WorldWideScience

Sample records for pathway signal transduction

  1. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  2. Signal transduction pathways involved in mechanotransduction in bone cells

    International Nuclear Information System (INIS)

    Liedert, Astrid; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-01-01

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca 2+ channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus

  3. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    Science.gov (United States)

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  4. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  5. Radiation-induced adaptive response and intracellular signal transduction pathways

    International Nuclear Information System (INIS)

    Tachibana, Akira

    2009-01-01

    As an essential biological function, cells can sense the radiation even at low dose and respond to it, and which is one of bases of the radiation-induced adaptive response (AR) where effects caused by high dose radiation are reduced by prior exposure to low dose radiation (LDR). Here described are studies of AR in well established m5S cells on the intracellular signal transduction that involves sensing of LDR and transmitting of its signal within the cell network. The first signal for AR yielded by LDR on the cell membrane is exactly unknown though hydrogen peroxide and phorbol ester (PMA) can reportedly cause AR. As PMA activates protein kinase C (PKC) and its inhibitors suppress AR, participation of PKC in AR has been suggested and supported by studies showing PKCα activation by LDR. In addition, p38 mitogen-activated protein kinase (MAPK) is shown to participate in AR by those facts that the enzyme is activated by LDR, a p38 MAPK inhibitor suppresses AR, and PKC inhibitors suppress the enzyme activation, which also suggesting that the signaling from PKC to p38 MAPK can become operative by LDR. However, the possible reverse signaling is also suggested, and thus the activation of positive feedback mechanism is postulated in PKC/p38 MAPK/phospholipase δ1/ PKC pathway. Cells introduced with siRNA against Prkca gene (coding PKCs) produce reduced amount of the enzyme, particularly, of PKCα. In those cells, AR by 5 Gy X-ray is not observed and thereby PKCα is involved in AR. The signaling in AR is only partly elucidated at present as above, and more detailed studies including identification of more PKC subtypes and signaling to DNA repair system are considered necessary. (K.T.)

  6. Signal transduction in mitogenesis: Further evidence for multiple pathways

    International Nuclear Information System (INIS)

    Rozengurt, E.; Erusalimsky, J.; Mehmet, H.; Morris, C.; Nanberg, E.; Sinnett-Smith, J.

    1988-01-01

    Growth factors are implicated in a wide variety of physiological and pathological processes, including embryogenesis, hematopoiesis, would healing, immune responses, atherosclerosis, and neoplasia. An important link between growth factors and their receptors and oncogene products has also been established. Thus, the elucidation of the mechanism of action of growth factors has emerged as one of the fundamental problems in biology and may prove crucial for understanding the unrestrained proliferation of cancer cells. A new and intriguing development is the discovery that neuropeptides localized in neural and neuroendocrine cells of mammalian tissue can also act as growth factors for cells in culture. Furthermore, indirect evidence is accumulating that the mitogenic effects of neuropeptides may be relevant for a variety of long-term biological processes, including development and oncogenesis. In this context, the peptides of the bombesin family are of particular significance. These peptides are potent mitogens for Swiss 3T3 cells and may act as autocrine growth factors for small cell lung cancer. Here, the authors summarize their recent studies using bombesin-like peptides for elucidating the signal transduction pathways leading to mitogenesis and compare these pathways with those elicited by other growth factors

  7. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm

  8. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  9. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  10. Network features and pathway analyses of a signal transduction cascade

    Directory of Open Access Journals (Sweden)

    Ryoji Yanashima

    2009-05-01

    Full Text Available The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.

  11. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  12. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.

    Science.gov (United States)

    Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E

    2005-01-01

    Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.

  13. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    OpenAIRE

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the ...

  14. Beacon Editor: Capturing Signal Transduction Pathways Using the Systems Biology Graphical Notation Activity Flow Language.

    Science.gov (United States)

    Elmarakeby, Haitham; Arefiyan, Mostafa; Myers, Elijah; Li, Song; Grene, Ruth; Heath, Lenwood S

    2017-12-01

    The Beacon Editor is a cross-platform desktop application for the creation and modification of signal transduction pathways using the Systems Biology Graphical Notation Activity Flow (SBGN-AF) language. Prompted by biologists' requests for enhancements, the Beacon Editor includes numerous powerful features for the benefit of creation and presentation.

  15. Effects of matrine on JAK-STAT signaling transduction pathways in ...

    African Journals Online (AJOL)

    The current study aims to investigate the effects of matrine on the JAK-STAT signaling transduction pathways in bleomycin (BLM)-induced pulmonary fibrosis (PF) and to explore its action mechanism. A total of 72 male C57BL/6 mice were randomized into the control, model, and treatment groups. PF models were ...

  16. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    The ability to control cell volume is fundamental for proper cell function. This review highlights recent advances in the understanding of the complex sequences of events by which acute cell volume perturbation alters the activity of osmolyte transport proteins in cells from vertebrate organisms...... will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  17. Influence of arsenate and arsenite on signal transduction pathways: an update

    Energy Technology Data Exchange (ETDEWEB)

    Druwe, Ingrid L.; Vaillancourt, Richard R. [The University of Arizona College of Pharmacy, Department of Pharmacology and Toxicology, Tucson, AZ (United States)

    2010-08-15

    Arsenic has been a recognized contaminant and toxicant, as well as a medicinal compound throughout human history. Populations throughout the world are exposed to arsenic and these exposures have been associated with a number of human cancers. Not much is known about the role of arsenic as a human carcinogen and more recently its role in non-cancerous diseases, such as cardiovascular disease, hypertension and diabetes mellitus have been uncovered. The health effects associated with arsenic are numerous and the association between arsenic exposure and human disease has intensified the search for molecular mechanisms that describe the biological activity of arsenic in humans and leads to the aforementioned disease states. Arsenic poses a human health risk due in part to the regulation of cellular signal transduction pathways and over the last few decades, some cellular mechanisms that account for arsenic toxicity, as well as, signal transduction pathways have been discovered. However, given the ubiquitous nature of arsenic in the environment, making sense of all the data remains a challenge. This review will focus on our knowledge of signal transduction pathways that are regulated by arsenic. (orig.)

  18. Downstream reporter gene imaging for signal transduction pathway of dopamine type 2 receptor

    International Nuclear Information System (INIS)

    Le, Uyenchi N.; Min, Jung Joon; Moon, Sung Min; Bom, Hee Seung

    2004-01-01

    The Dopamine 2 receptor (D2R) signal pathway regulates gene expression by phosphorylation of proteins including cAMP reponse element-binding protein (CREB), a transcription factor. In this study, we developed a reporter strategy using the GAL4 fusion CREB to assess the phosphorylation of CREB, one of the targets of the D2R signal transduction pathway. We used three plasmids: GAL4 fusion transactivator (pCMV-CREB), firefly luciferase reporter with GAL4 binding sites (pG5-FLUC), and D2R plasmid (pCMV-D2R). Group 1 293T cells were transiently transfected with pCMV-CREB and pG5-FLUC, and group 2 cells were transfected with all three plasmids. Transfected cells were stimulated with different concentrations of dopamine (0-200 M). For animal studies, group 1 and 2 cells (1x10 6 ) were subcutaneously injected on the left and right thigh of six nude mice, respectively. Dopamine stimiulation was performed with intraperitoneal injection of L-DOPA incombination with carbidopa, a peripheral DOPA decarboxylase inhibitor. Bioluminescence optical imaging studies were performed before and after L-DOPA injection. In cell culture studies, group 1 cells showed strong luciferase activity which implies direct activation of the signaling pathway due to growth factors contained in culture medium. Group 2 cells showed strong luciferase activity and a further increase after administration of dopamine. In animal studies, group 1 and 2 cells showed bioluminescence signal before L-DOPA injection, but signal from group 2 cells significantly increased 12 h after L-DOPA injection. The signal from group 1 cells disappeared thereafter, but group 2 cells continued to show signal until 36 h of L-DOPA injection. This study demonstrates imaging of the D2R signal transduction pathway and should be useful for noninvasive imaging of downstream effects of G-coupled protein pathways

  19. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    Science.gov (United States)

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  20. Non Linear Programming (NLP formulation for quantitative modeling of protein signal transduction pathways.

    Directory of Open Access Journals (Sweden)

    Alexander Mitsos

    Full Text Available Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i excessive CPU time requirements and ii loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  1. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks

    Directory of Open Access Journals (Sweden)

    Kirouac Daniel C

    2012-05-01

    Full Text Available Abstract Background Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID, PANTHER, Reactome, I2D, and STRING. We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data. Results We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie” architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless, we find a multiplicity of network topologies in which receptors couple to downstream

  2. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway.

    Science.gov (United States)

    Sato, Yukuto; Hashiguchi, Yasuyuki; Nishida, Mutsumi

    2009-02-20

    Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization) and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization). Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17) 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8-9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT) pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our analyses imply that an increase in gene product sometimes

  3. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2009-02-01

    Full Text Available Abstract Background Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization. Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. Results We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8–9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. Conclusion The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our

  4. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  5. Multiple signal transduction pathways in okadaic acid induced apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Jayaraj, R.; Gupta, Nimesh; Rao, P.V. Lakshmana

    2009-01-01

    Okadaic acid (OA) is the major component of diarrhetic shell fish poisoning toxins and a potent inhibitor of protein phosphatase 1 and 2A. We investigated the signal transduction pathways involved in OA induced cell death in HeLa cells. OA induced cytotoxicity and apoptosis at IC50 of 100 nM. OA treatment resulted in time dependent increase in reactive oxygen species and depleted intracellular glutathione levels. Loss of mitochondrial membrane permeability led to translocation of bax, cytochrome-c and AIF from mitochondria to cytosol. The cells under fluorescence microscope showed typical apoptotic morphology with condensed chromatin, and nuclear fragmentation. We investigated the mitochondrial-mediated caspase cascade. The time dependent activation and cleavage of of bax, caspases-8, 10, 9, 3 and 7 was observed in Western blot analysis. In addition to caspase-dependent pathway AIF mediated caspase-independent pathway was involved in OA mediated cell death. OA also caused time dependent inhibition of protein phosphatase 2A activity and phosphorylation of p38 and p42/44 MAP kinases. Inhibitor studies with Ac-DEVO-CHO and Z-VAD-FMK could not prevent the phosphorylation of p38 and p42/44 MAP kinases. Our experiments with caspase inhibitors Ac-DEVD-CHO, Z-IETD-FMK and Z-VAD-FMK inhibited capsase-3, 8 cleavages but did not prevent OA-induced apoptosis and DNA fragmentation. Similarly, pretreatment with cyclosporin-A and N-acetylcysteine could not prevent the DNA fragmentation. In summary, the results of our study show that OA induces multiple signal transduction pathways acting either independently or simultaneously leading to apoptosis

  6. Elucidation of the Signal Transduction Pathways Activated by the Plant Natriuretic Peptide AtPNP-A

    KAUST Repository

    Turek, Ilona

    2014-11-01

    Plant natriuretic peptides (PNPs) comprise a novel class of hormones that share some sequence similarity in the active site with their animal analogues that function as regulators of salt and water balance. A PNP present in Arabidopsis thaliana (AtPNP-A) has been assigned a role in abiotic and biotic stress responses, and the recombinant protein has been demonstrated to elicit cyclic guanosine monophosphate (cGMP)-dependent stomatal guard cell opening, regulate ion movements, and induce osmoticum-dependent water uptake. Although the importance of the hormone in maintaining ion and fluid homeostasis has been established, key components of the AtPNP-A-dependent signal transduction pathway remain unknown. Since identification of the binding partners of AtPNP-A, including its receptor(s), is fundamental to understanding the mode of its action at the molecular level, comprehensive protein-protein interaction studies, involving yeast two-hybrid screening, affinity-based assays, protein cross-linking and co-immunoprecipitation followed by mass spectrometric (MS) analyses have been performed. Several candidate binding partners of AtPNP-A identified with at least two independent methods were subsequently expressed as recombinant proteins, purified, and the specificity of their interactions with the recombinant AtPNP-A was verified using surface plasmon resonance. Several specific binary interactants of AtPNP-A were subjected to functional assays aimed at unraveling the consequences of the interactions in planta. These experiments have revealed that reactive oxygen species (ROS) are novel secondary messengers involved in the transduction of AtPNP-A signal in suspension-cultured cells of A. thaliana (Col-0). Further insight into the AtPNP-A dependent signalling events occurring in suspension-cultured cells in ROS-dependent or ROS-independent manner have been obtained from the large-scale proteomics study employing tandem mass tag (TMT) labelling followed by MS analysis to

  7. Signal transduction of p53-independent apoptotic pathway induced by hexavalent chromium in U937 cells

    International Nuclear Information System (INIS)

    Hayashi, Yoko; Kondo, Takashi; Zhao Qingli; Ogawa Ryohei; Cui Zhengguo; Feril, Loreto B.; Teranishi, Hidetoyo; Kasuya, Minoru

    2004-01-01

    It has been reported that the hexavalent chromium compound (Cr(VI)) can induce both p53-dependent and p53-independent apoptosis. While a considerable amount of information is available on the p53-dependent pathway, only little is known about the p53-independent pathway. To elucidate the p53-independent mechanism, the roles of the Ca 2+ -calpain- and mitochondria-caspase-dependent pathways in apoptosis induced by Cr(VI) were investigated. When human lymphoma U937 cells, p53 mutated cells, were treated with 20 μM Cr(VI) for 24 h, nuclear morphological changes and DNA fragmentation were observed. Production of hydroxyl radicals revealed by electron paramagnetic resonance (EPR)-spin trapping, and increase of intracellular calcium ion concentration monitored by digital imaging were also observed in Cr(VI)-treated cells. An intracellular Ca 2+ chelator, BAPTA-AM, and calpain inhibitors suppressed the Cr(VI)-induced DNA fragmentation. The number of cells showing low mitochondrial membrane potential (MMP), high level of superoxide anion radicals (O 2 - ), and high activity of caspase-3, which are indicators of mitochondria-caspase-dependent pathway, increased significantly in Cr(VI)-treated cells. An antioxidant, N-acetyl-L-cysteine (NAC), decreased DNA fragmentation and inhibited the changes in MMP, O 2 - formation, and activation of caspase-3 induced by Cr(VI). No increase of the expressions of Fas and phosphorylated JNK was observed after Cr(VI) treatment. Cell cycle analysis revealed that the fraction of G2/M phase tended to increase after 24 h of treatment, suggesting that Cr(VI)-induced apoptosis is related to the G2 block. These results indicate that Ca 2+ -calpain- and mitochondria-caspase-dependent pathways play significant roles in the Cr(VI)-induced apoptosis via the G2 block, which are independent of JNK and Fas activation. The inhibition of apoptosis and all its signal transductions by NAC suggests that intracellular reactive oxygen species (ROS) are

  8. Characterization of Heregulin-Stimulated Signal Transduction Pathways to the Nucleus

    National Research Council Canada - National Science Library

    Wilson, Kristin

    2000-01-01

    ... 40% of breast cancers and correlates with a poor prognosis for women with breast cancer. Mapping the molecular determinants of the heregulin/ErbB2 signaling pathway will be important in determining viable cellular targets for therapeutic intervention...

  9. Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival.

    Science.gov (United States)

    Lok, James B

    2016-12-01

    Signaling or communication between host and parasite may occur over relatively long ranges to enable host finding and acquisition by infective parasitic nematode larvae. Innate behaviors in infective larvae transmitted from the soil that enhance the likelihood of host contact, such as negative geotaxis and hypermotility, are likely mediated by mechanoreception and neuromuscular signaling. Host cues such as vibration of the substratum, elevated temperature, exhaled CO 2 , and other volatile odorants are perceived by mechanosensory and chemosensory neurons of the amphidial complex. Beyond this, the molecular systems that transduce these external cues within the worm are unknown at this time. Overall, the signal transduction mechanisms that regulate switching between dauer and continuous reproductive development in Caenorhabditis elegans , and doubtless other free-living nematodes, have provided a useful framework for testing hypotheses about how the morphogenesis and development of infective parasitic nematode larvae and the lifespan of adult parasites are regulated. In C. elegans , four major signal transduction pathways, G protein-coupled receptor signaling, insulin/insulin-like growth factor signaling, TGFβ-like signaling and steroid-nuclear hormone receptor signaling govern the switch between dauer and continuous development and regulate adult lifespan. Parasitic nematodes appear to have conserved the functions of G-protein-coupled signaling, insulin-like signaling and steroid-nuclear hormone receptor signaling to regulate larval development before and during the infective process. By contrast, TGFβ-like signaling appears to have been adapted for some other function, perhaps modulation of the host immune response. Of the three signal transduction pathways that appear to regulate development in parasitic nematodes, steroid-nuclear hormone signaling is the most straightforward to manipulate with administered small molecules and may form the basis of new

  10. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells.

    Science.gov (United States)

    Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R

    2014-09-15

    Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. An alternative mode of CD43 signal transduction activates pro-survival pathways of T lymphocytes.

    Science.gov (United States)

    Bravo-Adame, Maria Elena; Vera-Estrella, Rosario; Barkla, Bronwyn J; Martínez-Campos, Cecilia; Flores-Alcantar, Angel; Ocelotl-Oviedo, Jose Pablo; Pedraza-Alva, Gustavo; Rosenstein, Yvonne

    2017-01-01

    CD43 is one of the most abundant co-stimulatory molecules on a T-cell surface; it transduces activation signals through its cytoplasmic domain, contributing to modulation of the outcome of T-cell responses. The aim of this study was to uncover new signalling pathways regulated by this sialomucin. Analysis of changes in protein abundance allowed us to identify pyruvate kinase isozyme M2 (PKM2), an enzyme of the glycolytic pathway, as an element potentially participating in the signalling cascade resulting from the engagement of CD43 and the T-cell receptor (TCR). We found that the glycolytic activity of this enzyme was not significantly increased in response to TCR+CD43 co-stimulation, but that PKM2 was tyrosine phosphorylated, suggesting that it was performing moonlight functions. We report that phosphorylation of both Y 105 of PKM2 and of Y 705 of signal transducer and activator of transcription 3 was induced in response to TCR+CD43 co-stimulation, resulting in activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway. ERK5 and the cAMP response element binding protein (CREB) were activated, and c-Myc and nuclear factor-κB (p65) nuclear localization, as well as Bad phosphorylation, were augmented. Consistent with this, expression of human CD43 in a murine T-cell hybridoma favoured cell survival. Altogether, our data highlight novel signalling pathways for the CD43 molecule in T lymphocytes, and underscore a role for CD43 in promoting cell survival through non-glycolytic functions of metabolic enzymes. © 2016 John Wiley & Sons Ltd.

  12. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  13. Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism

    Directory of Open Access Journals (Sweden)

    Susanne Zeilinger

    2007-01-01

    Full Text Available Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the plant pathogen by mycoparasitism and induced systemic resistance in plants. As the mycoparasitic interaction is host-specific and not merely a contact response, it is likely that signals from the host fungus are recognised by Trichoderma and provoke transcription of mycoparasitism-related genes.In the last few years examination of signalling pathways underlying Trichoderma biocontrol started and it was shown that heterotrimeric G-proteins and mitogen-activated protein (MAP kinases affected biocontrol-relevant processes such as the production of hydrolytic enzymes and antifungal metabolites and the formation of infection structures. MAPK signalling was also found to be involved in induction of plant systemic resistance in Trichoderma virens and in the hyperosmotic stress response in Trichoderma harzianum. Analyses of the function of components of the cAMP pathway during Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichoderma atroviride.

  14. Failure of signal transduction pathway of DNA damage in hereditary microcephaly

    International Nuclear Information System (INIS)

    Miyamoto, Tatsuo; Matsuura, Shinya

    2009-01-01

    Mechanisms underlying the brain size determination are considered from an aspect of DNA-damage signaling recently revealed by studies on hereditary microcephaly (M), in relation to the radiation-induced M. International Commission of Radiological Protection (ICRP) assesses the risk of M by in utero exposure as 40%/Sv, the threshold dose is about 0.2 Gy (deterministic effect), A-bomb M is conceived to be due to the exposure at 8-5 weeks of gestation, and M is induced by radiation at 10 days after fertilization in the mouse. Recent studies on causing genes of M have revealed its particular connection with signaling pathways: in ataxia-telangiectasia (AT), genes of ATM; in Seckel syndrome, of ATR (AT and Rad3-related) and pericentrin (PCNT); Nijmegen syndrome (NBS), of NBS1; NBS-like disease, of Rad50 and Mre11; AT-like disease, of Mre11; Lig4 syndrome, of Lig4; immunodeficiency combined with M, of XLF; primary M, of MCPH1, ASPM, CdkRap2, CENP-J and STIL. Single and double strand breaks of DNA respectively activate the signaling pathway of ATR where PCNT and MCPH1 participate, and pathway of ATM where NBS1, Mre11 and Rad50 do. PCNT is a major protein, pericentrin, composing the centrosome, of which defect results in the Seckel disease with spindle dysfunction. At present, M can be thus said to be of the cellular common features of failure of ATM/ATR signaling and of dysfunction of centrosome. As well, ASPM gene expression is recently reported to be suppressed by radiation. Thus future studies on M will spread to wider biological field of cell and development as well as radiation and inheritance. (K.T.)

  15. The human keratinocyte two-dimensional gel protein database (update 1995): mapping components of signal transduction pathways

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Gromov, P

    1995-01-01

    identified (protein name, organelle components, etc.) using a procedure or a combination of procedures that include (i) comigration with known human proteins, (ii) 2-D gel immunoblotting using specific antibodies, (iii) microsequencing of Coomassie Brilliant Blue stained proteins, (iv) mass spectrometry, (v......)vaccinia virus expression of full length cDNAs, and (vi) in vitro transcription/translation of full-length cDNAs. This year, special emphasis has been given to the identification of signal transduction components by using 2-D gel immunoblotting of crude keratinocyte lysates in combination with enhanced......--through a systematic study of ekeratinocytes--qualitative and quantitative information on proteins and their genes that may allow us to identify abnormal patterns of gene expression and to pinpoint signaling pathways and components affected in various skin diseases, cancer included. Udgivelsesdato: 1995-Dec...

  16. Comprehensive logic based analyses of Toll-like receptor 4 signal transduction pathway.

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar Padwal

    Full Text Available Among the 13 TLRs in the vertebrate systems, only TLR4 utilizes both Myeloid differentiation factor 88 (MyD88 and Toll/Interleukin-1 receptor (TIR-domain-containing adapter interferon-β-inducing Factor (TRIF adaptors to transduce signals triggering host-protective immune responses. Earlier studies on the pathway combined various experimental data in the form of one comprehensive map of TLR signaling. But in the absence of adequate kinetic parameters quantitative mathematical models that reveal emerging systems level properties and dynamic inter-regulation among the kinases/phosphatases of the TLR4 network are not yet available. So, here we used reaction stoichiometry-based and parameter independent logical modeling formalism to build the TLR4 signaling network model that captured the feedback regulations, interdependencies between signaling kinases and phosphatases and the outcome of simulated infections. The analyses of the TLR4 signaling network revealed 360 feedback loops, 157 negative and 203 positive; of which, 334 loops had the phosphatase PP1 as an essential component. The network elements' interdependency (positive or negative dependencies in perturbation conditions such as the phosphatase knockout conditions revealed interdependencies between the dual-specific phosphatases MKP-1 and MKP-3 and the kinases in MAPK modules and the role of PP2A in the auto-regulation of Calmodulin kinase-II. Our simulations under the specific kinase or phosphatase gene-deficiency or inhibition conditions corroborated with several previously reported experimental data. The simulations to mimic Yersinia pestis and E. coli infections identified the key perturbation in the network and potential drug targets. Thus, our analyses of TLR4 signaling highlights the role of phosphatases as key regulatory factors in determining the global interdependencies among the network elements; uncovers novel signaling connections; identifies potential drug targets for

  17. Plasma Gelsolin Induced Glomerular Fibrosis via the TGF-β1/Smads Signal Transduction Pathway in IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-02-01

    Full Text Available Glomerular fibrosis has been shown to be closely related to the progression and prognosis of IgA nephropathy (IgAN. However, mechanism underlying IgAN glomerular fibrosis remains unclear. Recently, our study showed that plasma gelsolin (pGSN was decreased in the serum of an IgAN mouse model and that pGSN deposition was found in the glomeruli. Another cytokine, TGF-β1, which is closely related to glomerular fibrosis, was also found to be highly expressed in the glomeruli. In the present study, we report that pGSN induces glomerular fibrosis through the TGF-β1/Smads signal transduction pathway. This is supported by the following findings: human mesangial cells (HMCs show remarkable morphological changes and proliferation in response to co-stimulation with pGSN and polymeric IgA1 (pIgA1 from IgAN patients compared to other controls. Moreover, ELISA assays showed that more TGF-β1 secretion was found in HMCs supernatants in the co-stimulation group. Further experiments showed increased TGF-β1, Smad3, p-Smad2/3, Smad4, and collagen 1 and decreased Smad7 expression in the co-stimulation group. Our present study implied that the synergistic effect of pGSN and pIgA induced glomerular fibrosis via the TGF-β1/Smads signal transduction pathway. This might be a potential mechanism for the glomerular fibrosis observed in IgAN patients.

  18. Plasma Gelsolin Induced Glomerular Fibrosis via the TGF-β1/Smads Signal Transduction Pathway in IgA Nephropathy

    Science.gov (United States)

    Zhang, Lei; Han, Changsong; Ye, Fei; He, Yan; Jin, Yinji; Wang, Tianzhen; Wu, Yiqi; Jiang, Yang; Zhang, Fengmin; Jin, Xiaoming

    2017-01-01

    Glomerular fibrosis has been shown to be closely related to the progression and prognosis of IgA nephropathy (IgAN). However, mechanism underlying IgAN glomerular fibrosis remains unclear. Recently, our study showed that plasma gelsolin (pGSN) was decreased in the serum of an IgAN mouse model and that pGSN deposition was found in the glomeruli. Another cytokine, TGF-β1, which is closely related to glomerular fibrosis, was also found to be highly expressed in the glomeruli. In the present study, we report that pGSN induces glomerular fibrosis through the TGF-β1/Smads signal transduction pathway. This is supported by the following findings: human mesangial cells (HMCs) show remarkable morphological changes and proliferation in response to co-stimulation with pGSN and polymeric IgA1 (pIgA1) from IgAN patients compared to other controls. Moreover, ELISA assays showed that more TGF-β1 secretion was found in HMCs supernatants in the co-stimulation group. Further experiments showed increased TGF-β1, Smad3, p-Smad2/3, Smad4, and collagen 1 and decreased Smad7 expression in the co-stimulation group. Our present study implied that the synergistic effect of pGSN and pIgA induced glomerular fibrosis via the TGF-β1/Smads signal transduction pathway. This might be a potential mechanism for the glomerular fibrosis observed in IgAN patients. PMID:28208683

  19. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cyrille Hoarau

    Full Text Available BACKGROUND: Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK, glycogen synthase kinase-3 (GSK3 and phosphatidylinositol 3-kinase (PI3K pathways on biological functions of human monocyte-derived DCs treated with BbC50sn. METHODOLOGY/PRINCIPAL FINDINGS: DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS or Zymosan, with or without specific inhibitors of p38MAPK (SB203580, ERK (PD98059, PI3K (LY294002 and GSK3 (SB216763. We found that 1 the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2 p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3 ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4 BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS. CONCLUSION/SIGNIFICANCE: We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria.

  20. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  1. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  2. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase.

    Science.gov (United States)

    Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P

    The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.

  3. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    Science.gov (United States)

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  4. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    Science.gov (United States)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  5. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication

    NARCIS (Netherlands)

    Corrochano, Luis M; Kuo, Alan; Marcet-Houben, Marina; Polaino, Silvia; Salamov, Asaf; Villalobos-Escobedo, José M; Grimwood, Jane; Álvarez, M Isabel; Avalos, Javier; Bauer, Diane; Benito, Ernesto P; Benoit, Isabelle|info:eu-repo/dai/nl/314410023; Burger, Gertraud; Camino, Lola P; Cánovas, David; Cerdá-Olmedo, Enrique; Cheng, Jan-Fang; Domínguez, Angel; Eliáš, Marek; Eslava, Arturo P; Glaser, Fabian; Gutiérrez, Gabriel; Heitman, Joseph; Henrissat, Bernard; Iturriaga, Enrique A; Lang, B Franz; Lavín, José L; Lee, Soo Chan; Li, Wenjun; Lindquist, Erika; López-García, Sergio; Luque, Eva M; Marcos, Ana T; Martin, Joel; McCluskey, Kevin; Medina, Humberto R; Miralles-Durán, Alejandro; Miyazaki, Atsushi; Muñoz-Torres, Elisa; Oguiza, José A; Ohm, Robin A|info:eu-repo/dai/nl/304837628; Olmedo, María; Orejas, Margarita; Ortiz-Castellanos, Lucila; Pisabarro, Antonio G; Rodríguez-Romero, Julio; Ruiz-Herrera, José; Ruiz-Vázquez, Rosa; Sanz, Catalina; Schackwitz, Wendy; Shahriari, Mahdi; Shelest, Ekaterina; Silva-Franco, Fátima; Soanes, Darren; Syed, Khajamohiddin; Tagua, Víctor G; Talbot, Nicholas J; Thon, Michael R; Tice, Hope; de Vries, Ronald P|info:eu-repo/dai/nl/186324960; Wiebenga, Ad|info:eu-repo/dai/nl/314110763; Yadav, Jagjit S; Braun, Edward L; Baker, Scott E; Garre, Victoriano; Schmutz, Jeremy; Horwitz, Benjamin A; Torres-Martínez, Santiago; Idnurm, Alexander; Herrera-Estrella, Alfredo; Gabaldón, Toni; Grigoriev, Igor V

    2016-01-01

    Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor

  6. Kinetics in Signal Transduction Pathways Involving Promiscuous Oligomerizing Receptors Can Be Determined by Receptor Specificity : Apoptosis Induction by TRAIL

    NARCIS (Netherlands)

    Szegezdi, Eva; van der Sloot, Almer M.; Mahalingam, Devalingam; O'Leary, Lynda; Cool, Robbert H.; Munoz, Ines G.; Montoya, Guillermo; Quax, Wim J.; de Jong, Steven; Samali, Afshin; Serrano, Luis

    Here we show by computer modeling that kinetics and outcome of signal transduction in case of hetero-oligomerizing receptors of a promiscuous ligand largely depend on the relative amounts of its receptors. Promiscuous ligands can trigger the formation of nonproductive receptor complexes, which slows

  7. DMPD: Gram-negative endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1916089 Gram-negative endotoxin: an extraordinary lipid with profound effects oneuk...ep;5(12):2652-60. (.png) (.svg) (.html) (.csml) Show Gram-negative endotoxin: an extraordinary lipid with profound effects...tive endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. Authors Raetz

  8. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  9. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy.

    Directory of Open Access Journals (Sweden)

    Jennifer L Chinnici

    Full Text Available Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1 Genes encoding components of the PACC signal transduction pathway, 2 Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3 Transcriptional factor genes, 4 Autophagy genes, and 5 Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.

  10. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy.

    Science.gov (United States)

    Chinnici, Jennifer L; Fu, Ci; Caccamise, Lauren M; Arnold, Jason W; Free, Stephen J

    2014-01-01

    Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.

  11. [Effect of total glucosides of paeony on Wnt/β-catenin signal transduction pathway expression in kidney of diabetic rats].

    Science.gov (United States)

    Chang, Bao-Chao; Chen, Wei-Dong; Zhang, Yan; Yang, Ping; Liu, Lei; Wang, Jing

    2014-10-01

    The study is to explore the effect of total glucosides of paeony (TGP)on Wnt/β-catenin signal transduction pathway expression in kidney of diabetic rats, and discuss the protection of TGP in diabetic nephropathy and possible mechanism. Ninety male SD rats of 8 weeks age were randomly divided into normal control group (n = 10) and model group (n = 80). Rats of the normal control group were fed with regular diet, while rats of the model group were fed with high-fat high-sugar diet and 4 weeks later were given an intraperitoneal injection of 35 mg x kg(-1) streptozotocin (STZ). The successfully induced type 2 diabetic rat models were then randomly divided into DM group, three TGP (50, 100, 200 mg x kg(-1) x d(-1)) treatment group and tripterygium wilfordii glycosides (8 mg x kg(-1) x d(-1)) control group. Rats of DM group and each treatment group were given high-fat high-sugar diet. At week 14, the levels of blood sugar, 24 hour urine protein, serum creatinine and blood urea nitrogen were tested. The rats were then sacrificed. Renal pathological changes were examined. Renal tissue Wnt-1 and β-catenin expressions were detected by immunohistochemical assay. Wnt-1 mRNA and β-catenin mRNA expression was semi-quantified by RT-PCR. Wnt-1 protein and β-catenin protein expression was semi-quantified by Western blot. The Result show that Wnt-1 and β-catenin expression increased in kidney of high-fat high-sugar induced type 2 diabetic rats. Compared with diabetic group, the level of serum creatinine, blood urea nitrogen, 24 h urine protein, mean glomerular area and mean glomerular volume were decreased, renal histopathology were improved, expression of Wnt-1 and β-catenin mRNA and protein was reduced in TGP group. Tripterygium wilfordii glycosides had the similar effect. In conclusion, these results showed that Wnt/β-catenin abnormal activation in kidney of type 2 diabetic rats, TGP can improve kidney damage in diabetic rats and delay the development of diabetic

  12. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1998-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway...

  13. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1999-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway. C...

  14. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Wagner-Döbler Irene

    2004-09-01

    Full Text Available Abstract Background Quorum sensing is a process of bacterial cell-to-cell communication involving the production and detection of extracellular signaling molecules called autoinducers. Recently, it has been proposed that autoinducer-2 (AI-2, a furanosyl borate diester derived from the recycling of S-adenosyl-homocysteine (SAH to homocysteine, serves as a universal signal for interspecies communication. Results In this study, 138 completed genomes were examined for the genes involved in the synthesis and detection of AI-2. Except for some symbionts and parasites, all organisms have a pathway to recycle SAH, either using a two-step enzymatic conversion by the Pfs and LuxS enzymes or a one-step conversion using SAH-hydrolase (SahH. 51 organisms including most Gamma-, Beta-, and Epsilonproteobacteria, and Firmicutes possess the Pfs-LuxS pathway, while Archaea, Eukarya, Alphaproteobacteria, Actinobacteria and Cyanobacteria prefer the SahH pathway. In all 138 organisms, only the three Vibrio strains had strong, bidirectional matches to the periplasmic AI-2 binding protein LuxP and the central signal relay protein LuxU. The initial two-component sensor kinase protein LuxQ, and the terminal response regulator luxO are found in most Proteobacteria, as well as in some Firmicutes, often in several copies. Conclusions The genomic analysis indicates that the LuxS enzyme required for AI-2 synthesis is widespread in bacteria, while the periplasmic binding protein LuxP is only present in Vibrio strains. Thus, other organisms may either use components different from the AI-2 signal transduction system of Vibrio strains to sense the signal of AI-2, or they do not have such a quorum sensing system at all.

