra-fraction displacement. The patient then got off of and back onto the chair and the process was repeated, thus providing a measure of inter-fraction set-up uncertainty. Six sub-regions in the head-and-neck were rigidly registered to evaluate local intra- and interfraction displacement. Image guidance was simulated by first registering one sub-region; the residual displacement of other sub-regions was then measured. Additionally, a patient questionnaire was administered to evaluate tolerance of the seated position. Results: The chair design is such that all advantages of couch motions may be utilized. Average inter- and intrafraction displacements of all sub-regions in the seated position were less than 2 and 3 mm, respectively. When image guidance was simulated, interfraction displacements were reduced by an average of 4 mm, providing comparable setup to the supine position. The enrolled patients, who had no indication for a seated treatment position, reported no preference for the seated or the supine position. Conclusion: The novel chair design provides acceptable inter- and intra-fraction displacement, with reproducibility similar to that observed for patients in the supine position. Such a chair will be utilized for patients who cannot tolerate the supine position and use with CBCT images for planning, in a fixed-beam linac system, and for other

  14. Intrafractional setup errors in patients undergoing non-invasive fixation using an immobilization system during hypofractionated stereotactic radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Watanabe, Meguru; Onishi, Hiroshi; Kuriyama, Kengo

    2013-01-01

    Intrafractional setup errors during hypofractionated stereotactic radiotherapy (SRT) were investigated on the patient under voluntary breath-holding conditions with non-invasive immobilization on the CT-linac treatment table. A total of 30 patients with primary and metastatic lung tumors were treated with the hypofractionated SRT with a total dose of 48-60 Gy with four treatment fractions. The patient was placed supine and stabilized on the table with non-invasive patient fixation. Intrafractional setup errors in Right/Left (R.L.), Posterior/Anterior (P.A.), and Inferior/Superior (I.S.) dimensions were analyzed with pre- and post-irradiation CT images. The means and one standard deviation of the intrafractional errors were 0.9±0.7 mm (R.L.), 0.9±0.7 mm (P.A.) and 0.5±1.0 mm (I.S.). Setup errors in each session of the treatment demonstrated no statistically significant difference in the mean value between any two sessions. The frequency within 3 mm displacement was 98% in R.L., 98% in P.A. and 97% in I.S. directions. SRT under the non-invasive patient fixation immobilization system with a comparatively loose vacuum pillow demonstrated satisfactory reproducibility of minimal setup errors with voluntary breath-holding conditions that required a small internal margin. (author)

  15. Setup uncertainties: consequences for multi-isocentre stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Ebert, M.A.; Harper, C.S.

    2000-01-01

    Full text: Beam data for use in dose calculations by planning systems is generally measured under static and controlled conditions. Yet, patient motion and setup uncertainties will effectively blur the resulting dose distributions leading to a discrepancy between planned and delivered dose distributions. This is particularly so for stereotactic radiotherapy where small well-defined fields are used. When multiple isocentres are used (possibly for larger irregular lesions), relative motion of isocentres due to setup variations may have deleterious effects on the intended radiation delivery. The influence of setup uncertainties was examined by performing a three-dimensional convolution of measured off-axis ratio (OAR) data with a Maxwellian distribution, with standard deviations representing several feasible levels of inaccuracy in patient setup. A sample of patient plans (predominantly multi-isocentre plans) were then considered using original (measured) OAR data, and then modified data in order to observe the resulting effect. The effect of systematic localisation error was also considered by examining resulting DVHs as isocentres were shifted by fixed amounts. In all cases considered, the maximum dose varied quite minimally with increase in setup error with the variation decreasing with increasing high-dose volume. The minimum dose however varied more significantly, and this has serious consequences for dose prescription as the minimum dose can be the controlling factor in treatment efficacy. For multi-isocentre plans, the degree of non-uniformity generated by setup error was not as significant as originally expected. This is in part due to the non-uniformity already present in such plans to begin with. Through incorporation of the effect of setup error into planning data, the influence of setup variations on dose distributions for multi-isocentre treatments has been determined. This influence should be considered when creating plans based on the level of spatial

  16. Cone-Beam Computed Tomography–Guided Positioning of Laryngeal Cancer Patients with Large Interfraction Time Trends in Setup and Nonrigid Anatomy Variations

    International Nuclear Information System (INIS)

    Gangsaas, Anne; Astreinidou, Eleftheria; Quint, Sandra; Levendag, Peter C.; Heijmen, Ben

    2013-01-01

    Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4 mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r 2 =0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r 2 =0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and

  17. Morphology of large rotator cuff tears and of the rotator cable and long-term shoulder disability in conservatively treated elderly patients.

    Science.gov (United States)

    Morag, Yoav; Jamadar, David A; Miller, Bruce; Brandon, Catherine; Gandikota, Girish; Jacobson, Jon A

    2013-01-01

    The objective of this study was to describe the morphology of the rotator cuff tendon tears and long-term shoulder disability in conservatively treated elderly patients and determine if an association exists between these factors. Assessment of the rotator cuff tendon tear dimensions and depth, rotator interval involvement, rotator cable morphology and location, and rotator cuff muscle status was carried out on magnetic resonance studies of 24 elderly patients treated nonoperatively for rotator cuff tendon tears. Long-term shoulder function was measured using the Western Ontario Rotator Cuff (WORC) index; Disabilities of the Shoulder, Arm, and Hand questionnaire; and the American Shoulder Elbow Self-assessment form, and a correlation between the outcome scores and morphologic magnetic resonance findings was carried out. The majority of large rotator cuff tendon tears are limited to the rotator cuff crescent. Medial rotator interval involvement (isolated or in association with lateral rotator interval involvement) was significantly associated with WORC physical symptoms total (P = 0.01), WORC lifestyle total (P = 0.04), percentage of all WORC domains (P = 0.03), and American Shoulder Elbow Self-assessment total (P = 0.01), with medial rotator interval involvement associated with an inferior outcome. Medial rotator interval tears are associated with long-term inferior outcome scores in conservatively treated elderly patients with large rotator cuff tendon tears.

  18. The potential impact of the tension of the pelvic muscles on set-up errors in radiotherapy for pelvic malignancies

    International Nuclear Information System (INIS)

    Bujko, Krzysztof; Czuchraniuk, Piotr; Zolciak, Agnieszka; Kukolowicz, Pawel; Kepka, Lucyna; Bielik, Agnieszka

    2004-01-01

    The purpose of the study reported here was to evaluate the potential impact of the tension of pelvic muscles on set-up errors. Twenty-nine consecutive patients with rectal cancer were included. The treatment simulation of the lateral beam in prone position was performed twice-with relaxed and next with maximally tense pelvic muscles. During the second simulation, the couch was moved so as to align the centre of the beam with the actual position of the skin mark tattooed during the first simulation. The bony landmarks on both images of corresponding lateral fields were matched. The beam's centre displacement and the rotation were measured using the beam image taken in relaxed position as a reference. The absolute values were used in calculation of the mean. For the anterior-posterior direction, the mean value of displacements was 15.3 mm, standard deviation (SD) 6.9 mm and the maximal value 37 mm. For the cranial-caudal direction, the mean value was 4.4 mm, SD 4 mm and the maximal value 17 mm. The mean rotation of the pelvis was 5.3 degrees, SD 2.4 degrees and maximal rotation 11 degrees. The majority of displacements were in the posterior (86%) and caudal (55%) directions. The majority of rotations were clockwise (76%). It was shown that pelvic muscle tension was the reason for anal verge displacements and mispositionings of the shielding block. This results in set-up inaccuracy, especially in the anterior-posterior direction, shielding block mispositioning and anal verge displacement

  19. Automatic detection of patient identification and positioning errors in radiation therapy treatment using 3-dimensional setup images.

    Science.gov (United States)

    Jani, Shyam S; Low, Daniel A; Lamb, James M

    2015-01-01

    To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by

  20. Patient reported activities after reverse total shoulder arthroplasty in rotator cuff arthropathy patients.

    Science.gov (United States)

    Alcobía-Díaz, B; Lópiz, Y; García-Fernández, C; Rizo de Álvaro, B; Marco, F

    Reverse total shoulder arthroplasty in rotator cuff arthropathy patients, improves anteversion and abduction, but not rotational, outcomes. The main aim of this study is to determine its repercussions on daily life activities in our patients. Between 2009 and 2011 we implanted 210 shoulder arthroplasties, 126 of them were reverse total shoulder arthroplasty in a rotator cuff arthropathy context. About 88% were women, with a mean age at time of surgery of 81 years, 95% were retired. The mean follow up was 53 months. The Constant scale, Visual Analogue Scale, Charlson Comorbidity Index, range of motion were measured for each patient and whether they could manage 40 daily life activities by means of a new questionnaire, classifying them according toshoulder functional demand. Mean normalized by sex and age Constant value was 81.2%. Mean Visual Analogue Scale and Charlson Index were 3.56 and 1.69 respectively. Improvement in anteversion and abduction, not in rotational range of motion. Limitation was found in low and high functional demand activities in 20% and 51% respectively, especially those which involved internal rotation. Reverse total shoulder arthroplasty treatment for RCA in the elderly, achieves adequate pain management and good functional outcomes. Nevertheless, an important risk of DLA limitation must be accepted in those which involve internal rotation or shoulder high functional demand. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. SU-F-I-03: Correction of Intra-Fractional Set-Up Errors and Target Coverage Based On Cone-Beam Computed Tomography for Cervical Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, JY [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China); Hong, DL [The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong (China)

    2016-06-15

    Purpose: The purpose of this study is to investigate the patient set-up error and interfraction target coverage in cervical cancer using image-guided adaptive radiotherapy (IGART) with cone-beam computed tomography (CBCT). Methods: Twenty cervical cancer patients undergoing intensity modulated radiotherapy (IMRT) were randomly selected. All patients were matched to the isocenter using laser with the skin markers. Three dimensional CBCT projections were acquired by the Varian Truebeam treatment system. Set-up errors were evaluated by radiation oncologists, after CBCT correction. The clinical target volume (CTV) was delineated on each CBCT, and the planning target volume (PTV) coverage of each CBCT-CTVs was analyzed. Results: A total of 152 CBCT scans were acquired from twenty cervical cancer patients, the mean set-up errors in the longitudinal, vertical, and lateral direction were 3.57, 2.74 and 2.5mm respectively, without CBCT corrections. After corrections, these were decreased to 1.83, 1.44 and 0.97mm. For the target coverage, CBCT-CTV coverage without CBCT correction was 94% (143/152), and 98% (149/152) with correction. Conclusion: Use of CBCT verfication to measure patient setup errors could be applied to improve the treatment accuracy. In addition, the set-up error corrections significantly improve the CTV coverage for cervical cancer patients.

  2. An experimental set-up to test heatmoisture exchangers

    NARCIS (Netherlands)

    N. Ünal (N.); J.C. Pompe (Jan); W.P. Holland (Wim); I. Gultuna; P.E.M. Huygen; K. Jabaaij (K.); C. Ince (Can); B. Saygin (B.); H.A. Bruining (Hajo)

    1995-01-01

    textabstractObjectives: The purpose of this study was to build an experimental set-up to assess continuously the humidification, heating and resistance properties of heat-moisture exchangers (HMEs) under clinical conditions. Design: The experimental set-up consists of a patient model, measurement

  3. SU-E-J-24: Can Fiducial Marker-Based Setup Using ExacTrac Be An Alternative to Soft Tissue-Based Setup Using Cone-Beam CT for Prostate IMRT?

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, S [Department of Radiation Oncology, Niigata University Medical and Dental Hospital (Japan); Utsunomiya, S; Abe, E; Aoyama, H [Department of Radiology, Niigata University Graduate School of Medical and Dental Sciences (Japan); Satou, H [Department of Radiation Oncology, Niigata Cancer Center Hospital (Japan); Sakai, H; Yamada, T [Section of Radiology, Department of Clinical Support, Niigata University Medical and Dental Hospital (Japan)

    2015-06-15

    Purpose: To assess an accuracy of fiducial maker-based setup using ExacTrac (ExT-based setup) as compared with soft tissue-based setup using Cone-beam CT (CBCT-based setup) for patients with prostate cancer receiving intensity-modulated radiation therapy (IMRT) for the purpose of investigating whether ExT-based setup can be an alternative to CBCT-based setup. Methods: The setup accuracy was analyzed prospectively for 7 prostate cancer patients with implanted three fiducial markers received IMRT. All patients were treated after CBCT-based setup was performed and corresponding shifts were recorded. ExacTrac images were obtained before and after CBCT-based setup. The fiducial marker-based shifts were calculated based on those two images and recorded on the assumption that the setup correction was carried out by fiducial marker-based auto correction. Mean and standard deviation of absolute differences and the correlation between CBCT and ExT shifts were estimated. Results: A total of 178 image dataset were analyzed. On the differences between CBCT and ExT shifts, 133 (75%) of 178 image dataset resulted in smaller differences than 3 mm in all dimensions. Mean differences in the anterior-posterior (AP), superior-inferior (SI), and left-right (LR) dimensions were 1.8 ± 1.9 mm, 0.7 ± 1.9 mm, and 0.6 ± 0.8 mm, respectively. The percentages of shift agreements within ±3 mm were 76% for AP, 90% for SI, and 100% for LR. The Pearson coefficient of correlation for CBCT and ExT shifts were 0.80 for AP, 0.80 for SI, and 0.65 for LR. Conclusion: This work showed that the accuracy of ExT-based setup was correlated with that of CBCT-based setup, implying that ExT-based setup has a potential ability to be an alternative to CBCT-based setup. The further work is to specify the conditions that ExT-based setup can provide the accuracy comparable to CBCT-based setup.

  4. Influence of Daily Set-Up Errors on Dose Distribution During Pelvis Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, M.; Ivkovic, A.; Faj, D.; Rajevac, V.; Sobat, H.; Jurkovic, S.

    2011-01-01

    An external beam radiotherapy (EBRT) using megavoltage beam of linear accelerator is usually the treatment of choice for the cancer patients. The goal of EBRT is to deliver the prescribed dose to the target volume, with as low as possible dose to the surrounding healthy tissue. A large number of procedures and different professions involved in radiotherapy process, uncertainty of equipment and daily patient set-up errors can cause a difference between the planned and delivered dose. We investigated a part of this difference caused by daily patient set-up errors. Daily set-up errors for 35 patients were measured. These set-up errors were simulated on 5 patients, using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The differences in dose distributions between the planned and shifted ''geometry'' were investigated. Additionally, an influence of the error on treatment plan selection was checked by analyzing the change in dose volume histograms, planning target volume conformity index (CI P TV) and homogeneity index (HI). Simulations showed that patient daily set-up errors can cause significant differences between the planned and actual dose distributions. Moreover, for some patients those errors could influence the choice of treatment plan since CI P TV fell under 97 %. Surprisingly, HI was not as sensitive as CI P TV on set-up errors. The results showed the need for minimizing daily set-up errors by quality assurance programme. (author)

  5. Verification of setup errors in external beam radiation therapy using electronic portal imaging

    International Nuclear Information System (INIS)

    Krishna Murthy, K.; Al-Rahbi, Zakiya; Sivakumar, S.S.; Davis, C.A.; Ravichandran, R.

    2008-01-01

    The objective of this study was to conduct an audit on QA aspects of treatment delivery by the verification of the treatment fields position on different days to document the efficiency of immobilization methods and reproducibility of treatment. A retrospective study was carried out on 60 patients, each 20 treated for head and neck, breast, and pelvic sites; and a total of 506 images obtained by electronic portal imaging device (EPID) were analyzed. The portal images acquired using the EPID systems attached to the Varian linear accelerators were superimposed on the reference images. The anatomy matching software (Varian portal Vision. 6.0) was used, and the displacements in two dimensions and rotation were noted for each treated field to study the patient setup errors. The percentages of mean deviations more than 3 mm in lateral (X) and longitudinal (Y) directions were 17.5%, 11.25%, and 7.5% for breast, pelvis, and head and neck cases respectively. In all cases, the percentage of mean deviation with more than 5 mm error was 0.83%. The maximum average mean deviation in all the cases was 1.87. The average mean SD along X and Y directions in all the cases was less than 2.65. The results revealed that the ranges of setup errors are site specific and immobilization methods improve reproducibility. The observed variations were well within the limits. The study confirmed the accuracy and quality of treatments delivered to the patients. (author)

  6. Sonographic Visualization of the Rotator Cable in Patients With Symptomatic Full-Thickness Rotator Cuff Tears: Correlation With Tear Size, Muscular Fatty Infiltration and Atrophy, and Functional Outcome.

    Science.gov (United States)

    Bureau, Nathalie J; Blain-Paré, Etienne; Tétreault, Patrice; Rouleau, Dominique M; Hagemeister, Nicola

    2016-09-01

    To assess the prevalence of sonographic visualization of the rotator cable in patients with symptomatic full-thickness rotator cuff tears and asymptomatic controls and to correlate rotator cable visualization with tear size, muscular fatty infiltration and atrophy, and the functional outcome in the patients with rotator cuff tears. Fifty-seven patients with rotator cuff tears and 30 asymptomatic volunteers underwent shoulder sonography for prospective assessment of the rotator cable and rotator cuff tear and responded to 2 functional outcome questionnaires (shortened Disabilities of the Arm, Shoulder, and Hand [QuickDASH] and Constant). In the patients with rotator cuff tears, appropriate tests were used to correlate rotator cable visualization with the tear size, functional outcome, muscular fatty infiltration, and atrophy. The patients with rotator cuff tears included 25 women and 32 men (mean age,57 years; range, 39-67 years), and the volunteers included 13 women and 17 men (mean age, 56 years; range, 35-64 years). The rotator cable was identified in 77% (23 of 30) of controls and 23% (13 of 57) of patients with rotator cuff tears. In the patients, nonvisualization of the rotator cable correlated with larger tears (P tears than asymptomatic controls and was associated with a larger tear size and greater supraspinatus fatty infiltration and atrophy. Diligent assessment of the supraspinatus muscle should be done in patients with rotator cuff tears without a visible rotator cable, as the integrity of these anatomic structures may be interdependent.

  7. The value of setup portal films as an estimate of a patient's position throughout fractionated tangential breast irradiation: an on-line study

    International Nuclear Information System (INIS)

    McGee, Kiaran P.; Fein, Douglas A.; Hanlon, Alex L.; Schultheiss, Timothy E.; Fowble, Barbara L.

    1997-01-01

    Purpose: To determine if portal setup films are an accurate representation of a patient's position throughout the course of fractionated tangential breast irradiation. Methods and Materials: Thirteen patients undergoing external beam irradiation for T1-T2 infiltrating ductal carcinoma of the breast following excisional biopsy and axillary dissection were imaged using an on-line portal imaging device attached to a 6 MV linear accelerator. Medial and lateral tangential fields were imaged and a total of 139 fractions, 225 portal fields, and 4450 images were obtained. Interfractional and intrafractional variations for anatomical parameters including the central lung distance (CLD), central flash distance (CFD), and inferior central margin (ICM) were calculated from these images. A pooled estimate of the random error associated with a given treatment was determined by adding the interfractional and intrafractional standard deviations in quadrature. A 95% confidence level assigned a value of two standard deviations of the random error estimate. Central lung distance, CFD, and ICM distances were then measured for all portal setup films. Significant differences were defined as occurring when the simulation-setup difference was greater than the 95% confidence value. Results: Differences between setup portal and simulation films were less than their 95% confidence values in 70 instances indicating that in 90% of the time these differences are a result of random differences in daily treatment positioning. Conclusions: In 90% of cases tested, initial portal setup films are an accurate representation of a patients daily treatment setup

  8. Effect of length of dental resident clinical rotations on patient behavior.

    Science.gov (United States)

    Lau, Agnes

    2018-01-01

    The purpose of this retrospective chart review study was to determine if the length of residents' comprehensive dental care rotations in a general practice residency affected late cancellations, broken appointments, completion of treatment, timeliness of recall visits, emergency visits, and the need for redo of restorations and prostheses. Patients who presented for comprehensive care from 2010 to 2013, during which residents had 3- to 4-month dental clinic rotations, comprised Group 1, and patients who presented for comprehensive care from 2013 to 2016, during which residents had 11-month dental clinic rotations, comprised Group 2. Subjects were excluded if they only presented for emergency care, they had only one visit, or their care was delivered in both time periods. There were 105 patients in Group 1 and 55 patients in Group 2. The statistically significant results were that Group 1 patients had more late cancellations and broken appointments and failed to reach recall status more often than Group 2 patients, and that Group 1 patients had fewer emergency visits. Within the limitations of this retrospective study, the results suggest that short block rotations have an adverse effect on resident experience and outcomes of patient care in a hospital outpatient setting. © 2018 Special Care Dentistry Association and Wiley Periodicals, Inc.

  9. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis

    OpenAIRE

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rota...

  10. A feasibility study of mutual information based setup error estimation for radiotherapy

    International Nuclear Information System (INIS)

    Kim, Jeongtae; Fessler, Jeffrey A.; Lam, Kwok L.; Balter, James M.; Haken, Randall K. ten

    2001-01-01

    We have investigated a fully automatic setup error estimation method that aligns DRRs (digitally reconstructed radiographs) from a three-dimensional planning computed tomography image onto two-dimensional radiographs that are acquired in a treatment room. We have chosen a MI (mutual information)-based image registration method, hoping for robustness to intensity differences between the DRRs and the radiographs. The MI-based estimator is fully automatic since it is based on the image intensity values without segmentation. Using 10 repeated scans of an anthropomorphic chest phantom in one position and two single scans in two different positions, we evaluated the performance of the proposed method and a correlation-based method against the setup error determined by fiducial marker-based method. The mean differences between the proposed method and the fiducial marker-based method were smaller than 1 mm for translational parameters and 0.8 degree for rotational parameters. The standard deviations of estimates from the proposed method due to detector noise were smaller than 0.3 mm and 0.07 degree for the translational parameters and rotational parameters, respectively

  11. A new instrumental set-up for polarized neutron scattering experiments

    International Nuclear Information System (INIS)

    Schmidt, Wolfgang; Ohl, Michael

    2005-01-01

    Neutron scattering with polarization analysis is a powerful tool to determine magnetic structures and excitations. A common setup is to mount the sample at the center of a Helmholtz-type coil which can provide a magnetic field of any direction at the sample position and also a guide field along the neutron flight paths around the sample. Recent experiments showed quite a high demand for measurements at low momentum transfers. For the corresponding low scattering angles air scattering gives rise to a very large background. For this reason we have extended the standard setup to a combination of a large vacuum tank surrounded by electrical coils. The vacuum tank eliminates the air scattering and we can use the polarization analysis down to the lowest accessible momentum transfers. The coils themselves also show some new features: In contrary to the classic (symmetric) coil distribution we use an asymmetric setup which gives the advantage of a larger scattering window. Due to a more sophisticated current distribution this modified coil arrangement needs not to be rotated for different scattering conditions. The whole set-up will soon be available at IN12, a cold neutrons three-axis spectrometer operated by FZ Juelich in collaboration with CEA Grenoble as a CRG-B instrument at the Institut Laue Langevin in Grenoble

  12. Is rotator cuff repair worthwhile in patients with co-morbidities?

    OpenAIRE

    Yash Kishore Shah; Rohan Kiran Khavte; Parag Kishore Munshi

    2015-01-01

    Background: Rotator cuff tears are a common source of shoulder pain. The incidence increases with age and is most frequently due to degeneration of the tendon, rather than injury. This study is done to see whether in patients having established rotator cuff tears with co-morbidities like hypertension diabetes, epilepsy, etc. a surgical repair is worthwhile or whether it is better to leave such patients alone in order to give them a better quality of life. Methods: A total of 35 patients w...

  13. Balancing dose and image registration accuracy for cone beam tomosynthesis (CBTS) for breast patient setup

    International Nuclear Information System (INIS)

    Winey, B. A.; Zygmanski, P.; Cormack, R. A.; Lyatskaya, Y.

    2010-01-01

    Purpose: To balance dose reduction and image registration accuracy in breast setup imaging. In particular, the authors demonstrate the relationship between scan angle and dose delivery for cone beam tomosynthesis (CBTS) when employed for setup verification of breast cancer patients with surgical clips. Methods: The dose measurements were performed in a female torso phantom for varying scan angles of CBTS. Setup accuracy was measured using three registration methods: Clip centroid localization accuracy and the accuracy of two semiautomatic registration algorithms. The dose to the organs outside of the ipsilateral breast and registration accuracy information were compared to determine the optimal scan angle for CBTS for breast patient setup verification. Isocenter positions at the center of the patient and at the breast-chest wall interface were considered. Results: Image registration accuracy was within 1 mm for the CBTS scan angles θ above 20 deg. for some scenarios and as large as 80 deg. for the worst case, depending on the imaged breast and registration algorithm. Registration accuracy was highest based on clip centroid localization. For left and right breast imaging with the isocenter at the chest wall, the dose to the contralateral side of the patient was very low (<0.5 cGy) for all scan angles considered. For central isocenter location, the optimal scan angles were 30 deg. - 50 deg. for the left breast imaging and 40 deg. - 50 deg. for the right breast imaging, with the difference due to the geometric asymmetry of the current clinical imaging system. Conclusions: The optimal scan angles for CBTS imaging were found to be between 10 deg. and 50 deg., depending on the isocenter location and ipsilateral breast. Use of the isocenter at the breast-chest wall locations always resulted in greater accuracy of image registration (<1 mm) at smaller angles (10 deg. - 20 deg.) and at lower doses (<0.1 cGy) to the contralateral organs. For chest wall isocenters, doses

  14. Preoperative and post-operative sleep quality evaluation in rotator cuff tear patients.

    Science.gov (United States)

    Serbest, Sancar; Tiftikçi, Uğur; Askın, Aydogan; Yaman, Ferda; Alpua, Murat

    2017-07-01

    The aim of this study was to examine the potential relationship between subjective sleep quality and degree of pain in patients with rotator cuff repair. Thirty-one patients who underwent rotator cuff repair prospectively completed the Pittsburgh Sleep Quality Index, the Western Ontario Rotator Cuff Index, and the Constant and Murley shoulder scores before surgery and at 6 months after surgery. Preoperative demographic, clinical, and radiologic parameters were also evaluated. The study analysed 31 patients with a median age of 61 years. There was a significant difference preoperatively versus post-operatively in terms of all PSQI global scores and subdivisions (p Rotator Cuff Scale and the Constant and Murley shoulder scores (p ˂ 0.001). Sleep disorders are commonly seen in patients with rotator cuff tear, and after repair, there is an increase in the quality of sleep with a parallel improvement in shoulder functions. However, no statistically significant correlation was determined between arthroscopic procedures and the size of the tear and sleep quality. It is suggested that rotator cuff tear repair improves the quality of sleep and the quality of life. IV.

  15. Analysis and reduction of 3D systematic and random setup errors during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning.

    NARCIS (Netherlands)

    Boer, H.D. de; Sornsen de Koste, J.R. van; Senan, S.; Visser, A.G.; Heijmen, B.J.M.

    2001-01-01

    PURPOSE: To determine the magnitude of the errors made in (a) the setup of patients with lung cancer on the simulator relative to their intended setup with respect to the planned treatment beams and (b) in the setup of these patients on the treatment unit. To investigate how the systematic component

  16. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  17. An experimental set-up to test heat-moisture exchangers

    NARCIS (Netherlands)

    Unal, N.; Pompe, J. C.; Holland, W. P.; Gültuna, I.; Huygen, P. E.; Jabaaij, K.; Ince, C.; Saygin, B.; Bruining, H. A.

    1995-01-01

    The purpose of this study was to build an experimental set-up to assess continuously the humidification, heating and resistance properties of heat-moisture exchangers (HMEs) under clinical conditions. The experimental set-up consists of a patient model, measurement systems and a ventilator. Surgical

  18. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

    2014-01-01

    We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

  19. Influence of daily setup measurements and corrections on the estimated delivered dose during IMRT treatment of prostate cancer patients

    International Nuclear Information System (INIS)

    Haaren, Paul M.A. van; Bel, Arjan; Hofman, Pieter; Vulpen, Marco van; Kotte, Alexis N.T.J.; Heide, Uulke A. van der

    2009-01-01

    Purpose: To evaluate the impact of marker-based position verification, using daily imaging and an off-line correction protocol, by calculating the delivered dose to prostate, rectum and bladder. Methods: Prostate cancer patients (n = 217) were treated with IMRT, receiving 35 daily fractions. Plans with five beams were optimized taking target coverage (CTV, boost) and organs-at-risk (rectum and bladder) into account. PTV margins were 8 mm. Prostate position was verified daily using implanted fiducial gold markers by imaging the first segment of all the five beams on an EPID. Setup deviations were corrected off-line using an adapted shrinking-action-level protocol. The estimated delivered dose, including daily organ movements, was calculated using a version of PLATO's dose engine, enabling batch processing of large numbers of patients. The dose was calculated ± inclusion of setup corrections, and was evaluated relative to the original static plan. The marker-based measurements were considered representative for all organs. Results: Daily organ movements would result in an underdosage of 2-3 Gy to CTV and boost volume relative to the original plan, which was prevented by daily setup corrections. The dose to rectum and bladder was on average unchanged, but a large spread was introduced by organ movements, which was reduced by including setup corrections. Conclusions: Without position verification and setup corrections, margins of 8mm would be insufficient to account for position uncertainties during IMRT of prostate cancer. With the daily off-line correction protocol, the remaining variations are accommodated adequately

  20. Test of rotating wheel system for measuring correlated α-decay

    International Nuclear Information System (INIS)

    Wu Xiaolei; Gan Zaiguo; Guo Junsheng; Fan Hongmei; Qin Zhi

    2005-01-01

    A rotating-wheel set-up used for measuring and studying the heavy nuclei with α-decay was built. This system was tested experimentally by using ion-beam from SFC. The test results prove that this set-up was useful and reliable. It provides simple and effective equipment and technique to synthesize and identify new nuclides of Z=107 in the near future. (authors)

  1. Developing and implementing a high precision setup system

    Science.gov (United States)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from

  2. A two-shift optimisation of the 'no action level' setup correction protocol

    International Nuclear Information System (INIS)

    Fox, C.; Fisher, R.

    2004-01-01

    Full text: As electronic portal imaging equipment becomes more common, many radiotherapy centres now have the ability to collect patient treatment position deviation values. One commonly used off-line set-up correction protocol for calculating patient setup corrections is the 'no action level' (NAL) protocol. This paper proposes a two-shift approach and calculates the number of images required for minimum systematic error. Patient data is used in a simulation to confirm this approach. Patient treatment position deviations were available for all treatment sessions for a large group of patients undergoing radiation therapy for prostate. Thirty of these patients were selected. The patient position at treatment and all isocentre shifts made were recorded in the treatment notes. These were used to simulate the effect of the NAL protocol using a range of image numbers as the basis of the set-up correction. As Bortfeld et al noted, there is an error minimum that can be observed beyond which the mean radial systematic set-up error increases slowly with an increase in the number of images used. An enhancement to the NAL was proposed in which the patient's position is corrected on two occasions; once early in the treatment schedule, and again after more images have been collected. The expectation value of the set-up error for this two-shift NAL was found and minimised. The optimum staging for the two-shift NAL for the prostate patients was to image for a total of 9 sessions and to shift the patient after 3 sessions and 9 sessions. The thirty patients showed an uncorrected mean radial setup error of 0.65cm. In this simulation this was corrected to 0.26cm by application of the NAL using 5 images and to 0.17 cm using the two shift NAL with shifts after three and nine images. In situations where staff can manage the workload of collecting and analysing portal images for nine sessions for each patient, the two-shift NAL will result in a high level of set-up accuracy. Copyright

  3. A managed clinical network for cardiac services: set-up, operation and impact on patient care.

    Science.gov (United States)

    Stc Hamilton, Karen E; Sullivan, Frank M; Donnan, Peter T; Taylor, Rex; Ikenwilo, Divine; Scott, Anthony; Baker, Chris; Wyke, Sally

    2005-01-01

    To investigate the set up and operation of a Managed Clinical Network for cardiac services and assess its impact on patient care. This single case study used process evaluation with observational before and after comparison of indicators of quality of care and costs. The study was conducted in Dumfries and Galloway, Scotland and used a three-level framework. Process evaluation of the network set-up and operation through a documentary review of minutes; guidelines and protocols; transcripts of fourteen semi-structured interviews with health service personnel including senior managers, general practitioners, nurses, cardiologists and members of the public. Outcome evaluation of the impact of the network through interrupted time series analysis of clinical data of 202 patients aged less than 76 years admitted to hospital with a confirmed myocardial infarction one-year pre and one-year post, the establishment of the network. The main outcome measures were differences between indicators of quality of care targeted by network protocols. Economic evaluation of the transaction costs of the set-up and operation of the network and the resource costs of the clinical care of the 202 myocardial infarction patients from the time of hospital admission to 6 months post discharge through interrupted time series analysis. The outcome measure was different in National Health Service resource use. Despite early difficulties, the network was successful in bringing together clinicians, patients and managers to redesign services, exhibiting most features of good network management. The role of the energetic lead clinician was crucial, but the network took time to develop and 'bed down'. Its primary "modus operand" was the development of a myocardial infarction pathway and associated protocols. Of sixteen clinical care indicators, two improved significantly following the launch of the network and nine showed improvements, which were not statistically significant. There was no difference

  4. Hemispheric dominance during the mental rotation task in patients with schizophrenia.

    Science.gov (United States)

    Chen, Jiu; Yang, Laiqi; Zhao, Jin; Li, Lanlan; Liu, Guangxiong; Ma, Wentao; Zhang, Yan; Wu, Xingqu; Deng, Zihe; Tuo, Ran

    2012-04-01

    Mental rotation is a spatial representation conversion capability using an imagined object and either object or self-rotation. This capability is impaired in schizophrenia. To provide a more detailed assessment of impaired cognitive functioning in schizophrenia by comparing the electrophysiological profiles of patients with schizophrenia and controls while completing a mental rotation task using both normally-oriented images and mirror images. This electroencephalographic study compared error rates, reaction times and the topographic map of event-related potentials in 32 participants with schizophrenia and 29 healthy controls during mental rotation tasks involving both normal images and mirror images. Among controls the mean error rate and the mean reaction time for normal images and mirror images were not significantly different but in the patient group the mean (sd) error rate was higher for mirror images than for normal images (42% [6%] vs. 32% [9%], t=2.64, p=0.031) and the mean reaction time was longer for mirror images than for normal images (587 [11] ms vs. 571 [18] ms, t=2.83, p=0.028). The amplitude of the P500 component at Pz (parietal area), Cz (central area), P3 (left parietal area) and P4 (right parietal area) were significantly lower in the patient group than in the control group for both normal images and mirror images. In both groups the P500 for both the normal and mirror images was significantly higher in the right parietal area (P4) compared with left parietal area (P3). The mental rotation abilities of patients with schizophrenia for both normally-oriented images and mirror images are impaired. Patients with schizophrenia show a diminished left cerebral contribution to the mental rotation task, a more rapid response time, and a differential response to normal images versus mirror images not seen in healthy controls. Specific topographic characteristics of the EEG during mental rotation tasks are potential biomarkers for schizophrenia.

  5. TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Lee, J; Kim, H; Park, J; Kim, J; Kim, H; Ye, S

    2014-01-01

    Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of original contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of normal

  6. Rotating Beam Fatigue Testing and Hybrid Ceramic Bearings.

    Science.gov (United States)

    1994-07-01

    Runout and Fast Fracture ......... 20 FIG.7 Stress-life Plots of Rotating Beam Fatigue Testing ............. 23 FIG.8 Fractograph of Rotating Beam...Chand-Kare Engineering Ceramics, Worcester, MA. Diamond wheels of 600 grits were used with longitudinal grinding applied for the final finishing of...stress in the range of 600-850 MPa. Three test completion modes were encountered, i.e. fast fracture at setup, fatigue fracture and runout (no failure

  7. Polygons on a rotating fluid surface.

    Science.gov (United States)

    Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas

    2006-05-05

    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

  8. Functional evaluation of patient after arthroscopic repair of rotator cuff tear.

    Science.gov (United States)

    Kumar, Rohit; Jadhav, Umesh

    2014-06-01

    Rotator cuff tear is a common problem either after trauma or after degenerative tear in old age group. Arthroscopic repair is the current concept of rotator cuff repair. Here, we are trying to evaluate the functional outcome after arthroscopic repair of full thickness rotator cuff tear (single row) in Indian population. Twenty five patients (14 males and 11 females) who underwent arthroscopic repair of full thickness rotator cuff tear at a single institution were included in the study. Postoperatively patient's shoulder was rated according to UCLA score, pain was graded according to the visual analog score. The range of motion was analysed and documented. The mean age of the patients were 50.48 years. The preoperative VAS score mode was 7 and post operative VAS was 1 (p value fair in 12% (n = 3), excellent in 8% (n = 2) and poor results were seen in none of the patients. The mean UCLA improved from a score of 15.84 to 30.28 with a p value advantages, hence we used a single row repair considering the Indian population and the cost effectiveness of the surgery with good to excellent results.

  9. Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer. A study of 2940 setup deviations in 980 MVCTs

    International Nuclear Information System (INIS)

    Schiller, Kilian; Specht, Hanno; Kampfer, Severin; Duma, Marciana Nona; Petrucci, Alessia; Geinitz, Hans; Schuster, Tibor

    2014-01-01

    The goal of this study was to assess the impact of different setup approaches in image-guided radiotherapy (IMRT) of the prostatic gland. In all, 28 patients with prostate cancer were enrolled in this study. After the placement of an endorectal balloon, the planning target volume (PTV) was treated to a dose of 70 Gy in 35 fractions. A simultaneously integrated boost (SIB) of 76 Gy (2.17 Gy per fraction and per day) was delivered to a smaller target volume. All patients underwent daily prostate-aligned IGRT by megavoltage CT (MVCT). Retrospectively, three different setup approaches were evaluated by comparison to the prostate alignment: setup by skin alignment, endorectal balloon alignment, and automatic registration by bones. A total of 2,940 setup deviations were analyzed in 980 fractions. Compared to prostate alignment, skin mark alignment was associated with substantial displacements, which were ≥ 8 mm in 13 %, 5 %, and 44 % of all fractions in the lateral, longitudinal, and vertical directions, respectively. Endorectal balloon alignment yielded displacements ≥ 8 mm in 3 %, 19 %, and 1 % of all setups; and ≥ 3 mm in 27 %, 58 %, and 18 % of all fractions, respectively. For bone matching, the values were 1 %, 1 %, and 2 % and 3 %, 11 %, and 34 %, respectively. For prostate radiotherapy, setup by skin marks alone is inappropriate for patient positioning due to the fact that, during almost half of the fractions, parts of the prostate would not be targeted successfully with an 8-mm safety margin. Bone matching performs better but not sufficiently for safety margins ≤ 3 mm. Endorectal balloon matching can be combined with bone alignment to increase accuracy in the vertical direction when prostate-based setup is not available. Daily prostate alignment remains the gold standard for high-precision radiotherapy with small safety margins. (orig.) [de

  10. Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT.

    Science.gov (United States)

    Jensen, Alexandra D; Winter, Marcus; Kuhn, Sabine P; Debus, Jürgen; Nairz, Olaf; Münter, Marc W

    2012-03-29

    To investigate repositioning accuracy in particle radiotherapy in 6 degrees of freedom (DOF) and intensity-modulated radiotherapy (IMRT, 3 DOF) for two immobilization devices (Scotchcast masks vs thermoplastic head masks) currently in use at our institution for fractionated radiation therapy in head and neck cancer patients. Position verifications in patients treated with carbon ion therapy and IMRT for head and neck malignancies were evaluated. Most patients received combined treatment regimen (IMRT plus carbon ion boost), immobilization was achieved with either Scotchcast or thermoplastic head masks. Position corrections in robotic-based carbon ion therapy allowing 6 DOF were compared to IMRT allowing corrections in 3 DOF for two standard immobilization devices. In total, 838 set-up controls of 38 patients were analyzed. Robotic-based position correction including correction of rotations was well tolerated and without discomfort. Standard deviations of translational components were between 0.5 and 0.8 mm for Scotchcast and 0.7 and 1.3 mm for thermoplastic masks in 6 DOF and 1.2-1.4 mm and 1.0-1.1 mm in 3 DOF respectively. Mean overall displacement vectors were between 2.1 mm (Scotchcast) and 2.9 mm (thermoplastic masks) in 6 DOF and 3.9-3.0 mm in 3 DOF respectively. Displacement vectors were lower when correction in 6 DOF was allowed as opposed to 3 DOF only, which was maintained at the traditional action level of >3 mm for position correction in the pre-on-board imaging era. Setup accuracy for both systems was within the expected range. Smaller shifts were required when 6 DOF were available for correction as opposed to 3 DOF. Where highest possible positioning accuracy is required, frequent image guidance is mandatory to achieve best possible plan delivery and maintenance of sharp gradients and optimal normal tissue sparing inherent in carbon ion therapy.

  11. Deltoid muscle and tendon tears in patients with chronic rotator cuff tears

    International Nuclear Information System (INIS)

    Ilaslan, Hakan; Recht, Michael P.; Iannotti, Joseph P.

    2007-01-01

    To describe the magnetic resonance imaging (MRI) appearances of tears of the deltoid muscle and tendon in patients with rotator cuff tears and without a prior history of shoulder surgery. Deltoid tears diagnosed on MR examinations were prospectively recorded between February 2003 through June 2004. The images of these patients were then retrospectively reviewed to determine the location of the deltoid tear, the presence of rotator cuff tears, tendon retraction, muscle atrophy, degree of humeral head subluxation, bony erosive changes involving the undersurface of the acromion, and the presence of edema or fluid-like signal intensity in the deltoid muscle and overlying subcutaneous tissues. There were 24 (0.3%) patients with deltoid tears; nine men and 15 women. The age range was 54 to 87 (average 73) years. The right side was involved in 20 cases, and the left in four cases. Fifteen patients had full thickness and nine had partial thickness tears of the deltoid. Shoulder pain was the most common presenting symptom. The physical examination revealed a defect in the region of the deltoid in two patients. Nineteen patients had tears in the muscle belly near the musculotendinous junction, and five had avulsion of the tendon from the acromial origin. Full thickness rotator cuff tears were present in all of the patients, and 22 patients had associated muscle atrophy. Subcutaneous edema and fluid-like signal was present in 15 patients. Tears of the deltoid muscle or tendon is an unusual finding, but they can be seen in patients with chronic massive rotator cuff tears. Partial thickness tears tend to involve the undersurface of the deltoid muscle and tendon. Associated findings such as intramuscular cyst or ganglion in the deltoid muscle belly and subcutaneous edema or fluid-like signal overlying the deltoid in a patient with a rotator cuff tear should raise the suspicion of a deltoid tear. (orig.)

  12. Deltoid muscle and tendon tears in patients with chronic rotator cuff tears

    Energy Technology Data Exchange (ETDEWEB)

    Ilaslan, Hakan; Recht, Michael P. [Cleveland Clinic, Musculoskeletal Radiology/A21, Division of Radiology, Cleveland, OH (United States); Iannotti, Joseph P. [Cleveland Clinic, Department of Orthopedic Surgery, Cleveland, OH (United States)

    2007-06-15

    To describe the magnetic resonance imaging (MRI) appearances of tears of the deltoid muscle and tendon in patients with rotator cuff tears and without a prior history of shoulder surgery. Deltoid tears diagnosed on MR examinations were prospectively recorded between February 2003 through June 2004. The images of these patients were then retrospectively reviewed to determine the location of the deltoid tear, the presence of rotator cuff tears, tendon retraction, muscle atrophy, degree of humeral head subluxation, bony erosive changes involving the undersurface of the acromion, and the presence of edema or fluid-like signal intensity in the deltoid muscle and overlying subcutaneous tissues. There were 24 (0.3%) patients with deltoid tears; nine men and 15 women. The age range was 54 to 87 (average 73) years. The right side was involved in 20 cases, and the left in four cases. Fifteen patients had full thickness and nine had partial thickness tears of the deltoid. Shoulder pain was the most common presenting symptom. The physical examination revealed a defect in the region of the deltoid in two patients. Nineteen patients had tears in the muscle belly near the musculotendinous junction, and five had avulsion of the tendon from the acromial origin. Full thickness rotator cuff tears were present in all of the patients, and 22 patients had associated muscle atrophy. Subcutaneous edema and fluid-like signal was present in 15 patients. Tears of the deltoid muscle or tendon is an unusual finding, but they can be seen in patients with chronic massive rotator cuff tears. Partial thickness tears tend to involve the undersurface of the deltoid muscle and tendon. Associated findings such as intramuscular cyst or ganglion in the deltoid muscle belly and subcutaneous edema or fluid-like signal overlying the deltoid in a patient with a rotator cuff tear should raise the suspicion of a deltoid tear. (orig.)

  13. On the experimental prediction of the stability threshold speed caused by rotating damping

    Science.gov (United States)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  14. Electronic portal image assisted reduction of systematic set-up errors in head and neck irradiation

    International Nuclear Information System (INIS)

    Boer, Hans C.J. de; Soernsen de Koste, John R. van; Creutzberg, Carien L.; Visser, Andries G.; Levendag, Peter C.; Heijmen, Ben J.M.

    2001-01-01

    Purpose: To quantify systematic and random patient set-up errors in head and neck irradiation and to investigate the impact of an off-line correction protocol on the systematic errors. Material and methods: Electronic portal images were obtained for 31 patients treated for primary supra-glottic larynx carcinoma who were immobilised using a polyvinyl chloride cast. The observed patient set-up errors were input to the shrinking action level (SAL) off-line decision protocol and appropriate set-up corrections were applied. To assess the impact of the protocol, the positioning accuracy without application of set-up corrections was reconstructed. Results: The set-up errors obtained without set-up corrections (1 standard deviation (SD)=1.5-2 mm for random and systematic errors) were comparable to those reported in other studies on similar fixation devices. On an average, six fractions per patient were imaged and the set-up of half the patients was changed due to the decision protocol. Most changes were detected during weekly check measurements, not during the first days of treatment. The application of the SAL protocol reduced the width of the distribution of systematic errors to 1 mm (1 SD), as expected from simulations. A retrospective analysis showed that this accuracy should be attainable with only two measurements per patient using a different off-line correction protocol, which does not apply action levels. Conclusions: Off-line verification protocols can be particularly effective in head and neck patients due to the smallness of the random set-up errors. The excellent set-up reproducibility that can be achieved with such protocols enables accurate dose delivery in conformal treatments

  15. Development of an experimental setup for analyzing the influence of Magnus effect on the performance of airfoil

    Science.gov (United States)

    Aktharuzzaman, Md; Sarker, Md. Samad; Safa, Wasiul; Sharah, Nahreen; Salam, Md. Abdus

    2017-12-01

    Magnus effect is a phenomenon where pressure difference is created according to Bernoulli's effect due to induced velocity changes caused by a rotating object in a fluid. Using this concept, the idea of delaying boundary layer separation on airfoil by providing moving surface boundary layer control has been developed. In order to analyze the influence of Magnus effect on the aerodynamic performance of an airfoil, there is no alternative of developing an experimental setup. This paper aims to develop such an experimental setup which will be capable of analyzing the influence of Magnus effect on both symmetric and asymmetric airfoils by placing a cylinder at the leading edge. To provide arrangements for a rotating cylinder at the leading edge of airfoil, necessary modifications and additions have been done in the test section of an AF100 subsonic wind tunnel.

  16. Impingement syndrome and rotator cuff tears: US findings in 140 patients

    International Nuclear Information System (INIS)

    Malvestiti, Oreste; Scorsolini, Alessandro; Ratti, Francesco; Ferraris, Giuseppe; Columbaro, Guido; Mariani, Claudio

    1997-01-01

    The authors investigated the role of rotator cuff impingement in causing tears of supraspinatus and biceps tendons and the comparative reliability of plain radiography and sonography (US). One hundred forty patients with symtoms referrable to the rotator cuff were examined with plain radiography and US of the shoulder. The differential diagnosis must distinguish all these common causes of shoulder dysfunction and cuff problems from other conditions. The authors conclude that US and plain radiography are accurate routine tests of rotator cuff integrity and rotator cuff impingement

  17. Automation and robotization of the set-up and treatment for patients treated for a brain and base of the skull tumor

    International Nuclear Information System (INIS)

    Noel, G.; Ferrand, R.; Feuvret, L.; Meyroneinc, S.; Mazeron, J.J.; Boisserie, G.; Mazeron, J.J.

    2003-01-01

    Progresses of the three-dimensional imageries and of the software of planning systems makes that the radiotherapy of the tumours of brain and the base of skull is increasingly precise. The set-up of the patients and the positioning of the beams are key acts whose realization can become extremely tiresome if the requirement of precision increases. This precision very often rests still on the visual comparison of digital images. In the near future, the development of the automated systems controlled by robots should allow a noticeable improvement of the precision, safety and speed of the patient set-up. (author)

  18. Inter-treatment compensation of treatment setup variation to enhance the radiotherapeutic ratio

    International Nuclear Information System (INIS)

    Di, Yan; John, Wong; Michalski, Jeff; Pan, Cheng; Frazier, Arthur; Bosch, Walter; Martinez, Alvaro

    1995-01-01

    Purpose: In radiotherapy, treatment setup error has been one of the major causes of dose variation in the treated volume. With the data acquired from on-line electronic portal imaging, it is now possible not only to adjust the patient setup, but also to modify the treatment plan during the course of clinical treatment based on the setup error measured for each individual patient. In this work, daily clinical portal images were retrospectively analyzed to study (1) the number of initial daily portal images required to give adequate prediction of the systematic and random deviations of treatment setup, and (2) the potential therapeutic gain when the inter-treatment planning modification was established using the setup error of each individual patient. Methods and Materials: Only those patients whose treatment positions had not been adjusted during the course of treatment were selected for the retrospective study. Daily portal images of 27 lung, 25 pelvis, and 12 head and neck (h and n) cancer patients were obtained from two independent clinics with similar setup procedures. The anterior-to-posterior field was analyzed for the pelvis and lung treatments, and the right lateral field for the h and n treatments. Between 13 to 30 daily portal images were acquired for each patient and were analyzed using a 2D alignment tool. Systematic and random deviations of the treatment setup were calculated for each individual patient. The statistical confidence on the convergence of both systematic and random deviations with time were tested to determine the number of initial daily portal images needed to predict these deviations. In addition, a mean deviation for each site was also calculated using the setup errors from all patients. Two treatment planning schemes were simulated to evaluate margin design and prescription dose adjustment. Therapeutic scores were quantified in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP). In the first

  19. Setup planning for machining

    CERN Document Server

    Hazarika, Manjuri

    2015-01-01

    Professionals as well as researchers can benefit from this comprehensive introduction into the topic of setup planning, which reflects the latest state of research and gives hands-on examples. Starting with a brief but thorough introduction, this book explains the significance of setup planning in process planning and includes a reflection on its external constraints. Step-by-step the different phases of setup planning are outlined and traditional as well as modern approaches, such as fuzzy logic based setup planning, on the solution of setup planning problems are presented. Three detailed examples of applications provide a clear and accessible insight into the up-to-date techniques and various approaches in setup planning.

  20. High dose three-dimensional conformal boost (3DCB) using an orthogonal diagnostic X-ray set-up for patients with gynecological malignancy: a new application of real-time tumor-tracking system

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Yonesaka, Akio; Nishioka, Seiko; Watari, Hidemichi; Hashimoto, Takayuki; Uchida, Daichi; Taguchi, Hiroshi; Nishioka, Takeshi; Miyasaka, Kazuo; Sakuragi, Noriaki; Shirato, Hiroki

    2004-01-01

    The feasibility and accuracy of high dose three-dimensional conformal boost (3DCB) using three internal fiducial markers and a two-orthogonal X-ray set-up of the real-time tumor-tracking system on patients with gynecological malignancy were investigated in 10 patients. The standard deviation of the distribution of systematic deviations (Σ) was reduced from 3.8, 4.6, and 4.9 mm in the manual set-up to 2.3, 2.3 and 2.7 mm in the set-up using the internal markers. The average standard deviation of the distribution of random deviations (σ) was reduced from 3.7, 5.0, and 4.5 mm in the manual set-up to 3.3, 3.0, and 4.2 mm in the marker set-up. The appropriate PTV margin was estimated to be 10.2, 12.8, and 12.9 mm in the manual set-up and 6.9, 6.7, and 8.3 mm in the gold marker set-up, respectively, using the formula 2Σ+0.7σ. Set-up of the patients with three markers and two fluoroscopy is useful to reduce PTV margin and perform 3DCB

  1. The use of adaptive radiation therapy to reduce setup error: a prospective clinical study

    International Nuclear Information System (INIS)

    Yan Di; Wong, John; Vicini, Frank; Robertson, John; Horwitz, Eric; Brabbins, Donald; Cook, Carla; Gustafson, Gary; Stromberg, Jannifer; Martinez, Alvaro

    1996-01-01

    Purpose: Adaptive Radiation Therapy (ART) is a closed-loop feedback process where each patients treatment is adaptively optimized according to the individual variation information measured during the course of treatment. The process aims to maximize the benefits of treatment for the individual patient. A prospective study is currently being conducted to test the feasibility and effectiveness of ART for clinical use. The present study is limited to compensating the effects of systematic setup error. Methods and Materials: The study includes 20 patients treated on a linear accelerator equipped with a computer controlled multileaf collimator (MLC) and a electronic portal imaging device (EPID). Alpha cradles are used to immobilize those patients treated for disease in the thoracic and abdominal regions, and thermal plastic masks for the head and neck. Portal images are acquired daily. Setup error of each treatment field is quantified off-line every day. As determined from an earlier retrospective study of different clinical sites, the measured setup variation from the first 4 to 9 days, are used to estimate systematic setup error and the standard deviation of random setup error for each field. Setup adjustment is made if estimated systematic setup error of the treatment field was larger than or equal to 2 mm. Instead of the conventional approach of repositioning the patient, setup correction is implemented by reshaping MLC to compensate for the estimated systematic error. The entire process from analysis of portal images to the implementation of the modified MLC field is performed via computer network. Systematic and random setup errors of the treatment after adjustment are compared with those prior to adjustment. Finally, the frequency distributions of block overlap cumulated throughout the treatment course are evaluated. Results: Sixty-seven percent of all treatment fields were reshaped to compensate for the estimated systematic errors. At the time of this writing

  2. Comparison of computer workstation with film for detecting setup errors

    International Nuclear Information System (INIS)

    Fritsch, D.S.; Boxwala, A.A.; Raghavan, S.; Coffee, C.; Major, S.A.; Muller, K.E.; Chaney, E.L.