  15. Selection of personalized patient therapy through the use of knowledge-based computational models that identify tumor-driving signal transduction pathways.

    Science.gov (United States)

    Verhaegh, Wim; van Ooijen, Henk; Inda, Márcia A; Hatzis, Pantelis; Versteeg, Rogier; Smid, Marcel; Martens, John; Foekens, John; van de Wiel, Paul; Clevers, Hans; van de Stolpe, Anja

    2014-06-01

    Increasing knowledge about signal transduction pathways as drivers of cancer growth has elicited the development of "targeted drugs," which inhibit aberrant signaling pathways. They require a companion diagnostic test that identifies the tumor-driving pathway; however, currently available tests like estrogen receptor (ER) protein expression for hormonal treatment of breast cancer do not reliably predict therapy response, at least in part because they do not adequately assess functional pathway activity. We describe a novel approach to predict signaling pathway activity based on knowledge-based Bayesian computational models, which interpret quantitative transcriptome data as the functional output of an active signaling pathway, by using expression levels of transcriptional target genes. Following calibration on only a small number of cell lines or cohorts of patient data, they provide a reliable assessment of signaling pathway activity in tumors of different tissue origin. As proof of principle, models for the canonical Wnt and ER pathways are presented, including initial clinical validation on independent datasets from various cancer types. ©2014 American Association for Cancer Research.

  16. [Study of signal transduction pathway in the expression of inflammatory factors stimulated by lipopolysaccharides from Porphyromonas endodontalis in osteoblasts].

    Science.gov (United States)

    Yang, Di; Qiu, Li-hong; Li, Ren; Li, Zi-mu; Li, Chen

    2010-04-01

    To quantify the interleukin (IL)-1beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides ([PS) extracted from Porphyromonoas endodontalis (P. endodontalis) in osteoblasts, and to relate P. endodontalis LPS to the bone resorptive pathogenesis in the lesions of chronic apical periodontitis. MG63 cells was pretreated with PD98059 or SB203580 for 1 h and then treated with P. endodontolis LPS for 6 h. The expression of IL-1beta mRNA and IL-6 mRNA were detected by reverse transcription polymerase chain reaction (RT-PCR) technique. The production of IL-1beta mRNA induced by P. endodontalis LPS decreased in osteoblasts pretreated with PD98059. Both of the production of IL-1beta mRNA and JL-6 mRNA induced by P. endodontalis LPS decreased in osteoblasts pretreated with SB203580. The synthesis of IL-1beta mRNA stimulated by Pendodontalis LPS in MG63 probably occur via extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen activated protein kinase (MAPK) signal transduction system. The synthesis of IL-6 mRNA stimulated by P.endodontalis LPS in MG63 probahly occur via p38MAPK signal transduction system.

  17. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    NARCIS (Netherlands)

    Smeets, Ruben L.; Fleuren, Wilco W. M.; He, Xuehui; Vink, Paul M.; Wijnands, Frank; Gorecka, Monika; Klop, Henri; Bauerschmidt, Sussane; Garritsen, Anja; Koenen, Hans J. P. M.; Joosten, Irma; Boots, Annemieke M. H.; Alkema, Wynand

    2012-01-01

    Background: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we

  18. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.

    NARCIS (Netherlands)

    Smeets, R.L.; Fleuren, W.W.M.; He, X.; Vink, P.M.; Wijnands, F.; Gorecka, M.; Klop, H.; Bauerschmidt, S.; Garritsen, A.; Koenen, H.J.P.M.; Joosten, I.; Boots, A.M.H.; Alkema, W.

    2012-01-01

    BACKGROUND: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we

  19. Cellular semiotics and signal transduction

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2007-01-01

    Semiosis, the processes of production, communication and interpretation of signs - coding and de-coding - takes place within and between organisms. The term "endosemiosis" refers to the processes of interpretation and sign transmission inside an organism (as opposed to "exosemiosis", which refers...... to the processes of sign interpretation and transmission between organisms of the same or different species). In Biosemiotics it is customary to recognise the cell as the most elementary integration unit for semiosis. Therefore intra and intercellular communication constitute the departure point for the study...... considering semiotic logic in order to construct our understanding of living phenomena. Given the central integrating role of signal transduction in physiological and ecological studies, this chapter outlines its semiotic implications. The multi-modality and modularity of signal molecules and relative...

  20. The p75NTR mediates a bifurcated signal transduction cascade through the NFκB and JNK pathways to inhibit cell survival

    International Nuclear Information System (INIS)

    Allen, Jeffrey; Khwaja, Fatima; Byers, Stephen; Djakiew, Daniel

    2005-01-01

    p75 NTR is most abundantly expressed in the nervous system, but is also widely expressed in many other organs and tissues where it primarily functions as a negative regulator of cell survival. In the prostate, p75 NTR functions as an inhibitory protein capable of slowing proliferation and inducing apoptosis. It has been shown that p75 NTR is expressed in the normal prostate, progressively lost from malignant tumor cells in vivo, and largely absent from prostate cancer cell lines derived from metastases. Although the role of p75 NTR in prostate cancer has been well established, the signal transduction pathway that mediates its inhibitory activity has only been partially elucidated. This study demonstrates that exogenous expression of p75 NTR down-regulates, in a dose-dependent manner, a bifurcated signaling cascade that results in reduced expression of potent transcription effectors. This two-arm signal transduction cascade was directly linked to the upstream receptor by using dominant-negative deletion constructs of p75 NTR that rescued tumor cells from p75 NTR -induced loss of survival and promotion of apoptosis. Furthermore, the dominant negatives rescued alterations in the levels of signal transduction intermediates. Conversely, the use of kinase-inactive intermediates that are downstream of the receptor further reduced expression of involved transcription effectors and reduced survival of the cells. These results provide a definitive link between the proximate p75 NTR and signal transduction intermediates leading to the transcription effectors NFκB and JNK, with associated growth suppression and induction of apoptosis

  1. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    Directory of Open Access Journals (Sweden)

    Smeets Ruben L

    2012-03-01

    Full Text Available Abstract Background T lymphocytes are orchestrators of adaptive immunity. Naïve T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli and pathway inhibitors. Results from these experiments were validated in a human experimental setting using whole blood and purified CD4+ Tcells. Results Calcium-dependent activation of T cells using CD3/CD28 and PMA/CD3 stimulation induced a Th1 expression profile reflected by increased expression of T-bet, RUNX3, IL-2, and IFNγ, whereas calcium-independent activation via PMA/CD28 induced a Th2 expression profile which included GATA3, RXRA, CCL1 and Itk. Knock down with siRNA and gene expression profiling in the presence of selective kinase inhibitors showed that proximal kinases Lck and PKCθ are crucial signaling hubs during T helper cell activation, revealing a clear role for Lck in Th1 development and for PKCθ in both Th1 and Th2 development. Medial signaling via MAPkinases appeared to be less important in these pathways, since specific inhibitors of these kinases displayed a minor effect on gene expression. Translation towards a primary, whole blood setting and purified human CD4+ T cells revealed that PMA/CD3 stimulation induced a more pronounced Th1 specific, Lck and PKCθ dependent IFNγ production, whereas PMA/CD28 induced Th2 specific IL-5 and IL-13 production, independent of Lck activation. PMA/CD3-mediated skewing towards a Th1 phenotype was also reflected in mRNA expression of the master transcription factor Tbet, whereas PMA/CD28-mediated stimulation enhanced GATA3 mRNA expression in primary human CD4+ Tcells. Conclusions This study identifies stimulatory pathways and gene expression profiles for in vitro skewing of T helper cell

  2. [Effects of Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats].

    Science.gov (United States)

    Tong, Hai-Ying; Wu, Jisiguleng; Bai, Liang-Feng; Bao, Wu-Ye; Hu, Rilebagen; Li, Jing; Zhang, Yue

    2014-05-01

    To observe the effects of Mongolian pharmaceutical Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats. Sixty male Wistar rats were randomly divided into six groups according to the sugar consumption test (10 rats in each group), normal control group,model group,fluoxetine group (3.3 mg x kg(-1)) and low dose, medium dose and high dose group (0.25, 0.5, 1 g x kg(-1)) of Betel shisanwei ingredients pill. Except the normal control,the other groups were treated with the chronic unpredictable mild stress stimulation combined with lonely raising for 28 days. 10 mL x kg(-1) of drugs were given to each rat once daily,continuously for 28 days. The AC activity of the hippocampus and prefrontal cortex were determined by radiation immunity analysis (RIA), while cAMP and PKA quantity were determinated by Enzyme-linked immunosorbent (ELISA). The AC activity, cAMP and PKA quantity of hippocampus and prefrontal of mouse model of Chronic stress depression decreased significantly than those of control group (P Betel shisanwei ingredients pill group indecreased significantly than those of model group (P Betel shisanwei ingredients pill. The AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depression model of rats is down-regulated, whereas Mongolian pharmaceutical Betel shisanwei ingredients pill could up-regulated it to resist depression.

  3. Mutations in the thyrotropin receptor signal transduction pathway in the hyperfunctioning thyroid nodules from multinodular goiters: a study in the Turkish population.

    Science.gov (United States)

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema

    2005-10-01

    Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.

  4. Examination of the signal transduction pathways leading to upregulation of tissue type plasminogen activator by Porphyromonas endodontalis in human pulp cells.

    Science.gov (United States)

    Huang, F-M; Chen, Y-J; Chou, M-Y; Chang, Y-C

    2005-12-01

    To investigate the tissue type plasminogen activator (t-PA) activity in human pulp cells stimulated with Porphyromonas endodontalis (P. endodontalis) in the absence or presence of p38 inhibitor SB203580, mitogen-activated protein kinase kinase (MEK) inhibitor U0126 and phosphatidylinositaol 3-kinase (PI3K) inhibitor LY294002. The supernatants of P. endodontalis were used to evaluate t-PA activity in human pulp cells using casein zymography and enzyme-linked immunosorbent assay (ELISA). Furthermore, to search for possible signal transduction pathways, SB203580, U0126 and LY294002 were added to test how they modulated the t-PA activity. The main casein secreted by human pulp cells migrated at 70 kDa and represented t-PA. Secretion of t-PA was found to be stimulated with P. endodontalis during 2-day cultured period (P endodontalis stimulated t-PA production respectively (P endodontalis stimulated t-PA production (P > 0.05). Porphyromonas endodontalis enhances t-PA production in human pulp cells, and the signal transduction pathways p38 and MEK are involved in the inhibition of t-PA.

  5. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  6. Apurinic/apyrimidinic endonuclease1/redox factor-1 (Ape1/Ref-1) is essential for IL-21-induced signal transduction through ERK1/2 pathway

    International Nuclear Information System (INIS)

    Juliana, Farha M.; Nara, Hidetoshi; Onoda, Tadashi; Rahman, Mizanur; Araki, Akemi; Jin, Lianjin; Fujii, Hodaka; Tanaka, Nobuyuki; Hoshino, Tomoaki; Asao, Hironobu

    2012-01-01

    Highlights: ► IL-21 induces nuclear accumulation of Ape1/Ref-1 protein. ► Ape1/Ref-1 is indispensable in IL-21-induced cell proliferation and survival signal. ► Ape1/Ref-1 is required for IL-21-induced ERK1/2 activation. -- Abstract: IL-21 is a pleiotropic cytokine that regulates T-cell and B-cell differentiation, NK-cell activation, and dendritic cell functions. IL-21 activates the JAK-STAT, ERK, and PI3K pathways. We report here that Ape1/Ref-1 has an essential role in IL-21-induced cell growth signal transduction. Overexpression of Ape1/Ref-1 enhances IL-21-induced cell proliferation, but it is suppressed by overexpressing an N-terminal deletion mutant of Ape1/Ref-1 that lacks the redox domain. Furthermore, knockdown of the Ape1/Ref-1 mRNA dramatically compromises IL-21-induced ERK1/2 activation and cell proliferation with increasing cell death. These impaired activities are recovered by the re-expression of Ape1/Ref-1 in the knockdown cells. Our findings are the first demonstration that Ape1/Ref-1 is an indispensable molecule for the IL-21-mediated signal transduction through ERK1/2 activation.

  7. Presence of Tube isoforms in Litopenaeus vannamei suggests various regulatory patterns of signal transduction in invertebrate NF-κB pathway.

    Science.gov (United States)

    Li, Chaozheng; Chen, Yixiao; Weng, Shaoping; Li, Sedong; Zuo, Hongliang; Yu, Xiaoqiang; Li, Haoyang; He, Jianguo; Xu, Xiaopeng

    2014-02-01

    The toll-like receptor (TLR)/NF-κB signaling pathways play critical roles in the innate immune system. The intracellular signal transduction of most TLR pathways in invertebrate cells is triggered by formation of a heterotrimeric complex composed of MyD88, Tube and Pelle. In this study, we identified a Litopenaeus vannamei Pelle (LvPelle) and an isoform of L. vannamei Tube (LvTube) designated as LvTube-1. The interactions among LvPelle, LvTube/LvTube-1 and LvMyD88/LvMyD88-1 were elucidated and their functions during pathogen infections were investigated. Knockdowns of LvPelle and LvTube/LvTube-1 using RNAi strategy led to higher mortalities of shrimps during Vibrio parahemolyticus infection, and could reduce the genome copy number of white spot syndrome virus (WSSV) in the infected muscle tissue but did not affect the mortality caused by WSSV infection. The effects of LvPelle and LvTube/LvTube-1 on promoters containing NF-κB binding motifs were analyzed by dual-luciferase reporter assays and the results demonstrated that LvTube-1 could activate the NF-κB activity to significantly higher level than LvTube did. Moreover, tissue distributions of LvTube and LvTube-1 mRNAs and their expression profiles during pathogen and immune stimulant challenges were different, indicating that they could play different roles in immune responses. This is the first report of Tube isoforms in invertebrates. Together with our previous study on LvMyD88 isoforms, our results suggest that various isoforms of adaptor components may be involved in various regulatory patterns of signal transduction in invertebrate TLR/NF-κB pathway and this could be a strategy adopted by invertebrates to modulate immune responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    W. Nie

    2013-01-01

    Full Text Available Xyloglucans (XGs of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw and copper complex precipitation (TSc. Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT and fibroblasts (NHDF in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  9. [6]-Gingerol Prevents Disassembly of Cell Junctions and Activities of MMPs in Invasive Human Pancreas Cancer Cells through ERK/NF-κB/Snail Signal Transduction Pathway

    Directory of Open Access Journals (Sweden)

    Sung Ok Kim

    2013-01-01

    Full Text Available To study the effects of [6]-gingerol, a ginger phytochemical, on tight junction (TJ molecules, we investigated TJ tightening and signal transduction pathways in human pancreatic duct cell-derived cancer cell line PANC-1. The following methods were utilized: MTT assay to determine cytotoxicity; zymography to examine matrix metalloproteinase (MMP activities; transepithelial electrical resistance (TER and paracellular flux for TJ measurement; RT-PCR and immunoblotting for proteins related to TJ and invasion; and EMSA for NF-κB activity in PANC-1 cells. Results revealed that TER significantly increased and claudin 4 and MMP-9 decreased compared to those of the control. TJ protein levels, including zonula occludens (ZO- 1, occludin, and E-cadherin, increased in [6]-gingerol-treated cells, which correlated with a decrease in paracellular flux and MMP activity. Furthermore, NF-κB/Snail nuclear translocation was suppressed via downregulation of the extracellular signal-regulated kinase (ERK pathway in response to [6]-gingerol treatment. Moreover, treatment with U0126, an ERK inhibitor, completely blocked NF-κB activity. In conclusion, these findings demonstrate that [6]-gingerol regulates TJ-related proteins and suppresses invasion and metastasis through NF-κB/Snail inhibition via inhibition of the ERK pathway. Therefore, [6]-gingerol may suppress the invasive activity of PANC-1 cells.

  10. Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: Possible involvement of inhibition of survival signal transduction pathways

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Ishikawa, Hitoshi; Sakurai, Hideyuki; Saitoh, Jun-ichi; Takahashi, Takeo; Mitsuhashi, Norio

    2001-01-01

    Purpose: The effect of genistein, a tyrosine kinase inhibitor, on radiosensitivity was examined, especially focusing on 'survival signal transduction pathways'. Methods and Materials: Two human esophageal squamous cell cancer cell lines, TE-1 (p53, mutant) and TE-2 (p53, wild), were used. Radiosensitivity was determined by clonogenic assay, and activation of survival signals was examined by Western blot. Results: Genistein (30 μM) greatly enhanced radiosensitivity in these cell lines by suppressing radiation-induced activation of survival signals, p42/p44 extracellular signal-regulated kinase and AKT/PKB. Significant increase in the percentage of apoptotic cells and increased poly[ADP-ribose] polymerase cleavage were observed in TE-2, but not in TE-1 even after combination of genistein with irradiation. In terms of changes in expression of p53-related proteins, increase in expression of Bax and decrease in that of Bcl-2 were observed in TE-2 but not in TE-1, suggesting that the main mode of cell death induced by genistein in a cell line with wild type p53 differed from that with mutant p53. Conclusions: This study suggested that survival signals, including p42/p44 ERK and AKT/PKB, may be involved in determining radiosensitivity, and genistein would be a potent therapeutic agent that has an enhancing effect on radiation

  11. Effect of Lipoglycans from Mycobacterium Chelonae on the expression of inflammatory factors IL-8 and IL-6 in human corneal epithelial cells and its possible signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Chun-Zhou Tang

    2015-06-01

    Full Text Available AIM: To study the influence of Lipoglycans from Mycobacterium Chelonae(Cheon the expression of IL-6 and IL-8 in human corneal epithelia cells and its possible signal transduction pathway.METHODS: Lipoglycans was extracted by the Triton X-114 phase partitioning. Lipoglycans from Che were purified, by successive detergent and phenol extractions. Lipoglycans were separated by gel filtration on a Sephacryl 200 column and Sephacryl 100 column in series, followed by extensive dialisis. Purified Lipoglycans(50μg/mLwere added into culture medium to stimulate primary human corneal epithelial(HCEcells. Cells and supernatant were collected at 0, 6, 12, 24h after the stimulation. The IL-6 and IL-8 expression at mRNA level was assayed by using real time RT-PCR and the secreted IL-6 and IL-8 in the supernatants was measured by ELISA. Immunochemistry was used to detect the expression and location of NF-κB in HCE cells.RESULTS: After the treatment of Lipoglycans, the expression of IL-8 and IL-6 at mRNA level obviouly increased within 12h, and reached peak level at 6h(IL-8 was 36.8 times that of the blank control, and IL-6 was 32.7 times. Compared with the blank control group, the expression of IL-8 at protein level in the supernatant increased 2.8 folds at 6h(P>0.05, 13.4 folds at 12h(PPPPPCONCLUSION: Lipoglycans from Che can induce HCE cells to produce inflammatory factors(IL-6 and IL-8, and its signal transduction pathway probably is mediated by NF-κB.

  12. Portulaca oleracea extract can inhibit nodule formation of colon cancer stem cells by regulating gene expression of the Notch signal transduction pathway.

    Science.gov (United States)

    Jin, Heiying; Chen, Li; Wang, Shuiming; Chao, Deng

    2017-07-01

    To investigate whether Portulaca oleracea extract affects tumor formation in colon cancer stem cells and its chemotherapy sensitivity. In addition, to analyze associated genetic changes within the Notch signal transduction pathway. Serum-free cultures of colon cancer cells (HT-29) and HT-29 cancer stem cells were treated with the chemotherapeutic drug 5-fluorouracil to assess sensitivity. Injections of the stem cells were also given to BALB/c mice to confirm tumor growth and note its characteristics. In addition, the effect of different concentrations of P. oleracea extract was tested on the growth of HT-29 colon cancer cells and HT-29 cancer stem cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The effects of P. oleracea extract on the expression of β-catenin, Notch1, and Notch2 in the HT-29 cells were studied using reverse transcription polymerase chain reaction and Western blotting. The tumor volume of the HT29 cells was two times larger than that of HT29 cancer stem cells. Treatment with P. oleracea extract inhibited the proliferation of both HT-29 cancer cells and HT-29 cancer stem cells at doses from 0.07 to 2.25 µg/mL. Apoptosis of HT-29 cancer cells and HT-29 cancer stem cells was assessed by flow cytometry; it was enhanced by the addition of P. oleracea extract. Finally, treatment with P. oleracea extract significantly downregulated the expression of the Notch1 and β-catenin genes in both cell types. The results of this study show that P. oleracea extract inhibits the growth of colon cancer stem cells in a dose-dependent manner. Furthermore, it inhibits the expression of the Notch1 and β-catenin genes. Taken together, this suggests that it may elicit its effects through regulatory and target genes that mediate the Notch signal transduction pathway.

  13. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  14. Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

  15. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    Science.gov (United States)

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  16. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition.

  17. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  18. Role of estrogen in lung cancer based on the estrogen receptor-epithelial mesenchymal transduction signaling pathways

    Directory of Open Access Journals (Sweden)

    Zhao XZ

    2015-10-01

    Full Text Available Xiao-zhen Zhao,1,* Yu Liu,1,* Li-juan Zhou,1,* Zhong-qi Wang,1 Zhong-hua Wu,2 Xiao-yuan Yang31Department of Tumor, Longhua Hospital, 2Center of Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 3Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workBackground/aim: Estrogen is reported to promote the occurrence and development of several human cancers. Increasing evidence shows that most human lung tumors exert estrogen receptor expression. In the present study, we investigated the underlying mechanism of estrogen effect in lung cancer through estrogen receptor-epithelial–mesechymal-transition signaling pathways for the first time.Materials and methods: A total of 36 inbred C57BL/6 mice (18 male and 18 female were injected subcutaneously with human lung adenocarcinoma cell line, Lewis. After the lung tumor model was established, mice with lung adenocarcinoma were randomly divided into three groups for each sex (n=6, such as vehicle group, estrogen group, and estrogen plus tamoxifen group. The six groups of mice were sacrificed after 21 days of drug treatment. Tumor tissue was stripped and weighed, and tumor inhibition rate was calculated based on average tumor weight. Protein and messenger RNA (mRNA expressions of estrogen receptor α (ERα, estrogen receptor β (ERβ, phosphatidylinositol 3'-kinase (PI3K, AKT, E-cadherin, and vimentin were detected in both tumor tissue and lung tissue by using immunohistochemistry and real-time reverse transcription-polymerase chain reaction.Results: 1 For male mice: in the estrogen group, estrogen treatment significantly increased ERα protein and mRNA expressions in tumor tissue and protein expression of PI3K, AKT, and vimentin in both tumor tissue and lung tissue compared with the vehicle-treated group. Besides, m

  19. Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part I: major depressive disorder.

    Science.gov (United States)

    Niciu, Mark J; Ionescu, Dawn F; Mathews, Daniel C; Richards, Erica M; Zarate, Carlos A

    2013-10-01

    The etiopathogenesis and treatment of major mood disorders have historically focused on modulation of monoaminergic (serotonin, norepinephrine, dopamine) and amino acid [γ-aminobutyric acid (GABA), glutamate] receptors at the plasma membrane. Although the activation and inhibition of these receptors acutely alter local neurotransmitter levels, their neuropsychiatric effects are not immediately observed. This time lag implicates intracellular neuroplasticity as primary in the mechanism of action of antidepressants and mood stabilizers. The modulation of intracellular second messenger/signal transduction cascades affects neurotrophic pathways that are both necessary and sufficient for monoaminergic and amino acid-based treatments. In this review, we will discuss the evidence in support of intracellular mediators in the pathophysiology and treatment of preclinical models of despair and major depressive disorder (MDD). More specifically, we will focus on the following pathways: cAMP/PKA/CREB, neurotrophin-mediated (MAPK and others), p11, Wnt/Fz/Dvl/GSK3β, and NFκB/ΔFosB. We will also discuss recent discoveries with rapidly acting antidepressants, which activate the mammalian target of rapamycin (mTOR) and release of inhibition on local translation via elongation factor stimulation. Throughout this discourse, we will highlight potential intracellular targets for therapeutic intervention. Finally, future clinical implications are discussed.

  20. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available -4. Palsson-McDermott EM, O'Neill LA. Immunology. 2004 Oct;113(2):153-62. (.png) (.svg) (.html) (.csml) Show...Palsson-McDermott EM, O'Neill LA. Publication Immunology. 2004 Oct;113(2):153-62. Pathway - PNG File (.png)

  1. Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics

    Czech Academy of Sciences Publication Activity Database

    Molet, J.; Mauborgne, A.; Diallo, Michael; Armand, V.; Geny, D.; Villanueva, L.; Boucher, Y.; Pohl, M.

    2016-01-01

    Roč. 136, č. 1 (2016), s. 133-147 ISSN 0022-3042 R&D Projects: GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : astrocytes * cell plasticity * JAK/STAT3 pathway * microglia conditioned media * spinal cord neurons Subject RIV: FH - Neurology Impact factor: 4.083, year: 2016

  2. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    Science.gov (United States)

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  3. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on signal transduction pathway-related protein expression in liver and cerebrum of rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Mari; Akema, Satoshi; Tsuzuki, Masami; Kubota, Shunichiro [Tokyo Univ. (Japan); Korenaga, Tatsumi; Fukusato, Toshio [Teikyo Univ. of School of Medicine, Tokyo (Japan); Asaoka, Kazuo [Kyoto Univ. (Japan); Murata, Nobuo [Teikyo Univ. of School of Medicine, Kawasaki (Japan); Nomizu, Motoyoshi [Hokkaido Univ., Sapporo (Japan); Arima, Akihiro [Shin Nippon Biomedical Laboratories, Ltd., Kagoshima (Japan)

    2004-09-15

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to produce a wide range of toxic and biochemical effects in experimental animals, including immunological dysfunctions, chloracne, tetragenecity and carcinogenesis. Recently, the potential impact of dioxins on neurological disorders with particular focus on attention deficit hyperactivity disorder (ADHD) are concerned. Although a lot of information is available from studies in rodents, not much is known of the low dose effects of TCDD in non-human primates. In higher animals, dioxins are metabolized slowly, as evidenced by the estimated TCDD half-life of 5.8 to 14.1 years. Therefore, it is necessary to investigate the long-term effects of TCDD on human health. Considering the pronounced species differences observed in some studies of TCDD, the studies using primates are needed for assessment of TCDD exposure on human health. We have been studying the metabolism and the effects of single administration of TCDD on pregnant monkey (F0) and F1 rhesus monkey. The focus of the present study is to study the effects of TCDD on signal transduction pathway-related protein levels in various organs, especially in liver and brain of F0 monkeys.

  4. Modeling evolution of crosstalk in noisy signal transduction networks

    Science.gov (United States)

    Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-02-01

    Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.

  5. Overexpression of extracellular superoxide dismutase reduces severity of radiation-induced lung toxicity through downregulation of the TGF-β signal transduction pathway

    International Nuclear Information System (INIS)

    Rabbani, Z.N.; Anscher, M.S.; Archer, E.; Chen, L.; Samulski, T.V.; Folz, R.J.; Dewhirst, M.W.; Vujaskovic, Z.

    2003-01-01

    The objective of this study is to determine whether overexpression of ECSOD, ameliorates acute radiation induced lung injury by inhibiting activation of TGF-β and down regulating phosphorylation of (p)Smad 3 signal transduction protein. Transgenic (TG) B6C3 mice that overexpress human EC-SOD (hEC-SOD) and wild-type (WT) littermates received single dose of 15 Gy to the whole thorax and sacrificed at 1day, 1wk, 2wk, 3wk, 6wk, 10 and 14 weeks. Different endpoints were assessed to look for lung damage. Starting at 3rd week after radiation, there was significant increase in breathing rates, right lung wet weights and lung tissue damage score of XRT-WT vs. XRT-TG (p<0.05). In BALF, total cell counts per ml were significantly increased in XRT-WT whereas XRT-TG animals did not show any significant increase except at 14 weeks after irradiation (p<0.05). Macrophages and lymphocytes were the predominant inflammatory cells in BALF of XRT-WT compared to XRT-TG (p<0.05). XRT-WT group had a significantly higher percentage of activated TGF-β1 than the XRT-TG (p=0.04) at 14 weeks. There was a mild immunoreactivity of pSmad3 in bronchial epithelium and type II pneumocytes of control animals. In XRT-WT pSmad3 immunostaining was moderate at 1 week and moderate to strong at 3, 6 and 10 weeks whereas in XRT-TG mice immmunostaining was mild to moderate. This study shows that, the overexpression of ECSOD in transgenic animals is radioprotective in acute phase of radiation induced lung injury. Fewer inflammatory cells in XRT-TG group confirms the deprivation of important source for free radicals and TGF-β cytokine. Significant reduction in TGF-β activation in ECSOD overexpressing animals, followed by downregulation of pSmad3 indicates important role of reactive oxygen species in activation of TGF-β signal transduction pathway

  6. Tyrosine phosphorylation in signal transduction

    International Nuclear Information System (INIS)

    Roberts, T.M.; Kaplan, D.; Morgan, W.; Keller, T.; Mamon, H.; Piwnica-Worms, H.; Druker, B.; Whitman, M.; Morrison, D.; Cohen, B.; Schaffhausen, B.; Cantley, L.; Rapp, U.

    1988-01-01

    Recent work has focused on the elucidation of the mechanisms by which membrane-bound tyrosine kinases transmit signals within the cell. To examine the role of tyrosine phosphorylation the authors have employed the following strategy. First, they have utilized antibodies to phosphotyrosine (anti-P.Tyr) to identify candidate substrates of various tyrosine kinases, such as pp60 c-src , the CSF- receptor, or the platelet-derived growth factor (PDGF) receptor. Second, they have attempted to characterize the biochemical properties of the putative substrates and to determine in what manner these properties are modified by phosphorylation on tyrosine residues. In this endeavor, they are recapitulating the classic biochemical analysis used to study the effect of kinases on metabolism. The final portion of our work consists of using modern molecular biological strategies to clone the genes or cDNAs for the substrates and overproduce the relevant proteins for studies in vitro in defined systems. This paper describes the first and second aspects of this strategy, the identification and characterization of novel substrate molecules

  7. Identification of Novel Signal Transduction, Immune Function, and Oxidative Stress Genes and Pathways by Topiramate for Treatment of Methamphetamine Dependence Based on Secondary Outcomes

    Directory of Open Access Journals (Sweden)

    Tianhua Niu

    2017-12-01

    Full Text Available BackgroundTopiramate (TPM is suggested to be a promising medication for treatment of methamphetamine (METH dependence, but the molecular basis remains to be elucidated.MethodsAmong 140 METH-dependent participants randomly assigned to receive either TPM (N = 69 or placebo (N = 71 in a previously conducted randomized controlled trial, 50 TPM- and 49 placebo-treated participants had a total 212 RNA samples available at baseline, week 8, and week 12 time points. Following our primary analysis of gene expression data, we reanalyzed the microarray expression data based on a latent class analysis of binary secondary outcomes during weeks 1–12 that provided a classification of 21 responders and 31 non-responders with consistent responses at both time points.ResultsBased on secondary outcomes, 1,381, 576, 905, and 711 differentially expressed genes at nominal P values < 0.05 were identified in responders versus non-responders for week 8 TPM, week 8 placebo, week 12 TPM, and week 12 placebo groups, respectively. Among 1,381 genes identified in week 8 TPM responders, 359 genes were identified in both week 8 and week 12 TPM groups, of which 300 genes were exclusively detected in TPM responders. Of them, 32 genes had nominal P values < 5 × 10−3 at either week 8 or week 12 and false discovery rates < 0.15 at both time points with consistent directions of gene expression changes, which include GABARAPL1, GPR155, and IL15RA in GABA receptor signaling that represent direct targets for TPM. Analyses of these 300 genes revealed 7 enriched pathways belonging to neuronal function/synaptic plasticity, signal transduction, inflammation/immune function, and oxidative stress response categories. No pathways were enriched for 72 genes exclusively detected in both week 8 and week 12 placebo groups.ConclusionThis secondary analysis study of gene expression data from a TPM clinical trial not only yielded consistent results with those of primary

  8. Signal transduction and chemotaxis in mast cells

    Czech Academy of Sciences Publication Activity Database

    Dráber, Petr; Hálová, Ivana; Polakovičová, Iva; Kawakami, T.

    2016-01-01

    Roč. 778, jaro (2016), s. 11-23 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA14-09807S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : Mast cell * IgE receptor * KIT receptor * Signal transduction * Chemotaxis * Plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2016

  9. Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway.

    Science.gov (United States)

    Wu, Shu-Jing; Ng, Lean-Teik; Lin, Doung-Liang; Huang, Shan-Ney; Wang, Shyh-Shyan; Lin, Chun-Ching

    2004-11-25

    Physalis species is a popular folk medicine used for treating cancer, leukemia, hepatitis and other diseases. Studies have shown that the ethanol extract of Physalis peruviana (EEPP) inhibits growth and induces apoptotic death of human Hep G2 cells in culture, whereas proliferation of the mouse BALB/C normal liver cells was not affected. In this study, we performed detailed studies to define the molecular mechanism of EEPP-induced apoptosis in Hep G2 cells. The results further confirmed that EEPP inhibited cell proliferation in a dose- and time-dependent manner. At 50 microg/ml, EEPP significantly increased the accumulation of the sub-G1 peak (hypoploid) and the portion of apoptotic annexin V positive cells. EEPP was found to trigger apoptosis through the release of cytochrome c, Smac/DIABLO and Omi/HtrA2 from mitochondria to cytosol and consequently resulted in caspase-3 activation. Pre-treatment with a general caspase inhibitor (z-VAD-fmk) prevented cytochrome c release. After 48 h of EEPP treatment, the apoptosis of Hep G2 cells was found to associate with an elevated p53, and CD95 and CD95L proteins expression. Furthermore, a marked down-regulation of the expression of the Bcl-2, Bcl-XL and XIAP, and up-regulation of the Bax and Bad proteins were noted. Taken together, the present results suggest that EEPP-induced Hep G2 cell apoptosis was possibly mediated through the CD95/CD95L system and the mitochondrial signaling transduction pathway.

  10. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation

    Science.gov (United States)

    2012-07-01

    Std. Z39.18 Victoria Seewaldt, M.D. Dynamic Testing of Signal Transduction Deregulation During Breast Cancer Initiation Duke University Durham...attomole- zeptomole range. Internal dilution curves insure a high-dynamic calibration range. DU -26 8L DU -26 6L DU -29 5R DU -22 9.2 L DU...3: Nanobiosensor technology is translated to test for pathway deregulation in RPFNA cytology obtained from 10 high-risk women with cytological

  11. Which downstream signal transduction pathway(s) of H-ras are necessary for the cellular response(s) to ionizing radiation? (Results of an astro research fellowship year)

    International Nuclear Information System (INIS)

    Rudoltz, Marc S.; Muschel, Ruth J.; McKenna, W. Gillies

    1996-01-01

    Purpose/Background: The H-ras oncogene encodes a protein which is an essential component of multiple downstream effector pathways required for induction of proliferation and differentiation. Ras plays a role in the control some of these signal transduction pathways, such as the MAP kinase pathway which controls gene expression and the Rac-Rho pathway which controls cell morphology. Previous work from our laboratory has associated H-ras expression with radiation resistance, a prolonged delay in G2 following exposure to ionizing radiation, and suppression of radiation-induced apoptosis. In addition, H-ras cooperates with myc in transformation. Recent work by White et al. (Cell 80:533-541, 1995) and Joneson et al. (Science 271: 810-812, 1996) describes three mutations in H-ras which were engineered to eliminate different downstream signal transduction pathways of H-ras. T35S contains a serine in place of threonine at amino acid 35 and is defective for ras-induced cytoskeletal changes and initiation of DNA synthesis. E37G contains a glutamic acid in place of glycine at amino acid 37 which eliminates interaction of H-ras with a GDP/GTP exchange factor. C40 contains a substitution of cysteine for tyrosine at amino acid 40 and is defective for H-ras induction of the MAP kinase pathway. We propose that by expressing these mutant H-ras proteins in immortalized cells the downstream pathways of H-ras which regulate the cellular response(s) to ionizing radiation may be determined. Materials and Methods: pHP-5 plasmids encoding these H-ras mutant genes (see White et al.) were transfected by calcium phosphate precipitation into MR4 cells, rat embryo fibroblasts immortalized by expression of v-myc. In this vector, the cDNA for H-ras is placed under the control of a CMV constitutive promoter, and selection is provided by hygromycin. The transfections performed were as follows: V12Ras (no mutation), T35S, E37G, C40, T35S + E37G, and T35S + C40. Twenty four hours after transfection

  12. The sugarcane signal transduction (SUCAST catalogue: prospecting signal transduction in sugarcane

    Directory of Open Access Journals (Sweden)

    Glaucia Mendes Souza

    2001-12-01

    Full Text Available EST sequencing has enabled the discovery of many new genes in a vast array of organisms, and the utility of this approach to the scientific community is greatly increased by the establishment of fully annotated databases. The present study aimed to identify sugarcane ESTs sequenced in the sugarcane expressed sequence tag (SUCEST project (http://sucest.lad.ic.unicamp.br that corresponded to signal transduction components. We also produced a sugarcane signal transduction (SUCAST catalogue (http://sucest.lad.ic.unicamp.br/private/mining-reports/QG/QG-mining.htm that covered the main categories and pathways. Expressed sequence tags (ESTs encoding enzymes for hormone (gibberellins, ethylene, auxins, abscisic acid and jasmonic acid biosynthetic pathways were found and tissue specificity was inferred from their relative frequency of occurrence in the different libraries. Whenever possible, transducers of hormones and plant peptide signaling were catalogued to the respective pathway. Over 100 receptors were found in sugarcane, which contains a large family of Ser/Thr kinase receptors and also photoreceptors, histidine kinase receptors and their response regulators. G-protein and small GTPases were analyzed and compared to known members of these families found in mammalian and plant systems. Major kinase and phosphatase pathways were mapped, with special attention being given to the MAP kinase and the inositol pathway, both of which are well known in plants.O sequenciamento de ESTs (etiquetas de sequencias transcritas tem possibilitado a descoberta de muitos novos genes em uma ampla variedade de organismos. Um aumento do aproveitamento desta informação pela comunidade científica tem sido possível graças ao desenvolvimento de base de dados contendo seqüências completamente anotadas. O trabalho aqui relatado teve como objetivo a identificação de ESTs de cana de açúcar seqüenciadas através do projeto SUCEST (http://sucest.lad.ic. unicamp.br que

  13. Influence of Unweighting on Insulin Signal Transduction in Muscle

    Science.gov (United States)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  14. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems

    National Research Council Canada - National Science Library

    Caldwell, Kevin

    2001-01-01

    .... One and twenty-four hours following fear conditioning this learning deficit is associated with altered brain signal transduction mechanisms that are dependent on an enzyme termed phosphatidylinositol...

  15. A new highly conserved antibiotic sensing/resistance pathway in firmicutes involves an ABC transporter interplaying with a signal transduction system.

    Directory of Open Access Journals (Sweden)

    Stéphanie Coumes-Florens

    2011-01-01

    Full Text Available Signal transduction systems and ABC transporters often contribute jointly to adaptive bacterial responses to environmental changes. In Bacillus subtilis, three such pairs are involved in responses to antibiotics: BceRSAB, YvcPQRS and YxdJKLM. They are characterized by a histidine kinase belonging to the intramembrane sensing kinase family and by a translocator possessing an unusually large extracytoplasmic loop. It was established here using a phylogenomic approach that systems of this kind are specific but widespread in Firmicutes, where they originated. The present phylogenetic analyses brought to light a highly dynamic evolutionary history involving numerous horizontal gene transfers, duplications and lost events, leading to a great variety of Bce-like repertories in members of this bacterial phylum. Based on these phylogenetic analyses, it was proposed to subdivide the Bce-like modules into six well-defined subfamilies. Functional studies were performed on members of subfamily IV comprising BceRSAB from B. subtilis, the expression of which was found to require the signal transduction system as well as the ABC transporter itself. The present results suggest, for the members of this subfamily, the occurrence of interactions between one component of each partner, the kinase and the corresponding translocator. At functional and/or structural levels, bacitracin dependent expression of bceAB and bacitracin resistance processes require the presence of the BceB translocator loop. Some other members of subfamily IV were also found to participate in bacitracin resistance processes. Taken together our study suggests that this regulatory mechanism might constitute an important common antibiotic resistance mechanism in Firmicutes. [Supplemental material is available online at http://www.genome.org.].

  16. Genetic analysis of gravity signal transduction in roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  17. Mechanistic Insights in Ethylene Perception and Signal Transduction1

    Science.gov (United States)

    Ju, Chuanli; Chang, Caren

    2015-01-01

    The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk. PMID:26246449

  18. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    International Nuclear Information System (INIS)

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-01-01

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  20. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

    International Nuclear Information System (INIS)

    Mol, J.; Jenkins, G.; Schäfer, E.; Weiss, D.

    1996-01-01

    Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a combination of biochemical, molecular and genetic studies. We discuss a range of relevant research to highlight the different experimental approaches being used and the diverse biological systems under investigation. (author)

  1. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  2. Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep

    Directory of Open Access Journals (Sweden)

    Ryan Kate E

    2008-10-01

    Full Text Available Abstract Background The intracellular signalling mechanisms that regulate ovarian follicle development are unclear; however, we have recently shown differences in the Akt and Erk signalling pathways in dominant compared to subordinate follicles. The aim of this study was to investigate the effects of inhibiting Akt and Erk phosphorylation on IGF- and gonadotropin- stimulated granulosa and theca cell function in vitro, and on follicle development in vivo. Methods Bovine granulosa and theca cells were cultured for six days and stimulated with FSH and/or IGF, or LH in combination with PD98059 (Erk inhibitor and/or LY294002 (Akt inhibitor and their effect on cell number and hormone secretion (estradiol, activin-A, inhibin-A, follistatin, progesterone and androstenedione determined. In addition, ovarian follicles were treated in vivo with PD98059 and/or LY294002 in ewes on Day 3 of the cycle and follicles were recovered 48 hours later. Results We have shown that gonadotropin- and IGF-stimulated hormone production by granulosa and theca cells is reduced by treatment with PD98059 and LY294002 in vitro. Furthermore, treatment with PD98059 and LY294002 reduced follicle growth and oestradiol production in vivo. Conclusion These results demonstrate an important functional role for the Akt and Erk signalling pathways in follicle function, growth and development.

  3. Saccharomyces boulardii Preserves the Barrier Function and Modulates the Signal Transduction Pathway Induced in Enteropathogenic Escherichia coli-Infected T84 Cells

    Science.gov (United States)

    Czerucka, Dorota; Dahan, Stephanie; Mograbi, Baharia; Rossi, Bernard; Rampal, Patrick

    2000-01-01

    Use of the nonpathogenic yeast Saccharomyces boulardii in the treatment of infectious diarrhea has attracted growing interest. The present study designed to investigate the effect of this yeast on enteropathogenic Escherichia coli (EPEC)-associated disease demonstrates that S. boulardii abrogated the alterations induced by an EPEC strain on transepithelial resistance, [3H]inulin flux, and ZO-1 distribution in T84 cells. Moreover, EPEC-mediated apoptosis of epithelial cells was delayed in the presence of S. boulardii. The yeast did not modify the number of adherent bacteria but lowered by 50% the number of intracellular bacteria. Infection by EPEC induced tyrosine phosphorylation of several proteins in T84 cells, including p46 and p52 SHC isoforms, that was attenuated in the presence of S. boulardii. Similarly, EPEC-induced activation of the ERK1/2 mitogen-activated protein (MAP) kinase pathway was diminished in the presence of the yeast. Interestingly, inhibition of the ERK1/2 pathway with the specific inhibitor PD 98059 decreased EPEC internalization, suggesting that modulation of the ERK1/2 MAP pathway might account for the lowering of the number of intracellular bacteria observed in the presence of S. boulardii. Altogether, this study demonstrated that S. boulardii exerts a protective effect on epithelial cells after EPEC adhesion by modulating the signaling pathway induced by bacterial infection. PMID:10992512

  4. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors.

    Science.gov (United States)

    Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho

    2005-12-01

    The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.

  5. Regulation of autophagy by amino acids and MTOR-dependent signal transduction

    NARCIS (Netherlands)

    Meijer, Alfred J.; Lorin, Séverine; Blommaart, Edward F.; Codogno, Patrice

    2015-01-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins

  6. Information Thermodynamics of the Cell Signal Transduction as a Szilard Engine

    Directory of Open Access Journals (Sweden)

    Tatsuaki Tsuruyama

    2018-03-01

    Full Text Available A cell signaling system is in a non-equilibrium state, and it includes multistep biochemical signaling cascades (BSCs, which involve phosphorylation of signaling molecules, such as mitogen-activated protein kinase (MAPK pathways. In this study, the author considered signal transduction description using information thermodynamic theory. The ideal BSCs can be considered one type of the Szilard engine, and the presumed feedback controller, Maxwell’s demon, can extract the work during signal transduction. In this model, the mutual entropy and chemical potential of the signal molecules can be redefined by the extracted chemical work in a mechanicochemical model, Szilard engine, of BSC. In conclusion, signal transduction is computable using the information thermodynamic method.

  7. Signal transduction in the footsteps of goethe and schiller.

    Science.gov (United States)

    Friedrich, Karlheinz; Lindquist, Jonathan A; Entschladen, Frank; Serfling, Edgar; Thiel, Gerald; Kieser, Arnd; Giehl, Klaudia; Ehrhardt, Christina; Feller, Stephan M; Ullrich, Oliver; Schaper, Fred; Janssen, Ottmar; Hass, Ralf

    2009-02-04

    The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS) has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction - Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field.The 12th STS Meeting was held from October 28 to 31 and provided a state-of-the-art overview of various areas of signal transduction research in which progress is fast and discussion lively. This report is intended to share with the readers of CCS some highlights of the Meeting Workshops devoted to specific aspects of signal transduction.

  8. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  9. Effects of liver depression and psychological stress on human uterine leiomyoma cells by an AR-cAMP-PKA signal transduction pathway.

    Science.gov (United States)

    Xia, Tian; Li, Shuang; Ma, Ruihong; Guan, Sufen; Li, Jiacui; Li, Hongqin; Zhang, Hexin; Lin, Qiu; Zhao, Zhimei; Wang, Baojuan

    2017-06-01

    Based on the emotional theory of Traditional Chinese Medicine, and combined with the modern medicine theory of psychological stress, a research model of human uterine leiomyoma cells (ULM) was cultured in vitro to determine the effectiveness of adrenergic receptor (AR) agonists in human ULM cell growth. In addition, we studied the functional influence of "liver depression and psychological stress theory" on fibroid formation by intervening in the AR-cAMP-PKA signaling pathway. The intention was to establish a new method to prevent and cure fibroids through "liver depression and psychological stress theory" and provide an experimental basis for the Traditional Chinese Medicine emotional theory. Primary human ULM cells were enriched by collagenase digestion. Immunohistochemistry and hematoxylin and eosin (HE) staining were used for cytological identification. Using this model, we studied intervention using specific AR agonists on ULM cells to observe the influence of "liver depression and psychological stress theory" on estrogen receptor (ER), progesterone receptor (PR), vascular endothelial growth factor (VEGF) and fibroblast growth factors (FGF). Norepinephrine (NE) and epinephrine (E) are adrenergic receptor agonists. They promoted ULM cell proliferation and increased the levels of ER, PR, VEGF and FGF. In contrast, isoproterenol (ISO) inhibited ULM cell proliferation and decreased the levels of ER, PR, VEGF and FGF. The protein expression of cAMP and PKA in ULM cells was reduced and the levels of ER, PR, VEGF and FGF were increased when co-treatment with the α-AR blocker (phentolamine). The β-AR blocker (metoprolol) displayed an opposite effect. AR agonists modulated ER, PR, VEGF and FGF levels in ULM cells in an AR-cAMP-PKA-dependent signaling pathways to influence fibroid occurrence and development. Copyright © 2017. Published by Elsevier B.V.

  10. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    Science.gov (United States)

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  11. Insulin resistance and improvements in signal transduction.

    Science.gov (United States)

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  12. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Nakada, Mitsutoshi; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka; Teng, Lei; Pyko, Ilya V.; Hamada, Jun-Ichiro

    2011-01-01

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  13. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  14. TRP channel proteins and signal transduction.

    Science.gov (United States)

    Minke, Baruch; Cook, Boaz

    2002-04-01

    TRP channel proteins constitute a large and diverse family of proteins that are expressed in many tissues and cell types. This family was designated TRP because of a spontaneously occurring Drosophila mutant lacking TRP that responded to a continuous light with a transient receptor potential (hence TRP). In addition to responses to light, TRPs mediate responses to nerve growth factor, pheromones, olfaction, mechanical, chemical, temperature, pH, osmolarity, vasorelaxation of blood vessels, and metabolic stress. Furthermore, mutations in several members of TRP-related channel proteins are responsible for several diseases, such as several tumors and neurodegenerative disorders. TRP-related channel proteins are found in a variety of organisms, tissues, and cell types, including nonexcitable, smooth muscle, and neuronal cells. The large functional diversity of TRPs is also reflected in their diverse permeability to ions, although, in general, they are classified as nonselective cationic channels. The molecular domains that are conserved in all members of the TRP family constitute parts of the transmembrane domains and in most members also the ankyrin-like repeats at the NH2 terminal of the protein and a "TRP domain" at the COOH terminal, which is a highly conserved 25-amino acid stretch with still unknown function. All of the above features suggest that members of the TRP family are "special assignment" channels, which are recruited to diverse signaling pathways. The channels' roles and characteristics such as gating mechanism, regulation, and permeability are determined by evolution according to the specific functional requirements.

  15. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  16. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  17. Signal Transduction Pathways (MAPKs, NF-κB, and C/EBP) Regulating COX-2 Expression in Nasal Fibroblasts from Asthma Patients with Aspirin Intolerance

    Science.gov (United States)

    Garcia-Garcia, Francesc Josep; Mullol, Joaquim; Perez-Gonzalez, Maria; Pujols, Laura; Alobid, Isam

    2012-01-01

    Background Recent studies have revealed that cyclooxygenase-2 (COX-2) expression is down-regulated in aspirin-induced asthma (AIA). Various signal pathways (MAPKs, NF-κB and C/EBP) are involved in COX-2 regulation. Objective To investigate the regulation of COX-2 expression through MAP-kinase pathway activation and nuclear factor translocation in aspirin-induced asthma (AIA). Methods Fibroblasts were isolated from specimens of nasal mucosa (NM, N = 5) and nasal polyps (NP, N = 5). After IL-1β (1 ng/ml) incubation, COX-2 and phosphorylated forms of ERK, JNK and p38 MAPK were measured by Western blot. MAPK’s role in IL-1β-induced COX-2 expression was assessed by treating cells with ERK (PD98059), JNK (SP600125) and p38 MAPK (SB203580) inhibitors (0.1–10 µM) prior to IL-1β exposure. NF-κB and C/EBP nuclear translocation was measured by Western blot and TransAM® after IL-1β (10 ng/ml) exposure. Results No differences were observed in the MAPK phosphorylation time-course between NM and NP-AIA fibroblasts. The p38 MAPK inhibitor at 10 µM significantly reduced IL-1β-induced COX-2 expression in NM fibroblasts (85%). In NP-AIA fibroblasts the COX-2 inhibition (65%) at 1 and 10 µM was not statistically significant compared to non-treated cells. ERK and JNK inhibitors had no significant effect in either the NM or NP-AIA cultures. The effect of IL-1β on NF-κB and C/EBP subunits’ nuclear translocation was similar between NM and NP-AIA fibroblasts. Conclusions These results suggest that p38 MAPK is the only MAPK involved in IL-1β-induced COX-2 expression. NM and NP-AIA fibroblasts have similar MAPK phosphorylation dynamics and nuclear factor translocation (NF-κB and C/EBP). COX-2 downregulation observed in AIA patients appears not to be caused by differences in MAPK dynamics or transcription factor translocation. PMID:23240010

  18. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  19. Expression of SMAD signal transduction molecules in the pancreas

    DEFF Research Database (Denmark)

    Brorson, Michael; Hougaard, D.; Nielsen, Jens Høiriis

    2001-01-01

    Members of the TGF-beta superfamily of cytokines have been implicated in pancreatic cancer, pancreatitis and in regulation and differentiation of pancreatic endocrine and exocrine cells. Different TGF-beta members signal through phosphorylation of different signal transduction proteins, which eve...

  20. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.

    Science.gov (United States)

    Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M

    2013-09-01

    This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms. © 2013 The Fisheries Society of the British Isles.

  1. [Effect of ginseng polysaccharide-induced wnt/beta-catenin signal transduction pathway on apoptosis of human nasopharyngeal cancer cells CNE-2].

    Science.gov (United States)

    Fan, Jia-Ming; Liu, Ze-Hong; Li, Jing; Wang, Ya-Ping; Yang, Lv-Yuan; Huang, Jiang-Ju

    2013-10-01

    proliferation of CNE-2 cells and promote thier apoptosis. The obstruction of Wnt/beta-catenin signaling pathway may be an important mechanism for GPS to induce the apoptosis of human nasopharyngeal cancer cells CNE-2.

  2. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    Science.gov (United States)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  3. Retroactive signaling in short signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jacques-Alexandre Sepulchre

    Full Text Available In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles.

  4. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  5. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  6. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  7. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  8. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.; Gehring, Christoph A

    2013-01-01

    as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well

  9. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  10. Mannotriose regulates learning and memory signal transduction in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Lina Zhang; Weiwei Dai; Xueli Zhang; Zhangbin Gong; Guoqin Jin

    2013-01-01

    Rehmannia is a commonly used Chinese herb, which improves learning and memory. However, the crucial components of the signal transduction pathway associated with this effect remain elusive. Pri-mary hippocampal neurons were cultured in vitro, insulted with high-concentration (1 × 10-4 mol/L) cor-ticosterone, and treated with 1 × 10-4 mol/L mannotriose. Thiazolyl blue tetrazolium bromide assay and western blot analysis showed that hippocampal neuron survival rates and protein levels of glucocorti-coid receptor, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor were al dramatical y decreased after high-concentration corticosterone-induced injury. This effect was reversed by mannotriose, to a similar level as RU38486 and donepezil. Our findings indicate that mannotriose could protect hippocampal neurons from high-concentration corticosterone-induced injury. The mechanism by which this occurred was associated with levels of glucocorticoid receptor protein, serum and glucocorticoid-regulated protein kinase, and brain-derived neurotrophic factor.

  11. Modulation of signal transduction by tea catechins and related phytochemicals

    International Nuclear Information System (INIS)

    Shimizu, Masahito; Weinstein, I. Bernard

    2005-01-01

    Epidemiologic studies in human populations and experimental studies in rodents provide evidence that green tea and its constituents can inhibit both the development and growth of tumors at a variety of tissue sites. In addition, EGCG, a major biologically active component of green tea, inhibits growth and induces apoptosis in a variety of cancer cell lines. The purpose of this paper is to review evidence that these effects are mediated, at least in part, through inhibition of the activity of specific receptor tyrosine kinases (RTKs) and related downstream pathways of signal transduction. We also review evidence indicating that the antitumor effects of the related polyphenolic phytochemicals resveratrol, genistein, curcumin, and capsaicin are exerted via similar mechanisms. Some of these agents (EGCG, genistein, and curcumin) appear to directly target specific RTKs, and all of these compounds cause inhibition of the activity of the transcription factors AP-1 and NF-κB, thus inhibiting cell proliferation and enhancing apoptosis. Critical areas of future investigation include: (1) identification of the direct molecular target(s) of EGCG and related polyphenolic compounds in cells; (2) the in vivo metabolism and bioavailability of these compounds; (3) the ancillary effects of these compounds on tumor-stromal interactions; (4) the development of synergistic combinations with other antitumor agents to enhance efficacy in cancer prevention and therapy, and also minimize potential toxicities

  12. Defect in radiation signal transduction in ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Lavin, M.F.

    1994-01-01

    Exposure of mammalian cells to ionizing radiation causes a delay in progression through the cycle at several checkpoints. Cells from patients with ataxia-telangiectasia (A-T) ignore these checkpoint controls postirradiation. The tumour suppressor gene product p53 plays a key role at the G 1 /S checkpoint preventing the progression of cells into S phase. The induction of p53 by radiation is reduced and/or delayed in A-T cells, which appears to account for the failure of delay at the G 1 /S checkpoint. We have investigated further this defect in radiation signal transduction in A-T. While the p53 response was defective after radiation, agents that interfered with cell cycle progression such as mimosine, aphidicolin and deprivation of serum led to a normal p53 response in A-T cells. None of these agents caused breaks in DNA, as determined by pulse-field gel electrophoresis, in order to elicit the response. Since this pathway is mediated by protein kinases, we investigated the activity of several of these enzymes in control and A-T cells. Ca +2 -dependent and -independent protein kinase C activities were increased by radiation to the same extent in the two cell types, a variety of serine/threonine protein kinase activities were approximately the same and anti-tyrosine antibodies failed to reveal any differences in protein phosphorylation between A-T and control cells. (author)

  13. cAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the α-hemolysin autophagic response.

    Directory of Open Access Journals (Sweden)

    María Belén Mestre

    Full Text Available Staphylococcus aureus is a microorganism that causes serious diseases in the human being. This microorganism is able to escape the phagolysosomal pathway, increasing intracellular bacterial survival and killing the eukaryotic host cell to spread the infection. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. We have shown that the pore-forming toxin α-hemolysin (Hla is the S. aureus-secreted factor responsible for the activation of the autophagic pathway and that this response occurs through a PI3K/Beclin1-independent form. In the present report we demonstrate that cAMP has a key role in the regulation of this autophagic response. Our results indicate that cAMP is able to inhibit the autophagy induced by Hla and that PKA, the classical cAMP effector, does not participate in this regulation. We present evidence that EPAC and Rap2b, through calpain activation, are the proteins involved in the regulation of Hla-induced autophagy. Similar results were obtained in cells infected with different S. aureus strains. Interestingly, in this report we show, for the first time to our knowledge, that both EPAC and Rap2b are recruited to the S. aureus-containing phagosome. We believe that our findings have important implications in understanding innate immune processes involved in intracellular pathogen invasion of the host cell.

  14. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase.

    OpenAIRE

    Reith, A D; Ellis, C; Lyman, S D; Anderson, D M; Williams, D E; Bernstein, A; Pawson, T

    1991-01-01

    Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an i...

  15. Blocking Modification of Eukaryotic Initiation 5A2 Antagonizes Cervical Carcinoma via Inhibition of RhoA/ROCK Signal Transduction Pathway.

    Science.gov (United States)

    Liu, Xiaojun; Chen, Dong; Liu, Jiamei; Chu, Zhangtao; Liu, Dongli

    2017-10-01

    Cervical carcinoma is one of the leading causes of cancer-related death for female worldwide. Eukaryotic initiation factor 5A2 belongs to the eukaryotic initiation factor 5A family and is proposed to be a key factor involved in the development of diverse cancers. In the current study, a series of in vivo and in vitro investigations were performed to characterize the role of eukaryotic initiation factor 5A2 in oncogenesis and metastasis of cervical carcinoma. The expression status of eukaryotic initiation factor 5A2 in 15 cervical carcinoma patients was quantified. Then, the effect of eukaryotic initiation factor 5A2 knockdown on in vivo tumorigenicity ability, cell proliferation, cell cycle distribution, and cell mobility of HeLa cells was measured. To uncover the mechanism driving the function of eukaryotic initiation factor 5A2 in cervical carcinoma, expression of members within RhoA/ROCK pathway was detected, and the results were further verified with an RhoA overexpression modification. The level of eukaryotic initiation factor 5A2 in cervical carcinoma samples was significantly higher than that in paired paratumor tissues ( P cycle arrest ( P ROCK I, and ROCK II were downregulated. The above-mentioned changes in eukaryotic initiation factor 5A2 knockdown cells were alleviated by the overexpression of RhoA. The major findings outlined in the current study confirmed the potential of eukaryotic initiation factor 5A2 as a promising prognosis predictor and therapeutic target for cervical carcinoma treatment. Also, our data inferred that eukaryotic initiation factor 5A2 might function in carcinogenesis of cervical carcinoma through an RhoA/ROCK-dependent manner.

  16. Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells

    International Nuclear Information System (INIS)

    Soto-Pena, Gerson A.; Vega, Libia

    2008-01-01

    Arsenic is known to produce inhibition as well as induction of immune cells proliferative responses depending on the doses as one of its mechanisms of immunotoxicity. Here we evaluate the effect of arsenic exposure on the activation of splenic mononuclear cells (SMC) in male CD57BL6N mice. Intra-gastric exposure to arsenic (as sodium arsenite) for 30 days (1, 0.1, or 0.01 mg/kg/day), reduced the proportion of CD4+ cells and the CD4+/CD8+ ratio in the spleen, increasing the proportion of CD11b+ cells. Arsenic exposure did not modify the proportion of B cells. SMC showed an increased level of phosphorylation of lck and fyn kinases (first kinases associated to TCR complex when activated). Although normal levels of apoptosis were observed on freshly isolated SMC, an increase in apoptotic cells related with the increase in phosphorylation of lck and fyn was observed when SMC were activated with Concanavalin-A (Con-A). Arsenic exposure reduced the proliferative response of SMC to Con-A, and also reduced secretion of IL-2, IL-6, IL-12 and IFNγ. No effect was observed on IL-4, and IL-10 secretion. The same effects were observed when SMC of exposed animals were activated with anti-CD3/CD28 antibodies for 24 h, but these effects were transitory since a recovery, up to control levels or even higher, were observed after 72 h of stimulation. This study demonstrates that repeated and prolonged exposure to arsenic alters cell populations and produces functional changes depending on the specific activation pathway, and could be related with the phosphorylation status of lck and fyn kinases

  17. Organophosphorous pesticide metabolite (DEDTP) induces changes in the activation status of human lymphocytes by modulating the interleukin 2 receptor signal transduction pathway

    International Nuclear Information System (INIS)

    Esquivel-Senties, M.S.; Barrera, I.; Ortega, A.; Vega, L.

    2010-01-01

    Diethyldithiophosphate (DEDTP) is a metabolite formed by biotransformation of organophosphorous (OP) compounds that has a longer half-life than its parental compound. Here we evaluate the effects of DEDTP on human CD4+ T lymphocytes. In vitro exposure to DEDTP (1-50 μM) decreased [ 3 H]thymidine incorporation in resting cells and increased CD25 surface expression without altering cell viability. DEDTP treatment inhibited anti-CD3/anti-CD28 stimulation-induced CD4+ and CD8+ T cell proliferation determined by CFSE dilution. Decreased CD25 expression and intracellular IL-2 levels were correlated with this defect in cell proliferation. IL-2, IFN-γ and IL-10 secretion were also reduced while IL-4 secretion was not altered. Increased phosphorylation of SOCS3 and dephosphorylation of STAT5 were induced by DEDTP after as little as 5 min of exposure. In addition, DEDTP induced phosphorylation of ERK, JNK and p38 and NFAT nuclear translocation. These results suggest that DEDTP can modulate phosphorylation of intracellular proteins such as SOCS3, which functions as a negative regulator of cytokine signalling, and that DEDTP exposure may thus cause T cells to fail to respond to further antigen challenges.

  18. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction.

    Science.gov (United States)

    Brady, Mariea A; Waldman, Stephen D; Ethier, C Ross

    2015-02-01

    The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.

  19. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.

    2013-09-03

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively. © Springer Science+Business Media New York 2013.

  20. Influenza A induced cellular signal transduction pathways

    Science.gov (United States)

    Michael, Paul; Brabant, Danielle; Bleiblo, Farag; Ramana, Chilakamarti V.; Rutherford, Michael; Khurana, Sandhya; Tai, T.C.; Kumar, Anand

    2013-01-01

    Influenza A is a negative sense single stranded RNA virus that belongs to the Orthomyxoviridae Family. This enveloped virus contains 8 segments of viral RNA which encodes 11 viral proteins. Influenza A infects humans and is the causative agent of the flu. Annually it infects approximately 5% to 15% of the population world wide and results in an estimated 250,000 to 500,000 deaths a year. The nature of influenza A replication results in a high mutation rate which results in the need for seasonal vaccinations. In addition the zoonotic nature of the influenza virus allows for recombination of viral segments from different strains creating new variants that have not been encountered before. This type of mutation is the method by which pandemic strains of the flu arises. Infection with influenza results in a respiratory illness that for most individuals is self limiting. However in susceptible populations which include individuals with pre-existing pulmonary or cardiac conditions, the very young and the elderly fatal complications may arise. The most serious of these is the development of viral pneumonia which may be accompanied by secondary bacterial infections. Progression of pneumonia leads to the development of acute respiratory distress syndrome (ARDS), acute lung injury (ALI) and potentially respiratory failure. This progression is a combined effect of the host immune system response to influenza infection and the viral infection itself. This review will focus on molecular aspects of viral replication in alveolar cells and their response to infection. The response of select innate immune cells and their contribution to viral clearance and lung epithelial damage will also be discussed. Molecular aspects of antiviral response in the cells in particular the protein kinase RNA dependent response, and the oligoadenylate synthetase RNAse L system in relation to influenza infection. PMID:23977434

  1. State–time spectrum of signal transduction logic models

    International Nuclear Information System (INIS)

    MacNamara, Aidan; Terfve, Camille; Henriques, David; Bernabé, Beatriz Peñalver; Saez-Rodriguez, Julio

    2012-01-01

    Despite the current wealth of high-throughput data, our understanding of signal transduction is still incomplete. Mathematical modeling can be a tool to gain an insight into such processes. Detailed biochemical modeling provides deep understanding, but does not scale well above relatively a few proteins. In contrast, logic modeling can be used where the biochemical knowledge of the system is sparse and, because it is parameter free (or, at most, uses relatively a few parameters), it scales well to large networks that can be derived by manual curation or retrieved from public databases. Here, we present an overview of logic modeling formalisms in the context of training logic models to data, and specifically the different approaches to modeling qualitative to quantitative data (state) and dynamics (time) of signal transduction. We use a toy model of signal transduction to illustrate how different logic formalisms (Boolean, fuzzy logic and differential equations) treat state and time. Different formalisms allow for different features of the data to be captured, at the cost of extra requirements in terms of computational power and data quality and quantity. Through this demonstration, the assumptions behind each formalism are discussed, as well as their advantages and disadvantages and possible future developments. (paper)

  2. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway.

    Science.gov (United States)

    Park, J I; Grant, C M; Attfield, P V; Dawes, I W

    1997-10-01

    The ability of cells to survive freezing and thawing is expected to depend on the physiological conditions experienced prior to freezing. We examined factors affecting yeast cell survival during freeze-thaw stress, including those associated with growth phase, requirement for mitochondrial functions, and prior stress treatment(s), and the role played by relevant signal transduction pathways. The yeast Saccharomyces cerevisiae was frozen at -20 degrees C for 2 h (cooling rate, less than 4 degrees C min-1) and thawed on ice for 40 min. Supercooling occurred without reducing cell survival and was followed by freezing. Loss of viability was proportional to the freezing duration, indicating that freezing is the main determinant of freeze-thaw damage. Regardless of the carbon source used, the wild-type strain and an isogenic petite mutant ([rho 0]) showed the same pattern of freeze-thaw tolerance throughout growth, i.e., high resistance during lag phase and low resistance during log phase, indicating that the response to freeze-thaw stress is growth phase specific and not controlled by glucose repression. In addition, respiratory ability and functional mitochondria are necessary to confer full resistance to freeze-thaw stress. Both nitrogen and carbon source starvation led to freeze-thaw tolerance. The use of strains affected in the RAS-cyclic AMP (RAS-cAMP) pathway or supplementation of an rca1 mutant (defective in the cAMP phosphodiesterase gene) with cAMP showed that the freeze-thaw response of yeast is under the control of the RAS-cAMP pathway. Yeast did not adapt to freeze-thaw stress following repeated freeze-thaw treatment with or without a recovery period between freeze-thaw cycles, nor could it adapt following pretreatment by cold shock. However, freeze-thaw tolerance of yeast cells was induced during fermentative and respiratory growth by pretreatment with H2O2, cycloheximide, mild heat shock, or NaCl, indicating that cross protection between freeze-thaw stress

  3. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, A E; Skov, Svend; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...... and functioning, MHC-I molecules might be of importance for the maintenance of cellular homeostasis not only within the immune system, but also in the interplay between the immune system and other organ systems....