    1997-01-01

    Purpose/Objective: Workstations designed for portal image interpretation by radiation oncologists provide image displays and image processing and analysis tools that differ significantly compared with the standard clinical practice of inspecting portal films on a light box. An implied but unproved assumption associated with the clinical implementation of workstation technology is that patient care is improved, or at least not adversely affected. The purpose of this investigation was to conduct observer studies to test the hypothesis that radiation oncologists can detect setup errors using a workstation at least as accurately as when following standard clinical practice. Materials and Methods: A workstation, PortFolio, was designed for radiation oncologists to display and inspect digital portal images for setup errors. PortFolio includes tools to enhance images; align cross-hairs, field edges, and anatomic structures on reference and acquired images; measure distances and angles; and view registered images superimposed on one another. In a well designed and carefully controlled observer study, nine radiation oncologists, including attendings and residents, used PortFolio to detect setup errors in realistic digitally reconstructed portal (DRPR) images computed from the NLM visible human data using a previously described approach † . Compared with actual portal images where absolute truth is ill defined or unknown, the DRPRs contained known translation or rotation errors in the placement of the fields over target regions in the pelvis and head. Twenty DRPRs with randomly induced errors were computed for each site. The induced errors were constrained to a plane at the isocenter of the target volume and perpendicular to the central axis of the treatment beam. Images used in the study were also printed on film. Observers interpreted the film-based images using standard clinical practice. The images were reviewed in eight sessions. During each session five images were

  3. What happens to patients when we do not repair their cuff tears? Five-year rotator cuff quality-of-life index outcomes following nonoperative treatment of patients with full-thickness rotator cuff tears.

    Science.gov (United States)

    Boorman, Richard S; More, Kristie D; Hollinshead, Robert M; Wiley, James P; Mohtadi, Nicholas G; Lo, Ian K Y; Brett, Kelly R

    2018-03-01

    The purpose of this study was to examine 5-year outcomes in a prospective cohort of patients previously enrolled in a nonoperative rotator cuff tear treatment program. Patients with chronic (>3 months), full-thickness rotator cuff tears (demonstrated on imaging) who were referred to 1 of 2 senior shoulder surgeons were enrolled in the study between October 2008 and September 2010. They participated in a comprehensive, nonoperative, home-based treatment program. After 3 months, the outcome in these patients was defined as "successful" or "failed." Patients in the successful group were essentially asymptomatic and did not require surgery. Patients in the failed group were symptomatic and consented to undergo surgical repair. All patients were followed up at 1 year, 2 years, and 5 or more years. At 5 or more years, all patients were contacted for follow-up; the response rate was 84%. Approximately 75% of patients remained successfully treated with nonoperative treatment at 5 years and reported a mean rotator cuff quality-of-life index score of 83 of 100 (SD, 16). Furthermore, between 2 and 5 years, only 3 patients who had previously been defined as having a successful outcome became more symptomatic and underwent surgical rotator cuff repair. Those in whom nonoperative treatment had failed and who underwent surgical repair had a mean rotator cuff quality-of-life index score of 89 (SD, 11) at 5-year follow-up. The operative and nonoperative groups at 5-year follow-up were not significantly different (P = .11). Nonoperative treatment is an effective and lasting option for many patients with a chronic, full-thickness rotator cuff tear. While some clinicians may argue that nonoperative treatment delays inevitable surgical repair, our study shows that patients can do very well over time. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Evaluating the influence of setup uncertainties on treatment planning for focal liver tumors

    International Nuclear Information System (INIS)

    Balter, J.M.; Brock, K.K.; Lam, K.L.; Dawson, L.A.; McShan, D.L.; Ten Haken, R.K.

    2001-01-01

    Purpose: A mechanism has been developed to evaluate the influence of systematic and random setup variations on dose during treatment planning. The information available for studying these factors shifts from population-based models towards patient-specific data as treatment progresses and setup measurements for an individual patient become available. This study evaluates the influence of population as well as patient-specific setup distributions on treatment plans for focal liver tumors. Materials and Methods: 8 patients with focal liver tumors were treated on a protocol that involved online setup measurement and adjustment, as well as ventilatory immobilization. Summary statistics from these treatments yielded individual and population distributions of position at initial setup for each fraction as well as after setup adjustment. A convolution model for evaluation of the influence of random setup variation on calculated dose distributions has been previously described and investigated for application to focal liver radiotherapy by our department. Individual patient doses based on initial setup positions were calculated by applying the measured systematic offset to the initial treatment plan, and then convolving the calculated dose distribution with an anisotropic probability distribution function representing the individual patient's random variations. A separate calculation with no offset and convolution using population averaged random variations was performed. Individual beam apertures were then adjusted to provide plans that ensured proper dose to the clinical target volume (CTV) following convolution with population distributions prior to and following setup adjustment. Results: Input distributions comprised 262 position measurements. Individual patient setup distributions for the course of treatment had systematic offsets ranging from (σ) 1.1 to 4.1 mm (LR), -2.0 to 1.4 mm (AP), and 5.6 to 1.7 mm (IS). Individual random setup variations ranged from 2.5 to 5

  5. Changes in Rectal Dose Due to Alterations in Beam Angles for Setup Uncertainty and Range Uncertainty in Carbon-Ion Radiotherapy for Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Yoshiki Kubota

    Full Text Available Carbon-ion radiotherapy of prostate cancer is challenging in patients with metal implants in one or both hips. Problems can be circumvented by using fields at oblique angles. To evaluate the influence of setup and range uncertainties accompanying oblique field angles, we calculated rectal dose changes with oblique orthogonal field angles, using a device with fixed fields at 0° and 90° and a rotating patient couch.Dose distributions were calculated at the standard angles of 0° and 90°, and then at 30° and 60°. Setup uncertainty was simulated with changes from -2 mm to +2 mm for fields in the anterior-posterior, left-right, and cranial-caudal directions, and dose changes from range uncertainty were calculated with a 1 mm water-equivalent path length added to the target isocenter in each angle. The dose distributions regarding the passive irradiation method were calculated using the K2 dose algorithm.The rectal volumes with 0°, 30°, 60°, and 90° field angles at 95% of the prescription dose were 3.4±0.9 cm3, 2.8±1.1 cm3, 2.2±0.8 cm3, and 3.8±1.1 cm3, respectively. As compared with 90° fields, 30° and 60° fields had significant advantages regarding setup uncertainty and significant disadvantages regarding range uncertainty, but were not significantly different from the 90° field setup and range uncertainties.The setup and range uncertainties calculated at 30° and 60° field angles were not associated with a significant change in rectal dose relative to those at 90°.

  6. Automatic detection of patient identification and positioning errors in radiotherapy treatment using 3D setup images

    OpenAIRE

    Jani, Shyam

    2015-01-01

    The success of modern radiotherapy treatment depends on the correct alignment of the radiation beams with the target region in the patient. In the conventional paradigm of image-guided radiation therapy, 2D or 3D setup images are taken immediately prior to treatment and are used by radiation therapy technologists to localize the patient to the same position as defined from the reference planning CT dataset. However, numerous reports in the literature have described errors during this step, wh...

  7. Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging.

    Science.gov (United States)

    Verellen, Dirk; Soete, Guy; Linthout, Nadine; Van Acker, Swana; De Roover, Patsy; Vinh-Hung, Vincent; Van de Steene, Jan; Storme, Guy

    2003-04-01

    The aim of this study is to investigate the positional accuracy of a prototype X-ray imaging tool in combination with a real-time infrared tracking device allowing automated patient set-up in three dimensions. A prototype X-ray imaging tool has been integrated with a commercially released real-time infrared tracking device. The system, consisting of two X-ray tubes mounted to the ceiling and a centrally located amorphous silicon detector has been developed for automated patient positioning from outside the treatment room prior to treatment. Two major functions are supported: (a) automated fusion of the actual treatment images with digitally reconstructed radiographs (DRRs) representing the desired position; (b) matching of implanted radio opaque markers. Measurements of known translational (up to 30.0mm) and rotational (up to 4.0 degrees ) set-up errors in three dimensions as well as hidden target tests have been performed on anthropomorphic phantoms. The system's accuracy can be represented with the mean three-dimensional displacement vector, which yielded 0.6mm (with an overall SD of 0.9mm) for the fusion of DRRs and X-ray images. Average deviations between known translational errors and calculations varied from -0.3 to 0.6mm with a standard deviation in the range of 0.6-1.2mm. The marker matching algorithm yielded a three-dimensional uncertainty of 0.3mm (overall SD: 0.4mm), with averages ranging from 0.0 to 0.3mm and a standard deviation in the range between 0.3 and 0.4mm. The stereoscopic X-ray imaging device integrated with the real-time infrared tracking device represents a positioning tool allowing for the geometrical accuracy that is required for conformal radiation therapy of abdominal and pelvic lesions, within an acceptable time-frame.

  8. TU-F-CAMPUS-J-04: Setup Uncertainties in the Mediastinum Area for IMRT Treatment of Lymphoma Patients

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, M; Court, L [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Despite daily image guidance setup uncertainties can be high when treating large areas of the body. The aim of this study was to measure local uncertainties inside the PTV for patients receiving IMRT to the mediastinum region. Methods: Eleven lymphoma patients that received radiotherapy (breath-hold) to the mediastinum were included in this study. The treated region could range all the way from the neck to the diaphragm. Each patient had a CT scan with a CT-on-rails system prior to every treatment. The entire PTV region was matched to the planning CT using automatic rigid registration. The PTV was then split into 5 regions: neck, supraclavicular, superior mediastinum, upper heart, lower heart. Additional auto-registrations for each of the 5 local PTV regions were performed. The residual local setup errors were calculated as the difference between the final global PTV position and the individual final local PTV positions for the AP, SI and RL directions. For each patient 4 CT scans were analyzed (1 per week of treatment). Results: The residual mean group error (M) and standard deviation of the inter-patient (or systematic) error (Σ) were lowest in the RL direction of the superior mediastinum (0.0mm and 0.5mm) and highest in the RL direction of the lower heart (3.5mm and 2.9mm). The standard deviation of the inter-fraction (or random) error (σ) was lowest in the RL direction of the superior mediastinum (0.5mm) and highest in the SI direction of the lower heart (3.9mm) The directionality of local uncertainties is important; a superior residual error in the lower heart for example keeps it in the global PTV. Conclusion: There is a complex relationship between breath-holding and positioning uncertainties that needs further investigation. Residual setup uncertainties can be significant even under daily CT image guidance when treating large regions of the body.

  9. Spinning Up Interest: Classroom Demonstrations of Rotating Fluid Dynamics

    Science.gov (United States)

    Aurnou, J.

    2005-12-01

    The complex relationship between rotation and its effect on fluid motions presents some of the most difficult and vexing concepts for both undergraduate and graduate level students to learn. We have found that student comprehension is greatly increased by the presentation of in-class fluid mechanics experiments. A relatively inexpensive experimental set-up consists of the following components: a record player, a wireless camera placed in the rotating frame, a tank of fluid, and food coloring. At my poster, I will use this set-up to carry out demonstrations that illustrate the Taylor-Proudman theorem, flow within the Ekman layer, columnar convection, and flow around high and low pressure centers. By sending the output of the wireless camera through an LCD projection system, such demonstrations can be carried out even for classes in large lecture halls.

  10. Superparamagnetic beads in rotating magnetic fields: microfluidic experiments

    NARCIS (Netherlands)

    Den Toonder, J.M.J.; Bokdam, M.

    2008-01-01

    The effect of the Mason number, ratio of viscous and magnetic force, on suspended superparamagnetic micro sized beads was investigated experimentally. Microfluidic experiments were performed in a set-up that generates a rotating homogeneous magnetic field. In the presence of a magnetic field, the

  11. High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging

    NARCIS (Netherlands)

    Bel, A.; Vos, P. H.; Rodrigus, P. T.; Creutzberg, C. L.; Visser, A. G.; Stroom, J. C.; Lebesque, J. V.

    1996-01-01

    PURPOSE: To investigate in three institutions, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Huis [AvL]), Dr. Daniel den Hoed Cancer Center (DDHC), and Dr, Bernard Verbeeten Institute (BVI), how much the patient setup accuracy for irradiation of prostate cancer can be improved by an

  12. High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging

    NARCIS (Netherlands)

    A. Bel (Arjan); P.H. Vos (Pieter); P. Rodrigus (Patrick); C.L. Creutzberg (Carien); A.G. Visser (Andries); J.Ch. Stroom (Joep); J.V. Lebesque (Joos)

    1996-01-01

    textabstractPurpose: To investigate in three institutions, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Huis [AvL]), Dr. Daniel den Hoed Cancer Center (DDHC), and Dr. Bernard Verbeeten Institute (BVI), how much the patient setup accuracy for irradiation of prostate cancer can be improved

  13. Calorimetric method of ac loss measurement in a rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  14. Equilibrium of current driven rotating liquid metal

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.

    2006-01-01

    In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement

  15. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots.

    Science.gov (United States)

    Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2014-03-01

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  16. Leadership set-up

    DEFF Research Database (Denmark)

    Thude, Bettina Ravnborg; Stenager, Egon; von Plessen, Christian

    2018-01-01

    . Findings: The study found that the leadership set-up did not have any clear influence on interdisciplinary cooperation, as all wards had a high degree of interdisciplinary cooperation independent of which leadership set-up they had. Instead, the authors found a relation between leadership set-up and leader...... could influence legitimacy. Originality/value: The study shows that leadership set-up is not the predominant factor that creates interdisciplinary cooperation; but rather, leader legitimacy also should be considered. Additionally, the study shows that leader legitimacy can be difficult to establish...... and that it cannot be taken for granted. This is something chief executive officers should bear in mind when they plan and implement new leadership structures. Therefore, it would also be useful to look more closely at how to achieve legitimacy in cases where the leader is from a different profession to the staff....

  17. Cognitive profile of patients with rotated drawing at copy or recall: a controlled group study.

    Science.gov (United States)

    Molteni, Federica; Traficante, Debora; Ferri, Francesca; Isella, Valeria

    2014-03-01

    When copying or recalling a figure from memory, some patient with dementia or focal brain lesions may rotate the drawing through ±90° or 180°. We have tried to clarify the nature of this phenomenon by investigating the cognitive profile of 22 patients who rotated the copy of the Rey-Osterrieth Complex Figure and 27 who rotated (only) the recall, and two control groups of cases with the same neuropsychiatric diagnoses, but no misorientation deficit. Brain MRI and FDG-PET images were also analysed. Predictor of rotation at the copy versus rotation at the recall was visuospatial impairment as measured by the copy of the Rey Figure; predictors of rotation at the copy versus no rotation were, again, visuospatial deficits, in addition to an abnormal performance at the task of selective attention. No specific profile of cognitive impairment distinguished patients with and without rotation at the recall. Disproportionate temporo-parieto-occipital atrophy or hypometabolism were evident in cases with misorientation of the copy, while predominant frontal abnormalities were found in cases of rotated recall. Based on these findings, rotated drawing at the copy is interpreted as a dorsal visual stream deficit, whose occurrence is more probable when attentional control is impaired. Rotation at recall seems to have a distinct, more anterior, neural substrate, but its dysexecutive nature has yet to be demonstrated. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. An edge over diagnostic setup

    Directory of Open Access Journals (Sweden)

    Sridhar Kannan

    2017-01-01

    Full Text Available Diagnostic setup proposed by H.D. Kingsley serves as a practical aid in treatment planning and diagnosis. These setups have some inherent shortcomings. A simple technique of duplication of the setups in dental stone can solve problems encountered before as well as provide many other advantages over the conventional procedure. The diagnostic setup is prepared by the conventional method [Figure 1]. An alginate impression is then taken of the setups and poured in dental stone to obtain the derived treatment model [Figure 2]. The same setup can now be further modified for alternate lines of treatment. Subsequently models could then be obtained as required [Figure 3].

  19. Virtual couch shift (VCS): accounting for patient translation and rotation by online IMRT re-optimization

    International Nuclear Information System (INIS)

    Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2013-01-01

    When delivering conventional intensity modulated radiotherapy (IMRT), discrepancies between the pre-treatment CT/MRI/PET based patient geometry and the daily patient geometry are minimized by performing couch translations and/or small rotations. However, full compensation of, in particular, rotations is usually not possible. In this paper, we introduce an online ‘virtual couch shift (VCS)’: we translate and/or rotate the pre-treatment dose distribution to compensate for the changes in patient anatomy and generate a new plan which delivers the transformed dose distribution automatically. We show for a phantom and a cervical cancer patient case that VCS accounts for both translations and large rotations equally well in terms of DVH results and 2%/2 mm γ analyses and when the various aspects of the clinical workflow can be implemented successfully, VCS can potentially outperform physical couch translations and/or rotations. This work is performed in the context of our hybrid 1.5 T MRI linear accelerator, which can provide translations and rotations but also deformations of the anatomy. The VCS is the first step toward compensating all of these anatomical changes by online re-optimization of the IMRT dose distribution. (paper)

  20. Comparison of computer workstation with light box for detecting setup errors from portal images

    International Nuclear Information System (INIS)

    Boxwala, Aziz A.; Chaney, Edward L.; Fritsch, Daniel S.; Raghavan, Suraj; Coffey, Christopher S.; Major, Stacey A.; Muller, Keith E.

    1999-01-01

    Purpose: Observer studies were conducted to test the hypothesis that radiation oncologists using a computer workstation for portal image analysis can detect setup errors at least as accurately as when following standard clinical practice of inspecting portal films on a light box. Methods and Materials: In a controlled observer study, nine radiation oncologists used a computer workstation, called PortFolio, to detect setup errors in 40 realistic digitally reconstructed portal radiograph (DRPR) images. PortFolio is a prototype workstation for radiation oncologists to display and inspect digital portal images for setup errors. PortFolio includes tools for image enhancement; alignment of crosshairs, field edges, and anatomic structures on reference and acquired images; measurement of distances and angles; and viewing registered images superimposed on one another. The test DRPRs contained known in-plane translation or rotation errors in the placement of the fields over target regions in the pelvis and head. Test images used in the study were also printed on film for observers to view on a light box and interpret using standard clinical practice. The mean accuracy for error detection for each approach was measured and the results were compared using repeated measures analysis of variance (ANOVA) with the Geisser-Greenhouse test statistic. Results: The results indicate that radiation oncologists participating in this study could detect and quantify in-plane rotation and translation errors more accurately with PortFolio compared to standard clinical practice. Conclusions: Based on the results of this limited study, it is reasonable to conclude that workstations similar to PortFolio can be used efficaciously in clinical practice

  1. Cryogenic actuator testing for the SAFARI ground calibration setup

    Science.gov (United States)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  2. From stationary annular rings to rotating Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-04-01

    Full Text Available contributions from the two ring-slits completely overlap (evident in Fig. 1), the angular rotation is non-zero and the entire field at P3 experiences the rotation. 3. EXPERIMENTAL METHODOLOGY The experimental setup used to generate superpositions of higher...) as a ?petal?-field. The field at the ring-slit hologram (i.e., the field at plane P1), we will term the ?singularity?-field and that formed at plane P2 (a distance of 2f from lens L4) will be termed as the ?spiral?-field. 4. RESULTS AND DISCUSSION...

  3. Impact of setup variability on incidental lung irradiation during tangential breast treatment

    International Nuclear Information System (INIS)

    Carter, Dennis L.; Marks, Lawrence B.; Bentel, Gunilla C.

    1997-01-01

    Purpose: This study aimed to determine the variability in treatment setup during a 5-week course of tangential breast treatment for patients immobilized in a customized hemibody cradle, to assess the relationship between the height of the lung shadow on the tangential port film and the percentage of lung volume irradiated, and to estimate the impact of setup variabilities on irradiated lung volume. Methods: One hundred seventy-two port films were reviewed from 20 patients who received tangential beam treatment for breast cancer. The height of the lung shadow at the central axis (CLD) on each port film was compared to the corresponding simulator film as an assessment of setup variability. A three-dimensional dose calculation was performed, and the percentage of total lung volume within the field was correlated with the CLD. The three-dimensional dose calculation was repeated for selected patients with the location of the treatment beams modified to reflect typical setup variations. Results: The CLD measured on the port films was within 3 mm of that prescribed on the simulator film in 43% (74 of 172) of the port films. The variation was 3-5 mm in 26%, 5-10 mm in 25%, and >10 mm in 6%. The height of the lung shadow correlated with the percentage of lung volume included in the radiation field (r 2 = 0.6). Typical variations in treatment setup resulted in ≤5% fluctuation in the absolute volume of ipsilateral lung irradiated. Conclusion: The current immobilization system used in our clinic provides a clinically acceptable reproducibility of patient setup. The height of the lung shadow is reasonably well correlated with the percentage of irradiated lung volume. During a typical 5-week course of radiotherapy, the ipsilateral irradiated lung volume fluctuates <5%

  4. A differential dielectric spectroscopy setup to measure the electric dipole moment and net charge of colloidal quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kortschot, R. J.; Bakelaar, I. A.; Erné, B. H.; Kuipers, B. W. M., E-mail: B.W.M.Kuipers@uu.nl [Van ' t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2014-03-15

    A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10{sup −2} to 10{sup 7} Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

  5. Ascending colon rotation following patient positional change during CT colonography: a potential pitfall in interpretation

    International Nuclear Information System (INIS)

    Kim, Ji Yeon; Park, Seong Ho; Lee, Seung Soo; Kim, Ah Young; Ha, Hyun Kwon

    2011-01-01

    To investigate the degree and pattern of ascending colonic rotation as patients moved from supine to prone positions during CTC. A search of our CTC and colonoscopy database found 37 patients (43 eligible lesions) who fulfilled the following criteria: colonoscopy-proven sessile polyps ≥6 mm in the straight mid-ascending colon, lesion visualisation in both supine and prone CTC, and optimal colonic distension. A coordinate system was developed to designate the polyp radial location ( ) along the luminal circumference, unaffected by rotation of the torso. The degree/direction of polyp radial location change (i.e. ascending colonic rotation) between supine and prone positions correlated with anthropometric measurements. Movement from supine to prone positions resulted in a change in the radial polyp location of between -23 and 79 (median, 21 ), demonstrating external rotation of the ascending colon in almost all cases (2 to 79 in 36/37 patients and 42/43 lesions). The degree/direction of rotation mildly correlated with the degree of abdominal compression in the anterior-posterior direction in prone position (r = 0.427 [P = 0.004] and r = 0.404 [P = 0.007]). The ascending colon was usually found to rotate externally as patients moved from supine to prone positions, partly dependent on the degree of abdominal compression. (orig.)

  6. Lower limb immobilization device induced small setup errors in the radiotherapy.

    Science.gov (United States)

    Lu, Yuting; Ni, Xinye; Yu, Jingping; Ni, Xinchu; Sun, Zhiqiang; Wang, Jianlin; Sun, Suping; Wang, Jian

    2018-04-01

    The aim of this study was to design a lower limb immobilization device and investigate its clinical application in the radiotherapy of the lower limbs.Around 38 patients who underwent lower limb radiotherapy using the designed immobilization device were included in this study. The setup errors were calculated by comparison of the portal images and the simulator films or digital reconstructed radiographs (DRRs).From all 38 patients accomplished the radiotherapy using this device, 178 anteroposterior portal images and 178 lateral portal images were used for the analysis of the positional accuracy. Significant differences were observed in the setup error of the head-foot direction compared with the left-right direction (t = 3.404, P = .002) and the anterior-posterior directions (t = 3.188, P = .003). No statistical differences were identified in the setup error in the left-right direction and anterior-posterior direction (t = 0.497, P = .622).The use of the in-house designed lower limb immobilization device allowed for relatively small setup errors. Furthermore, it showed satisfactory accuracy and repeatability.

  7. Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) to monitor haemostatic treatment in bleeding patients

    DEFF Research Database (Denmark)

    Wikkelsø, A.; Wetterslev, J.; Møller, A. M.

    2017-01-01

    of publication status, publication date, blinding status, outcomes published or language from date of inception to 5 January 2016 in six bibliographic databases. We included 17 trials (1493 participants), most involving cardiac surgery. Thromboelastography or rotational thromboelastometry seemed to reduce...... strategies guided by thromboelastography or rotational thromboelastometry may reduce the need for blood products in patients with bleeding, but the results are mainly based on trials of elective cardiac surgery involving cardiopulmonary bypass, with low-quality evidence.......Coagulopathy and severe bleeding are associated with high mortality. We evaluated haemostatic treatment guided by the functional viscoelastic haemostatic assays, thromboelastography or rotational thromboelastometry in bleeding patients. We searched for randomised, controlled trials irrespective...

  8. Prevention of deep venous thrombosis in patients with acute spinal cord injuries: use of rotating treatment tables

    International Nuclear Information System (INIS)

    Becker, D.M.; Gonzalez, M.; Gentili, A.; Eismont, F.; Green, B.A.

    1987-01-01

    A randomized clinical trial of 15 patients with acute spinal cord injuries was performed to test the hypothesis that rotating treatment tables prevent deep venous thrombosis in this population. Four of 5 control (nonrotated) patients developed distal and proximal thrombi, assessed by 125 I fibrinogen leg scans and impedance plethysmography. In comparison, only 1 of 10 treated (rotated) patients developed both distal and proximal thrombosis. These results suggest but do not prove that rotating treatment tables prevent the development of proximal deep venous thrombosis in spinal cord-injured patients. Larger clinical trials are needed to confirm this heretofore undocumented benefit of rotating treatment tables

  9. Cone beam CT evaluation of patient set-up accuracy as a QA tool

    DEFF Research Database (Denmark)

    Nielsen, Morten; Bertelsen, Anders; Westberg, Jonas

    2009-01-01

    Purpose. To quantify by means of cone beam CT the random and systematic uncertainty involved in radiotherapy, and to determine if this information can be used for e.g. technical quality assurance, evaluation of patient immobilization and determination of margins for the treatment planning. Patients...... and lateral directions). In the CC direction, the margin has to be 5 mm for the Thorax patients. The total uncertainty on the patient position grows during the treatment course, especially in the CC direction for patients receiving thoracical irradiation. This may stem from problems in the immobilization...... and methods. Eighty four cancer patients have been cone beam CT scanned at treatment sessions 1, 2, 3, 10 and 20. Translational and rotational errors are analyzed. Results and conclusions. For the first three treatment sessions the mean translational error in the AP direction is 1 mm; this indicates a small...

  10. Impact of patient-specific factors, irradiated left ventricular volume, and treatment set-up errors on the development of myocardial perfusion defects after radiation therapy for left-sided breast cancer

    International Nuclear Information System (INIS)

    Evans, Elizabeth S.; Prosnitz, Robert G.; Yu Xiaoli; Zhou Sumin; Hollis, Donna R.; Wong, Terence Z.; Light, Kim L.; Hardenbergh, Patricia H.; Blazing, Michael A.; Marks, Lawrence B.

    2006-01-01

    Purpose: The aim of this study was to assess the impact of patient-specific factors, left ventricle (LV) volume, and treatment set-up errors on the rate of perfusion defects 6 to 60 months post-radiation therapy (RT) in patients receiving tangential RT for left-sided breast cancer. Methods and Materials: Between 1998 and 2005, a total of 153 patients were enrolled onto an institutional review board-approved prospective study and had pre- and serial post-RT (6-60 months) cardiac perfusion scans to assess for perfusion defects. Of the patients, 108 had normal pre-RT perfusion scans and available follow-up data. The impact of patient-specific factors on the rate of perfusion defects was assessed at various time points using univariate and multivariate analysis. The impact of set-up errors on the rate of perfusion defects was also analyzed using a one-tailed Fisher's Exact test. Results: Consistent with our prior results, the volume of LV in the RT field was the most significant predictor of perfusion defects on both univariate (p = 0.0005 to 0.0058) and multivariate analysis (p = 0.0026 to 0.0029). Body mass index (BMI) was the only significant patient-specific factor on both univariate (p = 0.0005 to 0.022) and multivariate analysis (p = 0.0091 to 0.05). In patients with very small volumes of LV in the planned RT fields, the rate of perfusion defects was significantly higher when the fields set-up 'too deep' (83% vs. 30%, p = 0.059). The frequency of deep set-up errors was significantly higher among patients with BMI ≥25 kg/m 2 compared with patients of normal weight (47% vs. 28%, p = 0.068). Conclusions: BMI ≥25 kg/m 2 may be a significant risk factor for cardiac toxicity after RT for left-sided breast cancer, possibly because of more frequent deep set-up errors resulting in the inclusion of additional heart in the RT fields. Further study is necessary to better understand the impact of patient-specific factors and set-up errors on the development of RT

  11. Prediction of DVH parameter changes due to setup errors for breast cancer treatment based on 2D portal dosimetry

    International Nuclear Information System (INIS)

    Nijsten, S. M. J. J. G.; Elmpt, W. J. C. van; Mijnheer, B. J.; Minken, A. W. H.; Persoon, L. C. G. G.; Lambin, P.; Dekker, A. L. A. J.

    2009-01-01

    Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V 90 and V 95 larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our

  12. A randomized controlled trial comparing customized versus standard headrests for head and neck radiotherapy immobilization in terms of set-up errors, patient comfort and staff satisfaction (ICORG 08-09)

    International Nuclear Information System (INIS)

    Howlin, C.; O'Shea, E.; Dunne, M.; Mullaney, L.; McGarry, M.; Clayton-Lea, A.; Finn, M.; Carter, P.; Garret, B.; Thirion, P.

    2015-01-01

    Purpose: To recommend a specific headrest, customized or standard, for head and neck radiotherapy patients in our institution based primarily on an evaluation of set-up accuracy, taking into account a comparison of patient comfort, staff and patient satisfaction, and resource implications. Methods and materials: Between 2008 and 2009, 40 head and neck patients were randomized to either a standard (Arm A, n = 21) or customized (Arm B, n = 19) headrest, and immobilized with a customized thermoplastic mask. Set-up accuracy was assessed using electronic portal images (EPI). Random and systematic set-up errors for each arm were determined from 668 EPIs, which were analyzed by one Radiation Therapist. Patient comfort was assessed using a visual analogue scale (VAS) and staff satisfaction was measured using an in-house questionnaire. Resource implications were also evaluated. Results: The difference in set-up errors between arms was not significant in any direction. However, in this study the standard headrest (SH) arm performed well, with set-up errors comparative to customized headrests (CHs) in previous studies. CHs require regular monitoring and 47% were re-vacuumed making them more resource intensive. Patient comfort and staff satisfaction were comparable in both arms. Conclusion: The SH provided similar treatment accuracy and patient comfort compared with the CH. The large number of CHs that needed to be re-vacuumed undermines their reliability for radiotherapy schedules that extend beyond 34 days from the initial CT scan. Accordingly the CH was more resource intensive without improving the accuracy of positioning, thus the standard headrest is recommended for continued use at our institution

  13. Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer

    International Nuclear Information System (INIS)

    Wen Ning; Guan Huaiqun; Hammoud, Rabih; Pradhan, Deepak; Nurushev, T; Li Shidong; Movsas, Benjamin

    2007-01-01

    With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was ∼4.0 cGy, which was ∼40% higher than the Rt Lat dose of ∼2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm x 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370 0 scan rotation (10 0 scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of ∼10-11 cGy while the right hip received ∼6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than ∼12% to the table-drop setup

  14. Setup errors and effectiveness of Optical Laser 3D Surface imaging system (Sentinel) in postoperative radiotherapy of breast cancer.

    Science.gov (United States)

    Wei, Xiaobo; Liu, Mengjiao; Ding, Yun; Li, Qilin; Cheng, Changhai; Zong, Xian; Yin, Wenming; Chen, Jie; Gu, Wendong

    2018-05-08

    Breast-conserving surgery (BCS) plus postoperative radiotherapy has become the standard treatment for early-stage breast cancer. The aim of this study was to compare the setup accuracy of optical surface imaging by the Sentinel system with cone-beam computerized tomography (CBCT) imaging currently used in our clinic for patients received BCS. Two optical surface scans were acquired before and immediately after couch movement correction. The correlation between the setup errors as determined by the initial optical surface scan and CBCT was analyzed. The deviation of the second optical surface scan from the reference planning CT was considered an estimate for the residual errors for the new method for patient setup correction. The consequences in terms for necessary planning target volume (PTV) margins for treatment sessions without setup correction applied. We analyzed 145 scans in 27 patients treated for early stage breast cancer. The setup errors of skin marker based patient alignment by optical surface scan and CBCT were correlated, and the residual setup errors as determined by the optical surface scan after couch movement correction were reduced. Optical surface imaging provides a convenient method for improving the setup accuracy for breast cancer patient without unnecessary imaging dose.

  15. Association of Strength Measurement with Rotator Cuff Tear in Patients with Shoulder Pain: The ROW Study

    Science.gov (United States)

    Miller, Jennifer Earle; Higgins, Laurence D.; Dong, Yan; Collins, Jamie E.; Bean, Jonathan F.; Seitz, Amee L.; Katz, Jeffrey N.; Jain, Nitin B.

    2016-01-01

    Objective This study examines the association between strength measurements and supraspinatus tear in patients with shoulder pain. This study characterized determinants of abduction strength among patients with tears. Design Two-hundred and eight patients with shoulder pain (69 with and 110 without tear) were recruited. Strength was tested using hand-held dynamometer. Supraspinatus tears were diagnosed by combination of clinical assessment and blinded MRI review. Associations of supraspinatus tear with patient characteristics and strength measurements (abduction, internal rotation and external rotation) were assessed using multivariable logistic regression models. Results Patients with supraspinatus tear had decreased abduction strength (p=0.02) and decreased external rotation strength (ptear laterality, and BMI, decreased abduction strength (OR= 1.18 per kg, 95% C.I.=1.06–1.32) and decreased external rotation strength (OR=1.29 per kg, 95% C.I.=1.14–1.48) were associated with supraspinatus tear. In patients with tear, age ≥60 years, female sex, and VAS pain score were significantly associated with decreased abduction strength but tear size, fatty infiltration, and atrophy were not. Conclusions Decreased abduction and external rotation strength were associated with supraspinatus tear in patients with shoulder pain. In this cohort, the abduction strength of patients with tears, was influenced by demographic factors but not tear characteristics. PMID:26098921

  16. Genetic evolutionary taboo search for optimal marker placement in infrared patient setup

    International Nuclear Information System (INIS)

    Riboldi, M; Baroni, G; Spadea, M F; Tagaste, B; Garibaldi, C; Cambria, R; Orecchia, R; Pedotti, A

    2007-01-01

    In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process

  17. Functional evaluation of arthroscopic repair of rotator cuff injuries in patients with pseudoparalysis,

    Directory of Open Access Journals (Sweden)

    Alberto Naoki Miyazaki

    2014-04-01

    Full Text Available OBJECTIVE: to evaluate the functional result from arthroscopic repair of rotator cuff injuries in patients with pseudoparalysis, defined as incapacity to actively raise the arm above 90◦ , while complete passive elevation was possible.METHODS: we reevaluated 38 patients with a mean follow-up of 51 months (minimum of 24. We analyzed the pseudoparalysis reversion rate and the functional result obtained.RESULTS: according to the assessment criteria of the University of California in Los Angeles (UCLA, 31 (82% patients had good and excellent results, two (5% had fair results and five (13% had poor results. The mean active elevation went from 39◦ before the operation to 139◦ after the operation (p < 0.05; the mean active lateral rotation went from 30◦ to 48◦ (p < 0.05 and the mean active medial rotation went from level L3 to T12 (p < 0.05.CONCLUSION: arthroscopic repair of rotator cuff injuries produced good and excellent results in 82% of the cases and a statistically significant improvement of active range of motion, with reversion of the pseudoparalysis in 97.4% of the cases. It is therefore a good treatment option.

  18. Nonlinearity in the rotational dynamics of Haidinger's brushes

    Science.gov (United States)

    Rothmayer, Mark; Dultz, Wolfgang; Frins, Erna; Zhan, Qiwen; Tierney, Dennis; Schmitzer, Heidrun

    2007-10-01

    Haidinger's brushes are an entoptic effect of the human visual system that enables us to detect polarized light. However, individual perceptions of Haidinger's brushes can vary significantly. We find that the birefringence of the cornea influences the rotational motion and the contrast of Haidinger's brushes and may offer an explanation for individual differences. We have devised an experimental setup to simulate various phase shifts of the cornea and found a switching effect in the rotational dynamics of Haidinger's brushes. In addition, age related macular degeneration reduces the polarization effect of the macula and thus also leads to changes in the brush pattern.

  19. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Roesch, Johannes; Baier, Kurt; Sweeney, Reinhart A; Flentje, Michael

    2012-01-01

    To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate

  20. Differential detection for measurements of Faraday rotation by means of ac magnetic fields

    International Nuclear Information System (INIS)

    Valev, V K; Wouters, J; Verbiest, T

    2008-01-01

    We demonstrate that by using a combination of a Wollaston prism and two photodiodes the accuracy in the measurements of Faraday rotation with ac magnetic fields can be greatly improved. Our experiments were performed on microscope cover glass plates with thicknesses between 0.13 and 0.16 mm. We show that our setup is capable of distinguishing between the Faraday rotation signals of glass plates having a difference in thickness of a few micrometers, corresponding to Faraday rotations of hundreds of microdegrees per Tesla only

  1. Roll and pitch set-up errors during volumetric modulated arc delivery: can adapting gantry and collimator angles compensate?

    Science.gov (United States)

    Hoffmans-Holtzer, Nienke A; Hoffmans, Daan; Dahele, Max; Slotman, Ben J; Verbakel, Wilko F A R

    2015-03-01

    The purpose of this work was to investigate whether adapting gantry and collimator angles can compensate for roll and pitch setup errors during volumetric modulated arc therapy (VMAT) delivery. Previously delivered clinical plans for locally advanced head-and-neck (H&N) cancer (n = 5), localized prostate cancer (n = 2), and whole brain with simultaneous integrated boost to 5 metastases (WB + 5M, n = 1) were used for this study. Known rigid rotations were introduced in the planning CT scans. To compensate for these, in-house software was used to adapt gantry and collimator angles in the plan. Doses to planning target volumes (PTV) and critical organs at risk (OAR) were calculated with and without compensation and compared with the original clinical plan. Measurements in the sagittal plane in a polystyrene phantom using radiochromic film were compared by gamma (γ) evaluation for 2 H&N cancer patients. For H&N plans, the introduction of 2°-roll and 3°-pitch rotations reduced mean PTV coverage from 98.7 to 96.3%. This improved to 98.1% with gantry and collimator compensation. For prostate plans respective figures were 98.4, 97.5, and 98.4%. For WB + 5M, compensation worked less well, especially for smaller volumes and volumes farther from the isocenter. Mean comparative γ evaluation (3%, 1 mm) between original and pitched plans resulted in 86% γ plan restored the mean comparison to 96% γ < 1. Preliminary data suggest that adapting gantry and collimator angles is a promising way to correct roll and pitch set-up errors of < 3° during VMAT for H&N and prostate cancer.

  2. Assessment of the Correlation between Appointment Scheduling and Patient Satisfaction in a Pediatric Dental Setup

    Directory of Open Access Journals (Sweden)

    Amar N. Katre

    2014-01-01

    Full Text Available Introduction. The practice of modern pediatric dentistry requires delivery of quality care in combination with adherence to excellent business as well as time management principles. A definite appointment schedule should be presented to the parents on the first or second appointment. More importantly, the prescribed schedule should be followed to the best of the professional abilities of the pediatric dentist. Aims. The aim of the study was to assess the co-relation between appointment scheduling and patient satisfaction in a pediatric dental setup with the objective of understanding the parameters related to appointment scheduling to increase patient satisfaction. Method. A total of 40 patients, who visited the Department of Pediatric and Preventive Dentistry, YMT Dental College & Hospital, for dental treatment were selected on a random basis. A questionnaire with a set of 6 questions with a rating scale of 1–5 to assess the patient satisfaction related to appointment scheduling was prepared. Results. A significant number of the patients were happy with the existing appointment scheduling system barring a few exceptions.

  3. Relative mobility of the pelvis and spine during trunk axial rotation in chronic low back pain patients: A case-control study.

    Directory of Open Access Journals (Sweden)

    Masashi Taniguchi

    Full Text Available Trunk axial rotation is a risk factor for chronic low back pain (CLBP. The characteristics of rotational mobility in the pelvis and spine among CLBP patients are not fully understood.The purpose of this study was to examine three-dimensional kinematic changes, and to compare the differences of rotational mobility and coupled motion, in patients with and without CLBP.Fifteen patients with CLBP and 15 age and sex matched healthy subjects participated in this study. Each subject performed trunk rotation to maximum range of motion (ROM in a standing position. The kinematics data was collected using a three-dimensional motion analysis system. The outcomes measured were the rotational ROM and the spine/pelvis ratio (SPR in transvers plane at both maximum and 50% rotation position. The coupled angles in sagittal and frontal planes were also measured.No significant differences in rotational ROM of the thorax, pelvis, and spine were observed between two groups at maximum rotation position. However, there was a significant interaction between groups and rotational ROM of pelvis and spine (F = 4.57, p = 0.04, and the SPR in CLBP patients was significantly greater than that of the healthy subjects (CLBP; 0.50 ± 0.10 Control; 0.41 ± 0.12, p = 0.04. The results at 50% rotation position were similar to that at maximum rotation. This indicates a relative increase in spinal rotation in the CLBP patients during trunk rotation. Moreover, the CLBP patients exhibited a significantly higher anterior tilt of the pelvis and extension of the spine in the sagittal plane coupled with rotation.CLBP patients had relative hyper rotational mobility of the spine as well as excessive spinal extension coupled with trunk rotation. These results suggest that uncoordinated trunk rotation might be a functional failure associated with CLBP.

  4. SU-E-T-258: Development of a New Patient Set-Up Monitoring System Using Force Sensing Resistor (FSR) Sensor for the Radiation Therapy

    International Nuclear Information System (INIS)

    Cho, M; Kim, T; Kang, S; Kim, D; Kim, K; Shin, D; Suh, T

    2015-01-01

    Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attaching FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by

  5. SU-E-T-258: Development of a New Patient Set-Up Monitoring System Using Force Sensing Resistor (FSR) Sensor for the Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M; Kim, T; Kang, S; Kim, D; Kim, K; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attaching FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by

  6. Visuo-acoustic stimulation that helps you to relax: A virtual reality setup for patients in the intensive care unit.

    Science.gov (United States)

    Gerber, Stephan M; Jeitziner, Marie-Madlen; Wyss, Patric; Chesham, Alvin; Urwyler, Prabitha; Müri, René M; Jakob, Stephan M; Nef, Tobias

    2017-10-16

    After prolonged stay in an intensive care unit (ICU) patients often complain about cognitive impairments that affect health-related quality of life after discharge. The aim of this proof-of-concept study was to test the feasibility and effects of controlled visual and acoustic stimulation in a virtual reality (VR) setup in the ICU. The VR setup consisted of a head-mounted display in combination with an eye tracker and sensors to assess vital signs. The stimulation consisted of videos featuring natural scenes and was tested in 37 healthy participants in the ICU. The VR stimulation led to a reduction of heart rate (p = 0. 049) and blood pressure (p = 0.044). Fixation/saccade ratio (p < 0.001) was increased when a visual target was presented superimposed on the videos (reduced search activity), reflecting enhanced visual processing. Overall, the VR stimulation had a relaxing effect as shown in vital markers of physical stress and participants explored less when attending the target. Our study indicates that VR stimulation in ICU settings is feasible and beneficial for critically ill patients.

  7. COMPARISON OF ASTYM THERAPY AND KINESIOTAPING FOR ROTATOR CUFF TENDINOPATHY IN DIABETIC PATIENTS: RANDOMIZED CONTROLLED TRIAL

    OpenAIRE

    Azza Atya; Mahmoud Nasser; Aisha Hagag

    2017-01-01

    Background: Rotator cuff tendinopathy is a significant problem among diabetics that frequently restricts patient’s activity in terms of pain and disability. The purpose of this study was to compare between the effect of Astym therapy and kinesiotaping in treating diabetic patients with chronic rotator cuff tendinopathy. Methods: 56 diabetic patients diagnosed with chronic rotator cuff tendinopathy were randomly assigned into Astym therapy group (n=28) or kinesiotaping group (n= 28). All pa...

  8. Contrast-Enhanced Proton Radiography for Patient Set-up by Using X-Ray CT Prior Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Spadea, Maria Francesca, E-mail: mfspadea@unicz.it [Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro (Italy); Fassi, Aurora [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Zaffino, Paolo [Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro (Italy); Riboldi, Marco; Baroni, Guido [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit—CNAO Foundation, Pavia (Italy); Depauw, Nicolas [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Seco, Joao [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-01

    Purpose: To obtain a contrasted image of the tumor region during the setup for proton therapy in lung patients, by using proton radiography and x-ray computed tomography (CT) prior knowledge. Methods and Materials: Six lung cancer patients' CT scans were preprocessed by masking out the gross tumor volume (GTV), and digitally reconstructed radiographs along the planned beam's eye view (BEV) were generated, for a total of 27 projections. Proton radiographies (PR) were also computed for the same BEV through Monte Carlo simulations. The digitally reconstructed radiograph was subtracted from the corresponding proton image, resulting in a contrast-enhanced proton radiography (CEPR). Michelson contrast analysis was performed both on PR and CEPR. The tumor region was then automatically segmented on CEPR and compared to the ground truth (GT) provided by physicians in terms of Dice coefficient, accuracy, precision, sensitivity, and specificity. Results: Contrast on CEPR was, on average, 4 times better than on PR. For 10 lateral projections (±45° off of 90° or 270°), although it was not possible to distinguish the tumor region in the PR, CEPR offers excellent GTV visibility. The median ± quartile values of Dice, precision, and accuracy indexes were 0.86 ± 0.03, 0.86 ± 0.06, and 0.88 ± 0.02, respectively, thus confirming the reliability of the method in highlighting tumor boundaries. Sensitivity and specificity analysis demonstrated that there is no systematic over- or underestimation of the tumor region. Identification of the tumor boundaries using CEPR resulted in a more accurate and precise definition of GTV compared to that obtained from pretreatment CT. Conclusions: In most proton centers, the current clinical protocol is to align the patient using kV imaging with bony anatomy as a reference. We demonstrated that CEPR can significantly improve tumor visualization, allowing better patient set-up and permitting image guided proton therapy (IGPT)

  9. MO-FG-CAMPUS-JeP3-02: A Novel Setup Approach to Improve C-Spine Curvature Reproducibility for Head and Neck Radiotherapy Using Optical Surface Imaging with Two Regions of Interest

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, K; Gil, M; Li, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Della Biancia, C [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel approach to improve cervical spine (c-spine) curvature reproducibility for head and neck (HN) patients using optical surface imaging (OSI) with two regions of interests (ROIs). Methods: The OSI-guided, two-step setup procedure requires two ROIs: ROI-1 of the shoulders and ROI-2 of the face. The neck can be stretched or squeezed in superior-inferior (SI) direction using a specially-designed sliding head support. We hypothesize that when these two ROIs are aligned, the c-spine should fall into a naturally reproducible position under same setup conditions. An anthropomorphous phantom test was performed to examine neck pitch angles comparing with the calculated angles. Three volunteers participated in the experiments, which start with conventional HN setup using skin markers and room lasers. An OSI image and lateral photo-picture were acquired as the references. In each of the three replicate tests, conventional setup was first applied after volunteers got on the couch. ROI-1 was aligned by moving the body, followed by ROI-2 alignment via adjusting head position and orientation under real-time OSI guidance. A final static OSI image and lateral picture were taken to evaluate both anterior and posterior surface alignments. Three degrees of freedom can be adjusted if an open-face mask was applied, including head SI shift using the sliding head support and pitch-and-roll rotations using a commercial couch extension. Surface alignment was analyzed comparing with conventional setup. Results: The neck pitch angle measured by OSI is consistent with the calculated (0.2±0.6°). Volunteer study illustrated improved c-spine setup reproducibility using OSI comparing with conventional setup. ROI alignments with 2mm/1° tolerance are achieved within 3 minutes. Identical knee support is important to achieve ROI-1 pitch alignment. Conclusion: The feasibility of this novel approach has been demonstrated for c-spine curvature setup reproducibility. Further

  10. Procedures for high precision setup verification and correction of lung cancer patients using CT-simulation and digitally reconstructed radiographs (DRR).

    NARCIS (Netherlands)

    Sornsen de Koste, van J.R.; Boer, de HC; Schuchhard-Schipper, RH; Senan, S.; Heijmen, BJ

    2003-01-01

    PURPOSE: In a recent study, large systematic setup errors were detected in patients with lung cancer when a conventional simulation procedure was used to define and mark the treatment isocenter. In the present study, we describe a procedure to omit the session at a conventional simulator to remove

  11. Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wen Ning; Guan Huaiqun; Hammoud, Rabih; Pradhan, Deepak; Nurushev, T; Li Shidong; Movsas, Benjamin [Henry Ford Health System, Detroit, MI (United States)

    2007-04-21

    With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was {approx}4.0 cGy, which was {approx}40% higher than the Rt Lat dose of {approx}2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm x 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370{sup 0} scan rotation (10{sup 0} scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of {approx}10-11 cGy while the right hip received {approx}6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than {approx}12% to the table-drop setup.

  12. Efficient on-line setup correction strategies using plan-intent functions

    International Nuclear Information System (INIS)

    Keller, Harry; Jaffray, David A.; Rosewall, Tara; White, Elizabeth

    2006-01-01

    With the introduction of image-guided radiation therapy (IGRT) delivery systems on-line set-up correction strategies have gained in popularity. Usually, the correction workload of these strategies is high compared to off-line strategies as daily setup corrections have to be performed based on a predefined action level. In this work, it is proposed that on-line strategies must not only be judged in terms of workload but also in terms of efficacy. While workload can be easily predicted for such strategies, the efficacy must ultimately reflect the efficiency with which the original treatment plan intent is met. The purpose of this work is to investigate the tradeoff between workload and efficacy of three different on-line set-up correction strategies: The common fixed action level strategy and two novel on-line setup correction strategies, i.e., a dose-volume histogram (DVH) constraint and an equivalent uniform dose (EUD) score strategy that aim directly for better compliance with original treatment plan intent. All strategies were reformulated in terms of a score function that reflected treatment plan intent. A retrospective study was conducted on 5 prostate patients (7-field conformal, 79.8 Gy, 42 fractions). PTV margins were 10 mm except in the posterior direction (7 mm). The original treatment plan intent for these patients was defined using a set of DVH constraints. The results show that the on-line setup correction strategy based on a fixed action level of 3 mm resulted in a considerable correction workload. For larger action levels, a dose benefit (in terms of EUD) in the rectum and bladder was observed for all patients which is clinically ''fortuitous'' but difficult to take advantage of. In contrast, the application of the two novel strategies generally resulted in a controlled decrease of the dose to the rectum and the bladder with a smaller workload. It is concluded that using information about target anatomy and the planned dose distribution allows the

  13. Rotator cuff exercises

    Science.gov (United States)

    ... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

  14. Comparison of prostate set-up accuracy and margins with off-line bony anatomy corrections and online implanted fiducial-based corrections.

    Science.gov (United States)

    Greer, P B; Dahl, K; Ebert, M A; Wratten, C; White, M; Denham, J W

    2008-10-01

    The aim of the study was to determine prostate set-up accuracy and set-up margins with off-line bony anatomy-based imaging protocols, compared with online implanted fiducial marker-based imaging with daily corrections. Eleven patients were treated with implanted prostate fiducial markers and online set-up corrections. Pretreatment orthogonal electronic portal images were acquired to determine couch shifts and verification images were acquired during treatment to measure residual set-up error. The prostate set-up errors that would result from skin marker set-up, off-line bony anatomy-based protocols and online fiducial marker-based corrections were determined. Set-up margins were calculated for each set-up technique using the percentage of encompassed isocentres and a margin recipe. The prostate systematic set-up errors in the medial-lateral, superior-inferior and anterior-posterior directions for skin marker set-up were 2.2, 3.6 and 4.5 mm (1 standard deviation). For our bony anatomy-based off-line protocol the prostate systematic set-up errors were 1.6, 2.5 and 4.4 mm. For the online fiducial based set-up the results were 0.5, 1.4 and 1.4 mm. A prostate systematic error of 10.2 mm was uncorrected by the off-line bone protocol in one patient. Set-up margins calculated to encompass 98% of prostate set-up shifts were 11-14 mm with bone off-line set-up and 4-7 mm with online fiducial markers. Margins from the van Herk margin recipe were generally 1-2 mm smaller. Bony anatomy-based set-up protocols improve the group prostate set-up error compared with skin marks; however, large prostate systematic errors can remain undetected or systematic errors increased for individual patients. The margin required for set-up errors was found to be 10-15 mm unless implanted fiducial markers are available for treatment guidance.

  15. Improved mortar setup technique

    CSIR Research Space (South Africa)

    De Villiers, D

    2008-10-01

    Full Text Available bearing sensor. This concept focuses directly on one of the most cumbersome aspects of a mortar set-up, namely the use of aiming posts. The prismatic mirror and bearing dials is described as well as the required setup procedures. The measurement...

  16. Complications of rotator cuff surgery—the role of post-operative imaging in patient care

    Science.gov (United States)

    Thakkar, R S; Thakkar, S C; Srikumaran, U; Fayad, L M

    2014-01-01

    When pain or disability occurs after rotator cuff surgery, post-operative imaging is frequently performed. Post-operative complications and expected post-operative imaging findings in the shoulder are presented, with a focus on MRI, MR arthrography (MRA) and CT arthrography. MR and CT techniques are available to reduce image degradation secondary to surgical distortions of native anatomy and implant-related artefacts and to define complications after rotator cuff surgery. A useful approach to image the shoulder after surgery is the standard radiography, followed by MRI/MRA for patients with low “metal presence” and CT for patients who have a higher metal presence. However, for the assessment of patients who have undergone surgery for rotator cuff injuries, imaging findings should always be correlated with the clinical presentation because post-operative imaging abnormalities do not necessarily correlate with symptoms. PMID:24734935

  17. The virtual slice setup.

    Science.gov (United States)

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-06-30

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.