  4. Reduced modeling of signal transduction – a modular approach

    Directory of Open Access Journals (Sweden)

    Ederer Michael

    2007-09-01

    Full Text Available Abstract Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good

  5. Analysis and logical modeling of biological signaling transduction networks

    Science.gov (United States)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  6. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    Directory of Open Access Journals (Sweden)

    Gina A. Smith

    2017-10-01

    Full Text Available Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A and vascular endothelial growth factor receptor 2 (VEGFR2 regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

  7. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2017-10-15

    Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. © 2017. Published by The Company of Biologists Ltd.

  8. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    Science.gov (United States)

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Directory of Open Access Journals (Sweden)

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  10. Molecular mechanisms of root gravity sensing and signal transduction.

    Science.gov (United States)

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  11. Evidence for some signal transduction elements involved in UV-light-dependent responses in parsley protoplasts

    International Nuclear Information System (INIS)

    Frohnmeyer, H.; Bowler, C.; Schäfer, E.

    1997-01-01

    The signalling pathways used by UV-light are largely unknown. Using protoplasts from a heterotrophic parsley (Petroselinum crispum L.) cell culture that exclusively respond to UV-B light between 300 and 350 nm with a fast induction of genes encoding flavonoid biosynthetic enzymes, information was obtained about the UV-light signal transduction pathway for chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL) gene expression. Pharmacological effectors which influence intracellular calcium levels, calmodulin and the activity of serine/threonine kinases also changed the UV-light-dependent expression of these genes. This evaluation indicated the participation of these components on the UV-B-mediated signal transduction cascade to CHS. In contrast, neither membrane-permeable cyclic GMP nor the tyrosine kinase inhibitor genistein affected CHS or PAL expression. Similar results were obtained in protoplasts, which have been transiently transformed with CHS-promoter/GUS (β-glucuronidase) reporter fusion constructs. The involvement of calcium and calmodulin was further indicated in a cell-free light-responsive in vitro transcription system from evacuolated parsley protoplasts. In conclusion, there is evidence now that components of the UV-light-dependent pathway leading to the CHS-promoter are different from the previously characterized cGMP-dependent pathway to CHS utilized by phytochrome in soybean (Glycine max) and tomato seedlings (Lycopersicon esculentum). (author)

  12. Load-induced modulation of signal transduction networks.

    Science.gov (United States)

    Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla

    2011-10-11

    Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.

  13. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    Phosphorylation-based signaling events happening within the first minute of receptor stimulation have so far only been analyzed by classical cell biological approaches like live-cell microscopy. The development of a quench flow system with a time resolution of one second coupled to a read...

  14. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2015-08-18

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. © 2015 Authors.

  15. Regulation of autophagy by amino acids and MTOR-dependent signal transduction.

    Science.gov (United States)

    Meijer, Alfred J; Lorin, Séverine; Blommaart, Edward F; Codogno, Patrice

    2015-10-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.

  16. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    Science.gov (United States)

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  17. Fenspiride and membrane transduction signals in rat alveolar macrophages.

    Science.gov (United States)

    Féray, J C; Mohammadi, K; Taouil, K; Brunet, J; Garay, R P; Hannaert, P

    1997-07-15

    Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.

  18. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  19. Plant Genes Involved in Symbiotic Sinal Perception/Signal Transduction

    DEFF Research Database (Denmark)

    Binder, A; Soyano, T; Hayashi, H

    2014-01-01

    to nodule primordia formation, and the infection thread initiation in the root hairs guiding bacteria towards dividing cortical cells. This chapter focuses on the plant genes involved in the recognition of the symbiotic signal produced by rhizobia, and the downstream genes, which are part of a complex...... symbiotic signalling pathway that leads to the generation of calcium spiking in the nuclear regions and activation of transcription factors controlling symbiotic genes induction...

  20. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  2. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  3. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  4. Signal transduction around thymic stromal lymphopoietin (TSLP in atopic asthma

    Directory of Open Access Journals (Sweden)

    Kuepper Michael

    2008-08-01

    Full Text Available Abstract Thymic stromal lymphopoietin (TSLP, a novel interleukin-7-like cytokine, triggers dendritic cell-mediated inflammatory responses ultimately executed by T helper cells of the Th2 subtype. TSLP emerged as a central player in the development of allergic symptoms, especially in the airways, and is a prime regulatory cytokine at the interface of virus- or antigen-exposed epithelial cells and dendritic cells (DCs. DCs activated by epithelium-derived TSLP can promote naïve CD4+ T cells to adopt a Th2 phenotype, which in turn recruite eosinophilic and basophilic granulocytes as well as mast cells into the airway mucosa. These different cells secrete inflammatory cytokines and chemokines operative in inducing an allergic inflammation and atopic asthma. TSLP is, thus, involved in the control of both an innate and an adaptive immune response. Since TSLP links contact of allergen with the airway epithelium to the onset and maintainance of the asthmatic syndrome, defining the signal transduction underlying TSLP expression and function is of profound interest for a better understandimg of the disease and for the development of new therapeutics.

  5. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  6. Second-chance signal transduction explains cooperative flagellar switching.

    Science.gov (United States)

    Zot, Henry G; Hasbun, Javier E; Minh, Nguyen Van

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv-vii).

  7. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma.

    Science.gov (United States)

    Yang, Yang; Hui, Lv; Yuqin, Che; Jie, Li; Shuai, Hou; Tiezhu, Zhou; Wei, Wang

    2014-08-01

    Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 10 4 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; Psaw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.

  8. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction.

    Directory of Open Access Journals (Sweden)

    Wolfgang Giese

    2018-04-01

    Full Text Available The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus.

  9. 2R and remodeling of vertebrate signal transduction engine

    Directory of Open Access Journals (Sweden)

    Huminiecki Lukasz

    2010-12-01

    Full Text Available Abstract Background Whole genome duplication (WGD is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed. Results We show that 2R-WGD affected an overwhelming majority (74% of signalling genes, in particular developmental pathways involving receptor tyrosine kinases, Wnt and transforming growth factor-β ligands, G protein-coupled receptors and the apoptosis pathway. 2R-retained genes, in contrast to tandem duplicates, were enriched in protein interaction domains and multifunctional signalling modules of Ras and mitogen-activated protein kinase cascades. 2R-WGD had a fundamental impact on the cell-cycle machinery, redefined molecular building blocks of the neuronal synapse, and was formative for vertebrate brains. We investigated 2R-associated nodes in the context of the human signalling network, as well as in an inferred ancestral pre-2R (AP2R network, and found that hubs (particularly involving negative regulation were preferentially retained, with high connectivity driving retention. Finally, microarrays and proteomics demonstrated a trend for gradual paralog expression divergence independent of the duplication mechanism, but inferred ancestral expression states suggested preferential subfunctionalisation among 2R-ohnologs (2ROs. Conclusions The 2R event left an indelible imprint on vertebrate signalling and the cell cycle. We show that 2R-WGD preferentially retained genes are associated with higher organismal complexity (for example, locomotion, nervous system, morphogenesis, while genes associated with basic cellular functions (for example, translation, replication, splicing, recombination; with the notable exception of cell cycle tended to be excluded. 2R

  10. Increased entropy of signal transduction in the cancer metastasis phenotype

    Directory of Open Access Journals (Sweden)

    Teschendorff Andrew E

    2010-07-01

    Full Text Available Abstract Background The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Results Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may

  11. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  12. [Transduction peptides, the useful face of a new signaling mechanism].

    Science.gov (United States)

    Joliot, Alain; Prochiantz, Alain

    2005-03-01

    Transduction peptides that cross the plasma membrane of live cells are commonly used for the in vitro and in vivo targeting of hydrophilic drugs into the cell interior. Although this family of peptides has recently increased and will probably continue to do so, the two mainly used peptides are derived from transcription factors. Indeed, TAT is a 12 amino acid long arginine-rich peptide present in the HIV transcription factor, and penetratin - or its variants - corresponds to 16 amino acids that define the highly conserved third helix of the DNA-binding domain (homeodomain) of homeoprotein transcription factors. In this review, we shall recall the different steps that have led to the discovery of transduction peptides and present the most likely hypotheses concerning the mechanisms involved in their internalization. At the risk of being incomplete or, even, biased, we shall concentrate on penetratins and TAT. The reason is that these peptides have been studied for over ten years leading to the edification of robust knowledge regarding their properties. This attitude will not preclude comparisons with other peptides, if necessary. Our goal is to describe the mode of action of these transduction peptides, their range of activity in term of cell types that accept them and cargoes that they can transport, and, also, some of the limitations that one can encounter in their use. Finally, based on the idea that peptide transduction is the technological face of a physiological property of some transcription factors, we shall discuss the putative physiological function of homeoprotein transduction, and, as a consequence, the possibility to use these factors as therapeutic proteins.

  13. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction

    Directory of Open Access Journals (Sweden)

    Kinnamon Sue C

    2001-04-01

    Full Text Available Abstract Background Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C β2, and the G protein subunits α-gustducin, β3, and γ13. However, the identity of the IP3 receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP3 receptors expressed in taste cells and to examine taste bud expression patterns for IP3R3. Results Antibodies against Type I, II, and III IP3 receptors were tested on sections of rat and mouse circumvallate papillae. Robust cytoplasmic labeling for the Type III IP3 receptor (IP3R3 was found in a large subset of taste cells in both species. In contrast, little or no immunoreactivity was seen with antibodies against the Type I or Type II IP3 receptors. To investigate the potential role of IP3R3 in bitter taste transduction, we used double-label immunocytochemistry to determine whether IP3R3 is expressed in the same subset of cells expressing other bitter signaling components. IP3R3 immunoreactive taste cells were also immunoreactive for PLCβ2 and γ13. Alpha-gustducin immunoreactivity was present in a subset of IP3R3, PLCβ2, and γ13 positive cells. Conclusions IP3R3 is the dominant form of the IP3 receptor expressed in taste cells and our data suggest it plays an important role in bitter taste transduction.

  14. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  15. Radioinduced intestinal fibrosis: from molecular mechanisms to therapy applications. Contribution of the TGF--{beta}1, of the CTGF and of the transduction pathway of the Rho/ROCK signal; La fibrose intestinale radio-induite: des mecanismes moleculaires aux applications therapeutiques. Roles du TGF-{beta}1, du CTGF et de la voie de transduction du signal Rho/ROCK

    Energy Technology Data Exchange (ETDEWEB)

    Haydont, V

    2006-12-15

    Delayed radiation enteritis is an intestinal fibrosis induced by accidental or therapeutic radiation for pelvic and abdominal cancer treatments. Studies of molecular mechanisms involved in the development and maintenance of fibrosis have showed the respective contribution of CTGF, low TGF-{beta}1 concentrations and Rho/ROCK pathway. Thus, based on the relationship between CTGF, TGF-{beta}1 and Rho pathway, 2 therapeutics strategies have been develop. First, a pravastatin curative gift leads to a fibro-lysis involving an inhibition of Rho and in cascade a reduction of CTGF expression and extracellular matrix deposition. The data suggest that reversal of established radiation fibrosis in the gut is possible. Second, a pravastatin prophylactic gift prevents the installation of a chronic fibrosis but does not protect the tumor. On the base of these results, the radiation therapy department of the Institut Gustave Roussy will soon initiate 2 clinical trials. (author)

  16. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-01-01

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  17. Signal transduction of vitamin K3 for pancreas cancer therapy

    Directory of Open Access Journals (Sweden)

    Toshiyuki Tanahashi

    2011-10-01

    Full Text Available We characterized molecular mechanisms of vitamin K3 (VK3-induced inhibition of proliferation to evaluate VK3 effectiveness in treating advanced pancreatic cancer. A novel endoscopic drug delivery system, ultrasound injection technique, was used to study local effects of VK3. VK3 inhibited pancreas cancer cell growth by rapid phosphorylation of growth factor receptor and cellular signal factors such as extracellular signal-regulated kinase. VK3 also activated apoptosis, and apoptosis inhibitor antagonized the apoptosis pathway without inhibiting cell growth. Thiol antioxidant treatment completely abrogated VK3-induced ERK but not JNK phosphorylation or inhibition of proliferation. Non-thiol antioxidant did not affect ERK phosphorylation or growth inhibitory actions. Arylation was considered the main mechanism of VK3-induced growth inhibition through ERK activation. VK3 may lead to favorable outcomes in the treatment of pancreatic tumors. Detection of ERK phosphorylation in tissue is important to predict VK3 effect. Endoscopic ultrasound-guided fine-needle injection may be beneficial for treating pancreatic cancer with VK3.

  18. Signal transduction, receptors, mediators and genes: younger than ever - the 13th meeting of the Signal Transduction Society focused on aging and immunology

    Directory of Open Access Journals (Sweden)

    Klotz Lars-Oliver

    2010-02-01

    Full Text Available Abstract The 13th meeting of the Signal Transduction Society was held in Weimar, from October 28 to 30, 2009. Special focus of the 2009 conference was "Aging and Senescence", which was co-organized by the SFB 728 "Environmentally-Induced Aging Processes" of the University of Düsseldorf and the study group 'Signal Transduction' of the German Society for Cell Biology (DGZ. In addition, several other areas of signal transduction research were covered and supported by different consortia associated with the Signal Transduction Society including the long-term associated study groups of the German Society for Immunology and the Society for Biochemistry and Molecular Biology, and for instance the SFB/Transregio 52 "Transcriptional Programming of Individual T Cell Subsets" located in Würzburg, Mainz and Berlin. The different research areas that were introduced by outstanding keynote speakers attracted more than 250 scientists, showing the timeliness and relevance of the interdisciplinary concept and exchange of knowledge during the three days of the scientific program. This report gives an overview of the presentations of the conference.

  19. The age- and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster.

    Science.gov (United States)

    Pomatto, Laura C D; Wong, Sarah; Carney, Caroline; Shen, Brenda; Tower, John; Davies, Kelvin J A

    2017-04-01

    Hallmarks of aging include loss of protein homeostasis and dysregulation of stress-adaptive pathways. Loss of adaptive homeostasis, increases accumulation of DNA, protein, and lipid damage. During acute stress, the Cnc-C ( Drosophila Nrf2 orthologue) transcriptionally-regulated 20S proteasome degrades damaged proteins in an ATP-independent manner. Exposure to very low, non-toxic, signaling concentrations of the redox-signaling agent hydrogen peroxide (H 2 O 2 ) cause adaptive increases in the de novo expression and proteolytic activity/capacity of the 20S proteasome in female D. melanogaster (fruit-flies). Female 20S proteasome induction was accompanied by increased tolerance to a subsequent normally toxic but sub-lethal amount of H 2 O 2 , and blocking adaptive increases in proteasome expression also prevented full adaptation. We find, however, that this adaptive response is both sex- and age-dependent. Both increased proteasome expression and activity, and increased oxidative-stress resistance, in female flies, were lost with age. In contrast, male flies exhibited no H 2 O 2 adaptation, irrespective of age. Furthermore, aging caused a generalized increase in basal 20S proteasome expression, but proteolytic activity and adaptation were both compromised. Finally, continual knockdown of Keep1 (the cytosolic inhibitor of Cnc-C) in adults resulted in older flies with greater stress resistance than their age-matched controls, but who still exhibited an age-associated loss of adaptive homeostasis.

  20. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    Science.gov (United States)

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting

  1. Regulation of Early Steps of GPVI Signal Transduction by Phosphatases: A Systems Biology Approach.

    Directory of Open Access Journals (Sweden)

    Joanne L Dunster

    2015-11-01

    Full Text Available We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2, provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in

  2. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role...... using insulin signalling as a model system....

  3. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  4. Radioresistance-related signaling pathways in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Guo Ya; Zhu Xiaodong; Qu Song; Su Fang; Wang Qi; Zhang Wei

    2011-01-01

    Objective: To study the difference of gene expression profile between the radioresistant human nasopharyngeal carcinoma cell line CNE-2R and CNE-2, and to screen the signaling pathway associated with radioresistance of nasopharyngeal carcinoma. Methods: The radioresistant nasopharyngeal carcinoma cell line CNE-2R was constructed from the original cell line CNE-2. CNE-2R and CNE-2 cells were cultured and administered with 60 Co γ-ray irradiation at the dose of 400 cGy for 15 times. Human-6v 3.0 whole genome expression profile was used to screen the differentially expressed genes. Bioinformatic analysis was used to identify the pathways related to radioresistance. Results: The number of the differentially expressed genes that were found in these 2 experiments was 374. The Kegg pathway and Biocarta pathway analysis of the differentially expressed genes showed the biological importance of Toll-like receptor signaling pathway and IL-1 R-mediated signal transduction pathway to the radioresistance of the CNE-2R cells and the significant differences of 13 genes in these 2 pathways,including JUN, MYD88, CCL5, CXCL10, STAT1, LY96, FOS, CCL3, IL-6, IL-8, IL-1α, IL-1β, and IRAK2 (t=13.47-66.57, P<0.05). Conclusions: Toll-like receptor signaling pathway and IL-1R-mediated signal transduction pathway might be related to the occurrence of radioresistance. (authors)

  5. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase.

    Science.gov (United States)

    Reith, A D; Ellis, C; Lyman, S D; Anderson, D M; Williams, D E; Bernstein, A; Pawson, T

    1991-09-01

    Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an in-frame insertion, Gly-Asn-Asn-Lys, within the extracellular domain, was detected in murine mast cell cultures and mid-gestation placenta. Both Kit+ and KitA+ isoforms showed increased autophosphorylation and enhanced association with phosphatidylinositol (PI) 3' kinase and PLC gamma 1, when stimulated with recombinant soluble Steel factor. No association or increase in phosphorylation of GAP and two GAP-associated proteins, p62 and p190, was observed. The two isoforms had distinct activities in the absence of exogenous soluble Steel factor; Kit+, but not KitA+, showed constitutive tyrosine phosphorylation that was accompanied by a low constitutive level of association with PI-3' kinase and PLC gamma 1. Introduction of the point substitutions associated with W37 (Glu582----Lys) or W41 (Val831----Met) mutant alleles into c-kit expression constructs abolished (W37) or reduced (W41) the Steel factor-induced association of the Kit receptor with signalling proteins in a manner proportional to the overall severity of the corresponding W mutant phenotype. These data suggest a diversity of normal Kit signalling pathways and indicate that W mutant phenotypes result from primary defects in the Kit receptor that affect its interaction with cytoplasmic signalling proteins.

  6. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    Science.gov (United States)

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  7. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Skavland, J; Jørgensen, K M [Hematology Section, Institute of Medicine, University of Bergen, Bergen (Norway); Hadziavdic, K [Department of Informatics, University of Bergen, Bergen (Norway); Hovland, R [Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen (Norway); Jonassen, I [Department of Informatics, University of Bergen, Bergen (Norway); Computational Biology Unit, Bergen Centre for Computational Science, University of Bergen, Bergen (Norway); Bruserud, Ø; Gjertsen, B T, E-mail: bjorn.gjertsen@med.uib.no [Hematology Section, Institute of Medicine, University of Bergen, Bergen (Norway); Hematology Section, Department of Medicine, Haukeland University Hospital, Bergen (Norway)

    2011-02-01

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial.

  8. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna W.; Satyshur, Kenneth A.; Morales, Neydis Moreno; Forest, Katrina T. (UW)

    2016-02-01

    ABSTRACT

    Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacteriumRamlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, theR. tataouinensisbacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR fromAgrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems.

  9. Non-Smad signaling pathways.

    Science.gov (United States)

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  10. Specific intracellular signal transduction pathways downstream of CSF-1 receptors: their relationship to breast cancer local recurrence and distant relapse in vivo. Potential targets for the development of new, specific anti-breast cancer therapies to improve local control and block metastatic spread?

    International Nuclear Information System (INIS)

    Kacinski, Barry M.; Sapi, Eva; Flick, Maryann B.; Turner, Bruce; Perrotta, Peter; Maher, M. Grey; Carter, Darryl; Haffy, Bruce

    1997-01-01

    Purpose/Objective: Several earlier studies have implicated CSF-1 and its receptor (CSF-1R) in the biology of mammary neoplasms and those of the female reproductive tract. CSF-1Rs are expressed by the majority (<80%) of invasive breast carcinomas and their activation as evidenced by co-expression of CSF-1 has been correlated with adverse prognosis both in breast and ovarian carcinomas. In the studies, summarized below, we attempt to further correlate expression of CSF-1R with prognosis in breast cancer. We have also attempted to better define the intracellular signal transduction pathways controlled by CSF-1R which are responsible for such clinically relevant phenotypes as protease production, invasiveness, and tumorigenicity and have designed immunological reagents capable of discriminating the activated tyrosine phosphorylated form of CSF-1R from its inactive, unphosphorylated precursor in fixed tissue. Materials and Methods and Results: To study the role of specific tyrosine phosphorylations on downstream signal transduction pathways, we transfected the murine mammary epithelial cell line HC11 with a wild-type murine CSF-1R and two mutant CSF-1Rs in which two of the earliest and most prominent sites of tyrosine autophosphorylation TYR-721 (which couples the receptor to PI-3' kinase and indirectly to pp70-S6kinase and PKC) and TYR-809 (which couples the receptor to RAS-GAP) were mutated to PHE. Transfection of HC11 cells with an unmutated, wild-type CSF-1R increased cellular synthesis of active urokinase and increased their ability to invade basement membrane analogues. It also rendered them competent for anchorage- independent growth in soft agar and able to form pulmonary metastases in isogenic C57 mice after intravenous injection. A TYR-721→PHE mutation completely abolished anchorage- independent growth in vitro and pulmonary metastatic tumorigenicity in vivo without any effects on urokinase production or on cellular ability to invade basement membrane

  11. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY...... that the putative histidine kinase has homology with conserved “transmitter” domains of sensor proteins in two-component signal transduction systems. RFLP analysis using the putative signal transduction system showed polymorphisms among the strains....

  13. Construction and Deciphering of Human Phosphorylation-Mediated Signaling Transduction Networks.

    Science.gov (United States)

    Zhang, Menghuan; Li, Hong; He, Ying; Sun, Han; Xia, Li; Wang, Lishun; Sun, Bo; Ma, Liangxiao; Zhang, Guoqing; Li, Jing; Li, Yixue; Xie, Lu

    2015-07-02

    Protein phosphorylation is the most abundant reversible covalent modification. Human protein kinases participate in almost all biological pathways, and approximately half of the kinases are associated with disease. PhoSigNet was designed to store and display human phosphorylation-mediated signal transduction networks, with additional information related to cancer. It contains 11 976 experimentally validated directed edges and 216 871 phosphorylation sites. Moreover, 3491 differentially expressed proteins in human cancer from dbDEPC, 18 907 human cancer variation sites from CanProVar, and 388 hyperphosphorylation sites from PhosphoSitePlus were collected as annotation information. Compared with other phosphorylation-related databases, PhoSigNet not only takes the kinase-substrate regulatory relationship pairs into account, but also extends regulatory relationships up- and downstream (e.g., from ligand to receptor, from G protein to kinase, and from transcription factor to targets). Furthermore, PhoSigNet allows the user to investigate the impact of phosphorylation modifications on cancer. By using one set of in-house time series phosphoproteomics data, the reconstruction of a conditional and dynamic phosphorylation-mediated signaling network was exemplified. We expect PhoSigNet to be a useful database and analysis platform benefiting both proteomics and cancer studies.

  14. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions

    International Nuclear Information System (INIS)

    Li Yinghua; Zhong Shan; Rong Zhili; Ren Yongming; Li Zhiyong; Zhang Shuping; Chang Zhijie; Liu Li

    2007-01-01

    Receptor protein tyrosine kinases (RPTKs) are essential mediators of cell growth, differentiation, migration, and metabolism. Recently, a novel RPTK named NOK has been cloned and characterized. In current study, we investigated the role of the carboxyl terminal tyrosine 417 residue of NOK in the activations of different signaling pathways. A single tyrosine to phenylalanine point mutation at Y417 site (Y417 F) not only dramatically enhanced the NOK-induced activation of extracellular signal-regulated kinase (ERK), but also markedly promoted the NOK-mediated activation of both signal transducer and activator of transcription 1 and 3 (STAT1 and 3). Moreover, the proliferation potential of NIH3T3-NOK (Y417F) stable cells were significantly elevated as compared with that of NIH3T3-NOK. Overall, our results demonstrate that the tyrosine Y417 residue at the carboxyl tail of NOK exhibits an autoinhibitory role in NOK-mediated signaling transductions

  15. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes.

    Science.gov (United States)

    Shao, Yvonne Y; Wang, Lai; Welter, Jean F; Ballock, R Tracy

    2012-01-01

    Indian hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    Science.gov (United States)

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  17. Computational identification of signalling pathways in Plasmodium falciparum.

    Science.gov (United States)

    Oyelade, Jelili; Ewejobi, Itunu; Brors, Benedikt; Eils, Roland; Adebiyi, Ezekiel

    2011-06-01

    Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design

  18. Signal transduction during mating and meiosis in S. pombe

    DEFF Research Database (Denmark)

    Nielsen, O; Nielsen, Olaf

    1993-01-01

    When starved, the fission yeast Schizosaccharomyces pombe responds by producing mating factors or pheromones that signal to cells of the opposite sex to initiate mating. Like its distant relative Saccharomyces cerevisiae, cells of the two mating types of S. pombe each produce a distinct pheromone...

  19. Modelling and simulation of signal transductions in an apoptosis ...

    Indian Academy of Sciences (India)

    Prakash

    Structural Analysis of Metabolic Networks: Elementary Flux. Mode, Analogy to Petri Nets, and Application to Mycoplasma pneumoniae; German Conference on Bioinformatics 2000 pp 115–120. Takai-Igarashi T and Mizoguchi R 2004 Cell signalling networks ontology; In Silico Biol. 4 81–87. Thompson C 1995 Apoptosis in ...

  20. Adaptation of signal transduction and muscle proteome in trained horses

    NARCIS (Netherlands)

    Ginneken, Mireille Maria Elisabeth van

    2006-01-01

    In the present thesis the localization and activation of signaling proteins, known from human studies, in equine muscle were investigated under conditions of rest, after an acute bout of exercise and before and after a period of (intensified) training. Proteins of interest (protein kinase C (PKC),

  1. Gravity sensing and signal transduction in vascular plant primary roots.

    Science.gov (United States)

    Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H

    2013-01-01

    During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.

  2. Radioinduced intestinal fibrosis: from molecular mechanisms to therapy applications. Contribution of the TGF--β1, of the CTGF and of the transduction pathway of the Rho/ROCK signal

    International Nuclear Information System (INIS)

    Haydont, V.

    2006-12-01

    Delayed radiation enteritis is an intestinal fibrosis induced by accidental or therapeutic radiation for pelvic and abdominal cancer treatments. Studies of molecular mechanisms involved in the development and maintenance of fibrosis have showed the respective contribution of CTGF, low TGF-β1 concentrations and Rho/ROCK pathway. Thus, based on the relationship between CTGF, TGF-β1 and Rho pathway, 2 therapeutics strategies have been develop. First, a pravastatin curative gift leads to a fibro-lysis involving an inhibition of Rho and in cascade a reduction of CTGF expression and extracellular matrix deposition. The data suggest that reversal of established radiation fibrosis in the gut is possible. Second, a pravastatin prophylactic gift prevents the installation of a chronic fibrosis but does not protect the tumor. On the base of these results, the radiation therapy department of the Institut Gustave Roussy will soon initiate 2 clinical trials. (author)

  3. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  4. Sensory cilia and integration of signal transduction in human health and disease

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda

    2007-01-01

    The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the ...

  5. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction

    NARCIS (Netherlands)

    Green, J.; Nusse, R.; van Amerongen, R.

    2014-01-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their

  6. Combinations of SNPs Related to Signal Transduction in Bipolar Disorder

    DEFF Research Database (Denmark)

    Koefoed, Pernille; Andreassen, Ole A; Bennike, Bente

    2011-01-01

    of complex diseases, it may be useful to look at combinations of genotypes. Genes related to signal transmission, e.g., ion channel genes, may be of interest in this respect in the context of bipolar disorder. In the present study, we analysed 803 SNPs in 55 genes related to aspects of signal transmission...... and calculated all combinations of three genotypes from the 3×803 SNP genotypes for 1355 controls and 607 patients with bipolar disorder. Four clusters of patient-specific combinations were identified. Permutation tests indicated that some of these combinations might be related to bipolar disorder. The WTCCC...... in the clusters in the two datasets. The present analyses of the combinations of SNP genotypes support a role for both genetic heterogeneity and interactions in the genetic architecture of bipolar disorder....

  7. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling.

    Science.gov (United States)

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T S Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M; Ziegler, Steven F; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24.

  8. Signal transduction in the development of pulmonary arterial hypertension

    Science.gov (United States)

    Malenfant, Simon; Neyron, Anne-Sophie; Paulin, Roxane; Potus, François; Meloche, Jolyane; Provencher, Steeve; Bonnet, Sébastien

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a unique disease. Properly speaking, it is not a disease of the lung. It can be seen more as a microvascular disease occurring mainly in the lungs and affecting the heart. At the cellular level, the PAH paradigm is characterized by inflammation, vascular tone imbalance, pulmonary arterial smooth muscle cell proliferation and resistance to apoptosis and the presence of in situ thrombosis. At a clinical level, the aforementioned abnormal vascular properties alter physically the pulmonary circulation and ventilation, which greatly influence the right ventricle function as it highly correlates with disease severity. Consequently, right heart failure remains the principal cause of death within this cohort of patients. While current treatment modestly improve patients’ conditions, none of them are curative and, as of today, new therapies are lacking. However, the future holds potential new therapies that might have positive influence on the quality of life of the patient. This article will first review the clinical presentation of the disease and the different molecular pathways implicated in the pathobiology of PAH. The second part will review tomorrow's future putative therapies for PAH. PMID:24015329

  9. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    International Nuclear Information System (INIS)

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol; Kwon, Jungkee; Hwang, Jae-Won; Bae, Cheol-Hyeon; Seo, Young-Kwon; Lee, Jeong-Chae

    2014-01-01

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways

  10. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Sung-Ho [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Lim, Shin-Saeng [School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Cho, Eui-Sic; Lee, Young-Hoon; Han, Seong-Kyu; Lee, Kyung-Yeol [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Kwon, Jungkee [College of Veterinary Medicine, Chonbuk National University, Jeonju (Korea, Republic of); Hwang, Jae-Won; Bae, Cheol-Hyeon [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Seo, Young-Kwon [Research Institute of Biotechnology, Dongguk University, Seoul (Korea, Republic of); Lee, Jeong-Chae, E-mail: leejc88@jbnu.ac.kr [Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of)

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentials of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.

  11. Signal Transduction and Molecular Targets of Selected Flavonoids

    Science.gov (United States)

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  12. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn

    2010-05-04

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  13. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn; Bö hmer, Maik; Hu, Honghong; Nishimura, Noriyuki; Schroeder, Julian I.

    2010-01-01

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  14. Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases.

    Science.gov (United States)

    Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C

    2016-08-22

    Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  16. Evolutionary conservation of plant gibberellin signalling pathway components

    Directory of Open Access Journals (Sweden)

    Reski Ralf

    2007-11-01

    Full Text Available Abstract Background: Gibberellins (GA are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.

  17. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zheng, Jingui

    2017-12-15

    Black rice ( Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3-10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  18. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  19. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    Science.gov (United States)

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  20. Effect of insulin resistance on intracellular signal transduction of vessels in diabetic

    International Nuclear Information System (INIS)

    Cen Rongguang; Wei Shaoying; Mo Xingju

    2003-01-01

    To investigate the relationship between the insulin resistance (IR) and the intracellular signal transduction of vessels, changes in fasting blood glucose (FBG), fasting insulin (FINS), triglyceride (TG), total cholesterol (TC), inositol triphosphate (IP 3 ), protein kinase C(PKC) and intracellular total calcium concentration in 31 diabetic patients were compared with those of 39 normal controls. The levels of FBG, FINS, TG and TC in diabetic patients were significantly higher than those of normal controls (P 3 and PKC in diabetic patients were significantly lower than those of normal controls (P<0.01). The results suggest that there is a causal relation between insulin resistance and abnormalities of cellular calcium metabolism and intracellular signal transduction of vessels

  1. Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli.

    Science.gov (United States)

    Wang, Xiaohui; Gao, Bowen; Liu, Xiao; Dong, Xianjuan; Zhang, Zhongxiu; Fan, Huiyan; Zhang, Le; Wang, Juan; Shi, Shepo; Tu, Pengfei

    2016-05-26

    Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced

  2. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  3. Signal transduction pathways involved in intestinal salt and water secretion

    NARCIS (Netherlands)

    W. van den Berghe (Nina)

    1992-01-01

    textabstractThis thesis describes some novel aspects of the regulation of salt and water secretion in the intestinal epithelium. This process is not unique for the intestine, but a common and necessary function of many other organs, including the stomach (gastric juice), kidney (urine), sweatglands

  4. Presynaptic signal transduction pathways that modulate synaptic transmission

    NARCIS (Netherlands)

    de Jong, A.P.H.; Verhage, M.

    2009-01-01

    Presynaptic modulation is a crucial factor in the adaptive capacity of the nervous system. The coupling between incoming action potentials and neurotransmitter secretion is modulated by firstly, recent activity of the presynaptic axon that leads to the accumulation of residual calcium in the

  5. Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice.

    Science.gov (United States)

    Yi, Xuejie; Gao, Haining; Chen, Dequan; Tang, Donghui; Huang, Wanting; Li, Tao; Ma, Tie; Chang, Bo

    2017-04-01

    To explore the role of the testicular leptin and JAK-STAT[leptin (LEP)-JAK-STAT] pathway in testosterone biosynthesis during juvenile stages and exercise for weight loss, male C57BL/6J mice were randomly divided into normal-diet and high-fat diet groups. After 10 wk, mice in the high-fat diet-fed group were further divided randomly into obese control, obese moderate-volume exercise, and obese high-volume exercise groups. Mice in the obese moderate-volume exercise group were provided with 2 h/day, 6 days/wk swimming exercise for 8 wk, and mice in the obese high-volume exercise group underwent twice the amount of daily exercise intervention as the obese moderate-volume exercise group. The results showed that a high-fat diet causes obesity, leptin resistance, inhibition of the testicular LEP-JAK-STAT pathway, decreased mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and the P -450 side-chain cleavage enzyme, a decrease in the serum testosterone-to-estradiol ratio, and declines in sperm quality parameters. Both moderate and high-volume exercise were able to reduce body fat and increase the mRNA and protein expression of LEP-JAK-STAT, but only moderate exercise significantly increased the mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and P -450 side-chain cleavage enzyme and significantly reversed the serum testosterone-to-estradiol ratio and sperm quality parameters. These findings suggest that by impairing the testicular LEP-JAK-STAT pathway, early-stage obesity inhibits the biosynthesis of testosterone and sexual development and reduces male reproductive potential. Long-term moderate and high-volume exercise can effectively reduce body fat and improve obesity-induced abnormalities in testicular leptin signal transduction, whereas only moderate-volume exercise can reverse the negative impacts of obesity on male reproductive function. Copyright © 2017 the American

  6. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper.

    Directory of Open Access Journals (Sweden)

    Gui-Jun Wan

    Full Text Available Although there are considerable reports of magnetic field effects (MFE on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i CRY1 and CRY2 as putative magnetosensors, (ii JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii CYP307A1 in the ecdysone pathway, and (iv reproduction-related Vitellogenin (Vg. The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.

  7. Systems Perturbation Analysis of a Large-Scale Signal Transduction Model Reveals Potentially Influential Candidates for Cancer Therapeutics

    Science.gov (United States)

    Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš

    2016-01-01

    Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model’s components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis

  8. New insights into the organization of plasma membrane and its role in signal transduction.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2015-01-01

    Plasma membranes have heterogeneous structures for efficient signal transduction, required to perform cell functions. Recent evidence indicates that the heterogeneous structures are produced by (1) compartmentalization by actin-based membrane skeleton, (2) raft domains, (3) receptor-receptor interactions, and (4) the binding of receptors to cytoskeletal proteins. This chapter provides an overview of recent studies on diffusion, clustering, raft association, actin binding, and signal transduction of membrane receptors, especially glycosylphosphatidylinositol (GPI)-anchored receptors. Studies on diffusion of GPI-anchored receptors suggest that rafts may be small and/or short-lived in plasma membranes. In steady state conditions, GPI-anchored receptors form transient homodimers, which may represent the "standby state" for the stable homodimers and oligomers upon ligation. Furthermore, It is proposed that upon ligation, the binding of GPI-anchored receptor clusters to cytoskeletal actin filaments produces a platform for downstream signaling, and that the pulse-like signaling easily maintains the stability of the overall signaling activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation.

    Science.gov (United States)

    Klip, Amira; Sun, Yi; Chiu, Tim Ting; Foley, Kevin P

    2014-05-15

    Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays ("software") that engage structural/mechanical elements ("hardware") to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane. Copyright © 2014 the American Physiological Society.

  11. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    Science.gov (United States)

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  12. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  13. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    Science.gov (United States)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  14. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    before and during a euglycemic-hyperinsulinemic clamp. IGT relatives were insulin-resistant in oxidative and nonoxidative pathways for glucose metabolism. In vivo insulin infusion increased skeletal muscle insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (P = 0.01) and phosphatidylinositide......To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... 3-kinase (PI 3-kinase) activity (phosphotyrosine and IRS-1 associated) in control subjects (P increase in insulin action on IRS-1 tyrosine phosphorylation was lower in IGT relatives versus control subjects (P

  15. A bead-based western for high-throughput cellular signal transduction analyses

    Science.gov (United States)

    Treindl, Fridolin; Ruprecht, Benjamin; Beiter, Yvonne; Schultz, Silke; Döttinger, Anette; Staebler, Annette; Joos, Thomas O.; Kling, Simon; Poetz, Oliver; Fehm, Tanja; Neubauer, Hans; Kuster, Bernhard; Templin, Markus F.

    2016-01-01

    Dissecting cellular signalling requires the analysis of large number of proteins. The DigiWest approach we describe here transfers the western blot to a bead-based microarray platform. By combining gel-based protein separation with immobilization on microspheres, hundreds of replicas of the initial blot are created, thus enabling the comprehensive analysis of limited material, such as cells collected by laser capture microdissection, and extending traditional western blotting to reach proteomic scales. The combination of molecular weight resolution, sensitivity and signal linearity on an automated platform enables the rapid quantification of hundreds of specific proteins and protein modifications in complex samples. This high-throughput western blot approach allowed us to identify and characterize alterations in cellular signal transduction that occur during the development of resistance to the kinase inhibitor Lapatinib, revealing major changes in the activation state of Ephrin-mediated signalling and a central role for p53-controlled processes. PMID:27659302

  16. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    Science.gov (United States)

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  17. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  18. DMPD: Signal integration between IFNgamma and TLR signalling pathways in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16920490 Signal integration between IFNgamma and TLR signalling pathways in macroph...tml) (.csml) Show Signal integration between IFNgamma and TLR signalling pathways in macrophages. PubmedID 16920490 Title Signal inte...gration between IFNgamma and TLR signalling pathways in

  19. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1999-01-01

    ), which were among the first substrates of ERK to be discovered and which has proven to be a ubiquitous and versatile mediator of ERK signal transduction. RSK is composed of two functional kinase domains that are activated in a sequential manner by a series of phosphorylations. Recently, a family of RSK......-related kinases that are activated by ERK as well as p38 MAPK were discovered and named mitogen- and stress-activated protein kinases (MSK). A number of cellular functions of RSK have been proposed. (1) Regulation of gene expression via association and phosphorylation of transcriptional regulators including c...

  20. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lei [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physiology, Nankai University School of Medicine, Tianjin 300071 (China); Carr, Aprell L. [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Ping; Lee, Jessica; McGregor, Mary [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Lei, E-mail: Li.78@nd.edu [Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 (United States); Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  1. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  2. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.

    Science.gov (United States)

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-10-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  3. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway.

    Directory of Open Access Journals (Sweden)

    Mathilde Guzzo

    2015-08-01

    Full Text Available Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz coordinates the activity of two separate motility systems (the A- and S-motility systems, promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways.

  4. Immunophilin ligands demonstrate common features of signal transduction leading to exocytosis or transcription.

    Science.gov (United States)

    Hultsch, T; Albers, M W; Schreiber, S L; Hohman, R J

    1991-01-01

    Investigations of the actions and interactions of the immunophilin ligands FK506, cyclosporin A (CsA), rapamycin, and 506BD suggest that complexes of FK506 with an FK506-binding protein or of CsA with a cyclophilin (CsA-binding protein) inhibit the T-cell receptor-mediated signal transduction that results in the transcription of interleukin 2. Now we report an identical spectrum of activities of FK506, CsA, rapamycin, and 506BD on IgE receptor-mediated signal transduction that results in exocytosis of secretory granules from the rat basophilic leukemia cell line RBL-2H3, a mast cell model. Both FK506 and CsA inhibit receptor-mediated exocytosis (CsA IC50 = 200 nM; FK506 IC50 = 2 nM) without affecting early receptor-associated events (hydrolysis of phosphatidylinositol, synthesis and release of eicosanoids, uptake of Ca2+). In contrast, rapamycin and 506BD, which share common structural elements with FK506, by themselves have no effect on IgE receptor-mediated exocytosis. Both compounds, however, prevent inhibition by FK506 but not by CsA. Affinity chromatography with FK506, CsA, and rapamycin matrices indicates that the same set of immunophilins present in RBL-2H3 cells have been found in Jurkat T cells and calf thymus; however, the relative amounts of these proteins differ in the two cell types. These results suggest the existence of a common step in cytoplasmic signaling in T cells and mast cells that may be part of a general signaling mechanism. Images PMID:1712484

  5. Signaling flux redistribution at toll-like receptor pathway junctions.

    Directory of Open Access Journals (Sweden)

    Kumar Selvarajoo

    Full Text Available Various receptors on cell surface recognize specific extracellular molecules and trigger signal transduction altering gene expression in the nucleus. Gain or loss-of-function mutations of one molecule have shown to affect alternative signaling pathways with a poorly understood mechanism. In Toll-like receptor (TLR 4 signaling, which branches into MyD88- and TRAM-dependent pathways upon lipopolysaccharide (LPS stimulation, we investigated the gain or loss-of-function mutations of MyD88. We predict, using a computational model built on the perturbation-response approach and the law of mass conservation, that removal and addition of MyD88 in TLR4 activation, enhances and impairs, respectively, the alternative TRAM-dependent pathway through signaling flux redistribution (SFR at pathway branches. To verify SFR, we treated MyD88-deficient macrophages with LPS and observed enhancement of TRAM-dependent pathway based on increased IRF3 phosphorylation and induction of Cxcl10 and Ifit2. Furthermore, increasing the amount of MyD88 in cultured cells showed decreased TRAM binding to TLR4. Investigating another TLR4 pathway junction, from TRIF to TRAF6, RIP1 and TBK1, the removal of MyD88-dependent TRAF6 increased expression of TRAM-dependent Cxcl10 and Ifit2. Thus, we demonstrate that SFR is a novel mechanism for enhanced activation of alternative pathways when molecules at pathway junctions are removed. Our data suggest that SFR may enlighten hitherto unexplainable intracellular signaling alterations in genetic diseases where gain or loss-of-function mutations are observed.

  6. Regulation of traffic and organelle architecture of the ER-Golgi interface by signal transduction.

    Science.gov (United States)

    Tillmann, Kerstin D; Millarte, Valentina; Farhan, Hesso

    2013-09-01

    The components that control trafficking between organelles of the secretory pathway as well as their architecture were uncovered to a reasonable extent in the past decades. However, only recently did we begin to explore the regulation of the secretory pathway by cellular signaling. In the current review, we focus on trafficking between the endoplasmic reticulum and the Golgi apparatus. We highlight recent advances that have been made toward a better understanding of how the secretory pathway is regulated by signaling and discuss how this knowledge is important to obtain an integrative view of secretion in the context of other homeostatic processes such as growth and proliferation.

  7. Proteomic analysis of the signaling pathway mediated by the heterotrimeric G? protein Pga1 of Penicillium chrysogenum

    OpenAIRE

    Carrasco-Navarro, Ulises; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Z??iga-Le?n, Eduardo; Reyes-Vivas, Horacio; Fern?ndez, Francisco J.; Fierro, Francisco

    2016-01-01

    Background The heterotrimeric G? protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. Results Penicillium chrysogenum mutants with ...

  8. Anagrelide represses GATA-1 and FOG-1 expression without interfering with thrombopoietin receptor signal transduction.

    Science.gov (United States)

    Ahluwalia, M; Donovan, H; Singh, N; Butcher, L; Erusalimsky, J D

    2010-10-01

     Anagrelide is a selective inhibitor of megakaryocytopoiesis used to treat thrombocytosis in patients with chronic myeloproliferative disorders. The effectiveness of anagrelide in lowering platelet counts is firmly established, but its primary mechanism of action remains elusive.  Here, we have evaluated whether anagrelide interferes with the major signal transduction cascades stimulated by thrombopoietin in the hematopoietic cell line UT-7/mpl and in cultured CD34(+) -derived human hematopoietic cells. In addition, we have used quantitative mRNA expression analysis to assess whether the drug affects the levels of known transcription factors that control megakaryocytopoiesis.  In UT-7/mpl cells, anagrelide (1μm) did not interfere with MPL-mediated signaling as monitored by its lack of effect on JAK2 phosphorylation. Similarly, the drug did not affect the phosphorylation of STAT3, ERK1/2 or AKT in either UT-7/mpl cells or primary hematopoietic cells. In contrast, during thrombopoietin-induced megakaryocytic differentiation of normal hematopoietic cultures, anagrelide (0.3μm) reduced the rise in the mRNA levels of the transcription factors GATA-1 and FOG-1 as well as those of the downstream genes encoding FLI-1, NF-E2, glycoprotein IIb and MPL. However, the drug showed no effect on GATA-2 or RUNX-1 mRNA expression. Furthermore, anagrelide did not diminish the rise in GATA-1 and FOG-1 expression during erythropoietin-stimulated erythroid differentiation. Cilostamide, an exclusive and equipotent phosphodiesterase III (PDEIII) inhibitor, did not alter the expression of these genes.  Anagrelide suppresses megakaryocytopoiesis by reducing the expression levels of GATA-1 and FOG-1 via a PDEIII-independent mechanism that is differentiation context-specific and does not involve inhibition of MPL-mediated early signal transduction events. © 2010 International Society on Thrombosis and Haemostasis.

  9. Nasopharyngeal Carcinoma Signaling Pathway: An Update on Molecular Biomarkers

    Directory of Open Access Journals (Sweden)

    Warut Tulalamba

    2012-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages; hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression. The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and prognosis.

  10. Proteomic analysis of the signaling pathway mediated by the heterotrimeric Gα protein Pga1 of Penicillium chrysogenum.

    Science.gov (United States)

    Carrasco-Navarro, Ulises; Vera-Estrella, Rosario; Barkla, Bronwyn J; Zúñiga-León, Eduardo; Reyes-Vivas, Horacio; Fernández, Francisco J; Fierro, Francisco

    2016-10-06

    The heterotrimeric Gα protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. Penicillium chrysogenum mutants with different levels of activity of the Pga1-mediated signaling pathway were used to perform comparative proteomic analyses by 2D-DIGE and LC-MS/MS. Thirty proteins were identified which showed differences in abundance dependent on Pga1 activity level. By modifying the intracellular levels of cAMP we could establish cAMP-dependent and cAMP-independent pathways in Pga1-mediated signaling. Pga1 was shown to regulate abundance of enzymes in primary metabolic pathways involved in ATP, NADPH and cysteine biosynthesis, compounds that are needed for high levels of penicillin production. An in vivo phosphorylated protein containing a pleckstrin homology domain was identified; this protein is a candidate for signal transduction activity. Proteins with possible roles in purine metabolism, protein folding, stress response and morphogenesis were also identified whose abundance was regulated by Pga1 signaling. Thirty proteins whose abundance was regulated by the Pga1-mediated signaling pathway were identified. These proteins are involved in primary metabolism, stress response, development and signal transduction. A model describing the pathways through which Pga1 signaling regulates different cellular processes is proposed.

  11. Participation of intracellular signal transduction in the radio-adaptive response induced by low-dose X-irradiation in human embryonic cells

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu; Watanabe, Masami.

    1996-01-01

    To elucidate the induction mechanism of radio-adaptive response in normal cells, we searched the literatures of the intracellular signal transduction. Furthermore, we examined the induction of radio-adaptive response with or without inhibitors of several kinds of protein kinase. The major results obtained were as follows; (1) According to the literature survey it is revealed that there are 4 intracellular signal transduction pathways which are possibly involved in the induction of radio-adaptive response: pathways depending on cAMP, calcium, cGMP, or protein-tyrosine kinase. (2) Addition of either inhibitor of protein-tyrosine kinase or protein kinase C to the cell culture medium during the low-dose X-irradiation inhibited the induction of radio-adaptive response. However, the addition of inhibitor of cAMP-dependent protein kinase, cGMP-dependent protein kinase, or Ca 2+ -calmodulin kinase II failed to inhibit the induction of radio-adaptive response. (3) These results suggest that the signal induced in cells by low-dose X-irradiation was transduced from protein-tyrosine kinase to protein kinase C via either pathway of phosphatidylinositol 3-kinase or splitting of profilin binding phosphatidylinositol 4,5-bisphosphate. (author)

  12. Decoding resistant hypertension signalling pathways.

    Science.gov (United States)

    Parreira, Ricardo Cambraia; Lacerda, Leandro Heleno Guimarães; Vasconcellos, Rebecca; Lima, Swiany Silveira; Santos, Anderson Kenedy; Fontana, Vanessa; Sandrim, Valéria Cristina; Resende, Rodrigo Ribeiro

    2017-12-01

    Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Directory of Open Access Journals (Sweden)

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  14. Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor.

    Science.gov (United States)

    Abriata, Luciano A; Albanesi, Daniela; Dal Peraro, Matteo; de Mendoza, Diego

    2017-06-20

    Histidine kinases (HK) are the sensory proteins of two-component systems, responsible for a large fraction of bacterial responses to stimuli and environmental changes. Prototypical HKs are membrane-bound proteins that phosphorylate cognate response regulator proteins in the cytoplasm upon signal detection in the membrane or periplasm. HKs stand as potential drug targets but also constitute fascinating systems for studying proteins at work, specifically regarding the chemistry and mechanics of signal detection, transduction through the membrane, and regulation of catalytic outputs. In this Account, we focus on Bacillus subtilis DesK, a membrane-bound HK part of a two-component system that maintains appropriate membrane fluidity at low growth temperatures. Unlike most HKs, DesK has no extracytoplasmic signal-sensing domains; instead, sensing is carried out by 10 transmembrane helices (coming from two protomers) arranged in an unknown structure. The fifth transmembrane helix from each protomer connects, without any of the intermediate domains found in other HKs, into the dimerization and histidine phosphotransfer (DHp) domain located in the cytoplasm, which is followed by the ATP-binding domains (ABD). Throughout the years, genetic, biochemical, structural, and computational studies on wild-type, mutant, and truncated versions of DesK allowed us to dissect several aspects of DesK's functioning, pushing forward a more general understanding of its own structure/function relationships as well as those of other HKs. We have shown that the sensing mechanism is rooted in temperature-dependent membrane properties, most likely a combination of thickness, fluidity, and water permeability, and we have proposed possible mechanisms by which DesK senses these properties and transduces the signals. X-ray structures and computational models have revealed structural features of TM and cytoplasmic regions in DesK's kinase- and phosphatase-competent states. Biochemical and genetic

  15. Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures

    Directory of Open Access Journals (Sweden)

    Iris Eke

    2015-11-01

    Full Text Available Analysis of signal transduction and protein phosphorylation is fundamental to understand physiological and pathological cell behavior as well as identification of novel therapeutic targets. Despite the fact that more physiological three-dimensional cell culture assays are increasingly used, particularly proteomics and phosphoproteomics remain challenging due to easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates without compromising cell adhesion before cell lysis. The samples can be used for Western blotting as well as phosphoproteome array technology. This technique would be of interest for researchers working in all fields of biology and drug development.

  16. Effect of the opioid methionine enkephalinamide on signal transduction in human T-lymphocytes

    DEFF Research Database (Denmark)

    Sørensen, A N; Claesson, Mogens Helweg

    1998-01-01

    T cell receptor (TCR/CD3) induced fluctuations in intracellular free ionizied calcium, [Ca2+]i, was analysed in the human T leukemia cell clone, Jurkat, cultured in the presence of the opioid methionine enkephalinamide (Met-Enk) in titrated concentrations (10[-7] to 10[-15] M) or saline (PBS....... Moreover, the levels of [Ca2+]i in this particular fraction were lower than control levels prior to ligation of the TCR/CD3 complex. The data support the idea that signal transduction in T cells can be influenced by endogenous opioid. The data therefore give credit to the evolving hypothesis...... of a functional relationship between the neuroendocrine system and the immune system....

  17. Practical considerations of image analysis and quantification of signal transduction IHC staining.

    Science.gov (United States)

    Grunkin, Michael; Raundahl, Jakob; Foged, Niels T

    2011-01-01

    The dramatic increase in computer processing power in combination with the availability of high-quality digital cameras during the last 10 years has fertilized the grounds for quantitative microscopy based on digital image analysis. With the present introduction of robust scanners for whole slide imaging in both research and routine, the benefits of automation and objectivity in the analysis of tissue sections will be even more obvious. For in situ studies of signal transduction, the combination of tissue microarrays, immunohistochemistry, digital imaging, and quantitative image analysis will be central operations. However, immunohistochemistry is a multistep procedure including a lot of technical pitfalls leading to intra- and interlaboratory variability of its outcome. The resulting variations in staining intensity and disruption of original morphology are an extra challenge for the image analysis software, which therefore preferably should be dedicated to the detection and quantification of histomorphometrical end points.

  18. Therapeutic peptides for cancer therapy. Part I - peptide inhibitors of signal transduction cascades.

    Science.gov (United States)

    Bidwell, Gene L; Raucher, Drazen

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.

  19. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hong-hua Peng

    2012-01-01

    Full Text Available The matrix metalloprotease-1 (MMP-1/protease-activated receptor-1 (PAR-1 signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC, we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9% and 58 (68.2% tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS than those with negative ESCC (P = 0.002 and 0.003, respectively. Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR = 2.836, 95% confidence interval (CI = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068, MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127, and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883 and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681, MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279, and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881 as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  20. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction.

    Science.gov (United States)

    Du, Liping; Wang, Jian; Chen, Wei; Zhao, Luhang; Wu, Chunsheng; Wang, Ping

    2018-08-31

    This paper presents a dual functional extracellular recording biosensor based on a light-addressable potentiometric sensor (LAPS). The design and fabrication of this biosensor make it possible to record both extracellular membrane potential changes and ATP release from a single taste bud cell for the first time. For detecting ATP release, LAPS chip was functionalized with ATP-sensitive DNA aptamer by covalent immobilization. Taste bud cells isolated from rat were cultured on LAPS surface. When the desired single taste bud cell was illuminated by modulated light, ATP release from single taste bud cells can be measured by recording the shifts of bias voltage-photocurrent curves (I-V curves) when the LAPS chip is working in discrete mode. On the other hand, extracellular membrane potential changes can be monitored by recording the fluctuation of LAPS photocurrent when the LAPS chip is working in continuous mode. The results show this biosensor can effectively record the enhancive effect of the bitter substance and inhibitory effect of the carbenoxolone (CBX) on the extracellular membrane potential changes and ATP release of single taste bud cells. In addition, the inhibitory effect of CBX also confirms LAPS extracellular recordings are originated from bitter signal transduction. It is proved this biosensor is suitable for extracellular recording of ATP release and membrane potential changes of single taste bud cells. It is suggested this biosensor could be applied to investigating taste signal transduction at the single-cell level as well as applied to other types of cells which have similar functions to taste bud cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. MMP-1/PAR-1 signal transduction axis and its prognostic impact in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hong-hua; Zhang, Xi; Cao, Pei-guo [Department of Oncology, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province (China)

    2011-11-18

    The matrix metalloprotease-1 (MMP-1)/protease-activated receptor-1 (PAR-1) signal transduction axis plays an important role in tumorigenesis. To explore the expression and prognostic value of MMP-1 and PAR-1 in esophageal squamous cell carcinoma (ESCC), we evaluated the expression of two proteins in resected specimens from 85 patients with ESCC by immunohistochemistry. Sixty-two (72.9%) and 58 (68.2%) tumors were MMP-1- and PAR-1-positive, respectively, while no significant staining was observed in normal esophageal squamous epithelium. MMP-1 and PAR-1 overexpression was significantly associated with tumor node metastasis (TNM) stage and regional lymph node involvement. Patients with MMP-1- and PAR-1-positive tumors, respectively, had poorer disease-free survival (DFS) than those with negative ESCC (P = 0.002 and 0.003, respectively). Univariate analysis showed a significant relationship between TNM stage [hazard ratio (HR) = 2.836, 95% confidence interval (CI) = 1.866-4.308], regional lymph node involvement (HR = 2.955, 95%CI = 1.713-5.068), MMP-1 expression (HR = 2.669, 95%CI = 1.229-6.127), and PAR-1 expression (HR = 1.762, 95%CI = 1.156-2.883) and DFS. Multivariate analysis including the above four parameters identified TNM stage (HR = 2.035, 95%CI = 1.167-3.681), MMP-1 expression (HR = 2.109, 95%CI = 1.293-3.279), and PAR-1 expression (HR = 1.967, 95%CI = 1.256-2.881) as independent and significant prognostic factors for DFS. Our data suggest for the first time that MMP-1 and PAR-1 were both overexpressed in ESCC and are novel predictors of poor patient prognosis after curative resection. The MMP-1/PAR-1 signal transduction axis might be a new therapeutic target for future therapies tailored against ESCC.

  2. Information flow during gene activation by signaling molecules: ethylene transduction in Arabidopsis cells as a study system

    Directory of Open Access Journals (Sweden)

    Díaz José

    2009-05-01

    Full Text Available Abstract Background We study root cells from the model plant Arabidopsis thaliana and the communication channel conformed by the ethylene signal transduction pathway. A basic equation taken from our previous work relates the probability of expression of the gene ERF1 to the concentration of ethylene. Results The above equation is used to compute the Shannon entropy (H or degree of uncertainty that the genetic machinery has during the decoding of the message encoded by the ethylene specific receptors embedded in the endoplasmic reticulum membrane and transmitted into the nucleus by the ethylene signaling pathway. We show that the amount of information associated with the expression of the master gene ERF1 (Ethylene Response Factor 1 can be computed. Then we examine the system response to sinusoidal input signals with varying frequencies to determine if the cell can distinguish between different regimes of information flow from the environment. Our results demonstrate that the amount of information managed by the root cell can be correlated with the frequency of the input signal. Conclusion The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a sinusoidal input. Out of this window the nucleus reads the input message as an approximately non-varying one. From this frequency response analysis we estimate: a the gain of the system during the synthesis of the protein ERF1 (~-5.6 dB; b the rate of information transfer (0.003 bits during the transport of each new ERF1 molecule into the nucleus and c the time of synthesis of each new ERF1 molecule (~21.3 s. Finally, we demonstrate that in the case of the system of a single master gene (ERF1 and a single slave gene (HLS1, the total Shannon entropy is completely determined by the uncertainty associated with the expression of the master gene. A second proposition shows that the Shannon entropy

  3. An agent-based model of signal transduction in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Jameson Miller

    2010-05-01

    Full Text Available We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  4. An agent-based model of signal transduction in bacterial chemotaxis.

    Science.gov (United States)

    Miller, Jameson; Parker, Miles; Bourret, Robert B; Giddings, Morgan C

    2010-05-13

    We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  5. Modularized Smad-regulated TGFβ signaling pathway.

    Science.gov (United States)

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  6. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  7. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    Science.gov (United States)

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  8. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    Science.gov (United States)

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  9. Cyclic phosphopeptides for interference with Grb2 SH2 domain signal transduction prepared by ring-closing metathesis and phosphorylation

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Fischer, Marcel J E; Kemmink, Johan; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    Cyclic phosphopeptides were prepared using ring-closing metathesis followed by phosphorylation. These cyclic phosphopeptides were designed to interact with the SH2 domain of Grb2, which is a signal transduction protein of importance as a target for antiproliferative drug development. Binding of

  10. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    in signal transduction in budding yeast. Expression of the S. cerevisiae STE11 gene in S. pombe ste8 mutants restores the ability to transcribe mat1-Pm in response to pheromone. Also, such cells become capable of conjugation and sporulation. When mat1-Pm is artifically expressed from a heterologous promoter...

  11. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.

    Science.gov (United States)

    Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S

    2009-05-01

    The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.

  12. Information theory and signal transduction systems: from molecular information processing to network inference.

    Science.gov (United States)

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. RIG-I self-oligomerization is either dispensable or very transient for signal transduction.

    Directory of Open Access Journals (Sweden)

    Jade Louber

    Full Text Available Effective host defence against viruses depends on the rapid triggering of innate immunity through the induction of a type I interferon (IFN response. To this end, microbe-associated molecular patterns are detected by dedicated receptors. Among them, the RIG-I-like receptors RIG-I and MDA5 activate IFN gene expression upon sensing viral RNA in the cytoplasm. While MDA5 forms long filaments in vitro upon activation, RIG-I is believed to oligomerize after RNA binding in order to transduce a signal. Here, we show that in vitro binding of synthetic RNA mimicking that of Mononegavirales (Ebola, rabies and measles viruses leader sequences to purified RIG-I does not induce RIG-I oligomerization. Furthermore, in cells devoid of endogenous functional RIG-I-like receptors, after activation of exogenous Flag-RIG-I by a 62-mer-5'ppp-dsRNA or by polyinosinic:polycytidylic acid, a dsRNA analogue, or by measles virus infection, anti-Flag immunoprecipitation and specific elution with Flag peptide indicated a monomeric form of RIG-I. Accordingly, when using the Gaussia Luciferase-Based Protein Complementation Assay (PCA, a more sensitive in cellula assay, no RIG-I oligomerization could be detected upon RNA stimulation. Altogether our data indicate that the need for self-oligomerization of RIG-I for signal transduction is either dispensable or very transient.

  14. Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants

    Science.gov (United States)

    Hoson, T.; Saito, Y.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force is a serious problem that plants have had to solve to survive on land. Mechanical resistance to the pull of gravity is thus a principal graviresponse in plants, comparable to gravitropism. Nevertheless, only limited information has been obtained for this gravity response. We have examined the mechanism of gravity-induced mechanical resistance using hypergravity conditions produced by centrifugation. As a result, we have clarified the outline of the sequence of events leading to the development of mechanical resistance. The gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and it appears that amyloplast sedimentation in statocytes is not involved. Transformation and transduction of the perceived signal may be mediated by the structural or physiological continuum of microtubule-cell membrane-cell wall. As the final step in the development of mechanical resistance, plants construct a tough body by increasing cell wall rigidity. The increase in cell wall rigidity is brought about by modification of the metabolism of certain wall constituents and modification of the cell wall environment, especially pH. We need to clarify the details of each step by future space and ground-based experiments.

  15. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  16. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  17. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation.

    Science.gov (United States)

    Fröhlich, Dominik; Kuo, Wen Ping; Frühbeis, Carsten; Sun, Jyh-Jang; Zehendner, Christoph M; Luhmann, Heiko J; Pinto, Sheena; Toedling, Joern; Trotter, Jacqueline; Krämer-Albers, Eva-Maria

    2014-09-26

    Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell-cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen-glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  19. Anchoring Proteins as Regulators of Signaling Pathways

    Science.gov (United States)

    Perino, Alessia; Ghigo, Alessandra; Scott, John D.; Hirsch, Emilio

    2012-01-01

    Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. PMID:22859670

  20. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    International Nuclear Information System (INIS)

    Neves, Bruno Miguel; Goncalo, Margarida; Figueiredo, Americo; Duarte, Carlos B.; Lopes, Maria Celeste; Cruz, Maria Teresa

    2011-01-01

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  1. Effects of osmotic stress on the activity of MAPKs and PDGFR-beta-mediated signal transduction in NIH-3T3 fibroblasts

    DEFF Research Database (Denmark)

    Nielsen, M-B; Christensen, Søren Tvorup; Hoffmann, E K

    2008-01-01

    Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts...... in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-beta-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most...... likely via a pathway independent of PDGFR-beta and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments...

  2. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Simone ePelliciari

    2015-08-01

    Full Text Available The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress.Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur towards apo-operators, while the binding towards holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur towards the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to

  3. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction.

    Directory of Open Access Journals (Sweden)

    Rachael Barton

    Full Text Available Plexins (plxns are transmembrane (TM receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET² suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.

  4. Microscopic insight into thermodynamics of conformational changes of SAP-SLAM complex in signal transduction cascade

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-04-01

    The signalling lymphocytic activation molecule (SLAM) family of receptors, expressed by an array of immune cells, associate with SLAM-associated protein (SAP)-related molecules, composed of single SH2 domain architecture. SAP activates Src-family kinase Fyn after SLAM ligation, resulting in a SLAM-SAP-Fyn complex, where, SAP binds the Fyn SH3 domain that does not involve canonical SH3 or SH2 interactions. This demands insight into this SAP mediated signalling cascade. Thermodynamics of the conformational changes are extracted from the histograms of dihedral angles obtained from the all-atom molecular dynamics simulations of this structurally well characterized SAP-SLAM complex. The results incorporate the binding induced thermodynamic changes of individual amino acid as well as the secondary structural elements of the protein and the solvent. Stabilization of the peptide partially comes through a strong hydrogen bonding network with the protein, while hydrophobic interactions also play a significant role where the peptide inserts itself into a hydrophobic cavity of the protein. SLAM binding widens SAP's second binding site for Fyn, which is the next step in the signal transduction cascade. The higher stabilization and less fluctuation of specific residues of SAP in the Fyn binding site, induced by SAP-SLAM complexation, emerge as the key structural elements to trigger the recognition of SAP by the SH3 domain of Fyn. The thermodynamic quantification of the protein due to complexation not only throws deeper understanding in the established mode of SAP-SLAM interaction but also assists in the recognition of the relevant residues of the protein responsible for alterations in its activity.

  5. Modularized TGFbeta-Smad Signaling Pathway

    Science.gov (United States)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  6. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

    Science.gov (United States)

    2012-10-01

    PI3K/ Akt and MAPK/Erk signaling. We identified the A-type cyclin, cyclin A1 as an important downstream target of PI3K/ Akt (59); 3) autocrine IL-6...DACH1 inhibits transforming growth factor-beta signaling through binding Smad4 . J Biol Chem. 2003; 278(51):51673- 84. 33. Le Grand F, Grifone R, Mourikis...androgen receptor. Endocr Relat Cancer. 2009; 16(1):155-69. 59. Wegiel B, Bjartell A, Culig Z, Persson JL. Interleukin-6 activates PI3K/ Akt pathway

  7. Short- and long-term memory: differential involvement of neurotransmitter systems and signal transduction cascades

    Directory of Open Access Journals (Sweden)

    MÔNICA R.M. VIANNA

    2000-09-01

    Full Text Available Since William James (1890 first distinguished primary from secondary memory, equivalent to short- and long-term memory, respectively, it has been assumed that short-term memory processes are in charge of cognition while long-term memory is being consolidated. From those days a major question has been whether short-term memory is merely a initial phase of long-term memory, or a separate phenomena. Recent experiments have shown that many treatments with specific molecular actions given into the hippocampus and related brain areas after one-trial avoidance learning can effectively cancel short-term memory without affecting long-term memory formation. This shows that short-term memory and long-term memory involve separate mechanisms and are independently processed. Other treatments, however, influence both memory types similarly, suggesting links between both at the receptor and at the post-receptor level, which should not be surprising as they both deal with nearly the same sensorimotor representations. This review examines recent advances in short- and long-term memory mechanisms based on the effect of intra-hippocampal infusion of drugs acting upon neurotransmitter and signal transduction systems on both memory types.