  18. Setup Analysis: Combining SMED with Other Tools

    Directory of Open Access Journals (Sweden)

    Stadnicka Dorota

    2015-02-01

    Full Text Available The purpose of this paper is to propose the methodology for the setup analysis, which can be implemented mainly in small and medium enterprises which are not convinced to implement the setups development. The methodology was developed after the research which determined the problem. Companies still have difficulties with a long setup time. Many of them do nothing to decrease this time. A long setup is not a sufficient reason for companies to undertake any actions towards the setup time reduction. To encourage companies to implement SMED it is essential to make some analyses of changeovers in order to discover problems. The methodology proposed can really encourage the management to take a decision about the SMED implementation, and that was verified in a production company. The setup analysis methodology is made up of seven steps. Four of them concern a setups analysis in a chosen area of a company, such as a work stand which is a bottleneck with many setups. The goal is to convince the management to begin actions concerning the setups improvement. The last three steps are related to a certain setup and, there, the goal is to reduce a setup time and the risk of problems which can appear during the setup. In this paper, the tools such as SMED, Pareto analysis, statistical analysis, FMEA and other were used.

  19. Rotator cuff tears: assessment with MR arthrography in 275 patients with arthroscopic correlation

    International Nuclear Information System (INIS)

    Waldt, S.; Bruegel, M.; Mueller, D.; Holzapfel, K.; Rummeny, E.J.; Woertler, K.; Imhoff, A.B.

    2007-01-01

    We assessed the diagnostic performance of magnetic resonance (MR) arthrography in the diagnosis of articular-sided partial-thickness and full-thickness rotator cuff tears in a large symptomatic population. MR arthrograms obtained in 275 patients including a study group of 139 patients with rotator cuff tears proved by arthroscopy and a control group of 136 patients with arthroscopically intact rotator cuff tendons were reviewed in random order. MR imaging was performed on a 1.0 T system (Magnetom Expert, Siemens). MR arthrograms were analyzed by two radiologists in consensus for articular-sided partial-thickness and full-thickness tears of the supraspinatus, infraspinatus, and subscapularis tendons. At arthroscopy, 197 rotator cuff tears were diagnosed, including 105 partial-thickness (93 supraspinatus, nine infraspinatus, three subscapularis) and 92 full-thickness (43 supraspinatus, 20 infraspinatus, 29 subscapularis) tendon tears. For full-thickness tears, sensitivity, specificity, and accuracy were 96%, 99%, and 98%, respectively, and for partial tears 80%, 97%, and 95%, respectively. False negative and positive assessments in the diagnosis of articular-sided partial-thickness tears were predominantly [78% (35/45)] observed with small articular-sided (Ellman grade1) tendon tears. MR arthrography is highly accurate in the diagnosis of full-thickness rotator cuff tears and is accurate in the diagnosis of articular-sided partial-thickness tears. Limitations in the diagnosis of partial-thickness tears are mainly restricted to small articular-sided tears (Ellman grade 1) due to difficulties in differentiation between fiber tearing, tendinitis, synovitic changes, and superficial fraying at tendon margins. (orig.)

  20. Rotator cuff tears: assessment with MR arthrography in 275 patients with arthroscopic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, S.; Bruegel, M.; Mueller, D.; Holzapfel, K.; Rummeny, E.J.; Woertler, K. [Technische Universitaet Muenchen, Department of Radiology, Munich (Germany); Imhoff, A.B. [Technische Universitaet Muenchen, Department of Sports Orthopedics, Munich (Germany)

    2007-02-15

    We assessed the diagnostic performance of magnetic resonance (MR) arthrography in the diagnosis of articular-sided partial-thickness and full-thickness rotator cuff tears in a large symptomatic population. MR arthrograms obtained in 275 patients including a study group of 139 patients with rotator cuff tears proved by arthroscopy and a control group of 136 patients with arthroscopically intact rotator cuff tendons were reviewed in random order. MR imaging was performed on a 1.0 T system (Magnetom Expert, Siemens). MR arthrograms were analyzed by two radiologists in consensus for articular-sided partial-thickness and full-thickness tears of the supraspinatus, infraspinatus, and subscapularis tendons. At arthroscopy, 197 rotator cuff tears were diagnosed, including 105 partial-thickness (93 supraspinatus, nine infraspinatus, three subscapularis) and 92 full-thickness (43 supraspinatus, 20 infraspinatus, 29 subscapularis) tendon tears. For full-thickness tears, sensitivity, specificity, and accuracy were 96%, 99%, and 98%, respectively, and for partial tears 80%, 97%, and 95%, respectively. False negative and positive assessments in the diagnosis of articular-sided partial-thickness tears were predominantly [78% (35/45)] observed with small articular-sided (Ellman grade1) tendon tears. MR arthrography is highly accurate in the diagnosis of full-thickness rotator cuff tears and is accurate in the diagnosis of articular-sided partial-thickness tears. Limitations in the diagnosis of partial-thickness tears are mainly restricted to small articular-sided tears (Ellman grade 1) due to difficulties in differentiation between fiber tearing, tendinitis, synovitic changes, and superficial fraying at tendon margins. (orig.)

  1. Electrochemical study of uranium cations in LiCl-KCl melt using a rotating disk electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang-Eun; Kim, Dae-Hyun; Kim, Jong-Yoon; Park, Tae-Hong; Cho, Young Hwan; Yeon, Jei-Won; Song, Kyuseok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute,989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    A rotating disk electrode (RDE) measurement technique was employed to investigate the electrochemical REDOX reactions of actinide (An) and lanthanide (Ln) ions in LiCl-KCl molten salt. By using RDE, it is possible to access more exact values of the diffusion coefficient, Tafel slope, and exchange current density. In this work, we constructed RDE setup and electrodes for RDE measurements in high temperature molten salt and measured the electrochemical parameters of the An and Ln ions. The RDE setup is composed of a Pine model MSRX rotator equipped with a rod type of W electrode. The active electrode area was confined to the planar part of the W rod by making meniscus at the LiCl-KCl melt surface.

  2. Set-up for differential manometers testing

    International Nuclear Information System (INIS)

    Ratushnyj, M.I.; Galkin, Yu.V.; Nechaj, A.G.

    1985-01-01

    Set-up characteristic for controlling and testing metrological characteristics of TPP and NPP differential manometers with extreme pressure drop upto 250 kPa is briefly described. The set-up provides with automatic and manual assignment of values of gauge air pressure with errors of 0.1 and 0.25% correspondingly. The set-up is supplied with standard equipment to measure output signals. Set-up supply is carried out by a one-phase alternating current circuit with 220 V. Air supply is carried out by O.4-0.6 MPa. pressure of a pneumatic system. Application of the set-up increases operating efficiency 5 times while checking and turning differential manometers

  3. Neutron polarizing set-up of the Sofia IRT research reactor

    International Nuclear Information System (INIS)

    Krezhov, K.; Mikhajlova, V.; Okorokov, A.

    1990-01-01

    Neutron polarizing set-up of one of the horizontal beam tubes of the IRT-200 research reactor of the Bulgarian Institute of Nuclear Research and Nuclear Energy is presented. Neutron mirrors are extensively used in an effort to compensate the moderate reactor beam intensity by the high reflected intensity and wide-band transmittance of the mirror neutron guides. Time-to-flight technique using a slotted neutron absorbing chopper with a horizontal rotation axis has been applied to obtain the exit neutron spectra. Beam polarization and flipping ratios have been determined. Cadmium ratio in the polarized beam has been found almost 10 4 and the average polarization has been measured to be higher than 96%. 3 figs, 3 refs

  4. The application of a low-cost 3D depth camera for patient set-up and respiratory motion management in radiotherapy

    Science.gov (United States)

    Tahavori, Fatemeh

    Respiratory motion induces uncertainty in External Beam Radiotherapy (EBRT), which can result in sub-optimal dose delivery to the target tissue and unwanted dose to normal tissue. The conventional approach to managing patient respiratory motion for EBRT within the area of abdominal-thoracic cancer is through the use of internal radiological imaging methods (e.g. Megavoltage imaging or Cone-Beam Computed Tomography) or via surrogate estimates of tumour position using external markers placed on the patient chest. This latter method uses tracking with video-based techniques, and relies on an assumed correlation or mathematical model, between the external surrogate signal and the internal target position. The marker's trajectory can be used in both respiratory gating techniques and real-time tracking methods. Internal radiological imaging methods bring with them limited temporal resolution, and additional radiation burden, which can be addressed by external marker-based methods that carry no such issues. Moreover, by including multiple external markers and placing them closer to the internal target organs, the effciency of correlation algorithms can be increased. However, the quality of such external monitoring methods is underpinned by the performance of the associated correlation model. Therefore, several new approaches to correlation modelling have been developed as part of this thesis and compared using publicly-available datasets. Highly competitive results have been obtained when compared against state-of-the-art methods. Marker-based methods also have the disadvantages of requiring manual set-up time for marker placement and patient positioning and potential issues with reproducibility of marker placement. This motivates the investigation of non-contact marker-free methods for use in EBRT, which is the main topic of this thesis. The Microsoft Kinect is used as an example of a low-cost consumer grade 3D depth camera for capturing and analysing external

  5. Effect of 3 months of progressive high-load strength training in patients with rotator cuff tendinopathy: Primary results from the double-blind, randomised, controlled Rotator Cuff Tendinopathy Exercise (RoCTEx) trial

    DEFF Research Database (Denmark)

    Ingwersen, Kim Gordon; Jensen, Steen Lund; Sørensen, Lilli

    2017-01-01

    BACKGROUND: Progressive high-load exercise (PHLE) has led to positive clinical results in patients with patellar and Achilles tendinopathy. However, its effects on rotator cuff tendinopathy still need to be investigated. PURPOSE: To assess the clinical effects of PHLE versus low-load exercise (LLE......) among patients with rotator cuff tendinopathy. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: Patients with rotator cuff tendinopathy were recruited and randomized to 12 weeks of PHLE or LLE, stratified for concomitant administration of corticosteroid injection. The primary...... benefit from PHLE over traditional LLE among patients with rotator cuff tendinopathy. Further investigation of the possible interaction between exercise type and corticosteroid injection is needed to establish optimal and potentially synergistic combinations of these 2 factors. REGISTRATION: NCT01984203...

  6. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.

    2010-01-01

    , is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a treatment...... of the whole cutting tool. A log 5 reduction of L. innocua is obtained after 340 s of plasma operation. The temperature of the knife after treatment was found to be below 30 °C. The design of the setup allows a decontamination during slicing operation....

  7. COMPARISON OF ASTYM THERAPY AND KINESIOTAPING FOR ROTATOR CUFF TENDINOPATHY IN DIABETIC PATIENTS: RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Azza Atya

    2017-09-01

    Full Text Available Background: Rotator cuff tendinopathy is a significant problem among diabetics that frequently restricts patient’s activity in terms of pain and disability. The purpose of this study was to compare between the effect of Astym therapy and kinesiotaping in treating diabetic patients with chronic rotator cuff tendinopathy. Methods: 56 diabetic patients diagnosed with chronic rotator cuff tendinopathy were randomly assigned into Astym therapy group (n=28 or kinesiotaping group (n= 28. All patients received conventional program in addition to Astym treatment or Kinesiotaping for 24 sessions (2times/week. Patients were assessed at baseline and at the end of corresponding intervention with visual analogy scale (VAS for pain intensity, shoulder disability questioner (SDQ for shoulder disability, and electrogoniometer for shoulder range of motion. Results: For the 56 study participants (21 males and 35 females; mean age=41.9±6.9 years there were significant differences in all measuring outcomes in both group when compared to baseline measurements (p 0.05. Conclusion: kinesiotaping appears to be more effective than Astym therapy in reducing pain for diabetic patients with chronic rotator cuff tendinopathy.

  8. Comparison of prostate set-up accuracy and margins with off-line bony anatomy corrections and online implanted fiducial-based corrections

    International Nuclear Information System (INIS)

    Greer, P. B.; Dahl, K.; Ebert, M. A.; Wratten, C.; White, M.; Denham, K. W.

    2008-01-01

    Full text: The aim of the study was to determine prostate set-up accuracy and set-up margins with off-line bony anatomy-based imaging protocols, compared with online implanted fiducial marker-based imaging with daily corrections. Eleven patients were treated with implanted prostate fiducial markers and online set-up corrections. Pretreatment orthogonal electronic portal images were acquired to determine couch shifts and verification images were acquired during treatment to measure residual set-up error. The prostate set-up errors that would result from skin marker set-up, off-line bony anatomy-based protocols and online fiducial marker-based corrections were determined. Set-up margins were calculated for each set-up technique using the percentage of encompassed isocentres land a margin recipe. The prostate systematic set-up errors in the medial-lateral, superior-inferior and anterior-I posterior directions for skin marker set-up were 2.2, 3.6 and 4.5 mm (1 standard deviation). For our bony anatomy-I based off-line protocol the prostate systematic set-up errors were 1.6, 2.5 and 4.4 mm. For the online fiducial based set-up the results were 0.5, 1.4 and 1.4 mm. A prostate systematic error of 10.2 mm was uncorrected by the off-line bone protocol in one patient. Set-up margins calculated to encompass 98% of prostate set-up shifts were 111-14 mm with bone off-line set-up and 4-7 mm with online fiducial markers. Margins from the van Herk margin I recipe were generally 1-2 mm smaller. Bony anatomy-based set-up protocols improve the group prostate set-up error compared with skin marks; however, large prostate systematic errors can remain undetected or systematic (errors increased for individual patients. The margin required for set-up errors was found to be 10-15 mm unless I implanted fiducial markers are available for treatment guidance.

  9. Gravitational collapse with rotating thin shells and cosmic censorship

    International Nuclear Information System (INIS)

    Delsate, Térence; Rocha, Jorge V; Santarelli, Raphael

    2015-01-01

    The study of gravitational collapse is a subject of great importance, both from an astrophysical and a holographic point of view. In this respect, exact solutions can be very helpful but known solutions are very scarce, especially when considering dynamical processes with rotation. We describe a setup in which gravitational collapse of rotating matter shells can be addressed with analytic tools, at the expense of going to higher dimensions and considering equal angular momenta spacetimes. The framework for an exact treatment of the dynamics, relying on a thin shell approximation, is developed. Our analysis allows the inclusion of a non-vanishing cosmological constant. Finally, we discuss applications of this machinery to the construction of stationary solutions describing matter around rotating black holes and to the cosmic censorship conjecture. (paper)

  10. Detection of patient setup errors with a portal image - DRR registration software application.

    Science.gov (United States)

    Sutherland, Kenneth; Ishikawa, Masayori; Bengua, Gerard; Ito, Yoichi M; Miyamoto, Yoshiko; Shirato, Hiroki

    2011-02-18

    The purpose of this study was to evaluate a custom portal image - digitally reconstructed radiograph (DRR) registration software application. The software works by transforming the portal image into the coordinate space of the DRR image using three control points placed on each image by the user, and displaying the fused image. In order to test statistically that the software actually improves setup error estimation, an intra- and interobserver phantom study was performed. Portal images of anthropomorphic thoracic and pelvis phantoms with virtually placed irradiation fields at known setup errors were prepared. A group of five doctors was first asked to estimate the setup errors by examining the portal and DRR image side-by-side, not using the software. A second group of four technicians then estimated the same set of images using the registration software. These two groups of human subjects were then compared with an auto-registration feature of the software, which is based on the mutual information between the portal and DRR images. For the thoracic case, the average distance between the actual setup error and the estimated error was 4.3 ± 3.0 mm for doctors using the side-by-side method, 2.1 ± 2.4 mm for technicians using the registration method, and 0.8 ± 0.4mm for the automatic algorithm. For the pelvis case, the average distance between the actual setup error and estimated error was 2.0 ± 0.5 mm for the doctors using the side-by-side method, 2.5 ± 0.4 mm for technicians using the registration method, and 2.0 ± 1.0 mm for the automatic algorithm. The ability of humans to estimate offset values improved statistically using our software for the chest phantom that we tested. Setup error estimation was further improved using our automatic error estimation algorithm. Estimations were not statistically different for the pelvis case. Consistency improved using the software for both the chest and pelvis phantoms. We also tested the automatic algorithm with a

  11. Evaluation of Robustness to Setup and Range Uncertainties for Head and Neck Patients Treated With Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Malyapa, Robert [Centre for Proton Radiotherapy, PSI (Switzerland); Lowe, Matthew [Manchester Academic Health Science Centre, Faculty of Medical and Human Sciences, University of Manchester (United Kingdom); Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Bolsi, Alessandra; Lomax, Antony J. [Centre for Proton Radiotherapy, PSI (Switzerland); Weber, Damien C. [University of Zürich, Zürich (Switzerland); Albertini, Francesca, E-mail: francesca.albertini@psi.ch [Centre for Proton Radiotherapy, PSI (Switzerland)

    2016-05-01

    Purpose: To evaluate the robustness of head and neck plans for treatment with intensity modulated proton therapy to range and setup errors, and to establish robustness parameters for the planning of future head and neck treatments. Methods and Materials: Ten patients previously treated were evaluated in terms of robustness to range and setup errors. Error bar dose distributions were generated for each plan, from which several metrics were extracted and used to define a robustness database of acceptable parameters over all analyzed plans. The patients were treated in sequentially delivered series, and plans were evaluated for both the first series and for the combined error over the whole treatment. To demonstrate the application of such a database in the head and neck, for 1 patient, an alternative treatment plan was generated using a simultaneous integrated boost (SIB) approach and plans of differing numbers of fields. Results: The robustness database for the treatment of head and neck patients is presented. In an example case, comparison of single and multiple field plans against the database show clear improvements in robustness by using multiple fields. A comparison of sequentially delivered series and an SIB approach for this patient show both to be of comparable robustness, although the SIB approach shows a slightly greater sensitivity to uncertainties. Conclusions: A robustness database was created for the treatment of head and neck patients with intensity modulated proton therapy based on previous clinical experience. This will allow the identification of future plans that may benefit from alternative planning approaches to improve robustness.

  12. Evaluation of Robustness to Setup and Range Uncertainties for Head and Neck Patients Treated With Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Malyapa, Robert; Lowe, Matthew; Bolsi, Alessandra; Lomax, Antony J.; Weber, Damien C.; Albertini, Francesca

    2016-01-01

    Purpose: To evaluate the robustness of head and neck plans for treatment with intensity modulated proton therapy to range and setup errors, and to establish robustness parameters for the planning of future head and neck treatments. Methods and Materials: Ten patients previously treated were evaluated in terms of robustness to range and setup errors. Error bar dose distributions were generated for each plan, from which several metrics were extracted and used to define a robustness database of acceptable parameters over all analyzed plans. The patients were treated in sequentially delivered series, and plans were evaluated for both the first series and for the combined error over the whole treatment. To demonstrate the application of such a database in the head and neck, for 1 patient, an alternative treatment plan was generated using a simultaneous integrated boost (SIB) approach and plans of differing numbers of fields. Results: The robustness database for the treatment of head and neck patients is presented. In an example case, comparison of single and multiple field plans against the database show clear improvements in robustness by using multiple fields. A comparison of sequentially delivered series and an SIB approach for this patient show both to be of comparable robustness, although the SIB approach shows a slightly greater sensitivity to uncertainties. Conclusions: A robustness database was created for the treatment of head and neck patients with intensity modulated proton therapy based on previous clinical experience. This will allow the identification of future plans that may benefit from alternative planning approaches to improve robustness.

  13. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  14. Rotating disk electrode system for elevated pressures and temperatures.

    Science.gov (United States)

    Fleige, M J; Wiberg, G K H; Arenz, M

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  15. Rotating disk electrode system for elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-01-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H 2 SO 4 , the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells

  16. Rotating disk electrode system for elevated pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Ø Copenhagen (Denmark)

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  17. Rotating disk electrode system for elevated pressures and temperatures

    Science.gov (United States)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  18. Flap testing on the rotating test rig in the INDUFLAP project

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Aagaard Madsen, Helge; Enevoldsen, Karen

    Tests of a prototype Controllable Rubber Trailing Edge Flap (CRTEF) are performed on the rotating test rig at the Risø campus of DTU. The general description and objectives are presented, along with an overview of sensors on the setup and the test cases. The post-processing of data is discussed...

  19. Impact of cradle immobilization on setup reproducibility during external beam radiation therapy for lung cancer

    International Nuclear Information System (INIS)

    Bentel, Gunilla C.; Marks, Lawrence B.; Krishnamurthy, Rupa

    1997-01-01

    Purpose: To compare the setup accuracy during fractionated radiation therapy for two patient groups with lung cancer treated with and without an immobilization cradle. Methods: Three hundred ninety-seven port films from 30 patients immobilized in the Alpha Cradle TM1 were compared with 329 port films from 30 patients who were not immobilized with the cradle. All patients were treated with curative intent for nonmetastatic lung cancer. The frequency of physician-requested isocenter shifts were compared in the two groups using a two-tailed chi-square test. Initial port films taken on the first day of treatment, routine films taken usually weekly during radiation therapy, and requested films taken after a requested shift were considered separately. The immobilization device consisted of a custom-made foam cradle that extended from above the head to the knees. Patients were generally treated with their arms above their heads, and treatment setup marks in the immobilized patients were placed on both the patients' skin and the immobilization cradle. For the noncradle patients, setup marks were placed only on the patients' skin. Results: For the routine films, the frequency of physician-requested isocenter shifts was lower in immobilized patients than in the nonimmobilized group (p = 0.139). Most of this reduction was seen on oblique fields (p = 0.038). No benefits were seen among initial or requested films. The two groups were well balanced with regard to stage, age, field size, and total dose. Conclusions: The use of aggressive immobilization improves the setup reproducibility in patients receiving external beam radiation therapy for lung cancer, especially during treatment with oblique fields. This improvement in treatment accuracy might improve the therapeutic ratio

  20. Mental rotation evoked potentials P500 in patients with major depressive disorder

    Institute of Scientific and Technical Information of China (English)

    陈玖

    2013-01-01

    Objective To explore the difference on mental rotation ability between major depressive disorders and healthy subjects.Methods Twenty-three patients with major depressive disorders and 24 healthy subjects

  1. [Rotator cuff tear athropathy prevalence].

    Science.gov (United States)

    Guerra-Soriano, F; Encalada-Díaz, M I; Ruiz-Suárez, M; Valero-González, F S

    2017-01-01

    Glenohumeral arthritis secondary to massive rotator cuff tear presents with a superior displacement and femoralization of the humeral head with coracoacromial arch acetabularization. The purpose of this study was to establish prevalence of rotator cuff tear artropathy (CTA) at our institution. Four hundred electronic records were reviewed from which we identified 136 patients with rotator cuff tears. A second group was composed with patients with massive cuff tears that were analized and staged by the Seebauer cuff tear arthropathy classification. Thirty four patients with massive rotator cuff tears were identified, 8 male and 26 female (age 60.1 ± 10.26 years). Massive rotator cuff tear prevalence was 25%. CTA prevalence found in the rotator cuff group was 19 and 76% in the massive cuff tears group. Patients were staged according to the classification with 32% in stage 1a, 11% 1b, 32% 2a and 0% 2b. CTA prevalence in patients with rotator cuff tears and massive cuff tears is higher than the one reported in American population. We consider that a revision of the Seebauer classification to be appropriate to determine its reliability.

  2. Is a home based video teleconcltation setup cost effective for lowering HBA1C for patients with type-2 diabetes over a six-month period?

    DEFF Research Database (Denmark)

    Sall Jensen, Morten; Rasmussen, Ole Winther

    OBJECTIVES: A RCT assessed the effectiveness and costs of a home based video teleconsultation (HVT) setup to lower HbA1c in patients with type-2 diabetes against usual out-patient treatment on the hospital. The HVT equipment was delivered to the patients by the hospital. This analysis shows...... the potential incremental cost-effectiveness ratio (ICER) of using a HVT setup on six-months health care effects and costs. METHODS: The study effectiveness outcome was HbA1c level in mmol/l. The economic analysis was performed with a spreadsheet decision tree model with a Danish hospital payer’s direct cost...... perspective. Cost data were based on study measured time consumption pr. HVT, consultations at out-patient clinic, HVT-equipment, -subscription, -support costs, and hospital operating cost. Medicine costs weren’t included in the model. Model output included the cost of a 1 mmol/l point reduction of HbA1c...

  3. Estimation of Setup Uncertainty Using Planar and MVCT Imaging for Gynecologic Malignancies

    International Nuclear Information System (INIS)

    Santanam, Lakshmi; Esthappan, Jacqueline; Mutic, Sasa; Klein, Eric E.; Goddu, S. Murty; Chaudhari, Summer; Wahab, Sasha; El Naqa, Issam M.; Low, Daniel A.; Grigsby, Perry W.

    2008-01-01

    Purpose: This prospective study investigates gynecologic malignancy online treatment setup error corrections using planar kilovoltage/megavoltage (KV/MV) imaging and helical MV computed tomography (MVCT) imaging. Methods and Materials: Twenty patients were divided into two groups. The first group (10 patients) was imaged and treated using a conventional linear accelerator (LINAC) with image-guidance capabilities, whereas the second group (10 patients) was treated using tomotherapy with MVCT capabilities. Patients treated on the LINAC underwent planar KV and portal MV imaging and a two-dimensional image registration algorithm was used to match these images to digitally reconstructed radiographs (DRRs). Patients that were treated using tomotherapy underwent MVCT imaging, and a three-dimensional image registration algorithm was used to match planning CT to MVCT images. Subsequent repositioning shifts were applied before each treatment and recorded for further analysis. To assess intrafraction motion, 5 of the 10 patients treated on the LINAC underwent posttreatment planar imaging and DRR matching. Based on these data, patient position uncertainties along with estimated margins based on well-known recipes were determined. Results: The errors associated with patient positioning ranged from 0.13 cm to 0.38 cm, for patients imaged on LINAC and 0.13 cm to 0.48 cm for patients imaged on tomotherapy. Our institutional clinical target volume-PTV margin value of 0.7 cm lies inside the confidence interval of the margins established using both planar and MVCT imaging. Conclusion: Use of high-quality daily planar imaging, volumetric MVCT imaging, and setup corrections yields excellent setup accuracy and can help reduce margins for the external beam treatment of gynecologic malignancies

  4. A managed clinical network for cardiac services: set-up, operation and impact on patient care

    Directory of Open Access Journals (Sweden)

    Karen E. Hamilton

    2005-09-01

    Full Text Available Purpose: To investigate the set up and operation of a Managed Clinical Network for cardiac services and assess its impact on patient care. Methods: This single case study used process evaluation with observational before and after comparison of indicators of quality of care and costs. The study was conducted in Dumfries and Galloway, Scotland and used a three-level framework. Process evaluation of the network set-up and operation through a documentary review of minutes; guidelines and protocols; transcripts of fourteen semi-structured interviews with health service personnel including senior managers, general practitioners, nurses, cardiologists and members of the public. Outcome evaluation of the impact of the network through interrupted time series analysis of clinical data of 202 patients aged less than 76 years admitted to hospital with a confirmed myocardial infarction one-year pre and one-year post, the establishment of the network. The main outcome measures were differences between indicators of quality of care targeted by network protocols. Economic evaluation of the transaction costs of the set-up and operation of the network and the resource costs of the clinical care of the 202 myocardial infarction patients from the time of hospital admission to 6 months post discharge through interrupted time series analysis. The outcome measure was different in National Health Service resource use. Results: Despite early difficulties, the network was successful in bringing together clinicians, patients and managers to redesign services, exhibiting most features of good network management. The role of the energetic lead clinician was crucial, but the network took time to develop and ‘bed down’. Its primary “modus operand” was the development of a myocardial infarction pathway and associated protocols. Of sixteen clinical care indicators, two improved significantly following the launch of the network and nine showed improvements, which were

  5. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto

    2005-01-01

    Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.

  6. SU-E-J-137: Image Registration Tool for Patient Setup in Korea Heavy Ion Medical Accelerator Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Suh, T [Department of Biomedical Engineering, Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Cho, W [Borame Medical Center, Seoul National University Hospital, Seoul, Seoul (Korea, Republic of); Jung, W [Korea Institute of Radiological & Medical Sciences, Seoul, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center.

  7. SU-E-J-137: Image Registration Tool for Patient Setup in Korea Heavy Ion Medical Accelerator Center

    International Nuclear Information System (INIS)

    Kim, M; Suh, T; Cho, W; Jung, W

    2015-01-01

    Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center

  8. ASD FieldSpec Calibration Setup and Techniques

    Science.gov (United States)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  9. Assessment of Set-up Accuracy in Tangential Breast Treatment Using Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    Lee, Byung Koo; Kang, Soo Man

    2012-01-01

    The aim of this study was to investigate the setup accuracy for tangential breast treatment patients using electronic portal image and 2-D reconstruction image Twenty two patients undergoing tangential breast treatment. To explore the setup accuracy, distances between chosen landmarks were taken as reference parameters. The difference between measured reference parameters on simulation films and electronic portal images (EPIs) was calculated as the setup error. A total of 22 simulation films and 110 EPIs were evaluated. In the tangential fields, the calculated reference parameters were the central lung distance (CLD), central soft-tissue distance (CSTD), and above lung distance (ALD), below lung distance (BLD). In the medial tangential field, the average difference values for these parameters were 1.0, -6.4, -2.1 and 2.0, respectively; and the values were 1.5, 2.3, 4.1 and 1.1, respectively. In the lateral tangential field, the average difference values for these parameters were -1.5, -4.3, -2.7 and -1.3, respectively; and the values were 3.3, 2.1, 2.9 and 2.5, respectively. CLD, CSTD, ALD and BLD in the tangential fields are easily identifiable and are helpful for detecting setup errors using EPIs in patients undergoing tangential breast radiotherapy treatment.

  10. Assessment of Set-up Accuracy in Tangential Breast Treatment Using Electronic Portal Imaging Device

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Koo [Dept. of Radiation Oncology, Korea University Anam Hospital, Seoul (Korea, Republic of); Kang, Soo Man [Dept. of Radiation Oncology, Korea University Gospel Hospital, Seoul (Korea, Republic of)

    2012-09-15

    The aim of this study was to investigate the setup accuracy for tangential breast treatment patients using electronic portal image and 2-D reconstruction image Twenty two patients undergoing tangential breast treatment. To explore the setup accuracy, distances between chosen landmarks were taken as reference parameters. The difference between measured reference parameters on simulation films and electronic portal images (EPIs) was calculated as the setup error. A total of 22 simulation films and 110 EPIs were evaluated. In the tangential fields, the calculated reference parameters were the central lung distance (CLD), central soft-tissue distance (CSTD), and above lung distance (ALD), below lung distance (BLD). In the medial tangential field, the average difference values for these parameters were 1.0, -6.4, -2.1 and 2.0, respectively; and the values were 1.5, 2.3, 4.1 and 1.1, respectively. In the lateral tangential field, the average difference values for these parameters were -1.5, -4.3, -2.7 and -1.3, respectively; and the values were 3.3, 2.1, 2.9 and 2.5, respectively. CLD, CSTD, ALD and BLD in the tangential fields are easily identifiable and are helpful for detecting setup errors using EPIs in patients undergoing tangential breast radiotherapy treatment.

  11. SU-F-T-519: Is Geometry Based Setup Sufficient for All of the Head and Neck Treatment Cases?: A Feasibility Study Towards the Dose Based Setup

    International Nuclear Information System (INIS)

    Lee, S; Chen, S; Zhang, B; Xu, H; Prado, K; D’Souza, W; Yi, B

    2016-01-01

    Purpose: This study compares the geometric-based setup (GBS) which is currently used in the clinic to a novel concept of dose-based setup (DBS) of head and neck (H&N) patients using cone beam CT (CBCT) of the day; and evaluates the clinical advantages. Methods: Ten H&N patients who underwent re-simulation and re-plan due to noticeable anatomic changes during the course of the treatments were retrospectively reviewed on dosimetric changes in the assumption of no plan modification was performed. RayStation planning system (RaySearch Laboratories AB, Sweden) was used to match (ROI fusion module) between prescribed isodoseline (IDL) in the CBCT imported along with ROIs from re-planned CT and the IDL of original plan (Dose-based setup: DBS). Then, the CBCT plan based on daily setup using the GBS (previously used for a patient) and the DBS CBCT plan recalculated in RayStation compared against the original CT-sim plan. Results: Most of patients’ tumor coverage and OAR doses got generally worsen when the CBCT plans were compared with original CT-sim plan with GBS. However, when DBS intervened, the OAR dose and tumor coverage was better than the GBS. For example, one of patients’ daily average doses of right parotid and oral cavity increased to 26% and 36%, respectively from the original plan to the GBS planning. However, it only increased by 13% and 24%, respectively with DBS. GTV D95 coverage also decreased by 16% with GBS, but only 2% decreased with DBS. Conclusion: DBS method is superior to GBS to prevent any abrupt dose changes to OARs as well as PTV/CTV or GTV at least for some H&N cases. Since it is not known when the DBS is beneficial to the GBS, a system which enables the on-line DBS may be helpful for better treatment of H&N.

  12. SU-F-T-519: Is Geometry Based Setup Sufficient for All of the Head and Neck Treatment Cases?: A Feasibility Study Towards the Dose Based Setup

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Chen, S; Zhang, B; Xu, H; Prado, K; D’Souza, W; Yi, B [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: This study compares the geometric-based setup (GBS) which is currently used in the clinic to a novel concept of dose-based setup (DBS) of head and neck (H&N) patients using cone beam CT (CBCT) of the day; and evaluates the clinical advantages. Methods: Ten H&N patients who underwent re-simulation and re-plan due to noticeable anatomic changes during the course of the treatments were retrospectively reviewed on dosimetric changes in the assumption of no plan modification was performed. RayStation planning system (RaySearch Laboratories AB, Sweden) was used to match (ROI fusion module) between prescribed isodoseline (IDL) in the CBCT imported along with ROIs from re-planned CT and the IDL of original plan (Dose-based setup: DBS). Then, the CBCT plan based on daily setup using the GBS (previously used for a patient) and the DBS CBCT plan recalculated in RayStation compared against the original CT-sim plan. Results: Most of patients’ tumor coverage and OAR doses got generally worsen when the CBCT plans were compared with original CT-sim plan with GBS. However, when DBS intervened, the OAR dose and tumor coverage was better than the GBS. For example, one of patients’ daily average doses of right parotid and oral cavity increased to 26% and 36%, respectively from the original plan to the GBS planning. However, it only increased by 13% and 24%, respectively with DBS. GTV D95 coverage also decreased by 16% with GBS, but only 2% decreased with DBS. Conclusion: DBS method is superior to GBS to prevent any abrupt dose changes to OARs as well as PTV/CTV or GTV at least for some H&N cases. Since it is not known when the DBS is beneficial to the GBS, a system which enables the on-line DBS may be helpful for better treatment of H&N.

  13. Rotational electrical impedance tomography using electrodes with limited surface coverage provides window for multimodal sensing

    Science.gov (United States)

    Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari

    2018-02-01

    Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.

  14. Surface imaging, portal imaging, and skin marker set-up vs. CBCT for radiotherapy of the thorax and pelvis

    International Nuclear Information System (INIS)

    Pallotta, Stefania; Bucciolini, Marta; Vanzi, Eleonora; Marrazzo, Livia; Simontacchi, Gabriele; Paiar, Fabiola; Ceroti, Marco; Livi, Lorenzo

    2015-01-01

    The aim of this study was to compare surface imaging, portal imaging, and skin marker set-up in radiotherapy of thoracic and pelvic regions, using cone beam computed tomography (CBCT) data as the gold standard. Twenty patients were included in this study. CBCT, surface acquisition (SA), and two orthogonal portal images (PI) were acquired during the first four treatment sessions. Patient set-up corrections, obtained by registering the planning CT with CBCT, were used as the gold standard. Registration results of the PI and SA were evaluated and compared with those obtained with CBCT. The advantage derived from using SA or PI verification systems over a skin marker set-up was also quantified. A statistically significant difference between PI and SA (in favour of PI) was observed in seven patients undergoing treatment of the pelvic region and in two patients undergoing treatment of the thoracic region. The use of SA or PI, compared with a skin marker set-up, improved patient positioning in 50% and 57 % of the thoracic fractions, respectively. For pelvic fractions, the use of PI was beneficial in 73 % of the cases, while the use of SA was beneficial in only 45 %. Patient positioning worsened with SA, particularly along longitudinal and vertical directions. PI yielded more accurate registration results than SA for both pelvic and thoracic fractions. Compared with the skin marker set-up, PI performances were superior to SA for pelvic fractions while comparable results were obtained for thoracic fractions. (orig.) [de

  15. ESTERR-PRO: A Setup Verification Software System Using Electronic Portal Imaging

    Directory of Open Access Journals (Sweden)

    Pantelis A. Asvestas

    2007-01-01

    Full Text Available The purpose of the paper is to present and evaluate the performance of a new software-based registration system for patient setup verification, during radiotherapy, using electronic portal images. The estimation of setup errors, using the proposed system, can be accomplished by means of two alternate registration methods. (a The portal image of the current fraction of the treatment is registered directly with the reference image (digitally reconstructed radiograph (DRR or simulator image using a modified manual technique. (b The portal image of the current fraction of the treatment is registered with the portal image of the first fraction of the treatment (reference portal image by applying a nearly automated technique based on self-organizing maps, whereas the reference portal has already been registered with a DRR or a simulator image. The proposed system was tested on phantom data and on data from six patients. The root mean square error (RMSE of the setup estimates was 0.8±0.3 (mean value ± standard deviation for the phantom data and 0.3±0.3 for the patient data, respectively, by applying the two methodologies. Furthermore, statistical analysis by means of the Wilcoxon nonparametric signed test showed that the results that were obtained by the two methods did not differ significantly (P value >0.05.

  16. The impact of androgen deprivation therapy on setup errors during external beam radiation therapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem; Dolek, Yemliha; Ozdemir, Yurday [Baskent University, Faculty of Medicine, Adana Dr. Turgut Noyan Research and Treatment Centre, Department of Radiation Oncology, Adana (Turkey)

    2017-06-15

    To determine whether setup errors during external beam radiation therapy (RT) for prostate cancer are influenced by the combination of androgen deprivation treatment (ADT) and RT. Data from 175 patients treated for prostate cancer were retrospectively analyzed. Treatment was as follows: concurrent ADT plus RT, 33 patients (19%); neoadjuvant and concurrent ADT plus RT, 91 patients (52%); RT only, 51 patients (29%). Required couch shifts without rotations were recorded for each megavoltage (MV) cone beam computed tomography (CBCT) scan, and corresponding alignment shifts were recorded as left-right (x), superior-inferior (y), and anterior-posterior (z). The nonparametric Mann-Whitney test was used to compare shifts by group. Pearson's correlation coefficient was used to measure the correlation of couch shifts between groups. Mean prostate shifts and standard deviations (SD) were calculated and pooled to obtain mean or group systematic error (M), SD of systematic error (Σ), and SD of random error (σ). No significant differences were observed in prostate shifts in any direction between the groups. Shifts on CBCT were all less than setup margins. A significant positive correlation was observed between prostate volume and the z-direction prostate shift (r = 0.19, p = 0.04), regardless of ADT group, but not between volume and x- or y-direction shifts (r = 0.04, p = 0.7; r = 0.03, p = 0.7). Random and systematic errors for all patient cohorts and ADT groups were similar. Hormone therapy given concurrently with RT was not found to significantly impact setup errors. Prostate volume was significantly correlated with shifts in the anterior-posterior direction only. (orig.) [German] Ziel war zu untersuchen, ob Konfigurationsfehler bei der externen Radiotherapie (RT) des Prostatakarzinoms durch die Kombination aus Androgendeprivationstherapie (ADT) und RT beeinflusst werden. Retrospektiv wurden die Daten von 175 wegen eines Prostatakarzinoms behandelten Patienten

  17. Setup error in three-dimensional conformal radiotherapy for thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Hong Jinsheng; Zhang Weijian; Chen Jinmei; Cai Chuanshu; Ke Chunlin; Chen Xiuying; Wu Bing; Guo Feibao

    2009-01-01

    Objective: To study the setup errors in three-dimensional conformal radiotherapy (3DCRT) for thoracic esophageal carcinoma using electronic portal imaging device(EPID) and calculate the margins from CTV to PTV. Methods: Forty-one patients with thoracic esophageal carcinoma who received 3DCRT were continuously enrolled into this study. The anterior and lateral electronic portal images (EPI) were aquired by EPID once a week. The setup errors were obtained through comparing the difference between EPI and digitally reconstructed radiographs (DRR). Then the setup margins from CTV to PTV were calculated. By using self paired design, 22 patients received definitive radiotherapy with different margins. Group A: the margins were 10 mm in all the three axes; Group B: the margins were aquired in this study. The difference were compared by Paired t-test or Wilcoxon signed-rank test. Results: The margins from CTV to PTV in x, y and z axes were 8.72 mm, 10.50 mm and 5.62 mm, respectively. Between the group A and group B, the difference of the maximum dose of the spinal cord was significant(4638.7 cGy ± 1449.6 cGy vs. 4310.2 cGy ± 1528.7 cGy; t=5.48, P=0.000), and the difference of NTCP for the spinal cord was also significant (4.82% ± 5.99% vs. 3.64% ± 4.70%; Z=-2.70, P=0.007). Conclusions: For patients with thoracic esophageal carcinoma who receive 3DCRT in author's department, the margins from CTV to PTV in x, y and z axes were 8.72 mm, 10.50 mm and 5.62 mm, respectively. The spinal cord could be better protected by using these setup margins than using 10 mm in each axis. (authors)

  18. Refinement of Treatment Setup and Target Localization Accuracy Using Three-Dimensional Cone-Beam Computed Tomography for Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Wang Zhiheng; Nelson, John W.; Yoo, Sua; Wu, Q. Jackie; Kirkpatrick, John P.; Marks, Lawrence B.; Yin Fangfang

    2009-01-01

    Purposes: To quantitatively compare two-dimensional (2D) orthogonal kV with three-dimensional (3D) cone-beam CT (CBCT) for target localization; and to assess intrafraction motion with kV images in patients undergoing stereotactic body radiotherapy (SBRT). Methods and Materials: A total of 50 patients with 58 lesions received 178 fractions of SBRT. After clinical setup using in-room lasers and skin/cradle marks placed at simulation, patients were imaged and repositioned according to orthogonal kV/MV registration of bony landmarks to digitally reconstructed radiographs from the planning CT. A subsequent CBCT was registered to the planning CT using soft tissue information, and the resultant 'residual error' was measured and corrected before treatment. Posttreatment 2D kV and/or 3D CBCT images were compared with pretreatment images to determine any intrafractional position changes. Absolute averages, statistical means, standard deviations, and root mean square (RMS) values of observed setup error were calculated. Results: After initial setup to external marks with laser guidance, 2D kV images revealed vector mean setup deviations of 0.67 cm (RMS). Cone-beam CT detected residual setup deviations of 0.41 cm (RMS). Posttreatment imaging demonstrated intrafractional variations of 0.15 cm (RMS). The individual shifts in three standard orthogonal planes showed no obvious directional biases. Conclusions: After localization based on superficial markings in patients undergoing SBRT, orthogonal kV imaging detects setup variations of approximately 3 to 4 mm in each direction. Cone-beam CT detects residual setup variations of approximately 2 to 3 mm

  19. Clinical Experiences With Onboard Imager KV Images for Linear Accelerator-Based Stereotactic Radiosurgery and Radiotherapy Setup

    International Nuclear Information System (INIS)

    Hong, Linda X.; Chen, Chin C.; Garg, Madhur; Yaparpalvi, Ravindra; Mah, Dennis

    2009-01-01

    Purpose: To report our clinical experiences with on-board imager (OBI) kV image verification for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) treatments. Methods and Materials: Between January 2007 and May 2008, 42 patients (57 lesions) were treated with SRS with head frame immobilization and 13 patients (14 lesions) were treated with SRT with face mask immobilization at our institution. No margin was added to the gross tumor for SRS patients, and a 3-mm three-dimensional margin was added to the gross tumor to create the planning target volume for SRT patients. After localizing the patient with stereotactic target positioner (TaPo), orthogonal kV images using OBI were taken and fused to planning digital reconstructed radiographs. Suggested couch shifts in vertical, longitudinal, and lateral directions were recorded. kV images were also taken immediately after treatment for 21 SRS patients and on a weekly basis for 6 SRT patients to assess any intrafraction changes. Results: For SRS patients, 57 pretreatment kV images were evaluated and the suggested shifts were all within 1 mm in any direction (i.e., within the accuracy of image fusion). For SRT patients, the suggested shifts were out of the 3-mm tolerance for 31 of 309 setups. Intrafraction motions were detected in 3 SRT patients. Conclusions: kV imaging provided a useful tool for SRS or SRT setups. For SRS setup with head frame, it provides radiographic confirmation of localization using the stereotactic target positioner. For SRT with mask, a 3-mm margin is adequate and feasible for routine setup when TaPo is combined with kV imaging

  20. Wandering spleen with gastric volvulus and intestinal non-rotation in an adult male patient.

    Science.gov (United States)

    Ooka, Minako; Kohda, Eiichi; Iizuka, Yuo; Nagamoto, Masashi; Ishii, Tomotaka; Saida, Yoshihisa; Shimizu, Norikazu; Gomi, Tatsuya

    2013-01-01

    We report an extremely rare case of wandering spleen (WS) complicated with gastric volvulus and intestinal non-rotation in a male adult. A 22-year-old man who had been previously treated for Wilson disease was admitted with severe abdominal pain. Radiological findings showed WS in the midline of the pelvic area. The stomach was mesenteroaxially twisted and intestinal non-rotation was observed. Radiology results did not show any evidence of splenic or gastrointestinal (GI) infarction. Elective emergency laparoscopy confirmed WS and intestinal non-rotation; however, gastric volvulus was not observed. It was suspected that the stomach had untwisted when gastric and laparoscopic tubes were inserted. Surgery is strongly recommended for WS because of the high risk of serious complications; however, some asymptomatic adult patients are still treated conservatively, such as the patient in this study. The present case is reported with reference to the literature.

  1. Wandering spleen with gastric volvulus and intestinal non-rotation in an adult male patient

    International Nuclear Information System (INIS)

    Ooka, Minako; Kohda, Eiichi; Iizuka, Yuo; Nagamoto, Masashi; Ishii, Tomotaka; Saida, Yoshihisa; Shimizu, Norikazu; Gomi, Tatsuya

    2013-01-01

    We report an extremely rare case of wandering spleen (WS) complicated with gastric volvulus and intestinal non-rotation in a male adult. A 22-year-old man who had been previously treated for Wilson disease was admitted with severe abdominal pain. Radiological findings showed WS in the midline of the pelvic area. The stomach was mesenteroaxially twisted and intestinal non-rotation was observed. Radiology results did not show any evidence of splenic or gastrointestinal (GI) infarction. Elective emergency laparoscopy confirmed WS and intestinal non-rotation; however, gastric volvulus was not observed. It was suspected that the stomach had untwisted when gastric and laparoscopic tubes were inserted. Surgery is strongly recommended for WS because of the high risk of serious complications; however, some asymptomatic adult patients are still treated conservatively, such as the patient in this study. The present case is reported with reference to the literature

  2. Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax

    International Nuclear Information System (INIS)

    Schoeffel, Philipp J; Harms, Wolfgang; Sroka-Perez, Gabriele; Schlegel, Wolfgang; Karger, Christian P

    2007-01-01

    Accurate and reproducible patient setup is a prerequisite to fractionated radiotherapy. To evaluate the applicability and technical performance of a commercial 3D surface imaging system for repositioning of breast cancer patients, measurements were performed in a rigid anthropomorphic phantom as well as in healthy volunteers. The camera system records a respiration-gated surface model of the imaged object, which may be registered to a previously recorded reference model. A transformation is provided, which may be applied to the treatment couch to correct the setup of the patient. The system showed a high stability and detected pre-defined shifts of phantoms and healthy volunteers with an accuracy of 0.40 ± 0.26 mm and 1.02 ± 0.51 mm, respectively (spatial deviation between pre-defined shift and suggested correction). The accuracy of the suggested rotational correction around the vertical axis was always better than 0.3 0 in phantom measurements and 0.8 0 in volunteers, respectively. Comparison of the suggested setup correction with that detected by a second and independently operated marker-based optical system provided consistent results. The results demonstrate that the camera system provides highly accurate setup corrections in a phantom and healthy volunteers. The most efficient use of the system for improving the setup accuracy in breast cancer patients has to be investigated in routine patient treatments

  3. Effectiveness of MRI in rotator cuff injury

    International Nuclear Information System (INIS)

    Ohazama, Yuka

    1992-01-01

    To investigate the potential role of MR imaging in rotator cuf disorders, normal volunteers and patients with suspected rotator cuff injury were evaluated with a low field permanent magnet unit which had a wide gantry. MR findings of the patients were also compared with arthrography, subcromial bursography and operative findings. To establish optimal imaging technique and normal MR anatomy, 100 normal volunteers were examined. On proton density images, signal intensity of the rotator cuff tendon was low and homogenous, and that of rotator cuff muscles was intermediate. On T2 weighted images, signal intensity of muscles and tendon was decreased and that of joint effusion became brighter. In 38 patients with suspected rotator cuff injury, the signal intensity of the rotator cuff was increased to various degrees. In 21 of them, surgical correction was performed and 17 patients were followed with conservative treatment. MR imaging showed abnormalities in all 38 patients. Arthrography and bursography showed abnormalities in 28 out of 38 patients and 3 of 13 patients respectively. In 21 patients who underwent surgery, tear of the rotator cuff was confirmed, and discrepancies in MR and operative findings existed in 8 patients. In 2 patients, no tear was found in the other examinations, and it was suspected to be horizontal tear or degeneration in the substance of the muscle. MR imaging contributes to diagnosis and treatment planning in patients with suspected rotator cuff injury. (author)

  4. Immobilisation precision in VMAT for oral cancer patients

    Science.gov (United States)

    Norfadilah, M. N.; Ahmad, R.; Heng, S. P.; Lam, K. S.; Radzi, A. B. Ahmad; John, L. S. H.

    2017-05-01

    A study was conducted to evaluate and quantify a precision of the interfraction setup with different immobilisation devices throughout the treatment time. Local setup accuracy was analysed for 8 oral cancer patients receiving radiotherapy; 4 with HeadFIX® mouthpiece moulded with wax (HFW) and 4 with 10 ml/cc syringe barrel (SYR). Each patients underwent Image Guided Radiotherapy (IGRT) with total of 209 cone-beam computed tomography (CBCT) data sets for position set up errors measurement. The setup variations in the mediolateral (ML), craniocaudal (CC), and anteroposterior (AP) dimensions were measured. Overall mean displacement (M), the population systematic (Σ) and random (σ) errors and the 3D vector length were calculated. Clinical target volume to planning target volume (CTV-PTV) margins were calculated according to the van Herk formula (2.5Σ+0.7σ). The M values for both group were < 1 mm and < 1° in all translational and rotational directions. This indicate there is no significant imprecision in the equipment (lasers) and during procedure. The interfraction translational 3 dimension vector for HFW and SYR were 1.93±0.66mm and 3.84±1.34mm, respectively. The interfraction average rotational error were 0.00°±0.65° and 0.34°±0.59°, respectively. CTV-PTV margins along the 3 translational axis (Right-Left, Superior-Inferior, Anterior-Posterior) calculated were 3.08, 2.22 and 0.81 mm for HFW and 3.76, 6.24 and 5.06 mm for SYR. The results of this study have demonstrated that HFW more precise in reproducing patient position compared to conventionally used SYR (p<0.001). All margin calculated did not exceed hospital protocol (5mm) except S-I and A-P axes using syringe. For this reason, a daily IGRT is highly recommended to improve the immobilisation precision.

  5. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  6. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    Science.gov (United States)

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.

  7. Impact of setup variability on incidental lung irradiation during tangential breast treatment

    International Nuclear Information System (INIS)

    Carter, D.C.; Marks, L.B.; Bentel, G.B.

    1995-01-01

    Purpose: 1) To determine the variability in treatment setup during a 5 week course of tangential breast treatment. 2) To assess the relationship between the height of the lung shadow at the central axis (Central Lung Distance: CLD) on the tangential port film and the percent of total lung volume included within the tangential fields (to verify the previously reported result from Bornstein, et al, IJROBP 18:181, 90). 3) To determine the impact of the variabilities in treatment setup on the volume of lung that is incidentally included within the radiation fields. Methods: 1) 172 port films of tangential breast/chest wall fields were reviewed from 20 patients who received tangential beam treatment for breast cancer. All patients were immobilized in customized hemibody foam cradles during simulation and treatment. The CLD (height of the lung shadow at the central axis) seen on each of the port films was compared to the corresponding simulator film (correcting for differences in magnification) as an assessment of setup variability. Both inter and intrapatient differences were considered. 2) A three-dimensional dose calculation (reflecting lung density) was performed, and the percent of total lung volume within the field was compared to the CLD. 3) The three-dimensional dose calculation was repeated for selected patients with the location of the treatment beams modified to reflect typical setup variations, in order to assess the impact of this variability on the volume of lung irradiated. Results: 1) The CLD measured on the port films was within 3 mm of that prescribed on the simulator film in 43% ((74(172))) of the port films. The variation was 3-5 mm in 26 %, 5-10 mm in 25 % and > 10 mm in 6 %. The data are shown in Figure 1. 2) There was an excellent correlation found between the height of the lung shadow and the percent of total lung volume seen within the radiation field, (Figure 2), thus verifying the concept previously reported by Bornstein. 3) A 1 cm setup

  8. Server farms with setup costs

    NARCIS (Netherlands)

    Gandhi, A.; Harchol-Balter, M.; Adan, I.J.B.F.

    2010-01-01

    In this paper we consider server farms with a setup cost. This model is common in manufacturing systems and data centers, where there is a cost to turn servers on. Setup costs always take the form of a time delay, and sometimes there is additionally a power penalty, as in the case of data centers.

  9. Synthetic Aperture Focusing Applied to Imaging Using a Rotating Single Element Transducer

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2007-01-01

    This paper applies the concept of virtual sources and mono-static synthetic aperture focusing (SAF) to 2-dimensional imaging with a single rotating mechanically focused concave element with the objective of improving lateral resolution and signal-to-noise ratio (SNR). The geometrical focal point...... function of a single emission. The effect of SAF with focal depth at 20 mm is negligible, caused by the small number of LRL applied. The great profit of the SAF is the increase in SNR. For the setup with focal depth at 20 rum the SAF SNR gain is 11 dB. The SNR gain of a setup with a VS at radius 10 mm...