  8. Herbaspirillum seropedicae signal transduction protein PII is structurally similar to the enteric GlnK.

    Science.gov (United States)

    Machado Benelli, Elaine; Buck, Martin; Polikarpov, Igor; Maltempi de Souza, Emanuel; Cruz, Leonardo M; Pedrosa, Fábio O

    2002-07-01

    PII-like proteins are signal transduction proteins found in bacteria, archaea and eukaryotes. They mediate a variety of cellular responses. A second PII-like protein, called GlnK, has been found in several organisms. In the diazotroph Herbaspirillum seropedicae, PII protein is involved in sensing nitrogen levels and controlling nitrogen fixation genes. In this work, the crystal structure of the unliganded H. seropedicae PII was solved by X-ray diffraction. H. seropedicae PII has a Gly residue, Gly108 preceding Pro109 and the main-chain forms a beta turn. The glycine at position 108 allows a bend in the C-terminal main-chain, thereby modifying the surface of the cleft between monomers and potentially changing function. The structure suggests that the C-terminal region of PII proteins may be involved in specificity of function, and nonenteric diazotrophs are found to have the C-terminal consensus XGXDAX(107-112). We are also proposing binding sites for ATP and 2-oxoglutarate based on the structural alignment of PII with PII-ATP/GlnK-ATP, 5-carboxymethyl-2-hydroxymuconate isomerase and 4-oxalocrotonate tautomerase bound to the inhibitor 2-oxo-3-pentynoate.

  9. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    Science.gov (United States)

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  10. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    International Nuclear Information System (INIS)

    Lesne, Annick; Victor, Jean–Marc; Bécavin, Christophe

    2012-01-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity. (perspective)

  11. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    Science.gov (United States)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  12. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  13. Signal Transduction of Sphingosine-1-Phosphate G Protein—Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Nicholas Young

    2006-01-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive lipid capable of eliciting dramatic effects in a variety of cell types. Signaling by this molecule is by a family of five G protein—coupled receptors named S1P1–5 that signal through a variety of pathways to regulate cell proliferation, migration, cytoskeletal organization, and differentiation. These receptors are expressed in a wide variety of tissues and cell types, and their cellular effects contribute to important biological and pathological functions of S1P in many processes, including angiogenesis, vascular development, lymphocyte trafficking, and cancer. This review will focus on the current progress in the field of S1P receptor signaling and biology.

  14. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fulda, Simone, E-mail: simone.fulda@kgu.de [Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt (Germany)

    2011-08-29

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  15. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    International Nuclear Information System (INIS)

    Fulda, Simone

    2011-01-01

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  16. Signal transduction mechanisms of K+-Cl- cotransport regulation and relationship to disease.

    Science.gov (United States)

    Adragna, N C; Ferrell, C M; Zhang, J; Di Fulvio, M; Temprana, C F; Sharma, A; Fyffe, R E W; Cool, D R; Lauf, P K

    2006-01-01

    The K+-Cl- cotransport (COT) regulatory pathways recently uncovered in our laboratory and their implication in disease state are reviewed. Three mechanisms of K+-Cl- COT regulation can be identified in vascular cells: (1) the Li+-sensitive pathway, (2) the platelet-derived growth factor (PDGF)-sensitive pathway and (3) the nitric oxide (NO)-dependent pathway. Ion fluxes, Western blotting, semi-quantitative RT-PCR, immunofluorescence and confocal microscopy were used. Li+, used in the treatment of manic depression, stimulates volume-sensitive K+-Cl- COT of low K+ sheep red blood cells at cellular concentrations 3 mM, causes cell swelling, and appears to regulate K+-Cl- COT through a protein kinase C-dependent pathway. PDGF, a potent serum mitogen for vascular smooth muscle cells (VSMCs), regulates membrane transport and is involved in atherosclerosis. PDGF stimulates VSM K+-Cl- COT in a time- and concentration-dependent manner, both acutely and chronically, through the PDGF receptor. The acute effect occurs at the post-translational level whereas the chronic effect may involve regulation through gene expression. Regulation by PDGF involves the signalling molecules phosphoinositides 3-kinase and protein phosphatase-1. Finally, the NO/cGMP/protein kinase G pathway, involved in vasodilation and hence cardiovascular disease, regulates K+-Cl- COT in VSMCs at the mRNA expression and transport levels. A complex and diverse array of mechanisms and effectors regulate K+-Cl- COT and thus cell volume homeostasis, setting the stage for abnormalities at the genetic and/or regulatory level thus effecting or being affected by various pathological conditions.

  17. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression.

    Science.gov (United States)

    Slavich, George M; Irwin, Michael R

    2014-05-01

    Major life stressors, especially those involving interpersonal stress and social rejection, are among the strongest proximal risk factors for depression. In this review, we propose a biologically plausible, multilevel theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental stress with internal biological processes that drive depression pathogenesis. Central to this social signal transduction theory of depression is the hypothesis that experiences of social threat and adversity up-regulate components of the immune system involved in inflammation. The key mediators of this response, called proinflammatory cytokines, can in turn elicit profound changes in behavior, which include the initiation of depressive symptoms such as sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. This highly conserved biological response to adversity is critical for survival during times of actual physical threat or injury. However, this response can also be activated by modern-day social, symbolic, or imagined threats, leading to an increasingly proinflammatory phenotype that may be a key phenomenon driving depression pathogenesis and recurrence, as well as the overlap of depression with several somatic conditions including asthma, rheumatoid arthritis, chronic pain, metabolic syndrome, cardiovascular disease, obesity, and neurodegeneration. Insights from this theory may thus shed light on several important questions including how depression develops, why it frequently recurs, why it is strongly predicted by early life stress, and why it often co-occurs with symptoms of anxiety and with certain physical disease conditions. This work may also suggest new opportunities for preventing and treating depression by targeting inflammation.

  18. From Stress to Inflammation and Major Depressive Disorder: A Social Signal Transduction Theory of Depression

    Science.gov (United States)

    Slavich, George M.; Irwin, Michael R.

    2014-01-01

    Major life stressors, especially those involving interpersonal stress and social rejection, are among the strongest proximal risk factors for depression. In this review, we propose a biologically plausible, multilevel theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental stress with internal biological processes that drive depression pathogenesis. Central to this social signal transduction theory of depression is the hypothesis that experiences of social threat and adversity up-regulate components of the immune system involved in inflammation. The key mediators of this response, called proinflammatory cytokines, can in turn elicit profound changes in behavior, which include the initiation of depressive symptoms such as sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. This highly conserved biological response to adversity is critical for survival during times of actual physical threat or injury. However, this response can also be activated by modern-day social, symbolic, or imagined threats, leading to an increasingly proinflammatory phenotype that may be a key phenomenon driving depression pathogenesis and recurrence, as well as the overlap of depression with several somatic conditions including asthma, rheumatoid arthritis, chronic pain, metabolic syndrome, cardiovascular disease, obesity, and neurodegeneration. Insights from this theory may thus shed light on several important questions including how depression develops, why it frequently recurs, why it is strongly predicted by early life stress, and why it often co-occurs with symptoms of anxiety and with certain physical disease conditions. This work may also suggest new opportunities for preventing and treating depression by targeting inflammation. PMID:24417575

  19. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae

    Directory of Open Access Journals (Sweden)

    González-Candelas Fernando

    2011-02-01

    Full Text Available Abstract Background Two component systems (TCS are signal transduction pathways which typically consist of a sensor histidine kinase (HK and a response regulator (RR. In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in Lactobacillaceae and Leuconostocaceae, two families belonging to the group of lactic acid bacteria (LAB. LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest. Results The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in Lactobacillus helveticus and 17 in Lactobacillus casei. The OmpR/IIIA family was the most prevalent in Lactobacillaceae accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these Lactobacillaceae by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in Lactobacillaceae. Conclusions The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in Lactobacillaceae, although some HGT events cannot be ruled out. This would agree with the genomic analyses of Lactobacillales which show that gene losses have been a major trend in the evolution of this group.

  20. Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys.

    Directory of Open Access Journals (Sweden)

    Laura Campello

    Full Text Available Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ± 1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to

  1. On enhancing drugs effect on radiosensitivity of HeLa cells by inhibiting P13K/Akt signal transduction

    International Nuclear Information System (INIS)

    Xia Shu; Yu Shiying

    2006-01-01

    Objective: To explore the mechanism of PI3K/Akt in radiosensitization of docetaxel and cisplatin by inhibiting PI3K/Akt pathway in HeLa cells. Methods: To detect the 50% inhibition concentration (IC 50 ) of cisplatin and docetaxel in Hela cells by mono-nuclear cell direct cytotoxicity assay (MTT) in vitro. Using the IC 20 of cisplatin and docetaxel in Hela cell or in association with LY294002 for 24 h, then, the cells were irradiated by X-ray with 2,3,4,6,8 Gy. The cell survival fraction was computed by clone formation. Cell survival curve was fitted by multitarget one-hit model, and D q , D 0 , SF 2 , sensitizing enhancing ratio(SER) was calculated. The expression of pAkt and total Akt by western blot were detected. Apoptosis was detected by flow cytometry. Results: 1. Docetaxel and cisplatin improved the phosphorylation of Akt by irradiation obviously. 2. The SER of docetaxel + LY294002 + irradiation group (1.92) was higher than that of docetaxel + irradiation group(1.41). The SER of cisplatin + LY294002 + irradiation group(1.71) was higher than the cisplatin + irradiation group (1.37). 3. Apoptosis rate of docetaxel + LY294002 + irradiation and cisplatin + LY294002 + irradiation groups(12.5%, 10.2%) were higher than those of docetaxel + irradiation and cisplatin + irradiation groups(6.1%, 5.1%). Conclusions: PI3K/Akt signal transduction activation may be as an important reason of radiosensitization reduction of docetaxel and cisplatin in the HeLa cells. Our results show that inhibiting PI3K/Akt can improve the radiosensitization of docetaxel and cisplatin in the HeLa cells. (authors)

  2. Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments.

    Science.gov (United States)

    Swartz, Darl R; Yang, Zhenyun; Sen, Asok; Tikunova, Svetlana B; Davis, Jonathan P

    2006-08-18

    Activation of striated muscle contraction is a highly cooperative signal transduction process converting calcium binding by troponin C (TnC) into interactions between thin and thick filaments. Once calcium is bound, transduction involves changes in protein interactions along the thin filament. The process is thought to involve three different states of actin-tropomyosin (Tm) resulting from changes in troponin's (Tn) interaction with actin-Tm: a blocked (B) state preventing myosin interaction, a closed (C) state allowing weak myosin interactions and favored by calcium binding to Tn, and an open or M state allowing strong myosin interactions. This was tested by measuring the apparent rate of Tn dissociation from rigor skeletal myofibrils using labeled Tn exchange. The location and rate of exchange of Tn or its subunits were measured by high-resolution fluorescence microscopy and image analysis. Three different rates of Tn exchange were observed that were dependent on calcium concentration and strong cross-bridge binding that strongly support the three-state model. The rate of Tn dissociation in the non-overlap region was 200-fold faster at pCa 4 (C-state region) than at pCa 9 (B-state region). When Tn contained engineered TnC mutants with weakened regulatory TnI interactions, the apparent exchange rate at pCa 4 in the non-overlap region increased proportionately with TnI-TnC regulatory affinity. This suggests that the mechanism of calcium enhancement of the rate of Tn dissociation is by favoring a TnI-TnC interaction over a TnI-actin-Tm interaction. At pCa 9, the rate of Tn dissociation in the overlap region (M-state region) was 100-fold faster than the non-overlap region (B-state region) suggesting that strong cross-bridges increase the rate of Tn dissociation. At pCa 4, the rate of Tn dissociation was twofold faster in the non-overlap region (C-state region) than the overlap region (M-state region) that likely involved a strong cross-bridge influence on Tn

  3. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    Science.gov (United States)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were

  4. Hedgehog signaling pathway in neuroblastoma differentiation.

    Science.gov (United States)

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome

    Directory of Open Access Journals (Sweden)

    Zhang Zhenhai

    2010-10-01

    Full Text Available Abstract Background Maize (Zea mays ssp. mays L. is an important model for plant basic and applied research. In 2009, the B73 maize genome sequencing made a great step forward, using clone by clone strategy; however, functional annotation and gene classification of the maize genome are still limited. Thus, a well-annotated datasets and informative database will be important for further research discoveries. Signal transduction is a fundamental biological process in living cells, and many protein families participate in this process in sensing, amplifying and responding to various extracellular or internal stimuli. Therefore, it is a good starting point to integrate information on the maize functional genes involved in signal transduction. Results Here we introduce a comprehensive database 'ProFITS' (Protein Families Involved in the Transduction of Signalling, which endeavours to identify and classify protein kinases/phosphatases, transcription factors and ubiquitin-proteasome-system related genes in the B73 maize genome. Users can explore gene models, corresponding transcripts and FLcDNAs using the three abovementioned protein hierarchical categories, and visualize them using an AJAX-based genome browser (JBrowse or Generic Genome Browser (GBrowse. Functional annotations such as GO annotation, protein signatures, protein best-hits in the Arabidopsis and rice genome are provided. In addition, pre-calculated transcription factor binding sites of each gene are generated and mutant information is incorporated into ProFITS. In short, ProFITS provides a user-friendly web interface for studies in signal transduction process in maize. Conclusion ProFITS, which utilizes both the B73 maize genome and full length cDNA (FLcDNA datasets, provides users a comprehensive platform of maize annotation with specific focus on the categorization of families involved in the signal transduction process. ProFITS is designed as a user-friendly web interface and it is

  6. The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Laura Picas

    2016-03-01

    Full Text Available Phosphoinositides are master regulators of multiple cellular processes: from vesicular trafficking to signaling, cytoskeleton dynamics, and cell growth. They are synthesized by the spatiotemporal regulated activity of phosphoinositide-metabolizing enzymes. The recent observation that some protein modules are able to cluster phosphoinositides suggests that alternative or complementary mechanisms might operate to stabilize the different phosphoinositide pools within cellular compartments. Herein, we discuss the different known and potential molecular players that are prone to engage phosphoinositide clustering and elaborate on how such a mechanism might take part in the regulation of intracellular trafficking and signal transduction.

  7. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    International Nuclear Information System (INIS)

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang; Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh; Chung, Hsiao-Min; Fang, Hua-Chang

    2010-01-01

    Purpose: Tumor growth factor-β1 (TGF-β1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-β1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-β1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-β1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-β1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-β1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-β1-mediated apoptosis and also partially inhibited TGF-β1-mediated EMT. We showed that EPO treatment suppressed TGF-β1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-β1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-β1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  8. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications.

    Science.gov (United States)

    Poot-Poot, Wilberth; Hernandez-Sotomayor, Soledad M Teresa

    2011-10-01

    An early response of plants to environmental signals or abiotic stress suggests that the phospholipid signaling pathway plays a pivotal role in these mechanisms. The phospholipid signaling cascade is one of the main systems of cellular transduction and is related to other signal transduction mechanisms. These other mechanisms include the generation of second messengers and their interactions with various proteins, such as ion channels. This phospholipid signaling cascade is activated by changes in the environment, such as phosphate starvation, water, metals, saline stres, and plant-pathogen interactions. One important factor that impacts agricultural crops is metal-induced stress. Because aluminum has been considered to be a major toxic factor for agriculture conducted in acidic soils, many researchers have focused on understanding the mechanisms of aluminum toxicity in plants. We have contributed the last fifteen years in this field by studying the effects of aluminum on phospholipid signaling in coffee, one of the Mexico's primary crops. We have focused our research on aluminum toxicity mechanisms in Coffea arabica suspension cells as a model for developing future contributions to the biotechnological transformation of coffee crops such that they can be made resistant to aluminum toxicity. We conclude that aluminum is able to not only generate a signal cascade in plants but also modulate other signal cascades generated by other types of stress in plants. The aim of this review is to discuss possible involvement of the phospholipid signaling pathway in the aluminum toxicity response of plant cells. Copyright © 2011 Wiley Periodicals, Inc.

  9. The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Verheij, M.; Ruiter, G.A.; Zerp, S.F.; Bartelink, H.; Blitterswijk, W.J. van; Fuks, Z.; Haimovitz-Friedman, A.

    1998-01-01

    Ionizing radiation, like a variety of other cellular stress factors, initiates apoptosis, or programmed cell death, in many cell systems. This mode of radiation-induced cell kill should be distinguished from clonogenic cell death due to unrepaired DNA damage. Ionizing radiation not only exerts its effect on the nuclear DNA, but also at the plasma membrane level where it may activate multiple signal transduction pathways. One of these pathways is the stress-activated protein kinase (SAPK) cascade which transduces death signals from the cell membrane to the nucleus. This review discusses recent evidence on the critical role of this signaling system in radiation- and stress-induced apoptosis. An improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane

    Directory of Open Access Journals (Sweden)

    Hemerly Adriana S

    2007-03-01

    Full Text Available Abstract Background Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate. The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. Results Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. Conclusion An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified

  11. Towards understanding the nitrogen signal transduction for nif gene expression in Klebsiella pneumoniae.

    Science.gov (United States)

    Glöer, Jens; Thummer, Robert; Ullrich, Heike; Schmitz, Ruth A

    2008-12-01

    In the diazotroph Klebsiella pneumoniae, the nitrogen sensory protein GlnK mediates the cellular nitrogen status towards the NifL/NifA system that regulates transcription of the nitrogen fixation genes in response to ammonium and molecular oxygen. To identify amino acids of GlnK essential for this signal transduction by protein-protein interaction, we performed random point mutagenesis by PCR amplification under conditions of reduced Taq polymerase fidelity. Three thousand two hundred mutated glnK genes were screened to identify those that would no longer complement a K. pneumoniaeDeltaglnK strain for growth under nitrogen fixing conditions. Twenty-four candidates resulting in a Nif(-) phenotype were identified, carrying 1-11 amino acid changes in GlnK. Based on these findings, as well as structural data, several single mutations were introduced into glnK by site-directed mutagenesis, and the Nif phenotype and the respective effects on NifA-mediated nif gene induction was monitored in K. pneumoniae using a chromosomal nifK'-'lacZ fusion. Single amino acid changes resulting in significant nif gene inhibition under nitrogen limiting conditions were located within the highly conserved T-loop (A43G, A49T and N54D), the body of the protein (G87V and K79E) and in the C-terminal region (I100M, R103S, E106Q and D108G). Complex formation analyses between GlnK (wild-type or derivatives) and NifL or NifA in response to 2-oxoglutarate indicated that: (a) besides the T-loop, the C-terminal region of GlnK is essential for the interaction with NifL and NifA and (b) GlnK binds both proteins in the absence of 2-oxoglutarate, whereas, in the presence of 2-oxoglutarate, NifA is released but NifL remains bound to GlnK.

  12. Genomic Targets and Features of BarA-UvrY (-SirA Signal Transduction Systems.

    Directory of Open Access Journals (Sweden)

    Tesfalem R Zere

    Full Text Available The two-component signal transduction system BarA-UvrY of Escherichia coli and its orthologs globally regulate metabolism, motility, biofilm formation, stress resistance, virulence of pathogens and quorum sensing by activating the transcription of genes for regulatory sRNAs, e.g. CsrB and CsrC in E. coli. These sRNAs act by sequestering the RNA binding protein CsrA (RsmA away from lower affinity mRNA targets. In this study, we used ChIP-exo to identify, at single nucleotide resolution, genomic sites for UvrY (SirA binding in E. coli and Salmonella enterica. The csrB and csrC genes were the strongest targets of crosslinking, which required UvrY phosphorylation by the BarA sensor kinase. Crosslinking occurred at two sites, an inverted repeat sequence far upstream of the promoter and a site near the -35 sequence. DNAse I footprinting revealed specific binding of UvrY in vitro only to the upstream site, indicative of additional binding requirements and/or indirect binding to the downstream site. Additional genes, including cspA, encoding the cold-shock RNA-binding protein CspA, showed weaker crosslinking and modest or negligible regulation by UvrY. We conclude that the global effects of UvrY/SirA on gene expression are primarily mediated by activating csrB and csrC transcription. We also used in vivo crosslinking and other experimental approaches to reveal new features of csrB/csrC regulation by the DeaD and SrmB RNA helicases, IHF, ppGpp and DksA. Finally, the phylogenetic distribution of BarA-UvrY was analyzed and found to be uniquely characteristic of γ-Proteobacteria and strongly anti-correlated with fliW, which encodes a protein that binds to CsrA and antagonizes its activity in Bacillus subtilis. We propose that BarA-UvrY and orthologous TCS transcribe sRNA antagonists of CsrA throughout the γ-Proteobacteria, but rarely or never perform this function in other species.

  13. Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Vicente Felipo

    2006-01-01

    Patients with liver disease may present hepatic encephalopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations,including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death.The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE.These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced,which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE.However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing,hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and

  14. Inflammation activates the interferon signaling pathways in taste bud cells.

    Science.gov (United States)

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  15. The Fog signaling pathway: Insights into signaling in morphogenesis

    Science.gov (United States)

    Manning, Alyssa J.; Rogers, Stephen L.

    2014-01-01

    Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa. PMID:25127992

  16. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts.

    Science.gov (United States)

    Galperin, Michael Y

    2005-06-14

    Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. This paper presents results of a comprehensive census of signal transduction proteins--histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases--encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes

  17. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  18. Signaling Pathways in Cardiac Myocyte Apoptosis

    Science.gov (United States)

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  19. Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom.

    Science.gov (United States)

    Huminiecki, Lukasz; Goldovsky, Leon; Freilich, Shiri; Moustakas, Aristidis; Ouzounis, Christos; Heldin, Carl-Henrik

    2009-02-03

    The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-beta (TGF-beta) pathway -- one of the fundamental and versatile metazoan signal transduction engines. After an investigation of 33 genomes, we show that the emergence of the TGF-beta pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (Trichoplax adhaerens). We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-beta pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-beta pathway in free-living bacterial feeding nematodes of the genus Rhabditis. Our results challenge the view of well-conserved developmental pathways. The TGF-beta signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.

  20. The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.

    Science.gov (United States)

    Sun, Yahui; Ma, Chenkai; Halgamuge, Saman

    2017-12-28

    Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.

  1. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... phosphorylation in control subjects and IGT relatives, with a tendency for reduced phosphorylation in IGT relatives (P = 0.12). In conclusion, aberrant phosphorylation/activity of IRS-1, PI 3-kinase, and Akt is observed in skeletal muscle from relatives of patients with type 2 diabetes with IGT. However...... resistance in skeletal muscle from relatives of patients with type 2 diabetes....

  2. Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events.

    Science.gov (United States)

    Bhattacharyya, S; Ghosh, S; Jhonson, P L; Bhattacharya, S K; Majumdar, S

    2001-03-01

    Leishmania donovani, an intracellular protozoan parasite, challenges host defense mechanisms by impairing the signal transduction of macrophages. In this study we investigated whether interleukin-10 (IL-10)-mediated alteration of signaling events in a murine model of visceral leishmaniasis is associated with macrophage deactivation. Primary in vitro cultures of macrophages infected with leishmanial parasites markedly elevated the endogenous release of IL-10. Treatment with either L. donovani or recombinant IL-10 (rIL-10) inhibited both the activity and expression of the Ca2+-dependent protein kinase C (PKC) isoform. However, preincubation with neutralizing anti-IL-10 monoclonal antibody (MAb) restored the PKC activity in the parasitized macrophage. Furthermore, we observed that coincubation of macrophages with rIL-10 and L. donovani increased the intracellular parasite burden, which was abrogated by anti-IL-10 MAb. Consistent with these observations, generation of superoxide (O2-) and nitric oxide and the release of murine tumor necrosis factor-alpha were attenuated in response to L. donovani or rIL-10 treatment. On the other hand, preincubation of the infected macrophages with neutralizing anti-IL-10 MAb significantly blocked the inhibition of nitric oxide and murine tumor necrosis factor-alpha release by the infected macrophages. These findings imply that infection with L. donovani induces endogenous secretion of murine IL-10, which in turn facilitates the intracellular survival of the protozoan and orchestrates several immunomodulatory roles via selective impairment of PKC-mediated signal transduction.

  3. Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics.

    Science.gov (United States)

    Jogler, Christian; Waldmann, Jost; Huang, Xiaoluo; Jogler, Mareike; Glöckner, Frank Oliver; Mascher, Thorsten; Kolter, Roberto

    2012-12-01

    Members of the Planctomycetes clade share many unusual features for bacteria. Their cytoplasm contains membrane-bound compartments, they lack peptidoglycan and FtsZ, they divide by polar budding, and they are capable of endocytosis. Planctomycete genomes have remained enigmatic, generally being quite large (up to 9 Mb), and on average, 55% of their predicted proteins are of unknown function. Importantly, proteins related to the unusual traits of Planctomycetes remain largely unknown. Thus, we embarked on bioinformatic analyses of these genomes in an effort to predict proteins that are likely to be involved in compartmentalization, cell division, and signal transduction. We used three complementary strategies. First, we defined the Planctomycetes core genome and subtracted genes of well-studied model organisms. Second, we analyzed the gene content and synteny of morphogenesis and cell division genes and combined both methods using a "guilt-by-association" approach. Third, we identified signal transduction systems as well as sigma factors. These analyses provide a manageable list of candidate genes for future genetic studies and provide evidence for complex signaling in the Planctomycetes akin to that observed for bacteria with complex life-styles, such as Myxococcus xanthus.

  4. Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction.

    Science.gov (United States)

    Epand, Richard M

    2017-08-01

    The phosphatidylinositol cycle (PI-cycle) has a central role in cell signaling. It is the major pathway for the synthesis of phosphatidylinositol and its phosphorylated forms. In addition, some lipid intermediates of the PI-cycle, including diacylglycerol and phosphatidic acid, are also important lipid signaling agents. The PI-cycle has some features that are important for the understanding of its role in the cell. As a cycle, the intermediates will be regenerated. The PI-cycle requires a large amount of metabolic energy. There are different steps of the cycle that occur in two different membranes, the plasma membrane and the endoplasmic reticulum. In order to complete the PI-cycle lipid must be transferred between the two membranes. The role of the Nir proteins in the process has recently been elucidated. The lipid intermediates of the PI-cycle are normally highly enriched with 1-stearoyl-2-arachidonoyl molecular species in mammals. This enrichment will be retained as long as the intermediates are segregated from other lipids of the cell. However, there is a significant fraction (>15 %) of lipids in the PI-cycle of normal cells that have other acyl chains. Phosphatidylinositol largely devoid of arachidonoyl chains are found in cancer cells. Phosphatidylinositol species with less unsaturation will not be as readily converted to phosphatidylinositol-3,4,5-trisphosphate, the lipid required for the activation of Akt with resulting effects on cell proliferation. Thus, the cyclical nature of the PI-cycle, its dependence on acyl chain composition and its requirement for lipid transfer between two membranes, explain many of the biological properties of this cycle.

  5. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  6. Purinergic Signaling Pathways in Endocrine System

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  7. The crucial role of cyclic GMP in the eclosion hormone mediated signal transduction in the silkworm metamorphoses.

    Science.gov (United States)

    Shibanaka, Y; Hayashi, H; Okada, N; Fujita, N

    1991-10-31

    The signal transduction of the peptide, eclosion hormone, in the silkworm Bombyx mori appears to be mediated via the second messenger cyclic GMP throughout their life cycle. Injection of 8-bromo-cGMP induced the ecdysis behavior in pharate adults with similar latency to eclosion hormone-induced ecdysis; the moulting occurred 50-70 min after the injection. The potency of 8Br-cGMP was 10(2) fold higher than that of cGMP and the efficacy was increased by the co-injection of the phosphodiesterase inhibitor IBMX. On the other hand, in the silkworm pupal ecdysis the eclosion hormone and also 8Br-cGMP induced the moulting behavior in a dose-dependent manner. The adult development of the ability to respond to 8Br-cGMP took place concomitantly with the response to the eclosion hormone. Both the developmental time courses were shifted by a shift of light and dark cycles. Accordingly, the sensitivities to the peptide and cyclic nucleotide developed correspondently under the light and dark circadian rhythm. Thus throughout the silkworm life cycle, eclosion hormone is effective to trigger the ecdysis behavior and cGMP plays a crucial role as the second messenger in the eclosion hormone-mediated signal transduction.

  8. Structure of the P{sub II} signal transduction protein of Neisseria meningitidis at 1.85 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Charles E. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Sainsbury, Sarah; Berrow, Nick S.; Alderton, David [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Stammers, David K. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2006-06-01

    The structure of the P{sub II} signal transduction protein of N. meningitidis at 1.85 Å resolution is described. The P{sub II} signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P{sub II}-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P{sub II} protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P{sub II} protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 Å. Comparison of the structure with those of other P{sub II} proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P{sub II} protein shares functions with GlnB/GlnK of enteric bacteria.

  9. Expression analysis of taste signal transduction molecules in the fungiform and circumvallate papillae of the rhesus macaque, Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Yoshiro Ishimaru

    Full Text Available The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP and circumvallate papillae (CvP of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual TAS2Rs exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human TAS2Rs. GNAT3, but not GNA14, was expressed in TRCs of FuP, whereas GNA14 was expressed in a small population of TRCs of CvP, which were distinct from GNAT3- or TAS1R2-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction.

  10. Insulin signaling pathways in lepidopteran steroidogenesis

    Directory of Open Access Journals (Sweden)

    Wendy eSmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  11. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish

    Directory of Open Access Journals (Sweden)

    van Eeden Freek

    2010-04-01

    Full Text Available Abstract Background In mammalian cells, the integrity of the primary cilium is critical for proper regulation of the Hedgehog (Hh signal transduction pathway. Whether or not this dependence on the primary cilium is a universal feature of vertebrate Hedgehog signalling has remained contentious due, in part, to the apparent divergence of the intracellular transduction pathway between mammals and teleost fish. Results Here, using a functional Gli2-GFP fusion protein, we show that, as in mammals, the Gli2 transcription factor localizes to the primary cilia of cells in the zebrafish embryo and that this localization is modulated by the activity of the Hh pathway. Moreover, we show that the Igu/DZIP1protein, previously implicated in the modulation of Gli activity in zebrafish, also localizes to the primary cilium and is required for its proper formation. Conclusion Our findings demonstrate a conserved role of the primary cilium in mediating Hedgehog signalling activity across the vertebrate phylum and validate the use of the zebrafish as a representative model for the in vivo analysis of vertebrate Hedgehog signalling.

  13. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    Science.gov (United States)

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.

  14. Logical network of genotoxic stress-induced NF-kappaB signal transduction predicts putative target structures for therapeutic intervention strategies

    Directory of Open Access Journals (Sweden)

    Rainer Poltz

    2009-12-01

    Full Text Available Rainer Poltz1, Raimo Franke1,#, Katrin Schweitzer1, Steffen Klamt2, Ernst-Dieter Gilles2, Michael Naumann11Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany; 2Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; #Present address: Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, GermanyAbstract: Genotoxic stress is induced by a broad range of DNA-damaging agents and could lead to a variety of human diseases including cancer. DNA damage is also therapeutically induced for cancer treatment with the aim to eliminate tumor cells. However, the effectiveness of radio- and chemotherapy is strongly hampered by tumor cell resistance. A major reason for radio- and chemotherapeutic resistances is the simultaneous activation of cell survival pathways resulting in the activation of the transcription factor nuclear factor-kappa B (NF-κB. Here, we present a Boolean network model of the NF-κB signal transduction induced by genotoxic stress in epithelial cells. For the representation and analysis of the model, we used the formalism of logical interaction hypergraphs. Model reconstruction was based on a careful meta-analysis of published data. By calculating minimal intervention sets, we identified p53-induced protein with a death domain (PIDD, receptor-interacting protein 1 (RIP1, and protein inhibitor of activated STAT y (PIASy as putative therapeutic targets to abrogate NF-κB activation resulting in apoptosis. Targeting these structures therapeutically may potentiate the effectiveness of radio- and chemotherapy. Thus, the presented model allows a better understanding of the signal transduction in tumor cells and provides candidates as new therapeutic target structures.Keywords: apoptosis, Boolean network, cancer therapy, DNA-damage response, NF-κB

  15. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    Science.gov (United States)

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  16. Interleukin 4 signals through two related pathways.

    Science.gov (United States)

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  17. Signaling pathways in a Citrus EST database

    Directory of Open Access Journals (Sweden)

    Angela Mehta

    2007-01-01

    Full Text Available Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis was launched in order to sequence Citrus ESTs (expressed sequence tags from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile. Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.

  18. Construction of large signaling pathways using an adaptive perturbation approach with phosphoproteomic data.

    Science.gov (United States)

    Melas, Ioannis N; Mitsos, Alexander; Messinis, Dimitris E; Weiss, Thomas S; Rodriguez, Julio-Saez; Alexopoulos, Leonidas G

    2012-04-01

    Construction of large and cell-specific signaling pathways is essential to understand information processing under normal and pathological conditions. On this front, gene-based approaches offer the advantage of large pathway exploration whereas phosphoproteomic approaches offer a more reliable view of pathway activities but are applicable to small pathway sizes. In this paper, we demonstrate an experimentally adaptive approach to construct large signaling pathways from phosphoproteomic data within a 3-day time frame. Our approach--taking advantage of the fast turnaround time of the xMAP technology--is carried out in four steps: (i) screen optimal pathway inducers, (ii) select the responsive ones, (iii) combine them in a combinatorial fashion to construct a phosphoproteomic dataset, and (iv) optimize a reduced generic pathway via an Integer Linear Programming formulation. As a case study, we uncover novel players and their corresponding pathways in primary human hepatocytes by interrogating the signal transduction downstream of 81 receptors of interest and constructing a detailed model for the responsive part of the network comprising 177 species (of which 14 are measured) and 365 interactions.

  19. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    International Nuclear Information System (INIS)

    Hwang, P.M.; Verma, A.; Bredt, D.S.; Snyder, S.H.

    1990-01-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of 45 Ca 2+ , inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of [ 3 H]cytidine diphosphate diacylglycerol formed from [ 3 H]cytidine. Accumulated 45 Ca 2+ , inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited by low concentrations of denatonium, a potently bitter tastant

  20. Systems Biomedicine of Rabies Delineates the Affected Signaling pathways

    Directory of Open Access Journals (Sweden)

    Sayed Hamid Reza Mozhgani

    2016-11-01

    Full Text Available The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN of infected cells to elucidate the rabies-implicated signal transduction network (RISN. To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  1. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways

    Science.gov (United States)

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets. PMID:27872612

  2. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    Science.gov (United States)

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  3. Non-Smad pathways in TGF-β signaling

    OpenAIRE

    Zhang, Ying E

    2009-01-01

    Transforming growth factor-β utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. These non-Smad pathways include various branches of MAP kinase pathways, Rho-like GTPase signaling pathways, and phosphatidylinositol-3-kinase/AKT pathways. This review focu...

  4. DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells.

    NARCIS (Netherlands)

    Cavalieri, D.; Rivero, D.; Beltrame, L.; Buschow, S.I.; Calura, E.; Rizzetto, L.; Gessani, S.; Gauzzi, M.C.; Reith, W.; Baur, A.; Bonaiuti, R.; Brandizi, M.; Filippo, C. De; D'Oro, U.; Draghici, S.; Dunand-Sauthier, I.; Gatti, E.; Granucci, F.; Gundel, M.; Kramer, M.; Kuka, M.; Lanyi, A.; Melief, C.J.; Montfoort, N. van; Ostuni, R.; Pierre, P.; Popovici, R.; Rajnavolgyi, E.; Schierer, S.; Schuler, G.; Soumelis, V.; Splendiani, A.; Stefanini, I.; Torcia, M.G.; Zanoni, I.; Zollinger, R.; Figdor, C.G.; Austyn, J.M.

    2010-01-01

    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research,

  5. Signal transduction in neurons: effects of cellular prion protein on fyn kinase and ERK1/2 kinase

    Directory of Open Access Journals (Sweden)

    Tomasi Vittorio

    2010-12-01

    Full Text Available Abstract Background It has been reported that cellular prion protein (PrPc co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI anchor (secPrP and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals. Results By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11 expressing caveolin-1 at high levels. Conclusions We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.

  6. Signal transduction in neurons: effects of cellular prion protein on fyn kinase and ERK1/2 kinase.

    Science.gov (United States)

    Tomasi, Vittorio

    2010-12-16

    It has been reported that cellular prion protein (PrPc) co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI) anchor (secPrP) and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals. By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s) of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11) expressing caveolin-1 at high levels. We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.

  7. Agmatine modulates melanogenesis via MITF signaling pathway.

    Science.gov (United States)

    Kwon, Eun-Jeong; Kim, Moon-Moo

    2017-01-01

    Agmatine contained in soybean is also found in Manaca, an anti-aging plant, inhabited in Amazon and induces vasodilation by the promotion of NO synthesis in blood vessel. However, the research of agmatine on melanin synthesis related to hair greying is lacking. The aim of this study was to investigate the melanogenic effect of agmatine via regulation of MITF signaling pathway in B16F1 cells. It was determined whether agmatine regulates melanin synthesis at cellular level in addition to the effect of agmatine on mushroom tyrosinase in vitro in the presence of different concentrations of agmatine. Furthermore, the effect of agmatine on the protein expressions of tyrosinase, TRP-1, TRP-2, BMP-4, BMP-6, C-KIT, p-p38, MITF and C-FOS were examined by western blot analysis. In addition, immunofluorescence staining was carried out to visualize the location of MITF expression in cell. Agmatine at 256μM or more increased melanin synthesis as well as tyrosinase activity. Moreover, whereas agmatine increased the expression levels of TRP-1, BMP-6, p-p38 and MITF, it reduced the expression level of BMP-4. It was also found that agmatine enhanced the expression level of MITF in nucleus. These results suggest that agmatine could induce melanin synthesis though the regulation of MITF transcription factor via BMP-6/p38 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    Science.gov (United States)

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  9. Ca2+-Signal Transduction Inhibitors, Kujiol A and Kujigamberol B, Isolated from Kuji Amber Using a Mutant Yeast.

    Science.gov (United States)

    Uchida, Takeshi; Koshino, Hiroyuki; Takahashi, Shunya; Shimizu, Eisaku; Takahashi, Honoka; Yoshida, Jun; Shinden, Hisao; Tsujimura, Maiko; Kofujita, Hisayoshi; Uesugi, Shota; Kimura, Ken-Ichi

    2018-04-27

    A podocarpatriene and a labdatriene derivative, named kujiol A [13-methyl-8,11,13-podocarpatrien-19-ol (1)] and kujigamberol B [15,20-dinor-5,7,9-labdatrien-13-ol (2)], respectively, were isolated from Kuji amber through detection with the aid of their growth-restoring activity against a mutant yeast strain ( zds1Δ erg3Δ pdr1Δ pdr3Δ), which is known to be hypersensitive with respect to Ca 2+ -signal transduction. The structures were elucidated by spectroscopic data analysis. Compounds 1 and 2 are rare organic compounds from Late Cretaceous amber, and the mutant yeast used seems useful for elucidating a variety of new compounds from Kuji amber specimens, produced before the K-Pg boundary.

  10. Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression

    Science.gov (United States)

    Lehman, McKenzie K.; Bose, Jeffrey L.; Sharma-Kuinkel, Batu K.; Moormeier, Derek E.; Endres, Jennifer L.; Sadykov, Marat R.; Biswas, Indranil; Bayles, Kenneth W.

    2015-01-01

    Summary Recent studies have demonstrated that expression of the Staphylococcus aureus lrgAB operon is specifically expressed within tower structures during biofilm development. To gain a better understanding of the mechanisms underlying this spatial control of lrgAB expression, we carried out a detailed analysis of the LytSR two-component system. Specifically, a conserved aspartic acid (Asp53) of the LytR response regulator was shown to be the target of phosphorylation, which resulted in enhanced binding to the lrgAB promoter and activation of transcription. In addition, we identified His390 of the LytS histidine kinase as the site of autophosphorylation and Asn394 as a critical amino acid involved in phosphatase activity. Interestingly, LytS-independent activation of LytR was observed during planktonic growth, with acetyl phosphate acting as a phosphodonor to LytR. In contrast, mutations disrupting the function of LytS prevented tower-specific lrgAB expression, providing insight into the physiologic environment within these structures. In addition, over activation of LytR led to increased lrgAB promoter activity during planktonic and biofilm growth and a change in biofilm morphology. Overall, the results of this study are the first to define the LytSR signal transduction pathway, as well as determine the metabolic context within biofilm tower structures that triggers these signaling events. PMID:25491472

  11. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain.

    Science.gov (United States)

    Wu, R; Wilton, R; Cuff, M E; Endres, M; Babnigg, G; Edirisinghe, J N; Henry, C S; Joachimiak, A; Schiffer, M; Pokkuluri, P R

    2017-04-01

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from Lake Retba, in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously, and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport. © 2017 The Protein Society.

  12. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    Energy Technology Data Exchange (ETDEWEB)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. (Sepulveda Veterans Administration, CA (USA))

    1991-05-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

  13. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    International Nuclear Information System (INIS)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N.

    1991-01-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation

  14. Identification of a mutant α1 Na/K-ATPase that pumps but is defective in signal transduction.

    Science.gov (United States)

    Lai, Fangfang; Madan, Namrata; Ye, Qiqi; Duan, Qiming; Li, Zhichuan; Wang, Shaomeng; Si, Shuyi; Xie, Zijian

    2013-05-10

    It has not been possible to study the pumping and signaling functions of Na/K-ATPase independently in live cells. Both cell-free and cell-based assays indicate that the A420P mutation abolishes the Src regulatory function of Na/K-ATPase. A420P mutant has normal pumping but not signaling function. Identification of Src regulation-null mutants is crucial for addressing physiological role of Na/K-ATPase. The α1 Na/K-ATPase possesses both pumping and signaling functions. However, it has not been possible to study these functions independently in live cells. We have identified a 20-amino acid peptide (Ser-415 to Gln-434) (NaKtide) from the nucleotide binding domain of α1 Na/K-ATPase that binds and inhibits Src in vitro. The N terminus of NaKtide adapts a helical structure. In vitro kinase assays showed that replacement of residues that contain a bulky side chain in the helical structure of NaKtide by alanine abolished the inhibitory effect of the peptide on Src. Similarly, disruption of helical structure by proline replacement, either single or in combination, reduced the inhibitory potency of NaKtide on Src. To identify mutant α1 that retains normal pumping function but is defective in Src regulation, we transfected Na/K-ATPase α1 knockdown PY-17 cells with expression vectors of wild type or mutant α1 carrying Ala to Pro mutations in the region of NaKtide helical structure and generated several stable cell lines. We found that expression of either A416P or A420P or A425P mutant fully restored the α1 content and consequently the pumping capacity of cells. However, in contrast to A416P, either A420P or A425P mutant was incapable of interacting and regulating cellular Src. Consequently, expression of these two mutants caused significant inhibition of ouabain-activated signal transduction and cell growth. Thus we have identified α1 mutant that has normal pumping function but is defective in signal transduction.

  15. Discovery and characterization of a potent Wnt and hedgehog signaling pathways dual inhibitor.

    Science.gov (United States)

    Ma, Haikuo; Chen, Qin; Zhu, Fang; Zheng, Jiyue; Li, Jiajun; Zhang, Hongjian; Chen, Shuaishuai; Xing, Haimei; Luo, Lusong; Zheng, Long Tai; He, Sudan; Zhang, Xiaohu

    2018-04-10

    Embryonic stem cell pathways such as hedgehog and Wnt pathways are central to the tumorigenic properties of cancer stem cells (CSC). Since CSCs are characterized by their ability to self-renew, form differentiated progeny, and develop resistance to anticancer therapies, targeting the Wnt and hedgehog signaling pathways has been an important strategy for cancer treatment. Although molecules targeting either Wnt or hedgehog are common, to the best of our knowledge, those targeting both pathways have not been documented. Here we report a small molecule (compound 1) that inhibits both Wnt (IC 50  = 0.5 nM) and hedgehog (IC 50  = 71 nM) pathways based on reporter gene assays. We further identified that the molecular target of 1 for Wnt pathway inhibition was porcupine (a member of the membrane-bound O-acyltransferase family of proteins), a post-translational modification node in Wnt signaling; while the target of 1 mitigating hedgehog pathway was Smoothened, a key G protein coupled receptor (GPCR) mediating hedgehog signal transduction. Preliminary analysis of structure-activity-relationship identified key functional elements for hedgehog/Wnt inhibition. In in vivo studies, compound 1 demonstrated good oral exposure and bioavailability while eliciting no overt toxicity in mice. An important consideration in cancer treatment is the potential therapeutic escape through compensatory activation of an interconnected pathway when only one signaling pathway is inhibited. Toward this end, compound 1 may not only lead to the development of new therapeutics for Wnt and hedgehog related cancers, but may also help to develop potential cancer treatment which needs to target Wnt and hedgehog signaling simultaneously. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    Science.gov (United States)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  17. Structure of Concatenated HAMP Domains Provides a Mechanism for Signal Transduction

    Energy Technology Data Exchange (ETDEWEB)

    Airola, Michael V.; Watts, Kylie J.; Bilwes, Alexandrine M.; Crane, Brian R. (Cornell); (Lorma Linda U)

    2010-08-23

    HAMP domains are widespread prokaryotic signaling modules found as single domains or poly-HAMP chains in both transmembrane and soluble proteins. The crystal structure of a three-unit poly-HAMP chain from the Pseudomonas aeruginosa soluble receptor Aer2 defines a universal parallel four-helix bundle architecture for diverse HAMP domains. Two contiguous domains integrate to form a concatenated di-HAMP structure. The three HAMP domains display two distinct conformations that differ by changes in helical register, crossing angle, and rotation. These conformations are stabilized by different subsets of conserved residues. Known signals delivered to HAMP would be expected to switch the relative stability of the two conformations and the position of a coiled-coil phase stutter at the junction with downstream helices. We propose that the two conformations represent opposing HAMP signaling states and suggest a signaling mechanism whereby HAMP domains interconvert between the two states, which alternate down a poly-HAMP chain.

  18. Comparative proteomic analysis to dissect differences in signal transduction in activating TSH receptor mutations in the thyroid.

    Science.gov (United States)

    Krause, Kerstin; Boisnard, Alexandra; Ihling, Christian; Ludgate, Marian; Eszlinger, Markus; Krohn, Knut; Sinz, Andrea; Fuhrer, Dagmar

    2012-02-01

    In the thyroid, cAMP controls both thyroid growth and function. Gain-of-function mutations in the thyroid-stimulating hormone receptor (TSHR) lead to constitutive cAMP formation and are a major cause of autonomous thyroid adenomas. The impact of activating TSHR mutations on the signal transduction network of the thyrocyte is not fully understood. To gain more insights into constitutive TSHR signaling, rat thyrocytes (FRTL-5 cells) with stable expression of three activating TSHR mutants (mutTSHR: A623I, L629F and Del613-621), which differ in their functional characteristics in vitro, were analyzed by a quantitative proteomic approach and compared to the wild-type TSHR (WT-TSHR). This study revealed (1) differences in the expression of Rab proteins suggesting an increased TSHR internalization in mutTSHR but not in the WT-TSHR; (2) differential stimulation of PI3K/Akt signaling in mutTSHR vs. WT-TSHR cells, (3) activation of Epac, impairing short-time Akt phosphorylation in both, mutTSHR and WT-TSHR cells. Based on the analysis of global changes in protein expression patterns, our findings underline the complexity of gain-of-function TSHR signaling in thyrocytes, which extends beyond pure cAMP and/or IP formation. Moreover, evidence for augmented endocytosis in the mutTSHR, adds to a new concept of TSHR signaling in thyroid autonomy. Further studies are required to clarify whether the observed differences in Rab, PI3K and Epac signaling may contribute to differences in the phenotypic presentation, i.e. stimulation of function and growth of thyroid autonomy in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Ties that bind: the integration of plastid signalling pathways in plant cell metabolism.

    Science.gov (United States)

    Brunkard, Jacob O; Burch-Smith, Tessa M

    2018-04-13

    Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    Science.gov (United States)

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  1. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  2. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathways activated by microorg...anisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  3. Xtalk: a path-based approach for identifying crosstalk between signaling pathways

    Science.gov (United States)

    Tegge, Allison N.; Sharp, Nicholas; Murali, T. M.

    2016-01-01

    Motivation: Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. Results: We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. Availability and implementation: The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. Contact: ategge@vt.edu, murali@cs.vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26400040

  4. Targeting embryonic signaling pathways in cancer therapy.

    Science.gov (United States)

    Harris, Pamela Jo; Speranza, Giovanna; Dansky Ullmann, Claudio

    2012-01-01

    The embryonic signaling pathways (ESP), Hedgehog, Notch and Wnt, are critical for the regulation of normal stem cells and cellular development processes. They are also activated in the majority of cancers. ESP are operational in putative cancer stem cells (CSC), which drive initial tumorigenesis and sustain cancer progression and recurrence in non-CSC bulk subpopulations. ESP represent novel therapeutic targets. A variety of inhibitors and targeting strategies are being developed. This review discusses the rationale for targeting ESP for cancer treatment, as well as specific inhibitors under development; mainly focusing on those approaching clinical use and the challenges that lie ahead. The data sources utilized are several database search engines (PubMed, Google, Clinicaltrials.gov), and the authors' involvement in the field. CSC research is rapidly evolving. Expectations regarding their therapeutic targeting are rising quickly. Further definition of what constitutes a true CSC, proper validation of CSC markers, a better understanding of cross-talk among ESP and other pathways, and interactions with tumor non-CSC and the tumor microenvironment are needed. The appropriate patient population, the right clinical setting and combination strategies to test these therapies, as well as the proper pharmacodynamic markers to measure, need to be further established.

  5. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    International Nuclear Information System (INIS)

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  6. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  7. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense.

    Science.gov (United States)

    Dong, Hong-Ping; Peng, Jianling; Bao, Zhilong; Meng, Xiangdong; Bonasera, Jean M; Chen, Guangyong; Beer, Steven V; Dong, Hansong

    2004-11-01

    Ethylene (ET) signal transduction may regulate plant growth and defense, depending on which components are recruited into the pathway in response to different stimuli. We report here that the ET pathway controls both insect resistance (IR) and plant growth enhancement (PGE) in Arabidopsis (Arabidopsis thaliana) plants responding to harpin, a protein produced by a plant pathogenic bacterium. PGE may result from spraying plant tops with harpin or by soaking seeds in harpin solution; the latter especially enhances root growth. Plants treated similarly develop resistance to the green peach aphid (Myzus persicae). The salicylic acid pathway, although activated by harpin, does not lead to PGE and IR. By contrast, PGE and IR are induced in both wild-type plants and genotypes that have defects in salicylic acid signaling. In response to harpin, levels of jasmonic acid (JA) decrease, and the COI1 gene, which is indispensable for JA signal transduction, is not expressed in wild-type plants. However, PGE and IR are stimulated in the JA-resistant mutant jar1-1. In the wild type, PGE and IR develop coincidently with increases in ET levels and the expression of several genes essential for ET signaling. The ET receptor gene ETR1 is required because both phenotypes are arrested in the etr1-1 mutant. Consistently, inhibition of ET perception nullifies the induction of both PGE and IR. The signal transducer EIN2 is required for IR, and EIN5 is required for PGE because IR and PGE are impaired correspondingly in the ein2-1 and ein5-1 mutants. Therefore, harpin activates ET signaling while conscribing EIN2 and EIN5 to confer IR and PGE, respectively.

  8. Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae

    Directory of Open Access Journals (Sweden)

    Jacobs Michael A

    2007-05-01

    Full Text Available Abstract Background Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal transduction circuit in the stramenopile Heterosigma akashiwo (Hada Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt F.J.R. Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary homologues. Results Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-component His-to-Asp (designated Tsg1/Trg1 pair in this stramenopile (golden-brown alga. These data represent the first documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent with a winged helix-turn-helix identity – a class of proteins that is known to impact gene expression at the level of transcription. The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues interact with a sigma 70 (σ70 subunit (encoded by

  9. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    International Nuclear Information System (INIS)

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-01-01

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells

  10. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    Energy Technology Data Exchange (ETDEWEB)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-15

    Effects of {gamma}-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following {gamma}-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by {gamma}-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by {gamma} -irradiation in all cell lines. The role of IGF-1 and p38 signaling in {gamma}-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by {gamma}-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in {gamma}-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by {gamma} -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of {gamma}-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In {gamma}-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of {gamma}-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The

  11. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    International Nuclear Information System (INIS)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-01

    Effects of γ-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following γ-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by γ-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by γ -irradiation in all cell lines. The role of IGF-1 and p38 signaling in γ-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by γ-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in γ-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by γ -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of γ-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In γ-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of γ-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The patterns of altered expressions showed significant

  12. Signal Transduction Mechanisms Underlying Group I mGluR-mediated Increase in Frequency and Amplitude of Spontaneous EPSCs in the Spinal Trigeminal Subnucleus Oralis of the Rat

    Directory of Open Access Journals (Sweden)

    Ahn Dong-Kuk

    2009-09-01

    Full Text Available Abstract Group I mGluRs (mGluR1 and 5 pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs in the spinal trigeminal subnucleus oralis (Vo, we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min, activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region.

  13. Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1

    NARCIS (Netherlands)

    Poecke, van R.M.P.; Dicke, M.

    2003-01-01

    Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid

  14. Interleukin-2 induces beta2-integrin-dependent signal transduction involving the focal adhesion kinase-related protein B (fakB)

    DEFF Research Database (Denmark)

    Brockdorff, J; Kanner, S B; Nielsen, M

    1998-01-01

    beta2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of beta2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4(+) T cell lines obtained from healthy donors...

  15. Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom

    Directory of Open Access Journals (Sweden)

    Moustakas Aristidis

    2009-02-01

    Full Text Available Abstract Background The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-β (TGF-β pathway – one of the fundamental and versatile metazoan signal transduction engines. Results After an investigation of 33 genomes, we show that the emergence of the TGF-β pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (Trichoplax adhaerens. We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-β pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-β pathway in free-living bacterial feeding nematodes of the genus Rhabditis. Conclusion Our results challenge the view of well-conserved developmental pathways. The TGF-β signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.

  16. Pan-cancer analysis of TCGA data reveals notable signaling pathways

    International Nuclear Information System (INIS)

    Neapolitan, Richard; Horvath, Curt M.; Jiang, Xia

    2015-01-01

    A signal transduction pathway (STP) is a network of intercellular information flow initiated when extracellular signaling molecules bind to cell-surface receptors. Many aberrant STPs have been associated with various cancers. To develop optimal treatments for cancer patients, it is important to discover which STPs are implicated in a cancer or cancer-subtype. The Cancer Genome Atlas (TCGA) makes available gene expression level data on cases and controls in ten different types of cancer including breast cancer, colon adenocarcinoma, glioblastoma, kidney renal papillary cell carcinoma, low grade glioma, lung adenocarcinoma, lung squamous cell carcinoma, ovarian carcinoma, rectum adenocarcinoma, and uterine corpus endometriod carcinoma. Signaling Pathway Impact Analysis (SPIA) is a software package that analyzes gene expression data to identify whether a pathway is relevant in a given condition. We present the results of a study that uses SPIA to investigate all 157 signaling pathways in the KEGG PATHWAY database. We analyzed each of the ten cancer types mentioned above separately, and we perform a pan-cancer analysis by grouping the data for all the cancer types. In each analysis several pathways were found to be markedly more significant than all the other pathways. We call them notable. Research has already established a connection between many of these pathways and the corresponding cancer type. However, some of our discovered pathways appear to be new findings. Altogether there were 37 notable findings in the separate analyses, 26 of them occurred in 7 pathways. These 7 pathways included the 4 notable pathways discovered in the pan-cancer analysis. So, our results suggest that these 7 pathways account for much of the mechanisms of cancer. Furthermore, by looking at the overlap among pathways, we identified possible regions on the pathways where the aberrant activity is occurring. We obtained 37 notable findings concerning 18 pathways. Some of them appear to be

  17. CCR5 Signal Transduction in Macrophages by Human Immunodeficiency Virus and Simian Immunodeficiency Virus Envelopes

    OpenAIRE

    Arthos, James; Rubbert, Andrea; Rabin, Ronald L.; Cicala, Claudia; Machado, Elizabeth; Wildt, Kathryne; Hanbach, Meredith; Steenbeke, Tavis D.; Swofford, Ruth; Farber, Joshua M.; Fauci, Anthony S.

    2000-01-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1β. Distinct differences in the capacity o...

  18. Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells.

    Science.gov (United States)

    Ishihara, Seiichiro; Inman, David R; Li, Wan-Ju; Ponik, Suzanne M; Keely, Patricia J

    2017-11-15

    In response to chemical stimuli from cancer cells, mesenchymal stem cells (MSC) can differentiate into cancer-associated fibroblasts (CAF) and promote tumor progression. How mechanical stimuli such as stiffness of the extracellular matrix (ECM) contribute to MSC phenotype in cancer remains poorly understood. Here, we show that ECM stiffness leads to mechano-signal transduction in MSC, which promotes mammary tumor growth in part through secretion of the signaling protein prosaposin. On a stiff matrix, MSC cultured with conditioned media from mammary cancer cells expressed increased levels of α-smooth muscle actin, a marker of CAF, compared with MSC cultured on a soft matrix. By contrast, MSC cultured on a stiff matrix secreted prosaposin that promoted proliferation and survival of mammary carcinoma cells but inhibited metastasis. Our findings suggest that in addition to chemical stimuli, increased stiffness of the ECM in the tumor microenvironment induces differentiation of MSC to CAF, triggering enhanced proliferation and survival of mammary cancer cells. Cancer Res; 77(22); 6179-89. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    International Nuclear Information System (INIS)

    Fujii, Hodaka

    2007-01-01

    Binding of interleukin-2 (IL-2) to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2 receptor (IL-2R)-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling

  20. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    Science.gov (United States)

    Fujii, Hodaka

    2007-01-01

    Binding of IL-2 to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2R-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. However, Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling. PMID:17266928

  1. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor.

    Science.gov (United States)

    Granovsky, Alexey E; Rosner, Marsha Rich

    2008-04-01

    Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.

  2. Low concentrations of ethanol but not of dimethyl sulfoxide (DMSO) impair reciprocal retinal signal transduction.

    Science.gov (United States)

    Siapich, Siarhei A; Akhtar, Isha; Hescheler, Jürgen; Schneider, Toni; Lüke, Matthias

    2015-10-01

    The model of the isolated and superfused retina provides the opportunity to test drugs and toxins. Some chemicals have to be applied using low concentrations of organic solvents as carriers. Recently, E-/R-type (Cav2.3) and T-type (Cav3.2) voltage-gated Ca(2+) channels were identified as participating in reciprocal inhibitory retinal signaling. Their participation is apparent, when low concentrations of NiCl2 (15 μM) are applied during superfusion leading to an increase of the ERG b-wave amplitude, which is explained by a reduction of amacrine GABA-release onto bipolar neurons. During these investigations, differences were observed for the solvent carrier used. Recording of the transretinal receptor potentials from the isolated bovine retina. The pretreatment of bovine retina with 0.01 % (v/v) dimethylsulfoxide did not impair the NiCl2-mediated increase of the b-wave amplitude, which was 1.31-fold ± 0.03 of initial value (n = 4). However, pretreatment of the retina with the same concentration of ethanol impaired reciprocal signaling (0.96-fold ± 0.05, n = 4). Further, the implicit time of the b-wave was increased, suggesting that ethanol itself but not DMSO may antagonize GABA-receptors. Ethanol itself but not DMSO may block GABA receptors and cause an amplitude increase by itself, so that reciprocal signaling is impaired.

  3. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology

    Directory of Open Access Journals (Sweden)

    Revati eWani

    2014-10-01

    Full Text Available The perception of reactive oxygen species (ROS has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g. cancer. New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically-distinct alterations to the protein (e.g. sulfenic/sulfinic/sulfonic acid, disulfides. These post-translational modifications (PTM are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.

  4. Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.

    Science.gov (United States)

    Knapp, Bettina; Kaderali, Lars

    2013-01-01

    Perturbation experiments for example using RNA interference (RNAi) offer an attractive way to elucidate gene function in a high throughput fashion. The placement of hit genes in their functional context and the inference of underlying networks from such data, however, are challenging tasks. One of the problems in network inference is the exponential number of possible network topologies for a given number of genes. Here, we introduce a novel mathematical approach to address this question. We formulate network inference as a linear optimization problem, which can be solved efficiently even for large-scale systems. We use simulated data to evaluate our approach, and show improved performance in particular on larger networks over state-of-the art methods. We achieve increased sensitivity and specificity, as well as a significant reduction in computing time. Furthermore, we show superior performance on noisy data. We then apply our approach to study the intracellular signaling of human primary nave CD4(+) T-cells, as well as ErbB signaling in trastuzumab resistant breast cancer cells. In both cases, our approach recovers known interactions and points to additional relevant processes. In ErbB signaling, our results predict an important role of negative and positive feedback in controlling the cell cycle progression.

  5. Palytoxin: exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis.

    Science.gov (United States)

    Wattenberg, Elizabeth V

    2007-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na(+),K(+)-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.

  6. alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling

    NARCIS (Netherlands)

    Bantel, H; Sinha, B; Domschke, W; Peters, Georg; Schulze-Osthoff, K; Jänicke, R U

    2001-01-01

    Infections with Staphylococcus aureus, a common inducer of septic and toxic shock, often result in tissue damage and death of various cell types. Although S. aureus was suggested to induce apoptosis, the underlying signal transduction pathways remained elusive. We show that caspase activation and

  7. Indian hedgehog mutations causing brachydactyly type A1 impair Hedgehog signal transduction at multiple levels

    Science.gov (United States)

    Ma, Gang; Yu, Jiang; Xiao, Yue; Chan, Danny; Gao, Bo; Hu, Jianxin; He, Yongxing; Guo, Shengzhen; Zhou, Jian; Zhang, Lingling; Gao, Linghan; Zhang, Wenjuan; Kang, Yan; Cheah, Kathryn SE; Feng, Guoyin; Guo, Xizhi; Wang, Yujiong; Zhou, Cong-zhao; He, Lin

    2011-01-01

    Brachydactyly type A1 (BDA1), the first recorded Mendelian autosomal dominant disorder in humans, is characterized by a shortening or absence of the middle phalanges. Heterozygous missense mutations in the Indian Hedgehog (IHH) gene have been identified as a cause of BDA1; however, the biochemical consequences of these mutations are unclear. In this paper, we analyzed three BDA1 mutations (E95K, D100E, and E131K) in the N-terminal fragment of Indian Hedgehog (IhhN). Structural analysis showed that the E95K mutation changes a negatively charged area to a positively charged area in a calcium-binding groove, and that the D100E mutation changes the local tertiary structure. Furthermore, we showed that the E95K and D100E mutations led to a temperature-sensitive and calcium-dependent instability of IhhN, which might contribute to an enhanced intracellular degradation of the mutant proteins via the lysosome. Notably, all three mutations affected Hh binding to the receptor Patched1 (PTC1), reducing its capacity to induce cellular differentiation. We propose that these are common features of the mutations that cause BDA1, affecting the Hh tertiary structure, intracellular fate, binding to the receptor/partners, and binding to extracellular components. The combination of these features alters signaling capacity and range, but the impact is likely to be variable and mutation-dependent. The potential variation in the signaling range is characterized by an enhanced interaction with heparan sulfate for IHH with the E95K mutation, but not the E131K mutation. Taken together, our results suggest that these IHH mutations affect Hh signaling at multiple levels, causing abnormal bone development and abnormal digit formation. PMID:21537345

  8. The Role of Peroxiredoxins in the Transduction of H2O2 Signals.

    Science.gov (United States)

    Rhee, Sue Goo; Woo, Hyun Ae; Kang, Dongmin

    2018-03-01

    Hydrogen peroxide (H 2 O 2 ) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H 2 O 2 -eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H 2 O 2 . Peroxiredoxins possess a high-affinity binding site for H 2 O 2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H 2 O 2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H 2 O 2 effectors are therefore at a competitive disadvantage for reaction with H 2 O 2 . Recent Advances: Here we review intracellular sources of H 2 O 2 as well as H 2 O 2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H 2 O 2 -mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H 2 O 2 effector proteins localized in specific subcellular compartments participates in H 2 O 2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H 2 O 2 signaling. Antioxid. Redox Signal. 28, 537-557.

  9. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

    Science.gov (United States)

    2013-10-01

    Wu K, Wang L, Jiao X, Ju X, Li Z, Ertel A, Addya S, McCue P, Lisanti MP, Wang C, Davis RJ, Mardon G, Pestell RG. Androgen therapy resistant...Li Z, Hu J, Chen K, Wu J, Pestell RG. DACH1 inhibited prostate cancer cellular proliferation and Interleukon-6 signaling. AACR 103rd Annual Meeting...March 31 – April 4, 2012, Chicago, IL.  Wang J, Cai S, Chen K, Sun Y, Li S, Pestell RG, Wu K. Regulation of AR transcriptional activity and

  10. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenes

    Science.gov (United States)

    2015-12-01

    S, Zhang W, Zhou J, Wang J, Ertel A, Li Z, Rui H, Quong A, Lisanti MP, Tozeren A, Tanes C, Addya S, Gormley M, Wang C, McMahon SB, Pestell RG...MP, Wang C, Pestell RG. Acetylation of the cell-fate factor dachshund determines p53 binding and signaling modules in breast cancer. Oncotarget...MP, Quong A, Ertel A, Pestell RG. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74(3):829

  11. Analysis of Cell Signal Transduction Based on Kullback–Leibler Divergence: Channel Capacity and Conservation of Its Production Rate during Cascade

    Directory of Open Access Journals (Sweden)

    Tatsuaki Tsuruyama

    2018-06-01

    Full Text Available Kullback–Leibler divergence (KLD is a type of extended mutual entropy, which is used as a measure of information gain when transferring from a prior distribution to a posterior distribution. In this study, KLD is applied to the thermodynamic analysis of cell signal transduction cascade and serves an alternative to mutual entropy. When KLD is minimized, the divergence is given by the ratio of the prior selection probability of the signaling molecule to the posterior selection probability. Moreover, the information gain during the entire channel is shown to be adequately described by average KLD production rate. Thus, this approach provides a framework for the quantitative analysis of signal transduction. Moreover, the proposed approach can identify an effective cascade for a signaling network.

  12. Information processing in network architecture of genome controlled signal transduction circuit. A proposed theoretical explanation.

    Science.gov (United States)

    Chakraborty, Chiranjib; Sarkar, Bimal Kumar; Patel, Pratiksha; Agoramoorthy, Govindasamy

    2012-01-01

    In this paper, Shannon information theory has been applied to elaborate cell signaling. It is proposed that in the cellular network architecture, four components viz. source (DNA), transmitter (mRNA), receiver (protein) and destination (another protein) are involved. The message transmits from source (DNA) to transmitter (mRNA) and then passes through a noisy channel reaching finally the receiver (protein). The protein synthesis process is here considered as the noisy channel. Ultimately, signal is transmitted from receiver to destination (another protein). The genome network architecture elements were compared with genetic alphabet L = {A, C, G, T} with a biophysical model based on the popular Shannon information theory. This study found the channel capacity as maximum for zero error (sigma = 0) and at this condition, transition matrix becomes a unit matrix with rank 4. The transition matrix will be erroneous and finally at sigma = 1 channel capacity will be localized maxima with a value of 0.415 due to the increased value at sigma. On the other hand, minima exists at sigma = 0.75, where all transition probabilities become 0.25 and uncertainty will be maximum resulting in channel capacity with the minima value of zero.

  13. Effect of emodin on mobility signal transduction system of gallbladder smooth muscle in Guinea pig with cholelithiasis.

    Science.gov (United States)

    Fang, Bang-Jiang; Shen, Jun-Yi; Zhang, Hua; Zhou, Shuang; Lyu, Chuan-Zhu; Xie, Yi-Qiang

    2016-10-01

    To study the effect of emodin on protein and gene expressions of the massagers in mobility signal transduction system of cholecyst smooth muscle cells in guinea pig with cholesterol calculus. The guinea pigs were randomly divided into 4 groups, such as control group, gall-stone (GS) group, emodin group and ursodeoxycholic acid (UA) group. Cholesterol calculus models were induced in guinea pigs of GS, emodin and UA groups by lithogenic diet, while emodin or UA were given to the corresponding group for 7 weeks. The histomorphological and ultrastructure change of gallbladder were detected by microscope and electron microscope, the content of plasma cholecystokinin (CCK) and [Ca 2+ ] i were analyzed successively by radioimmunoassay and flow cytometry. The protein and mRNA of Gsα, Giα and Cap in cholecyst cells were determined by western blotting and real time polymerase chain reaction (RT-PCR). Emodin or UA can relieve pathogenic changes in epithelial cells and muscle cells in gallbladder of guinea pig with cholesterol calculus by microscope and transmission electron microscope. In the cholecyst cells of GS group, CCK levels in plasma and [Ca 2+ ] i decreased, the protein and mRNA of GS were down-regulated, the protein and mRNA of Gi and Cap were up-regulated. Emodin significantly decreased the formative rate of gallstone, improved the pathogenic change in epithelial cells and muscle cells, increased CCK levels in plasma and [Ca 2+ ] i in cholecyst cells, enhanced the protein and mRNA of Gs in cholecyst cells, reduced the protein and mRNA of Gi and Cap in cholecyst cells in guinea pig with cholesterol calculus. The dysfunction of gallbladder contraction gives rise to the disorders of mobility signal transduction system in cholecyst smooth muscle cells, including low content of plasma CCK and [Ca 2+ ] i in cholecyst cells, abnormal protein and mRNA of Gs, Gi and Cap. Emodin can enhance the contractibility of gallbladder and alleviate cholestasis by regulating plasma

  14. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells.