  10. Three-dimensional kinematic and kinetic analysis of knee rotational stability in ACL-deficient patients during walking, running and pivoting

    DEFF Research Database (Denmark)

    Bohn, Marie Bagger; Petersen, Annemette Krintel; Nielsen, Dennis Brandborg

    2016-01-01

    BACKGROUND: Anterior cruciate ligament (ACL) deficiency leads to altered stability of the knee. The purpose of this study was to compare the dynamic, rotational stability of the knee, expressed as rotational stiffness, between anterior cruciate ligament-deficient (ACLD) knees, their contralateral......: The tibial internal rotation of the ACLD knee was not significantly different from the ACLI knee during all three tasks. During walking and running, the tibial rotation of the control group was significantly different from both legs of the ACL-injured patient. For pivoting, no difference in tibial rotation...... group. During running, the ACLI knee displayed a higher external moment than the ACLD and the healthy control group. This could indicate some type of protective strategy or muscular adaptation in the ACL-injured patients....

  11. Setup verification in stereotactic radiotherapy using digitally reconstructed radiograph (DRR)

    International Nuclear Information System (INIS)

    Cho, Byung Chul; Oh, Do Hoon; Bae, Hoon Sik

    1999-01-01

    To develop a method for verifying a treatment setup in stereotactic radiotherapy by matching portal images to DRRs. Four pairs of orthogonal portal images of one patient immobilized by a thermoplastic mast frame for fractionated stereotactic radiotherapy were compared with DRRs. Portal images are obtained in AP (anterior/posterior) and lateral directions with a target localizer box containing fiducial markers attached to a stereotactic frame. DRRs superimposed over a planned isocenter and fiducial markers are printed out on transparent films. And then, they were overlaid over orthogonal portal images by matching anatomical structures. From three different kind of objects (isocenter, fiducial markers, anatomical structure) on DRRs and portal images, the displacement error between anatomical structure and isocenters (overall setup error), and the displacement error between fiducial markers and isocenters (localization error)were measured. Localization errors were 1.5±0.3 mm (lateral), and immobilization errors were 1.9±0.5 mm (AP), 1.9±0.4 mm (lateral). In addition, overall setup errors were 1.6±0.9 mm (AP), 1.3±0.4 mm(lateral). From these orthogonal displacement errors, maximum 3D displacement errors(√(ΔAP) 2 +(ΔLat) 2 ) were found to be 1.7±0.4 mm for localization, 2.6±0.6 mm for immobilization, and 2.3±0.7 mm for overall treatment setup. By comparing orthogonal portal images with DRRs, we find out that it is possible to verify treatment setup directly in stereotactic radiotherapy

  12. Specialist trainees on rotation cannot replace dedicated consultant clinicians for antimicrobial stewardship of specialty disciplines

    Directory of Open Access Journals (Sweden)

    Yeo Chay Leng

    2012-11-01

    Full Text Available Abstract Our prospective-audit-and-feedback antimicrobial stewardship (AS program for hematology and oncology inpatients was switched from one led by dedicated clinicians to a rotating team of infectious diseases trainees in order to provide learning opportunities and attempt a “de-escalation” of specialist input towards a more protocol-driven implementation. However, process indicators including the number of recommendations and recommendation acceptance rates fell significantly during the year, with accompanying increases in broad-spectrum antibiotic prescription. The trends were reversed only upon reverting to the original setup. Dedicated clinicians play a crucial role in AS programs involving immunocompromised patients. Structured training and adequate succession/contingency planning is critical for sustainability.

  13. Alternated Prone and Supine Whole-Breast Irradiation Using IMRT: Setup Precision, Respiratory Movement and Treatment Time

    International Nuclear Information System (INIS)

    Veldeman, Liv; De Gersem, Werner; Speleers, Bruno; Truyens, Bart; Van Greveling, Annick; Van den Broecke, Rudy; De Neve, Wilfried

    2012-01-01

    Purpose: The objective of this study was to compare setup precision, respiration-related breast movement and treatment time between prone and supine positions for whole-breast irradiation. Methods and Materials: Ten patients with early-stage breast carcinoma after breast-conserving surgery were treated with prone and supine whole breast-irradiation in a daily alternating schedule. Setup precision was monitored using cone-beam computed tomography (CBCT) imaging. Respiration-related breast movement in the vertical direction was assessed by magnetic sensors. The time needed for patient setup and for the CBCT procedure, the beam time, and the length of the whole treatment slot were also recorded. Results: Random and systematic errors were not significantly different between positions in individual patients for each of the three axes (left-right, longitudinal, and vertical). Respiration-related movement was smaller in prone position, but about 80% of observations showed amplitudes <1 mm in both positions. Treatment slots were longer in prone position (21.2 ± 2.5 min) than in supine position (19.4 ± 0.8 min; p = 0.044). Conclusion: Comparison of setup precision between prone and supine position in the same patient showed no significant differences in random and systematic errors. Respiratory movement was smaller in prone position. The longer treatment slots in prone position can probably be attributed to the higher repositioning need.

  14. Will Preoperative Atrophy and Fatty Degeneration of the Shoulder Muscles Improve after Rotator Cuff Repair in Patients with Massive Rotator Cuff Tears?

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamaguchi

    2012-01-01

    Full Text Available Recently, retear rate after repair for massive cuff tear have been improved through devised suture techniques. However, reported retear rate is relevant to preoperative atrophy and fatty degeneration. The purpose of this study was to investigate whether preoperative atrophy and fatty degeneration of rotator cuff muscles improve by successful repair. Twenty-four patients with massive rotator cuff tear were evaluated on the recovery of atrophy and fatty degeneration of supraspinatus and infraspinatus muscle after surgery. Atrophy was classified by the occupation ratio and fatty degeneration by modified Goutallier's classification. Both were assessed on magnetic resonance imaging (MRI before and after the operation. When the cuff was well repaired, improvement of the atrophy and fatty degeneration were observed in a half and a one-fourth of the cases, respectively. In retear cases, however, atrophy and fatty degeneration became worse. Improvement of atrophy and fatty degeneration of the rotator cuff muscles may be expected in the cases with successful achievement of rotator cuff repair for large and massive tear.

  15. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Assessment of a daily online implanted fiducial marker-guided prostate radiotherapy process.

    Science.gov (United States)

    Greer, P B; Dahl, K; Ebert, M A; White, M; Wratten, C; Ostwald, P; Pichler, P; Denham, J W

    2008-10-01

    The aims of this study were to investigate whether intrafraction prostate motion can affect the accuracy of online prostate positioning using implanted fiducial markers and to determine the effect of prostate rotations on the accuracy of the software-predicted set-up correction shifts. Eleven patients were treated with implanted prostate fiducial markers and online set-up corrections. Orthogonal electronic portal images were acquired to determine couch shifts before treatment. Verification images were also acquired during treatment to assess whether intrafraction motion had occurred. A limitation of the online image registration software is that it does not allow for in-plane prostate rotations (evident on lateral portal images) when aligning marker positions. The accuracy of couch shifts was assessed by repeating the registration measurements with separate software that incorporates full in-plane prostate rotations. Additional treatment time required for online positioning was also measured. For the patient group, the overall postalignment systematic prostate errors were less than 1.5 mm (1 standard deviation) in all directions (range 0.2-3.9 mm). The random prostate errors ranged from 0.8 to 3.3 mm (1 standard deviation). One patient exhibited intrafraction prostate motion, resulting in a postalignment prostate set-up error of more than 10 mm for one fraction. In 14 of 35 fractions, the postalignment prostate set-up error was greater than 5 mm in the anterior-posterior direction for this patient. Maximum prostate rotations measured from the lateral images varied from 2 degrees to 20 degrees for the patients. The differences between set-up shifts determined by the online software without in-plane rotations to align markers, and with rotations applied, was less than 1 mm (root mean square), with a maximum difference of 4.1 mm. Intrafraction prostate motion was found to reduce the effectiveness of the online set-up for one of the patients. A larger study is required

  17. SU-F-T-642: Sub Millimeter Accurate Setup of More Than Three Vertebrae in Spinal SBRT with 6D Couch

    International Nuclear Information System (INIS)

    Wang, X; Zhao, Z; Yang, J; Yang, J; McAleer, M; Brown, P; Li, J; Ghia, A

    2016-01-01

    Purpose: To assess the initial setup accuracy in treating more than 3 vertebral body levels in spinal SBRT using a 6D couch. Methods: We retrospectively analyzed last 20 spinal SBRT patients (4 cervical, 9 thoracic, 7 lumbar/sacrum) treated in our clinic. These patients in customized immobilization device were treated in 1 or 3 fractions. Initial setup used ExacTrac and Brainlab 6D couch to align target within 1 mm and 1 degree, following by a cone beam CT (CBCT) for verification. Our current standard practice allows treating a maximum of three continuous vertebrae. Here we assess the possibility to achieve sub millimeter setup accuracy for more than three vertebrae by examining the residual error in every slice of CBCT. The CBCT had a range of 17.5 cm, which covered 5 to 9 continuous vertebrae depending on the patient and target location. In the study, CBCT from the 1st fraction treatment was rigidly registered with the planning CT in Pinnacle. The residual setup error of a vertebra was determined by expanding the vertebra contour on the planning CT to be large enough to enclose the corresponding vertebra on CBCT. The margin of the expansion was considered as setup error. Results: Out of the 20 patients analyzed, initial setup accuracy can be achieved within 1 mm for a span of 5 or more vertebrae starting from T2 vertebra to inferior vertebra levels. 2 cervical and 2 upper thoracic patients showed the cervical spine was difficult to achieve sub millimeter accuracy for multi levels without a customized immobilization headrest. Conclusion: If the curvature of spinal columns can be reproduced in customized immobilization device during treatment as simulation, multiple continuous vertebrae can be setup within 1 mm with the use of a 6D couch.

  18. SU-F-T-642: Sub Millimeter Accurate Setup of More Than Three Vertebrae in Spinal SBRT with 6D Couch

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Zhao, Z; Yang, J; Yang, J; McAleer, M; Brown, P; Li, J; Ghia, A [MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To assess the initial setup accuracy in treating more than 3 vertebral body levels in spinal SBRT using a 6D couch. Methods: We retrospectively analyzed last 20 spinal SBRT patients (4 cervical, 9 thoracic, 7 lumbar/sacrum) treated in our clinic. These patients in customized immobilization device were treated in 1 or 3 fractions. Initial setup used ExacTrac and Brainlab 6D couch to align target within 1 mm and 1 degree, following by a cone beam CT (CBCT) for verification. Our current standard practice allows treating a maximum of three continuous vertebrae. Here we assess the possibility to achieve sub millimeter setup accuracy for more than three vertebrae by examining the residual error in every slice of CBCT. The CBCT had a range of 17.5 cm, which covered 5 to 9 continuous vertebrae depending on the patient and target location. In the study, CBCT from the 1st fraction treatment was rigidly registered with the planning CT in Pinnacle. The residual setup error of a vertebra was determined by expanding the vertebra contour on the planning CT to be large enough to enclose the corresponding vertebra on CBCT. The margin of the expansion was considered as setup error. Results: Out of the 20 patients analyzed, initial setup accuracy can be achieved within 1 mm for a span of 5 or more vertebrae starting from T2 vertebra to inferior vertebra levels. 2 cervical and 2 upper thoracic patients showed the cervical spine was difficult to achieve sub millimeter accuracy for multi levels without a customized immobilization headrest. Conclusion: If the curvature of spinal columns can be reproduced in customized immobilization device during treatment as simulation, multiple continuous vertebrae can be setup within 1 mm with the use of a 6D couch.

  19. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  20. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy

    DEFF Research Database (Denmark)

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli

    2015-01-01

    of this trial is to compare the efficacy of progressive high-load exercises with traditional low-load exercises in patients with rotator cuff tendinopathy. Methods/Design: The current study is a randomised, participant- and assessor-blinded, controlled multicentre trial. A total of 260 patients with rotator...... cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform...

  1. Eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy: a randomized, single blinded, clinical trial.

    Science.gov (United States)

    Dejaco, Beate; Habets, Bas; van Loon, Corné; van Grinsven, Susan; van Cingel, Robert

    2017-07-01

    To investigate the effectiveness of isolated eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy. Thirty-six patients with rotator cuff tendinopathy, diagnosed by an orthopaedic surgeon, were included and randomly allocated to an isolated eccentric exercise (EE) group (n = 20, mean age = 50.2 ± 10.8 years) or a conventional exercise (CG) group (n = 16, mean age = 48.6 ± 12.3 years). Both groups fulfilled a 12-week daily home-based exercise programme and received a total amount of nine treatment sessions. The Constant Murley score was used to evaluate both objective (e.g. range of motion and strength) and subjective measures (e.g. pain and activities of daily living). A visual analogue scale (VAS) was used to evaluate pain during daily activities. As secondary outcomes, shoulder range of motion and isometric abduction strength in 45° in the scapular plane were evaluated. All measurements were taken at baseline, at 6, 12 and 26 weeks. After 26 weeks, both groups showed a significant increase in the Constant Murley score and a significant decrease in VAS scores. No difference was found between the groups, for any of the evaluated outcome measures. A 12-week-isolated eccentric training programme of the rotator cuff is beneficial for shoulder function and pain after 26 weeks in patients with rotator cuff tendinopathy. However, it is no more beneficial than a conventional exercise programme for the rotator cuff and scapular muscles. Based on the results, clinicians should take into account that performing two eccentric exercises twice a day is as effective as performing six concentric/eccentric exercises once a day in patients with rotator cuff tendinopathy.

  2. Embedding patient simulation in a pediatric cardiology rotation: a unique opportunity for improving resident education.

    Science.gov (United States)

    Mohan, Shaun; Follansbee, Christopher; Nwankwo, Ugonna; Hofkosh, Dena; Sherman, Frederick S; Hamilton, Melinda F

    2015-01-01

    High-fidelity patient simulation (HFPS) has been used in medical education to bridge gaps in medical knowledge and clinical skills. Few studies have analyzed the impact of HFPS in subspecialty rotations for pediatric residents. We hypothesized that pediatric residents exposed to HFPS with a structured content curriculum would perform better on a case quiz than residents without exposure to HFPS. Prospective randomized controlled Tertiary-care free standing children's hospital During a cardiology rotation, senior pediatric residents completed an online pediatric cardiology curriculum and a cardiology quiz. After randomization into two groups, the study group participated in a fully debriefed HFPS session. The control group had no HFPS. Both groups completed a case quiz. Confidence surveys pre- and postsimulation were completed. From October 2010 through March 2013, 55 residents who rotated through the pediatric cardiology rotation were used in the final analysis (30 control, 25 in the study group). There was no significant difference between groups on the initial cardiology quiz. The study group scored higher on the case quiz compared with the control group (P = .024). Based on pre- and postsimulation questionnaires, residents' confidence in approaching a pediatric cardiology patient improved from an average Likert score of 5.1 to 7.5 (on scale of 0-10) (P cardiology rotation was feasible and well received. Our study suggests that simulation promotes increased confidence and may modestly improve clinical reasoning compared to traditional educational techniques. Targeted simulation sessions may readily be incorporated into pediatric subspecialty rotations. © 2014 Wiley Periodicals, Inc.

  3. The role of a prone setup in breast radiation therapy.

    Science.gov (United States)

    Huppert, Nelly; Jozsef, Gabor; Dewyngaert, Keith; Formenti, Silvia Chiara

    2011-01-01

    Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy and image-guided radiation therapy have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.

  4. The role of a prone setup in breast radiation therapy

    Directory of Open Access Journals (Sweden)

    Nelly eHuppert

    2011-10-01

    Full Text Available Most patients undergoing breast conservation therapy (BCT receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy (IMRT and image-guided radiation therapy (IGRT have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.

  5. The Role of a Prone Setup in Breast Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Huppert, Nelly; Jozsef, Gabor; DeWyngaert, Keith; Formenti, Silvia Chiara, E-mail: silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York University Langone Medical Center, New York, NY (United States)

    2011-10-11

    Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy and image-guided radiation therapy have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.

  6. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    Science.gov (United States)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  7. A setup for active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    A setup for active fault diagnosis (AFD) of parametric faults in dynamic systems is formulated in this paper. It is shown that it is possible to use the same setup for both open loop systems, closed loop systems based on a nominal feedback controller as well as for closed loop systems based...... on a reconfigured feedback controller. This will make the proposed AFD approach very useful in connection with fault tolerant control (FTC). The setup will make it possible to let the fault diagnosis part of the fault tolerant controller remain unchanged after a change in the feedback controller. The setup for AFD...... is based on the YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all stabilizing feedback controllers and the dual YJBK parameterization. It is shown that the AFD is based directly on the dual YJBK transfer function matrix. This matrix will be named the fault signature matrix when...

  8. High precision neutron interferometer setup S18b

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Lemmel, H.

    2011-01-01

    The present setup at S18 is a multi purpose instrument. It is used for both interferometry and a Bonse-Hart camera for USANS (Ultra Small Angle Neutron Scattering) spectroscopy with wide range tunability of wavelength. Some recent measurements demand higher stability of the instrument, which made us to propose a new setup dedicated particularly for neutron interferometer experiments requiring high phase stability. To keep both options available, we suggest building the new setup in addition to the old one. By extending the space of the present setup by 1.5 m to the upstream, both setups can be accommodated side by side. (authors)

  9. The prevalence of neovascularity in patients clinically diagnosed with rotator cuff tendinopathy

    Directory of Open Access Journals (Sweden)

    Raza Syed A

    2009-12-01

    Full Text Available Abstract Background Shoulder dysfunction is common and pathology of the rotator cuff tendons and subacromial bursa are considered to be a major cause of pain and morbidity. Although many hypotheses exist there is no definitive understanding as to the origin of the pain arising from these structures. Research investigations from other tendons have placed intra-tendinous neovascularity as a potential mechanism of pain production. The prevalence of neovascularity in patients with a clinical diagnosis of rotator cuff tendinopathy is unknown. As such the primary aim of this pilot study was to investigate if neovascularity could be identified and to determine the prevalence of neovascularity in the rotator cuff tendons and subacromial bursa in subjects with unilateral shoulder pain clinically assessed to be rotator cuff tendinopathy. The secondary aims were to investigate the association between the presence of neovascularity and pain, duration of symptoms, and, neovascularity and shoulder function. Methods Patients with a clinical diagnosis of unilateral rotator cuff tendinopathy referred for a routine diagnostic ultrasound (US scan in a major London teaching hospital formed the study population. At referral patients were provided with an information document. On the day of the scan (on average, at least one week later the patients agreeing to participate were taken through the consent process and underwent an additional clinical examination prior to undergoing a bilateral grey scale and colour Doppler US examination (symptomatic and asymptomatic shoulder using a Philips HDI 5000 Sono CT US machine. The ultrasound scans were performed by one of two radiologists who recorded their findings and the final assessment was made by a third radiologist blinded both to the clinical examination and the ultrasound examination. The findings of the radiologists who performed the scans and the blinded radiologist were compared and any disagreements were resolved

  10. Digital setup for Doppler broadening spectroscopy

    International Nuclear Information System (INIS)

    Cizek, J; Vlcek, M; Prochazka, I

    2011-01-01

    New digital spectrometer for measurement of the Doppler shift of annihilation photons was developed and tested in this work. Digital spectrometer uses a fast 12-bit digitizer for direct sampling of signals from HPGe detectors. Analysis of sampled waveforms is performed off-line in software. Performance of the new digital setup was compared with its traditional analogue counterpart. Superior energy resolution was achieved in the digital setup. Moreover, the digital setup allows for a better control of the shape of detector signals. This enables to eliminate undesired signals damaged by pile-up effects or by ballistic deficit.

  11. Influence of random setup error on dose distribution

    International Nuclear Information System (INIS)

    Zhai Zhenyu

    2008-01-01

    Objective: To investigate the influence of random setup error on dose distribution in radiotherapy and determine the margin from ITV to PTV. Methods: A random sample approach was used to simulate the fields position in target coordinate system. Cumulative effect of random setup error was the sum of dose distributions of all individual treatment fractions. Study of 100 cumulative effects might get shift sizes of 90% dose point position. Margins from ITV to PTV caused by random setup error were chosen by 95% probability. Spearman's correlation was used to analyze the influence of each factor. Results: The average shift sizes of 90% dose point position was 0.62, 1.84, 3.13, 4.78, 6.34 and 8.03 mm if random setup error was 1,2,3,4,5 and 6 mm,respectively. Univariate analysis showed the size of margin was associated only by the size of random setup error. Conclusions: Margin of ITV to PTV is 1.2 times random setup error for head-and-neck cancer and 1.5 times for thoracic and abdominal cancer. Field size, energy and target depth, unlike random setup error, have no relation with the size of the margin. (authors)

  12. Inventory control with multiple setup costs

    NARCIS (Netherlands)

    Alp, O.; Huh, W.T.; Tan, T.

    2014-01-01

    We consider an infinite-horizon, periodic-review, single-item production/inventory system with random demand and backordering, where multiple setups are allowed in any period and a separate fixed cost is associated for each setup. Contrary to the majority of the literature on this topic, we do not

  13. Setup Accuracy of the Novalis ExacTrac 6DOF System for Frameless Radiosurgery

    International Nuclear Information System (INIS)

    Gevaert, Thierry; Verellen, Dirk; Tournel, Koen; Linthout, Nadine; Bral, Samuel; Engels, Benedikt; Collen, Christine; Depuydt, Tom; Duchateau, Michael; Reynders, Truus; Storme, Guy; De Ridder, Mark

    2012-01-01

    Purpose: Stereotactic radiosurgery using frame-based positioning is a well-established technique for the treatment of benign and malignant lesions. By contrast, a new trend toward frameless systems using image-guided positioning techniques is gaining mainstream acceptance. This study was designed to measure the detection and positioning accuracy of the ExacTrac/Novalis Body (ET/NB) for rotations and to compare the accuracy of the frameless with the frame-based radiosurgery technique. Methods and Materials: A program was developed in house to rotate reference computed tomography images. The angles measured by the system were compared with the known rotations. The accuracy of ET/NB was evaluated with a head phantom with seven lead beads inserted, mounted on a treatment couch equipped with a robotic tilt module, and was measured with a digital water level and portal films. Multiple hidden target tests (HTT) were performed to measure the overall accuracy of the different positioning techniques for radiosurgery (i.e., frameless and frame-based with relocatable mask or invasive ring, respectively). Results: The ET/NB system can detect rotational setup errors with an average accuracy of 0.09° (standard deviation [SD] 0.06°), 0.02° (SD 0.07°), and 0.06° (SD 0.14°) for longitudinal, lateral, and vertical rotations, respectively. The average positioning accuracy was 0.06° (SD 0.04°), 0.08° (SD 0.06°), and 0.08° (SD 0.07°) for longitudinal, lateral and vertical rotations, respectively. The results of the HTT showed an overall three-dimensional accuracy of 0.76 mm (SD 0.46 mm) for the frameless technique, 0.87 mm (SD 0.44 mm) for the relocatable mask, and 1.19 mm (SD 0.45 mm) for the frame-based technique. Conclusions: The study showed high detection accuracy and a subdegree positioning accuracy. On the basis of phantom studies, the frameless technique showed comparable accuracy to the frame-based approach.

  14. [Benefit of rotational exercises for patients with Meniere's syndrome, method used by the ENT department of St-Luc university clinic].

    Science.gov (United States)

    Nyabenda, A; Briart, C; Deggouj, N; Gersdorff, M

    2003-12-01

    To date, the effectiveness of balanced rehabilitation for patients with Meniere's syndrome has not been unanimously acknowledged by all physicians and physiotherapists. The purpose of this study is to assess the therapeutic efficacy of rotational exercises in the treatment of disequilibrium for patients with unilateral Meniere's syndrome. Rotational stimuli were used to symmetrize and reduce postrotatory nystagmic response. Three reference sources were used to assess the efficacy of this management: vestibulospinal function tests: pre- and post-treatment results at the Romberg test, the Unterberger-Fukuda stepping test, the Babinski-Weil test, and gait testing with eyes closed; rotational tests: pre- and post-treatment results; and the self-perceived impact of vertigo: assessed by the Dizziness Handicap Inventory (DHI) and a scale based on the guidelines of the Japanese Society of Equilibrium Research (JSER, 1993). The JSER scale provides quantitative vertigo evaluation; the DHI reflects the patient's perceptual evaluation of handicap. Patients required 11 sessions (mean value) to attain subjective improvement. Of the 23 patients, only seven required optokinetic stimulation (mean requirement: three sessions). Rotational tests and dynamic tests of the vestibulospinal function improved. The DHI and JSER results show that patients' post-rehabilitation perceptual evaluation significantly improved. The objective and subjective measures of disequilibrium in patients with unilateral Meniere's syndrome were significantly improved.

  15. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  16. Ten Year Follow-Up of Gap Balanced, Rotating Platform Total Knee Arthroplasty in Patients Under 60 Years of Age.

    Science.gov (United States)

    Lee, Jason H; Barnett, Steven L; Patel, Jay J; Nassif, Nader A; Cummings, Dennis J; Gorab, Robert S

    2016-01-01

    68 patients (91 primary total knee arthroplasties) were evaluated at a mean 10-year, minimum 5 year follow up in patients younger than sixty years of age utilizing the gap balanced, rotating platform design. Follow up assessment included implant survivorship, adverse events, x-rays, Knee Society rating system and clinical evaluation. Three revisions were performed with only one for aseptic loosening at 45 months. Two manipulations were performed in the early postoperative period. Survivorship of the rotating platform, gap balanced knee was 96.7% using surgical revision for any reason and 98.9% using aseptic loosening as endpoints. The rotating platform design using the gap balancing technique in young patients had excellent survivorship at 10-year mean follow up. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity

    Science.gov (United States)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John

    2016-11-01

    Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  18. Alternated prone and supine whole-breast irradiation using IMRT: setup precision, respiratory movement and treatment time.

    Science.gov (United States)

    Veldeman, Liv; De Gersem, Werner; Speleers, Bruno; Truyens, Bart; Van Greveling, Annick; Van den Broecke, Rudy; De Neve, Wilfried

    2012-04-01

    The objective of this study was to compare setup precision, respiration-related breast movement and treatment time between prone and supine positions for whole-breast irradiation. Ten patients with early-stage breast carcinoma after breast-conserving surgery were treated with prone and supine whole breast-irradiation in a daily alternating schedule. Setup precision was monitored using cone-beam computed tomography (CBCT) imaging. Respiration-related breast movement in the vertical direction was assessed by magnetic sensors. The time needed for patient setup and for the CBCT procedure, the beam time, and the length of the whole treatment slot were also recorded. Random and systematic errors were not significantly different between positions in individual patients for each of the three axes (left-right, longitudinal, and vertical). Respiration-related movement was smaller in prone position, but about 80% of observations showed amplitudes movement was smaller in prone position. The longer treatment slots in prone position can probably be attributed to the higher repositioning need. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Rotator Cuff Repair in Adolescent Athletes.

    Science.gov (United States)

    Azzam, Michael G; Dugas, Jeffrey R; Andrews, James R; Goldstein, Samuel R; Emblom, Benton A; Cain, E Lyle

    2018-04-01

    Rotator cuff tears are rare injuries in adolescents but cause significant morbidity if unrecognized. Previous literature on rotator cuff repairs in adolescents is limited to small case series, with few data to guide treatment. Adolescent patients would have excellent functional outcome scores and return to the same level of sports participation after rotator cuff repair but would have some difficulty with returning to overhead sports. Case series; Level of evidence 4. A retrospective search of the practice's billing records identified all patients participating in at least 1 sport who underwent rotator cuff repair between 2006 and 2014 with an age Rotator Cuff Index. Thirty-two consecutive adolescent athletes (28 boys and 4 girls) with a mean age of 16.1 years (range, 13.2-17.9 years) met inclusion criteria. Twenty-nine patients (91%) had a traumatic event, and 27 of these patients (93%) had no symptoms before the trauma. The most common single tendon injury was to the supraspinatus (21 patients, 66%), of which 2 were complete tendon tears, 1 was a bony avulsion of the tendon, and 18 were high-grade partial tears. Fourteen patients (56%) underwent single-row repair of their rotator cuff tear, and 11 (44%) underwent double-row repair. All subscapularis injuries were repaired in open fashion, while all other tears were repaired arthroscopically. Twenty-seven patients (84%) completed the outcome questionnaires at a mean 6.2 years after surgery (range, 2-10 years). The mean ASES score was 93 (range, 65-100; SD = 9); mean Western Ontario Rotator Cuff Index, 89% (range, 60%-100%; SD = 13%); and mean numeric pain rating, 0.3 (range, 0-3; SD = 0.8). Overall, 25 patients (93%) returned to the same level of play or higher. Among overhead athletes, 13 (93%) were able to return to the same level of play, but 8 (57%) were forced to change positions. There were no surgical complications, but 2 patients did undergo a subsequent operation. Surgical repair of high-grade partial

  20. Split Scheduling with Uniform Setup Times

    NARCIS (Netherlands)

    Schalekamp, F.; Sitters, R.A.; van der Ster, S.L.; Stougie, L.; Verdugo, V.; van Zuylen, A.

    2015-01-01

    We study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a machine cannot process or

  1. An adaptive control algorithm for optimization of intensity modulated radiotherapy considering uncertainties in beam profiles, patient set-up and internal organ motion

    International Nuclear Information System (INIS)

    Loef, Johan; Lind, Bengt K.; Brahme, Anders

    1998-01-01

    A new general beam optimization algorithm for inverse treatment planning is presented. It utilizes a new formulation of the probability to achieve complication-free tumour control. The new formulation explicitly describes the dependence of the treatment outcome on the incident fluence distribution, the patient geometry, the radiobiological properties of the patient and the fractionation schedule. In order to account for both measured and non-measured positioning uncertainties, the algorithm is based on a combination of dynamic and stochastic optimization techniques. Because of the difficulty in measuring all aspects of the intra- and interfractional variations in the patient geometry, such as internal organ displacements and deformations, these uncertainties are primarily accounted for in the treatment planning process by intensity modulation using stochastic optimization. The information about the deviations from the nominal fluence profiles and the nominal position of the patient relative to the beam that is obtained by portal imaging during treatment delivery, is used in a feedback loop to automatically adjust the profiles and the location of the patient for all subsequent treatments. Based on the treatment delivered in previous fractions, the algorithm furnishes optimal corrections for the remaining dose delivery both with regard to the fluence profile and its position relative to the patient. By dynamically refining the beam configuration from fraction to fraction, the algorithm generates an optimal sequence of treatments that very effectively reduces the influence of systematic and random set-up uncertainties to minimize and almost eliminate their overall effect on the treatment. Computer simulations have shown that the present algorithm leads to a significant increase in the probability of uncomplicated tumour control compared with the simple classical approach of adding fixed set-up margins to the internal target volume. (author)

  2. SU-E-P-45: An Analytical Formula for Deriving Mechanical Iso-Center of Rotational Gantry Treatment Unit Rotational Gantry Treatment Unit

    International Nuclear Information System (INIS)

    Ding, X; Bues, M

    2015-01-01

    Purpose: To present an analytical formula for deriving mechanical isocenter (MIC) of a rotational gantry treatment unit. The input data to the formula is obtained by a custom-made device. The formula has been implemented and used in an operational proton therapy facility since 2005. Methods: The custom made device consisted of 3 mutually perpendicular dial indicators and 5 clinometers, to obtain displacement data and gantry angle data simultaneously. During measurement, a steel sphere was affixed to the patient couch, and the device was attached to the snout rotating with the gantry. The displacement data and angle data were obtained simultaneously at angular increments of less than 1 degree. The analytical formula took the displacement and angle as input and derived the positions of dial indicator tips (DIT) position in room-fixed coordinate system. The formula derivation presupposes trigonometry and 3-dimentional coordinate transformations. Due to the symmetry properties of the defining equations, the DIT position can be solved for analytically without using mathematical approximations. We define the mean of all points in the DIT trajectory as the MIC. The formula was implemented in computer code, which has been employed during acceptance test, commissioning, as well as routine QA practice in an operational proton facility since 2005. Results: It took one minute for the custom-made device to acquire the measurement data for a full gantry rotation. The DIT trajectory and MIS are instantaneously available after the measurement. The MIC Result agrees well with vendor’s Result, which came from a different measurement setup, as well as different data analysis algorithm. Conclusion: An analytical formula for deriving mechanical isocenter was developed and validated. The formula is considered to be absolutely accurate mathematically. Be analyzing measured data of radial displacements as function of gantry angle, the formula calculates the MI position in room

  3. The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy

    International Nuclear Information System (INIS)

    Negoro, Yoshiharu; Nagata, Yasushi; Aoki, Tetsuya; Mizowaki, Takashi; Araki, Norio; Takayama, Kenji; Kokubo, Masaki; Yano, Shinsuke; Koga, Sachiko; Sasai, Keisuke; Shibamoto, Yuta; Hiraoka, Masahiro

    2001-01-01

    Purpose: To evaluate the daily setup accuracy and the reduction of respiratory tumor movement using a body frame in conformal therapy for solitary lung tumor. Methods and Materials: Eighteen patients with a solitary lung tumor underwent conformal therapy using a body frame. The body shell of the frame was shaped to the patient's body contour. The respiratory tumor movement was estimated using fluoroscopy, and if it was greater than 5 mm, pressure was applied to the patient's abdomen with the goal of minimizing tumor movement. CT images were then obtained, and a treatment planning was made. A total dose of 40 or 48 Gy was delivered in 4 fractions. Portal films were obtained at each treatment, and the field displacements between them and the simulation films were measured for daily setup errors. The patients were repositioned if the setup error was greater than 3 mm. Correlations were analyzed between patient characteristics and the tumor movement, or the tumor movement reduction and the daily setup errors. Results: Respiratory tumor movement ranged from 0 to 20 mm (mean 7.7 mm). The abdominal press reduced the tumor movement significantly from a range of 8 to 20 mm to a range of 2 to 11 mm (p=0.0002). Daily setup errors were within 5 mm in 90%, 100%, and 93% of all verifications in left-right, anterior-posterior, and cranio-caudal directions, respectively. Patient repositioning was performed in 25% of all treatments. No significant correlation was detected between patient characteristics and tumor movement, tumor movement reduction, and the daily setup errors. Conclusions: The abdominal press was successful in reducing the respiratory tumor movement. Daily setup accuracy using the body frame was acceptable. Verification should be performed at each treatment in hypofractionated conformal therapy

  4. Local instabilities in magnetized rotational flows: A short-wavelength approach

    OpenAIRE

    Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide

    2014-01-01

    We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...

  5. A simple experimental setup for magneto-dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C., E-mail: cvunom@hotmail.com

    2014-09-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities.

  6. A simple experimental setup for magneto-dielectric measurements

    International Nuclear Information System (INIS)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C.

    2014-01-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities

  7. Non-contact test set-up for aeroelasticity in a rotating turbomachine combining a novel acoustic excitation system with tip-timing

    International Nuclear Information System (INIS)

    Freund, O; Seume, J R; Montgomery, M; Mittelbach, M

    2014-01-01

    Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact—and thus low interference—experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used

  8. Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer. A study of 2940 setup deviations in 980 MVCTs

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, Kilian; Specht, Hanno; Kampfer, Severin; Duma, Marciana Nona [Technische Universitaet Muenchen Klinikum rechts der Isar, Department of Radiation Oncology, Muenchen (Germany); Petrucci, Alessia [University of Florence, Department of Radiation Oncology, Florence (Italy); Geinitz, Hans [Krankenhaus der Barmherzigen Schwestern Linz, Department of Radiation Oncology, Linz (Austria); Schuster, Tibor [Klinikum Rechts der Isar, Technische Universitaet Muenchen, Institute for Medical Statistics and Epidemiology, Muenchen (Germany)

    2014-08-15

    The goal of this study was to assess the impact of different setup approaches in image-guided radiotherapy (IMRT) of the prostatic gland. In all, 28 patients with prostate cancer were enrolled in this study. After the placement of an endorectal balloon, the planning target volume (PTV) was treated to a dose of 70 Gy in 35 fractions. A simultaneously integrated boost (SIB) of 76 Gy (2.17 Gy per fraction and per day) was delivered to a smaller target volume. All patients underwent daily prostate-aligned IGRT by megavoltage CT (MVCT). Retrospectively, three different setup approaches were evaluated by comparison to the prostate alignment: setup by skin alignment, endorectal balloon alignment, and automatic registration by bones. A total of 2,940 setup deviations were analyzed in 980 fractions. Compared to prostate alignment, skin mark alignment was associated with substantial displacements, which were ≥ 8 mm in 13 %, 5 %, and 44 % of all fractions in the lateral, longitudinal, and vertical directions, respectively. Endorectal balloon alignment yielded displacements ≥ 8 mm in 3 %, 19 %, and 1 % of all setups; and ≥ 3 mm in 27 %, 58 %, and 18 % of all fractions, respectively. For bone matching, the values were 1 %, 1 %, and 2 % and 3 %, 11 %, and 34 %, respectively. For prostate radiotherapy, setup by skin marks alone is inappropriate for patient positioning due to the fact that, during almost half of the fractions, parts of the prostate would not be targeted successfully with an 8-mm safety margin. Bone matching performs better but not sufficiently for safety margins ≤ 3 mm. Endorectal balloon matching can be combined with bone alignment to increase accuracy in the vertical direction when prostate-based setup is not available. Daily prostate alignment remains the gold standard for high-precision radiotherapy with small safety margins. (orig.) [German] Das Ziel dieser Studie bestand darin, den Einfluss verschiedener Herangehensweisen bei der Einstellung einer

  9. Femoral component rotation in patellofemoral joint replacement.

    Science.gov (United States)

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Intestinal mal-rotation in adults. CT findings

    International Nuclear Information System (INIS)

    Vazquez Munoz, Enrique; Ramiro Ramiro, Esther; Perez Villacastin, Benjamin; Learra Martinez, Maria C.; Franco Lopez, Maria A.

    2004-01-01

    We review 7 adult cases of intestinal mal-rotation who were studied with CT. All patients had a small bowel located in the right hemi abdomen, abnormal location of superior mesenteric vein relative to superior mesenteric artery. Superior mesenteric vein was located anteriorly and to the left of superior mesenteric artery. In patients who suffered intestinal volvulus a 'whirlpool' sign was observed, due to the helicoidal torsion of the intestine and mesentery surrounding superior mesenteric artery. In 3 cases CT demonstrated absence or poor development of the pancreas uncinate process. In 2 patients CT revealed polysplenia. CT played a major role in 3 patients with volvulus as a complication of intestinal mal-rotation. CT also demonstrated unsuspected mal-rotation in one asymptomatic patient. In 3 cases with classic symptoms CT confirmed the intestinal mal-rotation diagnosed by barium studies. (author)

  11. US detection of rotator cuff tear

    International Nuclear Information System (INIS)

    Soble, M.G.; Guay, R.C.; Kaye, A.D.

    1988-01-01

    Between June 1986 and April 1988, 75 patients suspected of having a tear of the rotator cuff underwent shoulder sonography and arthrography. Compared with anthrography, US demonstrated 92% of rotor cuff tears, with a specificity of 84% and a negative predictive value of 95%. In 30 patients who underwent surgery for a rotator cuff tear or other soft-tissue abnormality, sonography demonstrated a sensitivity of 93% and specificity of 73%, while arthrography demonstrated a sensitivity of 87% and specificity of 100%. The above data indicate that US is a useful, noninvasive screening procedure for patients suspected of having rotator cuff injury

  12. Evaluation of initial setup errors of two immobilization devices for lung stereotactic body radiation therapy (SBRT).

    Science.gov (United States)

    Ueda, Yoshihiro; Teshima, Teruki; Cárdenes, Higinia; Das, Indra J

    2017-07-01

    The aim of this study was to investigate the accuracy and efficacy of two commonly used commercial immobilization systems for stereotactic body radiation therapy (SBRT) in lung cancer. This retrospective study assessed the efficacy and setup accuracy of two immobilization systems: the Elekta Body Frame (EBF) and the Civco Body Pro-Lok (CBP) in 80 patients evenly divided for each system. A cone beam CT (CBCT) was used before each treatment fraction for setup correction in both devices. Analyzed shifts were applied for setup correction and CBCT was repeated. If a large shift (>5 mm) occurred in any direction, an additional CBCT was employed for verification after localization. The efficacy of patient setup was analyzed for 105 sessions (48 with the EBF, 57 with the CBP). Result indicates that the CBCT was repeated at the 1 st treatment session in 22.5% and 47.5% of the EBF and CBP cases, respectively. The systematic errors {left-right (LR), anterior-posterior (AP), cranio-caudal (CC), and 3D vector shift: (LR 2 + AP 2 + CC 2 ) 1/2 (mm)}, were {0.5 ± 3.7, 2.3 ± 2.5, 0.7 ± 3.5, 7.1 ± 3.1} mm and {0.4 ± 3.6, 0.7 ± 4.0, 0.0 ± 5.5, 9.2 ± 4.2} mm, and the random setup errors were {5.1, 3.0, 3.5, 3.9} mm and {4.6, 4.8, 5.4, 5.3} mm for the EBF and the CBP, respectively. The 3D vector shift was significantly larger for the CBP (P patient comfort could dictate the use of CBP system with slightly reduced accuracy. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. The Relationship Between Shoulder Stiffness and Rotator Cuff Healing: A Study of 1,533 Consecutive Arthroscopic Rotator Cuff Repairs.

    Science.gov (United States)

    McNamara, William J; Lam, Patrick H; Murrell, George A C

    2016-11-16

    Retear and stiffness are not uncommon outcomes of rotator cuff repair. The purpose of this study was to evaluate the relationship between rotator cuff repair healing and shoulder stiffness. A total of 1,533 consecutive shoulders had an arthroscopic rotator cuff repair by a single surgeon. Patients assessed their shoulder stiffness using a Likert scale preoperatively and at 1, 6, 12, and 24 weeks (6 months) postoperatively, and examiners evaluated passive range of motion preoperatively and at 6, 12, and 24 weeks postoperatively. Repair integrity was determined by ultrasound evaluation at 6 months. After rotator cuff repair, there was an overall significant loss of patient-ranked and examiner-assessed shoulder motion at 6 weeks compared with preoperative measurements (p rotator cuff integrity at 6 months postoperatively (r = 0.11 to 0.18; p rotation at 6 weeks postoperatively was 7%, while the retear rate of patients with >20° of external rotation at 6 weeks was 15% (p rotator cuff repair was more likely to heal. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  14. SU-F-J-142: Proposed Method to Broaden Inclusion Potential of Patients Able to Use the Calypso Tracking System in Prostate Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, D; Kuo, H; Bodner, W; Tome, W [Montefiore Medical Center, Bronx, NY (United States)

    2016-06-15

    Purpose: To introduce a non-standard method of patient setup, using BellyBoard immobilization, to better utilize the localization and tracking potential of an RF-beacon system with EBRT for prostate cancer. Methods: An RF-beacon phantom was imaged using a wide bore CT scanner, both in a standard level position and with a known rotation (4° pitch and 7.5° yaw). A commercial treatment planning system (TPS) was used to determine positional coordinates of each beacon, and the centroid of the three beacons for both setups. For each setup at the Linac, kV AP and Rt Lateral images were obtained. A full characterization of the RF-beacon system in clinical mode was completed for various beacons’ array-to-centroid distances, which includes vertical, lateral, and longitudinal offset data, as well as pitch and yaw offset measurements for the tilted phantom. For the single patient who has been setup using the proposed BellyBoard method, a supine simulation was first obtained. When abdominal protrusion was found to be exceeding the limits of the RF-Beacon system through distance-based analysis in the TPS, the patient is re-simulated prone with the BellyBoard. Array to centroid distance is measured again in the TPS, and if found to be within the localization or tracking region it is applied. Results: Characterization of limitations for the RF-beacon system in clinical mode showed acceptable consistency of offset determination for phantom setup accuracy. The nonstandard patient setup method reduced the beacons’ centroid-to-array distance by 8.32cm, from 25.13cm to 16.81cm; completely out of tracking range (greater than 20cm) to within setup tracking range (less than 20cm). Conclusion: Using the RF-beacon system in combination with this novel patient setup can allow patients who would otherwise not be candidates for beacon enhanced EBRT to now be able to benefit from the reduced PTV margins of this treatment method.

  15. SU-F-J-142: Proposed Method to Broaden Inclusion Potential of Patients Able to Use the Calypso Tracking System in Prostate Radiotherapy

    International Nuclear Information System (INIS)

    Fiedler, D; Kuo, H; Bodner, W; Tome, W

    2016-01-01

    Purpose: To introduce a non-standard method of patient setup, using BellyBoard immobilization, to better utilize the localization and tracking potential of an RF-beacon system with EBRT for prostate cancer. Methods: An RF-beacon phantom was imaged using a wide bore CT scanner, both in a standard level position and with a known rotation (4° pitch and 7.5° yaw). A commercial treatment planning system (TPS) was used to determine positional coordinates of each beacon, and the centroid of the three beacons for both setups. For each setup at the Linac, kV AP and Rt Lateral images were obtained. A full characterization of the RF-beacon system in clinical mode was completed for various beacons’ array-to-centroid distances, which includes vertical, lateral, and longitudinal offset data, as well as pitch and yaw offset measurements for the tilted phantom. For the single patient who has been setup using the proposed BellyBoard method, a supine simulation was first obtained. When abdominal protrusion was found to be exceeding the limits of the RF-Beacon system through distance-based analysis in the TPS, the patient is re-simulated prone with the BellyBoard. Array to centroid distance is measured again in the TPS, and if found to be within the localization or tracking region it is applied. Results: Characterization of limitations for the RF-beacon system in clinical mode showed acceptable consistency of offset determination for phantom setup accuracy. The nonstandard patient setup method reduced the beacons’ centroid-to-array distance by 8.32cm, from 25.13cm to 16.81cm; completely out of tracking range (greater than 20cm) to within setup tracking range (less than 20cm). Conclusion: Using the RF-beacon system in combination with this novel patient setup can allow patients who would otherwise not be candidates for beacon enhanced EBRT to now be able to benefit from the reduced PTV margins of this treatment method.

  16. Superior glenoid inclination and rotator cuff tears.

    Science.gov (United States)

    Chalmers, Peter N; Beck, Lindsay; Granger, Erin; Henninger, Heath; Tashjian, Robert Z

    2018-03-23

    The objectives of this study were to determine whether glenoid inclination (1) could be measured accurately on magnetic resonance imaging (MRI) using computed tomography (CT) as a gold standard, (2) could be measured reliably on MRI, and (3) whether it differed between patients with rotator cuff tears and age-matched controls without evidence of rotator cuff tears or glenohumeral osteoarthritis. In this comparative retrospective radiographic study, we measured glenoid inclination on T1 coronal MRI corrected into the plane of the scapula. We determined accuracy by comparison with CT and inter-rater reliability. We compared glenoid inclination between patients with full-thickness rotator cuff tears and patients aged >50 years without evidence of a rotator cuff tear or glenohumeral arthritis. An a priori power analysis determined adequate power to detect a 2° difference in glenoid inclination. (1) In a validation cohort of 37 patients with MRI and CT, the intraclass correlation coefficient was 0.877, with a mean difference of 0° (95% confidence interval, -1° to 1°). (2) For MRI inclination, the inter-rater intraclass correlation coefficient was 0.911. (3) Superior glenoid inclination was 2° higher (range, 1°-4°, P rotator cuff tear group of 192 patients than in the control cohort of 107 patients. Glenoid inclination can be accurately and reliably measured on MRI. Although superior glenoid inclination is statistically greater in those with rotator cuff tears than in patients of similar age without rotator cuff tears or glenohumeral arthritis, the difference is likely below clinical significance. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Rotator cuff injury in patients over the age of 65 years: evaluation of function, integrity and strength

    Directory of Open Access Journals (Sweden)

    Marco Antonio de Castro Veado

    2015-06-01

    Full Text Available OBJECTIVE: To retrospectively evaluate the results from patients who underwent arthroscopic treatment for rotator cuff injuries, among those aged over 65 years, observing integrity, function and strength.METHODS: Thirty-five shoulders were operated between July 2005 and July 2010, and 28 shoulders were re-evaluated regarding elevation strength and external rotation, using a digital dynamometer. Integrity was evaluated by means of ultrasound examinations. The patients, whose mean age was 70.54 years (ranging from 65 to 82 years, were followed up for a minimum of 26 months and mean of 51.18 months (ranging from 26 to 82 months. To evaluate function, the UCLA score, the Simple Shoulder Test (SST and a visual analog scale (VAS for pain were used.RESULTS: In analyzing the ultrasound scans, it was observed that the integrity of the rotator cuff was maintained in 75% of the cases at the end of the follow-up, along with the improvement in the UCLA score, which evolved from 17.46 to 32.39, i.e. excellent and good results in 89.28%. The mean SST and VAS indices were 9.86 and 1.5 respectively.CONCLUSION: Arthroscopic surgery to repair rotator cuff injuries in patients over the age of 65 years leads to improved function and pain relief, with maintenance of the integrity of the repair. The data on muscle strength were inconclusive.

  18. Minimization of number of setups for mounting machines

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, Pavel; Nchor, Dennis; Hampel, David [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 603 00 Brno (Czech Republic); Žák, Jaroslav [Institute of Technology and Business, Okružní 517/10, 370 01 České Budejovice (Czech Republic)

    2015-03-10

    The article deals with the problem of minimizing the number of setups for mounting SMT machines. SMT is a device used to assemble components on printed circuit boards (PCB) during the manufacturing of electronics. Each type of PCB has a different set of components, which are obligatory. Components are placed in the SMT tray. The problem consists in the fact that the total number of components used for all products is greater than the size of the tray. Therefore, every change of manufactured product requires a complete change of components in the tray (i.e., a setup change). Currently, the number of setups corresponds to the number of printed circuit board type. Any production change affects the change of setup and stops production on one shift. Many components occur in more products therefore the question arose as to how to deploy the products into groups so as to minimize the number of setups. This would result in a huge increase in efficiency of production.

  19. Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity.

    Science.gov (United States)

    Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji

    2017-06-15

    Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.

  20. Characteristics of 3D gamma evaluation according to phantom rotation error and dose gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Hyun; Kim, Dong Su; Kim, Tae Ho; Kang, Seong Hee; Shin, Dong Seok; Noh, Yu Yoon; Suh, Tae Seok [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, the Catholic University of Korea, Seoul (Korea, Republic of); Cho, Min Seok [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2016-12-15

    In intensity modulated radiation therapy (IMRT) quality assurance (QA) using dosimetric phantom, a spatial uncertainty induced from phantom set-up inevitably occurs and gamma index that is used to evaluate IMRT plan quality can be affected differently by a combination of the spatial uncertainty and magnitude of dose gradient. In this study, we investigated the impacts of dose gradient and the phantom set-up error on 3D gamma evaluation. In this study, we investigated the characteristics of gamma evaluation according to dose gradient and phantom rotation axis. As a result, 3D gamma had better performance than 2D gamma. Therefore, it can be useful for IMRT QA analysis at clinical field.

  1. Evaluations of the setup discrepancy between BrainLAB 6D ExacTrac and cone-beam computed tomography used with the imaging guidance system Novalis-Tx for intracranial stereotactic radiosurgery.

    Science.gov (United States)

    Oh, Se An; Park, Jae Won; Yea, Ji Woon; Kim, Sung Kyu

    2017-01-01

    The objective of this study was to evaluate the setup discrepancy between BrainLAB 6 degree-of-freedom (6D) ExacTrac and cone-beam computed tomography (CBCT) used with the imaging guidance system Novalis Tx for intracranial stereotactic radiosurgery. We included 107 consecutive patients for whom white stereotactic head frame masks (R408; Clarity Medical Products, Newark, OH) were used to fix the head during intracranial stereotactic radiosurgery, between August 2012 and July 2016. The patients were immobilized in the same state for both the verification image using 6D ExacTrac and online 3D CBCT. In addition, after radiation treatment, registration between the computed tomography simulation images and the CBCT images was performed with offline 6D fusion in an offline review. The root-mean-square of the difference in the translational dimensions between the ExacTrac system and CBCT was <1.01 mm for online matching and <1.10 mm for offline matching. Furthermore, the root-mean-square of the difference in the rotational dimensions between the ExacTrac system and the CBCT were <0.82° for online matching and <0.95° for offline matching. It was concluded that while the discrepancies in residual setup errors between the ExacTrac 6D X-ray and the CBCT were minor, they should not be ignored.

  2. Field Observation of Setup

    National Research Council Canada - National Science Library

    Yemm, Sean

    2004-01-01

    Setup is defined as the superelevation of mean water surface within the surfzone and is caused by the reduction in wave momentum shoreward of the breaking point and compensating positive pressure gradient...

  3. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    Science.gov (United States)

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  4. Rotator cuff surgery in patients with rheumatoid arthritis: clinical outcome comparable to age, sex and tear size matched non-rheumatoid patients.

    Science.gov (United States)

    Lim, S J; Sun, J-H; Kekatpure, A L; Chun, J-M; Jeon, I-H

    2017-09-01

    Aims This study aimed to compare the clinical outcomes of rotator cuff repair in patients with rheumatoid arthritis with those of patients who have no known history of the disease. We hypothesised that the functional outcomes are comparable between patients and without rheumatoid arthritis and may be affected by the level of disease activity, as assessed from C-reactive protein (CRP) level and history of systemic steroid intake. Patients and methods We conducted a retrospective review of the institutional surgical database from May 1995 to April 2012. Twenty-nine patients with rheumatoid arthritis who had rotator cuff repair were enrolled as the study group. Age, sex, and tear size matched patients with no disease who were selected as the control group. The mean duration of follow-up was 46 months (range 24-92 months). Clinical outcomes were assessed with the American Shoulder and Elbow Surgeons (ASES) questionnaire, Constant score and visual analogue scale (VAS). All data were recorded preoperatively and at regular postoperative follow-up visits. CRP was measured preoperatively as the disease activity marker for rheumatoid arthritis. Medication history was thoroughly reviewed in the study group. Results In patients with rheumatoid arthritis, all shoulder functional scores improved after surgery (ASES 56.1-78.1, Constant 50.8-70.5 and VAS 5.2-2.5; P rheumatoid arthritis was comparable to that of the control group (difference with control: ASES 78.1 vs. 85.5, P = 0.093; Constant 70.5 vs. 75.9, P = 0.366; VAS 2.5 vs. 1.8, P = 0.108). Patients with rheumatoid arthritis who had an elevated CRP level (> 1 mg/dl) showed inferior clinical outcomes than those with normal CRP levels. Patients with a history of systemic steroid intake showed inferior functional outcomes than those who had not taken steroids. Conclusions Surgical intervention for rotator cuff tear in patients with rheumatoid arthritis improved the shoulder functional outcome comparable to that in

  5. The ability of preoperative factors to predict patient-reported disability following surgery for rotator cuff pathology.

    Science.gov (United States)

    Woollard, Jason D; Bost, James E; Piva, Sara R; Kelley Fitzgerald, G; Rodosky, Mark W; Irrgang, James J

    2017-10-01

    Minimal research has examined the prognostic ability of shoulder examination data or psychosocial factors in predicting patient-reported disability following surgery for rotator cuff pathology. The purpose of this study was to examine these factors for prognostic value in order to help clinicians and patients understand preoperative factors that impact disability following surgery. Sixty-two patients scheduled for subacromial decompression with or without supraspinatus repair were recruited. Six-month follow-up data were available for 46 patients. Patient characteristics, history of the condition, shoulder impairments, psychosocial factors, and patient-reported disability questionnaires were collected preoperatively. Six months following surgery, the Western Ontario Rotator Cuff Index (WORC) and global rating of change dichotomized subjects into responders versus nonresponders. Logistic regression quantified prognostic ability and created the most parsimonious model to predict outcome. Being on modified job duty (OR = .17, 95%CI: 0.03-0.94), and having a worker's compensation claim (OR = 0.08, 95%CI: 0.01-0.74) decreased probability of a positive outcome, while surgery on the dominant shoulder (OR = 11.96, 95%CI: 2.91-49.18) increased probability. From the examination, only impaired internal rotation strength was a significant univariate predictor. The Fear-avoidance Beliefs Questionnaire (FABQ) score (OR = 0.95, 95%CI: 0.91-0.98) and the FABQ_work subscale (OR = 0.92, 95%CI: 0.87-0.97) were univariate predictors. In the final model, surgery on the dominant shoulder (OR = 8.9, 95%CI 1.75-45.7) and FABQ_work subscale score ≤25 (OR = 15.3, 95%CI 2.3-101.9) remained significant. Surgery on the dominant arm resulted in greater improvement in patient-reported disability, thereby increasing the odds of a successful surgery. The predictive ability of the FABQ_work subscale highlights the potential impact of psychosocial factors on patient

  6. Set-up error in supine-positioned patients immobilized with two different modalities during conformal radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Fiorino, C.; Cattaneo, G.M.; Calandrino, R.; Reni, M.; Bolognesi, A.; Bonini, A.

    1998-01-01

    Background: Conformal radiotherapy requires reduced margins around the clinical target volume (CTV) with respect to traditional radiotherapy techniques. Therefore, high set-up accuracy and reproducibility are mandatory. Purpose: To investigate the effectiveness of two different immobilization techniques during conformal radiotherapy of prostate cancer with small fields. Materials and methods: 52 patients with prostate cancer were treated by conformal three- or four-field techniques with radical or adjuvant intent between November 1996 and March 1998. In total, 539 portal images were collected on a weekly basis for at least the first 4 weeks of the treatment on lateral and anterior 18 MV X-ray fields. The average number of sessions monitored per patient was 5.7 (range 4-10). All patients were immobilized with an alpha-cradle system; 25 of them were immobilized at the pelvis level (group A) and the remaining 27 patients were immobilized in the legs (group B). The shifts with respect to the simulation condition were assessed by measuring the distances between the same bony landmarks and the field edges. The global distributions of cranio-caudal (CC), posterior-anterior (PA) and left-right (LR) shifts were considered; for each patient random and systematic error components were assessed by following the procedure suggested by Bijhold et al. (Bijhold J, Lebesque JV, Hart AAM, Vijlbrief RE. Maximising set-up accuracy using portal images as applied to a conformal boost technique for prostatic cancer. Radiother. Oncol. 1992;24:261-271). For each patient the average isocentre (3D) shift was assessed as the quadratic sum of the average shifts in the three directions. Results 5 mm equal to 4.4% with respect to the 21.6% of group A (P<0.0001). This value was also better than the corresponding value found in a previously investigated group of 21 non-immobilized patients (Italia C, Fiorino C, Ciocca M, et al. Quality control by portal film analysis of the conformal radiotherapy

  7. Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.

    Science.gov (United States)

    Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V

    2015-05-01

    A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.

  8. On the origin of deformation-induced rotation patterns below nanoindents

    International Nuclear Information System (INIS)

    Zaafarani, N.; Raabe, D.; Roters, F.; Zaefferer, S.

    2008-01-01

    This study is about the origin of systematic deformation-induced crystallographic orientation patterns around nanoindents (here of single crystalline copper; conical indenter) using the following approach: first, the rotation pattern is investigated in three-dimensions (3D) using a high-resolution 3D electron backscattered diffraction (EBSD) technique (EBSD tomography) which works by a serial sectioning and EBSD mapping procedure in a scanning electron microscopy-focused ion beam cross-beam set-up. Second, the problem is modeled using a crystal plasticity finite element method which is based on a dislocation density-based constitutive model. Third, the results were discussed in terms of a geometrical model which simplifies the boundary conditions during indentation in terms of a compressive state normal to the local tangent of the indent shape. This simplification helps to identify the dominant slip systems and the resulting lattice rotations, thereby allowing us to reveal the basic mechanism of the formation of the rotation patterns. The finite element simulations also predict the pile-up patterning around the indents, which can be related to the dislocation density evolution

  9. Intrafractional Target Motions and Uncertainties of Treatment Setup Reference Systems in Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Yue, Ning J.; Goyal, Sharad; Zhou Jinghao; Khan, Atif J.; Haffty, Bruce G.

    2011-01-01

    Purpose: This study investigated the magnitude of intrafractional motion and level of accuracy of various setup strategies in accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy. Methods and Materials: At lumpectomy, gold fiducial markers were strategically sutured to the surrounding walls of the cavity. Weekly fluoroscopy imaging was conducted at treatment to investigate the respiration-induced target motions. Daily pre- and post-RT kV imaging was performed, and images were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion magnitudes over the course of treatment. The positioning differences of the laser tattoo- and the bony anatomy-based setups compared with those of the marker-based setup (benchmark) were also determined. The study included 21 patients. Results: Although lung exhibited significant motion, the average marker motion amplitude on the fluoroscopic image was about 1 mm. Over a typical treatment time period, average intrafractional motion magnitude was 4.2 mm and 2.6 mm based on the marker and bony anatomy matching, respectively. The bony anatomy- and laser tattoo-based interfractional setup errors, with respect to the fiducial marker-based setup, were 7.1 and 9.0 mm, respectively. Conclusions: Respiration has limited effects on the target motion during APBI. Bony anatomy-based treatment setup improves the accuracy relative to that of the laser tattoo-based setup approach. Since fiducial markers are sutured directly to the surgical cavity, the marker-based approach can further improve the interfractional setup accuracy. On average, a seroma cavity exhibits intrafractional motion of more than 4 mm, a magnitude that is larger than that which is otherwise derived based on bony anatomy matching. A seroma-specific marker-based approach has the potential to improve treatment accuracy by taking the true inter

  10. Collider shot setup for Run 2 observations and suggestions

    International Nuclear Information System (INIS)

    Annala, J.; Joshel, B.

    1996-01-01

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This is the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb -1 /week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb -1 for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent 'components': procedures, hardware, controls, and sociology. These components don't directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components

  11. Initial clinical experience with an interactive, video-based patient-positioning system for head and neck treatment

    International Nuclear Information System (INIS)

    Johnson, L.; Hadley, Scott W.; Milliken, Barrett D.; Pelizzari, Charles A.; Haraf, Daniel J.; Nguyen, Ai; Chen, George T.Y.

    1996-01-01

    with healthy, cooperative volunteers show that standard deviations of less than 1mm are achievable, if adequate time is spent in careful alignment. Conclusion: Interactive, video-assisted patient positioning is shown to reduce random setup errors to within 1 to 4mm in head and neck patients, without a significant increase in overall treatment time or labor-intensive procedures. The real-time subtraction images were found to be intuitively easy to understand and use, and the overall system was readily accepted by the therapists as a new tool to quickly and accurately reproduce patient position. Unlike retrospective portal film analysis, the use of two live images allows for true 3D positioning and the correction of out-of-plane rotation before treatment. Although the system is limited to registration of external anatomy, external and bony anatomy in the head and neck are well correlated, and setup errors measured in both video and portal images are in good agreement. With significant improvement in head and neck alignment and the elimination of setup discrepancies greater than 5mm, margins associated with aperture design can potentially be reduced, thereby decreasing normal tissue irradiation

  12. Validity and Responsiveness of the Short Version of the Western Ontario Rotator Cuff Index (Short-WORC) in Patients With Rotator Cuff Repair.

    Science.gov (United States)

    Dewan, Neha; MacDermid, Joy C; MacIntyre, Norma

    2018-05-01

    Study Design Clinical measurement. Background Recently, the Western Ontario Rotator Cuff Index (WORC) was shortened, but few studies have reported its measurement properties. Objective To compare the validity and responsiveness of the short version of the Western Ontario Rotator Cuff Index (Short-WORC) and the WORC (disease-specific measures) with those of the Shoulder Pain and Disability Index (SPADI) and the simple shoulder test (SST) (joint-specific measures); the Disabilities of the Arm, Shoulder and Hand (DASH) (a region-specific measure); and the Medical Outcomes Study 12-Item Short-Form Health Survey version 2 (SF-12v2) (a general health status measure) in patients undergoing rotator cuff repair (RCR). Methods A cohort of patients (n = 223) completed the WORC, SPADI, SST, DASH, and SF-12v2 preoperatively and at 3 and 6 months after RCR. Short-WORC scores were extracted from the WORC questionnaire. The construct validity (Pearson correlations) and internal responsiveness (effect size [ES], standardized response mean [SRM], relative efficiency [RE]) of the Short-WORC were calculated. Results The Short-WORC was strongly correlated with the WORC (r = 0.89-0.96) and moderately to strongly correlated with non-disease-specific measures at preoperative and postoperative assessments (r = 0.51-0.92). The Short-WORC and WORC were equally responsive (RE Short-WORC/WORC = 1) at 0 to 6 months and highly responsive overall at 0 to 3 months (ES Short-WORC , 0.72; ES WORC , 0.92; SRM Short-WORC , 0.75; SRM WORC , 0.81) and 0 to 6 months (ES Short-WORC , 1.05; ES WORC , 1.12; SRM Short-WORC , 0.89; SRM WORC , 0.89). The responsiveness of the comparator measures (SPADI, SST, DASH, SF-12v2) was poor to moderate at 0 to 3 months (ES, 0.07-0.55; SRM, 0.09-0.49) and 0 to 6 months (ES, 0.05-0.78; SRM, 0.07-0.78). Conclusion The Short-WORC and WORC have similar responsiveness in patients undergoing RCR, and are more responsive than non-disease-specific measures. Future studies

  13. Comparison of self-report and interview administration methods based on the Brazilian versions of the Western Ontario Rotator Cuff Index and Disabilities of the Arm, Shoulder and Hand Questionnaire in patients with rotator cuff disorders

    Directory of Open Access Journals (Sweden)

    Andréa Diniz Lopes

    2009-02-01

    Full Text Available OBJECTIVE: The purpose of the present study was to compare self-report and interview administration methods using the Western Ontario Rotator Cuff Index (WORC and Disabilities of the Arm, Shoulder and Hand Questionnaire (DASH in patients with rotator cuff disorders. METHODS: Thirty male and female patients over 18 years of age with rotator cuff disorders (tendinopathy or rotator cuff tear and Brazilian Portuguese as their primary language were recruited for assessment via administration of the Western Ontario Rotator Cuff Index and and Disabilities of the Arm, Shoulder and Hand Questionnaire. A randomization method was used to determine whether the questionnaires would be self-reported (n=15 or administered by an interviewer (n=15. Pearson correlation coefficients were used to evaluate the correlation between the Western Ontario Rotator Cuff Index and and Disabilities of the Arm, Shoulder and Hand Questionnaire in each group. The t-test was used to determine whether the difference in mean questionnaire scores and administration time was statistically significant. For statistical analysis, the level of significance was set at 5%. RESULTS: The mean subject age was 55.07 years, ranging from 27 to 74 years. Most patients had a diagnosis of tendinopathy (n=21. With regard to level of schooling, the majority (n=26 of subjects had completed a college degree or higher. The mean questionnaire scores and administration times did not significantly differ between the two groups (p>0.05. There were statistically significant correlations (p<0.05 between Western Ontario Rotator Cuff Index and and Disabilities of the Arm, Shoulder and Hand Questionnaire, and strong correlations were found between the questionnaires in both groups. CONCLUSION: There are no differences between the Western Ontario Rotator Cuff Index and Disabilities of the Arm, Shoulder and Hand Questionnaire administration methods with regard to administration time or correlations between the

  14. Recurrent rotator cuff tear: is ultrasound imaging reliable?

    Science.gov (United States)

    Gilat, Ron; Atoun, Ehud; Cohen, Ornit; Tsvieli, Oren; Rath, Ehud; Lakstein, Dror; Levy, Ofer

    2018-02-02

    The diagnostic workup of the painful shoulder after rotator cuff repair (RCR) can be quite challenging. The aim of this study was to assess the reliability of ultrasonography (US) for the detection of recurrent rotator cuff tears in patients with shoulder pain after RCR. We hypothesized that US for the diagnosis of recurrent rotator cuff tear after RCR would not prove to be reliable when compared with surgical arthroscopic confirmation (gold standard). In this cohort study (diagnosis), we retrospectively analyzed the data of 39 patients with shoulder pain after arthroscopic RCR who had subsequently undergone US, followed by revision arthroscopy. The rotator cuff was evaluated first using US for the presence of retears. Thereafter, revision arthroscopy was performed, and the diagnosis was either established or disproved. The sensitivity and specificity of US were assessed in reference to revision arthroscopy (gold standard). A rotator cuff retear was indicated by US in 21 patients (54%) and by revision arthroscopy in 26 patients (67%). US showed a sensitivity of 80.8% and specificity of 100% in the diagnosis of rotator cuff retears. Omission of partial rotator cuff retears resulted in a spike in sensitivity to 94.7%, with 100% specificity remaining. US imaging is a highly sensitive and specific test for the detection of recurrent rotator cuff tears, as confirmed by revision arthroscopy, in patients with a painful shoulder after primary RCR. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Psychological distress negatively affects self-assessment of shoulder function in patients with rotator cuff tears.

    Science.gov (United States)

    Potter, Michael Q; Wylie, James D; Greis, Patrick E; Burks, Robert T; Tashjian, Robert Z

    2014-12-01

    In many areas of orthopaedics, patients with greater levels of psychological distress report inferior self-assessments of pain and function. This effect can lead to lower-than-expected baseline scores on common patient-reported outcome scales, even those not traditionally considered to have a psychological component. This study attempts to answer the following questions: (1) Are higher levels of psychological distress associated with clinically important differences in baseline scores on the VAS for pain, the Simple Shoulder Test, and the American Shoulder and Elbow Surgeons score in patients undergoing arthroscopic rotator cuff repair? (2) Does psychological distress remain a negative predictor of baseline shoulder scores when other clinical variables are controlled? Eighty-five patients with full-thickness rotator cuff tears were prospectively enrolled. Psychological distress was quantified using the Distress Risk Assessment Method questionnaire. Patients completed baseline self-assessments including the VAS for pain, the Simple Shoulder Test, and the American Shoulder and Elbow Surgeons score. Age, sex, BMI, smoking status, American Society of Anesthesiologists classification, tear size, and tear retraction were recorded for each patient. Bivariate correlations and multivariate regression models were used to assess the effect of psychological distress on patient self-assessment of shoulder pain and function. Distressed patients reported higher baseline VAS scores (6.7 [95% CI, 4.4-9.0] versus 2.9 [95% CI, 2.3-3.6], p = 0.001) and lower baseline Simple Shoulder Test (3.7 [95% CI, 2.9-4.5] versus 5.7 [95% CI 5.0-6.4], p = 0.001) and American Shoulder and Elbow Surgeons scores (39 [95% CI, 34-45] versus 58 [95% CI, 53-63], p psychological distress are associated with inferior baseline patient self-assessment of shoulder pain and function using the VAS, the Simple Shoulder Test, and the American Shoulder and Elbow Surgeons score. Longitudinal followup is

  16. X-ray-assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: Comparison of setup accuracy using implanted markers versus bony structures

    International Nuclear Information System (INIS)

    Soete, Guy; Cock, Mieke de; Verellen, Dirk; Michielsen, Dirk; Keuppens, Frans; Storme, Guy

    2007-01-01

    Purpose: The aim of this study was to compare setup accuracy of NovalisBody stereoscopic X-ray positioning using implanted markers in the prostate vs. bony structures in patients treated with dynamic conformal arc radiotherapy for prostate cancer. Methods and Materials: Random and systematic setup errors (RE and SE) of the isocenter with regard to the center of gravity of three fiducial markers were measured by means of orthogonal verification films in 120 treatment sessions in 12 patients. Positioning was performed using NovalisBody semiautomated marker fusion. The results were compared with a control group of 261 measurements in 15 patients who were positioned with NovalisBody automated bone fusion. In addition, interfraction and intrafraction prostate motion was registered in the patients with implanted markers. Results: Marker-based X-ray positioning resulted in a reduction of RE as well as SE in the anteroposterior, craniocaudal, and left-right directions compared with those in the control group. The interfraction prostate displacements with regard to the bony pelvis that could be avoided by marker positioning ranged between 1.6 and 2.8 mm for RE and between 1.3 and 4.3 mm for SE. Intrafraction random and systematic prostate movements ranged between 1.4 and 2.4 mm and between 0.8 and 1.3 mm, respectively. Conclusion: The problem of interfraction prostate motion can be solved by using implanted markers. In addition, the NovalisBody X-ray system performs more accurately with markers compared with bone fusion. Intrafraction organ motion has become the limiting factor for margin reduction around the clinical target volume

  17. Evaluation of RSA set-up from a clinical biplane fluoroscopy system for 3D joint kinematic analysis.

    Science.gov (United States)

    Bonanzinga, Tommaso; Signorelli, Cecilia; Bontempi, Marco; Russo, Alessandro; Zaffagnini, Stefano; Marcacci, Maurilio; Bragonzoni, Laura

    2016-01-01

    dinamic roentgen stereophotogrammetric analysis (RSA), a technique currently based only on customized radiographic equipment, has been shown to be a very accurate method for detecting three-dimensional (3D) joint motion. The aim of the present work was to evaluate the applicability of an innovative RSA set-up for in vivo knee kinematic analysis, using a biplane fluoroscopic image system. To this end, the Authors describe the set-up as well as a possible protocol for clinical knee joint evaluation. The accuracy of the kinematic measurements is assessed. the Authors evaluated the accuracy of 3D kinematic analysis of the knee in a new RSA set-up, based on a commercial biplane fluoroscopy system integrated into the clinical environment. The study was organized in three main phases: an in vitro test under static conditions, an in vitro test under dynamic conditions reproducing a flexion-extension range of motion (ROM), and an in vivo analysis of the flexion-extension ROM. For each test, the following were calculated, as an indication of the tracking accuracy: mean, minimum, maximum values and standard deviation of the error of rigid body fitting. in terms of rigid body fitting, in vivo test errors were found to be 0.10±0.05 mm. Phantom tests in static and kinematic conditions showed precision levels, for translations and rotations, of below 0.1 mm/0.2° and below 0.5 mm/0.3° respectively for all directions. the results of this study suggest that kinematic RSA can be successfully performed using a standard clinical biplane fluoroscopy system for the acquisition of slow movements of the lower limb. a kinematic RSA set-up using a clinical biplane fluoroscopy system is potentially applicable and provides a useful method for obtaining better characterization of joint biomechanics.

  18. Rotating thermal convection at very large Rayleigh numbers

    Science.gov (United States)

    Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard

    2016-11-01

    The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.

  19. The compact and inexpensive arrowhead setup for holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)

    2011-07-15

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that requires neither a collimator nor a beam-splitter, and whose layout is reminiscent of an arrowhead. We show that this inexpensive setup is a good alternative for the study and applications of scientific holography by measuring small displacements and deformations of a body. The arrowhead setup will be found particularly useful for holography and holographic interferometry experiments and projects in teaching laboratories.

  20. Verification of the Patient Positioning in the Bellyboard Pelvic Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, M.; Faj, D.; Smilovic Radojcic, D.; Svabic, M.; Ivkovic, A.; Jurkovic, S.

    2008-01-01

    The size and shape of the treatment fields applied in radiotherapy account for uncertainties in the daily set-up of the patients during the treatment. We investigated the accuracy of daily patient positioning in the bellyboard pelvic radiotherapy in order to find out the magnitude of the patients movement during the treatment. Translational as well as rotational movements of the patients are explored. Film portal imaging is used in order to find patient positioning error during the treatment of the pelvic region. Patients are treated in the prone position using the bellyboard positioning device. Thirty six patients are included in the study; 15 patients were followed during the whole treatment and 21 during the first 5 consecutive treatment days. The image acquisition was completed in 85 percent and systematic and random positioning errors in 453 images are analyzed. (author)

  1. Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images

    International Nuclear Information System (INIS)

    Ju, Sang Gyu; Hong, Chae Seon; Park, Hee Chul; Ahn, Jong Ho; Shin, Eun Hyuk; Shin, Jung Suk; Kim, Jin Sung; Han, Young Yih; Lim, Do Hoon; Choi, Doo Ho

    2010-01-01

    In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimensional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Medians of inter

  2. Combined rotation scarf and Akin osteotomies for hallux valgus: a patient focussed 9 year follow up of 50 patients

    Directory of Open Access Journals (Sweden)

    Kilmartin Timothy E

    2010-02-01

    Full Text Available Abstract Background The Cochrane review of hallux valgus surgery has disputed the scientific validity of hallux valgus research. Scoring systems and surrogate measures such as x-ray angles are commonly reported at just one year post operatively but these are of dubious relevance to the patient. In this study we extended the follow up to a minimum of 8 years and sought to address patient specific concerns with hallux valgus surgery. The long term follow up also allowed a comprehensive review of the complications associated with the combined rotation scarf and Akin osteotomies. Methods Between 1996 and 1999, 101 patients underwent rotation scarf and Akin osteotomies for the treatment of hallux valgus. All patients were contacted and asked to participate in this study. 50 female participants were available allowing review of 73 procedures. The average follow up was over 9 years and the average age at the time of surgery was 57. The participants were physically examined and interviewed. Results Post-operatively, in 86% of the participants there were no footwear restrictions. Stiffness of the first metatarsophalangeal joint was reported in 8% (6 feet; 10% were unhappy with the cosmetic appearance of their feet, 3 feet had hallux varus, and 2 feet had recurrent hallux valgus. There were no foot-related activity restrictions in 92% of the group. Metatarsalgia occurred in 4% (3 feet. 96% were better than before surgery and 88% were completely satisfied with their post-operative result. Hallux varus was the greatest single cause of dissatisfaction. The most common adverse event in the study was internal fixation irritation. Hallux valgus surgery is not without risk and these findings could be useful in the informed consent process. Conclusions When combined the rotation scarf and Akin osteotomies are an effective treatment for hallux valgus that achieves good long-term correction with a low incidence of recurrence, footwear restriction or metatarsalgia

  3. Recovery of Muscle Strength After Intact Arthroscopic Rotator Cuff Repair According to Preoperative Rotator Cuff Tear Size.

    Science.gov (United States)

    Shin, Sang-Jin; Chung, Jaeyoon; Lee, Juyeob; Ko, Young-Won

    2016-04-01

    The recovery of muscle strength after arthroscopic rotator cuff repair based on the preoperative tear size has not yet been well described. The purpose of this study was to evaluate the recovery period of muscle strength by a serial assessment of isometric strength after arthroscopic rotator cuff repair based on the preoperative tear size. The hypothesis was that muscle strength in patients with small and medium tears would recover faster than that in those with large-to-massive tears. Cohort study; Level of evidence, 3. A total of 164 patients who underwent arthroscopic rotator cuff repair were included. Isometric strength in forward flexion (FF), internal rotation (IR), and external rotation (ER) was evaluated preoperatively and at 6, 12, 18, and 24 months after surgery. Preoperative magnetic resonance imaging scans were assessed to evaluate the quality of the rotator cuff muscle, including fatty infiltration, occupation ratio, and tangent sign. Patient satisfaction as well as visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons (ASES), and Constant scores were assessed at every follow-up. Muscle strength demonstrated the slowest recovery in pain relief and the restoration of shoulder function. To reach the strength of the uninjured contralateral shoulder in all 3 planes of motion, recovery took 6 months in patients with small tears and 18 months in patients with medium tears. Patients with large-to-massive tears showed continuous improvement in strength up to 18 months; however, they did not reach the strength of the contralateral shoulder at final follow-up. At final follow-up, mean strength in FF, IR, and ER was 113.0%, 118.0%, and 112.6% of the contralateral shoulder in patients with small tears, respectively; 105.0%, 112.1%, and 102.6% in patients with medium tears, respectively; and 87.6%, 89.5%, and 85.2% in patients with large-to-massive tears, respectively. Muscle strength in any direction did not significantly correlate with

  4. A new setup for the underground study of capture reactions

    CERN Document Server

    Casella, C; Lemut, A; Limata, B; Bemmerer, D; Bonetti, R; Broggini, C; Campajola, L; Cocconi, P; Corvisiero, P; Cruz, J; D'Onofrio, A; Formicola, A; Fülöp, Z; Gervino, G; Gialanella, L; Guglielmetti, A; Gustavino, C; Gyürky, G; Loiano, A; Imbriani, G; Jesus, A P; Junker, M; Musico, P; Ordine, A; Parodi, F; Parolin, M; Pinto, J V; Prati, P; Ribeiro, J P; Roca, V; Rogalla, D; Rolfs, C; Romano, M; Rossi-Alvarez, C; Rottura, A; Schuemann, F; Somorjai, E; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A; Zavatarelli, S

    2002-01-01

    For the study of astrophysically relevant capture reactions in the underground laboratory LUNA a new setup of high sensitivity has been implemented. The setup includes a windowless gas target, a 4 pi BGO summing crystal, and beam calorimeters. The setup has been recently used to measure the d(p,gamma) sup 3 He cross-section for the first time within its solar Gamow peak, i.e. down to 2.5 keV c.m. energy. The features of the optimized setup are described.

  5. Simple optical setup implementation for digital Fourier transform holography

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Cep.: 24.210-240 (Brazil); Rodrigues, D M C; Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.

  6. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    Science.gov (United States)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  7. Effect of Preoperative Fatty Degeneration of the Rotator Cuff Muscles on the Clinical Outcome of Patients With Intact Tendons After Arthroscopic Rotator Cuff Repair of Large/Massive Cuff Tears.

    Science.gov (United States)

    Ohzono, Hiroki; Gotoh, Masafumi; Nakamura, Hidehiro; Honda, Hirokazu; Mitsui, Yasuhiro; Kakuma, Tatsuyuki; Okawa, Takahiro; Shiba, Naoto

    2017-11-01

    Fatty degeneration of the rotator cuff muscles is associated not only with postoperative retear but also with postoperative muscle weakness; therefore, fatty changes in the muscles may affect the clinical outcome even in patients with these tears who have intact tendons after arthroscopic rotator cuff repair (ARCR). To evaluate the effect of fatty infiltration on the clinical outcome in patients with intact tendons after arthroscopic repair of large/massive cuff tears. Case-control study; Level of evidence, 3. One hundred fifty-five consecutive patients with large/massive rotator cuff tears underwent ARCR. Of these, 55 patients (mean ± SD age, 64.4 ± 9.1 years) in whom intact tendons after surgery were confirmed with magnetic resonance imaging at final follow-up (mean ± SD, 2.5 ± 1.4 years) were included in this study. Depending on their University of California Los Angeles (UCLA) score at the final follow-up, they were assigned to either the unsatisfactory group (score ≤27; n = 12) or the satisfactory group (score >27; n = 43). Various clinical parameters affecting the clinical outcome were examined through univariate and multivariate analyses. The UCLA score of all patients significantly improved from 18.1 ± 4.4 points preoperatively to 29.8 ± 4.5 points postoperatively ( P muscles, with area under the curve values of 0.79 (sensitivity 91% and specificity 51%) and 0.84 (sensitivity 100% and specificity 54%) in the infraspinatus and subscapularis, respectively. Preoperative fatty degeneration of the infraspinatus and/or subscapularis with Goutallier stage 2 or higher was significantly associated with worse outcome in patients with large/massive tears who had intact tendons after ARCR.

  8. Rotational movements of mandibular two-implant overdentures.

    Science.gov (United States)

    Kimoto, Suguru; Pan, Shaoxia; Drolet, Nicolas; Feine, Jocelyne S

    2009-08-01

    Clinicians have reported that their patients complain that their mandibular two-implant overdentures (IOD) rotate. Therefore, we studied the frequency and severity of rotation of IODs with two-ball attachments, how rotation may influence perceived satisfaction ratings of chewing ability, and the factors that are involved in the rotation of IODs. Seventy-nine participants were recruited and asked to rate their general satisfaction of their IODs, as well as their ability to chew foods, the existence of any mandibular denture rotation, and to what degree denture rotation bothered them. Data on participant sociodemographic, anatomical, and prosthesis characteristics were also collected. Student's t-test and logistic regression analyses were performed to analyze the differences between participants who did (R group) and did not report (NR group) denture rotation. Thirty-seven of 79 participants were aware of rotational movement in their IODs. These patients were significantly less satisfied with their chewing ability than those who felt no rotation (69.1 mm R group vs. 82.9 mm), and discomfort caused by the rotation bothered them moderately (39/100 mm). The multivariate logistic regression analysis revealed that the arrangement of the anterior teeth and the length of the denture are significantly associated with awareness of denture rotation. Thirty-eight percent in the R group and 31% in the NR group had non-scheduled visits. Rotational movement with a mandibular two-IOD has a negative effect on perceived chewing ability and is associated with anterior tooth arrangement and denture length.

  9. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than

  10. The Impact of use of Double Set-up on Infection Rates in Revision Total Knee Replacement and Limb Salvage Procedures

    Directory of Open Access Journals (Sweden)

    Jennifer Waterman

    2015-03-01

    Full Text Available A retrospective analysis was performed to determine the impact of utilizing a double set-up procedure on reducing infection rates revision total knee and limb salvage procedures in patients with known joint infection.  Eighteen cases fit selection criteria.  The recurrence rate of infection was 5.5% which is less than reported recent literature review.   This suggests the use of a double set-up in combination with other infection reducing protocols may help further reduce recurrent infection.  Keywords: double set-up, infection, revision total knee arthroplasty, limb-salvage

  11. Cost-Effectiveness of Reverse Total Shoulder Arthroplasty Versus Arthroscopic Rotator Cuff Repair for Symptomatic Large and Massive Rotator Cuff Tears.

    Science.gov (United States)

    Makhni, Eric C; Swart, Eric; Steinhaus, Michael E; Mather, Richard C; Levine, William N; Bach, Bernard R; Romeo, Anthony A; Verma, Nikhil N

    2016-09-01

    To compare the cost-effectiveness within the United States health care system of arthroscopic rotator cuff repair versus reverse total shoulder arthroplasty in patients with symptomatic large and massive rotator cuff tears without cuff-tear arthropathy. An expected-value decision analysis was constructed comparing the costs and outcomes of patients undergoing arthroscopic rotator cuff repair and reverse total shoulder arthroplasty for large and massive rotator cuff tears (and excluding cases of cuff-tear arthropathy). Comprehensive literature search provided input data to extrapolate costs and health utility states for these outcomes. The primary outcome assessed was that of incremental cost-effectiveness ratio (ICER) of reverse total shoulder arthroplasty versus rotator cuff repair. For the base case, both arthroscopic rotator cuff repair and reverse total shoulder were superior to nonoperative care, with an ICER of $15,500/quality-adjusted life year (QALY) and $37,400/QALY, respectively. Arthroscopic rotator cuff repair was dominant over primary reverse total shoulder arthroplasty, with lower costs and slightly improved clinical outcomes. Arthroscopic rotator cuff repair was the preferred strategy as long as the lifetime progression rate from retear to end-stage cuff-tear arthropathy was less than 89%. However, when the model was modified to account for worse outcomes when reverse shoulder arthroplasty was performed after a failed attempted rotator cuff repair, primary reverse total shoulder had superior outcomes with an ICER of $90,000/QALY. Arthroscopic rotator cuff repair-despite high rates of tendon retearing-for patients with large and massive rotator cuff tears may be a more cost-effective initial treatment strategy when compared with primary reverse total shoulder arthroplasty and when assuming no detrimental impact of previous surgery on outcomes after arthroplasty. Clinical judgment should still be prioritized when formulating treatment plans for these

  12. 3-D portal image analysis in clinical practice: an evaluation of 2-D and 3-D analysis techniques as applied to 30 prostate cancer patients

    International Nuclear Information System (INIS)

    Remeijer, Peter; Geerlof, Erik; Ploeger, Lennert; Gilhuijs, Kenneth; Herk, Marcel van; Lebesque, Joos V.

    2000-01-01

    Purpose: To investigate the clinical importance and feasibility of a 3-D portal image analysis method in comparison with a standard 2-D portal image analysis method for pelvic irradiation techniques. Methods and Materials: In this study, images of 30 patients who were treated for prostate cancer were used. A total of 837 imaged fields were analyzed by a single technologist, using automatic 2-D and 3-D techniques independently. Standard deviations (SDs) of the random, systematic, and overall variations, and the overall mean were calculated for the resulting data sets (2-D and 3-D), in the three principal directions (left-right [L-R], cranial-caudal [C-C], anterior-posterior [A-P]). The 3-D analysis included rotations as well. For the translational differences between the three data sets, the overall SD and overall mean were computed. The influence of out-of-plane rotations on the 2-D registration accuracy was determined by analyzing the difference between the 2-D and 3-D translation data as function of rotations. To assess the reliability of the 2-D and 3-D methods, the number of times the automatic match was manually adjusted was counted. Finally, an estimate of the workload was made. Results: The SDs of the random and systematic components of the rotations around the three orthogonal axes were 1.1 (L-R), 0.6 (C-C), 0.5 (A-P) and 0.9 (L-R), 0.6 (C-C), 0.8 (A-P) degrees, respectively. The overall mean rotation around the L-R axis was 0.7 deg., which deviated significantly from zero. Translational setup errors were comparable for 2-D and 3-D analysis (ranging from 1.4 to 2.2 mm SD and from 1.5 to 2.5 mm SD, respectively). The variation of the difference between the 2-D and 3-D translation data increased from 1.1 mm (SD) for zero rotations to 2.7 mm (SD) for out-of-plane rotations of 3 deg., due to a reduced 2-D registration accuracy for large rotations. The number of times the analysis was not considered acceptable and was manually adjusted was 44% for the 2-D

  13. Rotation, scale, and translation invariant pattern recognition using feature extraction

    Science.gov (United States)

    Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.

    1997-03-01

    A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.

  14. Assessment of rotation thromboelastometry parameters in patients with essential thrombocythemia at diagnosis and after hydroxyurea therapy.

    Science.gov (United States)

    Treliński, Jacek; Okońska, Marta; Robak, Marta; Chojnowski, Krzysztof

    2016-03-01

    Patients with essential thrombocythemia suffer from thrombotic complications that are the main source of mortality. Due to its complex pathogenesis, no existing single laboratory method is able to identify the patients at highest risk for developing thrombosis. Twenty patients with essential thrombocythemia at diagnosis, 15 healthy volunteers and 20 patients treated with hydroxyurea were compared with regard to certain rotation thromboelastometry parameters. Clotting time (CT), clot formation time (CFT), α-angle, and maximum clot firmness (MCF) were assessed by using the INTEM, EXTEM, FIBTEM, and NATEM tests. Patients with essential thrombocythemia at diagnosis demonstrated significantly higher mean platelet count and markedly lower mean red blood count than controls. CT and CFT readings were found to be markedly lower in essential thrombocythemia patients at diagnosis than in the control group according to the EXTEM test. Patients at diagnosis had markedly lower CT values (EXTEM, FIBTEM) than patients on hydroxyurea therapy. Alpha angle values were markedly higher in essential thrombocythemia patients at diagnosis than in controls, according to the EXTEM, FIBTEM and NATEM tests. MCF readings were significantly higher in essential thrombocythemia patients at diagnosis than in controls according to EXTEM, INTEM, FIBTEM, and NATEM tests. Patients on hydroxyurea therapy had markedly lower MCF values according to EXTEM test than patients at diagnosis. Patients with essential thrombocythemia demonstrate a prothrombotic state at the time of diagnosis, which is reflected in changes by certain rotation thromboelastometry parameters. The hydroxyurea therapy induces downregulation of the prothrombotic features seen in essential thrombocythemia patients at diagnosis.

  15. Setup accuracy for prone and supine whole breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mulliez, Thomas; Vercauteren, Tom; Greveling, Annick van; Speleers, Bruno; Neve, Wilfried de; Veldeman, Liv [University Hospital Ghent, Department of Radiotherapy, Ghent (Belgium); Gulyban, Akos [University Hospital Ghent, Department of Radiotherapy, Ghent (Belgium); University Hospital Liege, Department of Radiotherapy, Liege (Belgium)

    2016-04-15

    To evaluate cone-beam computed tomography (CBCT) based setup accuracy and margins for prone and supine whole breast irradiation (WBI). Setup accuracy was evaluated on 3559 CBCT scans of 242 patients treated with WBI and uncertainty margins were calculated using the van Herk formula. Uni- and multivariate analysis on individual margins was performed for age, body mass index (BMI) and cup size. The population-based margin in vertical (VE), lateral (LA) and longitudinal (LO) directions was 10.4/9.4/9.4 mm for the 103 supine and 10.5/22.4/13.7 mm for the 139 prone treated patients, being significantly (p < 0.01) different for the LA and LO directions. Multivariate analysis identified a significant (p < 0.05) correlation between BMI and the LO margin in supine position and the VE/LA margin in prone position. In this series, setup accuracy is significantly worse in prone compared to supine position for the LA and LO directions. However, without proper image-guidance, uncertainty margins of about 1 cm are also necessary for supine WBI. For patients with a higher BMI, larger margins are required. (orig.) [German] Ziel der Arbeit war es, die interfraktionelle Repositionierungsgenauigkeit in Bauchlage (BL) versus Rueckenlage (RL) bei Ganzbrustbestrahlung (GBB) mittels Cone-Beam-CT (CBCT) zu bestimmen, um die notwendigen PTV-Sicherheitsabstaende zu definieren. Die Repositionierungsgenauigkeit wurde basierend an 3559 CBCT-Scans von 242 mit GBB behandelten Patienten ausgewertet. Die PTV-Sicherheitsabstaende wurden unter Verwendung der ''van-Herk''-Formel berechnet. Uni- und multivariable Analysen wurden fuer Sicherheitsabstaende in jede Richtung auf Basis von Alter, Body-Mass-Index (BMI) und Koerbchengroesse durchgefuehrt. Die basierend auf den taeglichen CBCT-Verschiebungen berechneten PTV-Sicherheitsabstaende betrugen in anteroposteriorer (AP), lateraler (LT oder links-rechts) und kraniokaudaler (CC) Richtung 10,4/9,4/9,4 mm fuer die RL (103 Patienten) und

  16. The COMPASS Setup for Physics with Hadron Beams

    CERN Document Server

    Abbon, Ph.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M.L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Desforge, D.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M.A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, Ana Sofia; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D.V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J-M.; Rocco, E.; Rossiyskaya, N.S.; Rousse, J.Y.; Ryabchikov, D.I.; Rychter, A.; Samartsev, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This article describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  17. Initial results of shoulder MRI in external rotation after primary shoulder dislocation and after immobilization in external rotation

    International Nuclear Information System (INIS)

    Pennekamp, W.; Nicolas, V.; Gekle, C.; Seybold, D.

    2006-01-01

    Purpose: A change in the strategy for treating primary anterior traumatic dislocation of the shoulder has occurred. To date, brief fixation of internal rotation via a Gilchrist bandage has been used. Depending on the patient's age, a redislocation is seen in up to 90% of cases. This is due to healing of the internally rotated labrum-ligament tear in an incorrect position. In the case of external rotation of the humerus, better repositioning of the labrum ligament complex is achieved. Using MRI of the shoulder in external rotation, the extent of the improved labrum-ligament adjustment can be documented, and the indication of immobilization of the shoulder in external rotation can be derived. The aim of this investigation is to describe the degree of position changing of the labrum-ligament tear in internal and external rotation. Materials and Methods: 10 patients (9 male, 1 female, mean age 30.4 years, range 15-43 years) with a primary anterior dislocation of the shoulder without hyper laxity of the contra lateral side and labrum-ligament lesion substantiated by MRI were investigated using a standard shoulder MRI protocol (PD-TSE axial fs, PD-TSE coronar fs, T2-TSE sagittal, T1-TSE coronar) by an axial PD-TSE sequence in internal and external rotation. The dislocation and separation of the anterior labrum-ligament complex were measured. The shoulders were immobilized in 10 external rotation for 3 weeks. After 6 weeks a shoulder MRI in internal rotation was performed. Results: In all patients there was a significantly better position of the labrum-ligament complex of the inferior rim in external rotation, because of the tension of the ventral capsule and the subscapular muscle. In the initial investigation, the separation of the labrum-ligament complex in internal rotation was 0.44±0.27 mm and the dislocation was 0.45±0.33 mm. In external rotation the separation was 0.01±0.19 mm and the dislocation was -0.08±0.28 mm. After 6 weeks of immobilization in 10 external

  18. Prevalence of calcific deposits within the rotator cuff tendons in adults with and without subacromial pain syndrome: clinical and radiologic analysis of 1219 patients.

    Science.gov (United States)

    Louwerens, Jan K G; Sierevelt, Inger N; van Hove, Ruud P; van den Bekerom, Michel P J; van Noort, Arthur

    2015-10-01

    Calcific tendinopathy is one of the most frequent causes of pain in the shoulder and is characterized by the presence of calcific deposits in the rotator cuff; however, calcific deposits have also been described in asymptomatic individuals. Only a few authors have reported epidemiologic data on the prevalence of calcific deposits in the rotator cuff. This study analyzed clinical and radiological data of 1219 adults with and without subacromial pain syndrome (SAPS) to assess the prevalence of calcific deposits in the rotator cuff. Multivariate analysis was used to define risk factors associated with the presence of symptomatic calcific tendinopathy. Calcific deposits were found in the rotator cuff of 57 of 734 asymptomatic patients (7.8%). Of 485 patients with SAPS, 42.5% had calcific deposits. Age between 30 and 60 years (odds ratio [OR], 8.0; 95% confidence interval [CI], 2.5-26.3; P pain (OR, 7.1; 95% CI, 5.1-9.9, P 1.5 cm in length have the highest chance of suffering from symptomatic calcific tendinopathy of the rotator cuff. The prevalence rates of 7.8% in asymptomatic patients and 42.5% in patients with SAPS provide a current view on the epidemiology of calcific deposits in the rotator cuff. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Rotator cuff disease

    International Nuclear Information System (INIS)

    Ziatkin, M.B.; Iannotti, J.P.; Roberts, M.; Dalinka, M.K.; Esterhai, J.L.; Kressel, H.Y.; Lenkinski, R.E.

    1988-01-01

    A dual-surface-coil array in a Helmholtz configuration was used to evaluate th rotator cuff in ten normal volunteers and 44 patients. Studies were performed with a General Electric 1.5-T MR imager. Thirty-two patients underwent surgery, 25 of whom also underwent arthrography. In comparison with surgery, MR imaging was more sensitive than arthrography for rotator cuff tears (91% vs 71%). The specificity and accuracy of MR imaging were 88% and 91%. The accuracy increased with use of an MR grading system. MR findings correlated with surgical findings with regard to the size and site of tears. MR findings of cuff tears were studied with multivariate analysis. Correlation was also found between a clinical score, the MR grade, and the clinical outcome

  20. Electromyographic Activity of Shoulder Girdle Muscles in Patients With Symptomatic and Asymptomatic Rotator Cuff Tears: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Spall, Peter; Ribeiro, Daniel Cury; Sole, Gisela

    2016-09-01

    To compare electromyographic activity in patients with symptomatic rotator cuff tears with healthy controls or to those with asymptomatic cuff tears. TYPE: Systematic review and meta-analysis. PubMed, Scopus, Ovid Medline, and Web of Science were searched from inception to August 1, 2014, and a search update was performed on June 8, 2015. Case-control studies or intervention studies that had baseline comparisons for symptomatic versus healthy shoulders or those with asymptomatic rotator cuff tear were searched. Methodological quality was assessed with a modified Critical Appraisal Skills Programme score and meta-analyses were performed when 2 or more studies explored the same outcome measures. Nine studies were included, with the quality ranging from 1 to 3 (maximum 6). Electromyographic outcomes included amplitudes and ratios thereof, activity duration, and median frequency of shoulder girdle muscles during isometric contractions (4 studies) and functional tasks (5 studies). Longer activity duration was found for upper trapezius during glenohumeral movements, and greater fatigability of anterior and middle deltoids during isometric hand gripping for patients with rotator cuff tears compared to controls. The meta-analysis (3 studies) showed that patients with rotator cuff tears had lower activation ratios for latissimus dorsi during isometric abduction contraction compared to controls (P muscle activity differences between the rotator cuff tear group and controls is thus limited. Copyright © 2016. Published by Elsevier Inc.

  1. Current status of rotational atherectomy.

    Science.gov (United States)

    Tomey, Matthew I; Kini, Annapoorna S; Sharma, Samin K

    2014-04-01

    Rotational atherectomy facilitates percutaneous coronary intervention for complex de novo lesions with severe calcification. A strategy of routine rotational atherectomy has not, however, conferred reduction in restenosis or major adverse cardiac events. As it is technically demanding, rotational atherectomy is also uncommon. At this 25-year anniversary since the introduction of rotational atherectomy, we sought to review the current state-of-the-art in rotational atherectomy technique, safety, and efficacy data in the modern era of drug-eluting stents, strategies to prevent and manage complications, including slow-flow/no-reflow and burr entrapment, and appropriate use in the context of the broader evolution in the management of stable ischemic heart disease. Fundamental elements of optimal technique include use of a single burr with burr-to-artery ratio of 0.5 to 0.6-rotational speed of 140,000 to 150,000 rpm, gradual burr advancement using a pecking motion, short ablation runs of 15 to 20 s, and avoidance of decelerations >5,000 rpm. Combined with meticulous technique, optimal antiplatelet therapy, vasodilators, flush solution, and provisional use of atropine, temporary pacing, vasopressors, and mechanical support may prevent slow-flow/no-reflow, which in contemporary series is reported in 0.0% to 2.6% of cases. On the basis of the results of recent large clinical trials, a subset of patients with complex coronary artery disease previously assigned to rotational atherectomy may be directed instead to medical therapy alone or bypass surgery. For patients with de novo severely calcified lesions for which rotational atherectomy remains appropriate, referral centers of excellence are required. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Peripheral Lymph Node Excisional Biopsy: Yield, Relevance, and Outcomes in a Remote Surgical Setup

    Directory of Open Access Journals (Sweden)

    Ashish Lal Shrestha

    2018-01-01

    Full Text Available Objective. To study the patient profile for symptomatic peripheral lymphadenopathy in terms of histopathological findings and demography and evaluate the yield, relevance, and outcomes of peripheral lymph node biopsy (PLNB as a diagnostic step in a remote setup in the absence of less invasive options like fine-needle aspiration cytology (FNAC or ultrasonogram- (USG- guided FNAC. Methods. A retrospective review of patients undergoing PLNB between 1 May 2011 and 30 April 2013 was done. Demographics, histopathological reports, and outcomes were studied. Results. Of 132 patients, 51 (38.63% were male and 81 (61.36% were female. There were 48 (36.3% patients in the age group less than 16 years, and 84 (63.6% were beyond 16 years. The commonest site of biopsy was the neck in 114 (86.36% patients. The histopathological diagnosis was tuberculosis (TB in 60 (45.45% patients, reactive lymphadenitis in 29 (21.9%, nonspecific granuloma in 18 (13.6%, lymphoma in 7 (5.3%, acute lymphadenitis in 7 (5.3%, metastatic secondary in 3 (2.2%, and other benign causes in 8 (6.06%. Conclusions. PLNB is a procedure with good diagnostic yield in evaluation of peripheral lymphadenopathy. Its relevance is appreciable in a remote setup where less invasive options are unavailable. Its simplicity and lack of mortality/significant morbidity make it a valid option in rural surgical practice.

  3. Partial rotator cuff repair and biceps tenotomy for the treatment of patients with massive cuff tears and retained overhead elevation: midterm outcomes with a minimum 5 years of follow-up.

    Science.gov (United States)

    Cuff, Derek J; Pupello, Derek R; Santoni, Brandon G

    2016-11-01

    A subset of patients with massive irreparable rotator cuff tears present with retained overhead elevation and pain as their primary complaint. Our aim was to evaluate the outcomes of partial arthroscopic rotator cuff repair with biceps tenotomy and to report the failure rate of this procedure for patients with >5 years of follow-up. Thirty-four patients underwent partial rotator cuff repair and biceps tenotomy for treatment of a massive rotator cuff tear. Patients had preoperative active forward elevation >120° and no radiographic evidence of glenohumeral arthritis. Patients were followed up clinically and radiographically, and 28 patients had a minimum of 5 years of follow-up. Failure was defined as an American Shoulder and Elbow Surgeons score of 90°, or revision to reverse shoulder arthroplasty during the study period. Patients demonstrated improvements in average preoperative to postoperative American Shoulder and Elbow Surgeons scores (46.6 to 79.3 [P rotation (38° to 39° [P = 1.0]), or internal rotation (84% to 80% [P = 1.0]) was identified; 36% of patients had progression of the Hamada stage. The failure rate was 29%; 75% of patients were satisfied with their index procedure. Partial rotator cuff repair and biceps tenotomy for patients with massive irreparable rotator cuff tears with retained overhead elevation and pain as the primary complaint produced reasonable outcomes at midterm follow-up of at least 5 years. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

    International Nuclear Information System (INIS)

    Yeung, Anamaria R.; Li, Jonathan G.; Shi Wenyin; Newlin, Heather E.; Chvetsov, Alexei; Liu, Chihray; Palta, Jatinder R.; Olivier, Kenneth

    2009-01-01

    Purpose: To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. Methods and Materials: A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. Results: The daily alignment to skin tattoos with no image guidance resulted in systematic (Σ) and random (σ) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic (Σ) and random (σ) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. Conclusion: Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.

  5. Arthroscopic undersurface rotator cuff repair versus conventional arthroscopic double-row rotator cuff repair - Comparable results at 2-year follow-up.

    Science.gov (United States)

    Ang, Benjamin Fu Hong; Chen, Jerry Yongqiang; Yeo, William; Lie, Denny Tijauw Tjoen; Chang, Paul Chee Cheng

    2018-01-01

    The aim of our study is to compare the improvement in clinical outcomes after conventional arthroscopic double-row rotator cuff repair and arthroscopic undersurface rotator cuff repair. A consecutive series of 120 patients who underwent arthroscopic rotator cuff repair was analysed. Sixty-one patients underwent conventional double-row rotator cuff repair and 59 patients underwent undersurface rotator cuff repair. Several clinical outcomes, including numerical pain rating scale (NPRS), constant shoulder score (CSS), Oxford shoulder score (OSS) and University of California Los Angeles shoulder score (UCLASS), were prospectively recorded by a trained healthcare professional preoperatively and at 3, 6, 12 and 24 months after surgery. Comparing both groups, there were no differences in age, gender and preoperative NPRS, CSS, OSS and UCLASS. However, the tear size was 0.7 ± 0.2 (95% confidence interval (CI) 0.3-1.1) cm larger in the conventional group ( p = 0.002). There was no difference in the improvement of NPRS, CSS, OSS and UCLASS at all time points of follow-up, that is, at 3, 6, 12 and 24 months after surgery. The duration of operation was shorter by 35 ± 3 (95% CI 28-42) min in the undersurface group ( p rotator cuff repair and conventional arthroscopic double-row rotator cuff repair showed marked improvements in clinical scores when compared preoperatively, and there was no difference in improvements between both groups. Arthroscopic undersurface rotator cuff repair is a faster technique compared to the conventional arthroscopic double-row rotator cuff repair.

  6. Set-Up and Punchline as Figure and Ground

    DEFF Research Database (Denmark)

    Keisalo, Marianna Päivikki

    the two that cannot be resolved by appeal to either set-up or punchline, but traps thought between them in an ‘epistemological problem’ as comedian Louis CK put it. For comedians, set-ups and punchlines are basic tools, practical and concrete ways to create and organize material. They are also familiar...

  7. Functional outcomes after bilateral arthroscopic rotator cuff repair.

    Science.gov (United States)

    Aleem, Alexander W; Syed, Usman Ali M; Wascher, Jocelyn; Zoga, Adam C; Close, Koby; Abboud, Joseph A; Cohen, Steven B

    2016-10-01

    Arthroscopic repair of rotator cuff tears is a common procedure performed by orthopedic surgeons. There is a well-known incidence of up to 35% of bilateral rotator cuff tear disease in patients who have a known unilateral tear. The majority of the literature focuses on outcomes after unilateral surgery. The purpose of this study was to determine if there are clinical differences in shoulders of patients who underwent staged bilateral rotator cuff repairs during their lifetime. A retrospective review of all patients who underwent staged bilateral arthroscopic rotator cuff surgery at our institution was performed. All patients had at least 2 years of follow-up. Clinical outcome scores including the American Shoulder and Elbow Surgeons (ASES), Single Assessment Numeric Evaluation, and Rowe measures were obtained. A subset of patients returned for clinical and ultrasound evaluation performed by an independent fellowship-trained musculoskeletal radiologist. Overall, 110 shoulders in 55 patients, representing 68% of all eligible patients, participated. No clinical or statistical difference was found in any outcome measure. ASES scores averaged 86.5 (36.7-100) in the dominant shoulder compared with 89.6 (23.3-100) in the nondominant shoulder (P = .42). Ultrasound was available on 34 shoulders and showed complete healing rate of 88%. The shoulders with retearing of the rotator cuff (12%) demonstrated clinically relevant lower ASES scores (72.5) compared with shoulders with confirmed healed repairs (86.2; P = .2). Patients who undergo staged bilateral rotator cuff repair can expect to have similarly good clinical outcomes regardless of hand dominance or chronologic incidence with excellent healing rates in both shoulders. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  8. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    Energy Technology Data Exchange (ETDEWEB)

    Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  9. Mental rotation and working memory in musicians' dystonia.

    Science.gov (United States)

    Erro, Roberto; Hirschbichler, Stephanie T; Ricciardi, Lucia; Ryterska, Agata; Antelmi, Elena; Ganos, Christos; Cordivari, Carla; Tinazzi, Michele; Edwards, Mark J; Bhatia, Kailash P

    2016-11-01

    Mental rotation of body parts engages cortical-subcortical areas that are actually involved in the execution of a movement. Musicians' dystonia is a type of focal hand dystonia that is grouped together with writer's cramp under the rubric of "occupational dystonia", but it is unclear to which extent these two disorders share common pathophysiological mechanisms. Previous research has demonstrated patients with writer's cramp to have deficits in mental rotation of body parts. It is unknown whether patients with musicians' dystonia would display similar deficits, reinforcing the concept of shared pathophysiology. Eight patients with musicians' dystonia and eight healthy musicians matched for age, gender and musical education, performed a number of tasks assessing mental rotation of body parts and objects as well as verbal and spatial working memories abilities. There were no differences between patients and healthy musicians as to accuracy and reaction times in any of the tasks. Patients with musicians' dystonia have intact abilities in mentally rotating body parts, suggesting that this disorder relies on a highly selective disruption of movement planning and execution that manifests only upon playing a specific instrument. We further demonstrated that mental rotation of body parts and objects engages, at least partially, different cognitive networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Margin Evaluation in the Presence of Deformation, Rotation, and Translation in Prostate and Entire Seminal Vesicle Irradiation With Daily Marker-Based Setup Corrections

    International Nuclear Information System (INIS)

    Mutanga, Theodore F.; Boer, Hans C.J. de; Wielen, Gerard J. van der; Hoogeman, Mischa S.; Incrocci, Luca; Heijmen, Ben J.M.

    2011-01-01

    Purpose: To develop a method for margin evaluation accounting for all measured displacements during treatment of prostate cancer. Methods and Materials: For 21 patients treated with stereographic targeting marker-based online translation corrections, dose distributions with varying margins and gradients were created. Sets of possible cumulative delivered dose distributions were simulated by moving voxels and accumulating dose per voxel. Voxel motion was simulated consistent with measured distributions of systematic and random displacements due to stereographic targeting inaccuracies, deformation, rotation, and intrafraction motion. The method of simulation maintained measured correlation of voxel motions due to organ deformation. Results: For the clinical target volume including prostate and seminal vesicles (SV), the probability that some part receives <95% of the prescribed dose, the changes in minimum dose, and volume receiving 95% of prescription dose compared with planning were 80.5% ± 19.2%, 9.0 ± 6.8 Gy, and 3.0% ± 3.7%, respectively, for the smallest studied margins (3 mm prostate, 5 mm SV) and steepest dose gradients. Corresponding values for largest margins (5 mm prostate, 8 mm SV) with a clinical intensity-modulated radiotherapy dose distribution were 46.5% ± 34.7%, 6.7 ± 5.8 Gy, and 1.6% ± 2.3%. For prostate-only clinical target volume, the values were 51.8% ± 17.7%, 3.3 ± 1.6 Gy, and 0.6% ± 0.5% with the smallest margins and 5.2% ± 7.4%, 1.8 ± 0.9 Gy, and 0.1% ± 0.1% for the largest margins. Addition of three-dimensional rotation corrections only improved these values slightly. All rectal planning constraints were met in the actual reconstructed doses for all studied margins. Conclusion: We developed a system for margin validation in the presence of deformations. In our population, a 5-mm margin provided sufficient dosimetric coverage for the prostate. In contrast, an 8-mm SV margin was still insufficient owing to deformations. Addition of

  11. The diagnostic value of the combination of patient characteristics, history, and clinical shoulder tests for the diagnosis of rotator cuff tear

    NARCIS (Netherlands)

    van Kampen, D.A.; van den Berg, T.; van der Woude, H.J.; Castelein, R.M.; Scholtes, V.A.B.; Terwee, C.B.; Willems, W.J.

    2014-01-01

    Background: It is unknown which combination of patient information and clinical tests might be optimal for the diagnosis of rotator cuff tears. This study aimed to determine the diagnostic value of nine individual clinical tests for evaluating rotator cuff tear and to develop a prediction model for

  12. VMAT optimization with dynamic collimator rotation.

    Science.gov (United States)

    Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke

    2018-04-16

    Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc

  13. Thrombelastography and rotational thromboelastometry early amplitudes in 182 trauma patients with clinical suspicion of severe injury

    DEFF Research Database (Denmark)

    Meyer, Anna Sina P; Meyer, Martin A S; Sørensen, Anne Marie

    2014-01-01

    BACKGROUND: Viscoelastic hemostatic assays may provide means for earlier detection of trauma-induced coagulopathy (TIC). METHODS: This is a prospective observational study of 182 trauma patients admitted to a Level 1 trauma center. Clinical data, thrombelastography (TEG), and rotational thromboel...

  14. Metal artefacts severely hamper magnetic resonance imaging of the rotator cuff tendons after rotator cuff repair with titanium suture anchors.

    Science.gov (United States)

    Schröder, Femke F; Huis In't Veld, Rianne; den Otter, Lydia A; van Raak, Sjoerd M; Ten Haken, Bennie; Vochteloo, Anne J H

    2018-04-01

    The rate of retear after rotator cuff surgery is 17%. Magnetic resonance imaging (MRI) scans are used for confirmative diagnosis of retear. However, because of the presence of titanium suture anchors, metal artefacts on the MRI are common. The present study evaluated the diagnostic value of MRI after rotator cuff tendon surgery with respect to assessing the integrity as well as the degeneration and atrophy of the rotator cuff tendons when titanium anchors are in place. Twenty patients who underwent revision surgery of the rotator cuff as a result of a clinically suspected retear between 2013 and 2015 were included. The MRI scans of these patients were retrospectively analyzed by four specialized shoulder surgeons and compared with intra-operative findings (gold standard). Sensitivity and interobserver agreement among the surgeons in assessing retears as well as the Goutallier and Warner classification were examined. In 36% (range 15% to 50%) of the pre-operative MRI scans, the observers could not review the rotator cuff tendons. When the rotator cuff tendons were assessable, a diagnostic accuracy with a mean sensitivity of 0.84 (0.70 to 1.0) across the surgeons was found, with poor interobserver agreement (kappa = 0.12). Metal artefacts prevented accurate diagnosis from MRI scans of rotator cuff retear in 36% of the patients studied.

  15. Radiologic Findings of Reversed Intestinal Rotation in Adults: 3 Cases Report

    International Nuclear Information System (INIS)

    Baek, Hyeon Seok; Cho, Jae Ho; Chang, Jay Chun; Kim, Jae Woon; Kim, Kum Rae; Park, Won Kyu; Kim, Jong Yeol

    2009-01-01

    Most anomalies of intestinal rotation are detected during the postneonatal period. In adults, the diagnosis and treatment of patients with a congenital anomaly of the midgut can be difficult because of their extremely rarity. Based on embryology, anomalies of intestinal rotation can be divided into non-rotation, reversed rotation and malrotation. Reversed rotation of the midgut is the rarest of all anomalies of intestinal rotation. Although this anomaly is rare, it can be diagnosed by a detailed knowledge of embryology and anatomy. We report three adult patients with reversed intestinal rotation and review the embryology, clinical presentation and radiographic findings of this disorder

  16. Mixed convection heat transfer simulation in a rectangular channel with a variable speed rotational cylinder

    Science.gov (United States)

    Khan, Md Imran; Billah, Md. Mamun; Rahman, Mohammed Mizanur; Hasan, Mohammad Nasim

    2017-12-01

    Numerical simulation of steady two-dimensional heat transfer in a rectangular channel with a centered variable speed cylinder has been performed in this paper. In this setup, an isoflux heater is placed at the bottom wall of the channel while the upper wall is kept isothermal with a low temperature. The cylinder's peripheral speed to maximum inlet fluid velocity ratio (ξ) is varied from 0.5 to 1.5 for both clockwise and anticlockwise rotational cases. Air has been considered as working fluid while other system parameters such as Grashof and Reynolds numbers are varied. The effects of rotational speed, Grashof and Reynolds numbers on the streamline pattern, isothermal lines, local and average Nusselt number are analyzed and presented. It is observed the cylinder's rotational direction and speed has a significant effect on the flow pattern, temperature distribution as well as heat transfer characteristics.

  17. Transtendon rotator-cuff repair of partial-thickness articular surface tears can lead to medial rotator-cuff failure

    Directory of Open Access Journals (Sweden)

    Woods TC

    2014-06-01

    Full Text Available Tom C Woods,4 Michael J Carroll,1 Atiba A Nelson,2 Kristie D More,2 Randa Berdusco,1 Stephen Sohmer,3 Richard S Boorman,1,2 Ian KY Lo1,21Department of Surgery, 2Sport Medicine Centre, University of Calgary, Calgary, AB, Canada; 3Department of Orthopaedics, University of British Columbia, Vancouver, 4St Joseph's Hospital, Comox, BC, CanadaPurpose: The purpose of this study was to evaluate clinical and anatomic outcomes of patients following transtendon rotator-cuff repair of partial articular supraspinatus tendon avulsion (PASTA lesions.Patients and methods: Patients in the senior author's practice who had isolated PASTA lesions treated by transtendon rotator-cuff repair were included (n=8 and retrospectively reviewed. All patients were evaluated preoperatively and at a mean of 21.2 months (±9.7 months postoperatively using standardized clinical evaluation (physical exam, American Shoulder and Elbow Surgeons, and Simple Shoulder Test. All patients underwent postoperative imaging with a magnetic resonance imaging arthrogram.Results: There was a significant improvement in American Shoulder and Elbow Surgeons (42.7±17.5 to 86.9±25.2 and Simple Shoulder Test (4.6±3.2 to 10.1±3.8 scores from pre- to postoperative, respectively. Postoperative imaging demonstrated full-thickness medial cuff tearing in seven patients, and one patient with a persistent partial articular surface defect.Conclusion: Transtendon repair of PASTA lesions may lead to improvements in clinical outcome. However, postoperative imaging demonstrated a high incidence of full-thickness rotator-cuff defects following repair.Keywords: rotator cuff, PASTA lesion, transtendon repair

  18. Experimental Setups for Single Event Effect Studies

    OpenAIRE

    N. H. Medina; V. A. P. Aguiar; N. Added; F. Aguirre; E. L. A. Macchione; S. G. Alberton; M. A. G. Silveira; J. Benfica; F. Vargas; B. Porcher

    2016-01-01

    Experimental setups are being prepared to test and to qualify electronic devices regarding their tolerance to Single Event Effect (SEE). A multiple test setup and a new beam line developed especially for SEE studies at the São Paulo 8 UD Pelletron accelerator were prepared. This accelerator produces proton beams and heavy ion beams up to 107Ag. A Super conducting Linear accelerator, which is under construction, may fulfill all of the European Space Agency requirements to qualify electronic...

  19. Advances in liquid phase soft-x-ray photoemission spectroscopy: A new experimental setup at BESSY II

    Science.gov (United States)

    Seidel, Robert; Pohl, Marvin N.; Ali, Hebatallah; Winter, Bernd; Aziz, Emad F.

    2017-07-01

    A state-of-the-art experimental setup for soft X-ray photo- and Auger-electron spectroscopy from liquid phase has been built for operation at the synchrotron-light facility BESSY II, Berlin. The experimental station is named SOL3, which is derived from solid, solution, and solar, and refers to the aim of studying solid-liquid interfaces, optionally irradiated by photons in the solar spectrum. SOL3 is equipped with a high-transmission hemispherical electron analyzer for detecting electrons emitted from small molecular aggregates, nanoparticles, or biochemical molecules and their components in (aqueous) solutions, either in vacuum or in an ambient pressure environment. In addition to conventional energy-resolved electron detection, SOL3 enables detection of electron angular distributions by the combination of a ±11° acceptance angle of the electron analyzer and a rotation of the analyzer in the polarization plane of the incoming synchrotron-light beam. The present manuscript describes the technical features of SOL3, and we also report the very first measurements of soft-X-ray photoemission spectra from a liquid microjet of neat liquid water and of TiO2-nanoparticle aqueous solution obtained with this new setup, highlighting the necessity for state-of-the-art electron detection.

  20. Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Erridge, Sara C.; Seppenwoolde, Yvette; Muller, Sara H.; Herk, Marcel van; Jaeger, Katrien de; Belderbos, Jose S.A.; Boersma, Liesbeth J.; Lebesque, Joos V.

    2003-01-01

    Purpose: To investigate patient set-up, tumor movement and shrinkage during 3D conformal radiotherapy for non-small cell lung cancer. Materials and methods: In 97 patients, electronic portal images (EPIs) were acquired and corrected for set-up using an off-line correction protocol based on a shrinking action level. For 25 selected patients, the orthogonal EPIs (taken at random points in the breathing cycle) throughout the 6-7 week course of treatment were assessed to establish the tumor position in each image using both an overlay and a delineation technique. The range of movement in each direction was calculated. The position of the tumor in the digitally reconstructed radiograph (DRR) was compared to the average position of the lesion in the EPIs. In addition, tumor shrinkage was assessed. Results: The mean overall set-up errors after correction were 0, 0.6 and 0.2 mm in the x (left-right), y (cranial-caudal) and z (anterior-posterior) directions, respectively. After correction, the standard deviations (SDs) of systematic errors were 1.4, 1.5 and 1.3 mm and the SDs of random errors were 2.9, 3.1 and 2.0 mm in the x-, y- and z-directions, respectively. Without correction, 41% of patients had a set-up error of more than 5 mm vector length, but with the set-up correction protocol this percentage was reduced to 1%. The mean amplitude of tumor motion was 7.3 (SD 2.7), 12.5 (SD 7.3) and 9.4 mm (SD 5.2) in the x-, y- and z-directions, respectively. Tumor motion was greatest in the y-direction and in particular for lower lobe tumors. In 40% of the patients, the projected area of the tumor regressed by more than 20% during treatment in at least one projection. In 16 patients it was possible to define the position of the center of the tumor in the DRR. There was a mean difference of 6 mm vector length between the tumor position in the DRR and the average position in the portal images. Conclusions: The application of the correction protocol resulted in a significant

  1. Cone-Beam CT Assessment of Interfraction and Intrafraction Setup Error of Two Head-and-Neck Cancer Thermoplastic Masks

    International Nuclear Information System (INIS)

    Velec, Michael; Waldron, John N.; O'Sullivan, Brian; Bayley, Andrew; Cummings, Bernard; Kim, John J.; Ringash, Jolie; Breen, Stephen L.; Lockwood, Gina A.; Dawson, Laura A.

    2010-01-01

    Purpose: To prospectively compare setup error in standard thermoplastic masks and skin-sparing masks (SSMs) modified with low neck cutouts for head-and-neck intensity-modulated radiation therapy (IMRT) patients. Methods and Materials: Twenty head-and-neck IMRT patients were randomized to be treated in a standard mask (SM) or SSM. Cone-beam computed tomography (CBCT) scans, acquired daily after both initial setup and any repositioning, were used for initial and residual interfraction evaluation, respectively. Weekly, post-IMRT CBCT scans were acquired for intrafraction setup evaluation. The population random (σ) and systematic (Σ) errors were compared for SMs and SSMs. Skin toxicity was recorded weekly by use of Radiation Therapy Oncology Group criteria. Results: We evaluated 762 CBCT scans in 11 patients randomized to the SM and 9 to the SSM. Initial interfraction σ was 1.6 mm or less or 1.1 deg. or less for SM and 2.0 mm or less and 0.8 deg. for SSM. Initial interfraction Σ was 1.0 mm or less or 1.4 deg. or less for SM and 1.1 mm or less or 0.9 deg. or less for SSM. These errors were reduced before IMRT with CBCT image guidance with no significant differences in residual interfraction or intrafraction uncertainties between SMs and SSMs. Intrafraction σ and Σ were less than 1 mm and less than 1 deg. for both masks. Less severe skin reactions were observed in the cutout regions of the SSM compared with non-cutout regions. Conclusions: Interfraction and intrafraction setup error is not significantly different for SSMs and conventional masks in head-and-neck radiation therapy. Mask cutouts should be considered for these patients in an effort to reduce skin toxicity.

  2. Rotator cuff degeneration of the healthy shoulder in patients with unilateral arm amputation is not worsened by overuse.

    Science.gov (United States)

    Gumina, S; Candela, V; Mariani, L; Venditto, T; Catalano, C; Castellano, S; Santilli, V; Giannicola, G; Castagna, A

    2018-01-01

    In order to evaluate whether overuse has a significant role in rotator cuff tear (RCT) aetiology, we evaluated both shoulders of patients with old unilateral arm amputation expecting a higher rate of RC degeneration in the healthy side. Nineteen males and six females (mean age: 57.3 ± 10.1) with an old (>20 years) unilateral arm amputation were submitted to an MRI of both shoulders. Tendon status and muscle tropism were evaluated according to Sugaya and Fuchs classifications, respectively; the acromion humeral distance was measured. Statistical analysis was performed to verify the prevalence of Sugaya and Fuchs categories in each sides. A significant prevalence of Sugaya type II in the amputated side (p = 0.02) and of type I in the healthy side (p Rotator cuff was healthy in 28 and 52% of amputated and non-amputated side, respectively. The mean acromio-humeral distances of the amputated and healthy side were 0.8 cm (SD: 0.1) and 0.9 cm (SD: 0.1), respectively, (p = 0.02). A significant prevalence of Fuchs type II category in the healthy side (p Cuff tear prevalence in not amputated shoulders, inevitably submitted to functional overload, was not higher than that of coetaneous subjects with two functional upper limbs. Shoulder non-use is a risk factor for rotator cuff tear. As the prevalence of rotator cuff degeneration/tear is higher in the amputee side, non-use is a more relevant risk factor than overuse. In the daily clinical practice, patients with rotator cuff tear should be encouraged to shoulder movement because rotator cuff tendon status could be worsened by disuse. III.

  3. Return to driving after arthroscopic rotator cuff repair: patient-reported safety and maneuverability.

    Science.gov (United States)

    Gholson, J Joseph; Lin, Albert; McGlaston, Timothy; DeAngelis, Joseph; Ramappa, Arun

    2015-01-01

    This survey investigated patients' return to driving after rotator cuff surgery, to determine whether pain, weakness, sling use, and narcotics correlate with self-assessed safety and maneuvering. Fifty-four patients (80.6% of those eligible) were surveyed 4 months after surgery. Return to driving ranged widely from same day to 4 months, with two not driving at 4 months; 12% reported narcotics use and 33% reported sling use. Drivers reporting weakness were more likely to feel unsafe (p = .02) and more likely to report difficulty maneuvering (p driving does not correspond to perceived safety; pain and weakness correspond with feeling unsafe and difficulty maneuvering. Although subjective, clinicians may find these self-assessments predictive when counseling patients on return to driving.

  4. Arthroscintigraphy in suspected rotator cuff rupture

    International Nuclear Information System (INIS)

    Gratz, S.; Behr, T.; Becker, W.; Koester, G.; Vosshenrich, R.; Grabbe, E.

    1998-01-01

    Aim: In order to evaluate the diagnostic efficiency of arthroscintigraphy in suspected rotator cuff ruptures this new imaging procedure was performed 20 times in 17 patients with clinical signs of a rotator cuff lesion. The scintigraphic results were compared with sonography (n=20), contrast arthrography (n=20) and arthroscopy (n=10) of the shoulder joint. Methods: After performing a standard bone scintigraphy with intravenous application of 300 MBq 99m-Tc-methylene diphosphonate (MDP) for landmarking of the shoulder region arthroscintigraphy was performed after an intraarticular injection of 99m-Tc microcolloid (ALBU-RES 400 μCi/5 ml). The application was performed either in direct combination with contrast arthrography (n=10) or ultrasound conducted mixed with a local anesthetic (n=10). Findings at arthroscopical surgery (n=10) were used as the gold standard. Results: In case of complete rotator cuff rupture (n=5), arthroscintigraphy and radiographic arthrography were identical in 5/5. In one patient with advanced degenerative alterations of the shoulder joint radiographic arthrography incorrectly showed a complete rupture which was not seen by arthroscintigraphy and endoscopy. In 3 patients with incomplete rupture, 2/3 results were consistant. A difference was seen in one patient with a rotator cuff, that has been already revised in the past and that suffered of capsulitis and calcification. Conclusion: Arthroscinitgraphy is a sensitive technique for detection of rotator cuff ruptures. Because of the lower viscosity of the active compound, small ruptures can be easily detected, offering additional value over radiographic arthrography and ultrasound, especially for evaluation of incomplete cuff ruptures. (orig.) [de

  5. FTIR free-jet set-up for the high resolution spectroscopic investigation of condensable species

    Science.gov (United States)

    Georges, R.; Bonnamy, A.; Benidar, A.; Decroi, M.; Boissoles, J.

    2002-05-01

    An existing experimental set-up combining Fourier transform infrared (FTIR) spectroscopy and free-jet cooling has been modified significantly to allow high resolution studies of the spectrum of monomer species which are liquid under standard conditions. Evaporation of the liquid samples is controlled by a condenser apparatus which is described. A supersonic planar expansion issuing from a narrow aperture is preferred for its very high cooling rate. Such an expansion, probed with a pitot tube, has a zone of limited temperature gradient close to the nozzle exit. The continuum isentropic model appears well suited to describing the thermodynamic properties of the flow up to a high number of nozzle diameters downstream. High resolution spectra of benzene and methanol have been recorded in the 3 µm wavelength range, and their analysis demonstrates a well defined rotational temperature in the 20-25 K range.

  6. Assessment of cervical stiffness in axial rotation among chronic neck pain patients: A trial in the framework of a non-manipulative osteopathic management.

    Science.gov (United States)

    Dugailly, P-M; Coucke, A; Salem, W; Feipel, V

    2018-03-01

    Cervical stiffness is a clinical feature commonly appraised during the functional examination of cervical spine. Measurements of cervical stiffness in axial rotation have not been reported for patients with neck pain. The purpose of this study was to investigate cervical spine stiffness in axial rotation among neck pain patients and asymptomatic subjects, and to analyze the impact of osteopathic management. Thirty-five individuals (17 patients) were enrolled. Measurements were carried out for left-right axial rotation using a torque meter device, prior and after intervention. Passive range of motion, stiffness, and elastic-and neutral zone magnitudes were analyzed. Pain intensity was also collected for patients. The intervention consisted in one single session of non-manipulative osteopathic treatment performed in both groups. A significant main effect of intervention was found for total range of motion and neutral zone. Also, treatment by group interaction was demonstrated for neutral-, elastic zone, stiffness in right axial rotation, and for total neutral zone. Significant changes were observed in the clinical group after intervention, indicating elastic zone decrease and neutral zone increase. In contrast, no significant alteration was detected for the control group. Stiffness characteristics of the cervical spine in axial rotation are prone to be altered in patients with neck pain, but seem to be relieved after a session of non-manipulative manual therapeutic techniques. Further investigations, including randomized clinical trials with various clinical populations and therapeutic modalities, are needed to confirm these preliminary findings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Advanced Rotator Cuff Tear Score (ARoCuS): a multi-scaled tool for the classification and description of rotator cuff tears.

    Science.gov (United States)

    Walter, S G; Stadler, T; Thomas, T S; Thomas, W

    2018-03-02

    To introduce a (semi-)quantitative surgical score for the classification of rotator cuff tears. A total of 146 consecutive patients underwent rotator cuff repair and were assessed using the previously defined Advanced Rotator Cuff Tear Score (ARoCuS) criteria: muscle tendon, size, tissue quality, pattern as well as mobilization of the tear. The data set was split into a training (125 patients) and a testing set (21 patients). The training data set fitted a nonlinear predictive model of the tear score based on the ARoCuS criteria, while the testing data served as control. Based on the scoring results, rotator cuff tears were assigned to one of four categories (ΔV I-IV) and received a stage-adapted treatment. For statistical analysis, mean values ± standard deviation, interclass correlation coefficients (ICC) and kappa values were calculated. Overall, 32 patients were classified as ΔV I, 68 as ΔV II and 37 as ΔV III. Nine patients showed ΔV IV tears. Patients of all ΔV groups improved significantly their Constant scores (p tears in a standardized and reproducible manner.

  8. Single Machine Multi-product Capacitated Lotsizing with Sequence-dependent Setups

    OpenAIRE

    Almada-Lobo , Bernardo; Klabjan , Diego; Carravilla , Maria Antónia; Oliveira , Jose Fernando

    2007-01-01

    Abstract In production planning in the glass container industry, machine dependent setup times and costs are incurred for switchovers from one product to another. The resulting multi-item capacitated lot sizing problem has sequence-dependent setup times and costs. We present two novel linear mixed integer programming formulations for this problem, incorporating all the necessary features of setup carryovers. The compact formulation has polynomially many constraints, while, on the o...

  9. Trauma versus no trauma: an analysis of the effect of tear mechanism on tendon healing in 1300 consecutive patients after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Tan, Martin; Lam, Patrick H; Le, Brian T N; Murrell, George A C

    2016-01-01

    Patients with rotator cuff tears often recall a specific initiating event (traumatic), whereas many cannot (nontraumatic). It is unclear how important a history of trauma is to the outcomes of rotator cuff repair. This question was addressed in a study cohort of 1300 consecutive patients who completed a preoperative questionnaire regarding their shoulder injury and had a systematic evaluation of shoulder range of motion and strength, a primary arthroscopic rotator cuff repair performed by a single surgeon, an ultrasound scan, and the same subjective and objective measurements made of their shoulder 6 months after surgery. Post hoc, this cohort was separated into 2 groups: those who reported no history of trauma on presentation (n = 489) and those with a history of traumatic injury (n = 811). The retear rate in the group with no history of trauma was 12%, whereas that of the group with a history of trauma was 14% (P = .36). Those patients with a history of shoulder trauma who waited longer than 24 months had higher retear rates (20%) than those who had their surgery earlier (13%) (P = .040). Recollection of a traumatic initiating event had little effect on the outcome of arthroscopic rotator cuff repair. Duration of symptoms was important in predicting retears if patients recalled a specific initiating event but not in patients who did not recall any specific initiating event. Patients with a history of trauma should be encouraged to have their rotator cuff tear repaired within 2 years. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Noninjured Knees of Patients With Noncontact ACL Injuries Display Higher Average Anterior and Internal Rotational Knee Laxity Compared With Healthy Knees of a Noninjured Population.

    Science.gov (United States)

    Mouton, Caroline; Theisen, Daniel; Meyer, Tim; Agostinis, Hélène; Nührenbörger, Christian; Pape, Dietrich; Seil, Romain

    2015-08-01

    Excessive physiological anterior and rotational knee laxity is thought to be a risk factor for noncontact anterior cruciate ligament (ACL) injuries and inferior reconstruction outcomes, but no thresholds have been established to identify patients with increased laxity. (1) To determine if the healthy contralateral knees of ACL-injured patients have greater anterior and rotational knee laxity, leading to different laxity profiles (combination of laxities), compared with healthy control knees and (2) to set a threshold to help discriminate anterior and rotational knee laxity between these groups. Case-sectional study; Level of evidence, 3. A total of 171 healthy contralateral knees of noncontact ACL-injured patients (ACL-H group) and 104 healthy knees of control participants (CTL group) were tested for anterior and rotational laxity. Laxity scores (measurements corrected for sex and body mass) were used to classify knees as hypolax (score 1). Proportions of patients in each group were compared using χ(2) tests. Receiver operating characteristic curves were computed to discriminate laxity between the groups. Odds ratios were calculated to determine the probability of being in the ACL-H group. The ACL-H group displayed greater laxity scores for anterior displacement and internal rotation in their uninjured knee compared with the CTL group (P knees of patients with noncontact ACL injuries display different laxity values both for internal rotation and anterior displacement compared with healthy control knees. The identification of knee laxity profiles may be of relevance for primary and secondary prevention programs of noncontact ACL injuries. © 2015 The Author(s).

  11. Glenohumeral joint translation and muscle activity in patients with symptomatic rotator cuff pathology: An ultrasonographic and electromyographic study with age-matched controls.

    Science.gov (United States)

    Rathi, Sangeeta; Taylor, Nicholas F; Soo, Brendan; Green, Rodney A

    2018-03-02

    To determine whether patients with symptomatic rotator cuff pathology had more glenohumeral joint translation and different patterns of rotator cuff muscle activity compared to controls. Repeated measurements of glenohumeral translation and muscle activity in two positions and six testing conditions in two groups. Twenty participants with a symptomatic and diagnosed rotator cuff tear and 20 age, and gender matched controls were included. Neuromuscular activity was tested by inserting intramuscular electrodes in the rotator cuff muscles. Anterior and posterior glenohumeral translations were measured using real time ultrasound in testing conditions (with and without translation force, with and without isometric internal and external rotation), in two positions (shoulder neutral, 90° of abduction) and two force directions (anterior, posterior). Symptomatic pathology group demonstrated increased passive glenohumeral translation with posterior translation force (protator cuff muscle contraction in the pathology group limited joint translation in a similar manner to the control group, but they did not show the normal direction specific pattern in the neutral posterior position (protator cuff still controlled glenohumeral translation. These results highlight the need to consider joint translation in the assessment and management of patients with rotator cuff injury. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. SU-E-J-258: Inter- and Intra-Fraction Setup Stability and Couch Change Tolerance for Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Teboh, Forbang R; Agee, M; Rowe, L; Creasy, T; Schultz, J; Bell, R; Wong, J; Armour, E

    2014-01-01

    Purpose: Immobilization devices combine rigid patient fixation as well as comfort and play a key role providing the stability required for accurate radiation delivery. In the setup step, couch re-positioning needed to align the patient is derived via registration of acquired versus reference image. For subsequent fractions, replicating the initial setup should yield identical alignment errors when compared to the reference. This is not always the case and further couch re-positioning can be needed. An important quality assurance measure is to set couch tolerances beyond which additional investigations are needed. The purpose of this work was to study the inter-fraction couch changes needed to re-align the patient and the intra-fraction stability of the alignment as a guide to establish the couch tolerances. Methods: Data from twelve patients treated on the Accuray CyberKnife (CK) system for fractionated intracranial radiotherapy and immobilized with Aquaplast RT, U-frame, F-Head-Support (Qfix, PA, USA) was used. Each fraction involved image acquisitions and registration with the reference to re-align the patient. The absolute couch position corresponding to the approved setup alignment was recorded per fraction. Intra-fraction set-up corrections were recorded throughout the treatment. Results: The average approved setup alignment was 0.03±0.28mm, 0.15±0.22mm, 0.06±0.31mm in the L/R, A/P, S/I directions respectively and 0.00±0.35degrees, 0.03±0.32degrees, 0.08±0.45degrees for roll, pitch and yaw respectively. The inter-fraction reproducibility of the couch position was 6.65mm, 10.55mm, and 4.77mm in the L/R, A/P and S/I directions respectively and 0.82degrees, 0.71degrees for roll and pitch respectively. Intra-fraction monitoring showed small average errors of 0.21±0.21mm, 0.00±0.08mm, 0.23±0.22mm in the L/R, A/P, S/I directions respectively and 0.03±0.12degrees, 0.04±0.25degrees, and 0.13±0.15degrees in the roll, pitch and yaw respectively. Conclusion

  13. SU-E-J-258: Inter- and Intra-Fraction Setup Stability and Couch Change Tolerance for Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Teboh, Forbang R; Agee, M; Rowe, L; Creasy, T; Schultz, J; Bell, R; Wong, J; Armour, E [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-01

    Purpose: Immobilization devices combine rigid patient fixation as well as comfort and play a key role providing the stability required for accurate radiation delivery. In the setup step, couch re-positioning needed to align the patient is derived via registration of acquired versus reference image. For subsequent fractions, replicating the initial setup should yield identical alignment errors when compared to the reference. This is not always the case and further couch re-positioning can be needed. An important quality assurance measure is to set couch tolerances beyond which additional investigations are needed. The purpose of this work was to study the inter-fraction couch changes needed to re-align the patient and the intra-fraction stability of the alignment as a guide to establish the couch tolerances. Methods: Data from twelve patients treated on the Accuray CyberKnife (CK) system for fractionated intracranial radiotherapy and immobilized with Aquaplast RT, U-frame, F-Head-Support (Qfix, PA, USA) was used. Each fraction involved image acquisitions and registration with the reference to re-align the patient. The absolute couch position corresponding to the approved setup alignment was recorded per fraction. Intra-fraction set-up corrections were recorded throughout the treatment. Results: The average approved setup alignment was 0.03±0.28mm, 0.15±0.22mm, 0.06±0.31mm in the L/R, A/P, S/I directions respectively and 0.00±0.35degrees, 0.03±0.32degrees, 0.08±0.45degrees for roll, pitch and yaw respectively. The inter-fraction reproducibility of the couch position was 6.65mm, 10.55mm, and 4.77mm in the L/R, A/P and S/I directions respectively and 0.82degrees, 0.71degrees for roll and pitch respectively. Intra-fraction monitoring showed small average errors of 0.21±0.21mm, 0.00±0.08mm, 0.23±0.22mm in the L/R, A/P, S/I directions respectively and 0.03±0.12degrees, 0.04±0.25degrees, and 0.13±0.15degrees in the roll, pitch and yaw respectively. Conclusion

  14. Intestinal Rotation Abnormalities and Midgut Volvulus.

    Science.gov (United States)

    Langer, Jacob C

    2017-02-01

    Rotation abnormalities may be asymptomatic or may be associated with obstruction caused by bands, midgut volvulus, or associated atresia or web. The most important goal of clinicians is to determine whether the patient has midgut volvulus with intestinal ischemia, in which case an emergency laparotomy should be done. If the patient is not acutely ill, the next goal is to determine whether the patient has a narrow-based small bowel mesentery. In general, the outcomes for children with a rotation abnormality are excellent, unless there has been midgut volvulus with significant intestinal ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. New attacks on Wi-Fi Protected Setup

    OpenAIRE

    Hamed Mohtadi; Alireza Rahimi

    2015-01-01

    Wi-Fi Protected Setup (WPS) is a network security standard that is used to secure networks in home and office, introduced in 2006 by the Wi-Fi Alliance. It provides easier configuration setup and is used in almost all recent Wi-Fi devices. In this paper we propose two attacks on this standard. The first attack is an offline brute force attack that uses imbalance on registration protocol. This attack needs user action, but it is more efficient than previous attacks. The second attack uses weak...

  16. Validation of the Rotation Ratios Method

    International Nuclear Information System (INIS)

    Foss, O.A.; Klaksvik, J.; Benum, P.; Anda, S.

    2007-01-01

    Background: The rotation ratios method describes rotations between pairs of sequential pelvic radiographs. The method seems promising but has not been validated. Purpose: To validate the accuracy of the rotation ratios method. Material and Methods: Known pelvic rotations between 165 radiographs obtained from five skeletal pelvises in an experimental material were compared with the corresponding calculated rotations to describe the accuracy of the method. The results from a clinical material of 262 pelvic radiographs from 46 patients defined the ranges of rotational differences compared. Repeated analyses, both on the experimental and the clinical material, were performed using the selected reference points to describe the robustness and the repeatability of the method. Results: The reference points were easy to identify and barely influenced by pelvic rotations. The mean differences between calculated and real pelvic rotations were 0.0 deg (SD 0.6) for vertical rotations and 0.1 deg (SD 0.7) for transversal rotations in the experimental material. The intra- and interobserver repeatability of the method was good. Conclusion: The accuracy of the method was reasonably high, and the method may prove to be clinically useful

  17. Rotator manşetin kalsifiye tendinitinin artroskopik tedavisi

    OpenAIRE

    Ozkoc, Gurkan; Akpinar, Sercan; Hersekli, Murat; Ozalay, Metin; Tandogan, Reha

    2004-01-01

    Objectives: We evaluated the effectiveness of arthroscopic treatment in patients with rotator cuff calcifying tendinitis unresponsive to conservative treatment.Methods: Arthroscopic treatment was performed in 10 patients (6 females, 4 males; mean age 46 years; range 34 to 53 years) in whom pain and functional disability persisted for more than a year despite conservative therapy for rotator cuff calcifying tendinitis. Arthroscopic bursectomy was also carried out. One patient underwent repair ...

  18. Comparison of orthogonal kilovolt X-ray images and cone-beam CT matching results in setup error assessment and correction for EB-PBI during free breathing

    International Nuclear Information System (INIS)

    Wang Wei; Li Jianbin; Hu Hongguang; Ma Zhifang; Xu Min; Fan Tingyong; Shao Qian; Ding Yun

    2014-01-01

    Objective: To compare the differences in setup error (SE) assessment and correction between the orthogonal kilovolt X-ray images and CBCT in EB-PBI patients during free breathing. Methods: Nineteen patients after breast conserving surgery EB-PBI were recruited. Interfraction SE was acquired using orthogonal kilovolt X-ray setup images and CBCT, after on-line setup correction,calculate the residual error and compare the SE, residual error and setup margin (SM) quantified for orthogonal kilovolt X-ray images and CBCT. Wilcoxon sign-rank test was used to evaluate the differences. Results: The CBCT based SE (systematic error, ∑) was smaller than the orthogonal kilovolt X-ray images based ∑ in AP direction (-1.2 mm vs 2.00 mm; P=0.005), and there was no statistically significant differences for three dimensional directions in random error (σ) (P=0.948, 0.376, 0.314). After on-line setup correction,CBCT decreases setup residual error than the orthogonal kilovolt X-ray images in AP direction (Σ: -0.20 mm vs 0.50 mm, P=0.008; σ: 0.45 mm vs 1.34 mm, P=0.002). And also the CBCT based SM was smaller than orthogonal kilovolt X-ray images based SM in AP direction (Σ: -1.39 mm vs 5.57 mm, P=0.003; σ: 0.00 mm vs 3.2 mm, P=0.003). Conclusions: Compared with kilovolt X-ray images, CBCT underestimate the setup error in the AP direction, but decreases setup residual error significantly.An image-guided radiotherapy and setup error assessment using kilovolt X-ray images for EB-PBI plans was feasible. (authors)

  19. Opioid rotation with extended-release opioids: where should we begin?

    Directory of Open Access Journals (Sweden)

    Nalamachu S

    2011-12-01

    Full Text Available Srinivas NalamachuInternational Clinical Research Institute and Pain Management Institute, Overland Park, KS, USAAbstract: Opioid rotation is a common and necessary clinical practice in the management of chronic non-cancer pain to improve therapeutic efficacy with the lowest opioid dose. When dose escalations fail to achieve adequate analgesia or are associated with intolerable side effects, a trial of a new opioid should be considered. Much of the scientific rationale of opioid rotation is based on the wide interindividual variability in sensitivity to opioid analgesics and the novel patient response observed when introducing an opioid-tolerant patient to a new opioid. This article discusses patient indicators for opioid rotation, the conversion process between opioid medications, and additional practical considerations for increasing the effectiveness of opioid therapy during a trial of a new opioid. A Patient vignette that demonstrates a step-wise approach to opioid rotation is also presented.Keywords: extended-release opioids, chronic pain, opioid rotation

  20. SU-E-T-631: Preliminary Results for Analytical Investigation Into Effects of ArcCHECK Setup Errors

    International Nuclear Information System (INIS)

    Kar, S; Tien, C

    2015-01-01

    Purpose: As three-dimensional diode arrays increase in popularity for patient-specific quality assurance for intensity-modulated radiation therapy (IMRT), it is important to evaluate an array’s susceptibility to setup errors. The ArcCHECK phantom is set up by manually aligning its outside marks with the linear accelerator’s lasers and light-field. If done correctly, this aligns the ArcCHECK cylinder’s central axis (CAX) with the linear accelerator’s axis of rotation. However, this process is prone to error. This project has developed an analytical expression including a perturbation factor to quantify the effect of shifts. Methods: The ArcCHECK is set up by aligning its machine marks with either the sagittal room lasers or the light-field of the linear accelerator at gantry zero (IEC). ArcCHECK has sixty-six evenly-spaced SunPoint diodes aligned radially in a ring 14.4 cm from CAX. The detector response function (DRF) was measured and combined with inverse-square correction to develop an analytical expression for output. The output was calculated using shifts of 0 (perfect alignment), +/−1, +/−2 and +/−5 mm. The effect on a series of simple inputs was determined: unity, 1-D ramp, steps, and hat-function to represent uniform field, wedge, evenly-spaced modulation, and single sharp modulation, respectively. Results: Geometric expressions were developed with perturbation factor included to represent shifts. DRF was modeled using sixth-degree polynomials with correlation coefficient 0.9997. The output was calculated using simple inputs such as unity, 1-D ramp, steps, and hat-function, with perturbation factors of: 0, +/−1, +/−2 and +/−5 mm. Discrepancies have been observed, but large fluctuations have been somewhat mitigated by aliasing arising from discrete diode placement. Conclusion: An analytical expression with perturbation factors was developed to estimate the impact of setup errors on an ArcCHECK phantom. Presently, this has been applied to

  1. Muscle gene expression patterns in human rotator cuff pathology.

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J; Lieber, Richard L; Schenk, Simon; Lane, John G; Ward, Samuel R

    2014-09-17

    Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of myogenesis. These data highlight the

  2. Design and simulation of the rotating test rig in the INDUFLAP project

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; Aagaard Madsen, Helge; Løgstrup Andersen, Tom

    The general description and objectives of the rotating test rig at the Risø campus of DTU are presented, as used for the aeroelastic testing of a controllable rubber trailing edge flap (CRTEF) system in the INDUFLAP project. The design of all new components is presented, including the electrical...... drive, the pitch system, the boom, and the wing/flap section. The overall instrumentation of the components used for the aeroelastic testing is described. Moreover, the aeroelastic model simulating the setup is described, and predictions of steady and dynamic loading along with the aeroelastic analysis...

  3. Evaluation of errors set-up and setting margins calculation in treatments 3-D conformal radiotherapy; Evaluacion de errores de set-up y calculo de margenes de configuracion en tratamientos de radioterapia CONFORMADA 3-D

    Energy Technology Data Exchange (ETDEWEB)

    Donis, S.; Robayna, B.; Gonzalez, A.; Hernandez Armas, J.

    2011-07-01

    The use of IGRT techniques provide knowledge of the mistakes made in the positioning of a patient, to population studies and estimate the margins for each population.In this paper we evaluate the errors of set-up in 3 different locations and from these margins are calculated configuration (SM).

  4. HECTOR: A 240kV micro-CT setup optimized for research

    Science.gov (United States)

    Masschaele, Bert; Dierick, Manuel; Van Loo, Denis; Boone, Matthieu N.; Brabant, Loes; Pauwels, Elin; Cnudde, Veerle; Van Hoorebeke, Luc

    2013-10-01

    X-ray micro-CT has become a very powerful and common tool for non-destructive three-dimensional (3D) visualization and analysis of objects. Many systems are commercially available, but they are typically limited in terms of operational freedom both from a mechanical point of view as well as for acquisition routines. HECTOR is the latest system developed by the Ghent University Centre for X-ray Tomography (http://www.ugct.ugent.be) in collaboration with X-Ray Engineering (XRE bvba, Ghent, Belgium). It consists of a mechanical setup with nine motorized axes and a modular acquisition software package and combines a microfocus directional target X-ray source up to 240 kV with a large flat-panel detector. Provisions are made to install a line-detector for a maximal operational range. The system can accommodate samples up to 80 kg, 1 m long and 80 cm in diameter while it is also suited for high resolution (down to 4 μm) tomography. The bi-directional detector tiling is suited for large samples while the variable source-detector distance optimizes the signal to noise ratio (SNR) for every type of sample, even with peripheral equipment such as compression stages or climate chambers. The large vertical travel of 1 m can be used for helical scanning and a vertical detector rotation axis allows laminography experiments. The setup is installed in a large concrete bunker to allow accommodation of peripheral equipment such as pumps, chillers, etc., which can be integrated in the modular acquisition software to obtain a maximal correlation between the environmental control and the CT data taken. The acquisition software does not only allow good coupling with the peripheral equipment but its scripting feature is also particularly interesting for testing new and exotic acquisition routines.

  5. Pathological muscle activation patterns in patients with massive rotator cuff tears, with and without subacromial anaesthetics.

    NARCIS (Netherlands)

    Steenbrink, F.; Groot, J.H.; Veeger, H.E.J.; Meskers, C.G.M.; van de Sande, M.A.; Rozing, P.M.

    2006-01-01

    A mechanical deficit due to a massive rotator cuff tear is generally concurrent to a pain-induced decrease of maximum arm elevation and peak elevation torque. The purpose of this study was to measure shoulder muscle coordination in patients with massive cuff tears, including the effect of

  6. First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head-and-neck cancer patients

    International Nuclear Information System (INIS)

    Beek, Suzanne van; Kranen, Simon van; Mencarelli, Angelo; Remeijer, Peter; Rasch, Coen; Herk, Marcel van; Sonke, Jan-Jakob

    2010-01-01

    Purpose: To discuss the first clinical experience with a multiple region of interest (mROI) registration and correction method for high-precision radiotherapy of head-and-neck cancer patients. Materials and methods: 12-13 3D rectangular-shaped ROIs were automatically placed around bony structures on the planning CT scans (n = 50 patients) which were individually registered to subsequent CBCT scans. mROI registration was used to quantify global and local setup errors. The time required to perform the mROI registration was compared with that of a previously used single-ROI method. The number of scans with residual local setup error exceeding 5 mm/5 deg. (warnings) was scored together with the frequency ROIs exceeding these limits for three or more consecutive imaging fractions (systematic errors). Results: In 40% of the CBCT scans, one or more ROI-registrations exceeded the 5 mm/5 deg.. Most warnings were seen in ROI 'hyoid', 31% of the rotation warnings and 14% of the translation warnings. Systematic errors lead to 52 consults of the treating physician. The preparation and registration time was similar for both registration methods. Conclusions: The mROI registration method is easy to use with little extra workload, provides additional information on local setup errors, and helps to select patients for re-planning.

  7. Establishing Maximal Medical Improvement After Arthroscopic Rotator Cuff Repair.

    Science.gov (United States)

    Zuke, William A; Leroux, Timothy S; Gregory, Bonnie P; Black, Austin; Forsythe, Brian; Romeo, Anthony A; Verma, Nikhil N

    2018-03-01

    As health care transitions from a pay-for-service to a pay-for-performance infrastructure, the value of orthopaedic care must be defined accurately. Significant efforts have been made in defining quality and cost in arthroplasty; however, there remains a lag in ambulatory orthopaedic care. Two-year follow-up has been a general requirement for reporting outcomes after rotator cuff repair. However, this time requirement has not been established scientifically and is of increasing importance in the era of value-based health care. Given that arthroscopic rotator cuff repair is a common ambulatory orthopaedic procedure, the purpose of this study was to establish a time frame for maximal medical improvement (the state when improvement has stabilized) after arthroscopic rotator cuff repair. Systematic review. A systematic review of the literature was conducted, identifying studies reporting sequential patient-reported outcomes up to a minimum of 2 years after arthroscopic rotator cuff repair. The primary clinical outcome was patient-reported outcomes at 3-month, 6-month, 1-year, and 2-year follow-up. Secondary clinical outcomes included range of motion, strength, retears, and complications. Clinically significant improvement was determined between various time intervals by use of the minimal clinically important difference. The review included 19 studies including 1370 patients who underwent rotator cuff repair. Clinically significant improvement in patient-reported outcomes was seen up to 1 year after rotator cuff repair, but no clinical significance was noted from 1 year to 2 years. The majority of improvement in strength and range of motion was seen up to 6 months, but no clinically meaningful improvement was seen thereafter. All reported complications and the majority of retears occurred within 6 months after rotator cuff repair. After rotator cuff repair, a clinically significant improvement in patient-reported outcomes, range of motion, and strength was seen up to 1

  8. SU-E-CAMPUS-T-01: Analysis of the Precision of Patient Set-Up, and Fidelity of the Delivered Dose Distribution in Proton Therapy of Ocular Tumors

    International Nuclear Information System (INIS)

    Trofimov, A; Carpenter, K; Shih, HA

    2014-01-01

    Purpose: To quantify daily set-up variations in fractionated proton therapy of ocular melanomas, and to assess the effect on the fidelity of delivered distribution to the plan. Methods: In a typical five-fraction course, daily set-up is achieved by matching the position of fiducial markers in orthogonal radiographs to the images generated by treatment planning program. A patient maintains the required gaze direction voluntarily, without the aid of fixation devices. Confirmation radiographs are acquired to assess intrafractional changes. For this study, daily radiographs were analyzed to determine the daily iso-center position and apparent gaze direction, which were then transferred to the planning system to calculate the dose delivered in individual fractions, and accumulated dose for the entire course. Dose-volume metrics were compared between the planned and accumulated distributions for the tumor and organs at risk, for representative cases that varied by location within the ocular globe. Results: The analysis of the first set of cases (3 posterior, 3 transequatorial and 4 anterior tumors) revealed varying dose deviation patterns, depending on the tumor location. For anterior and posterior tumors, the largest dose increases were observed in the lens and ciliary body, while for the equatorial tumors, macula, optic nerve and disk, were most often affected. The iso-center position error was below 1.3 mm (95%-confidence interval), and the standard deviation of daily polar and azimuthal gaze set-up were 1.5 and 3 degrees, respectively. Conclusion: We quantified interfractional and intrafractional set-up variation, and estimated their effect on the delivered dose for representative cases. Current safety margins are sufficient to maintain the target coverage, however, the dose delivered to critical structures often deviates from the plan. The ongoing analysis will further explore the patterns of dose deviation, and may help to identify particular treatment scenarios

  9. SU-E-CAMPUS-T-01: Analysis of the Precision of Patient Set-Up, and Fidelity of the Delivered Dose Distribution in Proton Therapy of Ocular Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trofimov, A; Carpenter, K; Shih, HA [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-15

    Purpose: To quantify daily set-up variations in fractionated proton therapy of ocular melanomas, and to assess the effect on the fidelity of delivered distribution to the plan. Methods: In a typical five-fraction course, daily set-up is achieved by matching the position of fiducial markers in orthogonal radiographs to the images generated by treatment planning program. A patient maintains the required gaze direction voluntarily, without the aid of fixation devices. Confirmation radiographs are acquired to assess intrafractional changes. For this study, daily radiographs were analyzed to determine the daily iso-center position and apparent gaze direction, which were then transferred to the planning system to calculate the dose delivered in individual fractions, and accumulated dose for the entire course. Dose-volume metrics were compared between the planned and accumulated distributions for the tumor and organs at risk, for representative cases that varied by location within the ocular globe. Results: The analysis of the first set of cases (3 posterior, 3 transequatorial and 4 anterior tumors) revealed varying dose deviation patterns, depending on the tumor location. For anterior and posterior tumors, the largest dose increases were observed in the lens and ciliary body, while for the equatorial tumors, macula, optic nerve and disk, were most often affected. The iso-center position error was below 1.3 mm (95%-confidence interval), and the standard deviation of daily polar and azimuthal gaze set-up were 1.5 and 3 degrees, respectively. Conclusion: We quantified interfractional and intrafractional set-up variation, and estimated their effect on the delivered dose for representative cases. Current safety margins are sufficient to maintain the target coverage, however, the dose delivered to critical structures often deviates from the plan. The ongoing analysis will further explore the patterns of dose deviation, and may help to identify particular treatment scenarios

  10. The spectral imaging facility: Setup characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  11. An investigation of a video-based patient repositioning technique

    International Nuclear Information System (INIS)

    Yan Yulong; Song Yulin; Boyer, Arthur L.

    2002-01-01

    Purpose: We have investigated a video-based patient repositioning technique designed to use skin features for radiotherapy repositioning. We investigated the feasibility of the clinical application of this system by quantitative evaluation of performance characteristics of the methodology. Methods and Materials: Multiple regions of interest (ROI) were specified in the field of view of video cameras. We used a normalized correlation pattern-matching algorithm to compute the translations of each ROI pattern in a target image. These translations were compared against trial translations using a quadratic cost function for an optimization process in which the patient rotation and translational parameters were calculated. Results: A hierarchical search technique achieved high-speed (compute correlation for 128x128 ROI in 512x512 target image within 0.005 s) and subpixel spatial accuracy (as high as 0.2 pixel). By treating the observed translations as movements of points on the surfaces of a hypothetical cube, we were able to estimate accurately the actual translations and rotations of the test phantoms used in our experiments to less than 1 mm and 0.2 deg. with a standard deviation of 0.3 mm and 0.5 deg. respectively. For human volunteer cases, we estimated the translations and rotations to have an accuracy of 2 mm and 1.2 deg. Conclusion: A personal computer-based video system is suitable for routine patient setup of fractionated conformal radiotherapy. It is expected to achieve high-precision repositioning of the skin surface with high efficiency

  12. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson’s Disease: A Proof of Concept

    Science.gov (United States)

    Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco

    2017-01-01

    Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson’s disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking. PMID:28293213

  13. The Societal and Economic Value of Rotator Cuff Repair

    Science.gov (United States)

    Mather, Richard C.; Koenig, Lane; Acevedo, Daniel; Dall, Timothy M.; Gallo, Paul; Romeo, Anthony; Tongue, John; Williams, Gerald

    2013-01-01

    Background: Although rotator cuff disease is a common musculoskeletal problem in the United States, the impact of this condition on earnings, missed workdays, and disability payments is largely unknown. This study examines the value of surgical treatment for full-thickness rotator cuff tears from a societal perspective. Methods: A Markov decision model was constructed to estimate lifetime direct and indirect costs associated with surgical and continued nonoperative treatment for symptomatic full-thickness rotator cuff tears. All patients were assumed to have been unresponsive to one six-week trial of nonoperative treatment prior to entering the model. Model assumptions were obtained from the literature and data analysis. We obtained estimates of indirect costs using national survey data and patient-reported outcomes. Four indirect costs were modeled: probability of employment, household income, missed workdays, and disability payments. Direct cost estimates were based on average Medicare reimbursements with adjustments to an all-payer population. Effectiveness was expressed in quality-adjusted life years (QALYs). Results: The age-weighted mean total societal savings from rotator cuff repair compared with nonoperative treatment was $13,771 over a patient’s lifetime. Savings ranged from $77,662 for patients who are thirty to thirty-nine years old to a net cost to society of $11,997 for those who are seventy to seventy-nine years old. In addition, surgical treatment results in an average improvement of 0.62 QALY. Societal savings were highly sensitive to age, with savings being positive at the age of sixty-one years and younger. The estimated lifetime societal savings of the approximately 250,000 rotator cuff repairs performed in the U.S. each year was $3.44 billion. Conclusions: Rotator cuff repair for full-thickness tears produces net societal cost savings for patients under the age of sixty-one years and greater QALYs for all patients. Rotator cuff repair is cost

  14. Cardiac Rotational Mechanics As a Predictor of Myocardial Recovery in Heart Failure Patients Undergoing Chronic Mechanical Circulatory Support: A Pilot Study.

    Science.gov (United States)

    Bonios, Michael J; Koliopoulou, Antigone; Wever-Pinzon, Omar; Taleb, Iosif; Stehlik, Josef; Xu, Weining; Wever-Pinzon, James; Catino, Anna; Kfoury, Abdallah G; Horne, Benjamin D; Nativi-Nicolau, Jose; Adamopoulos, Stamatis N; Fang, James C; Selzman, Craig H; Bax, Jeroen J; Drakos, Stavros G

    2018-04-01

    Impaired qualitative and quantitative left ventricular (LV) rotational mechanics predict cardiac remodeling progression and prognosis after myocardial infarction. We investigated whether cardiac rotational mechanics can predict cardiac recovery in chronic advanced cardiomyopathy patients. Sixty-three patients with advanced and chronic dilated cardiomyopathy undergoing implantation of LV assist device (LVAD) were prospectively investigated using speckle tracking echocardiography. Acute heart failure patients were prospectively excluded. We evaluated LV rotational mechanics (apical and basal LV twist, LV torsion) and deformational mechanics (circumferential and longitudinal strain) before LVAD implantation. Cardiac recovery post-LVAD implantation was defined as (1) final resulting LV ejection fraction ≥40%, (2) relative LV ejection fraction increase ≥50%, (iii) relative LV end-systolic volume decrease ≥50% (all 3 required). Twelve patients fulfilled the criteria for cardiac recovery (Rec Group). The Rec Group had significantly less impaired pre-LVAD peak LV torsion compared with the Non-Rec Group. Notably, both groups had similarly reduced pre-LVAD LV ejection fraction. By receiver operating characteristic curve analysis, pre-LVAD peak LV torsion of 0.35 degrees/cm had a 92% sensitivity and a 73% specificity in predicting cardiac recovery. Peak LV torsion before LVAD implantation was found to be an independent predictor of cardiac recovery after LVAD implantation (odds ratio, 0.65 per 0.1 degrees/cm [0.49-0.87]; P =0.014). LV rotational mechanics seem to be useful in selecting patients prone to cardiac recovery after mechanical unloading induced by LVADs. Future studies should investigate the utility of these markers in predicting durable cardiac recovery after the explantation of the cardiac assist device. © 2018 American Heart Association, Inc.

  15. Differences in muscle activities during shoulder elevation in patients with symptomatic and asymptomatic rotator cuff tears: analysis by positron emission tomography.

    Science.gov (United States)

    Shinozaki, Nobuhisa; Sano, Hirotaka; Omi, Rei; Kishimoto, Koshi N; Yamamoto, Nobuyuki; Tashiro, Manabu; Itoi, Eiji

    2014-03-01

    Differences in muscle activity patterns between patients with symptomatic and asymptomatic full-thickness rotator cuff tears have not yet been fully clarified. The purpose of this study was to investigate the muscle activity pattern by use of positron emission tomography (PET) in patients with symptomatic and asymptomatic rotator cuff tears. Ten shoulders of 9 patients with full-thickness rotator cuff tears were divided into 2 groups by a numerical pain rating scale (0-10), symptomatic (≥2) and asymptomatic (0 or 1), with 5 shoulders each. Scaption exercise of bilateral arms (200 repetitions in 10 minutes) with a weight of 0.25 kg each was performed before and after injection of fluorodeoxyglucose. After PET examination, the standardized uptake value of each muscle was calculated to quantify its activity and compared between the two groups. The activity of the anterior and middle deltoid was significantly decreased in the symptomatic group compared with the asymptomatic group (anterior deltoid, P = .02; middle deltoid, P = .03). In contrast, the activity of the superior trapezius was significantly increased in the symptomatic group compared with the asymptomatic group (P = .02). In patients with a symptomatic tear, the deltoid activity was decreased and the trapezius activity was increased. It is likely that they might have moved the painful glenohumeral joint less and instead moved the painless scapulothoracic joint more during the prescribed exercise. We conclude that patients with painful rotator cuff tears use the parascapular muscles more than those without pain do during arm elevation. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  16. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Suzuki, Keishiro; Sharp, Gregory C.; Fujita, Katsuhisa R.T.; Onimaru, Rikiya; Fujino, Masaharu; Kato, Norio; Osaka, Yasuhiro; Kinoshita, Rumiko; Taguchi, Hiroshi; Onodera, Shunsuke; Miyasaka, Kazuo

    2006-01-01

    Background: To reduce the uncertainty of registration for lung tumors, we have developed a four-dimensional (4D) setup system using a real-time tumor-tracking radiotherapy system. Methods and Materials: During treatment planning and daily setup in the treatment room, the trajectory of the internal fiducial marker was recorded for 1 to 2 min at the rate of 30 times per second by the real-time tumor-tracking radiotherapy system. To maximize gating efficiency, the patient's position on the treatment couch was adjusted using the 4D setup system with fine on-line remote control of the treatment couch. Results: The trajectory of the marker detected in the 4D setup system was well visualized and used for daily setup. Various degrees of interfractional and intrafractional changes in the absolute amplitude and speed of the internal marker were detected. Readjustments were necessary during each treatment session, prompted by baseline shifting of the tumor position. Conclusion: The 4D setup system was shown to be useful for reducing the uncertainty of tumor motion and for increasing the efficiency of gated irradiation. Considering the interfractional and intrafractional changes in speed and amplitude detected in this study, intercepting radiotherapy is the safe and cost-effective method for 4D radiotherapy using real-time tracking technology

  17. Benchmark test cases for evaluation of computer-based methods for detection of setup errors: realistic digitally reconstructed electronic portal images with known setup errors

    International Nuclear Information System (INIS)

    Fritsch, Daniel S.; Raghavan, Suraj; Boxwala, Aziz; Earnhart, Jon; Tracton, Gregg; Cullip, Timothy; Chaney, Edward L.

    1997-01-01

    Purpose: The purpose of this investigation was to develop methods and software for computing realistic digitally reconstructed electronic portal images with known setup errors for use as benchmark test cases for evaluation and intercomparison of computer-based methods for image matching and detecting setup errors in electronic portal images. Methods and Materials: An existing software tool for computing digitally reconstructed radiographs was modified to compute simulated megavoltage images. An interface was added to allow the user to specify which setup parameter(s) will contain computer-induced random and systematic errors in a reference beam created during virtual simulation. Other software features include options for adding random and structured noise, Gaussian blurring to simulate geometric unsharpness, histogram matching with a 'typical' electronic portal image, specifying individual preferences for the appearance of the 'gold standard' image, and specifying the number of images generated. The visible male computed tomography data set from the National Library of Medicine was used as the planning image. Results: Digitally reconstructed electronic portal images with known setup errors have been generated and used to evaluate our methods for automatic image matching and error detection. Any number of different sets of test cases can be generated to investigate setup errors involving selected setup parameters and anatomic volumes. This approach has proved to be invaluable for determination of error detection sensitivity under ideal (rigid body) conditions and for guiding further development of image matching and error detection methods. Example images have been successfully exported for similar use at other sites. Conclusions: Because absolute truth is known, digitally reconstructed electronic portal images with known setup errors are well suited for evaluation of computer-aided image matching and error detection methods. High-quality planning images, such as

  18. A simple Lissajous curves experimental setup

    Science.gov (United States)

    Şahin Kızılcık, Hasan; Damlı, Volkan

    2018-05-01

    The aim of this study is to develop an experimental setup to produce Lissajous curves. The setup was made using a smartphone, a powered speaker (computer speaker), a balloon, a laser pointer and a piece of mirror. Lissajous curves are formed as follows: a piece of mirror is attached to a balloon. The balloon is vibrated with the sound signal provided by the speaker that is connected to a smartphone. The laser beam is reflected off the mirror and the reflection is shaped as a Lissajous curve. Because of the intersection of two frequencies (frequency of the sound signal and natural vibration frequency of the balloon), these curves are formed. They can be used to measure the ratio of frequencies.

  19. NOTE: Patient-specific planning for prevention of mechanical collisions during radiotherapy

    Science.gov (United States)

    Nioutsikou, Elena; Bedford, James L.; Webb, Steve

    2003-11-01

    A common unwanted difficulty in treatment planning, especially in non-coplanar radiotherapy set-ups, is the potential collision of the rotating gantry with the couch and/or the patient's body. A technique and computer program that detects these and signals avoidance of such beam directions is presented. The problem was approached using analytical geometry. The separate components within the treatment room have either been measured and modelled for an Elekta linear accelerator, or read out from a Pinnacle3 treatment planning system and are represented as an integer grid of points in three-dimensional (3D) space. The module is attached to the treatment planning system and can provide rejection or acceptance of unwanted beam directions in a plan. In contrast to previous work that has only used patient models, each individual patient's outlines are considered here in their actual treatment position inclusive of any immobilization device. The extremities of the patient superiorly and inferiorly to the scanned region are simulated by an expanded version of the RANDO phantom. In this way, 'potential' collisions can be detected in addition to the certain ones. Patient position is not a limiting factor for the accuracy of the collision detection anymore, as each set-up is always created around the isocentre. Maps of allowed and forbidden zones within the treatment suite have been created by running the code for all possible gantry and couch angles for three commonly arising cases: a head and neck plan utilizing a small stereotactic collimator, a prostate plan with multileaf collimators and an abdominal plan with the lead tray attached. In the last case, the 3D map permitted significantly fewer set-up combinations. Good agreement between prediction and experiment confirmed the capability of the program and introduces a promising add-on for treatment planning.

  20. Setup Time Reduction On Solder Paste Printing Machine – A Case Study

    Directory of Open Access Journals (Sweden)

    Rajesh Dhake

    2013-06-01

    Full Text Available Lean manufacturing envisages the reduction of the seven deadly wastes referred to as MUDA. Setup time forms a major component of the equipment downtime. It leads to lower machine utilization and restricts the output and product variety. This necessitates the requirement for quick setups. Single Minute Exchange of Die philosophy (a lean manufacturing tool here after referred as “SMED” is one of the important tool which aims at quick setups driving smaller lot sizes, lower production costs, improve productivity in terms of increased output, increased utilization of machine and labor hours, make additional capacity available (often at bottleneck resources, reduce scrap and rework, and increase flexibility[3]. This paper focuses on the application of Single Minute Exchange of Die[1] and Quick Changeover Philosophy[2] for reducing setup time on Solder Past Printing Machine (bottleneck machine in a electronic speedo-cluster manufacturing company. The four step SMED philosophy was adopted to effect reduction in setup time. The initial step was gathering information about the present setup times and its proportion to the total productive time. A detailed video based time study of setup activities was done to classify them into external and internal setup activities in terms of their need (i.e. preparation, replacement or adjustment, time taken and the way these could be reduced, simplified or eliminated. The improvements effected were of three categories viz., mechanical, procedural and organizational. The paper concludes by comparing the present and proposed (implemented methods of setup procedures.

  1. STABILITY OF MOTION OF MOBILE MODULE OF EXPERIMENTAL SETUP IN THE STUDY OF ACTIVE ROTARY WORKING OF MACHINES FOR SOIL TREATMENT

    Directory of Open Access Journals (Sweden)

    Vladimir F. Kupryashkin

    2016-06-01

    Full Text Available Introduction. The paper is devoted to the theoretical study of stability of movement of the movable unit of the experimental setup intended for the exploration of the active rotational working organs of the car for soil treatment. This takes into account the design features of the mobile unit and features active rotary force interaction of working bodies with the soil. From the analysis of previously conducted both theoretical and experimental studies of this type of working bodies noted the possibility of breaking the stability of the mobile stroke unit, which in turn will have a negative impact on the enforcement of a given method of the experiment program. From the analysis of previous studies shows that the assumptions under which they were made, not allow you to fully take into account the nature of the effect occurring dynamic processes of interaction of active rotary working bodies with the soil on the experimental setup truck driving stability. Materials and Methods. To address the shortcomings in the research, based on a synthesis of the main provisions and laws of mechanics and the experimental data of active rotary force interaction of working bodies with the soil, carried out theoretical studies of stability of movement of the movable unit of the experimental setup in view of its design features and conditions of the experiment. Results. A theoretical study was composed of loading trolley design scheme of the experimental setup with regard to its design features and power factors acting on its working elements, namely, the wheel bearing and studied active rotary working bodies. Processing results of the study allowed the weary twist zone of stable and unstable movement of the movable unit Expo tal installation. The presence of unstable movement zone carts at-leads to a breach of the conditions set by the plan of experimental-governmental research and a negative impact on their quality and purity. Discussion and Conclusions. All of

  2. Pediatric Oncology Branch - training- medical student rotations | Center for Cancer Research

    Science.gov (United States)

    Medical Student Rotations Select 4th-year medical students may be approved for a 4-week elective rotation at the Pediatric Oncology Branch. This rotation emphasizes the important connection between research and patient care in pediatric oncology. The student is supervised directly by the Branch’s attending physician and clinical fellows. Students attend daily in-patient and

  3. Impact of residual setup error on parotid gland dose in intensity-modulated radiation therapy with or without planning organ-at-risk margin

    International Nuclear Information System (INIS)

    Delana, Anna; Menegotti, Loris; Valentini, Aldo; Bolner, Andrea; Tomio, Luigi; Vanoni, Valentina; Lohr, Frank

    2009-01-01

    Purpose: To estimate the dosimetric impact of residual setup errors on parotid sparing in head-and-neck (H and N) intensity-modulated treatments and to evaluate the effect of employing an PRV (planning organ-at-risk volume) margin for the parotid gland. Patients and methods: Ten patients treated for H and N cancer were considered. A nine-beam intensity-modulated radiotherapy (IMRT) was planned for each patient. A second optimization was performed prescribing dose constraint to the PRV of the parotid gland. Systematic setup errors of 2 mm, 3 mm, and 5 mm were simulated. The dose-volume histograms of the shifted and reference plans were compared with regard to mean parotid gland dose (MPD), normal-tissue complication probability (NTCP), and coverage of the clinical target volume (V 95% and equivalent uniform dose [EUD]); the sensitivity of parotid sparing on setup error was evaluated with a probability-based approach. Results: MPD increased by 3.4%/mm and 3.0%/mm for displacements in the craniocaudal and lateral direction and by 0.7%/mm for displacements in the anterior-posterior direction. The probability to irradiate the parotid with a mean dose > 30 Gy was > 50%, for setup errors in cranial and lateral direction and 95% and EUD variations < 1% and < 1 Gy). Conclusion: The parotid gland is more sensitive to craniocaudal and lateral displacements. A setup error of 2 mm guarantees an MPD ≤ 30 Gy in most cases, without adding a PRV margin. If greater displacements are expected/accepted, an adequate PRV margin could be used to meet the clinical parotid gland constraint of 30 Gy, without affecting target volume coverage. (orig.)

  4. Stereotactic ablative body radiotherapy for non-small-cell lung cancer: setup reproducibility with novel arms-down immobilization.

    Science.gov (United States)

    Moore, Karen; Paterson, Claire; Hicks, Jonathan; Harrow, Stephen; McJury, Mark

    2016-12-01

    A clinical evaluation of the intrafraction and interfraction setup accuracy of a novel thermoplastic mould immobilization device and patient position in early-stage lung cancer being treated with stereotactic radiotherapy at the Beatson West of Scotland Cancer Centre, Glasgow, UK. 35 patients were immobilized in a novel, arms-down position, with a four-point Klarity ™ (Klarity Medical Products, Ohio, US) clear thermoplastic mould fixed to a SinMed (CIVCO Medical solutions, lowa, US) head and neck board. A knee support was also used for patient comfort and support. Pre- and post-treatment kilovoltage cone beam CT (CBCT) images were fused with the planning CT scan to determine intra- and interfraction motion. A total of 175 CBCT scans were analysed in the longitudinal, vertical and lateral directions. The mean intrafraction errors were 0.05 ± 0.77 mm (lateral), 0.44 ± 1.2 mm (superior-inferior) and -1.44 ± 1.35 mm (anteroposterior), respectively. Mean composite three-dimensional displacement vector was 2.14 ± 1.2 mm. Interfraction errors were -0.66 ± 2.35 mm (lateral), -0.13 ± 3.11 mm (superior-inferior) and 0.00 ± 2.94 mm (anteroposterior), with three-dimensional vector 4.08 ± 2.73 mm. Setup accuracy for lung image-guided stereotactic ablative radiotherapy using a unique immobilization device, where patients have arms by their sides, has been shown to be safe and favourably comparable to other published setup data where more complex and cumbersome devices were utilised. There was no arm toxicity reported and low arm doses. Advances in knowledge: We report on the accuracy of a novel patient immobilization device.

  5. Does double-row rotator cuff repair improve functional outcome of patients compared with single-row technique? A systematic review.

    Science.gov (United States)

    DeHaan, Alexander M; Axelrad, Thomas W; Kaye, Elizabeth; Silvestri, Lorenzo; Puskas, Brian; Foster, Timothy E

    2012-05-01

    The advantage of single-row versus double-row arthroscopic rotator cuff repair techniques has been a controversial issue in sports medicine and shoulder surgery. There is biomechanical evidence that double-row techniques are superior to single-row techniques; however, there is no clinical evidence that the double-row technique provides an improved functional outcome. When compared with single-row rotator cuff repair, double-row fixation, although biomechanically superior, has no clinical benefit with respect to retear rate or improved functional outcome. Systematic review. The authors reviewed prospective studies of level I or II clinical evidence that compared the efficacy of single- and double-row rotator cuff repairs. Functional outcome scores included the American Shoulder and Elbow Surgeons (ASES) shoulder scale, the Constant shoulder score, and the University of California, Los Angeles (UCLA) shoulder rating scale. Radiographic failures and complications were also analyzed. A test of heterogeneity for patient demographics was also performed to determine if there were differences in the patient profiles across the included studies. Seven studies fulfilled our inclusion criteria. The test of heterogeneity across these studies showed no differences. The functional ASES, Constant, and UCLA outcome scores revealed no difference between single- and double-row rotator cuff repairs. The total retear rate, which included both complete and partial retears, was 43.1% for the single-row repair and 27.2% for the double-row repair (P = .057), representing a trend toward higher failures in the single-row group. Through a comprehensive literature search and meta-analysis of current arthroscopic rotator cuff repairs, we found that the single-row repairs did not differ from the double-row repairs in functional outcome scores. The double-row repairs revealed a trend toward a lower radiographic proven retear rate, although the data did not reach statistical significance. There

  6. Transverse plane pelvic rotation increase (TPPRI following rotationally corrective instrumentation of adolescent idiopathic scoliosis double curves

    Directory of Open Access Journals (Sweden)

    Asher Marc A

    2010-08-01

    Full Text Available Abstract Background We have occasionally observed clinically noticeable postoperative transverse plane pelvic rotation increase (TPPRI in the direction of direct thoracolumbar/lumbar rotational corrective load applied during posterior instrumentation and arthrodesis for double (Lenke 3 and 6 adolescent idiopathic scoliosis (AIS curves. Our purposes were to document this occurrence; identify its frequency, associated variables, and natural history; and determine its effect upon patient outcome. Methods Transverse plane pelvic rotation (TPPR can be quantified using the left/right hemipelvis width ratio as measured on standing posterior-anterior scoliosis radiographs. Descriptive statistics were done to determine means and standard deviations. Non-parametric statistical tests were used due to the small sample size and non-normally distributed data. Significance was set at P Results Seventeen of 21 (81% consecutive patients with double curves (7 with Lenke 3 curves and 10 with Lenke 6 instrumented with lumbar pedicle screw anchors to achieve direct rotation had a complete sequence of measurable radiographs. While 10 of these 17 had no postoperative TPPRI, 7 did all in the direction of the rotationally corrective thoracolumbar instrumentation load. Two preoperative variables were associated with postoperative TPPRI: more tilt of the vertebra below the lower instrumented vertebra (-23° ± 3.1° vs. -29° ± 4.6°, P = 0.014 and concurrent anterior thoracolumbar discectomy and arthrodesis (5 of 10 vs. 7 of 7, P = 0.044. Patients with a larger thoracolumbar/lumbar angle of trunk inclination or larger lower instrumented vertebra plus one to sacrum fractional/hemicurve were more likely to have received additional anterior thoracolumbar discectomy and arthrodesis (c = 0.90 and c = 0.833, respectively. Postoperative TPPRI resolved in 5 of the 7 by intermediate follow-up at 12 months. Patient outcome was not adversely affected by postoperative TPPRI

  7. The greater tuberosity angle: a new predictor for rotator cuff tear.

    Science.gov (United States)

    Cunningham, Gregory; Nicodème-Paulin, Emilie; Smith, Margaret M; Holzer, Nicolas; Cass, Benjamin; Young, Allan A

    2018-04-24

    The implication of scapular morphology in rotator cuff tears has been extensively studied. However, the role of the greater tuberosity (GT) should be of equal importance. The aim of this study was to propose a new radiographic marker, the GT angle (GTA), which measures the position of the GT in relation to the center of rotation of the humeral head. The hypothesis was that a higher angle value would be associated with a higher likelihood in detecting a rotator cuff tear. During 1 year, patients were prospectively recruited from a single institution specialized shoulder clinic in 2 different groups. The patient group consisted of individuals with a degenerative rotator cuff tear involving at least the supraspinatus. The control group consisted of individuals with no rotator cuff pathology. Individuals in both groups with congenital, post-traumatic, or degenerative alterations of the proximal humerus were excluded. The GTA was measured on an anteroposterior shoulder x-ray image with the arm in neutral rotation by 3 observers at 2 different times. The study recruited 71 patients (33 patients, 38 controls). Mean GTA value was 72.5° (range, 67.6°-79.2°) in patients and 65.2° (range, 55.8°-70.5°) for controls (P rotator cuff tear (P rotator cuff tears. The GTA is a reliable radiographic marker, with more than 70° being highly predictive in detecting such lesions. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.

  8. Diagnostic imaging of shoulder rotator cuff lesions

    Directory of Open Access Journals (Sweden)

    Nogueira-Barbosa Marcello Henrique

    2002-01-01

    Full Text Available Shoulder rotator cuff tendon tears were evaluated with ultrasonography (US and magnetic resonance imaging (MRI. Surgical or arthroscopical correlation were available in 25 cases. Overall costs were also considered. Shoulder impingement syndrome diagnosis was done on a clinical basis. Surgery or arthroscopy was considered when conservative treatment failure for 6 months, or when rotator cuff repair was indicated. Ultrasound was performed in 22 patients and MRI in 17 of the 25 patients. Sensitivity, specificity and accuracy were 80%, 100% and 90.9% for US and 90%, 100% and 94.12% for MRI, respectively. In 16 cases both US and MRI were obtained and in this subgroup statistical correlation was excellent (p< 0.001. We concluded that both methods are reliable for rotator cuff full thickness tear evaluation. Since US is less expensive, it could be considered as the screening method when rotator cuff integrity is the main question, and when well trained radiologists and high resolution equipment are available.

  9. Residual translational and rotational errors after kV X-ray image-guided correction of prostate location using implanted fiducials

    International Nuclear Information System (INIS)

    Wust, Peter; Graf, Reinhold; Boehmer, Dirk; Budach, Volker

    2010-01-01

    Purpose: To evaluate the residual errors and required safety margins after stereoscopic kilovoltage (kV) X-ray target localization of the prostate in image-guided radiotherapy (IGRT) using internal fiducials. Patients and Methods: Radiopaque fiducial markers (FMs) have been inserted into the prostate in a cohort of 33 patients. The ExacTrac/Novalis Body trademark X-ray 6d image acquisition system (BrainLAB AG, Feldkirchen, Germany) was used. Corrections were performed in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) direction. Rotational errors around LR (x-axis), AP (y) and SI (z) have been recorded for the first series of nine patients, and since 2007 for the subsequent 24 patients in addition corrected in each fraction by using the Robotic Tilt Module trademark and Varian Exact Couch trademark. After positioning, a second set of X-ray images was acquired for verification purposes. Residual errors were registered and again corrected. Results: Standard deviations (SD) of residual translational random errors in LR, AP, and SI coordinates were 1.3, 1.7, and 2.2 mm. Residual random rotation errors were found for lateral (around x, tilt), vertical (around y, table), and longitudinal (around z, roll) and of 3.2 , 1.8 , and 1.5 . Planning target volume (PTV)-clinical target volume (CTV) margins were calculated in LR, AP, and SI direction to 2.3, 3.0, and 3.7 mm. After a second repositioning, the margins could be reduced to 1.8, 2.1, and 1.8 mm. Conclusion: On the basis of the residual setup error measurements, the margin required after one to two online X-ray corrections for the patients enrolled in this study would be at minimum 2 mm. The contribution of intrafractional motion to residual random errors has to be evaluated. (orig.)

  10. Residual translational and rotational errors after kV X-ray image-guided correction of prostate location using implanted fiducials

    Energy Technology Data Exchange (ETDEWEB)

    Wust, Peter [Dept. of Radiation Oncology, Charite - Univ. Medicine Berlin, Campus Virchow-Klinikum, Berlin (Germany); Graf, Reinhold; Boehmer, Dirk; Budach, Volker

    2010-10-15

    Purpose: To evaluate the residual errors and required safety margins after stereoscopic kilovoltage (kV) X-ray target localization of the prostate in image-guided radiotherapy (IGRT) using internal fiducials. Patients and Methods: Radiopaque fiducial markers (FMs) have been inserted into the prostate in a cohort of 33 patients. The ExacTrac/Novalis Body trademark X-ray 6d image acquisition system (BrainLAB AG, Feldkirchen, Germany) was used. Corrections were performed in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) direction. Rotational errors around LR (x-axis), AP (y) and SI (z) have been recorded for the first series of nine patients, and since 2007 for the subsequent 24 patients in addition corrected in each fraction by using the Robotic Tilt Module trademark and Varian Exact Couch trademark. After positioning, a second set of X-ray images was acquired for verification purposes. Residual errors were registered and again corrected. Results: Standard deviations (SD) of residual translational random errors in LR, AP, and SI coordinates were 1.3, 1.7, and 2.2 mm. Residual random rotation errors were found for lateral (around x, tilt), vertical (around y, table), and longitudinal (around z, roll) and of 3.2 , 1.8 , and 1.5 . Planning target volume (PTV)-clinical target volume (CTV) margins were calculated in LR, AP, and SI direction to 2.3, 3.0, and 3.7 mm. After a second repositioning, the margins could be reduced to 1.8, 2.1, and 1.8 mm. Conclusion: On the basis of the residual setup error measurements, the margin required after one to two online X-ray corrections for the patients enrolled in this study would be at minimum 2 mm. The contribution of intrafractional motion to residual random errors has to be evaluated. (orig.)

  11. Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection

    International Nuclear Information System (INIS)

    Grooms, Ian; Whitehead, Jared P

    2015-01-01

    The heat transport in rotating Rayleigh–Bénard convection is considered in the limit of rapid rotation (small Ekman number E) and strong thermal forcing (large Rayleigh number Ra). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is Ra ≲ E −8/5 . A rigorous bound on heat transport of Nu ⩽ 20.56Ra 3 E 4 is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. Nu ≲ Ra 3 is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer. The derived upper bound is consistent with, although significantly higher than the observed behaviour in simulations of the reduced equations, which find at most Nu ∼ Ra 2 E 8/3 . (paper)

  12. Epidemiology, natural history, and indications for treatment of rotator cuff tears.

    Science.gov (United States)

    Tashjian, Robert Z

    2012-10-01

    The etiology of rotator cuff disease is likely multifactorial, including age-related degeneration and microtrauma and macrotrauma. The incidence of rotator cuff tears increases with aging with more than half of individuals in their 80s having a rotator cuff tear. Smoking, hypercholesterolemia, and genetics have all been shown to influence the development of rotator cuff tearing. Substantial full-thickness rotator cuff tears, in general, progress and enlarge with time. Pain, or worsening pain, usually signals tear progression in both asymptomatic and symptomatic tears and should warrant further investigation if the tear is treated conservatively. Larger (>1-1.5 cm) symptomatic full-thickness cuff tears have a high rate of tear progression and, therefore, should be considered for earlier surgical repair in younger patients if the tear is reparable and there is limited muscle degeneration to avoid irreversible changes to the cuff, including tear enlargement and degenerative muscle changes. Smaller symptomatic full-thickness tears have been shown to have a slower rate of progression, similar to partial-thickness tears, and can be considered for initial nonoperative treatment due to the limited risk for rapid tear progression. In both small full-thickness tears and partial-thickness tears, increasing pain should alert physicians to obtain further imaging as it can signal tear progression. Natural history data, along with information on factors affecting healing after rotator cuff repair, can help guide surgeons in making appropriate decisions regarding the treatment of rotator cuff tears. The management of rotator cuff tears should be considered in the context of the risks and benefits of operative versus nonoperative treatment. Tear size and acuity, the presence of irreparable changes to the rotator cuff or glenohumeral joint, and patient age should all be considered in making this decision. Initial nonoperative care can be safely undertaken in older patients (>70

  13. Excellent healing rates and patient satisfaction after arthroscopic repair of medium to large rotator cuff tears with a single-row technique augmented with bone marrow vents.

    Science.gov (United States)

    Dierckman, Brian D; Ni, Jake J; Karzel, Ronald P; Getelman, Mark H

    2018-01-01

    This study evaluated the repair integrity and patient clinical outcomes following arthroscopic rotator cuff repair of medium to large rotator cuff tears using a single-row technique consisting of medially based, triple-loaded anchors augmented with bone marrow vents in the rotator cuff footprint lateral to the repair. This is a retrospective study of 52 patients (53 shoulders) comprising 36 males and 16 females with a median age of 62 (range 44-82) with more than 24-month follow-up, tears between 2 and 4 cm in the anterior-posterior dimension and utilizing triple-loaded anchors. Mann-Whitney test compared Western Ontario Rotator Cuff (WORC) outcome scores between patients with healed and re-torn cuff repairs. Multivariate logistic regression analysed association of variables with healing status and WORC score. Cuff integrity was assessed on MRI, read by a musculoskeletal fellowship-trained radiologist. Magnetic resonance imaging (MRI) demonstrated an intact repair in 48 of 53 shoulders (91%). The overall median WORC score was 95.7 (range 27.6-100.0). A significant difference in WORC scores were seen between patients with healed repairs 96.7 (range 56.7-100.0) compared with a re-tear 64.6 (27.6-73.8), p rotator cuff tears using a triple-loaded single-row repair augmented with bone marrow vents resulted in a 91% healing rate by MRI and excellent patient reported clinical outcomes comparable to similar reported results in the literature. IV.

  14. Rod rotation and differential rod contouring followed by direct vertebral rotation for treatment of adolescent idiopathic scoliosis: effect on thoracic and thoracolumbar or lumbar curves assessed with intraoperative computed tomography.

    Science.gov (United States)

    Seki, Shoji; Kawaguchi, Yoshiharu; Nakano, Masato; Makino, Hiroto; Mine, Hayato; Kimura, Tomoatsu

    2016-03-01

    Although direct vertebral rotation (DVR) is now used worldwide for the surgical treatment of adolescent idiopathic scoliosis (AIS), the benefit of DVR in reducing vertebral body rotation in these patients has not been determined. We investigated a possible additive effect of DVR on further reduction of vertebral body rotation in the axial plane following intraoperative rod rotation or differential rod contouring in patients undergoing surgical treatment for AIS. The study was a prospective computed tomography (CT) image analysis. We analyzed the results of the two intraoperative procedures in 30 consecutive patients undergoing surgery for AIS (Lenke type I or II: 15; Lenke type V: 15). The angle of reduction of vertebral body rotation taken by intraoperative CT scan was measured and analyzed. Pre- and postoperative responses to the Scoliosis Research Society 22 Questionnaire (SRS-22) were also analyzed. To analyze the reduction of vertebral body rotation with rod rotation or DVR, intraoperative cone-beam CT scans of the three apical vertebrae of the major curve of the scoliosis (90 vertebrae) were taken pre-rod rotation (baseline), post-rod rotation with differential rod contouring, and post-DVR in all patients. The angle of vertebral body rotation in these apical vertebrae was measured and analyzed for statistical significance. Additionally, differences between thoracic curve scoliosis (Lenke type I or II; 45 vertebrae) and thoracolumbar or lumbar curve scoliosis (Lenke type V; 45 vertebrae) were analyzed. Pre- and postoperative SRS-22 scores were evaluated in all patients. The mean (90 vertebrae) vertebral body rotation angles at baseline, post-rod rotation or differential rod contouring, and post-rod rotation or differential rod contouring or post-DVR were 17.3°, 11.1°, and 6.9°, respectively. The mean reduction in vertebral body rotation with the rod rotation technique was 6.8° for thoracic curves and 5.7° for thoracolumbar or lumbar curves (pself

  15. Evaluation of different set-up error corrections on dose-volume metrics in prostate IMRT using CBCT images

    International Nuclear Information System (INIS)

    Hirose, Yoshinori; Tomita, Tsuneyuki; Kitsuda, Kenji; Notogawa, Takuya; Miki, Katsuhito; Nakamura, Mitsuhiro; Nakamura, Kiyonao; Ishigaki, Takashi

    2014-01-01

    We investigated the effect of different set-up error corrections on dose-volume metrics in intensity-modulated radiotherapy (IMRT) for prostate cancer under different planning target volume (PTV) margin settings using cone-beam computed tomography (CBCT) images. A total of 30 consecutive patients who underwent IMRT for prostate cancer were retrospectively analysed, and 7-14 CBCT datasets were acquired per patient. Interfractional variations in dose-volume metrics were evaluated under six different set-up error corrections, including tattoo, bony anatomy, and four different target matching groups. Set-up errors were incorporated into planning the isocenter position, and dose distributions were recalculated on CBCT images. These processes were repeated under two different PTV margin settings. In the on-line bony anatomy matching groups, systematic error (Σ) was 0.3 mm, 1.4 mm, and 0.3 mm in the left-right, anterior-posterior (AP), and superior-inferior directions, respectively. Σ in three successive off-line target matchings was finally comparable with that in the on-line bony anatomy matching in the AP direction. Although doses to the rectum and bladder wall were reduced for a small PTV margin, averaged reductions in the volume receiving 100% of the prescription dose from planning were within 2.5% under all PTV margin settings for all correction groups, with the exception of the tattoo set-up error correction only (≥ 5.0%). Analysis of variance showed no significant difference between on-line bony anatomy matching and target matching. While variations between the planned and delivered doses were smallest when target matching was applied, the use of bony anatomy matching still ensured the planned doses. (author)

  16. The Residual Setup Errors of Different IGRT Alignment Procedures for Head and Neck IMRT and the Resulting Dosimetric Impact

    International Nuclear Information System (INIS)

    Graff, Pierre; Kirby, Neil; Weinberg, Vivian; Chen, Josephine; Yom, Sue S.; Lambert, Louise; Pouliot, Jean

    2013-01-01

    Purpose: To assess residual setup errors during head and neck radiation therapy and the resulting consequences for the delivered dose for various patient alignment procedures. Methods and Materials: Megavoltage cone beam computed tomography (MVCBCT) scans from 11 head and neck patients who underwent intensity modulated radiation therapy were used to assess setup errors. Each MVCBCT scan was registered to its reference planning kVCT, with seven different alignment procedures: automatic alignment and manual registration to 6 separate bony landmarks (sphenoid, left/right maxillary sinuses, mandible, cervical 1 [C1]-C2, and C7-thoracic 1 [T1] vertebrae). Shifts in the different alignments were compared with each other to determine whether there were any statistically significant differences. Then, the dose distribution was recalculated on 3 MVCBCT images per patient for every alignment procedure. The resulting dose-volume histograms for targets and organs at risk (OARs) were compared to those from the planning kVCTs. Results: The registration procedures produced statistically significant global differences in patient alignment and actual dose distribution, calling for a need for standardization of patient positioning. Vertically, the automatic, sphenoid, and maxillary sinuses alignments mainly generated posterior shifts and resulted in mean increases in maximal dose to OARs of >3% of the planned dose. The suggested choice of C1-C2 as a reference landmark appears valid, combining both OAR sparing and target coverage. Assuming this choice, relevant margins to apply around volumes of interest at the time of planning to take into account for the relative mobility of other regions are discussed. Conclusions: Use of different alignment procedures for treating head and neck patients produced variations in patient setup and dose distribution. With concern for standardizing practice, C1-C2 reference alignment with relevant margins around planning volumes seems to be a valid

  17. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U; Bednarz, T

    2014-01-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  18. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    Science.gov (United States)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  19. The formation of molecular hydrogen on silicate dust analogs: The rotational distribution

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, L.; Lemaire, J. L. [LERMA, UMR 8112 du CNRS, de l' Observatoire de Paris et de l' Université de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Cergy Pontoise Cedex (France); Vidali, G. [Visiting Professor. Permanent address: Syracuse University, Physics Department, Syracuse, NY 13244-1320, USA. (United States); Sabri, T.; Jæger, C., E-mail: lisseth.gavilan@obspm.fr [Laboratory Astrophysics and Cluster Physics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena (Germany)

    2014-02-01

    Our laboratory experiments continue to explore how the formation of molecular hydrogen is influenced by dust and how dust thereby affects hydrogen molecules adsorbed on its surface. In Sabri et al., we present the preparation of nanometer-sized silicate grain analogs via laser ablation. These analogs illustrate extremes in structure (fully crystalline or fully amorphous grains), and stoichiometry (the forsterite and fayalite end-members of the olivine family). These were inserted in FORMOLISM, an ultra-high vacuum setup where they can be cooled down to ∼5 K. Atomic beams are directed at these surfaces and the formation of new molecules is studied via REMPI(2+1) spectroscopy. We explored the rotational distribution (0 ≤ J'' ≤ 5) of v'' = 0 of the ground electronic state of H{sub 2}. The results of these measurements are reported here. Surprisingly, molecules formed and ejected from crystalline silicates have a cold (T {sub rot} ∼ 120 K) rotational energy distribution, while for molecules formed on and ejected from amorphous silicate films, the rotational temperature is ∼310 K. These results are compared to previous experiments on metallic surfaces and theoretical simulations. Solid-state surface analysis suggests that flatter grains could hinder the 'cartwheel' rotation mode. A search for hot hydrogen, predicted as a result of H{sub 2} formation, hints at its production. For the first time, the rotational distribution of hydrogen molecules formed on silicate dust is reported. These results are essential to understanding the chemistry of astrophysical media containing bare dust grains.

  20. Set-up for steam generator tube bundle washing after explosion expanding the tubes

    International Nuclear Information System (INIS)

    Osipov, S.I.; Kal'nin, A.Ya.; Mazanenko, M.F.

    1985-01-01

    Set-up for steam generator tube bundle washing after the explosion expanding of tubes is described. Washing is accomplished by distillate. Steam is added to distillate for heating, and compersed air for preventing hydraulic shock. The set-up is equiped by control equipment. Set-up performances are presented. Time for one steam generator washing constitutes 8-12 h. High economic efficiency is realized due to the set-up introduction

  1. Commissioning of a proton gantry equipped with dual x-ray imagers and a robotic patient positioner, and evaluation of the accuracy of single-beam image registration for this system

    International Nuclear Information System (INIS)

    Wang, Ning; Ghebremedhin, Abiel; Patyal, Baldev

    2015-01-01

    Purpose: To check the accuracy of a gantry equipped with dual x-ray imagers and a robotic patient positioner for proton radiotherapy, and to evaluate the accuracy and feasibility of single-beam registration using the robotic positioner. Methods: One of the proton treatment rooms at their institution was upgraded to include a robotic patient positioner (couch) with 6 degrees of freedom and dual orthogonal kilovoltage x-ray imaging panels. The wander of the proton beam central axis, the wander of the beamline, and the orthogonal image panel crosswires from the gantry isocenter were measured for different gantry angles. The couch movement accuracy and couch wander from the gantry isocenter were measured for couch loadings of 50–300 lb with couch rotations from 0° to ±90°. The combined accuracy of the gantry, couch, and imagers was checked using a custom-made 30 × 30 × 30 cm 3 Styrofoam phantom with beekleys embedded in it. A treatment in this room can be set up and registered at a setup field location, then moved precisely to any other treatment location without requiring additional image registration. The accuracy of the single-beam registration strategy was checked for treatments containing multiple beams with different combinations of gantry angles, couch yaws, and beam locations. Results: The proton beam central axis wander from the gantry isocenter was within 0.5 mm with gantry rotations in both clockwise (CW) and counterclockwise (CCW) directions. The maximum wander of the beamline and orthogonal imager crosswire centers from the gantry isocenter were within 0.5 and 0.8 mm, respectively, with the gantry rotations in CW and CCW directions. Vertical and horizontal couch wanders from the gantry isocenter were within 0.4 and 1.3 mm, respectively, for couch yaw from 0° to ±90°. For a treatment with multiple beams with different gantry angles, couch yaws, and beam locations, the measured displacements of treatment beam locations from the one based on the

  2. Water level effects on breaking wave setup for Pacific Island fringing reefs

    Science.gov (United States)

    Becker, J. M.; Merrifield, M. A.; Ford, M.

    2014-02-01

    The effects of water level variations on breaking wave setup over fringing reefs are assessed using field measurements obtained at three study sites in the Republic of the Marshall Islands and the Mariana Islands in the western tropical Pacific Ocean. At each site, reef flat setup varies over the tidal range with weaker setup at high tide and stronger setup at low tide for a given incident wave height. The observed water level dependence is interpreted in the context of radiation stress gradients specified by an idealized point break model generalized for nonnormally incident waves. The tidally varying setup is due in part to depth-limited wave heights on the reef flat, as anticipated from previous reef studies, but also to tidally dependent breaking on the reef face. The tidal dependence of the breaking is interpreted in the context of the point break model in terms of a tidally varying wave height to water depth ratio at breaking. Implications for predictions of wave-driven setup at reef-fringed island shorelines are discussed.

  3. Rotational malalignment after closed intramedullary nailing of femoral shaft fractures and its influence on daily life.

    Science.gov (United States)

    Karaman, Ozgur; Ayhan, Egemen; Kesmezacar, Hayrettin; Seker, Ali; Unlu, Mehmet Can; Aydingoz, Onder

    2014-10-01

    Any intraoperative rotational malalignment during intramedullary nailing (IMN) of femoral shaft fractures will become permanent. We hypothesized that rotational malalignment of the femur and its compensatory biomechanics may induce problems in the hip, knee, patellofemoral and ankle joints. We purposed to clarify the influence of a femoral rotational malalignment of ≥10° on daily activities. Twenty-four femoral shaft fracture patients treated with closed antegrade IMN were included. At last follow-up, to reveal any rotational malalignment, computerized tomography (CT) scans of both femurs (injured and uninjured sides) were examined. The patient groups with or without CT-detected true rotational malalignment ≥10° were compared with respect to the activity scores. Ten of the 24 patients (41.7%) had a CT-detected true rotational malalignment of ≥10° compared with the unaffected side. The AOFAS scores were 100.00 for all of the patients. LKS, WOMAC knee, and WOMAC hip scores were significantly decreased in the patients with rotational malalignment compared to those without. Patients without rotational malalignment tolerated climbing stairs significantly better than those with rotational malalignment. Patients who could not tolerate climbing stairs were consistently complaining of anterior knee pain. A femoral rotational malalignment of ≥10° is symptomatic for the patients, and the hip, knee, and patellofemoral joints were affected. Because of the possibly altered joint loadings and biomechanics, these could render patients prone to degenerative joint disease. In addition, due to the high rates of rotational malalignment after femoral shaft fracture and consequent malpractice claims, it is important for surgeons to be more aware of rotational alignment during surgery.

  4. VITEX 2016 : Evaluation of learning objectives and exercise set-up

    NARCIS (Netherlands)

    Rijk, R. van; Stubbé-Alberts, H.E.

    2016-01-01

    To strengthen awareness of the need for cooperation, between public and private partners, and between countries, a new exercise set-up was developed. The VITEX exercise set-up is a table top exercise that aims to bring relevant networks together, and supports cooperation and collaboration between

  5. Why IV Setup for Stream Ciphers is Difficult

    DEFF Research Database (Denmark)

    Zenner, Erik

    2007-01-01

    In recent years, the initialization vector (IV) setup has proven to be the most vulnerable point when designing secure stream ciphers. In this paper, we take a look at possible reasons why this is the case, identifying numerous open research problems in cryptography.......In recent years, the initialization vector (IV) setup has proven to be the most vulnerable point when designing secure stream ciphers. In this paper, we take a look at possible reasons why this is the case, identifying numerous open research problems in cryptography....

  6. On SIP Session setup delay for VoIP services over correlated fading channels

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam S.; Prasad, Ramjee

    2006-01-01

    In this paper, the session setup delay of the session initiation protocol (SIP) is studied. The transmissions on both the forward and reverse channel are assumed to experience Markovian errors. The session setup delay is evaluated for different transport protocols, and with the use of the radio...... link protocol (RLP). An adaptive retransmission timer is used to optimize SIP performances. Using numerical results, we find that SIP over user datagram protocol (UDP) instead of transport control protocol (TCP) can make the session setup up to 30% shorter. Also, RLP drastically reduces the session...... setup delay down to 4 to 5 s, even in environments with high frame error rates (10%) and significant correlation in the fading process (fDT=0.02). SIP is compared with its competitor H.323. SIP session setup delay with compressed messages outperforms H.323 session setup delay....

  7. Ultrasound determination of rotator cuff tear repairability

    Science.gov (United States)

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p tear size (p tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  8. A new beam diagnostic system for the MASHA setup

    International Nuclear Information System (INIS)

    Motycak, S.; Kamas, D.; Rodin, A.M.; Novoselov, A.S.; Podshibyakin, A.V.; Belozerov, A.V.; Vedeneyev, V.Yu.; Gulyaev, A.V.; Gulyaeva, A.V.; Salamatin, V.S.; Stepantsov, S.V.; Chernysheva, E.V.; Yukhimchuk, S.A.; Komarov, A.B.; Krupa, L.; Kliman, J.

    2016-01-01

    A new beam diagnostic system based on the PXI standard was developed, tested, and used in the MASHA setup experiment. The beam energy and beam current measurements were carried out using several methods. The online time-of-flight energy measurements were carried out using three pick-up detectors. We used two electronic systems to measure the time between the pick-ups. The first system was based on fast Agilent digitizers (2-channel, 4-GHz sampling rate), and the second one was based on a constant fraction discriminator (CFD) connected to a time-to-digital converter (TDC, 5-ps resolution). A new graphical interface to monitor the electronic devices and to perform the online calculations of energy was developed using MFC C ++. The second system based on microchannel plate (time-of-flight) and silicon detectors for the determination of beam energy and the type of accelerated particles was also used. The beam current measurements were carried out with two different sensors. The first sensor is a rotating Faraday cup placed in front of the target, and the second one is an emission detector installed at the rear of the target. This system is now used in experiments for the synthesis of superheavy elements at the U400M cyclotron of the Flerov Laboratory of Nuclear Reactions (FLNR).

  9. A new beam diagnostic system for the MASHA setup

    Science.gov (United States)

    Motycak, S.; Rodin, A. M.; Novoselov, A. S.; Podshibyakin, A. V.; Krupa, L.; Belozerov, A. V.; Vedeneyev, V. Yu.; Gulyaev, A. V.; Gulyaeva, A. V.; Kliman, J.; Salamatin, V. S.; Stepantsov, S. V.; Chernysheva, E. V.; Yuchimchuk, S. A.; Komarov, A. B.; Kamas, D.

    2016-09-01

    A new beam diagnostic system based on the PXI standard was developed, tested, and used in the MASHA setup experiment. The beam energy and beam current measurements were carried out using several methods. The online time-of-flight energy measurements were carried out using three pick-up detectors. We used two electronic systems to measure the time between the pick-ups. The first system was based on fast Agilent digitizers (2-channel, 4-GHz sampling rate), and the second one was based on a constant fraction discriminator (CFD) connected to a time-to-digital converter (TDC, 5-ps resolution). A new graphical interface to monitor the electronic devices and to perform the online calculations of energy was developed using MFC C++. The second system based on microchannel plate (time-of-flight) and silicon detectors for the determination of beam energy and the type of accelerated particles was also used. The beam current measurements were carried out with two different sensors. The first sensor is a rotating Faraday cup placed in front of the target, and the second one is an emission detector installed at the rear of the target. This system is now used in experiments for the synthesis of superheavy elements at the U400M cyclotron of the Flerov Laboratory of Nuclear Reactions (FLNR).

  10. SU-D-201-05: On the Automatic Recognition of Patient Safety Hazards in a Radiotherapy Setup Using a Novel 3D Camera System and a Deep Learning Framework

    Energy Technology Data Exchange (ETDEWEB)

    Santhanam, A; Min, Y; Beron, P; Agazaryan, N; Kupelian, P; Low, D [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Patient safety hazards such as a wrong patient/site getting treated can lead to catastrophic results. The purpose of this project is to automatically detect potential patient safety hazards during the radiotherapy setup and alert the therapist before the treatment is initiated. Methods: We employed a set of co-located and co-registered 3D cameras placed inside the treatment room. Each camera provided a point-cloud of fraxels (fragment pixels with 3D depth information). Each of the cameras were calibrated using a custom-built calibration target to provide 3D information with less than 2 mm error in the 500 mm neighborhood around the isocenter. To identify potential patient safety hazards, the treatment room components and the patient’s body needed to be identified and tracked in real-time. For feature recognition purposes, we used a graph-cut based feature recognition with principal component analysis (PCA) based feature-to-object correlation to segment the objects in real-time. Changes in the object’s position were tracked using the CamShift algorithm. The 3D object information was then stored for each classified object (e.g. gantry, couch). A deep learning framework was then used to analyze all the classified objects in both 2D and 3D and was then used to fine-tune a convolutional network for object recognition. The number of network layers were optimized to identify the tracked objects with >95% accuracy. Results: Our systematic analyses showed that, the system was effectively able to recognize wrong patient setups and wrong patient accessories. The combined usage of 2D camera information (color + depth) enabled a topology-preserving approach to verify patient safety hazards in an automatic manner and even in scenarios where the depth information is partially available. Conclusion: By utilizing the 3D cameras inside the treatment room and a deep learning based image classification, potential patient safety hazards can be effectively avoided.

  11. SU-D-201-05: On the Automatic Recognition of Patient Safety Hazards in a Radiotherapy Setup Using a Novel 3D Camera System and a Deep Learning Framework

    International Nuclear Information System (INIS)

    Santhanam, A; Min, Y; Beron, P; Agazaryan, N; Kupelian, P; Low, D

    2016-01-01

    Purpose: Patient safety hazards such as a wrong patient/site getting treated can lead to catastrophic results. The purpose of this project is to automatically detect potential patient safety hazards during the radiotherapy setup and alert the therapist before the treatment is initiated. Methods: We employed a set of co-located and co-registered 3D cameras placed inside the treatment room. Each camera provided a point-cloud of fraxels (fragment pixels with 3D depth information). Each of the cameras were calibrated using a custom-built calibration target to provide 3D information with less than 2 mm error in the 500 mm neighborhood around the isocenter. To identify potential patient safety hazards, the treatment room components and the patient’s body needed to be identified and tracked in real-time. For feature recognition purposes, we used a graph-cut based feature recognition with principal component analysis (PCA) based feature-to-object correlation to segment the objects in real-time. Changes in the object’s position were tracked using the CamShift algorithm. The 3D object information was then stored for each classified object (e.g. gantry, couch). A deep learning framework was then used to analyze all the classified objects in both 2D and 3D and was then used to fine-tune a convolutional network for object recognition. The number of network layers were optimized to identify the tracked objects with >95% accuracy. Results: Our systematic analyses showed that, the system was effectively able to recognize wrong patient setups and wrong patient accessories. The combined usage of 2D camera information (color + depth) enabled a topology-preserving approach to verify patient safety hazards in an automatic manner and even in scenarios where the depth information is partially available. Conclusion: By utilizing the 3D cameras inside the treatment room and a deep learning based image classification, potential patient safety hazards can be effectively avoided.

  12. A new tribological experimental setup to study confined and sheared monolayers.

    Science.gov (United States)

    Fu, L; Favier, D; Charitat, T; Gauthier, C; Rubin, A

    2016-03-01

    We have developed an original experimental setup, coupling tribology, and velocimetry experiments together with a direct visualization of the contact. The significant interest of the setup is to measure simultaneously the apparent friction coefficient and the velocity of confined layers down to molecular scale. The major challenge of this experimental coupling is to catch information on a nanometer-thick sheared zone confined between a rigid spherical indenter of millimetric radius sliding on a flat surface at constant speed. In order to demonstrate the accuracy of this setup to investigate nanometer-scale sliding layers, we studied a model lipid monolayer deposited on glass slides. It shows that our experimental setup will, therefore, help to highlight the hydrodynamic of such sheared confined layers in lubrication, biolubrication, or friction on solid polymer.

  13. Intestinal rotational abnormalities in polysplenia and asplenia syndromes

    International Nuclear Information System (INIS)

    Ditchfield, M.R.; Hutson, J.M.

    1998-01-01

    Objective. To review the anomalies of intestinal rotation occurring in association with asplenia (right isomerism) and polysplenia (left isomerism) syndromes. Materials and methods. A retrospective study was performed of 27 children with asplenia (21) or polysplenia (6) identified from the cardiology and radiology databases from 1988 to 1996 and in whom an upper gastrointestinal barium study had been performed. The intestinal rotation was determined by reviewing the barium meal and could be divided into four groups: (1) normal rotation, (2) incomplete rotation or nonrotation, (3) reversed rotation and (4) reversed incomplete rotation or nonrotation. Surgical correlation was obtained at laparotomy in 17 patients. Results. Of the 27 children studied, 3 (11 %) had normal rotation; incomplete rotation or nonrotation occurred in 5 (19 %), and 2 in this group developed midgut volvulus; 5 (19 %) had reversed rotation; 14 (52 %) had reversed incomplete rotation or nonrotation. Conclusion. Asplenia and polysplenia are frequently associated with intestinal malrotation, and a barium study is recommended in all of these children, as many will be at risk of midgut volvulus. (orig.)

  14. Intestinal rotational abnormalities in polysplenia and asplenia syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Ditchfield, M.R. [Department of Radiology, Royal Children`s Hospital, Parkville (Australia); Hutson, J.M. [Department of General Surgery, Royal Children`s Hospital, Parkville (Australia)

    1998-05-01

    Objective. To review the anomalies of intestinal rotation occurring in association with asplenia (right isomerism) and polysplenia (left isomerism) syndromes. Materials and methods. A retrospective study was performed of 27 children with asplenia (21) or polysplenia (6) identified from the cardiology and radiology databases from 1988 to 1996 and in whom an upper gastrointestinal barium study had been performed. The intestinal rotation was determined by reviewing the barium meal and could be divided into four groups: (1) normal rotation, (2) incomplete rotation or nonrotation, (3) reversed rotation and (4) reversed incomplete rotation or nonrotation. Surgical correlation was obtained at laparotomy in 17 patients. Results. Of the 27 children studied, 3 (11 %) had normal rotation; incomplete rotation or nonrotation occurred in 5 (19 %), and 2 in this group developed midgut volvulus; 5 (19 %) had reversed rotation; 14 (52 %) had reversed incomplete rotation or nonrotation. Conclusion. Asplenia and polysplenia are frequently associated with intestinal malrotation, and a barium study is recommended in all of these children, as many will be at risk of midgut volvulus. (orig.) With 4 figs., 1 tab., 13 refs.

  15. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    International Nuclear Information System (INIS)

    Vankan, P.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.; Schram, D.C.; Doebele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has a bandwith of 0.15 cm -1 . The wavelength of the laser radiation is calibrated by simultaneous recording of the two-photon laser induced fluorescence spectrum of nitric oxide. The excited hydrogen populations are calibrated on the basis of coherent anti-Stokes Raman scattering measurements. A population distribution is measured in the shock region of a pure hydrogen plasma expansion. The higher rotational levels (J>5) show overpopulation compared to a Boltzmann distribution determined from the lower rotational levels (J≤5)

  16. Acromion Index in Korean Population and Its Relationship with Rotator Cuff Tears.

    Science.gov (United States)

    Kum, Dong Ho; Kim, Jun Ho; Park, Keun Min; Lee, Eun Su; Park, Yong Bok; Yoo, Jae Chul

    2017-06-01

    Among the many causes of rotator cuff tears, scapular morphology is associated with the accelerating degenerative process of the rotator cuff. Acromion index (AI) was previously introduced and compared in two populations. We enrolled 100 Korean patients diagnosed with full-thickness rotator cuff tears by magnetic resonance imaging and intraoperative arthroscopic findings between January and December 2013. Another 100 Korean patients with an intact rotator cuff tendon identified on magnetic resonance imaging and other shoulder diseases, such as frozen shoulder and instability, were enrolled as controls. We retrospectively compared these 100 rotator cuff tear patients (mean age, 63 years) and 100 controls (mean age, 51 years) in this study. Two independent orthopedic surgeons assessed the AI on radiographs. We performed an interobserver reliability test of the AI assessment, and then compared the AI between two groups. The measurement of the AI showed excellent reliability (intraclass correlation coefficient, 0.82). The mean AI in the rotator cuff tear group was 0.68 and it was significantly different between groups ( p rotator cuff tears in a Korean population.

  17. Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.

    Science.gov (United States)

    Rosen, H M

    1993-06-01

    Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically

  18. Ultrasound-Guided Prolotherapy with Polydeoxyribonucleotide for Painful Rotator Cuff Tendinopathy

    Directory of Open Access Journals (Sweden)

    Kyoungho Ryu

    2018-01-01

    Full Text Available Background. Rotator cuff tendinopathy is a primary cause of shoulder pain and dysfunction. Several effective nonsurgical treatment methods have been described for chronic rotator cuff tendinopathy. Prolotherapy with polydeoxyribonucleotide (PDRN, which consists of active deoxyribonucleotide polymers that stimulate tissue repair, is a nonsurgical regenerative injection that may be a viable treatment option. The objective of this study was to assess the efficacy of PDRN in the treatment of chronic rotator cuff tendinopathy. Method. The records of patients with chronic rotator cuff tendinopathy (n=131 were reviewed retrospectively, and the patients treated with PDRN prolotherapy (n=32 were selected. We measured the main outcome of the shoulder pain and disability index score on a numerical rating scale of average shoulder pain. Results. Compared with baseline data, significant improvements in the shoulder pain and disability index and pain visual analog scale scores were demonstrated at one week after the end of treatment, and at one month and three months later. Conclusions. PDRN prolotherapy may improve the conservative treatment of painful rotator cuff tendinopathy for a specific subset of patients.

  19. Treatment of Medial Malleolus or Pure Deltoid Ligament Injury in Patients with Supination-External Rotation Type IV Ankle Fractures.

    Science.gov (United States)

    Wang, Xu; Zhang, Chao; Yin, Jian-Wen; Wang, Chen; Huang, Jia-Zhang; Ma, Xin; Wang, Cheng-Wei; Wang, Xue

    2017-02-01

    To investigate the effect of internal fixation on postoperative ankle function in patients with supination-external rotation type IV ankle fractures, including medial malleolus fractures and deltoid ligament injury. Between January 2012 and June 2014, patients with medial structure injuries were enrolled in this study and assigned to the medial malleolus fracture group or the deltoid ligament group. The surgical procedures for the two groups were documented. The follow-up endpoint was the time point when the steel plate or screw was removed from the lateral ankle. The Olerud-Molander ankle scoring system was used to assess ankle function. A total of 84 patients with supination-external rotation type IV ankle fractures had complete medical records and were included in this study. The average age of the patients was 44.16 years (range, 15-75). The patient sample included 39 males and 45 females. Overall, 49 patients (19 males and 30 females) suffered a medial malleolus fracture. The average age of these patients was 40.20 years (range, 15-75). Patients with a posterior malleolar fracture fragment >25% of the articular surface accounted for 81.6% (40 patients) of these patients. Overall, 35 patients (20 males and 15 females) experienced a deltoid ligament injury. The average age of these patients was 44.21 years (range, 17-73). Patients with a posterior malleolar fracture fragment >25% of the articular surface accounted for 11.5% (four patients) of these patients. Open reduction was performed in patients with medial malleolus fractures, and two 4.0-mm cannulated screws were used to fixate the posterior malleolus and the medial malleolus. The suture-anchor technique was used to repair the ligaments in patients with deltoid ligament injuries. The follow-up endpoint was the time point when the steel plate and screws were removed from the lateral ankle in patients. The average follow-up period was 13.4 months (range, 11-17). The Olerud-Molander ankle scoring system was

  20. Impaired mental rotation in benign paroxysmal positional vertigo and acute vestibular neuritis.

    Directory of Open Access Journals (Sweden)

    Matteo eCandidi

    2013-11-01

    Full Text Available Vestibular processing is fundamental to our sense of orientation in space which is a core aspect of the representation of the self. Vestibular information is processed in a large subcortical-cortical neural network. Tasks requiring mental rotations of human bodies in space are known to activate neural regions within this network suggesting that vestibular processing is involved in the control of mental rotation. We studied whether mental rotation is impaired in patients suffering from two different forms of unilateral vestibular disorders (Vestibular Neuritis – VN- and Benign Paroxysmal positional Vertigo – BPPV with respect to healthy matched controls (C. We used two mental rotation tasks in which participants were required to: i mentally rotate their own body in space (egocentric rotation thus using vestibular processing to a large extent and ii mentally rotate human figures (allocentric rotation thus using own body representations to a smaller degree. Reaction times and accuracy of responses showed that VN and BPPV patients were impaired in both tasks with respect to C. Significantly, the pattern of results was similar in the three groups suggesting that patients were actually performing the mental rotation without using a different strategy from the control individuals. These results show that dysfunctional vestibular inflow impairs mental rotation of both own body and human figures suggesting that unilateral acute disorders of the peripheral vestibular input massively affect the cerebral processes underlying mental rotations.

  1. Standard sonography and arthrosonography in the study of rotator cuff tears

    International Nuclear Information System (INIS)

    El-Dalati, Ghassan; Martone, Enrico; Caffarri, Sabrina; Fusaro, Michele; Pozzi Mucelli, Roberto; Castellarin, Gianluca; Ricci, Matteo; Vecchini, Eugenio

    2005-01-01

    Purpose. The aim of this study was to evaluate the sensitivity of ultrasonography, integrating standard ultrasound and arthrosonography after injecting a saline solution into the glenohumeral cavity in cases of suspected rotator cuff tears. Materials and methods. We respectively examinated 40 patients awaiting shoulder arthroscopy for suspected or diagnosed tears of the rotator cuff. A radiologist, unaware of the pre-operative diagnosis, performed an ultrasound scan on all the patients before and after the injection of saline solution into the glenohumeral cavity. The parameters considered were presence or absence of a rotator cuff injury; type of injury according to Snyder and its extent along the longitudinal and transverse planes; presence or absence of effusion into the articular cavity; subacromial/subdeltoid bursal distension. All the patients underwent arthroscopy either the same day of the day after the ultrasound examination. Results. Standard sonography showed 26 complete rotator cuff tears (type C according to Snyder), 2 partial tears (type B according to Snyder) and 12 intact rotator cuffs. Arthrosonography detected 31 complete rotator cuff tears (type C according to Snyder), 1 partial tear (type B according to Snyder) and 8 intact rotator cuffs. Arthroscopy identified 32 complete rotator cuff tears (type C according to Snyder), 1 partial tear (type B according to Snyder) and 8 intact rotator cuffs. Analysis of the results shows that, taking arthroscopy as the gold standard, the sensitivity of normal sonography is 81.2%, whereas that of arthosonography is 96.8% (p [it

  2. Rotational Mal-Alignment after Reamed Intramedullary Nailing for tibial shaft fracture.

    Science.gov (United States)

    Khan, Sher Baz; Mohib, Yasir; Rashid, Rizwan Haroon; Rashid, Haroonur

    2016-10-01

    Intra-medullary (IM) nailing is standard of care for unstable tibial shaft fractures. Malrotation is very common but it is under-recognised, inpart because of variation in normal anatomy and partly due to difficulty in accurately assessing rotation. This study was planned to evaluate the frequency of rotational mal-alignment after reamed tibia IMnailing. This cross-sectional study was conducted at Aga khan University Hospital, Karachi, and comprised patients with tibia shaft fractures managed with IMnailing from January to December 2014. All the patients were assessed intra-operatively for rotational alignment using the knee and ankle fluoroscopic images. There were 81 patients with a mean age of 38±16.9 years. There were 64(79%) male patients. Overall the incidence of malrotation was in 20(24.7%) cases. Rotational mal-alignment is one of the preventable complications after IMnailing which can be assesed intra-operatively under fluoroscope.

  3. Modeling and Implementation of Multi-Position Non-Continuous Rotation Gyroscope North Finder

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2016-09-01

    Full Text Available Even when the Global Positioning System (GPS signal is blocked, a rate gyroscope (gyro north finder is capable of providing the required azimuth reference information to a certain extent. In order to measure the azimuth between the observer and the north direction very accurately, we propose a multi-position non-continuous rotation gyro north finding scheme. Our new generalized mathematical model analyzes the elements that affect the azimuth measurement precision and can thus provide high precision azimuth reference information. Based on the gyro’s principle of detecting a projection of the earth rotation rate on its sensitive axis and the proposed north finding scheme, we are able to deduct an accurate mathematical model of the gyro outputs against azimuth with the gyro and shaft misalignments. Combining the gyro outputs model and the theory of propagation of uncertainty, some approaches to optimize north finding are provided, including reducing the gyro bias error, constraining the gyro random error, increasing the number of rotation points, improving rotation angle measurement precision, decreasing the gyro and the shaft misalignment angles. According them, a north finder setup is built and the azimuth uncertainty of 18” is obtained. This paper provides systematic theory for analyzing the details of the gyro north finder scheme from simulation to implementation. The proposed theory can guide both applied researchers in academia and advanced practitioners in industry for designing high precision robust north finder based on different types of rate gyroscopes.

  4. HIGH-RESOLUTION ULTRASONOGRAPHY OF SHOULDER FOR ROTATOR CUFF TEAR: CORRELATION WITH ARTHROSCOPIC FINDINGS

    Directory of Open Access Journals (Sweden)

    Vishnumurthy H. Y

    2016-09-01

    Full Text Available INTRODUCTION Rotator cuff disease is the most common cause of shoulder pain. Ultrasonography being non-invasive, widely available, more cost-effective method and is the first choice in imaging of rotator cuff tears. Arthroscopy of shoulder is considered as the gold standard for diagnosis of rotator cuff tears. Objective of this study was to compare the diagnostic accuracy of high-resolution ultrasonography of shoulder for rotator cuff tears with arthroscopy of shoulder. METHODS Thirty patients clinically suspected to have rotator cuff tear who underwent ultrasonography and arthroscopy of shoulder were included in the study. Duration of study was for two years. All ultrasonography examinations were conducted in ultrasound machine using GE Voluson 730 PRO high frequency (10-12 MHz linear array transducer done by two experienced radiologists. Arthroscopies were done by two experienced shoulder arthroscopic surgeons. RESULTS Age of the patients with rotator cuff tears ranged from 40 to 80 years. 57% were females and 43% were males among the patients who had rotator cuff tears. 71.43% of the rotator cuff tears were found in the dominant arm. 64.28% of patients with rotator cuff tear had given history of fall or trauma to the corresponding shoulder within 6 months prior to presentation. 39.28% of patients who had rotator cuff tears were known diabetics. Supraspinatus tendon was the most commonly affected tendon, followed by infraspinatus and subscapularis tendons. For overall detection of rotator cuff tears, ultrasonography in comparison with the arthroscopy has sensitivity and specificity of 92.85% and 100%. For detection of full thickness rotator cuff tear, its sensitivity and specificity was 94.73% and 100% and for partial thickness rotator cuff tears 76.92% and 100%. Ultrasonography has 100% sensitivity and specificity for detection of supraspinatus full thickness tear. For supraspinatus partial thickness tear, sensitivity and specificity was 88

  5. Study on a magnetic spiral-type wireless capsule endoscope controlled by rotational external permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Bo, E-mail: yebo@hubu.edu.cn [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Zhang, Wei [Department of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002 (China); Sun, Zhen-jun [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Guo, Lin [School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Deng, Chao [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Chen, Ya-qi [Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Zhang, Hong-hai [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Liu, Sheng [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)

    2015-12-01

    In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application. - Highlights: • A new magnetic control method for spiral-type wireless capsule endoscope is proposed. • Wireless capsule endoscope rotates synchronously with external permanent magnet. • The method controls the wireless capsule endoscope well in porcine small intestine. • Long control distance makes the method may be used in future medical application. • Experimental setup has great advantages: high cost performance and easy operation.

  6. Surface imaging, portal imaging, and skin marker set-up vs. CBCT for radiotherapy of the thorax and pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Pallotta, Stefania; Bucciolini, Marta [Universita degli Studi di Firenze, Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Florence (Italy); AOU Careggi, Sezione di Fisica Medica, Florence (Italy); Vanzi, Eleonora; Marrazzo, Livia [AOU Careggi, Sezione di Fisica Medica, Florence (Italy); Simontacchi, Gabriele; Paiar, Fabiola [AOU Careggi, Sezione di Radioterapia, Florence (Italy); Ceroti, Marco [ISPO, U.O. Epidemiologia Molecolare e Nutrizionale, Florence (Italy); Livi, Lorenzo [Universita degli Studi di Firenze, Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Florence (Italy); AOU Careggi, Sezione di Radioterapia, Florence (Italy)

    2015-09-15

    The aim of this study was to compare surface imaging, portal imaging, and skin marker set-up in radiotherapy of thoracic and pelvic regions, using cone beam computed tomography (CBCT) data as the gold standard. Twenty patients were included in this study. CBCT, surface acquisition (SA), and two orthogonal portal images (PI) were acquired during the first four treatment sessions. Patient set-up corrections, obtained by registering the planning CT with CBCT, were used as the gold standard. Registration results of the PI and SA were evaluated and compared with those obtained with CBCT. The advantage derived from using SA or PI verification systems over a skin marker set-up was also quantified. A statistically significant difference between PI and SA (in favour of PI) was observed in seven patients undergoing treatment of the pelvic region and in two patients undergoing treatment of the thoracic region. The use of SA or PI, compared with a skin marker set-up, improved patient positioning in 50% and 57 % of the thoracic fractions, respectively. For pelvic fractions, the use of PI was beneficial in 73 % of the cases, while the use of SA was beneficial in only 45 %. Patient positioning worsened with SA, particularly along longitudinal and vertical directions. PI yielded more accurate registration results than SA for both pelvic and thoracic fractions. Compared with the skin marker set-up, PI performances were superior to SA for pelvic fractions while comparable results were obtained for thoracic fractions. (orig.) [German] Ziel dieser Studie ist der Vergleich der Patientenpositionierung mittels der 3-D/4-D-Erfassung der Patientenoberflaeche durch ein Abtastsystem, kV/MV-Verifikationsaufnahmen mit Hochenergiebildsystemen und Markierungen auf der Haut bei Bestrahlungen im Thorax- bzw. Beckenbereich. Als Goldstandard zum Vergleich dienten CBCT(''cone beam computed tomography'')-Aufnahmen. Die Studie basiert auf Untersuchungen an 20 Patienten. Es wurden

  7. Recreating Riser Slugging Flow Based on an Economic Lab-sized Setup

    DEFF Research Database (Denmark)

    Hansen, Lasse; Pedersen, Simon; Yang, Zhenyu

    2013-01-01

    As a kind of periodic phenomenon, the slugging flow in the offshore oil & gas production addresses a lot of attentions, due to its limitation of production rate, periodic overload processing facilities, and even direct cause of emergent shutdown. This work studies the emulation of the riser...... slugging flow in the offshore oil & gas production, by constructing an economical lab-sized setup in the university campus. Firstly, the construction and used components for the lab setup are illustrated; then, the constructed setup is validated by checking the consistency with some existing typical riser...

  8. Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy

    International Nuclear Information System (INIS)

    Imura, Mikado; Yamazaki, Koichi; Shirato, Hiroki; Onimaru, Rikiya; Fujino, Masaharu; Shimizu, Shinichi; Harada, Toshiyuki; Ogura, Shigeaki; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo; Nishimura, Masaharu

    2005-01-01

    Purpose: Internal 1.5-mm fiducial markers were used in real-time tumor-tracking radiotherapy (RT) for lung cancer. The fixation rate of the markers using the bronchial insertion technique, reliability of the setup using markers around the target volume, dislocation of the markers after real-time tumor-tracking RT, and long-term toxicity of marker insertion were investigated. Methods and Materials: Between July 2000 and April 2004, 154 gold markers were inserted into 57 patients with peripheral lung cancer. The distances between the implanted markers in 198 measurements in 71 setups in 11 patients were measured using two sets of orthogonal diagnostic X-ray images of the real-time tumor-tracking RT system. The distance between the markers and the chest wall was also measured in a transaxial CT image on 186 occasions in 48 patients during treatment planning and during follow-up. The median treatment time was 6 days (range, 4-14 days). Results: In 115 (75%) of the 154 inserted markers, the gold marker was detected throughout the treatment period. In 122 markers detected at CT planning, 115 (94%) were detected until the end of treatment. The variation in the distances between the implanted markers was within ±2 mm in 95% and ±1 mm in 80% during treatment. The variation in the distances between the implanted markers was >2 mm in at least one direction in 9% of the setups for which reexamination with a CT scan was indicated. The fixation rate in the left upper lobe was lower than in the other lobes. A statistically significant relationship was found between a shorter distance between the markers and the chest wall and the fixation rate, suggesting that the markers in the smaller bronchial lumens fixed better than those in the larger lumens. A learning curve among the endoscopists was suggested in the fixation rate. The distance between the markers and the chest wall changed significantly within a median of 44 days (range, 16-181 days) after treatment. Conclusion: The

  9. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Winnie; Sahgal, Arjun [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Foote, Matthew [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Millar, Barbara-Ann; Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel, E-mail: Daniel.letourneau@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2012-10-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1-T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins {+-} 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9 Degree-Sign to 1.6 Degree-Sign , respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image

  10. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    Li, Winnie; Sahgal, Arjun; Foote, Matthew; Millar, Barbara-Ann; Jaffray, David A.; Letourneau, Daniel

    2012-01-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1–T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins ± 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9° to 1.6°, respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image guidance, residual setup

  11. Early postoperative fluoroquinolone use is associated with an increased revision rate after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Cancienne, Jourdan M; Brockmeier, Stephen F; Rodeo, Scott A; Young, Chris; Werner, Brian C

    2017-07-01

    To evaluate the association of postoperative fluoroquinolone use following arthroscopic primary rotator cuff repair with failure requiring revision rotator cuff repair. An insurance database was queried for patients undergoing rotator cuff repair from 2007 to 2015. These patients were divided into three groups: (1) patients prescribed fluoroquinolones within 6 months postoperatively (divided into 0-2, 2-4, and 4-6 months), (2) a matched negative control cohort of patients not prescribed fluoroquinolones, and (3) a matched positive control cohort of patients prescribed fluoroquinolones between 6 and 18 months following rotator cuff repair. Rates of failure requiring revision rotator cuff repair were compared within 2 years. A total of 1292 patients were prescribed fluoroquinolones within 6 months after rotator cuff repair, including 442 within 2 months, 433 within 2 to 4 months, and 417 within 4 to 6 months, and were compared to 5225 matched negative controls and 1597 matched positive controls. The rate of revision rotator cuff repair was significantly higher in patients prescribed fluoroquinolones within 2 months (6.1 %) compared to matched negative (2.2 %, P = 0.0009) and positive controls (2.4 %, P = 0.0026). There were no significant differences in the rate of revision rotator cuff repair when fluoroquinolones were prescribed >2 months after rotator cuff repair. Early use of fluoroquinolones following rotator cuff repair was independently associated with significantly increased rates of failure requiring revision rotator cuff repair. This is the first clinical study examining the association of postoperative fluoroquinolone use with failure following arthroscopic rotator cuff repair. III.

  12. Six dimensional analysis with daily stereoscopic x-ray imaging of intrafraction patient motion in head and neck treatments using five points fixation masks

    International Nuclear Information System (INIS)

    Linthout, Nadine; Verellen, Dirk; Tournel, Koen; Storme, Guy

    2006-01-01

    The safety margins used to define the Planning Target Volume (PTV) should reflect the accuracy of the target localization during treatment that comprises both the reproducibility of the patient positioning and the positional uncertainty of the target, so both the inter- and intrafraction motion of the target. Our first aim in this study was to determine the intrafraction motion of patients immobilized with a five-point thermoplastic mask for head and neck treatments. The five-point masks have the advantage that the patient's shoulders as well as the cranial part of the patient's head is covered with the thermoplastic material that improves the overall immobilization of the head and neck region of the patient. Thirteen patients were consecutively assigned to use a five-point thermoplastic mask. The patients were positioned by tracking of infrared markers (IR) fixed to the immobilization device and stereoscopic x-ray images were used for daily on-line setup verification. Repositioning was carried out prior to treatment as needed; rotations were not corrected. Movements during treatment were monitored by real-time IR tracking. Intrafraction motion and rotation was supplementary assessed by a six-degree-of-freedom (6-D) fusion of x-ray images, taken before and after all 385 treatments, with DRR images generated from the planning CT data. The latter evaluates the movement of the patient within the thermoplastic mask independent from the mask movement, where IR tracking evaluates the movement of the mask caused by patient movement in the mask. These two movements are not necessarily equal to each other. The maximum intrafraction movement detected by IR tracking showed a shift [mean (SD; range)] of -0.1(0.7; 6.0), 0.1(0.6; 3.6), -0.2(0.8;5.5) mm in the vertical, longitudinal, and lateral direction, respectively, and rotations of 0.0(0.2; 1.6), 0.0(0.2; 1.7) and 0.2(0.2; 2.4) degrees about the vertical, longitudinal, and lateral axis, respectively. The standard deviations

  13. The ATLAS Level-1 Trigger Timing Setup

    CERN Document Server

    Spiwoks, R; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions at a bunch-crossing rate of 40 MHz. In order to reduce the data rate, a three-level trigger system selects potentially interesting physics. The first trigger level is implemented in electronics and firmware. It aims at reducing the output rate to less than 100 kHz. The Central Trigger Processor combines information from the calorimeter and muon trigger processors and makes the final Level-1-Accept decision. It is a central element in the timing setup of the experiment. Three aspects are considered in this article: the timing setup with respect to the Level-1 trigger, with respect to the expriment, and with respect to the world.

  14. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs.

    Science.gov (United States)

    Le, Brian T N; Wu, Xiao L; Lam, Patrick H; Murrell, George A C

    2014-05-01

    The rate of retears after rotator cuff repair varies from 11% to 94%. A retear is associated with poorer subjective and objective clinical outcomes than intact repair. This study was designed to determine which preoperative and/or intraoperative factors held the greatest association with retears after arthroscopic rotator cuff repair. Cohort study; Level of evidence, 3. This study retrospectively evaluated 1000 consecutive patients who had undergone a primary rotator cuff repair by a single surgeon using an arthroscopic inverted-mattress knotless technique and who had undergone an ultrasound evaluation 6 months after surgery to assess repair integrity. Exclusion criteria included previous rotator cuff repair on the same shoulder, incomplete repair, and repair using a synthetic polytetrafluoroethylene patch. All patients had completed the modified L'Insalata Questionnaire and underwent a clinical examination before surgery. Measurements of tear size, tear thickness, associated shoulder injury, tissue quality, and tendon mobility were recorded intraoperatively. The overall retear rate at 6 months after surgery was 17%. Retears occurred in 27% of full-thickness tears and 5% of partial-thickness tears (P < .0001). The best independent predictors of retears were anteroposterior tear length (correlation coefficient r = 0.41, P < .0001), tear size area (r = 0.40, P < .0001), mediolateral tear length (r = 0.34, P < .0001), tear thickness (r = 0.29, P < .0001), age at surgery (r = 0.27, P < .0001), and operative time (r = 0.18, P < .0001). These factors produced a predictive model for retears: logit P = (0.039 × age at surgery in years) + (0.027 × tear thickness in %) + (1 × anteroposterior tear length in cm) + (0.76 × mediolateral tear length in cm) - (0.17 × tear size area in cm(2)) + (0.018 × operative time in minutes) -9.7. Logit P can be transformed into P, which is the chance of retears at 6 months after surgery. A rotator cuff retear is a multifactorial process

  15. Does successful rotator cuff repair improve muscle atrophy and fatty infiltration of the rotator cuff? A retrospective magnetic resonance imaging study performed shortly after surgery as a reference.

    Science.gov (United States)

    Hamano, Noritaka; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Sasaki, Tsuyoshi; Kobayashi, Tsutomu; Kakuta, Yohei; Osawa, Toshihisa; Takagishi, Kenji

    2017-06-01

    Muscle atrophy and fatty infiltration in the rotator cuff muscles are often observed in patients with chronic rotator cuff tears. The recovery from these conditions has not been clarified. Ninety-four patients were included in this study. The improvement in muscle atrophy and fatty infiltration in successfully repaired rotator cuff tears was evaluated by magnetic resonance imaging at 1 year and 2 years after surgery and was compared with muscle atrophy and fatty infiltration observed on magnetic resonance imaging at 2 weeks after surgery to discount any changes due to the medial retraction of the torn tendon. The patients' muscle strength was evaluated in abduction and external rotation. Muscle atrophy and fatty infiltration of the supraspinatus were significantly improved at 2 years after surgery in comparison to 2 weeks after surgery. The subjects' abduction and external rotation strength was also significantly improved at 2 years after surgery in comparison to the preoperative values. Patients whose occupation ratio was improved had a better abduction range of motion, stronger abduction strength, and higher Constant score. Patients whose fatty infiltration was improved had a better range of motion in flexion and abduction, whereas the improvements of muscle strength and the Constant score were similar in the group that showed an improvement of fatty infiltration and the group that did not. Muscle atrophy and fatty infiltration can improve after rotator cuff repair. The strengths of abduction and external rotation were also improved at 2 years after surgery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Complex coronary lesions and rotational atherectomy: one hospital’s experience*

    Science.gov (United States)

    Jiang, Jun; Sun, Yong; Xiang, Mei-xiang; Dong, Liang; Liu, Xian-bao; Hu, Xin-yang; Feng, Yan; Wang, Jian-an

    2012-01-01

    Objective: To evaluate the safety and effectiveness of rotational atherectomy followed by drug eluting stent (DES) implantation in patients with complex coronary lesions. Methods: From August 2006 to August 2012, 253 consecutive patients with 289 lesions and who underwent rotational atherectomy in our center were enrolled in this study. Results: The overall procedure success rate was 98% with the cost of two (0.8%) coronary perforations, three (1.2%) dissections, five (2.0%) slow flows or no flows, three (1.2%) peri-procedure myocardial infarctions, and two (0.8%) in hospital deaths. During follow-up (mean three years), one (0.4%) patient died, two (0.8%) patients had acute myocardial infarction, 14 (5.5%) had restenosis, and target lesion revascularization occurred in eight patients (3.2%). Conclusions: Rotational atherectomy followed by DES implantation is a safe and effective technique for patients with complex coronary lesions, especially calcified and non-dilatable lesions. PMID:22843185

  17. Physical, Digital, and Hybrid Setups Supporting Card-Based Collaborative Design Ideation

    DEFF Research Database (Denmark)

    Lundqvist, Caroline Emilie; Klinkhammer, Daniel; Dalsgaard, Peter

    2018-01-01

    to supporting collaborative ideation? To answer this question, we present a study and analysis of three different implementations of a well-established collaborative ideation technique called Inspiration Card Workshop, with physical, digital, and hybrid setups. Each setup is evaluated in a controlled experiment...

  18. Custom rotating hinge total knee arthroplasty in patients with poliomyelitis affected limbs.

    Science.gov (United States)

    Rahman, Jeeshan; Hanna, Sammy A; Kayani, Babar; Miles, Jonathan; Pollock, Robin C; Skinner, John A; Briggs, Timothy W; Carrington, Richard W

    2015-05-01

    Total knee arthroplasty (TKA) in limbs affected by poliomyelitis is a technically challenging procedure. These patients often demonstrate acquired articular and metaphyseal angular deformities, bone loss, narrowness of the intramedullary canals, impaired quadriceps strength, flexion contractures and ligamentous laxity producing painful hyperextension. Thus, using condylar knee designs in these patients will likely result in early failure because of instability and abnormal load distribution. The aim of this study was to assess the outcomes associated with use of the customised (SMILES) rotating-hinge knee system at our institution for TKA in poliomyelitis-affected limbs. We retrospectively reviewed the outcome of 14 TKAs using the (SMILES) prosthesis in 13 patients with limbs affected by poliomyelitis. All patients had painful unstable knees with hyperextension. There were ten females and three males with a mean age of 66 years (range 51-84) at time of surgery. Patients were followed up clinically, radiologically and functionally with the Oxford knee score (OKS). Mean follow-up was 72 months (16-156). There were no immediate or early complications. One patient fell and sustained a peri-prosthetic fracture at seven months requiring revision to a longer stem. Radiological evaluation showed satisfactory alignment with no signs of loosening in all cases. Mean OKS improved from 11.6 (4-18) to 31.5 (18-40) postoperatively (p poliomyelitis. The device compensates well for ligamentous insufficiency as well as for any associated bony deformity.

  19. Radiotherapy for breast cancer: respiratory and set-up uncertainties

    International Nuclear Information System (INIS)

    Saliou, M.G.; Giraud, P.; Simon, L.; Fournier-Bidoz, N.; Fourquet, A.; Dendale, R.; Rosenwald, J.C.; Cosset, J.M.

    2005-01-01

    Adjuvant Radiotherapy has been shown to significantly reduce locoregional recurrence but this advantage is associated with increased cardiovascular and pulmonary morbidities. All uncertainties inherent to conformal radiation therapy must be identified in order to increase the precision of treatment; misestimation of these uncertainties increases the potential risk of geometrical misses with, as a consequence, under-dosage of the tumor and/or overdosage of healthy tissues. Geometric uncertainties due to respiratory movements or set-up errors are well known. Two strategies have been proposed to limit their effect: quantification of these uncertainties, which are then taken into account in the final calculation of safety margins and/or reduction of respiratory and set-up uncertainties by an efficient immobilization or gating systems. Measured on portal films with two tangential fields. CLD (central lung distance), defined as the distance between the deep field edge and the interior chest wall at the central axis, seems to be the best predictor of set-up uncertainties. Using CLD, estimated mean set-up errors from the literature are 3.8 and 3.2 mm for the systematic and random errors respectively. These depend partly on the type of immobilization device and could be reduced by the use of portal imaging systems. Furthermore, breast is mobile during respiration with motion amplitude as high as 0.8 to 10 mm in the anteroposterior direction. Respiratory gating techniques, currently on evaluation, have the potential to reduce effect of these movements. Each radiotherapy department should perform its own assessments and determine the geometric uncertainties with respect of the equipment used and its particular treatment practices. This paper is a review of the main geometric uncertainties in breast treatment, due to respiration and set-up, and solutions proposed to limit their impact. (author)

  20. Identification of a genetic variant associated with rotator cuff repair healing.

    Science.gov (United States)

    Tashjian, Robert Z; Granger, Erin K; Zhang, Yue; Teerlink, Craig C; Cannon-Albright, Lisa A

    2016-06-01

    A familial and genetic predisposition for the development of rotator cuff tearing has been identified. The purpose of this study was to determine if a familial predisposition exists for healing after rotator cuff repair and if the reported significant association with a single-nucleotide polymorphism (SNP) in the ESRRB gene is present in patients who fail to heal. The study recruited 72 patients undergoing arthroscopic rotator cuff repair for a full-thickness posterosuperior tear. Magnetic resonance imaging studies were performed at a minimum of 1 year postoperatively (average, 2.6 years). Healing failures were classified as lateral or medial. Self-reported family history of rotator cuff tearing data and genome-wide genotypes were available. Characteristics of cases with and without a family history of rotator cuff tearing were compared, and a comparison of the frequency of SNP 1758384 (in ESRRB) was performed between patients who healed and those who failed to heal. Of the rotator cuff repairs, 42% failed to heal; 42% of patients reported a family history of rotator cuff tear. Multivariate regression analysis showed a significant association between familiality and overall healing failure (medial and lateral failures) (P = .036) and lateral failures independently (P = .006). An increased risk for the presence of a rare allele for SNP rs17583842 was present in lateral failures compared with those that healed (P = .005). Individuals with a family history of rotator cuff tearing were more likely to have repair failures. Significant association of a SNP variant in the ESRRB gene was also observed with lateral failure. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Effects of the Tongue-in-Groove Maneuver on Nasal Tip Rotation.

    Science.gov (United States)

    Antunes, Marcelo B; Quatela, Vito C

    2018-03-27

    Changes in nasal tip rotation is a very common maneuver performed during rhinoplasty. Among the many techniques used to achieve this goal is the tongue-in-groove (TIG). This study addresses the long-term effect of the TIG on the nasal tip rotation 1 year after rhinoplasty. The authors prospectively identified patients who were submitted to a rhinoplasty with a TIG maneuver over a period of 1 year. The angle of rotation was measured along the nostril axis angle. The data was analyzed using the t-test and a linear regression model. Seventeen patients were included. The average preoperative tip rotation was 93.95° (SD, 3.12°). Immediate postoperative tip rotation averaged 114.47° (SD, 3.79°). At the 1-year follow-up appointment, the tip rotation averaged 106.55° (SD, 3.54°). There was a significant loss of rotation at the 1-year postoperative visit (pTIG is a more dependable technique than the ones that rely on healing and contraction to obtain rotation. Our data demonstrated a significant loss of rotation during the first year. This suggests that the surgeon needs to slightly overcorrect the tip rotation to account for this loss.

  2. SU-F-T-649: Dosimetric Evaluation of Non-Coplanar Arc Therapy Using a Novel Rotating Gamma Ray System

    Energy Technology Data Exchange (ETDEWEB)

    Eldib, A; Chibani, O; Jin, L; Fan, J; Veltchev, I; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Mora, G [Universidade de Lisboa, Codex, Lisboa (Portugal); Li, J [Cyber Medical Inc, Xian, Shaanxi (China)

    2016-06-15

    Purpose: Stereotactic intra and extra-cranial body radiation therapy has evolved with advances in treatment accuracy, effective radiation dose, and parameters necessary to maximize machine capabilities. Novel gamma systems with a ring type gantry were developed having the ability to perform oblique arcs. The aim of this study is to explore the dosimetric advantages of this new system. Methods: The rotating Gamma system is named CybeRay (Cyber Medical Corp., Xian, China). It has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. Treatment plans were generated utilizing our in-house Monte Carlo treatment planning system. A cylindrical phantom was modeled with 2mm voxel size. Dose inside the cylindrical phantom was calculated for coplanar and non-coplanar arcs. Dosimetric differences between CybeRay cobalt beams and CyberKnife 6MV beams were compared in a lung phantom and for previously treated SBRT patients. Results: The full width at half maxima of cross profiles in the S-I direction for the coplanar setup matched the cone sizes, while for the non-coplanar setup, FWHM was larger by 2mm for a 10mm cone and about 5mm for larger cones. In the coronal and sagittal view, coplanar beams showed elliptical shaped isodose lines, while non-coplanar beams showed circular isodose lines. Thus proper selection of the oblique angle and cone size can aid optimal dose matching to the target volume. Comparing a single 5mm cone from CybeRay to that from CyberKnife showed similar penumbra in a lung phantom but CybeRay had significant lower doses beyond lung tissues. Comparable treatment plans were obtained with CybeRay as that from CyberKnife.ConclusionThe noncoplanar multiple source arrangement of CybeRay will be of great clinical benefits for stereotactic intra and extra-cranial radiation therapy.

  3. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Bortfeld, Thomas; Martin, Benjamin C.; Soukup, Martin

    2009-01-01

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be very sensitive to setup errors and range uncertainties. If these errors are not accounted for during treatment planning, the dose distribution realized in the patient may by strongly degraded compared to the planned dose distribution. The authors implemented the probabilistic approach to incorporate uncertainties directly into the optimization of an intensity modulated treatment plan. Following this approach, the dose distribution depends on a set of random variables which parameterize the uncertainty, as does the objective function used to optimize the treatment plan. The authors optimize the expected value of the objective function. They investigate IMPT treatment planning regarding range uncertainties and setup errors. They demonstrate that incorporating these uncertainties into the optimization yields qualitatively different treatment plans compared to conventional plans which do not account for uncertainty. The sensitivity of an IMPT plan depends on the dose contributions of individual beam directions. Roughly speaking, steep dose gradients in beam direction make treatment plans sensitive to range errors. Steep lateral dose gradients make plans sensitive to setup errors. More robust treatment plans are obtained by redistributing dose among different beam directions. This can be achieved by the probabilistic approach. In contrast, the safety margin approach as widely applied in photon therapy fails in IMPT and is neither suitable for handling range variations nor setup errors.

  4. Slaw extracted proton beam formation and monitoring for the ''QUARTZ'' setup

    International Nuclear Information System (INIS)

    Bushnin, Yu.B.; Gres', V.N.; Davydenko, Yu.P.

    1982-01-01

    The version of optical mode of the beam channel providing with simultaneous operating the experimental setups FODS and ''QUARTZ'' at consecutive usage of the slow extracted proton beam is reported. The ''QUARTZ'' setup beam diagnostics system comprises two subsystems: for measuring beam profile beam timing structure and beam intensity and operates in the beam extraction duration from 20 ns to few seconds at beam intensity from 10 10 to 5x10 12 protons/pulse. The ''QUARTZ'' setup represents a focusing crystal-diffraction spectrometer with 5-meter focal distance and Ge(Li) special construction detector. High efficiency target is applied in the setup. The ''QUARTZ'' setup is designed for studying exotic atoms produced by negative charged heavy particles (π, K, μ, P tilde) and atomic nuclei. Precise energy measurement of X ray transitions in such atoms is performed. For measuring beam geometric parameters 32-channel secondary emission chambers are used. As detector of beam intensity and timing structure of slow extracted beam the secondary emission chamber is employed. The principle circuit of current integrator is given. As data transmission line a 50-pair telephone cable is used. Information conversion into digital form and its subsequent processing is performed in the CAMAC system and the SM-3 computer. The proton beam full intensity measuring system provides with accuracy not worse than +-4.5% in the 10 10 -10 12 proton/sec range. The implemented optical mode of the beam channel and proton beam monitoring system permitted to begin fulfillment of the experimental program on the ''QUARTZ'' setup

  5. Result from arthroscopic surgical treatment of renewed tearing of the rotator cuff of the shoulder

    Directory of Open Access Journals (Sweden)

    Glaydson Gomes Godinho

    2015-02-01

    Full Text Available OBJECTIVES: To evaluate function among patients with postoperative recurrence of rotator cuff injuries that was treated arthroscopically (case series and compare this with function in patients without recurrence (control group; and to compare function among patients with recurrence of rotator cuff injuries that were greater than and smaller than 3 cm.METHODS: This was a retrospective evaluation of patients who underwent arthroscopic revision of rotator cuff injuries using the ASES, Constant & Murley and UCLA scores and a visual analog pain scale, in comparison with patients in a control group who underwent primary rotator cuff repair.RESULTS: The size of the rotator cuff injury recurrence had a statistically significant influence on the result from the arthroscopic surgical treatment. The functional scores showed worse results than those from the first procedure.CONCLUSION: Arthroscopic surgical treatment of renewed tearing of rotator cuff injuries showed worse functional scores than those from primary repair of the injury.

  6. Measurement setup at light source operational: Milestone M4.3

    CERN Document Server

    Perez, Francis

    2016-01-01

    The design of the experimental setup for the measurements of the FCC-hh beam screen prototype to be installed at the ANKA lightsource has been completed and the alignment strategy and procedure has been validated by the CERN and KIT teams. In this report, a complete description of the setup and the program of measurements under different operation conditions is presented.

  7. Radial extracorporeal shock-wave therapy in patients with chronic rotator cuff tendinitis: a prospective randomised double-blind placebo-controlled multicentre trial

    NARCIS (Netherlands)

    Kolk, A. van der; Yang, K.G.; Tamminga, R.; Hoeven, H. van der

    2013-01-01

    The aim of this study was to determine the effect of radial extracorporeal shock-wave therapy (rESWT) on patients with chronic tendinitis of the rotator cuff. This was a randomised controlled trial in which 82 patients (mean age 47 years (24 to 67)) with chronic tendinitis diagnosed clinically were

  8. Experiment Setup for Focused Learning of Advanced Servo Control of DC-motors

    Directory of Open Access Journals (Sweden)

    Dag A. H. Samuelsen

    2012-02-01

    Full Text Available Remote laboratories are normally developed for giving students and others remote access to physical laboratory facilities. In contradiction to this, the main objective of the setup presented in this paper is to create a controlled environment where unwanted side activities like hardware setup, driver problems, troubleshooting faulty components, and struggles with special software for configuring DSP systems, are removed as much as possible, in order for the students to have their full focus on the tasks that is considered relevant for the module: modeling of non-linear systems, synthetisation of controllers, and stability and performance analysis. A secondary objective is to significantly reduce the setup and maintenance cost associated with complex laboratory setups involving DSPs and expensive hardware.

  9. Translational and Rotational Diffusion in Water in the Gigapascal Range

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.

    2013-11-01

    First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.

  10. 'When measurements mean action' decision models for portal image review to eliminate systematic set-up errors

    International Nuclear Information System (INIS)

    Wratten, C.R.; Denham, J.W.; O; Brien, P.; Hamilton, C.S.; Kron, T.; London Regional Cancer Centre, London, Ontario

    2004-01-01

    The aim of the present paper is to evaluate how the use of decision models in the review of portal images can eliminate systematic set-up errors during conformal therapy. Sixteen patients undergoing four-field irradiation of prostate cancer have had daily portal images obtained during the first two treatment weeks and weekly thereafter. The magnitude of random and systematic variations has been calculated by comparison of the portal image with the reference simulator images using the two-dimensional decision model embodied in the Hotelling's evaluation process (HEP). Random day-to-day set-up variation was small in this group of patients. Systematic errors were, however, common. In 15 of 16 patients, one or more errors of >2 mm were diagnosed at some stage during treatment. Sixteen of the 23 errors were between 2 and 4 mm. Although there were examples of oversensitivity of the HEP in three cases, and one instance of undersensitivity, the HEP proved highly sensitive to the small (2-4 mm) systematic errors that must be eliminated during high precision radiotherapy. The HEP has proven valuable in diagnosing very small ( 4 mm) systematic errors using one-dimensional decision models, HEP can eliminate the majority of systematic errors during the first 2 treatment weeks. Copyright (2004) Blackwell Science Pty Ltd

  11. Case Report of Acute Traumatic Rotator Cuff Tear Treatment in Traditional Korean Medicine

    Directory of Open Access Journals (Sweden)

    Jeong-Hwan Lee

    2011-12-01

    Full Text Available Objectives: There is no report on treatment of acute traumatic rotator cuff tear in Traditional Korean Medicine. We reported Traditional Korean Treatment for pain relief and better movement of acute traumatic rotator cuff tear. Methods: Shoulder MRI was used to confirm the diagnosis of tear of rotator cuff. The patient was treated with Traditional Korean Methods (Acupuncture, Herbal medicine, Pharmacopuncture for 6 months. We evaluated the patient through VAS (Visual Analogue Scale, UCLA shoulder scale, ROM (Range of motion and Shoulder MRI. Results: After 6 months of treatment, the patient's VAS was decreased whereas UCLA score and Shoulder ROM were increased. Rotator cuff tear was repaired on Shoulder MRI images. Conclusions: In acute traumatic rotator cuff tear, Korean Traditional Treatment is good method for pain relief and better movement.

  12. Using the modified Delphi method to establish clinical consensus for the diagnosis and treatment of patients with rotator cuff pathology

    Directory of Open Access Journals (Sweden)

    Breda H. Eubank

    2016-05-01

    Full Text Available Abstract Background Patients presenting to the healthcare system with rotator cuff pathology do not always receive high quality care. High quality care occurs when a patient receives care that is accessible, appropriate, acceptable, effective, efficient, and safe. The aim of this study was twofold: 1 to develop a clinical pathway algorithm that sets forth a stepwise process for making decisions about the diagnosis and treatment of rotator cuff pathology presenting to primary, secondary, and tertiary healthcare settings; and 2 to establish clinical practice guidelines for the diagnosis and treatment of rotator cuff pathology to inform decision-making processes within the algorithm. Methods A three-step modified Delphi method was used to establish consensus. Fourteen experts representing athletic therapy, physiotherapy, sport medicine, and orthopaedic surgery were invited to participate as the expert panel. In round 1, 123 best practice statements were distributed to the panel. Panel members were asked to mark “agree” or “disagree” beside each statement, and provide comments. The same voting method was again used for round 2. Round 3 consisted of a final face-to-face meeting. Results In round 1, statements were grouped and reduced to 44 statements that met consensus. In round 2, five statements reached consensus. In round 3, ten statements reached consensus. Consensus was reached for 59 statements representing five domains: screening, diagnosis, physical examination, investigations, and treatment. The final face-to-face meeting was also used to develop clinical pathway algorithms (i.e., clinical care pathways for three types of rotator cuff pathology: acute, chronic, and acute-on-chronic. Conclusion This consensus guideline will help to standardize care, provide guidance on the diagnosis and treatment of rotator cuff pathology, and assist in clinical decision-making for all healthcare professionals.

  13. Using the modified Delphi method to establish clinical consensus for the diagnosis and treatment of patients with rotator cuff pathology.

    Science.gov (United States)

    Eubank, Breda H; Mohtadi, Nicholas G; Lafave, Mark R; Wiley, J Preston; Bois, Aaron J; Boorman, Richard S; Sheps, David M

    2016-05-20

    Patients presenting to the healthcare system with rotator cuff pathology do not always receive high quality care. High quality care occurs when a patient receives care that is accessible, appropriate, acceptable, effective, efficient, and safe. The aim of this study was twofold: 1) to develop a clinical pathway algorithm that sets forth a stepwise process for making decisions about the diagnosis and treatment of rotator cuff pathology presenting to primary, secondary, and tertiary healthcare settings; and 2) to establish clinical practice guidelines for the diagnosis and treatment of rotator cuff pathology to inform decision-making processes within the algorithm. A three-step modified Delphi method was used to establish consensus. Fourteen experts representing athletic therapy, physiotherapy, sport medicine, and orthopaedic surgery were invited to participate as the expert panel. In round 1, 123 best practice statements were distributed to the panel. Panel members were asked to mark "agree" or "disagree" beside each statement, and provide comments. The same voting method was again used for round 2. Round 3 consisted of a final face-to-face meeting. In round 1, statements were grouped and reduced to 44 statements that met consensus. In round 2, five statements reached consensus. In round 3, ten statements reached consensus. Consensus was reached for 59 statements representing five domains: screening, diagnosis, physical examination, investigations, and treatment. The final face-to-face meeting was also used to develop clinical pathway algorithms (i.e., clinical care pathways) for three types of rotator cuff pathology: acute, chronic, and acute-on-chronic. This consensus guideline will help to standardize care, provide guidance on the diagnosis and treatment of rotator cuff pathology, and assist in clinical decision-making for all healthcare professionals.

  14. An optimised set-up for total reflection particle induced X-ray emission

    International Nuclear Information System (INIS)

    Kan, J.A. van; Vis, R.D.

    1997-01-01

    MeV proton beams at small angles of incidence (0-35 mrad) are used to analyse trace elements on flat surfaces such as Si wafers or quartz substrates. In these experiments, the particle induced X-ray emission (PIXE) signal is used in a new optimized set-up. This set-up is constructed in such a way that the X-ray detector can reach very large solid angles, larger than 1 sr. Use of these large detector solid angles, combined with the reduction of bremsstrahlung background, affords limits of detection (LOD) of the order of 10 10 at cm -2 using total reflection particle induced X-ray emission (TPIXE). The LODs from earlier TPIXE measurements in a non-optimized set-up are used to estimate LODs in the new TPIXE set-up. Si wafers with low surface concentrations of V, Ni, Cu and Ag are used as standards to calibrate the LODs found with this set-up. The metal concentrations are determined by total reflection X-ray fluorescence (TXRF). The TPIXE measurements are compared with TXRF measurements on the same wafers. (Author)

  15. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  16. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  17. Rotational Angiography Based Three-Dimensional Left Atrial Reconstruction: A New Approach for Transseptal Puncture.

    Science.gov (United States)

    Koektuerk, Buelent; Yorgun, Hikmet; Koektuerk, Oezlem; Turan, Cem H; Gorr, Eduard; Horlitz, Marc; Turan, Ramazan G

    2016-02-01

    Rotational angiography is a well-known method for the three-dimensional (3-D) reconstruction of left atrium and pulmonary veins during left-sided atrial arrhythmia ablation procedures. In our study, we aimed to review our experience in transseptal puncture (TSP) using 3-D rotational angiography. We included a total of 271 patients who underwent atrial fibrillation ablation using cryoballoon. Rotational angiography was performed to get the three-dimensional left atrial and pulmonary vein reconstructions using cardiac C-arm computed tomography. The image reconstruction was made using the DynaCT Cardiac software (Siemens, Erlangen, Germany). The mean age of the study population was 61 ± 10 years. The indications for left atrial arrhythmia ablation were paroxysmal AF in 140 patients (52%) and persistent AF patients in 131 (48%) patients. The success rate of TSP using only rotational guidance was (264/271 patients, 97.4%). In the remaining seven patients, transesophageal guidance was used after the initial attempt due to thick interatrial septum in five patients and difficult TSP due to abnormal anatomy and mild pericardial effusion in the remaining two patients. Mean fluoroscopy dosage of the rotational angiography was 4896.4 ± 825.3 μGym(2). The mean time beginning from femoral vein puncture to TSP was 12.3 ± 5.5 min. TSP guided by rotational angiography is a safe and effective method. Our results indicate that integration of rotational angiographic images into the real-time fluoroscopy can guide the TSP during the procedure. © 2015 John Wiley & Sons Ltd.

  18. Percutaneous vertebroplasty with the rotational fluoroscopy imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Cannavale, Alessandro; Salvatori, Filippo Maria; Wlderk, Andrea; Cirelli, Carlo; D' Adamo, Alessandro; Fanelli, Fabrizio [University of Rome, Vascular and Interventional Unit, Department of Radiological Sciences, Rome (Italy)

    2014-11-15

    To evaluate the feasibility of the rotational angiography unit (RAU) as a single technique to guide percutaneous vertebroplasty (PVP). Twenty-five consecutive patients (35 vertebral bodies, 20 lumbar and 15 thoracic) were treated using RA fluoroscopy. Using a state-of-the-art flat-panel angiographer (Artis zee, Siemens, Erlangen, Germany), rotational acquisitions were obtained in all patients for immediate post-procedure 2D/3D reconstructions. Pre- and postoperative back pain was assessed with the visual analog scale (VAS). Fluoroscopy time, patient radiation dose exposure, technical success, mean procedure time, mean number of rotational acquisitions and procedural complications were recorded. All features were compared with a historical cohort of patients (N = 25) who underwent PVP under CT and mobile C-arm fluoroscopy guidance. In all cases, safe and accurate control of the needle insertion and bone-cement injection was successfully obtained with high-quality fluoroscopy images. One cement leakage was detected in the RAU group, and two leakages were detected in the CT and C-arm fluoroscopy group. Technical features were significantly different between the two groups (RAU vs. CT): mean procedure time: 38.2 min vs. 60.2 min (p = 0.02); median fluoroscopy time: 14.58 and 4.58 min (p = 0.02); median number of rotational acquisitions: 5 vs. 10 (p = 0.02); mean patient dose: 6 ± 1.3 mSv vs. 23 ± 1.3 mSv (p = 0.02). There were minor complications (pain, small hematoma) in two patients (8%) in the study group and three cases (12%) in the control group. RAU guidance is an effective and safe technique for performing PVP because it reduces the procedural time and radiation exposure. (orig.)

  19. Eye-in-Hand Manipulation for Remote Handling: Experimental Setup

    Science.gov (United States)

    Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador

    2018-03-01

    A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.

  20. Validity test of design calculations of a PGNAA setup

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.

    2004-01-01

    A rectangular moderator has been designed for the prompt gamma ray neutron activation analysis (PGNAA) setup at King Fahd University of Petroleum and Minerals (KFUPM) to analyze Portland cement samples. The design of the moderator assembly was obtained using Monte Carlo calculations. The design calculations of the new rectangular moderator of the KFUPM PGNAA setup have been verified experimentally through prompt gamma ray yield measurement as a function of the front moderator thickness. In this study the yield of the 3.54 and 4.94 MeV prompt gamma rays from silicon in a soil sample was measured as a function of thickness of the front moderator of the rectangular moderator. The experimental results were compared with the results of the Monte Carlo simulations. A good agreement has been achieved between the experimental results and the results of the calculations. The experimental results have provided useful information about the PGNAA setup performance, neutron moderation, and gamma ray attenuation in the PGNAA sample