    Science.gov (United States)

    Liu, X; Yang, Y; Zhao, M; Bode, L; Zhang, L; Pan, J; Lv, L; Zhan, Y; Liu, S; Zhang, L; Wang, X; Huang, R; Zhou, J; Xie, P

    2014-05-30

    Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK-RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK-RSK complex of

  15. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  16. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  17. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    Science.gov (United States)

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  18. lpNet: a linear programming approach to reconstruct signal transduction networks.

    Science.gov (United States)

    Matos, Marta R A; Knapp, Bettina; Kaderali, Lars

    2015-10-01

    With the widespread availability of high-throughput experimental technologies it has become possible to study hundreds to thousands of cellular factors simultaneously, such as coding- or non-coding mRNA or protein concentrations. Still, extracting information about the underlying regulatory or signaling interactions from these data remains a difficult challenge. We present a flexible approach towards network inference based on linear programming. Our method reconstructs the interactions of factors from a combination of perturbation/non-perturbation and steady-state/time-series data. We show both on simulated and real data that our methods are able to reconstruct the underlying networks fast and efficiently, thus shedding new light on biological processes and, in particular, into disease's mechanisms of action. We have implemented the approach as an R package available through bioconductor. This R package is freely available under the Gnu Public License (GPL-3) from bioconductor.org (http://bioconductor.org/packages/release/bioc/html/lpNet.html) and is compatible with most operating systems (Windows, Linux, Mac OS) and hardware architectures. bettina.knapp@helmholtz-muenchen.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Shampa Chatterjee

    2018-06-01

    Full Text Available The endothelium that lines the interior of blood vessels is directly exposed to blood flow. The shear stress arising from blood flow is “sensed” by the endothelium and is “transduced” into biochemical signals that eventually control vascular tone and homeostasis. Sensing and transduction of physical forces occur via signaling processes whereby the forces associated with blood flow are “sensed” by a mechanotransduction machinery comprising of several endothelial cell elements. Endothelial “sensing” involves converting the physical cues into cellular signaling events such as altered membrane potential and activation of kinases, which are “transmission” signals that cause oxidant production. Oxidants produced are the “transducers” of the mechanical signals? What is the function of these oxidants/redox signals? Extensive data from various studies indicate that redox signals initiate inflammation signaling pathways which in turn can compromise vascular health. Thus, inflammation, a major response to infection or endotoxins, can also be initiated by the endothelium in response to various flow patterns ranging from aberrant flow to alteration of flow such as cessation or sudden increase in blood flow. Indeed, our work has shown that endothelial mechanotransduction signaling pathways participate in generation of redox signals that affect the oxidant and inflammation status of cells. Our goal in this review article is to summarize the endothelial mechanotransduction pathways that are activated with stop of blood flow and with aberrant flow patterns; in doing so we focus on the complex link between mechanical forces and inflammation on the endothelium. Since this “inflammation susceptible” phenotype is emerging as a trigger for pathologies ranging from atherosclerosis to rejection post-organ transplant, an understanding of the endothelial machinery that triggers these processes is very crucial and timely.

  20. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    Science.gov (United States)

    Sarwar, Zaara; Garza, Anthony G

    2016-02-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Human cDNA clones for an α subunit of G/sub i/ signal-transduction protein

    International Nuclear Information System (INIS)

    Bray, P.; Carter, A.; Guo, V.; Puckett, C.; Kamholz, J.; Spiegel, A.; Nirenberg, M.

    1987-01-01

    Two cDNA clones were obtained from a λgt11 cDNA human brain library that correspond to α/sub i/ subunits of G signal-transduction proteins (where α/sub i/ subunits refer to the α subunits of G proteins that inhibit adenylate cyclase). The nucleotide sequence of human brain α/sub i/ is highly homologous to that of bovine brain α/sub i/ and the predicted amino acid sequences are identical. However, human and bovine brain α/sub i/ cDNAs differ significantly from α/sub i/ cDNAs from human monocytes, rat glioma, and mouse macrophages in amino acid (88% homology) and nucleotide (71-75% homology) sequences. In addition, the nucleotide sequences of the 3' untranslated regions of human and bovine brain α/sub i/ cDNAs differ markedly from the sequences of human monocyte, rat glioma, and mouse macrophage α/sub i/ cDNAs. These results suggest there are at least two classes of α/sub i/ mRNA

  2. Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells

    Science.gov (United States)

    Pachathundikandi, Suneesh Kumar; Tegtmeyer, Nicole; Backert, Steffen

    2013-01-01

    Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α5β1 receptor. Other targeted membrane-based receptors include the integrins αvβ3, αvβ5, and β2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed. PMID:24280762

  3. The role of arachidonic acid metabolites in signal transduction in an identified neural network mediating presynaptic inhibition in Aplysia

    International Nuclear Information System (INIS)

    Shapiro, E.; Piomelli, D.; Feinmark, S.; Vogel, S.; Chin, G.; Schwartz, J.H.

    1988-01-01

    Neuromodulation is a form of signal transduction that results in the biochemical control of neuronal excitability. Many neurotransmitters act through second messengers, and the examination of biochemical cascades initiated by neurotransmitter-receptor interaction has advanced the understanding of how information is acquired and stored in the nervous system. For example, 5-HT and other facilitory transmitters increase cAMP in sensory neurons of Aplysia, which enhances excitability and facilitates transmitter output. The authors have examined the role of arachidonic acid metabolites in a neuronal circuit mediating presynaptic inhibition. L32 cells are a cluster of putative histaminergic neurons that each make dual-action synaptic potentials onto two follower neurons, L10 and L14. The synaptic connections, biophysical properties, and roles in behavior of the L10 and L14 follower cells have been well studied. The types of ion channels causing each component of the L32-L10 and L32-L14 dual actions have been characterized and application of histamine mimics the effects of stimulating L32 in both L10 and L14

  4. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense.

    Science.gov (United States)

    Truan, Daphné; Bjelić, Saša; Li, Xiao-Dan; Winkler, Fritz K

    2014-07-29

    The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Marco Proietto

    2015-07-01

    Full Text Available Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC, a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ, the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM. The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock.

  6. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...hways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signalling pat

  7. Root-to-shoot signal transduction in rice under salt stress

    International Nuclear Information System (INIS)

    Bano, A.

    2010-01-01

    This paper describes the impact of salt stress on changes in the level of Abscisic acid (ABA) and cytokinins as signal molecules communicated through root-to-shoot in rice. The study focus to investigate the time related changes in the salt induced ABA and cytokinins accumulation concomitant with the changes in water potential and stomatal conductance of salt stressed plants. Seeds of 3 rice varieties were grown in plastic pots in phytotron. The changes in the level of abscisic acid (ABA), transzeatin riboside (t-zr) and 2-isopentyl adenine (2-ipa) were monitored in xylem sap and leaves of three rice varieties viz. BAS-385 (salt-sensitive), BG-402 (moderately tolerant) and NIAB-6 (tolerant). The salt solution (NaCl,1.2 dS m-1) was added to the rooting medium after transplanting when plants were 50 d old. There was delay in response of stomata to salt treatment in BAS-385 as opposed to earlier increase in leaf resistance in BG-402 and NIAB-6. The stem water potential increased sharply in all the varieties following salt treatment but the decrease in stomatal conductance of leaves preceded the decrease in stem water potential. The concentration of xylem ABA increased significantly greatly reaching a peak in BAS-385 much earlier (24 h of salt treatment) than that of other varieties. The ABA accumulation was delayed and the magnitude of ABA accumulation was greater in BG-402 and NIAB-6.The xylem flux of ABA followed a similar pattern. The concentration of xylem t-zr showed a short- term increase in all the varieties but the magnitude of increase was greater in BAS-385 at all the measurements till 96h of salt treatment .The concentration of xylem 2-ipa was higher in BAS-385 till 48 h of salt treatment . The flux of both the t-zr and 2ipa was greater in the tolerant variety 96h after salt treatment. The basal level of ABA and cytokinin appears to play important role in determining the response of a variety to salt stress. The xylem flux of ABA and cytokinin (2-ipa and t

  8. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    International Nuclear Information System (INIS)

    Doronin, Igor I; Vishnyakova, Polina A; Kholodenko, Irina V; Ponomarev, Eugene D; Ryazantsev, Dmitry Y; Molotkovskaya, Irina M; Kholodenko, Roman V

    2014-01-01

    susceptibility of tumor cell lines to cytotoxic effect of anti-GD2 antibodies. Results of this study demonstrate that anti-GD2 antibodies not only passively bind to the surface of tumor cells but also directly induce rapid cell death after the incubation with GD2-positive tumor cells. These results suggest a new role of GD2 as a receptor that actively transduces death signal in malignant cells

  9. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity.

    Science.gov (United States)

    Ding, Mei; Wang, Xin

    2017-12-01

    The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.

  10. Discrete diffusion models to study the effects of Mg2+ concentration on the PhoPQ signal transduction system

    Directory of Open Access Journals (Sweden)

    Das Sajal K

    2010-12-01

    Full Text Available Abstract Background The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the “in silico” stochastic event based modeling approach to find the molecular dynamics of the system. Results In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Conclusions Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model

  11. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  12. Research advances in Hedgehog signaling pathway in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    LIU Jia

    2015-02-01

    Full Text Available Hedgehog (Hh signaling pathway is present in many animals and plays an important role in regulating embryonic development and differentiation. Aberrant activation of Hh signaling contributes to the pathogenesis of many malignancies. Recent studies have shown that dysregulated Hh signaling pathway participates in the tumorigenesis, tumor invasion, and metastasis of hepatocellular carcinoma (HCC. Investigation of the relationship between Hh signaling pathway and HCC will help elucidate the molecular mechanism of pathogenesis of HCC and provide a new insight into the development of novel anticancer therapy and therapeutic target.

  13. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  14. [Signal transudation pathways in parietal cells of the gastric mucosa in experimental stomach ulcer].

    Science.gov (United States)

    Ostapchenko, L I; Drobins'ka, O V; Chaĭka, V O; Bohun, L I; Bohdanova, O V; Kot, L I; Haĭda, L M

    2009-01-01

    The goal of the presented work was the research of signal transduction mechanism in the rat gastric parietal cells under stomach ulcer conditions. In these cells activation of adenylate cyclase (increase of cAMP level and proteinkinase A activity) and phosphoinositide (increases [Ca2+]i; cGMP and phoshatidylinocitole levels; proteinkinase C, proteinkinase G, and calmodulin-dependent-proteinkinase activity) of signals pathway was shown. An increase of plasma membrane phospholipids (PC, PS, PE, PI, LPC) level was shown. Under conditions of influence of the stress factor the membran enzymes activity (H+, K+ -ATPase, 5'-AMPase, Na+, K+ -ATPase, Ca2+, Mg2+ -ATPase and H+, K+ -ATPase) was considerably increased. The intensification of lipid peroxidation processes in rats was demonstrated.

  15. Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling.

    Science.gov (United States)

    Kittas, Aristotelis; Delobelle, Aurélien; Schmitt, Sabrina; Breuhahn, Kai; Guziolowski, Carito; Grabe, Niels

    2016-01-01

    An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg. © 2015 FEBS.

  16. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures.

    Science.gov (United States)

    Rodas-Junco, Beatriz A; Cab-Guillén, Yahaira; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Hernández-Sotomayor, S M Teresa

    2013-10-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  17. Participation of intercellular communication and intracellular signal transduction in the radio-adaptive response of human fibroblastic cells

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu; Watanabe, Masami

    1997-01-01

    To investigate the radio-adaptive response of normal cells to low-dose radiation, we irradiated human embryonic cells with low-dose X-rays and examined the changes in sensitivity to subsequent high-dose X-irradiation. When the cells were irradiated by 200 cGy, the growth ratio of the viable cells five days after the irradiation decreased to 37% of that of the cells which received no X-irradiation. When the cells received a conditioning irradiation of 10 to 20 cGy four hours before the irradiation of 200 cGy, the growth ratio increased significantly to 45-53%, and a peak was reached at a conditioning dose of 13 cGy. Cells blocked off intercellular communication either in Ca 2+ ion-free medium or in TPA added medium during the conditioning irradiation of 13 cGy did not show the improvement of growth ratio. Addition of H-7, as an inhibitor of PKC, to the medium during the conditioning irradiation inhibited the induction of the radio-adaptive response. However, addition of either inhibitor of A kinase, H-89, or inhibitor of G kinase, H-8, failed to inhibit the induction of the radio-adaptive response. These results suggest that: (1) normal cells show an adaptive response to low-dose radiation, (2) intercellular communication may play a role in radio-adaptive responses, (3) the transduction of the signal induced in cells by low-dose X-irradiation via protein kinase C was involved in radio-adaptive responses, not via A kinase nor G kinase. (author)

  18. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  19. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  20. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  1. DNA Cleavage/Repair and Signal Transduction Pathways in Irradiated Breast Tumor Cells

    National Research Council Canada - National Science Library

    Gewirtz, David

    2001-01-01

    ... (both immediate and delayed) to normal host tissue Consequently, the identification of approaches to enhance the effectiveness of low doses of radiation without concomitant increases in host tissue toxicity (i.e...

  2. [Effect of P38MAPK signal transduction pathway on apoptosis of THP-1 induced by allicin].

    Science.gov (United States)

    Liao, Yang; Chen, Jianbin; Tang, Weixue; Ge, Qunfang; Lu, Qianwei; Yang, Zesong

    2009-06-01

    The objective of this paper was to study the change of P38MAPK and Fas in the apoptosis of THP-1 cells induced by allicin. The proliferation inhibition rates of THP-1 cells after various treatments were examined by MTT assay. Apoptosis rate was determined with Annexin V- FITC/PI double staining by flow cytometry. The expression and distribution change of the phosphorylation p38MAPK (P-p38MAPK) were detected by immunohistochemical staining. The changes of P-p38 MAPK and Fas proteins were detected by Western blot. The proliferations of leukemia cell line THP-1 are inhibited by allicin. MTT assay showed that allicin can inhibit the proliferation of the THP-1 cell, and the inhibition was dependent on both dose and time. The IC50 of 72 hours was 12.8 mg x L(-1). Apoptosis rate detected by Annexin V-FITC/PI was proportional to the concentration of the allicin. After the immunohistochemical staining test, the P-p38MAPK was located in the cell nucleus and plasma, showing deep brown, when adding allicin to THP-1 cell. Western blot test showed that the P-p38MAPK proteins expression was proportional to the concentration of Allicin and was also dose dependent. The levels of P-p38MAPK in negative control group, 1/2 IC50 of 72 hours group and IC50 of 72 hours group were 0.259 8 +/- 0.013 2, 0.61 2 +/- 0.008 3 and 0.505 6 +/- 0.005 5 respectively, and the levels of Fas proteins were 0.287 4 +/- 0.008 9, 0.426 8 +/- 0.007 9 and 0.597 1 +/- 0.010 9 respectively. The difference was statistically significant when compared with the negative control group (P THP-1 cells apoptosis, and its mechanism may be related to the activation of P38MAPK/Fas.

  3. DMPD: Endotoxin signal transduction in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available File (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  4. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to

  5. Elucidation of the Signal Transduction Pathways Activated by the Plant Natriuretic Peptide AtPNP-A

    KAUST Repository

    Turek, Ilona

    2014-01-01

    Plant natriuretic peptides (PNPs) comprise a novel class of hormones that share some sequence similarity in the active site with their animal analogues that function as regulators of salt and water balance. A PNP present in Arabidopsis thaliana (At

  6. Signal transduction pathways participating in homeostasis and malignant transformation of the intestinal tissue

    Czech Academy of Sciences Publication Activity Database

    Krausová, Michaela; Kořínek, Vladimír

    2012-01-01

    Roč. 59, č. 6 (2012), s. 708-718 ISSN 0028-2685 R&D Projects: GA ČR GAP305/11/1780; GA ČR GAP305/12/2347; GA ČR GAP304/11/1252; GA ČR GD204/09/H058 Keywords : colorectal cancer * epithelium * gut * intestine * mouse models * stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.574, year: 2012

  7. Signal transduction pathways in hepatocyte cell death : new targets for therapy

    NARCIS (Netherlands)

    Karimian, Golnar

    2012-01-01

    Cholestatische en steatotische leverziekten hebben een significant aandeel in het totaal van leverziekten. Zowel cholestatische als steatotische leverziekten zijn geassocieerd met hoge morbiditeit en sterftecijfers. Bestaande therapieën zijn of niet erg effectief of zijn geassocieerd met hun eigen

  8. Subretinal Fluid Levels of Signal-Transduction Proteins and Apoptosis Molecules in Macula-Off Retinal Detachment Undergoing Scleral Buckle Surgery.

    Science.gov (United States)

    Carpineto, Paolo; Aharrh-Gnama, Agbeanda; Ciciarelli, Vincenzo; Borrelli, Enrico; Petti, Francesco; Aloia, Raffaella; Lamolinara, Alessia; Di Nicola, Marta; Mastropasqua, Leonardo

    2016-12-01

    To evaluate signal transduction and early apoptosis protein levels in subretinal fluid collected during scleral buckling surgery for macula-off rhegmatogenous retinal detachment (RRD). Our aim was to assess both their relation with RRD features and their influence on the posttreatment outcome. Thirty-three eyes of 33 RRD patients scheduled for scleral buckle surgery were enrolled in the study. Undiluted subretinal fluid samples were collected during surgery and analyzed via magnetic bead-based immunoassay. All patients underwent a complete ophthalmologic evaluation at baseline and at each follow-up visit (months 1, 3, and 6). Moreover, both at baseline and at the postsurgery month 6 visit, the patients were tested by means of spectral-domain optical coherence tomography (SD-OCT) in order to evaluate the average ganglion cell-inner plexiform complex thickness, as well as the photoreceptor inner segment/outer segment junction status. Patients' clinical features (retinal detachment size, detachment duration, and occurrence of proliferative vitreoretinopathy) were associated with several early apoptotic factors (caspase-8, caspase-9, and B-cell lymphoma 2 [Bcl-2]-associated death promoter [BAD]). Furthermore, both early apoptosis factors (caspase-8, Bcl-2, and p53) and signal-transduction proteins (ERK 1/2) were found to influence the postsurgery month 3 OCT characteristics. Signal-transduction proteins and early apoptosis proteins are associated with different clinical features and postsurgery outcomes.

  9. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions?

    Science.gov (United States)

    Genre, Andrea; Russo, Giulia

    2016-01-01

    Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act.

  10. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana.

    Science.gov (United States)

    Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie

    2016-12-20

    Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better

  11. GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyoung; Kim, Ki-Suk; Kim, Kang-Hoon; Lee, In-Seung; Jeong, Hyeon-soo; Kim, Yumi; Jang, Hyeung-Jin, E-mail: hjjang@khu.ac.kr

    2015-12-04

    Glucagon-like peptide-1 (GLP-1) hormone is known to regulate blood glucose by an insulinotropic effect and increases proliferation as and also prevents apoptosis of pancreatic β cells. We know that GLP-1 is secreted by nutrients such as fatty acids and sweet compounds but also bitter compounds via stimulation of G-protein coupled receptors (GPCRs) in the gut. Among these, bitter compounds are multiply-contained in phytochemicals or artificial materials and perceived as ligands of various bitter taste receptors. We hypothesized that GLP-1 hormone is secreted through stimulation of a single bitter taste receptor by 1,10-phenanthroline which is known agonist of taste receptor type 2 member 5 (T2R5). To prove this hypothesis, we used the representatively well-known 1,10-phenanthroline as ligand of single receptor and evaluated the existence of T2R5 by double-labeling immunofluorescence and then 1,10-phenanthroline is able to secrete GLP-1 hormone through stimulation of T2R5 in human enteroendocrine cells. Consequently, we verify that GLP-1 hormone is colocalized with T2R5 in the human duodenum and ileum tissue and is secreted by 1,10-phenanthroline via T2R5 signal transduction in differentiated human enteroendocrine L cells. - Highlights: • Taste receptor type 2 member 5 (T2R5) is colocalized with GLP-1 hormone in human enteroendocrine cells. • GLP-1 secretion is stimulated by 1,10-phenanthroline via stimulation of T2R5. • Inhibition of the bitter taste pathway reduce GLP-1 secretion.

  12. GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell

    International Nuclear Information System (INIS)

    Park, Jiyoung; Kim, Ki-Suk; Kim, Kang-Hoon; Lee, In-Seung; Jeong, Hyeon-soo; Kim, Yumi; Jang, Hyeung-Jin

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) hormone is known to regulate blood glucose by an insulinotropic effect and increases proliferation as and also prevents apoptosis of pancreatic β cells. We know that GLP-1 is secreted by nutrients such as fatty acids and sweet compounds but also bitter compounds via stimulation of G-protein coupled receptors (GPCRs) in the gut. Among these, bitter compounds are multiply-contained in phytochemicals or artificial materials and perceived as ligands of various bitter taste receptors. We hypothesized that GLP-1 hormone is secreted through stimulation of a single bitter taste receptor by 1,10-phenanthroline which is known agonist of taste receptor type 2 member 5 (T2R5). To prove this hypothesis, we used the representatively well-known 1,10-phenanthroline as ligand of single receptor and evaluated the existence of T2R5 by double-labeling immunofluorescence and then 1,10-phenanthroline is able to secrete GLP-1 hormone through stimulation of T2R5 in human enteroendocrine cells. Consequently, we verify that GLP-1 hormone is colocalized with T2R5 in the human duodenum and ileum tissue and is secreted by 1,10-phenanthroline via T2R5 signal transduction in differentiated human enteroendocrine L cells. - Highlights: • Taste receptor type 2 member 5 (T2R5) is colocalized with GLP-1 hormone in human enteroendocrine cells. • GLP-1 secretion is stimulated by 1,10-phenanthroline via stimulation of T2R5. • Inhibition of the bitter taste pathway reduce GLP-1 secretion.

  13. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chin-Rang [National Inst. of Health (NIH), Bethesda, MD (United States). National Heart, Lung and Blood Inst.

    2013-12-11

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complement Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.

  14. Utilizing ras signaling pathway to direct selective replication of herpes simplex virus-1.

    Directory of Open Access Journals (Sweden)

    Weihong Pan

    Full Text Available Re-engineering the tropism of viruses is an attractive translational strategy for targeting cancer cells. The Ras signal transduction pathway is a central hub for a variety of pro-oncogenic events with a fundamental role in normal and neoplastic physiology. In this work we were interested in linking Ras activation to HSV-1 replication in a direct manner in order to generate a novel oncolytic herpes virus which can target cancer cells. To establish such link, we developed a mutant HSV-1 in which the expression of ICP4 (infected cell protein-4, a viral protein necessary for replication is controlled by activation of ELK, a transcription factor down-stream of the Ras pathway and mainly activated by ERK (extracellular signal-regulated kinase, an important Ras effector pathway. This mutant HSV-1 was named as Signal-Smart 1 (SS1. A series of prostate cells were infected with the SS1 virus. Cells with elevated levels of ELK activation were preferentially infected by the SS1 virus, as demonstrated by increased levels of viral progeny, herpetic glycoprotein C and overall SS1 viral protein production. Upon exposure to SS1, the proliferation, invasiveness and colony formation capabilities of prostate cancer cells with increased ELK activation were significantly decreased (p<0.05, while the rate of apoptosis/necrosis in these cells was increased. Additionally, high Ras signaling cells infected with SS1 showed a prominent arrest in the G1 phase of the cell cycle as compared to cells exposed to parental HSV-1. The results of this study reveal the potential for re-modeling the host-herpes interaction to specifically interfere with the life of cancer cells with increased Ras signaling. SS1 also serves as a "prototype" for development of a family of signal-smart viruses which can target cancer cells on the basis of their signaling portfolio.

  15. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    International Nuclear Information System (INIS)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar; Patra, Samir Kumar

    2012-01-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  16. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India); Patra, Samir Kumar, E-mail: samirp@nitrkl.ac.in [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  17. The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects.

    LENUS (Irish Health Repository)

    Lyng, F M

    2006-04-01

    Much evidence now exists regarding radiation-induced bystander effects, but the mechanisms involved in the transduction of the signal are still unclear. The mitogen-activated protein kinase (MAPK) pathways have been linked to growth factor-mediated regulation of cellular events such as proliferation, senescence, differentiation and apoptosis. Activation of multiple MAPK pathways such as the ERK, JNK and p38 pathways have been shown to occur after exposure of cells to radiation and a variety of other toxic stresses. Previous studies have shown oxidative stress and calcium signaling to be important in radiation-induced bystander effects. The aim of the present study was to investigate MAPK signaling pathways in bystander cells exposed to irradiated cell conditioned medium (ICCM) and the role of oxidative metabolism and calcium signaling in the induction of bystander responses. Human keratinocytes (HPV-G cell line) were irradiated (0.005-5 Gy) using a cobalt-60 teletherapy unit. The medium was harvested 1 h postirradiation and transferred to recipient HPV-G cells. Phosphorylated forms of p38, JNK and ERK were studied by immunofluorescence 30 min-24 h after exposure to ICCM. Inhibitors of the ERK pathway (PD98059 and U0126), the JNK pathway (SP600125), and the p38 pathway (SB203580) were used to investigate whether bystander-induced cell death could be blocked. Cells were also incubated with ICCM in the presence of superoxide dismutase, catalase, EGTA, verapamil, nifedipine and thapsigargin to investigate whether bystander effects could be inhibited because of the known effects on calcium homeostasis. Activated forms of JNK and ERK proteins were observed after exposure to ICCM. Inhibition of the ERK pathway appeared to increase bystander-induced apoptosis, while inhibition of the JNK pathway appeared to decrease apoptosis. In addition, reactive oxygen species, such as superoxide and hydrogen peroxide, and calcium signaling were found to be important modulators of

  18. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S

    1998-01-01

    syk are among the tyrosine-phosphorylated proteins. The kinetics of phosphorylation of these kinases after MHC-I crosslinking differ from the kinetics observed after crosslinking of the B cell antigen receptor (BCR). Additional experiments were performed with chicken lyn- and syk-negative DT40 B cells...... mobilization of intracellular free calcium compared with MHC-I crosslinking of wild-type DT40 cells. Thus, expression of BCR at the cell surface is likely to be important for the signal cascade initiated by MHC-I crosslinking. Our data suggest that signal transduction initiated through ligation of the MHC...

  19. Dissection of the insulin signaling pathway via quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Krüger, Marcus; Kratchmarova, Irina; Blagoev, Blagoy

    2008-01-01

    spectrum of the tyrosine phosphorylation cascade, we have defined the tyrosine-phosphoproteome of the insulin signaling pathway, using high resolution mass spectrometry in combination with phosphotyrosine immunoprecipitation and stable isotope labeling by amino acids in cell culture (SILAC......The insulin signaling pathway is of pivotal importance in metabolic diseases, such as diabetes, and in cellular processes, such as aging. Insulin activates a tyrosine phosphorylation cascade that branches to create a complex network affecting multiple biological processes. To understand the full...

  20. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0590 TITLE: SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA PRINCIPAL INVESTIGATOR: KATHLEEN M...SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0590 SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT: Diamond Blackfan Anemia (DBA) is a disorder that results in pure red cell aplasia, congenital

  1. Modelling and Analysis of Biochemical Signalling Pathway Cross-talk

    Directory of Open Access Journals (Sweden)

    Robin Donaldson

    2010-02-01

    Full Text Available Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising parallel composition of instances of generic modules (with internal and external labels. Pathways are then composed by (synchronising parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect and distinguish the types of cross-talk. The approach is illustrated with small examples and an analysis of the cross-talk between the TGF-b/BMP, WNT and MAPK pathways.

  2. Oncogenic Signaling Pathways in The Cancer Genome Atlas

    NARCIS (Netherlands)

    Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua; Chatila, Walid K.; Luna, Augustin; La, Konnor C.; Dimitriadoy, Sofia; Liu, David L.; Kantheti, Havish S.; Saghafinia, Sadegh; Chakravarty, Debyani; Daian, Foysal; Gao, Qingsong; Bailey, Matthew H.; Liang, Wen Wei; Foltz, Steven M.; Shmulevich, Ilya; Ding, Li; Heins, Zachary J.; Ochoa, Angelica; Gross, Benjamin E.; Gao, Jianjiong; Zhang, Hongxin; Kundra, Ritika; Kandoth, Cyriac; Bahceci, Istemi; Dervishi, Leonard; Dogrusoz, Ugur; Zhou, Wanding; Shen, Hui; Laird, Peter W.; Way, Gregory P.; Greene, Casey S.; Liang, Han; Xiao, Yonghong; Wang, Chen; Iavarone, Antonio; Berger, Alice H.; Bivona, Trever G.; Lazar, Alexander J.; Hammer, Gary D.; Giordano, Thomas; Kwong, Lawrence N.; McArthur, Grant; Huang, Chenfei; Tward, Aaron D.; Frederick, Mitchell J.; McCormick, Frank; Meyerson, Matthew; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Van Allen, Eliezer M.; Cherniack, Andrew D.; Ciriello, Giovanni; Sander, Chris; Schultz, Nikolaus

    2018-01-01

    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number

  3. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    . Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  4. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Aaron W. James

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSC are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor-γ (PPARγ and Runt-related transcription factor 2 (Runx2. These two transcription factors, PPARγ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β-catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP signaling and insulin growth factor (IGF signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.

  5. Transduction of the Hedgehog signal through the dimerization of Fused and the nuclear translocation of Cubitus interruptus

    Institute of Scientific and Technical Information of China (English)

    Yanyan Zhang; Feifei Mao; Yi Lu; Wenqing Wu; Lei Zhang; Yun Zhao

    2011-01-01

    The Hedgehog (Hh) family of secreted proteins is essential for development in both vertebrates and invertebrates.As one of main morphogens during metazoan development,the graded Hh signal is transduced across the plasma membrane by Smoothened (Smo) through the differential phosphorylation of its cytoplasmic tail,leading to pathway activation and the differential expression of target genes.However,how Smo transduces the graded Hh signal via the Costal2 (Cos2)/Fused (Fu) complex remains poorly understood.Here we present a model of the cell response to a Hh gradient by translating Smo phosphorylation information to Fu dimerization and Cubitus interruptus (Ci)nuclear localization information.Our findings suggest that the phosphorylated C-terminus of Smo recruits the Cos2/Fu complex to the membrane through the interaction between Smo and Cos2,which further induces Fu dimerization.Dimerized Fu is phosphorylated and transduces the Hh signal by phosphorylating Cos2 and Suppressor of Fu (Su(fu)).We further show that this process promotes the dissociation of the full-length Ci (Ci155) and Cos2 or Su(fu),and results in the translocation of Ci155 into the nucleus,activating the expression of target genes.

  6. Linking proteins to signaling pathways for experiment design and evaluation.

    Directory of Open Access Journals (Sweden)

    Illés J Farkas

    Full Text Available Biomedical experimental work often focuses on altering the functions of selected proteins. These changes can hit signaling pathways, and can therefore unexpectedly and non-specifically affect cellular processes. We propose PathwayLinker, an online tool that can provide a first estimate of the possible signaling effects of such changes, e.g., drug or microRNA treatments. PathwayLinker minimizes the users' efforts by integrating protein-protein interaction and signaling pathway data from several sources with statistical significance tests and clear visualization. We demonstrate through three case studies that the developed tool can point out unexpected signaling bias in normal laboratory experiments and identify likely novel signaling proteins among the interactors of known drug targets. In our first case study we show that knockdown of the Caenorhabditis elegans gene cdc-25.1 (meant to avoid progeny may globally affect the signaling system and unexpectedly bias experiments. In the second case study we evaluate the loss-of-function phenotypes of a less known C. elegans gene to predict its function. In the third case study we analyze GJA1, an anti-cancer drug target protein in human, and predict for this protein novel signaling pathway memberships, which may be sources of side effects. Compared to similar services, a major advantage of PathwayLinker is that it drastically reduces the necessary amount of manual literature searches and can be used without a computational background. PathwayLinker is available at http://PathwayLinker.org. Detailed documentation and source code are available at the website.

  7. Molecular mechanisms of BMP-induced bone formation: Cross-talk between BMP and NF-κB signaling pathways in osteoblastogenesis

    Directory of Open Access Journals (Sweden)

    Eijiro Jimi

    2010-02-01

    Full Text Available Osteoblasts are bone-forming cells that differentiate from mesenchymal stem cells. Differentiation processes are coordinately and dynamically controlled in the mesenchymal cells by specific signal transduction pathways. Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, induce not only bone formation in vivo, but also osteoblast differentiation of mesenchymal cells in vitro. BMP signals are transduced from plasma membrane receptors to the nucleus through both Smad-dependent and -independent pathways, and are regulated by many extracellular and intercellular proteins that interact with BMPs or components of BMP signaling pathways. To understand the molecular mechanisms underlying the role of BMPs in osteoblast differentiation, it is important to elucidate the BMP signaling transduction pathways that are active during osteoblast differentiation. In this review, we summarize the BMP signaling pathways that are known to function in osteoblast development. We also describe our recent findings regarding the molecular mechanisms underlying the cross-talk between BMP/Smad and NF-κB pathways in osteoblast differentiation.

  8. Evaluation of Notch and Hypoxia Signaling Pathways in Chemically ...

    African Journals Online (AJOL)

    Hepatocellular carcinoma (HCC) is a common worldwide malignancy. Notch signaling pathway contributes to the genesis of diverse cancers, however, its role in HCC is unclear. Hypoxia is a common feature of HCC. Signal integration between Notch and hypoxia may be involved in HCC. The aim of this study was to ...

  9. DMPD: TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 2007 Feb 1. (.png) (.svg) (.html) (.csml) Show TLR signaling. PubmedID 17275323 Title TLR signaling. Author...s Kawai T, Akira S. Publication Semin Immunol. 2007 Feb;19(1):24-32. Epub 2007 Feb 1. Pathway - PNG File (.png) SVG File (.svg) HTML... File (.html) CSML File (.csml) Open .csml file with CIOP

  10. Signaling pathway networks mined from human pituitary adenoma proteomics data

    Directory of Open Access Journals (Sweden)

    Zhan Xianquan

    2010-04-01

    Full Text Available Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins, comparative proteomic data (56 differentially expressed proteins, and nitroproteomic data (17 nitroproteins. There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze