WorldWideScience

Sample records for pathogenic h5n1 influenza

  1. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J. (Tennessee-HSC); (SJCH)

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  2. Human infection with highly pathogenic H5N1 influenza virus

    NARCIS (Netherlands)

    Gambotto, Andrea; Barratt-Boyes, Simon M.; de Jong, Menno D.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-01-01

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of

  3. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    Science.gov (United States)

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  4. Serosurvey of antibody to highly pathogenic avian influenza (H5N1 ...

    African Journals Online (AJOL)

    Avian influenza is a disease of economic and public health importance that has been described in most domestic animals and humans. Highly pathogenic avian influenza H5N1 epidemic in Nigeria was observed in agro-ecological zones where pigs and chickens are raised in shared environment with chances of ...

  5. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    Science.gov (United States)

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  6. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Science.gov (United States)

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  7. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Directory of Open Access Journals (Sweden)

    Charles Nfon

    Full Text Available There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI. In addition, heterologous cell mediated immunity (CMI was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  8. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza.

    Directory of Open Access Journals (Sweden)

    Nicholas J Negovetich

    2011-04-01

    Full Text Available Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94% were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%, and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.

  9. 75 FR 69046 - Notice of Determination of the High Pathogenic Avian Influenza Subtype H5N1 Status of Czech...

    Science.gov (United States)

    2010-11-10

    ... Avian Influenza Subtype H5N1 Status of Czech Republic and Sweden AGENCY: Animal and Plant Health... the highly pathogenic avian influenza (HPAI) subtype H5N1 status of the Czech Republic and Sweden... status of the Czech Republic and Sweden relative to highly pathogenic avian influenza (HPAI) subtype H5N1...

  10. Highly pathogenic avian influenza H5N1 in Mainland China

    NARCIS (Netherlands)

    X.-L. Li (Xin-Lou); K. Liu (Kun); H.-W. Yao (Hong-Wu); Y. Sun (Ye); W.-J. Chen (Wan-Jun); R.-X. Sun (Ruo-Xi); S.J. de Vlas (Sake); L.Q. Fang (Lily); W.-C. Cao (Wu-Chun)

    2015-01-01

    textabstractHighly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of

  11. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    Science.gov (United States)

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  12. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus

    OpenAIRE

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A. Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5Nx viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines ha...

  13. Avian Influenza A (H5N1)

    Centers for Disease Control (CDC) Podcasts

    In this podcast, CDC's Dr. Tim Uyeki discusses H5N1, a subtype of influenza A virus. This highly pathogenic H5N1 virus doesn't usually infect people, although some rare infections with H5N1 viruses have occurred in humans. We need to use a comprehensive strategy to prevent the spread of H5N1 virus among birds, including having human health and animal health work closely together.

  14. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    Science.gov (United States)

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  15. Avian Influenza A (H5N1)

    Centers for Disease Control (CDC) Podcasts

    2009-05-27

    In this podcast, CDC's Dr. Tim Uyeki discusses H5N1, a subtype of influenza A virus. This highly pathogenic H5N1 virus doesn't usually infect people, although some rare infections with H5N1 viruses have occurred in humans. We need to use a comprehensive strategy to prevent the spread of H5N1 virus among birds, including having human health and animal health work closely together.  Created: 5/27/2009 by Emerging Infectious Diseases.   Date Released: 5/27/2009.

  16. Psychosocial effects assocPsychosocial effects associated with highly pathogenic avian influenza (H5N1 in Nigeriaiated with highly pathogenic avian influenza (H5N1 in Nigeria

    Directory of Open Access Journals (Sweden)

    Chiara Rafanelli

    2010-12-01

    Full Text Available Highly pathogenic avian influenza H5N1 (HPAI H5N1 infected poultry in Nigeria in 2006. The outbreaks caused significant economic losses and had serious zoonotic repercussions. The outbreaks have also had psychosocial effects on Nigerian farmers. To date, empirical data on the effect of outbreaks on humans are scarce. In this study, field data on HPAI H5N1 in Nigeria were analysed. Although only one human case leading to death was reported in Nigeria, the fact that HPAI H5N1 caused a human death created a disruption in social order and in the well-being of farmers (stress, altered livelihood and trauma and affected the rural economy. The implication of the above on health communication, the importance of successful control measures in poultry and policy implementation are stressed. Further studies are encouraged.

  17. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    Science.gov (United States)

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  18. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Science.gov (United States)

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  19. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    OpenAIRE

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-01-01

    Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same a...

  20. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    Science.gov (United States)

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  1. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  2. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus.

    Science.gov (United States)

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5N x viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines have been demonstrated to be efficacious and safe in poultry. Herein, we developed an NDV-based H5 vaccine (NDV-H5) that expresses a codon-optimized ectodomain of the hemagglutinin from the A/chicken/Iowa/04-20/2015 (H5N2) virus and evaluated its efficacy in chickens. Results showed that both live and inactivated NDV-H5 vaccines induced hemagglutinin inhibition antibody titers against the H5N2 virus in immunized chickens after prime and booster, and both NDV-H5 vaccines completely protected chickens from lethal challenge with the highly pathogenic H5N2 A/turkey/Minnesota/9845-4/2015 virus. No clinical signs and only minimal virus shedding was observed in both vaccinated groups. In contrast, all mock-vaccinated, H5N2-infected chickens shed virus and died within 5 days post challenge. Furthermore, one dose of the live NDV-H5 vaccine also provided protection of 90% chickens immunized by coarse spraying; after exposure to H5N2 challenge, sera from vaccinated surviving chickens neutralized both highly pathogenic H5N1 and H5N8 viruses. Taken together, our results suggest that the NDV-based H5 vaccine is able to protect chickens against intercontinental highly pathogenic H5N x viruses and can be used by mass application to protect the poultry industry.

  3. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Directory of Open Access Journals (Sweden)

    Abdel-Ghany Ahmad E

    2010-04-01

    Full Text Available Abstract Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE. Reverse transcriptase polymerase chain reaction (RT-PCR and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas.

  4. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005

    NARCIS (Netherlands)

    Adlhoch, C.; Gossner, C.; Koch, G.; Brown, I.; Bouwstra, R.J.; Verdonck, F.; Penttinen, P.; Harder, T.

    2014-01-01

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are

  5. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia

    OpenAIRE

    Mangiri, Amalya; Iuliano, A. Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y.; Lafond, Kathryn E.; Storms, Aaron D.; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M.; Storey, J. Douglas; Uyeki, Timothy M.

    2016-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 vir...

  6. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    Science.gov (United States)

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.

  7. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    Science.gov (United States)

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  8. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    Science.gov (United States)

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Avian influenza A (H5N1)

    NARCIS (Netherlands)

    de Jong, Menno D.; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited

  10. Features of pathology in mice experimentally infected with highly pathogenic H5N1 influenza virus

    International Nuclear Information System (INIS)

    Ryabchikova, E. I.; Taranov, O. S.; Malkova, E. M.; Gritsyk, O. B.; Demina, O. K.

    2009-01-01

    Avian influenza became a new threat and has set people thinking about possibility of new influenza pandemic which may be caused by highly pathogenic H5N1 influenza virus. The virus could acquire ability of fast spreading between the humans and new pandemics could kill millions. Influenza virus H5N1 exhibited its deadly essence by taking out many millions of birds in nature and aviculture; other millions of chicks and ducks were killed to prevent spread of the epizootic. The strains isolated in Russia belong to Qinghai group of H5N1 influenza virus, and were imported to Russia by migratory birds. We examined time-course changes in mice blood and lungs after intranasal infection with strains A /Chicken/ Kurgan/ 05/2005, A/ Duck/ Kurgan/08/ 2005 and A/ Chicken/ Suzdalka/ Nov-11/2005 differing in virulence for this animal species. Development of leucopenia and severe damage of hemopoiesis were found in mice infected with all H5N1 influenza virus strains. Pathological changes in mice lungs during the infection with above mentioned strains, and strain-specific features have been examined. Main characteristics of lung pathology in all mice were focal nature of the alterations, severe damage of bronchial epithelium and pronounced alteration of lung vasculature. Strain A/Chicken/Suzdalka/Nov-11/2005 induced massive apoptosis of infected bronchial cells which may be a part of mechanism responsible for avirulent properties of this strain. The most interesting finding was absence of serious direct virus damage of the lung evidencing for principal role of the host humoral mechanisms in pathogenesis of H5N1 influenza in mice.(author)

  11. Distinct Pathogenesis of Hong Kong-Origin H5N1 Viruses in Mice Compared to That of Other Highly Pathogenic H5 Avian Influenza Viruses

    OpenAIRE

    Dybing, Jody K.; Schultz-Cherry, Stacey; Swayne, David E.; Suarez, David L.; Perdue, Michael L.

    2000-01-01

    In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian in...

  12. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis.

    Directory of Open Access Journals (Sweden)

    Christina M Carlson

    2010-10-01

    Full Text Available Transforming growth factor-beta (TGF-β, a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β. We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3 except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus-infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis.

  13. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1

    Directory of Open Access Journals (Sweden)

    Sosna William A

    2010-09-01

    Full Text Available Abstract Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1 virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1 through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1. The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1 is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.

  14. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    DEFF Research Database (Denmark)

    Haider, Najmul; Sturm-Ramirez, K.; Khan, S. U.

    2017-01-01

    a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize...... and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5......Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify...

  15. Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan.

    Science.gov (United States)

    Uchida, Yuko; Mase, Masaji; Yoneda, Kumiko; Kimura, Atsumu; Obara, Tsuyoshi; Kumagai, Seikou; Saito, Takehiko; Yamamoto, Yu; Nakamura, Kikuyasu; Tsukamoto, Kenji; Yamaguchi, Shigeo

    2008-09-01

    On April 21, 2008, four whooper swans were found dead at Lake Towada, Akita prefecture, Japan. Highly pathogenic avian influenza virus of the H5N1 subtype was isolated from specimens of the affected birds. The hemagglutinin (HA) gene of the isolate belongs to clade 2.3.2 in the HA phylogenetic tree.

  16. Highly pathogenic avian influenza virus subtype H5N1 in mute swans (Cygnus olor) in Central Bosnia.

    Science.gov (United States)

    Goletić, Teufik; Gagić, Abdulah; Residbegović, Emina; Kustura, Aida; Kavazović, Aida; Savić, Vladimir; Harder, Timm; Starick, Elke; Prasović, Senad

    2010-03-01

    In order to determine the actual prevalence of avian influenza viruses (AIVs) in wild birds in Bosnia and Herzegovina, extensive surveillance was carried out between October 2005 and April 2006. A total of 394 samples representing 41 bird species were examined for the presence of influenza A virus using virus isolation in embryonated chicken eggs, PCR, and nucleotide sequencing. AIV subtype H5N1 was detected in two mute swans (Cygnus olor). The isolates were determined to be highly pathogenic avian influenza (HPAI) virus and the hemagglutinin sequence was closely similar to A/Cygnus olor/Astrakhan/ Ast05-2-10/2005 (H5N1). This is the first report of HPAI subtype H5N1 in Bosnia and Herzegovina.

  17. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Qin E-de

    2010-06-01

    Full Text Available Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009 influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  18. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    Science.gov (United States)

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  19. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012-2016.

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/ Pavo Cristatus /Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~10 4.3 TCID 50 . A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the "gene pool" circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic.

  20. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    Science.gov (United States)

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  1. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    Science.gov (United States)

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by

  2. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    Science.gov (United States)

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  3. Rapid detection of the avian influenza virus H5N1 subtype in Egypt

    African Journals Online (AJOL)

    Dr

    highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and ... Key words: Avian influenza virus, H5N1, fluorescent antibody enzyme-linked immunosorbent assay (ELISA) ..... poultry and is potentially zoonotic.

  4. TEST KIT FOR THE DETECTION AND GENOTYPING OF HIGHLY PATHOGENIC INFLUENZA VIRUS A H5N1 BY REAL-TIME POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    S. V. Stepaniuk

    2014-06-01

    Full Text Available Results of the annual monitoring of epizooties indicate that highly pathogenic HPAI/H5N1 avian influenza widely circulated in Eurasian region. Over a period of 2010–2013 years more than 165 cases of outbreaks in 14 countries were found out. Ukraine became one of the first countries in Europe where in Autonomous Republic of Crimea in October 2005 outbreak of avian epizootic with HPAI/H5N1 was documented and until February 2008 more than 236,000 poultry were killed. Since then the question of monitoring of infected both migrating birds and poultry in places of cross contact in Ukraine remains of high priority. The test system is developed for identification and genotyping A H5N1 on three genes (M, H5 and N1 HPAI/H5N1 in real-time mode for polymerase chain reaction. Test kit capacity to detect HPAI/h5n1avian influenza virus and differentiate it from the other viral infection agents of birds and animals were studied by testing of HPAI/H5N1 virus isolated during mass infection outbreak in Crimea in 2005 and cultural specimens of other viral pathogens. It was established that the «DIA Real Avian Influenza» test kit was capable to detect RNA influenza A virus of high pathogenic H5N1 strains having high sensitivity (100% while RNA of the Crimean HPAI/H5N1 isolate studying and specificity (100% while RNA viruses of Newcastle birds disease, fowl powershift, syndrome of drop in egg production and horse influenza studying.

  5. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NARCIS (Netherlands)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration

  6. Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning.

    OpenAIRE

    Cai, Zhipeng; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C; Webby, Richard J; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin (HA) gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1's antigenic profiles would help resolve these problems. In this study, a novel sparse learning meth...

  7. Spatiotemporal Structure of Molecular Evolution of H5N1 Highly Pathogenic Avian Influenza Viruses in Vietnam

    OpenAIRE

    Carrel, Margaret A.; Emch, Michael; Jobe, R. Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-01

    Background Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and...

  8. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    Science.gov (United States)

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  9. Presence of serum antibodies to influenza A subtypes H5 and N1 in swans and ibises in French wetlands, irrespective of highly pathogenic H5N1 natural infection.

    Science.gov (United States)

    Niqueux, Eric; Guionie, Olivier; Schmitz, Audrey; Hars, Jean; Jestin, Véronique

    2010-03-01

    Highly pathogenic (HP) avian influenza A viruses (AIVs) subtype H5N1 (subclade 2.2) were detected in wild birds during outbreaks in France during winter 2006 and summer 2007 in la Dombes wetlands (eastern France) and in Moselle wetlands (northeastern France), respectively. Blood samples from apparently healthy wild birds were collected in 2006 and 2007 from the end of the outbreak to several weeks after the influenza A outbreak inside and outside the contaminated areas, and in 2008 outside the contaminated areas. The samples were tested for the presence and/or quantitation of serum antibodies to influenza A subtypes H5 and N1 using hemagglutination inhibition tests (HITs), a commercial N1-specific enzyme-linked immunosorbent assay kit, and virus neutralization assay. In the HIT, low pathogenicity (LP) and HP H5 AIVs (belonging to H5N1, H5N2, and H5N3 subtypes) were used as antigens. One hundred mute swans were bled in the la Dombes outbreak area in 2006. During 2007, 46 mallards, 69 common pochards, and 59 mute swans were sampled in the Moselle outbreak area. For comparison, blood samples were also collected in 2007 from 60 mute swans from the Marne department where no HP H5N1 influenza A cases have been reported, and in 2008 from 111 sacred ibises in western France where no HP H5N1 influenza A infections in wild birds have been reported either. Mute swans (irrespective of their origin and time of sampling) and sacred ibises (from an area with no known outbreaks) had the highest prevalence of positive sera in the H5 HIT (49-69% and 64%, respectively). The prevalence of anti-H5 antibodies in mallards and common pochards was lower (28% and 27%, respectively). Positive H5- and N1-antibody responses were also significantly associated in swans (irrespective of their origin and time of sampling) and in sacred ibises. However, in swans from the area without outbreaks, the HIT titer against an H5N1 LPAIV was significantly higher than against an H5N1 2.2.1 HPAIV, whereas no

  10. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012–2016

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic. PMID:28293218

  11. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    Science.gov (United States)

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  12. Identifying antigenicity associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning

    OpenAIRE

    Cai, Zhipeng; Ducatez, Mariette F.; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C.; Webby, Richard J.; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1’s antigenic profiles would help resolve these problems. In this study, a novel sparse learning method wa...

  13. Silent spread of highly pathogenic Avian Influenza H5N1 virus amongst vaccinated commercial layers

    NARCIS (Netherlands)

    Poetri, O.N.; Boven, M.; Claassen, I.J.T.M.; Koch, G.; Wibawan, I.W.; Stegeman, A.; Broek, van den J.; Bouma, A.

    2014-01-01

    The aim of this study was to determine whether a single vaccination of commercial layer type chickens with an inactivated vaccine containing highly pathogenic avian influenza virus strain H5N1 A/chicken/Legok/2003, carried out on the farm, was sufficient to protect against infection with the

  14. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    Science.gov (United States)

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  15. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    Directory of Open Access Journals (Sweden)

    Margaret A Carrel

    2010-01-01

    Full Text Available Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10: e3462 demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear.In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City.The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic

  16. Rapid and highly informative diagnostic assay for H5N1 influenza viruses.

    Directory of Open Access Journals (Sweden)

    Nader Pourmand

    Full Text Available A highly discriminative and information-rich diagnostic assay for H5N1 avian influenza would meet immediate patient care needs and provide valuable information for public health interventions, e.g., tracking of new and more dangerous variants by geographic area as well as avian-to-human or human-to-human transmission. In the present study, we have designed a rapid assay based on multilocus nucleic acid sequencing that focuses on the biologically significant regions of the H5N1 hemagglutinin gene. This allows the prediction of viral strain, clade, receptor binding properties, low- or high-pathogenicity cleavage site and glycosylation status. H5 HA genes were selected from nine known high-pathogenicity avian influenza subtype H5N1 viruses, based on their diversity in biologically significant regions of hemagglutinin and/or their ability to cause infection in humans. We devised a consensus pre-programmed pyrosequencing strategy, which may be used as a faster, more accurate alternative to de novo sequencing. The available data suggest that the assay described here is a reliable, rapid, information-rich and cost-effective approach for definitive diagnosis of H5N1 avian influenza. Knowledge of the predicted functional sequences of the HA will enhance H5N1 avian influenza surveillance efforts.

  17. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    Science.gov (United States)

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  18. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  19. Pathobiology of highly pathogenic avian influenza virus (H5N1) infection in mute swans (Cygnus olor).

    Science.gov (United States)

    Pálmai, Nimród; Erdélyi, Károly; Bálint, Adám; Márton, Lázár; Dán, Adám; Deim, Zoltán; Ursu, Krisztina; Löndt, Brandon Z; Brown, Ian H; Glávits, Róbert

    2007-06-01

    The results of pathological, virological and polymerase chain reaction examinations carried out on 35 mute swans (Cygnus olor) that succumbed to a highly pathogenic avian influenza virus (H5N1) infection during an outbreak in Southern Hungary are reported. The most frequently observed macroscopic lesions included: haemorrhages under the epicardium, in the proventricular and duodenal mucosa and pancreas; focal necrosis in the pancreas; myocardial degeneration; acute mucous enteritis; congestion of the spleen and lung, and the accumulation of sero-mucinous exudate in the body cavity. Histopathological lesions comprised: lymphocytic meningo-encephalomyelitis accompanied by gliosis and occasional perivascular haemorrhages; multi-focal myocardial necrosis with lympho-histiocytic infiltration; pancreatitis with focal necrosis; acute desquamative mucous enteritis; lung congestion and oedema; oedema of the tracheal mucosa and, in young birds, the atrophy of the bursa of Fabricius as a result of lymphocyte depletion and apoptosis. The observed lesions and the moderate to good body conditions were compatible with findings in acute highly pathogenic avian influenza infections of other bird species reported in the literature. Skin lesions and lesions typical for infections caused by strains of lower pathogenicity (low pathogenic avian influenza virus) such as emaciation or fibrinous changes in the reproductive and respiratory organs, sinuses and airsacs were not observed. The H5N1 subtype avian influenza virus was isolated in embryonated fowl eggs from all cases and it was identified by classical and molecular virological methods.

  20. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents.

    Science.gov (United States)

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-09-01

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  1. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets.

    Directory of Open Access Journals (Sweden)

    Judith M A van den Brand

    Full Text Available Humans may be infected by different influenza A viruses--seasonal, pandemic, and zoonotic--which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these infections are poorly understood. Therefore, we inoculated ferrets with seasonal H3N2, pandemic H1N1 (pH1N1, and highly pathogenic avian H5N1 influenza virus and performed detailed virological and pathological analyses at time points from 0.5 to 14 days post inoculation (dpi, as well as describing clinical signs and hematological parameters. H3N2 infection was restricted to the nose and peaked at 1 dpi. pH1N1 infection also peaked at 1 dpi, but occurred at similar levels throughout the respiratory tract. H5N1 infection occurred predominantly in the alveoli, where it peaked for a longer period, from 1 to 3 dpi. The associated lesions followed the same spatial distribution as virus infection, but their severity peaked between 1 and 6 days later. Neutrophil and monocyte counts in peripheral blood correlated with inflammatory cell influx in the alveoli. Of the different parameters used to measure lower respiratory tract disease, relative lung weight and affected lung tissue allowed the best quantitative distinction between the virus groups. There was extra-respiratory spread to more tissues--including the central nervous system--for H5N1 infection than for pH1N1 infection, and to none for H3N2 infection. This study shows that seasonal, pandemic, and zoonotic influenza viruses differ strongly in the spatial and temporal dynamics of infection in the respiratory tract and extra-respiratory tissues of ferrets.

  2. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  3. Protection against H5N1 Highly Pathogenic Avian and Pandemic (H1N1) 2009 Influenza Virus Infection in Cynomolgus Monkeys by an Inactivated H5N1 Whole Particle Vaccine

    Science.gov (United States)

    Nakayama, Misako; Shichinohe, Shintaro; Itoh, Yasushi; Ishigaki, Hirohito; Kitano, Mitsutaka; Arikata, Masahiko; Pham, Van Loi; Ishida, Hideaki; Kitagawa, Naoko; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Ichikawa, Takaya; Tsuchiya, Hideaki; Nakamura, Shinichiro; Le, Quynh Mai; Ito, Mutsumi; Kawaoka, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2013-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3), in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1) 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3. PMID:24376571

  4. Protection against H5N1 highly pathogenic avian and pandemic (H1N1 2009 influenza virus infection in cynomolgus monkeys by an inactivated H5N1 whole particle vaccine.

    Directory of Open Access Journals (Sweden)

    Misako Nakayama

    Full Text Available H5N1 highly pathogenic avian influenza virus (HPAIV infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3, in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3.

  5. Evolution of highly pathogenic avian H5N1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Catherine A [Los Alamos National Laboratory; Green, Margaret A [Los Alamos National Laboratory

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging

  6. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    Science.gov (United States)

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  7. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    OpenAIRE

    Ramis , Antonio; van Amerongen , Geert; van de Bildt , Marco; Leijten , Loneke; Vanderstichel , Raphael; Osterhaus , Albert; Kuiken , Thijs

    2014-01-01

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes a...

  8. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    Science.gov (United States)

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  9. Highly pathogenic avian influenza A (H5N1) virus in wildlife: diagnostics, epidemiology and molecular characteristics

    NARCIS (Netherlands)

    Keawcharoen, J.

    2010-01-01

    Since 2003, highly pathogenic avian influenza virus subtype H5N1 outbreaks have been reported in Southeast Asia causing high mortality in poultry and have also been found to cross the species barrier infecting human and other mammalian species. Thailand is one of the countries severely affected by

  10. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1 Virus Infection on Migrating Whooper Swans Fecal Microbiota

    Directory of Open Access Journals (Sweden)

    Na Zhao

    2018-02-01

    Full Text Available The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus. We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  11. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1) Virus Infection on Migrating Whooper Swans Fecal Microbiota.

    Science.gov (United States)

    Zhao, Na; Wang, Supen; Li, Hongyi; Liu, Shelan; Li, Meng; Luo, Jing; Su, Wen; He, Hongxuan

    2018-01-01

    The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI) virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus . We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  12. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.

    Science.gov (United States)

    Naguib, Mahmoud M; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L P; Hoffmann, Donata; Grund, Christian; Beer, Martin; Harder, Timm C

    2017-12-01

    The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported

  13. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus.

    Science.gov (United States)

    Yamamoto, Y; Nakamura, K; Yamada, M; Mase, M

    2016-01-01

    Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field. © The Author(s) 2015.

  14. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    Science.gov (United States)

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza A viruses in experimental mouse models.

    Science.gov (United States)

    Otte, Anna; Sauter, Martina; Alleva, Lisa; Baumgarte, Sigrid; Klingel, Karin; Gabriel, Gülsah

    2011-07-01

    Influenza viruses are responsible for high morbidities in humans and may, eventually, cause pandemics. Herein, we compared the pathogenesis and host innate immune responses of a seasonal H1N1, two 2009 pandemic H1N1, and a human H5N1 influenza virus in experimental BALB/c and C57BL/6J mouse models. We found that both 2009 pandemic H1N1 isolates studied (A/Hamburg/05/09 and A/Hamburg/NY1580/09) were low pathogenic in BALB/c mice [log mouse lethal dose 50 (MLD(50)) >6 plaque-forming units (PFU)] but displayed remarkable differences in virulence in C57BL/6J mice. A/Hamburg/NY1580/09 was more virulent (logMLD(50) = 3.5 PFU) than A/Hamburg/05/09 (logMLD(50) = 5.2 PFU) in C57BL/6J mice. In contrast, the H5N1 influenza virus was more virulent in BALB/c mice (logMLD(50) = 0.3 PFU) than in C57BL/6J mice (logMLD(50) = 1.8 PFU). Seasonal H1N1 influenza revealed marginal pathogenicity in BALB/c or C57BL/6J mice (logMLD(50) >6 PFU). Enhanced susceptibility of C57BL/6J mice to pandemic H1N1 correlated with a depressed cytokine response. In contrast, enhanced H5N1 virulence in BALB/c mice correlated with an elevated proinflammatory cytokine response. These findings highlight that host determinants responsible for the pathogenesis of 2009 pandemic H1N1 influenza viruses are different from those contributing to H5N1 pathogenesis. Our results show, for the first time to our knowledge, that the C57BL/6J mouse strain is more appropriate for the evaluation and identification of intrinsic pathogenicity markers of 2009 pandemic H1N1 influenza viruses that are "masked" in BALB/c mice. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    NARCIS (Netherlands)

    A. Ramis (Antonio); G. van Amerongen (Geert); M.W.G. van de Bildt (Marco); L.M.E. Leijten (Lonneke); R. Vanderstichel (R.); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractHistorically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental

  17. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-01-01

    Highlights: ► Vero cell-based HPAI H5N1 vaccine with stable high yield. ► Stable high yield derived from the YNVa H3N2 backbone. ► H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  18. D701N mutation in the PB2 protein contributes to the pathogenicity of H5N1 avian influenza viruses but not transmissibility in guinea pigs

    Directory of Open Access Journals (Sweden)

    Peirong eJiao

    2014-11-01

    Full Text Available H5N1 highly pathogenic avian influenza virus (HPAIV of clade 2.3.2 has been circulating in waterfowl in Southern China since 2003. Our previous studies showed that certain H5N1 HPAIV isolates within clade 2.3.2 from Southern China had high pathogenicity in different birds. Guinea pigs have been successfully used as models to evaluate the transmissibility of AIVs and other species of influenza viruses in mammalian hosts. However, few studies have reported pathogenicity and transmissibility of H5N1 HPAIVs of this clade in guinea pigs. In this study, we selected an H5N1 HPAIV isolate, A/duck/Guangdong/357/2008, to investigate the pathogenicity and transmissibility of the virus in guinea pigs. The virus had high pathogenicity in mice; additionally, it only replicated in some tissues of the guinea pigs without production of clinical signs, but was transmissible among guinea pigs. Interestingly, virus isolates from co-caged guinea pigs had the D701N mutation in the PB2 protein. These mutant viruses showed higher pathogenicity in mice and higher replication capability in guinea pigs but did not demonstrate enhanced the transmissibility among guinea pigs. These findings indicate the transmission of the H5N1 virus between mammals could induce virus mutations, and the mutant viruses might have higher pathogenicity in mammals without higher transmissibility. Therefore, the continued evaluation of the pathogenicity and transmissibility of avian influenza virus (AIVs in mammals is critical to the understanding of the evolutionary characteristics of AIVs and the emergence of potential pandemic strains.

  19. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds

    NARCIS (Netherlands)

    Si, Y.; Boer, de W.F.; Gong, P.

    2013-01-01

    A large number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry and wild birds have been reported in Europe since 2005. Distinct spatial patterns in poultry and wild birds suggest that different environmental drivers and potentially different spread mechanisms are operating.

  20. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    Directory of Open Access Journals (Sweden)

    Paritosh K Biswas

    Full Text Available The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1 is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA and multiplicative seasonal autoregressive integrated moving average (SARIMA to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s as inputs did not improve the performance of any multivariable models, but relative humidity (RH was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA order at lag 1 month is considered.

  1. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    Science.gov (United States)

    Hall, Jeffrey S.; Franson, J. Christian; Gill, Robert E.; Meteyer, Carol U.; TeSlaa, Joshua L.; Nashold, Sean W.; Dusek, Robert J.; Ip, Hon S.

    2011-01-01

    Background Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds.

  2. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  3. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  4. Highly pathogenic influenza A(H5N1 virus survival in complex artificial aquatic biotopes.

    Directory of Open Access Journals (Sweden)

    Viseth Srey Horm

    Full Text Available BACKGROUND: Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. METHODOLOGY/PRINCIPAL FINDINGS: The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. CONCLUSIONS/SIGNIFICANCE: Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs.

  5. Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets

    OpenAIRE

    Ilyushina, Natalia A.; Seiler, Jon P.; Rehg, Jerold E.; Webster, Robert G.; Govorkova, Elena A.

    2010-01-01

    The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N...

  6. Prophylactic and therapeutic efficacy of avian antibodies against influenza virus H5N1 and H1N1 in mice.

    Directory of Open Access Journals (Sweden)

    Huan H Nguyen

    Full Text Available BACKGROUND: Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs have been made. However, passive immunization based on mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally specific for single epitopes. Chicken immunoglobulins (IgY found in egg yolk have been used mainly for treatment of infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus (HPAIV strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in supermarkets in Vietnam could provide protection against infections with HPAIV H5N1. METHODS AND FINDINGS: We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found that such H1N1-specific IgY protect mice from lethal influenza virus infection. CONCLUSIONS: The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using virus

  7. Experimental infection of macaques with a wild water bird-derived highly pathogenic avian influenza virus (H5N1.

    Directory of Open Access Journals (Sweden)

    Tomoko Fujiyuki

    Full Text Available Highly pathogenic avian influenza virus (HPAIV continues to threaten human health. Non-human primate infection models of human influenza are desired. To establish an animal infection model with more natural transmission and to determine the pathogenicity of HPAIV isolated from a wild water bird in primates, we administered a Japanese isolate of HPAIV (A/whooper swan/Hokkaido/1/2008, H5N1 clade 2.3.2.1 to rhesus and cynomolgus monkeys, in droplet form, via the intratracheal route. Infection of the lower and upper respiratory tracts and viral shedding were observed in both macaques. Inoculation of rhesus monkeys with higher doses of the isolate resulted in stronger clinical symptoms of influenza. Our results demonstrate that HPAIV isolated from a water bird in Japan is pathogenic in monkeys by experimental inoculation, and provide a new method for HPAIV infection of non-human primate hosts, a good animal model for investigation of HPAIV pathogenicity.

  8. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2012-11-01

    Full Text Available The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.

  9. Virulence of H5N1 Influenza Virus in Cattle Egrets (Bubulcus Ibis)

    DEFF Research Database (Denmark)

    Phuong, Do Quy; Dung, Nguyen Tien; Jørgensen, Poul Henrik

    2011-01-01

    for insect control in households. In this study, six Cattle Egrets were experimentally infected intranasally with highly pathogenic avian influenza (AI) A/duck/Vietnam/40D/04 (H5N1) to investigate a possible epidemiologic role for Cattle Egrets in outbreaks of H5N1 AI in Vietnam. The Cattle Egrets were...

  10. Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh.

    Science.gov (United States)

    Barman, Subrata; Marinova-Petkova, Atanaska; Hasan, M Kamrul; Akhtar, Sharmin; El-Shesheny, Rabeh; Turner, Jasmine Cm; Franks, John; Walker, David; Seiler, Jon; Friedman, Kimberly; Kercher, Lisa; Jeevan, Trushar; Darnell, Daniel; Kayali, Ghazi; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G; Feeroz, Mohammed M

    2017-08-09

    Highly pathogenic avian influenza H5N1 viruses were first isolated in Bangladesh in February 2007. Subsequently, clades 2.2.2, 2.3.4.2 and 2.3.2.1a were identified in Bangladesh, and our previous surveillance data revealed that by the end of 2014, the circulating viruses exclusively comprised clade 2.3.2.1a. We recently determined the status of circulating avian influenza viruses in Bangladesh by conducting surveillance of live poultry markets and waterfowl in wetland areas from February 2015 through February 2016. Until April 2015, clade 2.3.2.1a persisted without any change in genotype. However, in June 2015, we identified a new genotype of H5N1 viruses, clade 2.3.2.1a, which quickly became predominant. These newly emerged H5N1 viruses contained the hemagglutinin, neuraminidase and matrix genes of circulating 2.3.2.1a Bangladeshi H5N1 viruses and five other genes of low pathogenic Eurasian-lineage avian influenza A viruses. Some of these internal genes were closely related to those of low pathogenic viruses isolated from ducks in free-range farms and wild birds in a wetland region of northeastern Bangladesh, where commercially raised domestic ducks have frequent contact with migratory birds. These findings indicate that migratory birds of the Central Asian flyway and domestic ducks in the free-range farms in Tanguar haor-like wetlands played an important role in the emergence of this novel genotype of highly pathogenic H5N1 viruses.

  11. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  12. Probable Tiger-to-Tiger Transmission of Avian Influenza H5N1

    Science.gov (United States)

    Thanawongnuwech, Roongroje; Amonsin, Alongkorn; Tantilertcharoen, Rachod; Damrongwatanapokin, Sudarat; Theamboonlers, Apiradee; Payungporn, Sunchai; Nanthapornphiphat, Kamonchart; Ratanamungklanon, Somchuan; Tunak, Eakchai; Songserm, Thaweesak; Vivatthanavanich, Veravit; Lekdumrongsak, Thawat; Kesdangsakonwut, Sawang; Tunhikorn, Schwann

    2005-01-01

    During the second outbreak of avian influenza H5N1 in Thailand, probable horizontal transmission among tigers was demonstrated in the tiger zoo. Sequencing and phylogenetic analysis of those viruses showed no differences from the first isolate obtained in January 2004. This finding has implications for influenza virus epidemiology and pathogenicity in mammals. PMID:15890122

  13. Highly (H5N1 and low (H7N2 pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    Directory of Open Access Journals (Sweden)

    Kateri Bertran

    Full Text Available An experimental infection with highly pathogenic avian influenza (HPAI and low pathogenic avian influenza (LPAI viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006 or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009, both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR, which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds

  14. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    Science.gov (United States)

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  15. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    Directory of Open Access Journals (Sweden)

    Ibrahim Thabet Hagag

    Full Text Available Highly pathogenic avian influenza virus (HPAIV H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA and nonstructural proteins (NS among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF in the cleavage site in HA and glutamate at position 92 (D92E in NS1. This is the first report of the pathogenicity

  16. Induction of long-term protective immune responses by influenza H5N1 virus-like particles.

    Directory of Open Access Journals (Sweden)

    Sang-Moo Kang

    Full Text Available Recurrent outbreaks of highly pathogenic H5N1 avian influenza virus pose a threat of eventually causing a pandemic. Early vaccination of the population would be the single most effective measure for the control of an emerging influenza pandemic.Influenza virus-like particles (VLPs produced in insect cell-culture substrates do not depend on the availability of fertile eggs for vaccine manufacturing. We produced VLPs containing influenza A/Viet Nam1203/04 (H5N1 hemagglutinin, neuraminidase, and matrix proteins, and investigated their preclinical immunogenicity and protective efficacy. Mice immunized intranasally with H5N1 VLPs developed high levels of H5N1 specific antibodies and were 100% protected against a high dose of homologous H5N1 virus infection at 30 weeks after immunization. Protection is likely to be correlated with humoral and cellular immunologic memory at systemic and mucosal sites as evidenced by rapid anamnestic responses to re-stimulation with viral antigen in vivo and in vitro.These results provide support for clinical evaluation of H5N1 VLP vaccination as a public health intervention to mitigate a possible pandemic of H5N1 influenza.

  17. Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007.

    Directory of Open Access Journals (Sweden)

    Xiu-Feng Wan

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA, continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.

  18. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    Science.gov (United States)

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  19. Inefficient Transmission of H5N1 Influenza Viruses in a Ferret Contact Model▿

    OpenAIRE

    Yen, Hui-Ling; Lipatov, Aleksandr S.; Ilyushina, Natalia A.; Govorkova, Elena A.; Franks, John; Yilmaz, Neziha; Douglas, Alan; Hay, Alan; Krauss, Scott; Rehg, Jerold E.; Hoffmann, Erich; Webster, Robert G.

    2007-01-01

    The abilities to infect and transmit efficiently among humans are essential for a novel influenza A virus to cause a pandemic. To evaluate the pandemic potential of widely disseminated H5N1 influenza viruses, a ferret contact model using experimental groups comprised of one inoculated ferret and two contact ferrets was used to study the transmissibility of four human H5N1 viruses isolated from 2003 to 2006. The effects of viral pathogenicity and receptor binding specificity (affinity to synth...

  20. Rapid detection of the avian influenza virus H5N1 subtype in Egypt ...

    African Journals Online (AJOL)

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Egypt ... Effective diagnosis and control management are needed to control the disease. ... Reconstituted clinical samples consisting of H5 AIVs mixed with ...

  1. The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhou

    Full Text Available The variation of highly pathogenic avian influenza H5N1 virus results in gradually increased virulence in poultry, and human cases continue to accumulate. The neuraminidase (NA stalk region of influenza virus varies considerably and may associate with its virulence. The NA stalk region of all N1 subtype influenza A viruses can be divided into six different stalk-motifs, H5N1/2004-like (NA-wt, WSN-like, H5N1/97-like, PR/8-like, H7N1/99-like and H5N1/96-like. The NA-wt is a special NA stalk-motif which was first observed in H5N1 influenza virus in 2000, with a 20-amino acid deletion in the 49(th to 68(th positions of the stalk region. Here we show that there is a gradual increase of the special NA stalk-motif in H5N1 isolates from 2000 to 2007, and notably, the special stalk-motif is observed in all 173 H5N1 human isolates from 2004 to 2007. The recombinant H5N1 virus with the special stalk-motif possesses the highest virulence and pathogenicity in chicken and mice, while the recombinant viruses with the other stalk-motifs display attenuated phenotype. This indicates that the special stalk-motif has contributed to the high virulence and pathogenicity of H5N1 isolates since 2000. The gradually increasing emergence of the special NA stalk-motif in H5N1 isolates, especially in human isolates, deserves attention by all.

  2. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds

    Science.gov (United States)

    Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.; Muzaffar, Sabir Bin; Hill, Nichola J.; Yan, Baoping; Xiao, Xiangming; Lei, Fumin; Li, Tianxian; Schwarzbach, Steven E.; Howell, Judd A.

    2010-01-01

    The emergence of highly pathogenic avian influenza (HPAI) viruses has raised concerns about the role of wild birds in the spread and persistence of the disease. In 2005, an outbreak of the highly pathogenic subtype H5N1 killed more than 6,000 wild waterbirds at Qinghai Lake, China. Outbreaks have continued to periodically occur in wild birds at Qinghai Lake and elsewhere in Central China and Mongolia. This region has few poultry but is a major migration and breeding area for waterbirds in the Central Asian Flyway, although relatively little is known about migratory movements of different species and connectivity of their wetland habitats. The scientific debate has focused on the role of waterbirds in the epidemiology, maintenance and spread of HPAI H5N1: to what extent are they victims affected by the disease, or vectors that have a role in disease transmission? In this review, we summarise the current knowledge of wild bird involvement in the ecology of HPAI H5N1. Specifically, we present details on: (1) origin of HPAI H5N1; (2) waterbirds as LPAI reservoirs and evolution into HPAI; (3) the role of waterbirds in virus spread and persistence; (4) key biogeographic regions of outbreak; and (5) applying an ecological research perspective to studying AIVs in wild waterbirds and their ecosystems.

  3. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses.

    Science.gov (United States)

    Taylor, Janette; McPhie, Kenneth; Druce, Julian; Birch, Chris; Dwyer, Dominic E

    2009-11-01

    Twenty rapid antigen assays were compared for their ability to detect influenza using dilutions of virus culture supernatants from human isolates of influenza A H5N1 (clade 1 and 2 strains), H3N2 and H1N1 viruses, and influenza B. There was variation amongst the rapid antigen assays in their ability to detect different influenza viruses. Six of the 12 assays labeled as distinguishing between influenza A and B had comparable analytical sensitivities for detecting both influenza A H5N1 strains, although their ability to detect influenza A H3N2 and H1N1 strains varied. The two assays claiming H5 specificity did not detect either influenza A H5N1 strains, and the two avian influenza-specific assays detected influenza A H5N1, but missed some influenza A H3N2 virus supernatants. Clinical trials of rapid antigen tests for influenza A H5N1 are limited. For use in a pandemic where novel influenza strains are circulating (such as the current novel influenza A H1N1 09 virus), rapid antigen tests should ideally have comparable sensitivity and specificity for the new strains as for co-circulating seasonal influenza strains.

  4. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith); O. Krone (Oliver); P.U. Wolf (Peter U.); M.W.G. van de Bildt (Marco); G. van Amerongen (Geert); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2015-01-01

    textabstractRaptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania,

  5. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017.

    Science.gov (United States)

    Beerens, Nancy; Koch, Guus; Heutink, Rene; Harders, Frank; Vries, D P Edwin; Ho, Cynthia; Bossers, Alex; Elbers, Armin

    2018-04-17

    A novel highly pathogenic avian influenza A(H5N6) virus affecting wild birds and commercial poultry was detected in the Netherlands in December 2017. Phylogenetic analysis demonstrated that the virus is a reassortant of H5N8 clade 2.3.4.4 viruses and not related to the Asian H5N6 viruses that caused human infections.

  6. Avian influenza H5N1 viral and bird migration networks in Asia

    Science.gov (United States)

    Tian, Huaivu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

  7. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    Science.gov (United States)

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  8. Immunomodulatory Activity and Protective Effects of Polysaccharide from Eupatorium adenophorum Leaf Extract on Highly Pathogenic H5N1 Influenza Infection

    Directory of Open Access Journals (Sweden)

    Yi Jin

    2013-01-01

    Full Text Available The development of novel broad-spectrum, antiviral agents against H5N1 infection is urgently needed. In this study, we evaluated the immunomodulatory activities and protective effect of Eupatorium adenophorum polysaccharide (EAP against the highly pathogenic H5N1 subtype influenza virus. EAP treatment significantly increased the production of IL-6, TNF-α, and IFN-γ both in vivo and in vitro as measured by qPCR and ELISA. In a mouse infection model, intranasal administration of EAP at a dose of 25 mg/kg body weight prior to H5N1 viral challenge efficiently inhibited viral replication, decreased lung lesions, and increased survival rate. We further evaluated the innate immune recognition of EAP, as this process is regulated primarily Dectin-1 and mannose receptor (MR. These results indicate that EAP may have immunomodulatory properties and a potential prophylactic effect against H5N1 influenza infection. Our investigation suggests an alternative strategy for the development of novel antiinfluenza agents and benefits of E. adenophorum products.

  9. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    Science.gov (United States)

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  10. Non-Attenuation Of Highly Pathogenic Avian Influenza H5N1 By ...

    African Journals Online (AJOL)

    Avian influenza H5N1 represents one of the most researched viruses in laboratories world-wide in recent times with regards to its epidemiology, ecology, biology and geography. The virus has caused 409 human cases and 256 human fatalities to date. Some laboratory activities and other lab related works predispose ...

  11. Public health concerns of highly pathogenic avian influenza H5N1 endemicity in Africa

    Directory of Open Access Journals (Sweden)

    Olubunmi Gabriel Fasanmi

    2017-10-01

    Full Text Available Highly pathogenic avian influenza virus (HPAIV H5N1 was first officially reported in Africa in 2006; thereafter this virus has spread rapidly from Nigeria to 11 other African countries. This study was aimed at utilizing data from confirmed laboratory reports to carry out a qualitative evaluation of the factors responsible for HPAI H5N1 persistence in Africa and the public health implications; and to suggest appropriate control measures. Relevant publications were sought from data banks and repositories of FAO, OIE, WHO, and Google scholars. Substantiated data on HPAI H5N1 outbreaks in poultry in Africa and in humans across the world were mined. HPAI H5N1 affects poultry and human populations, with Egypt having highest human cases (346 globally. Nigeria had a reinfection from 2014 to 2015, with outbreaks in Cote d'Ivoire, Ghana, Niger, Nigeria, and Burkina Faso throughout 2016 unabated. The persistence of this virus in Africa is attributed to the survivability of HPAIV, ability to evolve other subtypes through genetic reassortment, poor biosecurity compliance at the live bird markets and poultry farms, husbandry methods and multispecies livestock farming, poultry vaccinations, and continuous shedding of HPAIV, transboundary transmission of HPAIV through poultry trades; and transcontinental migratory birds. There is, therefore, the need for African nations to realistically reassess their status, through regular surveillance and be transparent with HPAI H5N1 outbreak data. Also, it is important to have an understanding of HPAIV migration dynamics which will be helpful in epidemiological modeling, disease prevention, control and eradication measures.

  12. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    Science.gov (United States)

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  13. Efficacy of two H5N9-inactivated vaccines against challenge with a recent H5N1 highly pathogenic avian influenza isolate from a chicken in Thailand.

    Science.gov (United States)

    Bublot, Michel; Le Gros, François-Xavier; Nieddu, Daniela; Pritchard, Nikki; Mickle, Thomas R; Swayne, David E

    2007-03-01

    The objective of this study was to compare the efficacy of two avian influenza (AI) H5-inactivated vaccines containing either an American (A/turkey/Wisconsin/68 H5N9; H5N9-WI) or a Eurasian isolate (A/chicken/Italy/22A/98 H5N9; H5N9-It). Three-week-old specific pathogen-free chickens were vaccinated once and challenged 3 wk later with a H5N1 highly pathogenic AI (HPAI) virus isolated from a chicken in Thailand in 2004. All unvaccinated challenged birds died within 2 days, whereas 90% and 100% of chickens vaccinated with H5N9-WI and H5N9-It, respectively, were protected against morbidity and mortality. Both vaccines prevented cloacal shedding and significantly reduced oral shedding of the challenge HPAI virus. Additional chickens (vaccinated or unvaccinated) were placed in contact with the directly challenged birds 18 hr after challenge. All unvaccinated chickens in contact with unvaccinated challenged birds died within 3 days after contact, whereas unvaccinated chickens in contact with vaccinated challenged birds either showed a significantly delayed mortality or did not become infected. All vaccinated contacts were protected against clinical signs, and most chickens did not shed detectable amount of HPAI virus. Altogether, these data indicate that both vaccines protected very well against morbidity and mortality and reduced or prevented shedding induced by direct or contact exposure to Asian H5N1 HPAI virus.

  14. New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus.

    Science.gov (United States)

    Rohde, Jörg; Amann, Ralf; Rziha, Hanns-Joachim

    2013-01-01

    Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.

  15. New Orf virus (Parapoxvirus recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus.

    Directory of Open Access Journals (Sweden)

    Jörg Rohde

    Full Text Available Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA or nucleoprotein (NP of the highly pathogenic avian influenza virus (HPAIV H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m. injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8 influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.

  16. A study of analysis PB1-F2 protein of Influenza Viruses A/H1N1pdm09, A/ H3N2, and A/H5N1

    Directory of Open Access Journals (Sweden)

    Hana Apsari Pawestri

    2016-07-01

    Full Text Available Abstrak Tujuan. Protein PB1-F2 (polymerase basic 1-frame 2 adalah protein terbaru yang ditemukan pada virus Influenza dan telah terbukti berperan dalam induksi kematian sel dan patogenitas. Tujuan dari tulisan ini adalah untuk menganalisis protein PB1-F2 pada virus Influenza A/H5N1 dan A/H1N1pdm09. Metode. Kami melakukan pencarian data yang relevan yaitu sekuens gen virus Influenza A/H5N1 dan A/H1N1pdm09 dari Gen Bank National Center for Biotechnology Information (NCBI selama tahun 1997-2015. Data yang digunakan adalah data sekuens nukleotida gen PB1 (polymerase basic1 virus influenza A/H5N1 dan A/H1N1pdm09. Kemudian dilakukan analisis alignment untuk mengetahui variasi protein dan mutasi yang berhubungan dengan patogenitas dan virulensi. Hasil. Kami melakukan penelitian terhadap sekuens PB1-F2 sebanyak 3262 influenza A/H5N1 dan 2472 Influenza A/H1N1pdm09. Hasil analisis menunjukkan bahwa semua sekuens A/H5N1 memiliki panjang yang penuh sebanyak 90 asam amino, kecuali influenza pandemi 2009 hanya memiliki panjang 87 asam amino. Kemudian, ditemukan mutasi yang berhubungan dengan virulensi yang ditunjukan dengan perubahan asam amino Asparagin (N menjadi Serin (S. Mutasi tersebut terjadi pada Influenza A/H5N1 sebanyak 8.5% dan Influenza A/H1N1pdm09 sebanyak 0.5%. Kesimpulan. Ditemukan beberapa variasi panjang asam amino dan mutasi penting pada sekuens PB1-F2 dari subtipe yang berbeda yaitu influenza A/H5N1 dan A/H1N1pdm09  yang mengindikasikan seleksi spesifik karena introduksi dan adaptasi terhadap inang yang berbeda. Diperlukan penelitian lanjutan untuk lebih memahami variasi dan kontribusi protein PB1-F2 tersebut terhadap virulensi dan patogenitas virus Influenza. Kata kunci : Patogenesis, Virus Influenza, Protein  PB1-F2 Abstract Aim. Influenza virus PB1-F2 (polymerase basic 1-frame 2 protein is a novel protein previously shown to be involved in cell death induction and pathogenesis. Here we analysis the PB1-F2 protein of Influenza virus A/H

  17. A study of analysis PB1-F2 protein of Influenza Viruses A/H1N1pdm09, A/ H3N2, and A/H5N1

    Directory of Open Access Journals (Sweden)

    Hana Apsari Pawestri

    2016-07-01

    Full Text Available Abstrak Tujuan. Protein PB1-F2 (polymerase basic 1-frame 2 adalah protein terbaru yang ditemukan pada virus Influenza dan telah terbukti berperan dalam induksi kematian sel dan patogenitas. Tujuan dari tulisan ini adalah untuk menganalisis protein PB1-F2 pada virus Influenza A/H5N1 dan A/H1N1pdm09. Metode. Kami melakukan pencarian data yang relevan yaitu sekuens gen virus Influenza A/H5N1 dan A/H1N1pdm09 dari Gen Bank National Center for Biotechnology Information (NCBI selama tahun 1997-2015. Data yang digunakan adalah data sekuens nukleotida gen PB1 (polymerase basic1 virus influenza A/H5N1 dan A/H1N1pdm09. Kemudian dilakukan analisis alignment untuk mengetahui variasi protein dan mutasi yang berhubungan dengan patogenitas dan virulensi. Hasil. Kami melakukan penelitian terhadap sekuens PB1-F2 sebanyak 3262 influenza A/H5N1 dan 2472 Influenza A/H1N1pdm09. Hasil analisis menunjukkan bahwa semua sekuens A/H5N1 memiliki panjang yang penuh sebanyak 90 asam amino, kecuali influenza pandemi 2009 hanya memiliki panjang 87 asam amino. Kemudian, ditemukan mutasi yang berhubungan dengan virulensi yang ditunjukan dengan perubahan asam amino Asparagin (N menjadi Serin (S. Mutasi tersebut terjadi pada Influenza A/H5N1 sebanyak 8.5% dan Influenza A/H1N1pdm09 sebanyak 0.5%. Kesimpulan. Ditemukan beberapa variasi panjang asam amino dan mutasi penting pada sekuens PB1-F2 dari subtipe yang berbeda yaitu influenza A/H5N1 dan A/H1N1pdm09  yang mengindikasikan seleksi spesifik karena introduksi dan adaptasi terhadap inang yang berbeda. Diperlukan penelitian lanjutan untuk lebih memahami variasi dan kontribusi protein PB1-F2 tersebut terhadap virulensi dan patogenitas virus Influenza. Kata kunci : Patogenesis, Virus Influenza, Protein  PB1-F2 Abstract Aim. Influenza virus PB1-F2 (polymerase basic 1-frame 2 protein is a novel protein previously shown to be involved in cell death induction and pathogenesis. Here we analysis the PB1-F2 protein of Influenza virus A/H

  18. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh

    Science.gov (United States)

    Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M.; Xiao, Xiangming

    2016-01-01

    Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease statistically similar to or dissimilar from their neighbors. Three significant risk factors associated to HPAI H5N1 virus outbreaks were identified; the quadratic log-transformation of human population density [humans per square kilometer, P = 0.01, OR 1.15 (95% CI: 1.03–1.28)], the log-transformation of the total commercial poultry population [number of commercial poultry per sub-district, P Bangladesh to target surveillance and to concentrate response efforts in areas where disease is likely to occur. Concentrating response efforts may help to combat HPAI more effectively, reducing the environmental viral load and so reducing the number of disease incidents. PMID:20554337

  19. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species.

    Science.gov (United States)

    Hall, Jeffrey S; Franson, J Christian; Gill, Robert E; Meteyer, Carol U; TeSlaa, Joshua L; Nashold, Sean; Dusek, Robert J; Ip, Hon S

    2011-09-01

    Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. The infectious dose of HPAIV H5N1 in dunlin was determined to be 10(1.7) EID(50)/100 μl and that the lethal dose was 10(1.83) EID(50)/100 μl. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (10(4) EID(50)) and smaller amounts cloacally. Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3-5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation. Published 2011. This article is a US Government work and is in the public domain in the USA.

  20. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    Science.gov (United States)

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  1. Pathogenesis of Highly Pathogenic Avian Influenza (HPAI) A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally

    OpenAIRE

    Löndt , Brandon Z.; Nunez , Alejandro; Banks , Jill; Nili , Hassan; Johnson , Linda K; Alexander , Dennis

    2008-01-01

    Abstract Asian H5N1 (hereafter referred to as panzootic H5N1) highly pathogenic avian influenza (HPAI) virus has caused large numbers of deaths in both poultry and wild bird populations. Recent isolates of this virus have been reported to cause disease and death in commercial ducks, which has not been seen with other HPAI viruses. However, little is known about the dissemination of this H5N1 within the organs and the cause of death in infected ducks. Nineteen 4-week-old Pekin ducks...

  2. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    Science.gov (United States)

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  3. Seroprevalence of antibodies against highly pathogenic avian influenza A (H5N1 virus among poultry workers in Bangladesh, 2009.

    Directory of Open Access Journals (Sweden)

    Sharifa Nasreen

    Full Text Available We conducted a cross-sectional study in 2009 to determine the seroprevalence and risk factors for highly pathogenic avian influenza A (H5N1 [HPAI H5N1] virus antibodies among poultry workers at farms and live bird markets with confirmed/suspected poultry outbreaks during 2009 in Bangladesh. We tested sera by microneutralization assay using A/Bangladesh/207095/2008 (H5N1; clade 2.2.2 virus with confirmation by horse red blood cell hemagglutination inhibition and H5-specific Western blot assays. We enrolled 212 workers from 87 farms and 210 workers from three live bird markets. One hundred and two farm workers (48% culled poultry. One hundred and ninety-three farm workers (91% and 178 market workers (85% reported direct contact with poultry that died during a laboratory confirmed HPAI H5N1 poultry farm outbreak or market poultry die-offs from suspected HPAI H5N1. Despite exposure to sick poultry, no farm or market poultry workers were seropositive for HPAI H5N1 virus antibodies (95% confidence interval 0-1%.

  4. Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis.

    OpenAIRE

    Nefkens , Isabelle; Garcia , Jean-Michel; Ling , Chu Shui; Lagarde , Nadège; Nicholls , John; Tang , Dong Jiang; Peiris , Malik; Buchy , Philippe; Altmeyer , Ralf

    2007-01-01

    BACKGROUND: Highly pathogenic avian influenza (HPAI) H5N1 has spread globally in birds and infected over 270 humans with an apparently high mortality rate. Serologic studies to determine the extent of asymptomatic H5N1 infection in humans and other mammals and to investigate the immunogenicity of current H5N1 vaccine candidates have been hampered by the biosafety requirements needed for H5N1 micro-neutralization tests. OBJECTIVE: Development of a serodiagnostic tool for highly pathogenic infl...

  5. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage.

    Science.gov (United States)

    Brown, Justin D; Stallknecht, David E; Swayne, David E

    2008-01-01

    The role of wild birds in the epidemiology of the Asian lineage highly pathogenic avian influenza (HPAI) virus subtype H5N1 epizootic and their contribution to the spread of the responsible viruses in Eurasia and Africa are unclear. To better understand the potential role of swans and geese in the epidemiology of this virus, we infected 4 species of swans and 2 species of geese with an HPAI virus of Asian lineage recovered from a whooper swan in Mongolia in 2005, A/whooper swan/Mongolia/244/2005 (H5N1). The highest mortality rates were observed in swans, and species-related differences in clinical illness and viral shedding were evident. These results suggest that the potential for HPAI (H5N1) viral shedding and the movement of infected birds may be species-dependent and can help explain observed deaths associated with HPAI (H5N1) infection in anseriforms in Eurasia.

  6. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation.

    Directory of Open Access Journals (Sweden)

    Renee W Y Chan

    Full Text Available Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004 and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998, the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of alpha2-6-linked sialic acid receptors and human airway trypsin-like (HAT protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the

  7. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    Directory of Open Access Journals (Sweden)

    Hafez M. Hafez

    2012-11-01

    Full Text Available Highly pathogenic avian influenza virus (HPAIV of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry.

  8. Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1 influenza virus in ferrets.

    Directory of Open Access Journals (Sweden)

    Natalia A Ilyushina

    2010-05-01

    Full Text Available The acquisition of neuraminidase (NA inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1 influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H. NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC(50s increased 5- to 940-fold. Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (V(max, K(m and K(i of the avian-like N1 NA glycoproteins were highly consistent with their IC(50 values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 10(6 EID(50 dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (P<0.01 and inflammation in the lungs compared to the wild-type virus. Our results suggest that highly pathogenic H5N1 variants carrying mutations within the NA active site that decrease susceptibility to NA inhibitors may possess increased

  9. Estimation of transmission parameters of H5N1 avian influenza virus in chickens.

    Directory of Open Access Journals (Sweden)

    Annemarie Bouma

    2009-01-01

    Full Text Available Despite considerable research efforts, little is yet known about key epidemiological parameters of H5N1 highly pathogenic influenza viruses in their avian hosts. Here we show how these parameters can be estimated using a limited number of birds in experimental transmission studies. Our quantitative estimates, based on Bayesian methods of inference, reveal that (i the period of latency of H5N1 influenza virus in unvaccinated chickens is short (mean: 0.24 days; 95% credible interval: 0.099-0.48 days; (ii the infectious period of H5N1 virus in unvaccinated chickens is approximately 2 days (mean: 2.1 days; 95%CI: 1.8-2.3 days; (iii the reproduction number of H5N1 virus in unvaccinated chickens need not be high (mean: 1.6; 95%CI: 0.90-2.5, although the virus is expected to spread rapidly because it has a short generation interval in unvaccinated chickens (mean: 1.3 days; 95%CI: 1.0-1.5 days; and (iv vaccination with genetically and antigenically distant H5N2 vaccines can effectively halt transmission. Simulations based on the estimated parameters indicate that herd immunity may be obtained if at least 80% of chickens in a flock are vaccinated. We discuss the implications for the control of H5N1 avian influenza virus in areas where it is endemic.

  10. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.

    Science.gov (United States)

    Kim, Shin-Hee

    2018-03-09

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  11. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt

    Directory of Open Access Journals (Sweden)

    Shin-Hee Kim

    2018-03-01

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1 altering amino acids in hemagglutinin (HA that enable binding affinity to human-type receptors, (2 loss of the glycosylation site and 130 loop in the HA protein and (3 mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  12. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    Science.gov (United States)

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  13. Reassortant H9N2 influenza viruses containing H5N1-like PB1 genes isolated from black-billed magpies in Southern China.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses. Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94 HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98 PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1 PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46 discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.

  14. Exposure to a low pathogenic A/H7N2 virus in chickens protects against highly pathogenic A/H7N1 virus but not against subsequent infection with A/H5N1.

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    Full Text Available Recent evidences have demonstrated that the presence of low pathogenic avian influenza viruses (LPAIV may play an important role in host ecology and transmission of avian influenza viruses (AIV. While some authors have clearly demonstrated that LPAIV can mutate to render highly pathogenic avian influenza viruses (HPAIV, others have shown that their presence could provide the host with enough immunological memory to resist re-infections with HPAIV. In order to experimentally study the role of pre-existing host immunity, chickens previously infected with H7N2 LPAIV were subsequently challenged with H7N1 HPAIV. Pre-infection of chickens with H7N2 LAPIV conferred protection against the lethal challenge with H7N1 HPAIV, dramatically reducing the viral shedding, the clinical signs and the pathological outcome. Correlating with the protection afforded, sera from chickens primed with H7N2 LPAIV reacted with the H7-AIV subtype in hemagglutination inhibition assay and specifically with the N2-neuraminidase antigen. Conversely, subsequent exposure to H5N1 HPAIV resulted in a two days-delay on the onset of disease but all chickens died by 7 days post-challenge. Lack of protection correlated with the absence of H5-hemagglutining inhibitory antibodies prior to H5N1 HPAIV challenge. Our data suggest that in naturally occurring outbreaks of HPAIV, birds with pre-existing immunity to LPAIV could survive lethal infections with HA-homologous HPAIV but not subsequent re-infections with HA-heterologous HPAIV. These results could be useful to better understand the dynamics of AIV in chickens and might help in future vaccine formulations.

  15. Characterization of a non-pathogenic H5N1 influenza virus isolated from a migratory duck flying from Siberia in Hokkaido, Japan, in October 2009

    Directory of Open Access Journals (Sweden)

    Okamatsu Masatoshi

    2011-02-01

    Full Text Available Abstract Background Infection with H5N1 highly pathogenic avian influenza viruses (HPAIVs of domestic poultry and wild birds has spread to more than 60 countries in Eurasia and Africa. It is concerned that HPAIVs may be perpetuated in the lakes in Siberia where migratory water birds nest in summer. To monitor whether HPAIVs circulate in migratory water birds, intensive surveillance of avian influenza has been performed in Mongolia and Japan in autumn each year. Until 2008, there had not been any H5N1 viruses isolated from migratory water birds that flew from their nesting lakes in Siberia. In autumn 2009, A/mallard/Hokkaido/24/09 (H5N1 (Mal/Hok/24/09 was isolated from a fecal sample of a mallard (Anas platyrhynchos that flew from Siberia to Hokkaido, Japan. The isolate was assessed for pathogenicity in chickens, domestic ducks, and quails and analyzed antigenically and phylogenetically. Results No clinical signs were observed in chickens inoculated intravenously with Mal/Hok/24/09 (H5N1. There was no viral replication in chickens inoculated intranasally with the isolate. None of the domestic ducks and quails inoculated intranasally with the isolate showed any clinical signs. There were no multiple basic amino acid residues at the cleavage site of the hemagglutinin (HA of the isolate. Each gene of Mal/Hok/24/09 (H5N1 is phylogenetically closely related to that of influenza viruses isolated from migratory water birds that flew from their nesting lakes in autumn. Additionally, the antigenicity of the HA of the isolate was similar to that of the viruses isolated from migratory water birds in Hokkaido that flew from their northern territory in autumn and different from those of HPAIVs isolated from birds found dead in China, Mongolia, and Japan on the way back to their northern territory in spring. Conclusion Mal/Hok/24/09 (H5N1 is a non-pathogenic avian influenza virus for chickens, domestic ducks, and quails, and is antigenically and genetically

  16. Protective efficacy of Newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic H5N1 influenza in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Lisette A H M Cornelissen

    Full Text Available BACKGROUND: Highly pathogenic avian influenza virus (HPAIV causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV that express influenza hemagglutinin (HA have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5 or a soluble trimeric form thereof (NDV-sH5(3. A single intramuscular immunization with NDV-sH5(3 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH5(3 was less protective than NDV-H5 (50% vs 80% protection when administered via the respiratory tract. The NDV-sH5(3 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. CONCLUSIONS/SIGNIFICANCE: Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant

  17. Cross-protection against lethal H5N1 challenge ferrets with an adjuvanted pandemic influenza vaccine

    NARCIS (Netherlands)

    B. Baras (Benoît); K.J. Stittelaar (Koert); J.H. Simon (James); R.J.M.M. Thoolen (Robert); S.P. Mossman (Sally); F.H. Pistoor (Frank); G. van Amerongen (Geert); M.A. Wettendorff (Martine); E. Hanon (Emmanuel); A.D.M.E. Osterhaus (Albert)

    2008-01-01

    textabstractBackground. Unprecedented spread between birds and mammals of highly pathogenic avian influenza viruses (HPAI) of the H5N1 subtype has resulted in hundreds of human infections with a high fatality rate. This has highlighted the urgent need for the development of H5N1 vaccines that can be

  18. Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    NARCIS (Netherlands)

    Cornelissen, A.H.M.; Leeuw, de O.S.; Tacken, M.G.J.; Klos, H.C.; Vries, de R.P.; Boer-Luijtze, de E.A.; Zoelen-Bos, van D.J.; Rigter, A.; Rottier, P.J.M.; Moormann, R.J.M.; Haan, de C.A.M.

    2012-01-01

    Background: Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to

  19. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Tseng

    Full Text Available Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14, a reassortant virus between A/Vietnam/1194/2004 (H5N1 virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15 was generated and can grow over 10(8 TCID(50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.

  20. Novel H5N8 clade 2.3.4.4 highly pathogenic avian influenza virus in wild awuatic birds, Russia, 2016

    Science.gov (United States)

    H5N1 high pathogenicity avian influenza virus (HPAIV) emerged in 1996 in Guangdong China (Gs/GD) and has evolved into multiple genetic clades. Since 2008, HPAIV H5 clade 2.3.4 with N2, N5 and N8 neuraminidase subtypes have been identified in mainland China and outbreak of HPAIV H5N8 clade 2.3.4.4 ou...

  1. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    Science.gov (United States)

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  2. The chest X-ray manifestations of children with highly pathogenic H5N1 avian influenza virus infection (a report of 1 final diagnosis case and 1 borderline case)

    International Nuclear Information System (INIS)

    Jin Ke; Chen Hua; Tan Lihua; Yuan Youhong; Xiao Enhua; Luo Ruping; Li Wanging; Xu Heping

    2006-01-01

    Objective: To describe the chest X-ray manifestations of children with highly pathogenic H5N1 avian influenza virus infection. Methods: The pulmonary X-ray findings in 1 patient was confirmed by the World Health Organization infected H5N1 avian influenza vires and 1 borderline patient was retrospectively analyzed. Results: Both sides of lung field showed the cloudy and massive infiltration in chest X-ray film. The lesions of lung distributed extensively and symmetrically. Radiological dynamic changes showed the variation of the lesions of lung was quick in a short time. It had a characteristic of roving around. The lesions of lung appeared fibrosis at the period of the end. Conclusion: There are some radiographic characteristics in children with H5N1 avian influenza vires infection. It will be helpful for its diagnosis when getting familiar with its X-ray manifestations, but the final diagnosis is dependent on the epidemiology history and laboratory results. (authors)

  3. Using knowledge fusion to analyze avian influenza H5N1 in East and Southeast Asia.

    Directory of Open Access Journals (Sweden)

    Erjia Ge

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1, a disease associated with high rates of mortality in infected human populations, poses a serious threat to public health in many parts of the world. This article reports findings from a study aimed at improving our understanding of the spatial pattern of the highly pathogenic avian influenza, H5N1, risk in East-Southeast Asia where the disease is both persistent and devastating. Though many disciplines have made important contributions to our understanding of H5N1, it remains a challenge to integrate knowledge from different disciplines. This study applies genetic analysis that identifies the evolution of the H5N1 virus in space and time, epidemiological analysis that determines socio-ecological factors associated with H5N1 occurrence, and statistical analysis that identifies outbreak clusters, and then applies a methodology to formally integrate the findings of the three sets of methodologies. The present study is novel in two respects. First it makes the initiative attempt to use genetic sequences and space-time data to create a space-time phylogenetic tree to estimate and map the virus' ability to spread. Second, by integrating the results we are able to generate insights into the space-time occurrence and spread of H5N1 that we believe have a higher level of corroboration than is possible when analysis is based on only one methodology. Our research identifies links between the occurrence of H5N1 by area and a set of socio-ecological factors including altitude, population density, poultry density, and the shortest path distances to inland water, coastlines, migrating routes, railways, and roads. This study seeks to lay a solid foundation for the interdisciplinary study of this and other influenza outbreaks. It will provide substantive information for containing H5N1 outbreaks.

  4. Using knowledge fusion to analyze avian influenza H5N1 in East and Southeast Asia.

    Science.gov (United States)

    Ge, Erjia; Haining, Robert; Li, Chi Pang; Yu, Zuguo; Waye, Miu Yee; Chu, Ka Hou; Leung, Yee

    2012-01-01

    Highly pathogenic avian influenza (HPAI) H5N1, a disease associated with high rates of mortality in infected human populations, poses a serious threat to public health in many parts of the world. This article reports findings from a study aimed at improving our understanding of the spatial pattern of the highly pathogenic avian influenza, H5N1, risk in East-Southeast Asia where the disease is both persistent and devastating. Though many disciplines have made important contributions to our understanding of H5N1, it remains a challenge to integrate knowledge from different disciplines. This study applies genetic analysis that identifies the evolution of the H5N1 virus in space and time, epidemiological analysis that determines socio-ecological factors associated with H5N1 occurrence, and statistical analysis that identifies outbreak clusters, and then applies a methodology to formally integrate the findings of the three sets of methodologies. The present study is novel in two respects. First it makes the initiative attempt to use genetic sequences and space-time data to create a space-time phylogenetic tree to estimate and map the virus' ability to spread. Second, by integrating the results we are able to generate insights into the space-time occurrence and spread of H5N1 that we believe have a higher level of corroboration than is possible when analysis is based on only one methodology. Our research identifies links between the occurrence of H5N1 by area and a set of socio-ecological factors including altitude, population density, poultry density, and the shortest path distances to inland water, coastlines, migrating routes, railways, and roads. This study seeks to lay a solid foundation for the interdisciplinary study of this and other influenza outbreaks. It will provide substantive information for containing H5N1 outbreaks.

  5. H7N9 and H5N1 avian influenza suitability models for China: accounting for new poultry and live-poultry markets distribution data.

    Science.gov (United States)

    Artois, Jean; Lai, Shengjie; Feng, Luzhao; Jiang, Hui; Zhou, Hang; Li, Xiangping; Dhingra, Madhur S; Linard, Catherine; Nicolas, Gaëlle; Xiao, Xiangming; Robinson, Timothy P; Yu, Hongjie; Gilbert, Marius

    2017-01-01

    In the last two decades, two important avian influenza viruses infecting humans emerged in China, the highly pathogenic avian influenza (HPAI) H5N1 virus in the late nineties, and the low pathogenic avian influenza (LPAI) H7N9 virus in 2013. China is home to the largest population of chickens (4.83 billion) and ducks (0.694 billion), representing, respectively 23.1 and 58.6% of the 2013 world stock, with a significant part of poultry sold through live-poultry markets potentially contributing to the spread of avian influenza viruses. Previous models have looked at factors associated with HPAI H5N1 in poultry and LPAI H7N9 in markets. However, these have not been studied and compared with a consistent set of predictor variables. Significant progress was recently made in the collection of poultry census and live-poultry market data, which are key potential factors in the distribution of both diseases. Here we compiled and reprocessed a new set of poultry census data and used these to analyse HPAI H5N1 and LPAI H7N9 distributions with boosted regression trees models. We found a limited impact of the improved poultry layers compared to models based on previous poultry census data, and a positive and previously unreported association between HPAI H5N1 outbreaks and the density of live-poultry markets. In addition, the models fitted for the HPAI H5N1 and LPAI H7N9 viruses predict a high risk of disease presence for the area around Shanghai and Hong Kong. The main difference in prediction between the two viruses concerned the suitability of HPAI H5N1 in north-China around the Yellow sea (outlined with Tianjin, Beijing, and Shenyang city) where LPAI H7N9 has not spread intensely.

  6. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase gene...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  7. Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008.

    Science.gov (United States)

    Okamatsu, Masatoshi; Tanaka, Tomohisa; Yamamoto, Naoki; Sakoda, Yoshihiro; Sasaki, Takashi; Tsuda, Yoshimi; Isoda, Norikazu; Kokumai, Norihide; Takada, Ayato; Umemura, Takashi; Kida, Hiroshi

    2010-12-01

    In April and May 2008, whooper swans (Cygnus cygnus) were found dead in Hokkaido in Japan. In this study, an adult whooper swan found dead beside Lake Saroma was pathologically examined and the identified H5N1 influenza virus isolates were genetically and antigenically analyzed. Pathological findings indicate that the swan died of severe congestive edema in the lungs. Phylogenetic analysis of the HA genes of the isolates revealed that they are the progeny viruses of isolates from poultry and wild birds in China, Russia, Korea, and Hong Kong. Antigenic analyses indicated that the viruses are distinguished from the H5N1 viruses isolated from wild birds and poultry before 2007. The chickens vaccinated with A/duck/Hokkaido/Vac-1/2004 (H5N1) survived for 14 days after challenge with A/whooper swan/Hokkaido/1/2008 (H5N1), although a small amount of the challenge virus was recovered from the tissues of the birds. These findings indicate that H5N1 highly pathogenic avian influenza viruses are circulating in wild birds in addition to domestic poultry in Asia and exhibit antigenic variation that may be due to vaccination.

  8. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt.

    Science.gov (United States)

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J; McKenzie, Pamela P; Kayali, Ghazi; Ali, Mohamed A

    2017-07-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

  9. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    International Nuclear Information System (INIS)

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M.; Kapczynski, Darrell R.

    2017-01-01

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.

  10. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    Energy Technology Data Exchange (ETDEWEB)

    Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Tretyakova, Irina; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Zsak, Aniko; Chrzastek, Klaudia [USDA SEPRL, 934 College Station Rd, Athens, GA (United States); Tumpey, Terrence M. [Influenza Division, CDC,1600 Clifton Road N.E., Atlanta, GA (United States); Kapczynski, Darrell R. [USDA SEPRL, 934 College Station Rd, Athens, GA (United States)

    2017-01-15

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.

  11. Pathology of natural infections by H5N1 highly pathogenic avian influenza virus in mute (Cygnus olor) and whooper (Cygnus cygnus) swans.

    Science.gov (United States)

    Teifke, J P; Klopfleisch, R; Globig, A; Starick, E; Hoffmann, B; Wolf, P U; Beer, M; Mettenleiter, T C; Harder, T C

    2007-03-01

    Mortality in wild aquatic birds due to infection with highly pathogenic avian influenza viruses (HPAIV) is a rare event. During the recent outbreak of highly pathogenic avian influenza in Germany, mortality due to H5N1 HPAIV was observed among mute and whooper swans as part of a rapid spread of this virus. In contrast to earlier reports, swans appeared to be highly susceptible and represented the mainly affected species. We report gross and histopathology and distribution of influenza virus antigen in mute and whooper swans that died after natural infection with H5N1 HPAIV. At necropsy, the most reliable lesions were multifocal hemorrhagic necrosis in the pancreas, pulmonary congestion and edema, and subepicardial hemorrhages. Major histologic lesions were acute pancreatic necrosis, multifocal necrotizing hepatitis, and lymphoplasmacytic encephalitis with neuronal necrosis. Adrenals displayed consistently scattered cortical and medullary necrosis. In spleen and Peyer's patches, mild lymphocyte necrosis was present. Immunohistochemical demonstration of HPAIV nucleoprotein in pancreas, adrenals, liver, and brain was strongly consistent with histologic lesions. In the brain, a large number of neurons and glial cells, especially Purkinje cells, showed immunostaining. Occasionally, ependymal cells of the spinal cord were also positive. In the lungs, influenza virus antigen was identified in a few endothelial cells but not within pneumocytes. The infection of the central nervous system supports the view that the neurotropism of H5N1 HPAIV leads to nervous disturbances with loss of orientation. More investigations are necessary to clarify the mechanisms of the final circulatory failure, lung edema, and rapid death of the swans.

  12. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    Science.gov (United States)

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  13. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI H5N1 in China.

    Directory of Open Access Journals (Sweden)

    Vincent Martin

    2011-03-01

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 was first encountered in 1996 in Guangdong province (China and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967. The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds and found that provinces with either outbreaks or HPAIV H5N1

  14. Seroprevalence survey of avian influenza A(H5N1) among live poultry market workers in northern Viet Nam, 2011.

    Science.gov (United States)

    Dung, Tham Chi; Dinh, Pham Ngoc; Nam, Vu Sinh; Tan, Luong Minh; Hang, Nguyen Le Khanh; Thanh, Le Thi; Mai, Le Quynh

    2014-01-01

    Highly pathogenic avian influenza A(H5N1) is endemic in poultry in Viet Nam. The country has experienced the third highest number of human infections with influenza A(H5N1) in the world. A study in Hanoi in 2001, before the epizootic that was identified in 2003, found influenza A(H5N1) specific antibodies in 4% of poultry market workers (PMWs). We conducted a seroprevalence survey to determine the seroprevalence of antibodies to influenza A(H5N1) among PMWs in Hanoi, Thaibinh and Thanhhoa provinces. We selected PMWs from five markets, interviewed them and collected blood samples. These were then tested using a horse haemagglutination inhibition assay and a microneutralization assay with all three clades of influenza A(H5N1) viruses that have circulated in Viet Nam since 2004. The overall seroprevalence was 6.1% (95% confidence interval: 4.6-8.3). The highest proportion (7.2%) was found in PMWs in Hanoi, and the majority of seropositive subjects (70.3%) were slaughterers or sellers of poultry. The continued circulation and evolution of influenza A(H5N1) requires comprehensive surveillance of both human and animal sites throughout the country with follow-up studies on PMWs to estimate the risk of avian-human transmission of influenza A(H5N1) in Viet Nam.

  15. Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available BACKGROUND: Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies. METHODOLOGY/PRINCIPAL FINDINGS: The hemagglutinin (HA and neuraminidase (NA matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains and a highly pathogenic avian influenza A virus (H5N1 were studied using a pseudotyped particle (pp system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005 could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern. CONCLUSIONS/SIGNIFICANCE: Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment.

  16. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    Science.gov (United States)

    Hall, Jeffrey S.; Ip, Hon S.; Franson, J.C.; Meteyer, C.; Nashold, Sean W.; Teslaa, Joshua L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  17. No evidence of transmission of H5N1 highly pathogenic avian influenza to humans after unprotected contact with infected wild swans.

    Science.gov (United States)

    Wallensten, A; Salter, M; Bennett, S; Brown, I; Hoschler, K; Oliver, I

    2010-02-01

    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains a public health threat as long as it circulates in wild and domestic birds. Information on the transmissibility of H5N1 HPAI from wild birds is needed for evidence-based public health advice. We investigated if transmission of H5N1 HPAI had taken place in people that had unprotected contact with infected wild mute swans during an incident at the Abbotsbury Swannery in Dorset, England. Thirteen people who had been exposed to infected swans were contacted and actively followed up for symptoms. Serology was taken after 30 days. We did not find evidence of transmission of H5N1 HPAI to humans during the incident. The incident provided a rare opportunity to study the transmissibility of the virus from wild birds to humans.

  18. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997-1998.

    Science.gov (United States)

    Bridges, Carolyn Buxton; Lim, Wilina; Hu-Primmer, Jean; Sims, Les; Fukuda, Keiji; Mak, K H; Rowe, Thomas; Thompson, William W; Conn, Laura; Lu, Xiuhua; Cox, Nancy J; Katz, Jacqueline M

    2002-04-15

    In 1997, outbreaks of highly pathogenic influenza A (H5N1) among poultry coincided with 18 documented human cases of H5N1 illness. Although exposure to live poultry was associated with human illness, no cases were documented among poultry workers (PWs). To evaluate the potential for avian-to-human transmission of H5N1, a cohort study was conducted among 293 Hong Kong government workers (GWs) who participated in a poultry culling operation and among 1525 PWs. Paired serum samples collected from GWs and single serum samples collected from PWs were considered to be anti-H5 antibody positive if they were positive by both microneutralization and Western blot testing. Among GWs, 3% were seropositive, and 1 seroconversion was documented. Among PWs, approximately 10% had anti-H5 antibody. More-intensive poultry exposure, such as butchering and exposure to ill poultry, was associated with having anti-H5 antibody. These findings suggest an increased risk for avian influenza infection from occupational exposure.

  19. Surveillance plan for the early detection of H5N1 highly pathogenic avian influenza virus in migratory birds in the United States: surveillance year 2009

    Science.gov (United States)

    Brand, Christopher J.

    2009-01-01

    Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.

  20. Pandemic influenza--including a risk assessment of H5N1.

    Science.gov (United States)

    Taubenberger, J K; Morens, D M

    2009-04-01

    Influenza pandemics and epidemics have apparently occurred since at least the Middle Ages. When pandemics appear, 50% or more of an affected population can be infected in a single year, and the number of deaths caused by influenza can dramatically exceed what is normally expected. Since 1500, there appear to have been 13 or more influenza pandemics. In the past 120 years there were undoubted pandemics in 1889, 1918, 1957, 1968, and 1977. Although most experts believe we will face another influenza pandemic, it is impossible to predict when it will appear, where it will originate, or how severe it will be. Nor is there agreement about the subtype of influenza virus most likely to cause the next pandemic. The continuing spread of H5N1 highly pathogenic avian influenza viruses has heightened interest in pandemic prediction. Despite uncertainties in the historical record of the pre-virology era, study of previous pandemics may help guide future pandemic planning and lead to a better understanding of the complex ecobiology underlying the formation of pandemic strains of influenza A viruses.

  1. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States.

    Science.gov (United States)

    Bevins, S N; Dusek, R J; White, C L; Gidlewski, T; Bodenstein, B; Mansfield, K G; DeBruyn, P; Kraege, D; Rowan, E; Gillin, C; Thomas, B; Chandler, S; Baroch, J; Schmit, B; Grady, M J; Miller, R S; Drew, M L; Stopak, S; Zscheile, B; Bennett, J; Sengl, J; Brady, Caroline; Ip, H S; Spackman, E; Killian, M L; Torchetti, M K; Sleeman, J M; Deliberto, T J

    2016-07-06

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  2. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    International Nuclear Information System (INIS)

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-01-01

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8 + T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  3. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1 are responsible for pathogenicity in ducks

    Directory of Open Access Journals (Sweden)

    Kajihara Masahiro

    2013-02-01

    Full Text Available Abstract Background Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1 (HK483, did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1 (MON3 isolated from a dead swan, however, caused neurological dysfunction and death in ducks. Method To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. Results None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. Conclusion The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity.

  4. Deaths among wild birds during highly pathogenic avian influenza A(H5N8) virus outbreak, the Netherlands

    NARCIS (Netherlands)

    Kleyheeg, Erik; Slaterus, Roy; Bodewes, Rogier; Rijks, Jolianne M.; Spierenburg, Marcel A.H.; Beerens, Nancy; Kelder, Leon; Poen, Marjolein J.; Stegeman, Jan A.; Fouchier, Ron A.M.; Kuiken, Thijs; Jeugd, van der Henk P.

    2017-01-01

    During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks

  5. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands

    NARCIS (Netherlands)

    Kleyheeg, Erik; Slaterus, Roy; Bodewes, Rogier; Rijks, Jolianne M.; Spierenburg, Marcel A.H.; Beerens, Nancy; Kelder, Leon; Poen, Marjolein J.; Stegeman, Jan A.; Fouchier, Ron A. M.; Kuiken, Thijs; Jeugd, Henk P. van der

    2017-01-01

    During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks

  6. Molecular epidemiology of circulating highly pathogenic avian influenza (H5N1) virus in chickens, in Bangladesh, 2007-2010

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Themudo, Goncalo Espregueira Cruz; Christensen, Jens Peter

    2012-01-01

    Bangladesh has been severely hit by highly pathogenic avian influenza H5N1 (HPAI-H5N1). However, little is known about the genetic diversity and the evolution of the circulating viruses in Bangladesh. In the present study, we analyzed the hemagglutinin gene of 30 Bangladeshi chicken isolates from...... several amino acid substitutions, but they are not indicative of adaptation toward human infection. The Mantel correlation test confirmed significant correlation between genetic distances and temporal distances between the viruses. The Bayesian tree shows that isolates from waves 3 and 4 derived from...... virus in Bangladesh. Furthermore, the formation of a subclade capable of transmission to humans cannot be ruled out. The findings of this study might provide valuable information for future surveillance, prevention and control programme....

  7. Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1

    Directory of Open Access Journals (Sweden)

    Scott H. Newman

    2013-09-01

    Full Text Available Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea, a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  8. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    Science.gov (United States)

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  9. Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia

    Science.gov (United States)

    Beginning with Hong Kong in 2002, vaccines have been used as part of an integrated control strategy in 14 countries/regions to protect poultry against H5N1 high pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003 and vaccination was initiated the following year. ...

  10. Seroprevalence survey of avian influenza A(H5N1 among live poultry market workers in northern Viet Nam, 2011

    Directory of Open Access Journals (Sweden)

    Tham Chi Dung

    2014-11-01

    Full Text Available Objective: Highly pathogenic avian influenza A(H5N1 is endemic in poultry in Viet Nam. The country has experienced the third highest number of human infections with influenza A(H5N1 in the world. A study in Hanoi in 2001, before the epizootic that was identified in 2003, found influenza A(H5N1 specific antibodies in 4% of poultry market workers (PMWs. We conducted a seroprevalence survey to determine the seroprevalence of antibodies to influenza A(H5N1 among PMWs in Hanoi, Thaibinh and Thanhhoa provinces. Methods: We selected PMWs from five markets, interviewed them and collected blood samples. These were then tested using a horse haemagglutination inhibition assay and a microneutralization assay with all three clades of influenza A(H5N1 viruses that have circulated in Viet Nam since 2004. Results: The overall seroprevalence was 6.1% (95% confidence interval: 4.6–8.3. The highest proportion (7.2% was found in PMWs in Hanoi, and the majority of seropositive subjects (70.3% were slaughterers or sellers of poultry. Discussion: The continued circulation and evolution of influenza A(H5N1 requires comprehensive surveillance of both human and animal sites throughout the country with follow-up studies on PMWs to estimate the risk of avian–human transmission of influenza A(H5N1 in Viet Nam.

  11. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Science.gov (United States)

    2010-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  12. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally

    OpenAIRE

    L?ndt, Brandon Z.; N??ez, Alejandro.; Banks, Jill; Alexander, Dennis J.; Russell, Christine; Richard? L?ndt, Angela C.; Brown, Ian H.

    2009-01-01

    Background? Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. Objectives? To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Methods? Pekin ducks in two age?matched groups (n?=?18), 8 and 12?weeks old (wo) were each infected with 106 EID50/0?1?ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2?2). Each day for 5?days, birds were monitored clinically, and cloacal ...

  13. Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets.

    Science.gov (United States)

    Ilyushina, Natalia A; Seiler, Jon P; Rehg, Jerold E; Webster, Robert G; Govorkova, Elena A

    2010-05-27

    The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1) influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S) or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H). NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC(50)s increased 5- to 940-fold). Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype) was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (V(max), K(m) and K(i)) of the avian-like N1 NA glycoproteins were highly consistent with their IC(50) values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 10(6) EID(50) dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (Pinfluenza drugs that target different virus/host factors and can limit the emergence of resistance.

  14. Experimental infection of a North American raptor, American Kestrel (Falco sparverius, with highly pathogenic avian influenza virus (H5N1.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Hall

    2009-10-01

    Full Text Available Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV subtype H5N1. Should HPAIV (H5N1 reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1 infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1. All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1 is introduced into North America.

  15. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  16. Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th-century pandemics.

    Science.gov (United States)

    Pasricha, Gunisha; Mishra, Akhilesh C; Chakrabarti, Alok K

    2013-07-01

    PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various influenza A viruses. Amino acid sequences for PB1F2 protein of influenza A H5N1, H1N1, H2N2, and H3N2 subtypes were obtained from Influenza Research Database. Multiple sequence alignments of the PB1F2 protein sequences of the aforementioned subtypes were used to determine the size, variable and conserved domains and to perform mutational analysis. Analysis showed that 96·4% of the H5N1 influenza viruses harbored full-length PB1F2 protein. Except for the 2009 pandemic H1N1 virus, all the subtypes of the 20th-century pandemic influenza viruses contained full-length PB1F2 protein. Through the years, PB1F2 protein of the H1N1 and H3N2 viruses has undergone much variation. PB1F2 protein sequences of H5N1 viruses showed both human- and avian host-specific conserved domains. Global database of PB1F2 protein revealed that N66S mutation was present only in 3·8% of the H5N1 strains. We found a novel mutation, N84S in the PB1F2 protein of 9·35% of the highly pathogenic avian influenza H5N1 influenza viruses. Varying sizes and mutations of the PB1F2 protein in different influenza A virus subtypes with pandemic potential were obtained. There was genetic divergence of the protein in various hosts which highlighted the host-specific evolution of the virus. However, studies are required to correlate this sequence variability with the virulence and pathogenicity. © 2012 John Wiley & Sons Ltd.

  17. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    Science.gov (United States)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  18. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Directory of Open Access Journals (Sweden)

    Wang Qiang

    2012-06-01

    Full Text Available Abstract Background Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. Methods The replicon activities of PR8 and WSN strains (H1N1 of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1 and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. Results The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. Conclusions Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

  19. Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates.

    Directory of Open Access Journals (Sweden)

    Giovanni Cattoli

    Full Text Available Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level.

  20. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    Science.gov (United States)

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  1. Isolation and molecular characterization of an H5N1 swine influenza virus in China in 2015.

    Science.gov (United States)

    Wu, Haibo; Yang, Fan; Lu, Rufeng; Xu, Lihua; Liu, Fumin; Peng, Xiuming; Wu, Nanping

    2018-03-01

    In 2015, an H5N1 influenza virus was isolated from a pig in Zhejiang Province, Eastern China. This strain was characterized by whole-genome sequencing with subsequent phylogenetic analysis. Phylogenetic analysis showed that all segments from this strain belonged to clade 2.3.2 and that it had received its genes from poultry influenza viruses in China. A Glu627Lys mutation associated with pathogenicity was observed in the PB2 protein. This strain was moderately pathogenic in mice and was able to replicate without prior adaptation. These results suggest that active surveillance of swine influenza should be used as an early warning system for influenza outbreaks in mammals.

  2. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo.

    Science.gov (United States)

    Chan, Michael C W; Kuok, Denise I T; Leung, Connie Y H; Hui, Kenrie P Y; Valkenburg, Sophie A; Lau, Eric H Y; Nicholls, John M; Fang, Xiaohui; Guan, Yi; Lee, Jae W; Chan, Renee W Y; Webster, Robert G; Matthay, Michael A; Peiris, J S Malik

    2016-03-29

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.

  3. Oligomeric recombinant H5 HA1 vaccine produced in bacteria protects ferrets from homologous and heterologous wild-type H5N1 influenza challenge and controls viral loads better than subunit H5N1 vaccine by eliciting high-affinity antibodies.

    Science.gov (United States)

    Verma, Swati; Dimitrova, Milena; Munjal, Ashok; Fontana, Juan; Crevar, Corey J; Carter, Donald M; Ross, Ted M; Khurana, Surender; Golding, Hana

    2012-11-01

    Recombinant hemagglutinin from influenza viruses with pandemic potential can be produced rapidly in various cell substrates. In this study, we compared the functionality and immunogenicity of bacterially produced oligomeric or monomeric HA1 proteins from H5N1 (A/Vietnam/1203/04) with those of the egg-based licensed subunit H5N1 (SU-H5N1) vaccine in ferrets challenged with homologous or heterologous H5N1 highly pathogenic influenza strains. Ferrets were vaccinated twice with the oligomeric or monomeric rHA1 or with SU-H5N1 (Sanofi Pasteur) emulsified with Titermax adjuvant and were challenged with wild-type homologous (A/Vietnam/1203/04; clade 1) or heterologous (A/Whooperswan/Mongolia/244/2005; clade 2.2) virus. Only the oligomeric rHA1 (not the monomeric rHA1) immunogen and the SU-H5N1 vaccine provided protection against the lethality and morbidity of homologous and heterologous highly pathogenic H5N1. Oligomeric rHA1 generated more cross-neutralizing antibodies and higher levels of serum antibody binding to HA1, with stronger avidity and a better IgG/IgM ratio, than monomeric HA1 and SU-H5N1 vaccines, as determined by surface plasmon resonance (SPR). Importantly, viral loads after heterologous H5N1 challenge were more efficiently controlled in ferrets vaccinated with the oligomeric rHA1 immunogen than in SU-H5N1-vaccinated ferrets. The reduction of viral loads in the nasal washes correlated strongly with higher-avidity antibodies to oligomeric rHA1 derived from H5N1 clade 1 and clade 2.2 viruses, as measured by SPR. This is the first study to show the role of antibody avidity for the HA1 globular head domain in reduction of viral loads in the upper respiratory tract, which could significantly reduce viral transmission.

  4. Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th‐century pandemics

    Science.gov (United States)

    Pasricha, Gunisha; Mishra, Akhilesh C.; Chakrabarti, Alok K.

    2012-01-01

    Please cite this paper as: Pasricha et al. (2012) Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the Influenza A virus subtypes responsible for the 20th‐century pandemics. Influenza and Other Respiratory Viruses 7(4), 497–505. Background  PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various influenza A viruses. Methods  Amino acid sequences for PB1F2 protein of influenza A H5N1, H1N1, H2N2, and H3N2 subtypes were obtained from Influenza Research Database. Multiple sequence alignments of the PB1F2 protein sequences of the aforementioned subtypes were used to determine the size, variable and conserved domains and to perform mutational analysis. Results  Analysis showed that 96·4% of the H5N1 influenza viruses harbored full‐length PB1F2 protein. Except for the 2009 pandemic H1N1 virus, all the subtypes of the 20th‐century pandemic influenza viruses contained full‐length PB1F2 protein. Through the years, PB1F2 protein of the H1N1 and H3N2 viruses has undergone much variation. PB1F2 protein sequences of H5N1 viruses showed both human‐ and avian host‐specific conserved domains. Global database of PB1F2 protein revealed that N66S mutation was present only in 3·8% of the H5N1 strains. We found a novel mutation, N84S in the PB1F2 protein of 9·35% of the highly pathogenic avian influenza H5N1 influenza viruses. Conclusions  Varying sizes and mutations of the PB1F2 protein in different influenza A virus subtypes with pandemic potential were obtained. There was genetic divergence of the protein in various hosts which highlighted the host‐specific evolution of the virus

  5. Pandemic influenza – including a risk assessment of H5N1

    Science.gov (United States)

    Taubenberger, J.K.; Morens, D.M.

    2009-01-01

    Summary Influenza pandemics and epidemics have apparently occurred since at least the Middle Ages. When pandemics appear, 50% or more of an affected population can be infected in a single year, and the number of deaths caused by influenza can dramatically exceed what is normally expected. Since 1500, there appear to have been 13 or more influenza pandemics. In the past 120 years there were undoubted pandemics in 1889, 1918, 1957, 1968, and 1977. Although most experts believe we will face another influenza pandemic, it is impossible to predict when it will appear, where it will originate, or how severe it will be. Nor is there agreement about the subtype of influenza virus most likely to cause the next pandemic. The continuing spread of H5N1 highly pathogenic avian influenza viruses has heightened interest in pandemic prediction. Despite uncertainties in the historical record of the pre-virology era, study of previous pandemics may help guide future pandemic planning and lead to a better understanding of the complex ecobiology underlying the formation of pandemic strains of influenza A viruses. PMID:19618626

  6. Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice

    Directory of Open Access Journals (Sweden)

    Bi Yuhai

    2011-11-01

    Full Text Available Abstract Background H9N2 influenza A viruses have undergone extensive reassortments in different host species, and could lead to the epidemics or pandemics with the potential emergence of novel viruses. Methods To understand the genetic and pathogenic features of early and current circulating H9N2 viruses, 15 representative H9N2 viruses isolated from diseased chickens in northern China between 1998 and 2010 were characterized and compared with all Chinese H9N2 viruses available in the NCBI database. Then, the representative viruses of different genotypes were selected to study the pathogenicity in mice with the aim to investigate the adaptation and the potential pathogenicity of the novel H9N2 reassortants to mammals. Results Our results demonstrated that most of the 15 isolates were reassortants and generated four novel genotypes (B62-B65, which incorporated the gene segments from Eurasian H9N2 lineage, North American H9N2 branch, and H5N1 viruses. It was noteworthy that the newly identified genotype B65 has been prevalent in China since 2007, and more importantly, different H9N2 influenza viruses displayed a diverse pathogenicity to mice. The isolates of the 2008-2010 epidemic (genotypes B55 and B65 were lowly infectious, while two representative viruses of genotypes B0 and G2 isolated from the late 1990s were highly pathogenic to mice. In addition, Ck/SD/LY-1/08 (genotype 63, containing H5N1-like NP and PA genes was able to replicate well in mouse lungs with high virus titers but caused mild clinical signs. Conclusion Several lines of evidence indicated that the H9N2 influenza viruses constantly change their genetics and pathogenicity. Thus, the genetic evolution of H9N2 viruses and their pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.

  7. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    Science.gov (United States)

    Newman, Scott H; Iverson, Samuel A; Takekawa, John Y; Gilbert, Martin; Prosser, Diann J; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C

    2009-05-28

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  8. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  9. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    Science.gov (United States)

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  11. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Amorsolo L Suguitan

    2006-09-01

    Full Text Available Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA and a wild-type (wt N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2, were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 10(6 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3 that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.

  12. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    Science.gov (United States)

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    OpenAIRE

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antoni; Abad, Francesc Xavier; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-01-01

    Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in bot...

  14. Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001

    Science.gov (United States)

    Nguyen, Doan C.; Uyeki, Timothy M.; Jadhao, Samadhan; Maines, Taronna; Shaw, Michael; Matsuoka, Yumiko; Smith, Catherine; Rowe, Thomas; Lu, Xiuhua; Hall, Henrietta; Xu, Xiyan; Balish, Amanda; Klimov, Alexander; Tumpey, Terrence M.; Swayne, David E.; Huynh, Lien P. T.; Nghiem, Ha K.; Nguyen, Hanh H. T.; Hoang, Long T.; Cox, Nancy J.; Katz, Jacqueline M.

    2005-01-01

    Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia. PMID:15767421

  15. Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia.

    Science.gov (United States)

    Roche, Sharon E; Cogger, Naomi; Garner, M Graeme; Putra, Anak Agung Gde; Toribio, Jenny-Ann L M L

    2014-03-01

    Indonesia continues to report the highest number of human and poultry cases of highly pathogenic avian influenza H5N1. The disease is considered to be endemic on the island of Bali. Live bird markets are integral in the poultry supply chain on Bali and are important, nutritionally and culturally, for the rural and urban human populations. Due to the lack of biosecurity practiced along the supply chain from producer to live bird markets, there is a need to understand the risks associated with the spread of H5N1 through live bird movements for effective control. Resources to control H5N1 in Indonesia are very limited and cost effective strategies are needed. We assessed the probability a live bird market is infected through live poultry movements and assessed the effects of implementing two simple and low cost control measures on this risk. Results suggest there is a high risk a live bird market is infected (0.78), and risk mitigation strategies such as detecting and removing infected poultry from markets reduce this risk somewhat (range 0.67-0.76). The study demonstrates the key role live poultry movements play in transmitting H5N1 and the need to implement a variety of control measures to reduce disease spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characterization of avian influenza H5N1 virosome

    Directory of Open Access Journals (Sweden)

    Chatchai Sarachai

    2014-04-01

    Full Text Available The purpose of this study was to prepare and characterize virosome containing envelope proteins of the avian influenza (H5N1 virus. The virosome was prepared by the solubilization of virus with octaethyleneglycol mono (n-dodecyl ether (C12E8 followed by detergent removal with SM2 Bio-Beads. Biochemical analysis by SDS-PAGE and western blotting, indicated that avian influenza H5N1 virosome had similar characteristics to the parent virus and contained both the hemagglutinin (HA, 60-75 kDa and neuraminidase (NA, 220 kDa protein, with preserved biological activity, such as hemagglutination activity. The virosome structure was analyzed by negative stained transmission electron microscope (TEM demonstrated that the spherical shapes of vesicles with surface glycoprotein spikes were harbored. In conclusion, the biophysical properties of the virosome were similar to the parent virus, and the use of octaethyleneglycol mono (n-dodecyl ether to solubilize viral membrane, followed by removal of detergent using polymer beads adsorption (Bio-Beads SM2 was the preferable method for obtaining avian influenza virosome. The outcome of this study might be useful for further development veterinary virus vaccines.

  17. A low pathogenic H5N2 influenza virus isolated in Taiwan acquired high pathogenicity by consecutive passages in chickens.

    OpenAIRE

    Soda, Kosuke; Cheng, Ming-Chu; Yoshida, Hiromi; Endo, Mayumi; Lee, Shu-Hwae; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Wang, Ching-Ho; Kida, Hiroshi

    2011-01-01

    H5N2 viruses were isolated from cloacal swab samples of apparently healthy chickens in Taiwan in 2003 and 2008 during surveillance of avian influenza. Each of the viruses was eradicated by stamping out. The official diagnosis report indicated that the Intravenous Pathogenicity Indexes (IVPIs) of the isolates were 0.00 and 0.89, respectively, indicating that these were low pathogenic strains, although the hemagglutinin of the strain isolated in 2008 (Taiwan08) had multibasic amino acid residue...

  18. A Meta-Analysis of the Prevalence of Influenza A H5N1 and H7N9 Infection in Birds.

    Science.gov (United States)

    Bui, C; Rahman, B; Heywood, A E; MacIntyre, C R

    2017-06-01

    Despite a much higher rate of human influenza A (H7N9) infection compared to influenza A (H5N1), and the assumption that birds are the source of human infection, detection rates of H7N9 in birds are lower than those of H5N1. This raises a question about the role of birds in the spread and transmission of H7N9 to humans. We conducted a meta-analysis of overall prevalence of H5N1 and H7N9 in different bird populations (domestic poultry, wild birds) and different environments (live bird markets, commercial poultry farms, wild habitats). The electronic database, Scopus, was searched for published papers, and Google was searched for country surveillance reports. A random effect meta-analysis model was used to produce pooled estimates of the prevalence of H5N1 and H7N9 for various subcategories. A random effects logistic regression model was used to compare prevalence rates between H5N1 and H7N9. Both viruses have low prevalence across all bird populations. Significant differences in prevalence rates were observed in domestic birds, farm settings, for pathogen and antibody testing, and during routine surveillance. Random effects logistic regression analyses show that among domestic birds, the prevalence of H5N1 is 47.48 (95% CI: 17.15-133.13, P bird outbreaks), the prevalence of H5N1 is still higher than H7N9 with an OR of 43.02 (95% CI: 16.60-111.53, P birds are postulated to be the source. Much lower rates of H7N9 in birds compared to H5N1 raise doubts about birds as the sole source of high rates of human H7N9 infection. Other sources of transmission of H7N9 need to be considered and explored. © 2016 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  19. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity

    DEFF Research Database (Denmark)

    Chen, Li-Mei; Blixt, Klas Ola; Stevens, James

    2012-01-01

    Acquisition of a2-6 sialoside receptor specificity by a2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding a2-6 sialosides, we identified four variant viruses with amino acid....... Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via...... respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans....

  20. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam

    NARCIS (Netherlands)

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D.; Jeeninga, Rienk E.; Rogier van Doorn, H.; Farrar, Jeremy; Wertheim, Heiman F. L.

    2013-01-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern

  1. Detection of H5N1 high-pathogenicity avian influenza virus in meat and tracheal samples from experimentally infected chickens.

    Science.gov (United States)

    Das, Amaresh; Spackman, Erica; Thomas, Colleen; Swayne, David E; Suarez, David L

    2008-03-01

    The Asian H5N1 highly pathogenic avian influenza (HPAI) virus causes a systemic disease with high mortality of poultry and is potentially zoonotic. In both chickens and ducks, the virus has been demonstrated to replicate in both cardiac and skeletal muscle cells. Experimentally, H5N1 HPAI virus has been transmitted to chickens through the consumption of raw infected meat. In this study, we investigated virus replication in cardiac and skeletal muscle and in the trachea of chickens after experimental intranasal inoculation with the H5N1 HPAI virus. The virus was detected in tissues by real-time reverse transcription-polymerase chain reaction (RRT-PCR) and virus isolation, and in the trachea by RRT-PCR and a commercial avian influenza (AI) viral antigen detection test. A modified RNA extraction protocol was developed for rapid detection of the virus in tissues by RRT-PCR. The H5N1 HPAI virus was sporadically detected in meat and the tracheas of infected birds without any clinical sign of disease as early as 6 hr postinfection (PI), and was detected in all samples tested at 24 hr PI and later. No differences in sensitivity were seen between virus isolation and RRT-PCR in meat samples. The AI viral antigen detection test on tracheal swabs was a useful method for identifying infected chickens when they were sick or dead, but was less sensitive in detecting infected birds when they were preclinical. This study provides data indicating that preslaughter tracheal swab testing can identify birds infected with HPAI among the daily mortality and prevent infected flocks from being sent to processing plants. In addition, the modified RNA extraction and RRT-PCR test on meat samples provide a rapid and sensitive method of identifying HPAI virus in illegal contraband or domestic meat samples.

  2. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Lina Sun

    Full Text Available BACKGROUND: The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs, AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model. CONCLUSIONS/SIGNIFICANCE: Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.

  3. Influenza A H5N1 and HIV co-infection: case report

    Directory of Open Access Journals (Sweden)

    Simmons Cameron

    2010-06-01

    Full Text Available Abstract Background The role of adaptive immunity in severe influenza is poorly understood. The occurrence of influenza A/H5N1 in a patient with HIV provided a rare opportunity to investigate this. Case Presentation A 30-year-old male was admitted on day 4 of influenza-like-illness with tachycardia, tachypnea, hypoxemia and bilateral pulmonary infiltrates. Influenza A/H5N1 and HIV tests were positive and the patient was treated with Oseltamivir and broad-spectrum antibiotics. Initially his condition improved coinciding with virus clearance by day 6. He clinically deteriorated as of day 10 with fever recrudescence and increasing neutrophil counts and died on day 16. His admission CD4 count was 100/μl and decreased until virus was cleared. CD8 T cells shifted to a CD27+CD28- phenotype. Plasma chemokine and cytokine levels were similar to those found previously in fatal H5N1. Conclusions The course of H5N1 infection was not notably different from other cases. Virus was cleared despite profound CD4 T cell depletion and aberrant CD8 T cell activation but this may have increased susceptibility to a fatal secondary infection.

  4. Changes in the viral distribution pattern after the appearance of the novel influenza A H1N1 (pH1N1) virus in influenza-like illness patients in Peru.

    Science.gov (United States)

    Laguna-Torres, Victor Alberto; Gómez, Jorge; Aguilar, Patricia V; Ampuero, Julia S; Munayco, Cesar; Ocaña, Víctor; Pérez, Juan; Gamero, María E; Arrasco, Juan Carlos; Paz, Irmia; Chávez, Edward; Cruz, Rollin; Chavez, Jaime; Mendocilla, Silvia; Gomez, Elizabeth; Antigoni, Juana; Gonzalez, Sofía; Tejada, Cesar; Chowell, Gerardo; Kochel, Tadeusz J

    2010-07-27

    We describe the temporal variation in viral agents detected in influenza like illness (ILI) patients before and after the appearance of the ongoing pandemic influenza A (H1N1) (pH1N1) in Peru between 4-January and 13-July 2009. At the health centers, one oropharyngeal swab was obtained for viral isolation. From epidemiological week (EW) 1 to 18, at the US Naval Medical Research Center Detachment (NMRCD) in Lima, the specimens were inoculated into four cell lines for virus isolation. In addition, from EW 19 to 28, the specimens were also analyzed by real time-polymerase-chain-reaction (rRT-PCR). We enrolled 2,872 patients: 1,422 cases before the appearance of the pH1N1 virus, and 1,450 during the pandemic. Non-pH1N1 influenza A virus was the predominant viral strain circulating in Peru through (EW) 18, representing 57.8% of the confirmed cases; however, this predominance shifted to pH1N1 (51.5%) from EW 19-28. During this study period, most of pH1N1 cases were diagnosed in the capital city (Lima) followed by other cities including Cusco and Trujillo. In contrast, novel influenza cases were essentially absent in the tropical rain forest (jungle) cities during our study period. The city of Iquitos (Jungle) had the highest number of influenza B cases and only one pH1N1 case. The viral distribution in Peru changed upon the introduction of the pH1N1 virus compared to previous months. Although influenza A viruses continue to be the predominant viral pathogen, the pH1N1 virus predominated over the other influenza A viruses.

  5. Changes in the viral distribution pattern after the appearance of the novel influenza A H1N1 (pH1N1 virus in influenza-like illness patients in Peru.

    Directory of Open Access Journals (Sweden)

    Victor Alberto Laguna-Torres

    Full Text Available BACKGROUND: We describe the temporal variation in viral agents detected in influenza like illness (ILI patients before and after the appearance of the ongoing pandemic influenza A (H1N1 (pH1N1 in Peru between 4-January and 13-July 2009. METHODS: At the health centers, one oropharyngeal swab was obtained for viral isolation. From epidemiological week (EW 1 to 18, at the US Naval Medical Research Center Detachment (NMRCD in Lima, the specimens were inoculated into four cell lines for virus isolation. In addition, from EW 19 to 28, the specimens were also analyzed by real time-polymerase-chain-reaction (rRT-PCR. RESULTS: We enrolled 2,872 patients: 1,422 cases before the appearance of the pH1N1 virus, and 1,450 during the pandemic. Non-pH1N1 influenza A virus was the predominant viral strain circulating in Peru through (EW 18, representing 57.8% of the confirmed cases; however, this predominance shifted to pH1N1 (51.5% from EW 19-28. During this study period, most of pH1N1 cases were diagnosed in the capital city (Lima followed by other cities including Cusco and Trujillo. In contrast, novel influenza cases were essentially absent in the tropical rain forest (jungle cities during our study period. The city of Iquitos (Jungle had the highest number of influenza B cases and only one pH1N1 case. CONCLUSIONS: The viral distribution in Peru changed upon the introduction of the pH1N1 virus compared to previous months. Although influenza A viruses continue to be the predominant viral pathogen, the pH1N1 virus predominated over the other influenza A viruses.

  6. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    Science.gov (United States)

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases.

  7. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    Directory of Open Access Journals (Sweden)

    Scott H Newman

    Full Text Available Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1 requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp. has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer and in habitats (areas of natural vegetation where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks at or near their breeding grounds.

  8. Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza.

    Directory of Open Access Journals (Sweden)

    Cameron P Simmons

    2007-05-01

    Full Text Available New prophylactic and therapeutic strategies to combat human infections with highly pathogenic avian influenza (HPAI H5N1 viruses are needed. We generated neutralizing anti-H5N1 human monoclonal antibodies (mAbs and tested their efficacy for prophylaxis and therapy in a murine model of infection.Using Epstein-Barr virus we immortalized memory B cells from Vietnamese adults who had recovered from infections with HPAI H5N1 viruses. Supernatants from B cell lines were screened in a virus neutralization assay. B cell lines secreting neutralizing antibodies were cloned and the mAbs purified. The cross-reactivity of these antibodies for different strains of H5N1 was tested in vitro by neutralization assays, and their prophylactic and therapeutic efficacy in vivo was tested in mice. In vitro, mAbs FLA3.14 and FLD20.19 neutralized both Clade I and Clade II H5N1 viruses, whilst FLA5.10 and FLD21.140 neutralized Clade I viruses only. In vivo, FLA3.14 and FLA5.10 conferred protection from lethality in mice challenged with A/Vietnam/1203/04 (H5N1 in a dose-dependent manner. mAb prophylaxis provided a statistically significant reduction in pulmonary virus titer, reduced associated inflammation in the lungs, and restricted extrapulmonary dissemination of the virus. Therapeutic doses of FLA3.14, FLA5.10, FLD20.19, and FLD21.140 provided robust protection from lethality at least up to 72 h postinfection with A/Vietnam/1203/04 (H5N1. mAbs FLA3.14, FLD21.140 and FLD20.19, but not FLA5.10, were also therapeutically active in vivo against the Clade II virus A/Indonesia/5/2005 (H5N1.These studies provide proof of concept that fully human mAbs with neutralizing activity can be rapidly generated from the peripheral blood of convalescent patients and that these mAbs are effective for the prevention and treatment of H5N1 infection in a mouse model. A panel of neutralizing, cross-reactive mAbs might be useful for prophylaxis or adjunctive treatment of human cases of H5N1

  9. Low Pathogenic Avian Influenza (H7N1) Transmission Between Wild Ducks and Domestic Ducks

    DEFF Research Database (Denmark)

    Therkildsen, O. R.; Jensen, Trine Hammer; Handberg, Kurt

    2011-01-01

    This article describes a virological investigation in a mixed flock of ducks and geese following detection of avian influenza virus antibodies in domestic geese. Low pathogenic H7N1 was found in both domestic and wild birds, indicating that transmission of virus was likely to have taken place...

  10. Influenza A H5N1 immigration is filtered out at some international borders.

    Directory of Open Access Journals (Sweden)

    Robert G Wallace

    2008-02-01

    Full Text Available Geographic spread of highly pathogenic influenza A H5N1, the bird flu strain, appears a necessary condition for accelerating the evolution of a related human-to-human infection. As H5N1 spreads the virus diversifies in response to the variety of socioecological environments encountered, increasing the chance a human infection emerges. Genetic phylogenies have for the most part provided only qualitative evidence that localities differ in H5N1 diversity. For the first time H5N1 variation is quantified across geographic space.We constructed a statistical phylogeography of 481 H5N1 hemagglutinin genetic sequences from samples collected across 28 Eurasian and African localities through 2006. The MigraPhyla protocol showed southern China was a source of multiple H5N1 strains. Nested clade analysis indicated H5N1 was widely dispersed across southern China by both limited dispersal and long distance colonization. The UniFrac metric, a measure of shared phylogenetic history, grouped H5N1 from Indonesia, Japan, Thailand and Vietnam with those from southeastern Chinese provinces engaged in intensive international trade. Finally, H5N1's accumulative phylogenetic diversity was greatest in southern China and declined beyond. The gradient was interrupted by areas of greater and lesser phylogenetic dispersion, indicating H5N1 migration was restricted at some geopolitical borders. Thailand and Vietnam, just south of China, showed significant phylogenetic clustering, suggesting newly invasive H5N1 strains have been repeatedly filtered out at their northern borders even as both countries suffered recurring outbreaks of endemic strains. In contrast, Japan, while successful in controlling outbreaks, has been subjected to multiple introductions of the virus.The analysis demonstrates phylogenies can provide local health officials with more than hypotheses about relatedness. Pathogen dispersal, the functional relationships among disease ecologies across localities, and

  11. MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Directory of Open Access Journals (Sweden)

    Joost H C M Kreijtz

    Full Text Available Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate.

  12. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus

    NARCIS (Netherlands)

    Peeters, Ben; Tonnis, Wouter F.; Murugappan, Senthil; Rottier, Peter; Koch, Guus; Frijlink, Henderik W.; Huckriede, Anke; Hinrichs, Wouter L. J.

    2014-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus is a major threat to public health as well as to the global poultry industry. Most fatal human infections are caused by contact with infected poultry. Therefore, preventing the virus from entering the poultry population is a priority. This is,

  13. Highly pathogenic avian influenza (H5N1: pathways of exposure at the animal-human interface, a systematic review.

    Directory of Open Access Journals (Sweden)

    Maria D Van Kerkhove

    Full Text Available BACKGROUND: The threat posed by highly pathogenic avian influenza A H5N1 viruses to humans remains significant, given the continued occurrence of sporadic human cases (499 human cases in 15 countries with a high case fatality rate (approximately 60%, the endemicity in poultry populations in several countries, and the potential for reassortment with the newly emerging 2009 H1N1 pandemic strain. Therefore, we review risk factors for H5N1 infection in humans. METHODS AND FINDINGS: Several epidemiologic studies have evaluated the risk factors associated with increased risk of H5N1 infection among humans who were exposed to H5N1 viruses. Our review shows that most H5N1 cases are attributed to exposure to sick poultry. Most cases are sporadic, while occasional limited human-to-human transmission occurs. The most commonly identified factors associated with H5N1 virus infection included exposure through contact with infected blood or bodily fluids of infected poultry via food preparation practices; touching and caring for infected poultry; [corrected] exposure to H5N1 via swimming or bathing in potentially virus laden ponds; and exposure to H5N1 at live bird markets. CONCLUSIONS: Research has demonstrated that despite frequent and widespread contact with poultry, transmission of the H5N1 virus from poultry to humans is rare. Available research has identified several risk factors that may be associated with infection including close direct contact with poultry and transmission via the environment. However, several important data gaps remain that limit our understanding of the epidemiology of H5N1 in humans. Although infection in humans with H5N1 remains rare, human cases continue to be reported and H5N1 is now considered endemic among poultry in parts of Asia and in Egypt, providing opportunities for additional human infections and for the acquisition of virus mutations that may lead to more efficient spread among humans and other mammalian species

  14. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    Science.gov (United States)

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  15. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed H. Salaheldin

    2018-03-01

    Full Text Available Highly pathogenic H5N1 avian influenza virus (A/H5N1 of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed, biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered.

  16. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    Science.gov (United States)

    Salaheldin, Ahmed H.; Kasbohm, Elisa; El-Naggar, Heba; Ulrich, Reiner; Scheibner, David; Gischke, Marcel; Hassan, Mohamed K.; Arafa, Abdel-Satar A.; Hassan, Wafaa M.; Abd El-Hamid, Hatem S.; Hafez, Hafez M.; Veits, Jutta; Mettenleiter, Thomas C.; Abdelwhab, Elsayed M.

    2018-01-01

    Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered. PMID:29636730

  17. Mortality attributable to pandemic influenza A (H1N1) 2009 in San Luis Potosí, Mexico

    Science.gov (United States)

    Comas‐García, Andreu; García‐Sepúlveda, Christian A.; Méndez‐de Lira, José J.; Aranda‐Romo, Saray; Hernández‐Salinas, Alba E.; Noyola, Daniel E.

    2010-01-01

    Please cite this paper as: Comas‐García et al. (2011) Mortality attributable to pandemic influenza A (H1N1) 2009 in San Luis Potosí, Mexico. Influenza and Other Respiratory Viruses 5(2), 76–82. Background  Acute respiratory infections are a leading cause of morbidity and mortality worldwide. Starting in 2009, pandemic influenza A(H1N1) 2009 virus has become one of the leading respiratory pathogens worldwide. However, the overall impact of this virus as a cause of mortality has not been clearly defined. Objectives  To determine the impact of pandemic influenza A(H1N1) 2009 on mortality in a Mexican population. Methods  We assessed the impact of pandemic influenza virus on mortality during the first and second outbreaks in San Luis Potosí, Mexico, and compared it to mortality associated with seasonal influenza and respiratory syncytial virus (RSV) during the previous winter seasons. Results  We estimated that, on average, 8·1% of all deaths that occurred during the 2003–2009 seasons were attributable to influenza and RSV. During the first pandemic influenza A(H1N1) 2009 outbreak, there was an increase in mortality in persons 5–59 years of age, but not during the second outbreak (Fall of 2009). Overall, pandemic influenza A (H1N1) 2009 outbreaks had similar effects on mortality to those associated with seasonal influenza virus epidemics. Conclusions  The impact of influenza A(H1N1) 2009 virus on mortality during the first year of the pandemic was similar to that observed for seasonal influenza. The establishment of real‐time surveillance systems capable of integrating virological, morbidity, and mortality data may result in the timely identification of outbreaks so as to allow for the institution of appropriate control measures to reduce the impact of emerging pathogens on the population. PMID:21306570

  18. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus.

    Science.gov (United States)

    Li, Sumei; Jia, Xiuhua; Shen, Xintian; Wei, Zhuwen; Jiang, Zhiyan; Liao, Yixian; Guo, Yiming; Zheng, Xiaojun; Zhong, Guohua; Song, Gaopeng

    2017-08-15

    Highly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays. Compound 15 displayed the most promising anti-H5N1 entry activities with average IC 50 values of 4.05μM and good selective index (22.9). Detailed structure-activity relationships (SARs) studies suggested that either the introduction of an additional oxo group to position 11 at OA or alteration of the C-3 configuration of OA from 3β- to 3α-forms can significantly enhance the selective index while maintaining their antiviral activities in vitro. Molecular simulation analysis confirmed that the compounds exert their inhibitory activity through binding tightly to hemagglutinin (HA2) protein near the fusion peptide and prevent virus entry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

    Science.gov (United States)

    Paul, Mathilde C.; Goutard, Flavie L.; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L.; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  20. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  1. Protection from the 2009 H1N1 pandemic influenza by an antibody from combinatorial survivor-based libraries.

    Directory of Open Access Journals (Sweden)

    Arun K Kashyap

    2010-07-01

    Full Text Available Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06 against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 "Swine" H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population.

  2. The influence of social-cognitive factors on personal hygiene practices to protect against influenzas: using modelling to compare avian A/H5N1 and 2009 pandemic A/H1N1 influenzas in Hong Kong.

    Science.gov (United States)

    Liao, Qiuyan; Cowling, Benjamin J; Lam, Wendy Wing Tak; Fielding, Richard

    2011-06-01

    Understanding population responses to influenza helps optimize public health interventions. Relevant theoretical frameworks remain nascent. To model associations between trust in information, perceived hygiene effectiveness, knowledge about the causes of influenza, perceived susceptibility and worry, and personal hygiene practices (PHPs) associated with influenza. Cross-sectional household telephone surveys on avian influenza A/H5N1 (2006) and pandemic influenza A/H1N1 (2009) gathered comparable data on trust in formal and informal sources of influenza information, influenza-related knowledge, perceived hygiene effectiveness, worry, perceived susceptibility, and PHPs. Exploratory factor analysis confirmed domain content while confirmatory factor analysis was used to evaluate the extracted factors. The hypothesized model, compiled from different theoretical frameworks, was optimized with structural equation modelling using the A/H5N1 data. The optimized model was then tested against the A/H1N1 dataset. The model was robust across datasets though corresponding path weights differed. Trust in formal information was positively associated with perceived hygiene effectiveness which was positively associated with PHPs in both datasets. Trust in formal information was positively associated with influenza worry in A/H5N1 data, and with knowledge of influenza cause in A/H1N1 data, both variables being positively associated with PHPs. Trust in informal information was positively associated with influenza worry in both datasets. Independent of information trust, perceived influenza susceptibility associated with influenza worry. Worry associated with PHPs in A/H5N1 data only. Knowledge of influenza cause and perceived PHP effectiveness were associated with PHPs. Improving trust in formal information should increase PHPs. Worry was significantly associated with PHPs in A/H5N1.

  3. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    NARCIS (Netherlands)

    Poen, Marjolein J.; Bestebroer, Theo M.; Vuong, Oanh; Scheuer, Rachel D.; Jeugd, van der Henk P.; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; Brand, van den Judith M.A.; Begeman, Lineke; Vliet, van der Stefan; Müskens, Gerhard J.D.M.; Majoor, Frank A.; Koopmans, Marion P.G.; Kuiken, Thijs; Fouchier, Ron A.M.

    2018-01-01

    Introduction: Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in southeast Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild

  4. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    NARCIS (Netherlands)

    Poen, Marjolein J; Bestebroer, Theo M; Vuong, Oanh; Scheuer, Rachel D; van der Jeugd, Henk P; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; van den Brand, Judith M A; Begeman, Lineke; van der Vliet, Stefan; Müskens, Gerhard J D M; Majoor, Frank A; Koopmans, Marion P G; Kuiken, Thijs; Fouchier, Ron A M

    IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild

  5. Novel Reassortant Influenza A(H5N8) Viruses among Inoculated Domestic and Wild Ducks, South Korea, 2014

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Choi, Jun-Gu; Jeong, Joojin; Moon, Oun-Kyong; Yoon, Hachung; Cho, Youngmi; Kang, Young-Myong; Lee, Hee-Soo

    2015-01-01

    An outbreak of highly pathogenic avian influenza, caused by a novel reassortant influenza A (H5N8) virus, occurred among poultry and wild birds in South Korea in 2014. The aim of this study was to evaluate the pathogenesis in and mode of transmission of this virus among domestic and wild ducks. Three of the viruses had similar pathogenicity among infected domestic ducks: the H5N8 viruses were moderately pathogenic (0%–20% mortality rate); in wild mallard ducks, the H5N8 and H5N1 viruses did not cause severe illness or death; viral replication and shedding were greater in H5N8-infected mallards than in H5N1-infected mallards. Identification of H5N8 viruses in birds exposed to infected domestic ducks and mallards indicated that the viruses could spread by contact. We propose active surveillance to support prevention of the spread of this virus among wild birds and poultry, especially domestic ducks. PMID:25625281

  6. High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in France.

    Directory of Open Access Journals (Sweden)

    Nathalie Schnepf

    Full Text Available BACKGROUND: Influenza-like illness (ILI may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens. OBJECTIVES: During the early weeks of the 2009-2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms. METHODS: H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire. RESULTS: From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5% were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9% were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%, followed by parainfluenza viruses (24.2% and adenovirus (5.3%. 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens. CONCLUSION: Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management.

  7. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  8. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    Science.gov (United States)

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  9. Avian influenza virus (H5N1; effects of physico-chemical factors on its survival

    Directory of Open Access Journals (Sweden)

    Hameed Sajid

    2009-03-01

    Full Text Available Abstract Present study was performed to determine the effects of physical and chemical agents on infective potential of highly pathogenic avian influenza (HPAI H5N1 (local strain virus recently isolated in Pakistan during 2006 outbreak. H5N1 virus having titer 108.3 ELD50/ml was mixed with sterilized peptone water to get final dilution of 4HA units and then exposed to physical (temperature, pH and ultraviolet light and chemical (formalin, phenol crystals, iodine crystals, CID 20, virkon®-S, zeptin 10%, KEPCIDE 300, KEPCIDE 400, lifebuoy, surf excel and caustic soda agents. Harvested amnio-allantoic fluid (AAF from embryonated chicken eggs inoculated with H5N1 treated virus (0.2 ml/egg was subjected to haemagglutination (HA and haemagglutination inhibition (HI tests. H5N1 virus lost infectivity after 30 min at 56°C, after 1 day at 28°C but remained viable for more than 100 days at 4°C. Acidic pH (1, 3 and basic pH (11, 13 were virucidal after 6 h contact time; however virus retained infectivity at pH 5 (18 h, 7 and 9 (more than 24 h. UV light was proved ineffectual in inactivating virus completely even after 60 min. Soap (lifebuoy®, detergent (surf excel® and alkali (caustic soda destroyed infectivity after 5 min at 0.1, 0.2 and 0.3% dilution. All commercially available disinfectants inactivated virus at recommended concentrations. Results of present study would be helpful in implementing bio-security measures at farms/hatcheries levels in the wake of avian influenza virus (AIV outbreak.

  10. Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks.

    Science.gov (United States)

    Kane, Michael J; Price, Natalie; Scotch, Matthew; Rabinowitz, Peter

    2014-08-13

    Time series models can play an important role in disease prediction. Incidence data can be used to predict the future occurrence of disease events. Developments in modeling approaches provide an opportunity to compare different time series models for predictive power. We applied ARIMA and Random Forest time series models to incidence data of outbreaks of highly pathogenic avian influenza (H5N1) in Egypt, available through the online EMPRES-I system. We found that the Random Forest model outperformed the ARIMA model in predictive ability. Furthermore, we found that the Random Forest model is effective for predicting outbreaks of H5N1 in Egypt. Random Forest time series modeling provides enhanced predictive ability over existing time series models for the prediction of infectious disease outbreaks. This result, along with those showing the concordance between bird and human outbreaks (Rabinowitz et al. 2012), provides a new approach to predicting these dangerous outbreaks in bird populations based on existing, freely available data. Our analysis uncovers the time-series structure of outbreak severity for highly pathogenic avain influenza (H5N1) in Egypt.

  11. Multiplex Reverse Transcription-Polymerase Chain Reaction untuk Deteksi Cepat Virus Flu Burung H5N1 (MULTIPLEX REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION FOR RAPID DETECTION OF H5N1 AVIAN INFLUENZA VIRUS

    Directory of Open Access Journals (Sweden)

    Raden Wasito

    2015-05-01

    Full Text Available Avian influenza virus subtype H5N1 (AIV H5N1 is highly pathogenic and fatal in poultry. The virusis still endemic with low virulence rate, although it may play a critical role in causing high morbidity andmortality rates in poultry in Indonesia. In general, diagnostic approach for AIV H5N1 is based onconventional serological and viral isolation methods that have the potential to produce consumings oftime and relatively expensive cost within the laboratory without compromising test utility. Thus, amolecular approach of multiplex reverse transcription-polymerase chain reaction (mRT-PCR was developedand applied for the detection of matrix gene type A influenza viruses, AIV subtype subtype H5hemagglutinin gene with simultaneous detection of N1 nucleoprotein gene. Thirty sera specimens fromthe diseased commercial chickens that were specifically amplified positive-RT-PCR for AIV H5N1 wereselected for mRT-PCR. The mRT-PCR products were visualized by agarose gel electrophoresis and consistedof DNA fragments of AIV of 245 bp, 545 bp and 343 bp for M, H5 and N1 genes, respectively. Thus, themRT-PCR that can rapidly differentiate simultaneously between these genes is very important for thecontrol and even eradication of AIV transmission in poultry in Indonesia.

  12. Histopathological evaluation of the diversity of cells susceptible to H5N1 virulent avian influenza virus.

    Science.gov (United States)

    Ogiwara, Haru; Yasui, Fumihiko; Munekata, Keisuke; Takagi-Kamiya, Asako; Munakata, Tsubasa; Nomura, Namiko; Shibasaki, Futoshi; Kuwahara, Kazuhiko; Sakaguchi, Nobuo; Sakoda, Yoshihiro; Kida, Hiroshi; Kohara, Michinori

    2014-01-01

    Patients infected with highly pathogenic avian influenza A H5N1 viruses (H5N1 HPAIV) show diffuse alveolar damage. However, the temporal progression of tissue damage and repair after viral infection remains poorly defined. Therefore, we assessed the sequential histopathological characteristics of mouse lung after intranasal infection with H5N1 HPAIV or H1N1 2009 pandemic influenza virus (H1N1 pdm). We determined the amount and localization of virus in the lung through IHC staining and in situ hybridization. IHC used antibodies raised against the virus protein and antibodies specific for macrophages, type II pneumocytes, or proliferating cell nuclear antigen. In situ hybridization used RNA probes against both viral RNA and mRNA encoding the nucleoprotein and the hemagglutinin protein. H5N1 HPAIV infection and replication were observed in multiple lung cell types and might result in rapid progression of lung injury. Both type II pneumocytes and macrophages proliferated after H5N1 HPAIV infection. However, the abundant macrophages failed to block the viral attack, and proliferation of type II pneumocytes failed to restore the damaged alveoli. In contrast, mice infected with H1N1 pdm exhibited modest proliferation of type II pneumocytes and macrophages and slight alveolar damage. These results suggest that the virulence of H5N1 HPAIV results from the wide range of cell tropism of the virus, excessive virus replication, and rapid development of diffuse alveolar damage. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Full-Genome Analysis of Avian Influenza A(H5N1) Virus from a Human, North America, 2013

    Science.gov (United States)

    Pabbaraju, Kanti; Tellier, Raymond; Wong, Sallene; Li, Yan; Bastien, Nathalie; Tang, Julian W.; Drews, Steven J.; Jang, Yunho; Davis, C. Todd; Tipples, Graham A.

    2014-01-01

    Full-genome analysis was conducted on the first isolate of a highly pathogenic avian influenza A(H5N1) virus from a human in North America. The virus has a hemagglutinin gene of clade 2.3.2.1c and is a reassortant with an H9N2 subtype lineage polymerase basic 2 gene. No mutations conferring resistance to adamantanes or neuraminidase inhibitors were found. PMID:24755439

  14. Comparative analyses of pandemic H1N1 and seasonal H1N1, H3N2, and influenza B infections depict distinct clinical pictures in ferrets.

    Directory of Open Access Journals (Sweden)

    Stephen S H Huang

    Full Text Available Influenza A and B infections are a worldwide health concern to both humans and animals. High genetic evolution rates of the influenza virus allow the constant emergence of new strains and cause illness variation. Since human influenza infections are often complicated by secondary factors such as age and underlying medical conditions, strain or subtype specific clinical features are difficult to assess. Here we infected ferrets with 13 currently circulating influenza strains (including strains of pandemic 2009 H1N1 [H1N1pdm] and seasonal A/H1N1, A/H3N2, and B viruses. The clinical parameters were measured daily for 14 days in stable environmental conditions to compare clinical characteristics. We found that H1N1pdm strains had a more severe physiological impact than all season strains where pandemic A/California/07/2009 was the most clinically pathogenic pandemic strain. The most serious illness among seasonal A/H1N1 and A/H3N2 groups was caused by A/Solomon Islands/03/2006 and A/Perth/16/2009, respectively. Among the 13 studied strains, B/Hubei-Wujiagang/158/2009 presented the mildest clinical symptoms. We have also discovered that disease severity (by clinical illness and histopathology correlated with influenza specific antibody response but not viral replication in the upper respiratory tract. H1N1pdm induced the highest and most rapid antibody response followed by seasonal A/H3N2, seasonal A/H1N1 and seasonal influenza B (with B/Hubei-Wujiagang/158/2009 inducing the weakest response. Our study is the first to compare the clinical features of multiple circulating influenza strains in ferrets. These findings will help to characterize the clinical pictures of specific influenza strains as well as give insights into the development and administration of appropriate influenza therapeutics.

  15. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    Directory of Open Access Journals (Sweden)

    Alex J Mann

    Full Text Available We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments or intranasally (CSN adjuvanted and placebo treatments only with clade 1 HPAI A/Vietnam/1194/2004 (H5N1 virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant

  16. Amino Acid Substitutions Associated with Avian H5N6 Influenza A Virus Adaptation to Mice

    Directory of Open Access Journals (Sweden)

    Chunmao Zhang

    2017-09-01

    Full Text Available At least 15 cases of human beings infected with H5N6 have been reported since 2014, of which at least nine were fatal. The highly pathogenic avian H5N6 influenza virus may pose a serious threat to both public health and the poultry industry. However, the molecular features promoting the adaptation of avian H5N6 influenza viruses to mammalian hosts is not well understood. Here, we sequentially passaged an avian H5N6 influenza A virus (A/Northern Shoveler/Ningxia/488-53/2015 10 times in mice to identify the adaptive amino acid substitutions that confer enhanced virulence to H5N6 in mammals. The 1st and 10th passages of the mouse-adapted H5N6 viruses were named P1 and P10, respectively. P1 and P10 displayed higher pathogenicity in mice than their parent strain. P10 showed significantly higher replication capability in vivo and could be detected in the brains of mice, whereas P1 displayed higher replication efficiency in their lungs but was not detectable in the brain. Similar to its parent strain, P10 remained no transmissible between guinea pigs. Using genome sequencing and alignment, multiple amino acid substitutions, including PB2 E627K, PB2 T23I, PA T97I, and HA R239H, were found in the adaptation of H5N6 to mice. In summary, we identified amino acid changes that are associated with H5N6 adaptation to mice.

  17. Passive immunotherapy for influenza A H5N1 virus infection with equine hyperimmune globulin F(ab'2 in mice

    Directory of Open Access Journals (Sweden)

    Li Yanbin

    2006-03-01

    Full Text Available Abstract Background Avian influenza virus H5N1 has demonstrated considerable pandemic potential. Currently, no effective vaccines for H5N1 infection are available, so passive immunotherapy may be an alternative strategy. To investigate the possible therapeutic effect of antibody against highly pathogenic H5N1 virus on a mammal host, we prepared specific equine anti-H5N1 IgGs from horses vaccinated with inactivated H5N1 virus, and then obtained the F(ab'2 fragments by pepsin digestion of IgGs. Methods The horses were vaccinated with inactivated H5N1 vaccine to prepare anti-H5N1 IgGs. The F(ab'2 fragments were purified from anti-H5N1 hyperimmune sera by a protocol for 'enhanced pepsin digestion'. The protective effect of the F(ab'2 fragments against H5N1 virus infection was determined in cultured MDCK cells by cytopathic effect (CPE assay and in a BALB/c mouse model by survival rate assay. Results By the protocol for 'enhanced pepsin digestion', total 16 g F(ab'2 fragments were finally obtained from one liter equine antisera with the purity of over 90%. The H5N1-specific F(ab'2 fragments had a HI titer of 1:1024, and the neutralization titre of F(ab'2 reached 1: 2048. The in vivo assay showed that 100 μg of the F(ab'2 fragments could protect BALB/c mice infected with a lethal dose of influenza H5N1 virus. Conclusion The availability of highly purified H5N1-specific F(ab'2 fragments may be promising for treatment of influenza H5N1 infection. Our work has provided experimental support for the application of the therapeutic equine immunoglobulin in future large primate or human trials.

  18. Reoccurrence of H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses in wild birds during 2016

    Science.gov (United States)

    The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...

  19. Contact variables for exposure to avian influenza H5N1 virus at the human-animal interface.

    Science.gov (United States)

    Rabinowitz, P; Perdue, M; Mumford, E

    2010-06-01

    Although the highly pathogenic avian influenza H5N1 virus continues to cause infections in both avian and human populations, the specific zoonotic risk factors remain poorly understood. This review summarizes available evidence regarding types of contact associated with transmission of H5N1 virus at the human-animal interface. A systematic search of the published literature revealed five analytical studies and 15 case reports describing avian influenza transmission from animals to humans for further review. Risk factors identified in analytical studies were compared, and World Health Organization-confirmed cases, identified in case reports, were classified according to type of contact reported using a standardized algorithm. Although cases were primarily associated with direct contact with sick/unexpectedly dead birds, some cases reported only indirect contact with birds or contaminated environments or contact with apparently healthy birds. Specific types of contacts or activities leading to exposure could not be determined from data available in the publications reviewed. These results support previous reports that direct contact with sick birds is not the only means of human exposure to avian influenza H5N1 virus. To target public health measures and disease awareness messaging for reducing the risk of zoonotic infection with avian influenza H5N1 virus, the specific types of contacts and activities leading to transmission need to be further understood. The role of environmental virus persistence, shedding of virus by asymptomatic poultry and disease pathophysiology in different avian species relative to human zoonotic risk, as well as specific modes of zoonotic transmission, should be determined.

  20. Viral and Host Factors Required for Avian H5N1 Influenza A Virus Replication in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2013-06-01

    Full Text Available Following the initial and sporadic emergence into humans of highly pathogenic avian H5N1 influenza A viruses in Hong Kong in 1997, we have come to realize the potential for avian influenza A viruses to be transmitted directly from birds to humans. Understanding the basic viral and cellular mechanisms that contribute to infection of mammalian species with avian influenza viruses is essential for developing prevention and control measures against possible future human pandemics. Multiple physical and functional cellular barriers can restrict influenza A virus infection in a new host species, including the cell membrane, the nuclear envelope, the nuclear environment, and innate antiviral responses. In this review, we summarize current knowledge on viral and host factors required for avian H5N1 influenza A viruses to successfully establish infections in mammalian cells. We focus on the molecular mechanisms underpinning mammalian host restrictions, as well as the adaptive mutations that are necessary for an avian influenza virus to overcome them. It is likely that many more viral and host determinants remain to be discovered, and future research in this area should provide novel and translational insights into the biology of influenza virus-host interactions.

  1. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Lee, Hong Sik

    2011-01-01

    The emergence of highly pathogenic influenza A virus strains, such as the new H1N1 swine influenza (novel influenza), represents a serious threat to global human health. During our course of an anti-influenza screening program on natural products, one new licochalcone G (1) and seven known (2-8) ...

  2. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity

    NARCIS (Netherlands)

    S. Chutinimitkul (Salin); D.A.J. van Riel (Debby); V.J. Munster (Vincent); J.M.A. van den Brand (Judith); G.F. Rimmelzwaan (Guus); T. Kuiken (Thijs); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); E. de Wit (Emmie)

    2010-01-01

    textabstractThe continuous circulation of the highly pathogenic avian influenza (HPAI) H5N1 virus has been a cause of great concern. The possibility of this virus acquiring specificity for the human influenza A virus receptor, α2,6-linked sialic acids (SA), and being able to transmit efficiently

  3. Viremia associated with fatal outcomes in ferrets infected with avian H5N1 influenza virus.

    Directory of Open Access Journals (Sweden)

    Xue Wang

    Full Text Available Avian H5N1 influenza viruses cause severe disease and high mortality in infected humans. However, tissue tropism and underlying pathogenesis of H5N1 virus infection in humans needs further investigation. The objective of this work was to study viremia, tissue tropism and disease pathogenesis of H5N1 virus infection in the susceptible ferret animal model. To evaluate the relationship of morbidity and mortality with virus loads, we performed studies in ferrets infected with the H5N1 strain A/VN/1203/04 to assess clinical signs after infection and virus load in lung, brain, ileum, nasal turbinate, nasal wash, and blood. We observed that H5N1 infection in ferrets is characterized by high virus load in the brain and and low levels in the ileum using real-time PCR. In addition, viral RNA was frequently detected in blood one or two days before death and associated with symptoms of diarrhea. Our observations further substantiate pathogenicity of H5N1 and further indicate that viremia may be a bio-marker for fatal outcomes in H5N1 infection.

  4. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam

    NARCIS (Netherlands)

    Le, Mai T. Q.; Wertheim, Heiman F. L.; Nguyen, Hien D.; Taylor, Walter; Hoang, Phuong V. M.; Vuong, Cuong D.; Nguyen, Hang L. K.; Nguyen, Ha H.; Nguyen, Thai Q.; Nguyen, Trung V.; van, Trang D.; Ngoc, Bich T.; Bui, Thinh N.; Nguyen, Binh G.; Nguyen, Liem T.; Luong, San T.; Phan, Phuc H.; Pham, Hung V.; Nguyen, Tung; Fox, Annette; Nguyen, Cam V.; Do, Ha Q.; Crusat, Martin; Farrar, Jeremy; Nguyen, Hien T.; de Jong, Menno D.; Horby, Peter

    2008-01-01

    BACKGROUND: Prior to 2007, highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections

  5. Effect of Vaccination on Transmission of HPAI H5N1: The Effect of a Single Vaccination Dose on Transmission of Highly Pathogenic Avian Influanza H5N1 in Peking Ducks

    NARCIS (Netherlands)

    Goot, van der J.A.; Boven, van R.M.; Jong, de M.C.M.; Koch, G.

    2007-01-01

    The highly pathogenic H5N1 avian influenza virus is widespread among domestic ducks throughout Southeast Asia. Many aspects of the poultry industry and social habits hinder the containment and eradication of AI. Vaccination is often put forward as a tool for the control of AI. However, vaccination

  6. Poultry movement networks in Cambodia: implications for surveillance and control of highly pathogenic avian influenza (HPAI/H5N1).

    Science.gov (United States)

    Van Kerkhove, Maria D; Vong, Sirenda; Guitian, Javier; Holl, Davun; Mangtani, Punam; San, Sorn; Ghani, Azra C

    2009-10-23

    Movement of poultry through markets is potentially important in the circulation and spread of highly pathogenic avian influenza. However little is understood about poultry market chains in Cambodia. We conducted a cross-sectional survey of 715 rural villagers, 123 rural, peri-urban and urban market sellers and 139 middlemen from six provinces and Phnom Penh, to evaluate live poultry movement and trading practices. Direct trade links with Thailand and Vietnam were identified via middlemen and market sellers. Most poultry movement occurs via middlemen into Phnom Penh making live bird wet markets in Phnom Penh a potential hub for the spread of H5N1 and ideal for surveillance and control.

  7. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    Science.gov (United States)

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  8. H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells.

    Science.gov (United States)

    Mazel-Sanchez, B; Boal-Carvalho, I; Silva, F; Dijkman, R; Schmolke, M

    2018-06-01

    Highly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans. IMPORTANCE Aquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction

  9. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein.

    Directory of Open Access Journals (Sweden)

    Ioannis Sitaras

    Full Text Available Evolution of Avian Influenza (AI viruses--especially of the Highly Pathogenic Avian Influenza (HPAI H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1, using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.

  10. Evidence for the Convergence Model: The Emergence of Highly Pathogenic Avian Influenza (H5N1 in Viet Nam.

    Directory of Open Access Journals (Sweden)

    Sumeet Saksena

    Full Text Available Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID, the 'convergence model' was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model's predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs.

  11. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1.

    Science.gov (United States)

    Abdelwhab, E M; Grund, Christian; Aly, Mona M; Beer, Martin; Harder, Timm C; Hafez, Hafez M

    2012-02-24

    In Egypt, continuous circulation of highly pathogenic avian influenza (HPAI) H5N1 viruses of clade 2.2.1 in vaccinated commercial poultry challenges strenuous control efforts. Here, vaccine-derived maternal AIV H5 specific immunity in one-day old chicks was investigated as a factor of vaccine failure in long-term blanket vaccination campaigns in broiler chickens. H5 seropositive one-day old chicks were derived from breeders repeatedly immunized with a commercial inactivated vaccine based on the Potsdam/H5N2 strain. When challenged using the antigenically related HPAIV strain Italy/98 (H5N2) clinical protection was achieved until at least 10 days post-hatch although virus replication was not fully suppressed. No protection at all was observed against the Egyptian HPAIV strain EGYvar/H5N1 representing a vaccine escape lineage. Other groups of chicks with maternal immunity were vaccinated once at 3 or 14 days of age using either the Potsdam/H5N2 vaccine or a vaccine based on EGYvar/H5N1. At day 35 of age these chicks were challenged with the Egyptian HPAIV strain EGYcls/H5N1 which co-circulates with EGYvar/H5N1 but does not represent an antigenic drift variant. The Potsdam/H5N2 vaccinated groups were not protected against EGYcls/H5N1 infection while, in contrast, the EGYvar/H5N1 vaccinated chicks withstand challenge with EGYvar/H5N1 infection. In addition, the results showed that maternal antibodies could interfere with the immune response when a homologous vaccine strain was used. Copyright © 2011. Published by Elsevier B.V.

  12. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Sujuan Chen

    2017-06-01

    Full Text Available H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128 were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  13. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    Science.gov (United States)

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  14. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells.

    Directory of Open Access Journals (Sweden)

    Markus Matthaei

    Full Text Available The fatal transmissions of highly pathogenic avian influenza A viruses (IAV of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to

  15. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus).

    Science.gov (United States)

    Ramis, Antonio; van Amerongen, Geert; van de Bildt, Marco; Leijten, Loneke; Vanderstichel, Raphael; Osterhaus, Albert; Kuiken, Thijs

    2014-08-19

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 10(4) median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

  16. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    Science.gov (United States)

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  17. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype......) and the human-fatal A/Netherlands/219/03 (H7N7), respectively. The basic polymerase 1 and 2 genes were phylogenetically equidistant to both A/Duck/Denmark/65047/04 (H5N2) and A/Chicken/Netherlands/1/03 (H7N7). The nucleoprotein and matrix gene had highest nucleotide sequence similarity to the H6 subtypes A....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  18. Spatio-Temporal Occurrence Modeling of Highly Pathogenic Avian Influenza Subtype H5N1: A Case Study in the Red River Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Chinh C. Tran

    2013-11-01

    Full Text Available Highly Pathogenic Avian Influenza (HPAI subtype H5N1 poses severe threats to both animals and humans. Investigating where, when and why the disease occurs is important to help animal health authorities develop effective control policies. This study takes into account spatial and temporal occurrence of HPAI H5N1 in the Red River Delta of Vietnam. A two-stage procedure was used: (1 logistic regression modeling to identify and quantify factors influencing the occurrence of HPAI H5N1; and (2 a geostatistical approach to develop monthly predictive maps. The results demonstrated that higher average monthly temperatures and poultry density in combination with lower average monthly precipitation, humidity in low elevation areas, roughly from November to January and April to June, contribute to the higher occurrence of HPAI H5N1. Provinces near the Gulf of Tonkin, including Hai Phong, Hai Duong, Thai Binh, Nam Dinh and Ninh Binh are areas with higher probability of occurrence of HPAI H5N1.

  19. Human influenza A (H5N1): a brief review and recommendations for travelers.

    Science.gov (United States)

    Hurtado, Timothy R

    2006-01-01

    Although avian influenza A (H5N1) is common in birds worldwide, it has only recently led to disease in humans. Humans who are infected with the disease (referred to as human influenza A [H5N1]) have a greater than 50% mortality rate. Currently there has not been documented sustained human-to-human transmission; however, should the virus mutate and make this possible, the world could experience an influenza pandemic. Probable risk factors for infection include slaughtering, defeathering, and butchering fowl; close contact with wild birds or caged poultry; ingestion of undercooked poultry products; direct contact with surfaces contaminated with poultry feces; and close contact with infected humans. Possible risk factors include swimming in or ingesting water contaminated with bird feces or dead birds and the use of unprocessed poultry feces as fertilizer. Clinically, early human influenza A (H5N1) resembles typical influenza illnesses, with fever and a preponderance of lower respiratory tract symptoms. Often, patients develop rapidly progressive respiratory failure and require ventilatory support. Treatment is primarily supportive care with the addition of antiviral medications. Currently, travelers to countries with both human and avian influenza A (H5N1) have a low risk of developing the disease. There are no current recommended travel restrictions. Travelers are advised to avoid contact with all birds, especially poultry; avoid surfaces contaminated with poultry feces; and avoid undercooked poultry products. The use of prophylactic antiviral medications is not recommended.

  20. Multiple reassorted viruses as cause of highly pathogenic avian influenza A(H5N8) virus epidemic, the Netherlands, 2016

    NARCIS (Netherlands)

    Beerens, Nancy; Heutink, Rene; Bergervoet, Saskia A.; Harders, Frank; Bossers, Alex; Koch, Guus

    2017-01-01

    In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird

  1. Exploring contacts facilitating transmission of influenza A(H5N1) virus between poultry farms in West Java, Indonesia

    NARCIS (Netherlands)

    Wibawa, Hendra; Karo-Karo, Desniwaty; Pribadi, Eko Sugeng; Bouma, Annemarie; Bodewes, Rogier; Vernooij, Hans; Diyantoro,; Sugama, Agus; Muljono, David H.; Koch, Guus; Tjatur Rasa, Fadjar Sumping; Stegeman, Arjan

    2018-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been reported in Asia, including Indonesia since 2003. Although several risk factors related to the HPAIV outbreaks in poultry in Indonesia have been identified, little is known of the contact structure of farms of different poultry production

  2. Transmission of highly pathogenic avian influenza H5N1 virus in Pekin ducks is significantly reduced by a genetically distant H5N2 vaccine

    NARCIS (Netherlands)

    Goot, van der J.A.; Boven, van M.; Stegeman, A.; Water, van de S.G.P.; Jong, de M.C.M.; Koch, G.

    2008-01-01

    Domestic ducks play an important role in the epidemiology of H5N1 avian influenza. Although it is known that vaccines that have a high homology with the challenge virus are able to prevent infection in ducks, little is yet known about the ability of genetically more distant vaccines in preventing

  3. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes

    Science.gov (United States)

    Monsalvo, Ana Clara; Batalle, Juan P.; Lopez, M. Florencia; Krause, Jens C.; Klemenc, Jennifer; Zea, Johanna; Maskin, Bernardo; Bugna, Jimena; Rubinstein, Carlos; Aguilar, Leandro; Dalurzo, Liliana; Libster, Romina; Savy, Vilma; Baumeister, Elsa; Aguilar, Liliana; Cabral, Graciela; Font, Julia; Solari, Liliana; Weller, Kevin P.; Johnson, Joyce; Echavarria, Marcela; Edwards, Kathryn M.; Chappell, James D.; Crowe, James E.; Williams, John V.; Melendi, Guillermina A.; Polack, Fernando P.

    2010-01-01

    Pandemic influenza viruses often cause severe disease in middle-aged adults without preexistent co-morbidities. The mechanism of illness associated with severe disease in this age group is not well understood1–10. Here, we demonstrate preexisting serum antibody that cross-reacts with, but does not protect against 2009 H1N1 influenza virus in middle-aged adults. Non-protective antibody is associated with immune complex(IC)-mediated disease after infection. High titers of serum antibody of low avidity for H1-2009 antigen, and low avidity pulmonary ICs against the same protein were detected in severely ill patients. Moreover, C4d deposition - a sensitive marker of complement activation mediated by ICs- was present in lung sections of fatal cases. Archived lung sections from adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a novel biological mechanism for the unusual age distribution of severe cases during influenza pandemics. PMID:21131958

  4. H5N1-SeroDetect EIA and rapid test: a novel differential diagnostic assay for serodiagnosis of H5N1 infections and surveillance.

    Science.gov (United States)

    Khurana, Surender; Sasono, Pretty; Fox, Annette; Nguyen, Van Kinh; Le, Quynh Mai; Pham, Quang Thai; Nguyen, Tran Hien; Nguyen, Thanh Liem; Horby, Peter; Golding, Hana

    2011-12-01

    Continuing evolution of highly pathogenic (HP) H5N1 influenza viruses in wild birds with transmission to domestic poultry and humans poses a pandemic threat. There is an urgent need for a simple and rapid serological diagnostic assay which can differentiate between antibodies to seasonal and H5N1 strains and that could provide surveillance tools not dependent on virus isolation and nucleic acid technologies. Here we describe the establishment of H5N1 SeroDetect enzyme-linked immunosorbent assay (ELISA) and rapid test assays based on three peptides in HA2 (488-516), PB1-F2 (2-75), and M2e (2-24) that are highly conserved within H5N1 strains. These peptides were identified by antibody repertoire analyses of H5N1 influenza survivors in Vietnam using whole-genome-fragment phage display libraries (GFPDLs). To date, both platforms have demonstrated high levels of sensitivity and specificity in detecting H5N1 infections (clade 1 and clade 2.3.4) in Vietnamese patients as early as 7 days and up to several years postinfection. H5N1 virus-uninfected individuals in Vietnam and the United States, including subjects vaccinated with seasonal influenza vaccines or with confirmed seasonal virus infections, did not react in the H5N1-SeroDetect assays. Moreover, sera from individuals vaccinated with H5N1 subunit vaccine with moderate anti-H5N1 neutralizing antibody titers did not react positively in the H5N1-SeroDetect ELISA or rapid test assays. The simple H5N1-SeroDetect ELISA and rapid tests could provide an important tool for large-scale surveillance for potential exposure to HP H5N1 strains in both humans and birds.

  5. Treatment and Prevention of Pandemic H1N1 Influenza.

    Science.gov (United States)

    Rewar, Suresh; Mirdha, Dashrath; Rewar, Prahlad

    2015-01-01

    Swine influenza is a respiratory infection common to pigs worldwide caused by type A influenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time. The Centers for Disease Control and Prevention recommends use of oseltamivir (Tamiflu, Genentech) or zanamivir (Relenza, GlaxoSmithKline). Prevention of swine influenza has 3 components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans. Because of limited treatment options, high risk for secondary infection, and frequent need for intensive care of individuals with H1N1 pneumonia, environmental control, including vaccination of high-risk populations and public education are critical to control of swine influenza out breaks. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    Science.gov (United States)

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model.

    Science.gov (United States)

    Paul, Mathilde; Tavornpanich, Saraya; Abrial, David; Gasqui, Patrick; Charras-Garrido, Myriam; Thanapongtharm, Weerapong; Xiao, Xiangming; Gilbert, Marius; Roger, Francois; Ducrot, Christian

    2010-01-01

    Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the "second wave" of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained. INRA, EDP Sciences, 2010.

  8. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Arai, Yasuha; Kajikawa, Junichi; Hirose, Ryohei; Nakaya, Takaaki

    Highly pathogenic avian influenza (HPAI) H5N1 virus emerged in 1997 as a zoonotic disease in Hong Kong. It has since spread to Asia and Europe and is a serious threat to both the poultry industry and human health. For effective surveillance and possible prevention/control of HPAI H5N1 viruses, it is necessary to understand the molecular mechanism underlying HPAI H5N1 pathogenesis. The hemagglutinin (HA) protein of influenza A viruses (IAVs) is one of the major determinants of host adaptation, transmissibility, and viral virulence. The main function of the HA protein is to facilitate viral entry and viral genome release within host cells before infection. To achieve viral infection, IAVs belonging to different subtypes or strains induce viral-cell membrane fusion at different endosomal pH levels after internalization through endocytosis. However, host-specific endosomal pH also affects induction of membrane fusion followed by infection. The HA protein of HPAI H5N1 has a higher pH threshold for membrane fusion than the HA protein of classical avian influenza viruses. Although this particular property of HA (which governs viral infection) is prone to deactivation in the avian intestine or in an ambient environment, it facilitates efficient infection of host cells, resulting in a broad host tropism, regardless of the pH in the host endosome. Accumulated knowledge, together with further research, about the HA-governed mechanism underlying HPAI H5N1 virulence (i.e., receptor tropism and pH-dependent viral-cell membrane fusion) will be helpful for developing effective surveillance strategies and for prevention/control of HPAI H5N1 infection.

  9. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    Science.gov (United States)

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  10. Principles for vaccine protection in chickens and domestic waterfowl against avian influenza: emphasis on Asian H5N1 high pathogenicity avian influenza.

    Science.gov (United States)

    Swayne, David E

    2006-10-01

    The H5N1 highly pathogenic (HP) avian influenza (AI) epizootic began with reports of mortality from China in 1996 and, by June 2005, caused outbreaks of disease in nine additional Asian countries, affecting or resulting in culling of over 200 million birds. Vaccines can be used in programs to prevent, manage, or eradicate AI. However, vaccines should only be used as part of a comprehensive control strategy that also includes biosecurity, quarantine, surveillance and diagnostics, education, and elimination of infected poultry. Potent AI vaccines, when properly used, can prevent disease and death, increase resistance to infection, reduce field virus replication and shedding, and reduce virus transmission, but do not provide "sterilizing immunity" in the field; i.e., vaccination does not completely prevent AI virus replication. Inactivated AI vaccines and a recombinant fowlpox-H5-AI vaccine are licensed and used in various countries. Vaccines have been shown to protect chickens, geese, and ducks from H5 HPAI. The inactivated vaccines prevented disease and mortality in chickens and geese, and reduced the ability of the field virus to replicate in gastrointestinal and respiratory tracts. Although the Asian H5N1 HPAI virus did not cause disease or mortality in ducks, the use of inactivated vaccine did reduce field virus replication in the respiratory and intestinal tracts. The inactivated vaccine protected geese from morbidity and mortality, and reduced challenge virus replication. The recombinant fowlpox-H5-AI vaccine has provided similar protection, but the vaccine is used only in chickens and with the advantage of application at 1 day of age in the hatchery.

  11. Detection of H5 Avian Influenza Viruses by Antigen-Capture Enzyme-Linked Immunosorbent Assay Using H5-Specific Monoclonal Antibody▿

    OpenAIRE

    He, Qigai; Velumani, Sumathy; Du, Qingyun; Lim, Chee Wee; Ng, Fook Kheong; Donis, Ruben; Kwang, Jimmy

    2007-01-01

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Asia and Europe is threatening animals and public health systems. Effective diagnosis and control management are needed to control the disease. To this end, we developed a panel of monoclonal antibodies (MAbs) against the H5N1 avian influenza virus (AIV) and implemented an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) to detect the H5 viral antigen. Mice immunized with denatured hemagglutinin (H...

  12. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs.

    Directory of Open Access Journals (Sweden)

    Annebel De Vleeschauwer

    2009-08-01

    Full Text Available Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal to compare the pathogenesis of a low pathogenic (LP H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.

  13. H5N2 Highly Pathogenic Avian Influenza Viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys

    OpenAIRE

    Spackman, Erica; Pantin-Jackwood, Mary J.; Kapczynski, Darrell R.; Swayne, David E.; Suarez, David L.

    2016-01-01

    Background From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lineage hemagglutinin, and 3 genes from North American wild waterfowl low pathogenicity avian influenza viruses. The outbreak primarily affected turkeys and table-egg layer type chickens. T...

  14. Demographic and clinical predictors of mortality from highly pathogenic avian influenza A (H5N1 virus infection: CART analysis of international cases.

    Directory of Open Access Journals (Sweden)

    Rita B Patel

    Full Text Available Human infections with highly pathogenic avian influenza (HPAI A (H5N1 viruses have occurred in 15 countries, with high mortality to date. Determining risk factors for morbidity and mortality from HPAI H5N1 can inform preventive and therapeutic interventions.We included all cases of human HPAI H5N1 reported in World Health Organization Global Alert and Response updates and those identified through a systematic search of multiple databases (PubMed, Scopus, and Google Scholar, including articles in all languages. We abstracted predefined clinical and demographic predictors and mortality and used bivariate logistic regression analyses to examine the relationship of each candidate predictor with mortality. We developed and pruned a decision tree using nonparametric Classification and Regression Tree methods to create risk strata for mortality.We identified 617 human cases of HPAI H5N1 occurring between December 1997 and April 2013. The median age of subjects was 18 years (interquartile range 6-29 years and 54% were female. HPAI H5N1 case-fatality proportion was 59%. The final decision tree for mortality included age, country, per capita government health expenditure, and delay from symptom onset to hospitalization, with an area under the receiver operator characteristic (ROC curve of 0.81 (95% CI: 0.76-0.86.A model defined by four clinical and demographic predictors successfully estimated the probability of mortality from HPAI H5N1 illness. These parameters highlight the importance of early diagnosis and treatment and may enable early, targeted pharmaceutical therapy and supportive care for symptomatic patients with HPAI H5N1 virus infection.

  15. Evolutionary genetics of highly pathogenic H5N1 avian influenza viruses isolated from whooper swans in northern Japan in 2008.

    Science.gov (United States)

    Usui, Tatsufumi; Yamaguchi, Tsuyoshi; Ito, Hiroshi; Ozaki, Hiroichi; Murase, Toshiyuki; Ito, Toshihiro

    2009-12-01

    In April and May 2008, highly pathogenic avian influenza viruses subtype H5N1 were isolated from dead or moribund whooper swans in Aomori, Akita and Hokkaido prefectures in northern Japan. To trace the genetic lineage of the isolates, the nucleotide sequences of all eight genes were determined and phylogenetically analyzed. The Japanese strains were nearly identical to chicken viruses isolated in Russia in April 2008 and closely related to viruses isolated from dead wild birds in Hong Kong in 2007-2008. Their HA genes clustered in clade 2.3.2. On the other hand, NA and the other internal genes were closely related to those of clade 2.3.4 viruses (genotype V) whose NP genes originated from an HA clade 2.3.2 virus. In conclusion, the H5N1 viruses isolated in Japan, Russia and Hong Kong were derived from a common ancestor virus belonging to genotype V that was generated from genetic reassortment events between viruses of HA clades 2.3.2 and 2.3.4.

  16. Pathogenesis of highly pathogenic avian influenza A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally.

    Science.gov (United States)

    Löndt, Brandon Z; Nunez, Alejandro; Banks, Jill; Nili, Hassan; Johnson, Linda K; Alexander, Dennis J

    2008-12-01

    Asian H5N1 (hereafter referred to as panzootic H5N1) highly pathogenic avian influenza (HPAI) virus has caused large numbers of deaths in both poultry and wild-bird populations. Recent isolates of this virus have been reported to cause disease and death in commercial ducks, which has not been seen with other HPAI viruses. However, little is known about either the dissemination of this H5N1 within the organs or the cause of death in infected ducks. Nineteen 4-week-old Pekin ducks were infected with 10(6.7) median egg infectious doses of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2.2) in 0.1ml via the intranasal and intraocular routes. Cloacal and oropharyngeal swabs were taken daily before three animals were selected randomly and killed humanely for postmortem examination, when samples of tissues were taken for real-time reverse transcriptase-polymerase chain reaction, histopathological examination and immunohistochemistry. Clinical signs were first observed 4 days post infection (d.p.i.) and included depression, reluctance to feed, in-coordination and torticollis resulting in the death of all the birds remaining on 5d.p.i. Higher levels of virus shedding were detected from oropharyngeal swabs than from cloacal swabs. Real-time reverse transcriptase-polymerase chain reaction and immunohistochemistry identified peak levels of virus at 2d.p.i. in several organs. In the spleen, lung, kidney, caecal tonsils, breast muscle and thigh muscle the levels were greatly reduced at 3d.p.i. However, the highest viral loads were detected in the heart and brain from 3d.p.i. and coincided with the appearance of clinical signs and death. Our experimental results demonstrate the systemic spread of this HPAI H5N1 virus in Pekin ducks, and the localization of virus in the brain and heart tissue preceding death.

  17. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7 and swine-origin H1N1 (S-OIV

    Directory of Open Access Journals (Sweden)

    Schoop Roland

    2009-11-01

    Full Text Available Abstract Background Influenza virus (IV infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1, were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options

  19. Characterisation of a highly pathogenic H5N1 clade 2.3.2 influenza virus isolated from swans in Shanghai, China.

    Science.gov (United States)

    Zhao, Guo; Zhong, Lei; Lu, Xinlun; Hu, Jiao; Gu, Xiaobing; Kai, Yan; Song, Qingqing; Sun, Qing; Liu, Jinbao; Peng, Daxin; Wang, Xiaoquan; Liu, Xiaowen; Liu, Xiufan

    2012-02-01

    In spring 2009, one strain of H5N1 clade 2.3.2 virus was isolated from wild swans in Shanghai, indicating the importance of the wild swan in the ecology of this highly pathogenic avian influenza virus (HPAIV) in Eastern China. Pathogenicity experiments conducted in this study indicated that the virus was highly pathogenic for chickens but lowly pathogenic for mammalian hosts, as evidenced by reduced infection of mice. The analysis of complete genome sequences and genetic evolution showed that A/Swan/Shanghai/10/09 (SW/SH/09) may be derived from the strain A/silky chicken/Shantou/475/2004 (CK/ST/04), which is homologous to the influenza viruses isolated from chicken, duck, pika, little egret, swan, mandarin duck and bar-headed goose in China Hunan, China Qinghai, Mongolia, Russia, Japan, Korea, Laos and Hong Kong during 2007-2011, indicating that the virus has retro-infected diverse wild birds from chicken, and significant spread of the virus is still ongoing through overlapping migratory flyways. On the basis of the molecular analysis, we also found that there was a deletion of the glycosylation site (NSS) in amino acid 156 of the hemagglutinin (HA) protein when compared with that of the other Clade 2.3.2 viruses isolated between 2007 and 2011. More importantly, the sequence analysis of SW/SH/09 virus displayed the drug-resistant mutations on the matrix protein (M2) and neuraminidase (NA) genes.

  20. Purification of neuraminidase from Influenza virus subtype H5N1

    Directory of Open Access Journals (Sweden)

    Simson Tariga

    2009-03-01

    Full Text Available Influenza-virus neuraminidase plays vital role in the survival of the organisms. Vaccination of animals with this glycoprotein confers immune responses so that enable it to protect the animals from incoming infection. Supplementation of conventional vaccines with this glycoprotein increases the protection and longevity of the vaccine. Purified neuraminidase can also be used to develop serological tests for differentiation of serologically positive animals due to infection or to vaccination. In this study purification of neuraminidase from influenza virus subtype H5N1 was described. Triton x-100 and Octyl β-D-glucopyranoside were used to extract and diluted the glycoprotein membrane. The enzymatic activity of the neuraminidase was assayed using a fluorochrome substrate, 4-methylumbelliferyl-a-D-N-acetyl neuraminic acid, which was found to be simple, sensitive and suitable for the purification purpose. The neuraminidase was absorbed selectively on an oxamic-acid agarose column. The purity of neuraminidase eluted from this affinity column was high. A higher purity of the neuraminidase was obtained by further separation with gel filtration on Superdex-200. The purified neuraminidase was enzymatically active and did not contain any detectable haemagglutinin, either by haemagglutination assay or by monospecific antibodies raised against H5N1 hemagglutinin. The purified neuraminidase was recognized strongly by antibodies raised against an internal but only weakly by that against C-terminal regions of the neuraminidase protein of H5N1-influenza virus. The purified neuraminidase was in tetrameric forms but dissociated into monomeric form on reducing condition, or mostly dimeric form on non-reducing SDS-PAGE.

  1. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals.

    Science.gov (United States)

    El-Shesheny, Rabeh; Feeroz, Mohammed M; Krauss, Scott; Vogel, Peter; McKenzie, Pamela; Webby, Richard J; Webster, Robert G

    2018-04-25

    Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.

  2. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt

    Directory of Open Access Journals (Sweden)

    Sean G. Young

    2016-09-01

    Full Text Available Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC curve (AUC 0.991.

  3. Adaptation of Pandemic H1N1 Influenza Viruses in Mice▿

    Science.gov (United States)

    Ilyushina, Natalia A.; Khalenkov, Alexey M.; Seiler, Jon P.; Forrest, Heather L.; Bovin, Nicolai V.; Marjuki, Henju; Barman, Subrata; Webster, Robert G.; Webby, Richard J.

    2010-01-01

    The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation. The resulting mouse lung-adapted variants showed significantly enhanced growth characteristics in eggs, extended extrapulmonary tissue tropism, and pathogenicity in mice. All mouse-adapted viruses except A/TN/1-560/09-MA2 grew faster and to higher titers in cells than the original strains. We found that 10 amino acid changes in the ribonucleoprotein (RNP) complex (PB2 E158G/A, PA L295P, NP D101G, and NP H289Y) and hemagglutinin (HA) glycoprotein (K119N, G155E, S183P, R221K, and D222G) controlled enhanced mouse virulence of pandemic isolates. HA mutations acquired during adaptation affected viral receptor specificity by enhancing binding to α2,3 together with decreasing binding to α2,6 sialyl receptors. PB2 E158G/A and PA L295P amino acid substitutions were responsible for the significant enhancement of transcription and replication activity of the mouse-adapted H1N1 variants. Taken together, our findings suggest that changes optimizing receptor specificity and interaction of viral polymerase components with host cellular factors are the major mechanisms that contribute to the optimal competitive advantage of pandemic influenza viruses in mice. These modulators of virulence, therefore, may have been the driving components of early evolution, which paved the way for novel 2009 viruses in mammals. PMID:20592084

  4. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    Science.gov (United States)

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  5. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity.

    Science.gov (United States)

    Chutinimitkul, Salin; van Riel, Debby; Munster, Vincent J; van den Brand, Judith M A; Rimmelzwaan, Guus F; Kuiken, Thijs; Osterhaus, Albert D M E; Fouchier, Ron A M; de Wit, Emmie

    2010-07-01

    The continuous circulation of the highly pathogenic avian influenza (HPAI) H5N1 virus has been a cause of great concern. The possibility of this virus acquiring specificity for the human influenza A virus receptor, alpha2,6-linked sialic acids (SA), and being able to transmit efficiently among humans is a constant threat to human health. Different studies have described amino acid substitutions in hemagglutinin (HA) of clinical HPAI H5N1 isolates or that were introduced experimentally that resulted in an increased, but not exclusive, binding of these virus strains to alpha2,6-linked SA. We introduced all previously described amino acid substitutions and combinations thereof into a single genetic background, influenza virus A/Indonesia/5/05 HA, and tested the receptor specificity of these 27 mutant viruses. The attachment pattern to ferret and human tissues of the upper and lower respiratory tract of viruses with alpha2,6-linked SA receptor preference was then determined and compared to the attachment pattern of a human influenza A virus (H3N2). At least three mutant viruses showed an attachment pattern to the human respiratory tract similar to that of the human H3N2 virus. Next, the replication efficiencies of these mutant viruses and the effects of three different neuraminidases on virus replication were determined. These data show that influenza virus A/Indonesia/5/05 potentially requires only a single amino acid substitution to acquire human receptor specificity, while at the same time remaining replication competent, thus suggesting that the pandemic threat posed by HPAI H5N1 is far from diminished.

  6. In Vitro Assessment of Attachment Pattern and Replication Efficiency of H5N1 Influenza A Viruses with Altered Receptor Specificity▿

    Science.gov (United States)

    Chutinimitkul, Salin; van Riel, Debby; Munster, Vincent J.; van den Brand, Judith M. A.; Rimmelzwaan, Guus F.; Kuiken, Thijs; Osterhaus, Albert D. M. E.; Fouchier, Ron A. M.; de Wit, Emmie

    2010-01-01

    The continuous circulation of the highly pathogenic avian influenza (HPAI) H5N1 virus has been a cause of great concern. The possibility of this virus acquiring specificity for the human influenza A virus receptor, α2,6-linked sialic acids (SA), and being able to transmit efficiently among humans is a constant threat to human health. Different studies have described amino acid substitutions in hemagglutinin (HA) of clinical HPAI H5N1 isolates or that were introduced experimentally that resulted in an increased, but not exclusive, binding of these virus strains to α2,6-linked SA. We introduced all previously described amino acid substitutions and combinations thereof into a single genetic background, influenza virus A/Indonesia/5/05 HA, and tested the receptor specificity of these 27 mutant viruses. The attachment pattern to ferret and human tissues of the upper and lower respiratory tract of viruses with α2,6-linked SA receptor preference was then determined and compared to the attachment pattern of a human influenza A virus (H3N2). At least three mutant viruses showed an attachment pattern to the human respiratory tract similar to that of the human H3N2 virus. Next, the replication efficiencies of these mutant viruses and the effects of three different neuraminidases on virus replication were determined. These data show that influenza virus A/Indonesia/5/05 potentially requires only a single amino acid substitution to acquire human receptor specificity, while at the same time remaining replication competent, thus suggesting that the pandemic threat posed by HPAI H5N1 is far from diminished. PMID:20392847

  7. The Landscape Epidemiology of Seasonal Clustering of Highly Pathogenic Avian Influenza (H5N1) in Domestic Poultry in Africa, Europe and Asia.

    Science.gov (United States)

    Walsh, M G; Amstislavski, P; Greene, A; Haseeb, M A

    2017-10-01

    Highly pathogenic avian influenza subtype H5N1 (H5N1) has contributed to substantial economic loss for backyard and large-scale poultry farmers each year since 1997. While the distribution of domestic H5N1 outbreaks across Africa, Europe and Asia is extensive, those features of the landscape conferring greatest risk remain uncertain. Furthermore, the extent to which influential landscape features may vary by season has been inadequately described. The current investigation used World Organization for Animal Health surveillance data to (i) delineate areas at greatest risk of H5N1 epizootics among domestic poultry, (ii) identify those abiotic and biotic features of the landscape associated with outbreak risk and (iii) examine patterns of epizootic clustering by season. Inhomogeneous point process models were used to predict the intensity of H5N1 outbreaks and describe the spatial dependencies between them. During October through March, decreasing precipitation, increasing isothermality and the presence of H5N1 in wild birds were significantly associated with the increased risk of domestic H5N1 epizootics. Conversely, increasing precipitation and decreasing isothermality were associated with the increased risk during April through September. Increasing temperature during the coldest quarter, domestic poultry density and proximity to surface water were associated with the increased risk of domestic outbreaks throughout the year. Spatial dependencies between outbreaks appeared to vary seasonally, with substantial clustering at small and large scales identified during October through March even after accounting for inhomogeneity due to landscape factors. In contrast, during April to September, H5N1 outbreaks exhibited no clustering at small scale once accounting for landscape factors. This investigation has identified seasonal differences in risk and clustering patterns of H5N1 outbreaks in domestic poultry and may suggest strategies in high-risk areas with features

  8. Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea.

    Science.gov (United States)

    Kim, Young-Il; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Si, Young-Jae; Jeong, Ju-Hwan; Lee, In-Won; Nguyen, Hiep Dinh; Kwon, Jin-Jung; Choi, Won Suk; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2017-09-01

    During the outbreaks of highly pathogenic avian influenza (HPAI) H5N6 viruses in 2016 in South Korea, novel H5N8 viruses were also isolated from migratory birds. Phylogenetic analysis revealed that the HA gene of these H5N8 viruses belonged to clade 2.3.4.4, similarly to recent H5Nx viruses, and originated from A/Brk/Korea/Gochang1/14(H5N8), a minor lineage of H5N8 that appeared in 2014 and then disappeared. At least four reassortment events occurred with different subtypes (H5N8, H7N7, H3N8 and H10N7) and a chicken challenge study revealed that they were classified as HPAI viruses according to OIE criteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens.

    Science.gov (United States)

    Vergara-Alert, Júlia; Busquets, Núria; Ballester, Maria; Chaves, Aida J; Rivas, Raquel; Dolz, Roser; Wang, Zhongfang; Pleschka, Stephan; Majó, Natàlia; Rodríguez, Fernando; Darji, Ayub

    2014-01-25

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.

  10. Epidemiology of avian influenza H5N1 virus in Egypt and its zoonotic potential

    Directory of Open Access Journals (Sweden)

    Nahed Hamed Ghoneim

    2014-09-01

    Full Text Available Objective: To investigate the epidemiology of avian influenza H5N1 virus in domestic poultry and its zoonotic potential in Egypt. Methods: Tracheal swabs were collected from two hundred and forty three domestic poultry (chickens, ducks and geese from commercial farms and backyards, and thirty two blood samples from unvaccinated chickens. Fifty two throat swabs and twenty blood samples were collected from persons who are in contact with diseased and/or infected birds. Tracheal and throat swabs were examined for the presence of avian influenza virus H5N1 genome by real-time RT-PCR whereas blood samples were tested by competitive ELISA for the presence of avian influenza virus H5 antibodies. Results: The overall prevalence of H5N1 in the examined birds was 5.3% while the prevalence rates among different poultry species were 9%, 4.7% and 0% for ducks, chicken and geese respectively. Moreover, we detected H5 antibodies in 12.5% of the examined backyard chickens. All examined humans were negative for both viral RNA and antibodies. Conclusions: Our findings highlight the broad circulation of H5N1 virus among poultry in Egypt whereas it still has a limited zoonotic potential so far.

  11. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    Science.gov (United States)

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  12. Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

    Directory of Open Access Journals (Sweden)

    Huaiying Xu

    2015-02-01

    Full Text Available Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA and matrix (M genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  13. Factors Associated with the Emergence of Highly Pathogenic Avian Influenza A (H5N1) Poultry Outbreaks in China: Evidence from an Epidemiological Investigation in Ningxia, 2012.

    Science.gov (United States)

    Liu, H; Zhou, X; Zhao, Y; Zheng, D; Wang, J; Wang, X; Castellan, D; Huang, B; Wang, Z; Soares Magalhães, R J

    2017-06-01

    In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case-control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1-infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12-0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97-15.64] compared to H5N1-non-infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio-exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m. © 2015 Blackwell Verlag GmbH.

  14. Prolonged excretion of a low-pathogenicity H5N2 avian influenza virus strain in the Pekin duck

    Science.gov (United States)

    Carranza-Flores, José Manuel; Padilla-Noriega, Luis; Loza-Rubio, Elizabeth

    2013-01-01

    H5N2 strains of low-pathogenicity avian influenza virus (LPAIV) have been circulating for at least 17 years in some Mexican chicken farms. We measured the rate and duration of viral excretion from Pekin ducks that were experimentally inoculated with an H5N2 LPAIV that causes death in embryonated chicken eggs (A/chicken/Mexico/2007). Leghorn chickens were used as susceptible host controls. The degree of viral excretion was evaluated with real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) using samples from oropharyngeal and cloacal swabs. We observed prolonged excretion from both species of birds lasting for at least 21 days. Prolonged excretion of LPAIV A/chicken/Mexico/2007 is atypical. PMID:23820212

  15. Immunity to current H5 highly pathogenic avian influenza viruses: From vaccines to adaptive immunity in wild birds

    Science.gov (United States)

    Following the 2014-2015 outbreaks of H5N2 and H5N8 highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to assess the immunity required for protection against future outbreaks should they occur. We assessed the ability of vaccines to induce protection of chickens and turkeys...

  16. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    Science.gov (United States)

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  17. H5N1 avian influenza virus: human cases reported in southern China.

    NARCIS (Netherlands)

    Crofts, J.; Paget, J.; Karcher, F.

    2003-01-01

    Two cases of confirmed influenza due to the avian influenza A H5N1 virus were reported last week in Hong Kong (1). The cases occurred in a Hong Kong family who had recently visited Fujian province in southern China. The daughter, aged 8 years, died following a respiratory illness. The cause of her

  18. Immunomorphologic Manifestations in Mice Liver Infected with Influenza A/H5N1, A/Goose/Krasnoozerskoye/627/05 Strain

    Directory of Open Access Journals (Sweden)

    Oxana V. Potapova

    2013-01-01

    Full Text Available Highly pathogenic avian influenza H5N1 (HPAI H5N1 viruses can infect mammals, including humans, causing severe systemic disease with the inhibition of the immune system and a high mortality rate. In conditions of lymphoid tissue depletion, the liver plays an important role in host defence against viruses. The changes in mice liver infected with HPAI H5N1 virus A/goose/Krasnoozerskoye/627/05 have been studied. It has been shown that the virus persistence in the liver leads to the expression of proinflammatory cytokines (TNF-α, IL-6 and intracellular proteases (lysozyme, cathepsin D, and myeloperoxidase by Kupffer cells. Defective antiviral response exacerbates destructive processes in the liver accelerating the development of liver failure.

  19. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host.

    Science.gov (United States)

    Czudai-Matwich, Volker; Otte, Anna; Matrosovich, Mikhail; Gabriel, Gülsah; Klenk, Hans-Dieter

    2014-08-01

    Mutation D701N in the PB2 protein is known to play a prominent role in the adaptation of avian influenza A viruses to mammalian hosts. In contrast, little is known about the nearby mutations S714I and S714R, which have been observed in some avian influenza viruses highly pathogenic for mammals. We have generated recombinant H5N1 viruses with PB2 displaying the avian signature 701D or the mammalian signature 701N and serine, isoleucine, and arginine at position 714 and compared them for polymerase activity and virus growth in avian and mammalian cells, as well as for pathogenicity in mice. Mutation D701N led to an increase in polymerase activity and replication efficiency in mammalian cells and in mouse pathogenicity, and this increase was significantly enhanced when mutation D701N was combined with mutation S714R. Stimulation by mutation S714I was less distinct. These observations indicate that PB2 mutation S714R, in combination with the mammalian signature at position 701, has the potential to promote the adaptation of an H5N1 virus to a mammalian host. Influenza A/H5N1 viruses are avian pathogens that have pandemic potential, since they are spread over large parts of Asia, Africa, and Europe and are occasionally transmitted to humans. It is therefore of high scientific interest to understand the mechanisms that determine the host specificity and pathogenicity of these viruses. It is well known that the PB2 subunit of the viral polymerase is an important host range determinant and that PB2 mutation D701N plays an important role in virus adaptation to mammalian cells. In the present study, we show that mutation S714R is also involved in adaptation and that it cooperates with D701N in exposing a nuclear localization signal that mediates importin-α binding and entry of PB2 into the nucleus, where virus replication and transcription take place. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges.

    Science.gov (United States)

    Gardin, Yannick; Palya, Vilmos; Dorsey, Kristi Moore; El-Attrache, John; Bonfante, Francesco; Wit, Sjaak de; Kapczynski, Darrell; Kilany, Walid Hamdy; Rauw, Fabienne; Steensels, Mieke; Soejoedono, Retno D

    2016-05-01

    Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure.

  1. Isolation and characterization of virus of highly pathogenic avian influenza H5 subtype of chicken from outbreaks in Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Wiyono

    2004-03-01

    Full Text Available A study on the isolation and characterization of Highly Pathogenic Avian Influenza of chicken from outbreaks in Indonesia was conducted at Indonesian Research Institute for Veterinary Science. Outbreaks of avian disease had been reported in Indonesia since August 2003 affecting commercial layer, broiler, quail, and ostrich and also native chicken with showing clinical signs such as cyanosis of wattle and comb, nasal discharges and hypersalivation, subcutaneous ptechiae on foot and leg, diarre and sudden high mortality. The aim of this study is to isolate and characterize the causal agent of the disease. Samples of serum, feather follicle, tracheal swab, as well as organs of proventriculus, intestine, caecal tonsil, trachea and lungs were collected from infected animals. Serum samples were tested haemaglutination/haemaglutination inhibition to Newcastle Disease and Egg Drop Syndrome viruses. Isolation of virus of the causal agent of the outbreak was conducted from samples of feather follicle, tracheal swab, and organs using 11 days old specific pathogen free (SPF embryonated eggs. The isolated viruses were then characterised by agar gel precipitation test using swine influenza reference antisera, by haemaglutination inhibition using H1 to H15 reference antisera, and by electron microscope examination. The pathogenicity of the viruses was confirmed by intravenous pathogenicity index test and its culture in Chicken Embryo Fibroblast primary cell culture without addition of trypsin. The study revealed that the causative agent of the outbreaks of avian disease in Indonesia was avian influenza H5 subtype virus based upon serological tests, virus isolation and characterization using swine influenza reference antisera, and electron microscope examination. While subtyping of the viruses using H1 to H15 reference antisera suggested that the virus is very likely to be an avian influenza H5N1 subtype virus. The pathogenicity test confirmed that the viruses

  2. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines.

    Science.gov (United States)

    Cha, Ra Mi; Smith, Diane; Shepherd, Eric; Davis, C Todd; Donis, Ruben; Nguyen, Tung; Nguyen, Hoang Dang; Do, Hoa Thi; Inui, Ken; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary

    2013-10-09

    Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks. Published by Elsevier Ltd.

  3. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    Science.gov (United States)

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  4. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    Science.gov (United States)

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  5. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017.

    Science.gov (United States)

    Zhou, Lei; Tan, Yi; Kang, Min; Liu, Fuqiang; Ren, Ruiqi; Wang, Yali; Chen, Tao; Yang, Yiping; Li, Chao; Wu, Jie; Zhang, Hengjiao; Li, Dan; Greene, Carolyn M; Zhou, Suizan; Iuliano, A Danielle; Havers, Fiona; Ni, Daxin; Wang, Dayan; Feng, Zijian; Uyeki, Timothy M; Li, Qun

    2017-08-01

    We compared the characteristics of cases of highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) A(H7N9) virus infections in China. HPAI A(H7N9) case-patients were more likely to have had exposure to sick and dead poultry in rural areas and were hospitalized earlier than were LPAI A(H7N9) case-patients.

  6. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France.

    Science.gov (United States)

    Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie

    2018-01-01

    In southwestern France, during the winter of 2016-2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50-110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log 10 RNA copies per m 3 , and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  7. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France

    Directory of Open Access Journals (Sweden)

    Axelle Scoizec

    2018-02-01

    Full Text Available In southwestern France, during the winter of 2016–2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50–110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log10 RNA copies per m3, and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  8. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam.

    Directory of Open Access Journals (Sweden)

    Mai T Q Le

    2008-10-01

    Full Text Available Prior to 2007, highly pathogenic avian influenza (HPAI H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections in Vietnam in 2007 and the characteristics of the isolated viruses.Respiratory specimens from patients suspected to be infected with avian influenza in 2007 were screened by influenza and H5 subtype specific polymerase chain reaction. Isolated H5N1 strains were further characterized by genome sequencing and drug susceptibility testing. Eleven poultry outbreak isolates from 2007 were included in the sequence analysis. Eight patients, all of them from northern Vietnam, were diagnosed with H5N1 in 2007 and five of them died. Phylogenetic analysis of H5N1 viruses isolated from humans and poultry in 2007 showed that clade 2.3.4 H5N1 viruses replaced clade 1 viruses in northern Vietnam. Four human H5N1 strains had eight-fold reduced in-vitro susceptibility to oseltamivir as compared to clade 1 viruses. In two poultry isolates the I117V mutation was found in the neuraminidase gene, which is associated with reduced susceptibility to oseltamivir. No mutations in the M2 gene conferring amantadine resistance were found.In 2007, H5N1 clade 2.3.4 viruses replaced clade 1 viruses in northern Vietnam and were susceptible to amantadine but showed reduced susceptibility to oseltamivir. Combination antiviral therapy with oseltamivir and amantadine for human cases in Vietnam is recommended.

  9. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Runming Li

    Full Text Available The influenza glycoprotein hemagglutinin (HA plays crucial roles in the early stage of virus infection, including receptor binding and membrane fusion. Therefore, HA is a potential target for developing anti-influenza drugs. Recently, we characterized a novel inhibitor of highly pathogenic H5N1 influenza virus, CL-385319, which specifically inhibits HA-mediated viral entry. Studies presented here identified the critical binding residues for CL-385319, which clustered in the stem region of the HA trimer by site-directed mutagenesis. Extensive computational simulations, including molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM_GBSA calculations, charge density and Laplacian calculations, have been carried out to uncover the detailed molecular mechanism that underlies the binding of CL-385319 to H5N1 influenza virus HA. It was found that the recognition and binding of CL-385319 to HA proceeds by a process of "induced fit" whereby the binding pocket is formed during their interaction. Occupation of this pocket by CL-385319 stabilizes the neutral pH structure of hemagglutinin, thus inhibiting the conformational rearrangements required for membrane fusion. This "induced fit" pocket may be a target for structure-based design of more potent influenza fusion inhibitors.

  10. Protection of White Leghorn chickens by U.S. emergency H5 vaccination against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus.

    Science.gov (United States)

    Bertran, Kateri; Balzli, Charles; Lee, Dong-Hun; Suarez, David L; Kapczynski, Darrell R; Swayne, David E

    2017-11-01

    During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5+rgH5N1 or rHVT-H5+RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens. Published by Elsevier Ltd.

  11. Influenza A (H1N1) organising pneumonia.

    Science.gov (United States)

    Torrego, Alfons; Pajares, Virginia; Mola, Anna; Lerma, Enrique; Franquet, Tomás

    2010-04-27

    In November 2009, countries around the world reported confirmed cases of pandemic influenza H1N1, including over 6000 deaths. No peak in activity has been seen. The most common causes of death are pneumonia and acute respiratory distress syndrome. We report a case of a 55-year-old woman who presented with organising pneumonia associated with influenza A (H1N1) infection confirmed by transbronchial lung biopsy. Organising pneumonia should also be considered as a possible complication of influenza A (H1N1) infection, given that these patients can benefit from early diagnosis and appropriate specific management.

  12. Molecular Evolution and Emergence of H5N6 Avian Influenza Virus in Central China.

    Science.gov (United States)

    Du, Yingying; Chen, Mingyue; Yang, Jiayun; Jia, Yane; Han, Shufang; Holmes, Edward C; Cui, Jie

    2017-06-15

    H5N6 avian influenza virus (AIV) has posed a potential threat to public health since its emergence in China in 2013. To understand the evolution and emergence of H5N6 AIV in the avian population, we performed molecular surveillance of live poultry markets (LPMs) in Wugang Prefecture, Hunan Province, in central China, during 2014 and 2015. Wugang Prefecture is located on the Eastern Asian-Australian migratory bird flyway, and a human death due to an H5N6 virus was reported in the prefecture on 21 November 2016. In total, we sampled and sequenced the complete genomes of 175 H5N6 AIVs. Notably, our analysis revealed that H5N6 AIVs contain at least six genotypes arising from segment reassortment, including a rare variant that possesses an HA gene derived from H5N1 clade 2.3.2 and a novel NP gene that has its origins with H7N3 viruses. In addition, phylogenetic analysis revealed that genetically similar H5N6 AIVs tend to cluster according to their geographic regions of origin. These results help to reveal the evolutionary behavior of influenza viruses prior to their emergence in humans. IMPORTANCE The newly emerged H5N6 influenza A virus has caused more than 10 human deaths in China since 2013. In November 2016, a human death due to an H5N6 virus, in Wugang Prefecture, Hunan Province, was confirmed by the WHO. To better understand the evolution and emergence of H5N6 viruses, we surveyed live poultry markets (LPMs) in Wugang Prefecture before the reported human death, with a focus on revealing the diversity and genomic origins of H5N6 in birds during 2014 and 2015. In general, H5N6 viruses in this region were most closely related to H5N1 clade 2.3.4.4, with the exception of one virus with an HA gene derived from clade 2.3.2 such that it represents a novel reassortant. Clearly, the ongoing surveillance of LPMs is central to monitoring the emergence of pathogenic influenza viruses. Copyright © 2017 American Society for Microbiology.

  13. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P study demonstrates the suboptimal protection with the rHVT-H5/2.2 vaccine given alone in Pekin ducks against H5N1 HPAI viruses and only a minor additive effect on virus shedding reduction when used with an inactivated vaccine in a

  14. Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza.

    Science.gov (United States)

    Fournié, G; Guitian, F J; Mangtani, P; Ghani, A C

    2011-08-07

    Live bird markets (LBMs) act as a network 'hub' and potential reservoir of infection for domestic poultry. They may therefore be responsible for sustaining H5N1 highly pathogenic avian influenza (HPAI) virus circulation within the poultry sector, and thus a suitable target for implementing control strategies. We developed a stochastic transmission model to understand how market functioning impacts on the transmission dynamics. We then investigated the potential for rest days-periods during which markets are emptied and disinfected-to modulate the dynamics of H5N1 HPAI within the poultry sector using a stochastic meta-population model. Our results suggest that under plausible parameter scenarios, HPAI H5N1 could be sustained silently within LBMs with the time spent by poultry in markets and the frequency of introduction of new susceptible birds' dominant factors determining sustained silent spread. Compared with interventions applied in farms (i.e. stamping out, vaccination), our model shows that frequent rest days are an effective means to reduce HPAI transmission. Furthermore, our model predicts that full market closure would be only slightly more effective than rest days to reduce transmission. Strategies applied within markets could thus help to control transmission of the disease.

  15. Novel pandemic influenza A(H1N1 viruses are potently inhibited by DAS181, a sialidase fusion protein.

    Directory of Open Access Journals (Sweden)

    Gallen B Triana-Baltzer

    2009-11-01

    Full Text Available The recent emergence of a novel pandemic influenza A(H1N1 strain in humans exemplifies the rapid and unpredictable nature of influenza virus evolution and the need for effective therapeutics and vaccines to control such outbreaks. However, resistance to antivirals can be a formidable problem as evidenced by the currently widespread oseltamivir- and adamantane-resistant seasonal influenza A viruses (IFV. Additional antiviral approaches with novel mechanisms of action are needed to combat novel and resistant influenza strains. DAS181 (Fludase is a sialidase fusion protein in early clinical development with in vitro and in vivo preclinical activity against a variety of seasonal influenza strains and highly pathogenic avian influenza strains (A/H5N1. Here, we use in vitro, ex vivo, and in vivo models to evaluate the activity of DAS181 against several pandemic influenza A(H1N1 viruses.The activity of DAS181 against several pandemic influenza A(H1N1 virus isolates was examined in MDCK cells, differentiated primary human respiratory tract culture, ex-vivo human bronchi tissue and mice. DAS181 efficiently inhibited viral replication in each of these models and against all tested pandemic influenza A(H1N1 strains. DAS181 treatment also protected mice from pandemic influenza A(H1N1-induced pathogenesis. Furthermore, DAS181 antiviral activity against pandemic influenza A(H1N1 strains was comparable to that observed against seasonal influenza virus including the H274Y oseltamivir-resistant influenza virus.The sialidase fusion protein DAS181 exhibits potent inhibitory activity against pandemic influenza A(H1N1 viruses. As inhibition was also observed with oseltamivir-resistant IFV (H274Y, DAS181 may be active against the antigenically novel pandemic influenza A(H1N1 virus should it acquire the H274Y mutation. Based on these and previous results demonstrating DAS181 broad-spectrum anti-IFV activity, DAS181 represents a potential therapeutic agent for

  16. Military and Military Medical Support in Highly Pathogenic Avian Influenza (HPAI/H5N1) Pandemic Scenario

    International Nuclear Information System (INIS)

    Taleski, V.

    2007-01-01

    Avian influenza (Bird flu) is a highly contagious viral disease affecting mainly chickens, turkeys, ducks, other birds and mammals. Reservoirs for HPAI /H5N1 virus are shore birds and waterfowl (asymptomatic, excrete virus in feces for a long periods of time), live bird markets and commercial swine facilities. Virus tends to cycle between pigs and birds. HPAI (H5N1) virus is on every 'top ten' list available for potential agricultural bio-weapon agents. The threat of a HPAI/H5N1 pandemic is a definitively global phenomenon and the response must be global. A number of National plans led to various measures of preventing and dealing with epidemics/pandemics. Lessons learned form the pandemic history indicated essential role of military and military medical support to civil authorities in a crisis situation. Based on International Military Medical Avian Influenza Pandemic workshop (Vienna 2006), an expected scenario would involve 30-50% outpatients, 20-30% hospital admission, 2-3% deaths, 10-20% complicated cases. Activities of civil hospital may be reduced by 50%. Benefits of military support could be in: Transportation of patients (primarily by air); Mass vaccination and provision of all other preventive measures (masks, Tamiflu); Restriction of movements; Infection control of health care facilities; Field hospitals for triage and quarantine, military barracks to treat milder cases and military hospitals for severe cases; Deal with corpses; Stockpiling (vaccines, antiviral, antibiotics, protective equipment, supplies); Training; Laboratories; Ensure public safety, etc. With the aim of minimizing the risk of a pandemic spread by means of rapid and uncomplicated cooperation, an early warning system has to be established to improve surveillance, improve international contacts (WHO, ECDC, CDC), establish Platform for sharing information, close contacts of national and international military and civilian surveillance networks and databases, cooperation between military

  17. Protection from pulmonary tissue damage associated with infection of cynomolgus macaques by highly pathogenic avian influenza virus (H5N1) by low dose natural human IFN-α administered to the buccal mucosa.

    Science.gov (United States)

    Strayer, David R; Carter, William A; Stouch, Bruce C; Stittelaar, Koert J; Thoolen, Robert J M M; Osterhaus, Albert D M E; Mitchell, William M

    2014-10-01

    Using an established nonhuman primate model for H5N1 highly pathogenic influenza virus infection in humans, we have been able to demonstrate the prophylactic mitigation of the pulmonary damage characteristic of human fatal cases from primary influenza virus pneumonia with a low dose oral formulation of a commercially available parenteral natural human interferon alpha (Alferon N Injection®). At the highest oral dose (62.5IU/kg body weight) used there was a marked reduction in the alveolar inflammatory response with minor evidence of alveolar and interstitial edema in contrast to the hemorrhage and inflammatory response observed in the alveoli of control animals. The mitigation of severe damage to the lower pulmonary airway was observed without a parallel reduction in viral titers. Clinical trial data will be necessary to establish its prophylactic human efficacy for highly pathogenic influenza viruses. Copyright © 2014. Published by Elsevier B.V.

  18. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses

    Science.gov (United States)

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  19. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    Science.gov (United States)

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination.

  20. Influenza A (H1N1) neuraminidase inhibitors from Vitis amurensis

    DEFF Research Database (Denmark)

    Nguyen, Ngoc Anh; Dao, Trong Tuan; Tung, Bui Thanh

    2011-01-01

    Recently, a novel H1N1 influenza A virus (H1N1/09 virus) was identified and considered a strong candidate for a novel influenza pandemic. As part of an ongoing anti-influenza screening programme on natural products, eight oligostilbenes were isolated as active principles from the methanol extract...... of Vitis amurensis. This manuscript reports the isolation, structural elucidation, and anti-viral activities of eight compounds on various neuraminidases from influenza A/PR/8/34 (H1N1), novel swine-origin influenza A (H1N1), and oseltamivir-resistant novel H1N1 (H274Y) expressed in 293T cells...

  1. H1N1 influenza (Swine flu)

    Science.gov (United States)

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  2. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    Science.gov (United States)

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  3. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; Mitchell, Hugh D.; Eisfeld-Fenney, Amie J.; Walters, Kevin B.; Nicora, Carrie D.; Purvine, Samuel O.; Casey, Cameron P.; Monroe, Matthew E.; Weitz, Karl K.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gralinski, Lisa; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Sims, Amy C.; Kawaoka, Yoshihiro; Baric, Ralph

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigen presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.

  4. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses.

    Science.gov (United States)

    Liu, Kaituo; Gu, Min; Hu, Shunlin; Gao, Ruyi; Li, Juan; Shi, Liwei; Sun, Wenqi; Liu, Dong; Gao, Zhao; Xu, Xiulong; Hu, Jiao; Wang, Xiaoquan; Liu, Xiaowen; Chen, Sujuan; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2018-04-01

    During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 10 3.0 EID 50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.

  5. Avian influenza A virus subtype H5N2 in a red-lored Amazon parrot.

    Science.gov (United States)

    Hawkins, Michelle G; Crossley, Beate M; Osofsky, Anna; Webby, Richard J; Lee, Chang-Won; Suarez, David L; Hietala, Sharon K

    2006-01-15

    A 3-month-old red-lored Amazon parrot (Amazona autumnalis autumnalis) was evaluated for severe lethargy. Avian influenza virus hemagglutinin subtype H5N2 with low pathogenicity was characterized by virus isolation, real-time reverse transcriptase PCR assay, chicken intravenous pathogenicity index, and reference sera. The virus was also determined to be closely related to a virus lineage that had been reported only in Mexico and Central America. The chick was admitted to the hospital and placed in quarantine. Supportive care treatment was administered. Although detection of H5 avian influenza virus in birds in the United States typically results in euthanasia of infected birds, an alternative strategy with strict quarantine measures and repeated diagnostic testing was used. The chick recovered from the initial clinical signs after 4 days and was released from quarantine 9 weeks after initial evaluation after 2 consecutive negative virus isolation and real-time reverse transcriptase PCR assay results. To the authors' knowledge, this is the first report of H5N2 avian influenza A virus isolated from a psittacine bird and represents the first introduction of this virus into the United States, most likely by illegal importation of psittacine birds. Avian influenza A virus should be considered as a differential diagnosis for clinical signs of gastrointestinal tract disease in psittacine birds, especially in birds with an unknown history of origin. Although infection with avian influenza virus subtype H5 is reportable, destruction of birds is not always required.

  6. Persistence of low-pathogenic avian influenza H5N7 and H7N1 subtypes in house flies (Diptera

    DEFF Research Database (Denmark)

    Nielsen, Anne Ahlmann; Skovgård, Henrik; Stockmarr, Anders

    2011-01-01

    Avian influenza caused by avian influenza virus (AIV) has a negative impact on poultry production. Low-pathogenic AIV (LPAIV) is naturally present in wild birds, and the introduction of the virus into domestic poultry is assumed to occur through contact with wild birds and by human activity...

  7. A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2.

    Directory of Open Access Journals (Sweden)

    Christopher W Woods

    Full Text Available There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1 or A/Wisconsin/67/2005 (H3N2, and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44% developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1 and 38 hours (p-value = 0.005, H3N2 before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009 infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent.

  8. Outbreak of pandemic influenza A/H1N1 2009 in Nepal.

    Science.gov (United States)

    Adhikari, Bal Ram; Shakya, Geeta; Upadhyay, Bishnu Prasad; Prakash Kc, Khagendra; Shrestha, Sirjana Devi; Dhungana, Guna Raj

    2011-03-23

    The 2009 flu pandemic is a global outbreak of a new strain of H1N1 influenza virus. Pandemic influenza A (H1N1) 2009 has posed a serious public health challenge world-wide. Nepal has started Laboratory diagnosis of Pandemic influenza A/H1N1 from mid June 2009 though active screening of febrile travellers with respiratory symptoms was started from April 27, 2009. Out of 609 collected samples, 302 (49.6%) were Universal Influenza A positive. Among the influenza A positive samples, 172(28.3%) were positive for Pandemic influenza A/H1N1 and 130 (21.3%) were Seasonal influenza A. Most of the pandemic cases (53%) were found among young people with ≤ 20 years. Case Fatality Ratio for Pandemic influenza A/H1N1 in Nepal was 1.74%. Upon Molecular characterization, all the isolated pandemic influenza A/H1N1 2009 virus found in Nepal were antigenically and genetically related to the novel influenza A/CALIFORNIA/07/2009-LIKE (H1N1)v type. The Pandemic 2009 influenza virus found in Nepal were antigenically and genetically related to the novel A/CALIFORNIA/07/2009-LIKE (H1N1)v type.

  9. Outbreak of pandemic influenza A/H1N1 2009 in Nepal

    Directory of Open Access Journals (Sweden)

    Shrestha Sirjana

    2011-03-01

    Full Text Available Abstract Background The 2009 flu pandemic is a global outbreak of a new strain of H1N1 influenza virus. Pandemic influenza A (H1N1 2009 has posed a serious public health challenge world-wide. Nepal has started Laboratory diagnosis of Pandemic influenza A/H1N1 from mid June 2009 though active screening of febrile travellers with respiratory symptoms was started from April 27, 2009. Results Out of 609 collected samples, 302 (49.6% were Universal Influenza A positive. Among the influenza A positive samples, 172(28.3% were positive for Pandemic influenza A/H1N1 and 130 (21.3% were Seasonal influenza A. Most of the pandemic cases (53% were found among young people with ≤ 20 years. Case Fatality Ratio for Pandemic influenza A/H1N1 in Nepal was 1.74%. Upon Molecular characterization, all the isolated pandemic influenza A/H1N1 2009 virus found in Nepal were antigenically and genetically related to the novel influenza A/CALIFORNIA/07/2009-LIKE (H1N1v type. Conclusion The Pandemic 2009 influenza virus found in Nepal were antigenically and genetically related to the novel A/CALIFORNIA/07/2009-LIKE (H1N1v type.

  10. An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses

    Directory of Open Access Journals (Sweden)

    Chan Chris CS

    2010-01-01

    Full Text Available Abstract Background A growing concern has raised regarding the pandemic potential of the highly pathogenic avian influenza (HPAI H5N1 viruses. Consequently, there is an urgent need to develop an effective and safe vaccine against the divergent H5N1 influenza viruses. In the present study, we designed a tetra-branched multiple antigenic peptide (MAP-based vaccine, designated M2e-MAP, which contains the sequence overlapping the highly conserved extracellular domain of matrix protein 2 (M2e of a HPAI H5N1 virus, and investigated its immune responses and cross-protection against different clades of H5N1 viruses. Results Our results showed that M2e-MAP vaccine induced strong M2e-specific IgG antibody responses following 3-dose immunization of mice with M2e-MAP in the presence of Freunds' or aluminium (alum adjuvant. M2e-MAP vaccination limited viral replication and attenuated histopathological damage in the challenged mouse lungs. The M2e-MAP-based vaccine protected immunized mice against both clade1: VN/1194 and clade2.3.4: SZ/406H H5N1 virus challenge, being able to counteract weight lost and elevate survival rate following lethal challenge of H5N1 viruses. Conclusions These results suggest that M2e-MAP presenting M2e of H5N1 virus has a great potential to be developed into an effective subunit vaccine for the prevention of infection by a broad spectrum of HPAI H5N1 viruses.

  11. Overview of incursions of Asian H5N1 subtype highly pathogenic avian influenza virus into Great Britain, 2005-2008.

    Science.gov (United States)

    Alexander, Dennis J; Manvell, Ruth J; Irvine, Richard; Londt, Brandon Z; Cox, Bill; Ceeraz, Vanessa; Banks, Jill; Browna, Ian H

    2010-03-01

    Since 2005 there have been five incursions into Great Britain of highly pathogenic avian influenza (HPAI) viruses of subtype H5N1 related to the ongoing global epizootic. The first incursion occurred in October 2005 in birds held in quarantine after importation from Taiwan. Two incursions related to wild birds: one involved a single dead whooper swan found in March 2006 in the sea off the east coast of Scotland, and the other involved 10 mute swans and a Canada goose found dead over the period extending from late December 2007 to late February 2008 on or close to a swannery on the south coast of England. The other two outbreaks occurred in commercial poultry in January 2007 and November 2007, both in the county of Suffolk. The first of these poultry outbreaks occurred on a large turkey farm, and there was no further spread. The second outbreak occurred on a free-range farm rearing turkeys, ducks, and geese and spread to birds on a second turkey farm that was culled as a dangerous contact. Viruses isolated from these five outbreaks were confirmed to be Asian H5N1 HPAI viruses; the quarantine outbreak was attributed to a clade 2.3 virus and the other four to clade 2.2 viruses. This article describes the outbreaks, their control, and the possible origins of the responsible viruses.

  12. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam.

    Science.gov (United States)

    Cagle, Caran; Wasilenko, Jamie; Adams, Sean C; Cardona, Carol J; To, Thanh Long; Nguyen, Tung; Spackman, Erica; Suarez, David L; Smith, Diane; Shepherd, Eric; Roth, Jason; Pantin-Jackwood, Mary J

    2012-09-01

    In a previous study, we found clear differences in pathogenicity and response to vaccination against H5N1 highly pathogenic avian influenza (HPAI; HA dade 2.3.4) between Pekin (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) ducks vaccinated using a commercial inactivated vaccine (Re-1). The objective of the present study was to further investigate the pathogenicity of H5N1 HPAI viruses in different species of ducks by examining clinical signs and innate immune responses to infection with a different strain of H5N1 HPAI virus (HA clade 1) in two domestic ducks, Pekin and Muscovy, and one wild-type duck, mallard (Anas platyrhynchos). Protection conferred by vaccination using the Re-1 vaccine against infection with this virus was also compared between Pekin and Muscovy ducks. Differences in pathogenicity were observed among the virus-infected ducks, as the Muscovy ducks died 2 days earlier than did the Pekin and mallard ducks, and they presented more-severe neurologic signs. Conversely, the Pekin and mallard ducks had significantly higher body temperatures at 2 days postinfection (dpi) than did the Muscovy ducks, indicating possible differences in innate immune responses. However, similar expression of innate immune-related genes was found in the spleens of virus-infected ducks at this time point. In all three duck species, there was up-regulation of IFN-alpha, IFN-gamma, IL-6, CCL19, RIG-I, and MHC class I and down-regulation of MHC class II, but variable expression of IL-18 and TLR7. As in our previous study, vaccinated Muscovy ducks showed less protection against virus infection than did Pekin ducks, as evidenced by the higher mortality and higher number of Muscovy ducks shedding virus when compared to Pekin ducks. In conclusion, infection with an H5N1 HPAI virus produced a systemic infection with high mortality in all three duck species; however, the disease was more severe in Muscovy ducks, which also had a poor response to vaccination. The

  13. Characteristics of atopic children with pandemic H1N1 influenza viral infection: pandemic H1N1 influenza reveals 'occult' asthma of childhood.

    Science.gov (United States)

    Hasegawa, Shunji; Hirano, Reiji; Hashimoto, Kunio; Haneda, Yasuhiro; Shirabe, Komei; Ichiyama, Takashi

    2011-02-01

    The number of human cases of pandemic H1N1 influenza viral infection has increased in Japan since April 2009, as it has worldwide. This virus is widespread in the Yamaguchi prefecture in western Japan, where most infected children exhibited respiratory symptoms. Bronchial asthma is thought to be one of the risk factors that exacerbate respiratory symptoms of pandemic H1N1-infected patients, but the pathogenesis remains unclear. We retrospectively investigated the records of 33 children with pandemic H1N1 influenza viral infection who were admitted to our hospital between October and December 2009 and analyzed their clinical features. The percentage of children with asthma attack, with or without abnormal findings on chest radiographs (pneumonia, atelectasis, etc.), caused by pandemic H1N1 influenza infection was significantly higher than that of children with asthma attack and 2008-2009 seasonal influenza infection. Of the 33 children in our study, 22 (66.7%) experienced an asthma attack. Among these children, 20 (90.9%) did not receive long-term management for bronchial asthma, whereas 7 (31.8%) were not diagnosed with bronchial asthma and had experienced their first asthma attack. However, the severity of the attack did not correlate with the severity of the pulmonary complications of pandemic H1N1 influenza viral infection. The pandemic H1N1 influenza virus greatly increases the risk of lower respiratory tract complications such as asthma attack, pneumonia, and atelectasis, when compared to the seasonal influenza virus. Furthermore, our results suggest that pandemic H1N1 influenza viral infection can easily induce a severe asthma attack, pneumonia, and atelectasis in atopic children without any history of either an asthma attack or asthma treatment. © 2011 John Wiley & Sons A/S.

  14. Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail.

    Science.gov (United States)

    Alexander, D J; Parsons, G; Manvell, R J

    1986-01-01

    Clinical signs, death, virus excretion and immune response were measured in 2-week-old chickens, turkeys, quail and ducks infected by intramuscular, intranasal and contact routes with eight influenza viruses of H5 subtype. Six of the viruses: A/chicken/Scotland/59 (H5N1), ck/Scot; A/tern/South Africa/61 (H5N3), tern/SA; A/turkey/Ontario/ 7732/66 (H5N9); ty/Ont; A/chicken/Pennsylvania/1370/83 (H5N2); Pa/1370; A/turkey/Ireland/83 (H5N8); ty/Ireland, and A/duck/Ireland/ 113/84 (HSN8); dk/Ireland, were highly pathogenic for chickens and turkeys. Two viruses, A/chicken/Pennsylvania/1/83 (H5N2), Pa/1 and A/turkey/Italy/ZA/80 (H5N2), ty/Italy, were of low pathogenicity. Ck/Scot was more pathogenic for chickens than turkeys while ty/Ont was more pathogenic for turkeys than chickens. Other viruses showed little difference in their pathogenicity for these two hosts. No clinical signs or deaths were seen in any of the infected ducks. Only two viruses, dk/Ireland and ty/Ireland, produced consistent serological responses in ducks, although intramuscular infection with tern/SA and ty/Italy resulted in some ducks with positive HI titres. These four were the only viruses reisolated from ducks. Quail showed some resistance to viruses which were highly pathogenic for chickens and turkeys, most notably to ck/Scot and ty/Ont and to a lesser extent tern/SA and Pa/1370. Transmission of virus from intranasally infected birds to birds placed in contact varied considerably with both host and infecting virus and the various combinations of these.

  15. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    Science.gov (United States)

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge.

  16. Avian Influenza Virus A (H5N1), Detected through Routine Surveillance, in Child, Bangladesh

    Science.gov (United States)

    Alamgir, A.S.M.; Sultana, Rebecca; Islam, M. Saiful; Rahman, Mustafizur; Fry, Alicia M.; Shu, Bo; Lindstrom, Stephen; Nahar, Kamrun; Goswami, Doli; Haider, M. Sabbir; Nahar, Sharifun; Butler, Ebonee; Hancock, Kathy; Donis, Ruben O.; Davis, Charles T.; Zaman, Rashid Uz; Luby, Stephen P.; Uyeki, Timothy M.; Rahman, Mahmudur

    2009-01-01

    We identified avian influenza virus A (H5N1) infection in a child in Bangladesh in 2008 by routine influenza surveillance. The virus was of the same clade and phylogenetic subgroup as that circulating among poultry during the period. This case illustrates the value of routine surveillance for detection of novel influenza virus. PMID:19751601

  17. [Influenza A/H5N1 virus outbreaks and prepardness to avert flu pandemic].

    Science.gov (United States)

    Haque, A; Lucas, B; Hober, D

    2007-01-01

    This review emphasizes the need to improve the knowledge of the biology of H5N1 virus, a candidate for causing the next influenza pandemic. In-depth knowledge of mode of infection, mechanisms of pathogenesis and immune response will help in devising an efficient and practical control strategy against this flu virus. We have discussed limitations of currently available vaccines and proposed novel approaches for making better vaccines against H5N1 influenza virus. They include cell-culture system, reverse genetics, adjuvant development. Our review has also underscored the concept of therapeutic vaccine (anti-disease vaccine), which is aimed at diminishing 'cytokine storm' seen in acute respiratory distress syndrome and/or hemophagocytosis.

  18. Isolation of avian influenza H5N1 virus from vaccinated commercial layer flock in Egypt

    Directory of Open Access Journals (Sweden)

    El-Zoghby Elham F

    2012-11-01

    Full Text Available Abstract Background Uninterrupted transmission of highly pathogenic avian influenza virus (HPAIV H5N1 of clade 2.2.1 in Egypt since 2006 resulted in establishment of two main genetic clusters. The 2.2.1/C group where all recent human and majority of backyard origin viruses clustered together, meanwhile the majority of viruses derived from vaccinated poultry in commercial farms grouped in 2.2.1.1 clade. Findings In the present investigation, an HPAIV H5N1 was isolated from twenty weeks old layers chickens that were vaccinated with a homologous H5N1 vaccine at 1, 7 and 16 weeks old. At twenty weeks of age, birds showed cyanosis of comb and wattle, decrease in egg production and up to 27% mortality. Examined serum samples showed low antibody titer in HI test (Log2 3.2± 4.2. The hemagglutinin (HA and neuraminidase (NA genes of the isolated virus were closely related to viruses in 2.2.1/C group isolated from poultry in live bird market (LBM and backyards or from infected people. Conspicuous mutations in the HA and NA genes including a deletion within the receptor binding domain in the HA globular head region were observed. Conclusions Despite repeated vaccination of layer chickens using a homologous H5N1 vaccine, infection with HPAIV H5N1 resulted in significant morbidity and mortality. In endemic countries like Egypt, rigorous control measures including enforcement of biosecurity, culling of infected birds and constant update of vaccine virus strains are highly required to prevent circulation of HPAIV H5N1 between backyard birds, commercial poultry, LBM and humans.

  19. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice

    Directory of Open Access Journals (Sweden)

    Xiaoli Hao

    2017-10-01

    Full Text Available H9N2 avian influenza virus (AIV of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts.

  20. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Guo, Di; Zhuo, Ming; Zhang, Xiaoai; Xu, Cheng; Jiang, Jie; Gao, Fu; Wan, Qing; Li, Qiuhong; Wang, Taihong

    2013-01-01

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V T ) and field-effect mobility. The changes of I D –V G curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10 −9 g mL −1 to 5 × 10 −6 g mL −1 with a detection limit of 0.8 × 10 −10 g mL −1 . Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs can be promising candidates for the

  1. Pathology of whooper swans (Cygnus cygnus) infected with H5N1 avian influenza virus in Akita, Japan, in 2008.

    Science.gov (United States)

    Ogawa, Shuji; Yamamoto, Yu; Yamada, Manabu; Mase, Masaji; Nakamura, Kikuyasu

    2009-10-01

    Two (1 adult and 1 young bird) of 4 H5N1-highly-pathogenic-avian-influenza (HPAI)-virus-infected whooper swans in Akita, Japan, in 2008 were investigated pathologically. Macroscopically, white spots with hemorrhages were scattered in the pancreas in the adult bird. Histologically, the adult bird had severe necrotizing pancreatitis and mild nonpurulent encephalitis. The young bird had severe nonpurulent encephalitis and nonpurulent enteric ganglionitis, and intestinal venous wall thickening. Virus antigens were detected in the lesions of pancreatitis in the adult bird and of encephalitis in adult and young birds. These findings suggest that the swans died or became moribund due to neurological disorders and necrotizing pancreatitis caused by H5N1 HPAI virus infection.

  2. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    Science.gov (United States)

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  3. CD206+ Cell Number Differentiates Influenza A (H1N1pdm09 from Seasonal Influenza A Virus in Fatal Cases

    Directory of Open Access Journals (Sweden)

    Heidi G. Rodriguez-Ramirez

    2014-01-01

    Full Text Available In 2009, a new influenza A (H1N1 virus affected many persons around the world. There is an urgent need for finding biomarkers to distinguish between influenza A (H1N1pdm09 and seasonal influenza virus. We investigated these possible biomarkers in the lung of fatal cases of confirmed influenza A (H1N1pdm09. Cytokines (inflammatory and anti-inflammatory and cellular markers (macrophages and lymphocytes subpopulation markers were analyzed in lung tissue from both influenza A (H1N1pdm09 and seasonal influenza virus. High levels of IL-17, IFN-γ, and TNF-α positive cells were identical in lung tissue from the influenza A (H1N1pdm09 and seasonal cases when compared with healthy lung tissue (P<0.05. Increased IL-4+ cells, and CD4+ and CD14+ cells were also found in high levels in both influenza A (H1N1pdm09 and seasonal influenza virus (P<0.05. Low levels of CD206+ cells (marker of alternatively activated macrophages marker in lung were found in influenza A (H1N1pdm09 when compared with seasonal influenza virus (P<0.05, and the ratio of CD206/CD14+ cells was 2.5-fold higher in seasonal and noninfluenza group compared with influenza A (H1N1pdm09 (P<0.05. In conclusion, CD206+ cells differentiate between influenza A (H1N1pdm09 and seasonal influenza virus in lung tissue of fatal cases.

  4. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    Science.gov (United States)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  5. Avian Influenza H5N1 and the Wild Bird Trade in Hanoi, Vietnam

    Directory of Open Access Journals (Sweden)

    F. Brooks-Moizer

    2009-06-01

    Full Text Available Wildlife trade and emerging infectious diseases pose significant threats to human and animal health and global biodiversity. Legal and illegal trade in domestic and wild birds has played a significant role in the global spread of highly pathogenic avian influenza H5N1, which has killed more than 240 people, many millions of poultry, and an unknown number of wild birds and mammals, including endangered species, since 2003. This 2007 study provides evidence for a significant decline in the scale of the wild bird trade in Hanoi since previous surveys in 2000 (39.7% decline and 2003 (74.1% decline. We attribute this to the enforcement of Vietnam's Law 169/2005/QD UBND, introduced in 2005, which prohibits the movement and sale of wild and ornamental birds in cities. Nevertheless, 91.3% (21/23 of bird vendors perceived no risk of H5N1 infection from their birds, and the trade continues, albeit at reduced levels, in open market shops. These findings highlight the importance of continued law enforcement to maintain this trade reduction and the associated benefits to human and animal health and biodiversity conservation.

  6. Study on Efficacy of Gamma Radiation on the Inactivation of Highly Pathogenic Avian Influenza Virus H5N1 (Thai isolate) in Chicken Meat and Chicken Feces

    International Nuclear Information System (INIS)

    Pinyochon, Wasana; Piadang, Nattayana; Mulika, Ladda; Parchariyanon, Sujira; Vitittheeranon, Arag; Damrongwatapokin, Sudarat

    2006-09-01

    A study on the efficacy of gamma radiation on the inactivation of a highly pathogenic avian influenza virus H5N1 subtype, Thai isolate was carried out. The virus was in the form frozen infected allantoic fluid frozen chicken meat and frozen chicken feces. The result indicated that 9 kilo grey of gamma radiation could completely inactivated 106.0 EID50/ml of AIV infected allantoic fluid and 22 kiel grey and 15 kilo grey of gamma radiation completely inactivate 106.0 EID50/10/ grams of chicken meat and 106.0 EID50/5 grams of chicken feces respectively.

  7. Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: The antiviral potential of exogenous alpha-interferon to reduce virus shedding

    Science.gov (United States)

    Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the geographic expansion, and continued outbreaks in humans and avian species underscore the need for more effective influenza vaccines and antivirals. Additional small anim...

  8. Genetic drift evolution under vaccination pressure among H5N1 Egyptian isolates

    Directory of Open Access Journals (Sweden)

    Afifi Manal A

    2011-06-01

    Full Text Available Background The highly pathogenic H5N1 is a major avian pathogen that intensively affects the poultry industry in Egypt even in spite of the adoption of vaccination strategy. Antigenic drift is among the strategies the influenza virus uses to escape the immune system that might develop due to the pressure of extensive vaccination. H5N1 mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences such an eventuality will entail. Methods H5N1 was isolated from the pooled organ samples of four different affected flocks in specific pathogen free embryonated chicken eggs (SPF-ECE. A reverse transcriptase polymerase chain reaction (RT-PCR was performed to the haemagglutingin and neuraminidase. Sequencing of the full length haemagglutingin was performed. Sequence analyses of the isolated strains were performed and compared to all available H5N1 from Egyptian human and avian strains in the flu database. Changes in the different amino acid that may be related to virus virulence, receptor affinity and epitope configuration were assigned and matched with all available Egyptian strains in the flu database. Results One out of the four strains was found to be related to the B2 Egyptian lineage, 2 were related to A1 lineage and the 4th was related to A2 lineage. Comparing data obtained from the current study by other available Egyptian H5N1 sequences remarkably demonstrates that amino acid changes in the immune escape variants are remarkably restricted to a limited number of locations on the HA molecule during antigenic drift. Molecular diversity in the HA gene, in relevance to different epitopes, were not found to follow a regular trend, suggesting abrupt cumulative sequence mutations. However a number of amino acids were found to be subjected to high mutation pressure. Conclusion The current data provides a comprehensive view of HA gene evolution among H5N1 subtype viruses in

  9. An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed ...

    African Journals Online (AJOL)

    An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed Farm By The Introduction Of A Water Fowl. ... C A Meseko, A T Oladokun, B Shehu. Abstract. Avian influenza (AI) is caused by a range of Influenza type A viruses of high and low pathogenicity (Fauci, 2005). H5N1 Highly Pathogenic Avian Influenza (HPAI) ...

  10. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017.

    Science.gov (United States)

    Kang, Min; Lau, Eric H Y; Guan, Wenda; Yang, Yuwei; Song, Tie; Cowling, Benjamin J; Wu, Jie; Peiris, Malik; He, Jianfeng; Mok, Chris Ka Pun

    2017-07-06

    We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics. This article is copyright of The Authors, 2017.

  11. Pathogenesis and transmissibility of highly (H7N1 and low (H7N9 pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa

    Directory of Open Access Journals (Sweden)

    Bertran Kateri

    2011-02-01

    Full Text Available Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV and low pathogenic avian influenza virus (LPAIV was carried out in red-legged partridges (Alectoris rufa in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999 and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008. Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR, respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  12. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa).

    Science.gov (United States)

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Abad, Francesc Xavier; Valle, Rosa; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-02-07

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  13. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Graeme E Price

    2010-10-01

    Full Text Available The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.

  14. Persistence of Low-Pathogenic Avian Influenza H5N7 and H7N1 Subtypes in House Flies (Diptera: Muscidae)

    DEFF Research Database (Denmark)

    Nielsen, Anne Ahlmann; Skovgård, Henrik; Stockmarr, Anders

    2011-01-01

    Avian influenza caused by avian influenza virus (AIV) has a negative impact on poultry production. Low-pathogenic AIV (LPAIV) is naturally present in wild birds, and the introduction of the virus into domestic poultry is assumed to occur through contact with wild birds and by human activity...

  15. Identifying risk factors of highly pathogenic avian influenza (H5N1 subtype) in Indonesia.

    Science.gov (United States)

    Loth, Leo; Gilbert, Marius; Wu, Jianmei; Czarnecki, Christina; Hidayat, Muhammad; Xiao, Xiangming

    2011-10-01

    Highly pathogenic avian influenza (HPAI), subtype H5N1, was first officially reported in Indonesia in 2004. Since then the disease has spread and is now endemic in large parts of the country. This study investigated the statistical relationship between a set of risk factors and the presence or absence of HPAI in Indonesia during 2006 and 2007. HPAI was evaluated through participatory disease surveillance (PDS) in backyard village chickens (the study population), and risk factors included descriptors of people and poultry distribution (separating chickens, ducks and production sectors), poultry movement patterns and agro-ecological conditions. The study showed that the risk factors "elevation", "human population density" and "rice cropping" were significant in accounting for the spatial variation of the PDS-defined HPAI cases. These findings were consistent with earlier studies in Thailand and Vietnam. In addition "commercial poultry population", and two indicators of market locations and transport; "human settlements" and "road length", were identified as significant risk factors in the models. In contrast to several previous studies carried out in Southeast Asia, domestic backyard ducks were not found to be a significant risk factor in Indonesia. The study used surrogate estimates of market locations and marketing chains and further work should focus on the actual location of the live bird markets, and on the flow of live poultry and poultry products between them, so that patterns of possible transmission, and regions of particular risk could be better inferred. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Epidemiological characteristics of Pandemic Influenza A (H1N1 ...

    African Journals Online (AJOL)

    Background: A novel influenza A virus strain (H1N1-2009) spread first in Mexico and the United Stated in late April 2009, leading to the first influenza pandemic of the 21st century. The objective of this study was to determine the epidemiological and virological characteristics of the pandemic influenza A (H1N1-2009) in ...

  17. Epidemiological characteristics of Pandemic Influenza A (H1N1 ...

    African Journals Online (AJOL)

    ... novel influenza A virus strain (H1N1-2009) spread first in Mexico and the United Stated in late April 2009, leading to the first influenza pandemic of the 21st century. The objective of this study was to determine the epidemiological and virological characteristics of the pandemic influenza A (H1N1-2009) in Zhanjiang, China ...

  18. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  19. Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren in Taiwan.

    Science.gov (United States)

    Hsieh, Ying-Hen; Tsai, Chen-An; Lin, Chien-Yu; Chen, Jin-Hua; King, Chwan-Chuen; Chao, Day-Yu; Cheng, Kuang-Fu

    2014-02-12

    Studies indicate that asymptomatic infections do indeed occur frequently for both seasonal and pandemic influenza, accounting for about one-third of influenza infections. Studies carried out during the 2009 pH1N1 pandemic have found significant antibody response against seasonal H1N1 and H3N2 vaccine strains in schoolchildren receiving only pandemic H1N1 monovalent vaccine, yet reported either no symptoms or only mild symptoms. Serum samples of 255 schoolchildren, who had not received vaccination and had pre-season HI Ab serotiters definition of Fever + (cough or sore throat or nose) + ( headache or pain or fatigue). Asymptomatic ratio for children is found to be substantially higher than that of the general population in literature. In providing reasonable quantification of the asymptomatic infected children spreading pathogens to others in a seasonal epidemic or a pandemic, our estimates of symptomatic ratio of infected children has important clinical and public health implications.

  20. Inefficient transmission of H5N1 influenza viruses in a ferret contact model.

    Science.gov (United States)

    Yen, Hui-Ling; Lipatov, Aleksandr S; Ilyushina, Natalia A; Govorkova, Elena A; Franks, John; Yilmaz, Neziha; Douglas, Alan; Hay, Alan; Krauss, Scott; Rehg, Jerold E; Hoffmann, Erich; Webster, Robert G

    2007-07-01

    The abilities to infect and transmit efficiently among humans are essential for a novel influenza A virus to cause a pandemic. To evaluate the pandemic potential of widely disseminated H5N1 influenza viruses, a ferret contact model using experimental groups comprised of one inoculated ferret and two contact ferrets was used to study the transmissibility of four human H5N1 viruses isolated from 2003 to 2006. The effects of viral pathogenicity and receptor binding specificity (affinity to synthetic sialosaccharides with alpha2,3 or alpha2,6 linkages) on transmissibility were assessed. A/Vietnam/1203/04 and A/Vietnam/JP36-2/05 viruses, which possess "avian-like" alpha2,3-linked sialic acid (SA) receptor specificity, caused neurological symptoms and death in ferrets inoculated with 10(3) 50% tissue culture infectious doses. A/Hong Kong/213/03 and A/Turkey/65-596/06 viruses, which show binding affinity for "human-like" alpha2,6-linked SA receptors in addition to their affinity for alpha2,3-linked SA receptors, caused mild clinical symptoms and were not lethal to the ferrets. No transmission of A/Vietnam/1203/04 or A/Turkey/65-596/06 virus was detected. One contact ferret developed neutralizing antibodies to A/Hong Kong/213/03 but did not exhibit any clinical signs or detectable virus shedding. In two groups, one of two naïve contact ferrets had detectable virus after 6 to 8 days when housed together with the A/Vietnam/JP36-2/05 virus-inoculated ferrets. Infected contact ferrets showed severe clinical signs, although little or no virus was detected in nasal washes. This limited virus shedding explained the absence of secondary transmission from the infected contact ferret to the other naïve ferret that were housed together. Our results suggest that despite their receptor binding affinity, circulating H5N1 viruses retain molecular determinants that restrict their spread among mammalian species.

  1. Influenza A aviária (H5N1: a gripe do frango Avian influenza A (H5N1: the bird flu

    Directory of Open Access Journals (Sweden)

    Cássio da Cunha Ibiapina

    2005-10-01

    Full Text Available Este estudo tem como objetivo rever a literatura sobre o vírus influenza A aviária (H5N1. O levantamento bibliográfico foi realizado nos bancos de dados eletrônicos Medline, MD Consult, HighWire, Medscape e Literatura Latinoamericana y del Caribe en Ciencias de la Salud (LILACS, Literatura Latinoamericana e do Caribe em Ciências da Saúde, e por pesquisa direta, referentes aos últimos dez anos. Foram selecionados 32 artigos originais abordando os surtos recentes de infecção por um subtipo de vírus influenza A aviária, o H5N1, em criações de aves domésticas na Ásia, que resultaram em importantes prejuízos econômicos e repercussões em saúde pública, além de casos de infecção humana de alta letalidade. A maioria dos casos está associada com a exposição direta a aves infectadas ou superfícies contaminadas com excrementos dessas aves, porém foi confirmada a transmissão entre humanos. O período de incubação foi de dois a quatro dias. As manifestações clínicas variaram de infecção assintomática e doença leve do trato respiratório superior a pneumonia grave e falência múltipla de órgãos. A radiografia de tórax pode apresentar infiltrado intersticial bilateral, colapso lobar, consolidação focal e broncograma aéreo sem derrame pleural. A presença de linfopenia indica pior prognóstico. O tratamento de suporte parece ser o único tratamento aceitável. Os fatores de risco para mau prognóstico incluem idade avançada, demora na hospitalização, envolvimento do trato respiratório inferior, baixa contagem de leucócitos totais e linfopenia à admissão. Controlar os surtos em aves domésticas e o contato entre seres humanos e tais aves deve ser a prioridade no manejo da doença em nível de saúde pública, e medidas e conhecimentos acerca da doença devem ser amplamente divulgados.The objective of this study was to review the literature related to avian influenza A (H5N1. The bibliographic research was

  2. Purification and production of monospecific antibody to the hemagglutinin from Subtype H5N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2010-12-01

    Full Text Available The purpose of this study was to purify the hemagglutinin from H5N1 virus and to generate monospecific antibody appropriate for production of sensitive and specific immunoassay for H5N1 avian influenza. For this purpose, a local isolate H5N1 virus (A/Ck/West Java/Hamd/2006 was propagated in chicken embryos. The viral pellet was dissolved in a Triton-X-100 solution, undissolved viral particles were pelleted by ultracentrifuge, and the supernatant containing viral surface glycoproteins (Hemagglutinin and neuraminidase was collected. The neuraminidase in the supernatant was absorbed by passing the supernatant through an Oxamic-acid-superose column. After dialyzing extensively, the filtrate was further fractionated with an anion exchange chromatography (Q-sepharose column. Proteins adsorbed by the column were eluted stepwisely with 0.10, 0.25, 0.25 and 0.75 M NaCl in 20 mM Tris, ph 8. Hemagglutinin (H5 was found to be eluted from the column with the 0.5 M NaCl elution buffer. The purified H5 was free from other viral proteins based on immunoassays using commercial antibodies to H5N1 nucleoprotein and neuraminidase. When used as ELISA’s coating antigen, the purified H5 proved to be sensitive and specific for hemagglutinin H5. Cross reactions with other type-A-influenza virus, H6, H7 dan H9, were negligibly low. For the production of monospecific antiserum, the purified H5 was separated with SDS-PAGE, the band containing the H5 monomer was cut out , homogenised and injected into rabbits. The antiserum was capable of detecting the presence of inactivated H5N1 virus in a very dilute suspension, with a detection limit of 0.04 heagglutination (HA unit. The purified hemagglutinin and the serum raised against it should be useful for developing specific, sensitive and affordable immunoassay for H5N1 avian influenza.

  3. Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1.

    Science.gov (United States)

    Zhu, Min; Gong, Xue; Hu, Yonghong; Ou, Weijun; Wan, Yakun

    2014-12-20

    Influenza H5N1 is one subtype of the influenza A virus which can infect human bodies and lead to death. Timely diagnosis before its breakout is vital to the human health. The current clinical biochemical diagnosis for influenza virus are still flawed, and the diagnostic kits of H5N1 are mainly based on traditional monoclonal antibodies that hardly meet the requirements for clinical applications. Nanobody is a promising tool for diagnostics and treatment due to its smallest size, high specificity and stability. In this study, a novel Nanobody-based bioassay was developed for rapid, low-cost and sensitive detection of the influenza H5N1 virus. Nanobodies specific to H5N1 virus were selected from a VHH library by phage display technology. In this system, the biotinylated Nanobody was directionally captured by streptavidin coated on ELISA plate, which can specifically capture the H5N1 virus. Another Nanobody conjugated with HRP was used as a detector. A novel directional enzyme-linked immunosorbent assay for H5N1 using specific Nanobodies was established and compared to the conventional undirected ELISA assay. We have successfully constructed a high quality phage display Nanobody library and isolated two Nanobodies against H5N1 with high affinity and specificity. These two Nanobodies were further used to prepare the biosensor detection system. This streptavidin-biotin-based directional double Nanobodies sandwich ELISA for H5N1 detection showed superiority over the commonly undirectional ELISA protocol. The linear range of detection for standards in this immunoassay was approximately 50-1000 ng/mL and the detection limit was 14.1 ng/mL. The average recoveries of H5N1 virus from human serum samples were in the range from 94.58% to 114.51%, with a coefficient of variation less than 6.5%. Collectively, these results demonstrated that the proposed detection system is an alternative diagnostic tool that enables a rapid, inexpensive, sensitive and specific detection of the

  4. Seroprevalence of three influenza A viruses (H1N1, H3N2, and H3N8) in pet dogs presented to a veterinary hospital in Ohio.

    Science.gov (United States)

    Jang, Hyesun; Jackson, Yasmine K; Daniels, Joshua B; Ali, Ahmed; Kang, Kyung-Il; Elaish, Mohamed; Lee, Chang-Won

    2017-08-31

    The prevalence of canine H3N8 influenza and human H1N1 and H3N2 influenza in dogs in Ohio was estimated by conducting serologic tests on 1,082 canine serum samples. In addition, risk factors, such as health status and age were examined. The prevalences of human H1N1, H3N2, and canine H3N8 influenzas were 4.0%, 2.4%, and 2.3%, respectively. Two samples were seropositive for two subtypes (H1N1 and H3N2; H1N1 and canine influenza virus [CIV] H3N8). Compared to healthy dogs, dogs with respiratory signs were 5.795 times more likely to be seropositive against H1N1 virus ( p = 0.042). The prevalence of human flu infection increased with dog age and varied by serum collection month. The commercial enzyme-linked immunosorbent assay used in this study did not detect nucleoprotein-specific antibodies from many hemagglutination inhibition positive sera, which indicates a need for the development and validation of rapid tests for influenza screening in canine populations. In summary, we observed low exposure of dogs to CIV and human influenza viruses in Ohio but identified potential risk factors for consideration in future investigations. Our findings support the need for establishment of reliable diagnostic standards for serologic detection of influenza infection in canine species.

  5. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Di; Zhuo, Ming [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zhang, Xiaoai [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Xu, Cheng; Jiang, Jie [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Gao, Fu [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Wan, Qing, E-mail: wanqing7686@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Li, Qiuhong, E-mail: liqiuhong2004@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wang, Taihong, E-mail: thwang@hnu.cn [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2013-04-22

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V{sub T}) and field-effect mobility. The changes of I{sub D}–V{sub G} curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10{sup −9} g mL{sup −1} to 5 × 10{sup −6} g mL{sup −1} with a detection limit of 0.8 × 10{sup −10} g mL{sup −1}. Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs

  6. Mortality, severe acute respiratory infection, and influenza-like illness associated with influenza A(H1N1pdm09 in Argentina, 2009.

    Directory of Open Access Journals (Sweden)

    Eduardo Azziz-Baumgartner

    Full Text Available INTRODUCTION: While there is much information about the burden of influenza A(H1N1pdm09 in North America, little data exist on its burden in South America. METHODS: During April to December 2009, we actively searched for persons with severe acute respiratory infection and influenza-like illness (ILI in three sentinel cities. A proportion of case-patients provided swabs for influenza testing. We estimated the number of case-patients that would have tested positive for influenza by multiplying the number of untested case-patients by the proportion who tested positive. We estimated rates by dividing the estimated number of case-patients by the census population after adjusting for the proportion of case-patients with missing illness onset information and ILI case-patients who visited physicians multiple times for one illness event. RESULTS: We estimated that the influenza A(H1N1pdm09 mortality rate per 100,000 person-years (py ranged from 1.5 among persons aged 5-44 years to 5.6 among persons aged ≥ 65 years. A(H1N1pdm09 hospitalization rates per 100,000 py ranged between 26.9 among children aged <5 years to 41.8 among persons aged ≥ 65 years. Influenza A(H1N1pdm09 ILI rates per 100 py ranged between 1.6 among children aged <5 to 17.1 among persons aged 45-64 years. While 9 (53% of 17 influenza A(H1N1pdm09 decedents with available data had obesity and 7 (17% of 40 had diabetes, less than 4% of surviving influenza A(H1N1pdm09 case-patients had these pre-existing conditions (p ≤ 0.001. CONCLUSION: Influenza A(H1N1pdm09 caused a similar burden of disease in Argentina as in other countries. Such disease burden suggests the potential value of timely influenza vaccinations.

  7. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential.

    Science.gov (United States)

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-03-02

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein - with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses - or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. This article is copyright of The Authors, 2017.

  8. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    Science.gov (United States)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  9. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    Directory of Open Access Journals (Sweden)

    Dong-Hun Lee

    Full Text Available Highly pathogenic avian influenza (HPAI and Newcastle disease (ND are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1 virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  10. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection: Evidence of competitive advantage of pandemic H1N1 influenza versus seasonal influenza.

    Science.gov (United States)

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-08-24

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains.

  11. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand

    Directory of Open Access Journals (Sweden)

    Weerapong Thanapongtharm

    2013-11-01

    Full Text Available Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7- Enhanced Thematic Mapper Plus scenes covering 174,610 km2 were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3 geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1.

  12. First introduction of highly pathogenic H5NI avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2007-01-01

    Background: Since 2005 highly pathogenic ( HP) avian influenza A H5N1 viruses have spread from Asia to Africa and Europe infecting poultry, humans and wild birds. HP H5N1 virus was isolated in Denmark for the first time in March 2006. A total of 44 wild birds were found positive for the HP H5N1...... infection. In addition, one case was reported in a backyard poultry flock. Results: Full-genome characterisation of nine isolates revealed that the Danish H5N1 viruses were highly similar to German H5N1 isolates in all genes from the same time period. The haemagglutinin gene grouped phylogenetically in H5...... clade 2 subclade 2 and closest relatives besides the German isolates were isolates from Croatia in 2005, Nigeria and Niger in 2006 and isolates from Astrakhan in Russia 2006. The German and Danish isolates shared unique substitutions in the NA, PB1 and NS2 proteins. Conclusion: The first case of HP H5N1...

  13. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1 in experimentally infected chickens

    Directory of Open Access Journals (Sweden)

    Chaves Aida J

    2011-10-01

    Full Text Available Abstract In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV into the central nervous system (CNS of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF, nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  14. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens.

    Science.gov (United States)

    Chaves, Aida J; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Vergara-Alert, Júlia; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2011-10-07

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  15. A comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of H5N1 highly pathogenic avian influenza virus infection in experimentally infected chickens and ducks.

    Science.gov (United States)

    Nuradji, Harimurti; Bingham, John; Lowther, Sue; Wibawa, Hendra; Colling, Axel; Long, Ngo Thanh; Meers, Joanne

    2015-11-01

    Oropharyngeal and cloacal swabs have been widely used for the detection of H5N1 highly pathogenic avian Influenza A virus (HPAI virus) in birds. Previous studies have shown that the feather calamus is a site of H5N1 virus replication and therefore has potential for diagnosis of avian influenza. However, studies characterizing the value of feathers for this purpose are not available, to our knowledge; herein we present a study investigating feathers for detection of H5N1 virus. Ducks and chickens were experimentally infected with H5N1 HPAI virus belonging to 1 of 3 clades (Indonesian clades 2.1.1 and 2.1.3, Vietnamese clade 1). Different types of feathers and oropharyngeal and cloacal swab samples were compared by virus isolation. In chickens, virus was detected from all sample types: oral and cloacal swabs, and immature pectorosternal, flight, and tail feathers. During clinical disease, the viral titers were higher in feathers than swabs. In ducks, the proportion of virus-positive samples was variable depending on viral strain and time from challenge; cloacal swabs and mature pectorosternal feathers were clearly inferior to oral swabs and immature pectorosternal, tail, and flight feathers. In ducks infected with Indonesian strains, in which most birds did not develop clinical signs, all sampling methods gave intermittent positive results; 3-23% of immature pectorosternal feathers were positive during the acute infection period; oropharyngeal swabs had slightly higher positivity during early infection, while feathers performed better during late infection. Our results indicate that immature feathers are an alternative sample for the diagnosis of HPAI in chickens and ducks. © 2015 The Author(s).

  16. La influenza A (H1N1: estado actual del conocimiento Influenza A (H1N1 virus: current information

    Directory of Open Access Journals (Sweden)

    Laura Margarita González Valdés

    2010-03-01

    Full Text Available Se revisó la bibliografía actualizada sobre el tema a partir de los principales buscadores, y reuniones internacionales realizadas sobre la pandemia de la influenza A (H1N1. Se tratan los aspectos relacionados con la historia, la aparición de la pandemia, la biología de la enfermedad, la epidemiología, el cuadro clínico, el tratamiento y el pronóstico y la prevención. La gripe A (H1N1 es una pandemia causada por una variante nueva del virus de la Influenza A que ha sufrido cambios antigénicos en la hemaglutinina y la neuraminidasa. Esto hace que la población sea altamente vulnerable a la infección y produce una sobrecarga temporal enorme a los servicios de salud. El virus se trasmite como otros virus Influenza. Su letalidad es similar a la de la influenza estacional, pero puede incrementarse en personas con factores de riesgo y en adultos jóvenes sanos. El asma y el embarazo parecen ser condiciones de base importantes para incrementar la severidad de la infección. Puede existir cierta protección por inmunidad cruzada con cepas que circularon en el pasado. El espectro clínico va desde personas asintomáticas hasta las formas graves que requieren internación en cuidados intensivos, con rápido deterioro hasta llegar a la insuficiencia respiratoria en un plazo de 24 horas. La vacunación durante la pandemia no parece ser suficientemente efectiva. Son necesarios antivirales (oseltamivir y zanamivir, y las medidas preventivas higiénico-sanitarias son muy eficaces.An updated review using the main search motors and international meetings already celebrated related to Influenza A H1N1 pandemics. Items related to the history, the appearance of the pandemics, the biology of the disease, its epidemiology, clinics, treatment, prognosis and prevention. Grippe A H1N1 is a pandemic caused by a new variant of the Influenza A virus that has suffered antigenic changes in haemaglutinin and neuraminidase. This turns populations more susceptible to

  17. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally.

    Science.gov (United States)

    Löndt, Brandon Z; Núñez, Alejandro; Banks, Jill; Alexander, Dennis J; Russell, Christine; Richard-Löndt, Angela C; Brown, Ian H

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Pekin ducks in two age-matched groups (n = 18), 8 and 12 weeks old (wo) were each infected with 10(6) EID(50)/0.1 ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2.2). Each day for 5 days, birds were monitored clinically, and cloacal and oropharyngeal swabs collected, before three birds from each group were selected randomly for post-mortem examination. Tissue samples were collected for examination by real-time RT-PCR, histopathology and immunohistochemistry (IHC). Severe clinical signs, including incoordination and torticollis were observed in the 8 wo group resulting in 100% mortality by 4 dpi. Mild clinical signs were observed in the 12 wo group with no mortality. Real-time RT-PCR and IHC results demonstrated the systemic spread of H5N1 virus in birds of both age groups. Higher levels of virus shedding were detected in oropharyngeal swabs than in cloacal swabs, with similar levels of shedding detected in both age groups. Variations in level and temporal dissemination of virus within tissues of older ducks, and the presence of the virus in brain and heart were observed, which coincided with the appearance of clinical signs preceding death in younger birds. These results are consistent with reports of natural infections of wild waterfowl and poultry possibly indicating an age-related association with dissemination and clinical outcome in ducks following infection with H5N1 HPAI virus.

  18. Clinical outcomes of seasonal influenza and pandemic influenza A (H1N1 in pediatric inpatients

    Directory of Open Access Journals (Sweden)

    Budd Alicia

    2010-10-01

    Full Text Available Abstract Background In April 2009, a novel influenza A H1N1 (nH1N1 virus emerged and spread rapidly worldwide. News of the pandemic led to a heightened awareness of the consequences of influenza and generally resulted in enhanced infection control practices and strengthened vaccination efforts for both healthcare workers and the general population. Seasonal influenza (SI illness in the pediatric population has been previously shown to result in significant morbidity, mortality, and substantial hospital resource utilization. Although influenza pandemics have the possibility of resulting in considerable illness, we must not ignore the impact that we can experience annually with SI. Methods We compared the outcomes of pediatric patients ≤18 years of age at a large urban hospital with laboratory confirmed influenza and an influenza-like illness (ILI during the 2009 pandemic and two prior influenza seasons. The primary outcome measure was hospital length of stay (LOS. All variables potentially associated with LOS based on univariable analysis, previous studies, or hypothesized relationships were included in the regression models to ensure adjustment for their effects. Results There were 133 pediatric cases of nH1N1 admitted during 2009 and 133 cases of SI admitted during the prior 2 influenza seasons (2007-8 and 2008-9. Thirty-six percent of children with SI and 18% of children with nH1N1 had no preexisting medical conditions (p = 0.14. Children admitted with SI had 1.73 times longer adjusted LOS than children admitted for nH1N1 (95% CI 1.35 - 2.13. There was a trend towards more children with SI requiring mechanical ventilation compared with nH1N1 (16 vs.7, p = 0.08. Conclusions This study strengthens the growing body of evidence demonstrating that SI results in significant morbidity in the pediatric population. Pandemic H1N1 received considerable attention with strong media messages urging people to undergo vaccination and encouraging improved

  19. Impact of influenza in the post-pandemic phase: Clinical features in hospitalized patients with influenza A (H1N1) pdm09 and H3N2 viruses, during 2013 in Santa Fe, Argentina.

    Science.gov (United States)

    Kusznierz, Gabriela; Carolina, Cudós; Manuel, Rudi Juan; Sergio, Lejona; Lucila, Ortellao; Julio, Befani; Mirta, Villani; Pedro, Morana; Graciana, Morera; Andrea, Uboldi; Elsa, Zerbini

    2017-07-01

    It is important to characterize the clinical and epidemiological pattern of the influenza A (H1N1) pdm09 virus and compare it with influenza A (H3N2) virus, as surveyed in just a few studies, in order to contribute to the implementation and strengthening of influenza control and prevention strategies. The aims in this study were to describe influenza clinical and epidemiological characteristics in hospitalized patients, caused by influenza A (H1N1)pdm09 and influenza A (H3N2) viruses during 2013, in Santa Fe, Argentina. A retrospective study was conducted over 2013 among hospitalized patients with laboratory-confirmed influenza diagnosis. In contrast to patients with influenza A (H3N2) (20.5%), a higher proportion of hospitalizations associated with influenza H1N1pdm were reported among adults aged 35-65 years (42.8%). Of all patients, 73.6% had an underlying medical condition. Hospitalized patients with H1N1pdm were subject to 2.6 (95%CI, 1.0-6.8) times higher risk of severity, than those hospitalized with influenza A (H3N2). This results demonstrate the impact in the post-pandemic era of H1N1pdm virus, with increased risk of severe disease, in relation to H3N2 virus, both viruses co-circulating during 2013. © 2017 Wiley Periodicals, Inc.

  20. (Highly pathogenic) avian influenza as a zoonotic agent.

    Science.gov (United States)

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Characterization of Clade 2.3.2.1 H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Wild Birds (Mandarin Duck and Eurasian Eagle Owl in 2010 in Korea

    Directory of Open Access Journals (Sweden)

    Youn-Jeong Lee

    2013-04-01

    Full Text Available Starting in late November 2010, the H5N1 highly pathogenic avian influenza (HPAI virus was isolated from many types of wild ducks and raptors and was subsequently isolated from poultry in Korea. We assessed the genetic and pathogenic properties of the HPAI viruses isolated from a fecal sample from a mandarin duck and a dead Eurasian eagle owl, the most affected wild bird species during the 2010/2011 HPAI outbreak in Korea. These viruses have similar genetic backgrounds and exhibited the highest genetic similarity with recent Eurasian clade 2.3.2.1 HPAI viruses. In animal inoculation experiments, regardless of their originating hosts, the two Korean isolates produced highly pathogenic characteristics in chickens, ducks and mice without pre-adaptation. These results raise concerns about veterinary and public health. Surveillance of wild birds could provide a good early warning signal for possible HPAI infection in poultry as well as in humans.

  2. Biosecurity and Circulation of Influenza A (H5N1) Virus in Live-Bird Markets in Bangladesh, 2012.

    Science.gov (United States)

    Biswas, P K; Giasuddin, M; Nath, B K; Islam, M Z; Debnath, N C; Yamage, M

    2017-06-01

    Bangladesh has been considered as one of the five countries endemic with highly pathogenic avian influenza A subtype H5N1 (HPAI H5N1). Live-bird markets (LBMs) in south Asian countries are believed to play important roles in the transmission of HPAI H5N1 and others due to its central location as a hub of the poultry trading. Food and Agriculture Organization (FAO) of the United Nations has been promoting improved biosecurity in LBMs in Bangladesh. In 2012, by enrolling 32 large LBMs: 10 with FAO interventions and 22 without assistance, we assessed the virus circulation in the selected LBMs by applying standard procedures to investigate market floors, poultry stall floors, poultry-holding cases and slaughter areas and the overall biosecurity using a questionnaire-based survey. Relative risk (RR) was examined to compare the prevalence of HPAI H5N1 in the intervened and non-intervened LBMs. The measures practised in significantly more of the FAO-intervened LBMs included keeping of slaughter remnants in a closed container; decontamination of poultry vehicles at market place; prevention of crows' access to LBM, market/floor cleaning by market committee; wet cleaning; disinfection of floor/poultry stall after cleaning; and good supply of clean water at market (P Bangladesh regardless of interventions, albeit at lower levels than in other endemic countries. © 2015 Blackwell Verlag GmbH.

  3. Risk factors for exposure to influenza a viruses, including subtype H5 viruses, in Thai free-grazing ducks.

    Science.gov (United States)

    Beaudoin, A L; Kitikoon, P; Schreiner, P J; Singer, R S; Sasipreeyajan, J; Amonsin, A; Gramer, M R; Pakinsee, S; Bender, J B

    2014-08-01

    Free-grazing ducks (FGD) have been associated with highly pathogenic avian influenza (HPAI) H5N1 outbreaks and may be a viral reservoir. In July-August 2010, we assessed influenza exposure of Thai FGD and risk factors thereof. Serum from 6254 ducks was analysed with enzyme-linked immunosorbent assay (ELISA) to detect antibodies to influenza A nucleoprotein (NP), and haemagglutinin H5 protein. Eighty-five per cent (5305 ducks) were seropositive for influenza A. Of the NP-seropositive sera tested with H5 assays (n = 1423), 553 (39%) were H5 ELISA positive and 57 (4%) suspect. Twelve per cent (74 of 610) of H5 ELISA-positive/suspect ducks had H5 titres ≥ 1 : 20 by haemagglutination inhibition. Risk factors for influenza A seropositivity include older age, poultry contact, flock visitors and older purchase age. Study flocks had H5 virus exposure as recently as March 2010, but no HPAI H5N1 outbreaks have been identified in Thailand since 2008, highlighting a need for rigorous FGD surveillance. © 2012 Blackwell Verlag GmbH.

  4. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    Science.gov (United States)

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.

  5. Production of inactivated influenza H5N1 vaccines from MDCK cells in serum-free medium.

    Directory of Open Access Journals (Sweden)

    Alan Yung-Chih Hu

    Full Text Available BACKGROUND: Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK cells grown in a serum-free (SF medium microcarrier cell culture system. PRINCIPAL FINDING: The current study has evaluated the performance of cell adaptation switched from serum-containing (SC medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3 × 10(6 cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA units/50 µL and 7.1 ± 0.3 × 10(8 pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 µg/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera. CONCLUSIONS: The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production.

  6. A metagenomic analysis of pandemic influenza A (2009 H1N1 infection in patients from North America.

    Directory of Open Access Journals (Sweden)

    Alexander L Greninger

    2010-10-01

    Full Text Available Although metagenomics has been previously employed for pathogen discovery, its cost and complexity have prevented its use as a practical front-line diagnostic for unknown infectious diseases. Here we demonstrate the utility of two metagenomics-based strategies, a pan-viral microarray (Virochip and deep sequencing, for the identification and characterization of 2009 pandemic H1N1 influenza A virus. Using nasopharyngeal swabs collected during the earliest stages of the pandemic in Mexico, Canada, and the United States (n = 17, the Virochip was able to detect a novel virus most closely related to swine influenza viruses without a priori information. Deep sequencing yielded reads corresponding to 2009 H1N1 influenza in each sample (percentage of aligned sequences corresponding to 2009 H1N1 ranging from 0.0011% to 10.9%, with up to 97% coverage of the influenza genome in one sample. Detection of 2009 H1N1 by deep sequencing was possible even at titers near the limits of detection for specific RT-PCR, and the percentage of sequence reads was linearly correlated with virus titer. Deep sequencing also provided insights into the upper respiratory microbiota and host gene expression in response to 2009 H1N1 infection. An unbiased analysis combining sequence data from all 17 outbreak samples revealed that 90% of the 2009 H1N1 genome could be assembled de novo without the use of any reference sequence, including assembly of several near full-length genomic segments. These results indicate that a streamlined metagenomics detection strategy can potentially replace the multiple conventional diagnostic tests required to investigate an outbreak of a novel pathogen, and provide a blueprint for comprehensive diagnosis of unexplained acute illnesses or outbreaks in clinical and public health settings.

  7. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt.

    Directory of Open Access Journals (Sweden)

    Yohei Watanabe

    2011-05-01

    Full Text Available Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA from α2,3- to α2,6-linked sialic acid (SA is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential.

  8. Experimental assessment of the pathogenicity of two avian influenza A H5 viruses in ostrich chicks (Struthio camelus) and chickens.

    Science.gov (United States)

    Manvell, R J; Jørgensen, P H; Nielsen, O L; Alexander, D J

    1998-01-01

    Virus excretion, immune response, and, for chickens, deaths were recorded in 3-week-old ostriches and chickens inoculated by either the intramuscular or intranasal route with one of two influenza A viruses of subtype H5. One of the viruses, A/turkey/England/50-92/91 (H5N1) (50/92), was highly pathogenic for chickens causing 5/5 deaths by each route of inoculation. The other virus, A/ostrich/Denmark-Q/72420/96 (H5N2) (72420/96), isolated from ostriches in quarantine in Denmark during 1996, was of low pathogenicity for chickens, causing no clinical signs by either route of inoculation. No significant clinical signs were seen in any of the ostriches infected with either of the viruses by either route of infection. Both viruses were recoverable from both species up to 12 days post-infection, and low serological responses were detected in surviving infected ostriches and chickens at 21 days after inoculation.

  9. (H1N1) Influenza in Saurashtra, India

    African Journals Online (AJOL)

    Mexico in April, 2009,[1] and then in United States (US).[2,3]. This was originally ... duration of hospital stay of such patients was 2‑32 days. All admitted A (H1N1) .... Because of limited resources, only 2009 A (H1N1) influenza virus was tested ...

  10. Inactivation of influenza A virus H1N1 by disinfection process.

    Science.gov (United States)

    Jeong, Eun Kyo; Bae, Jung Eun; Kim, In Seop

    2010-06-01

    Because any patient, health care worker, or visitor is capable of transmitting influenza to susceptible persons within hospitals, hospital-acquired influenza has been a clinical concern. Disinfection and cleaning of medical equipment, surgical instruments, and hospital environment are important measures to prevent transmission of influenza virus from hospitals to individuals. This study was conducted to evaluate the efficacy of disinfection processes, which can be easily operated at hospitals, in inactivating influenza A virus H1N1 (H1N1). The effects of 0.1 mol/L NaOH, 70% ethanol, 70% 1-propanol, solvent/detergent (S/D) using 0.3% tri (n-butyl)-phosphate and 1.0% Triton X-100, heat, and ethylene oxide (EO) treatments in inactivating H1N1 were determined. Inactivation of H1N1 was kinetically determined by the treatment of disinfectants to virus solution. Also, a surface test method, which involved drying an amount of virus on a surface and then applying the inactivation methods for 1 minute of contact time, was used to determine the virucidal activity. H1N1 was completely inactivated to undetectable levels in 1 minute of 70% ethanol, 70% 1-propanol, and solvent/detergent treatments in the surface tests as well as in the suspension tests. H1N1 was completely inactivated in 1 minute of 0.1 mol/L NaOH treatment in the suspension tests and also effectively inactivated in the surface tests with the log reduction factor of 3.7. H1N1 was inactivated to undetectable levels within 5 minutes, 2.5 minutes, and 1 minute of heat treatment at 70, 80, and 90 degrees C, respectively in the suspension tests. Also, H1N1 was completely inactivated by EO treatment in the surface tests. Common disinfectants, heat, and EO tested in this study were effective at inactivating H1N1. These results would be helpful in implementing effective disinfecting measures to prevent hospital-acquired infections. Copyright 2010 Association for Professionals in Infection Control and Epidemiology, Inc

  11. Incidence and Epidemiology of Hospitalized Influenza Cases in Rural Thailand during the Influenza A (H1N1)pdm09 Pandemic, 2009–2010

    Science.gov (United States)

    Baggett, Henry C.; Chittaganpitch, Malinee; Thamthitiwat, Somsak; Prapasiri, Prabda; Naorat, Sathapana; Sawatwong, Pongpun; Ditsungnoen, Darunee; Olsen, Sonja J.; Simmerman, James M.; Srisaengchai, Prasong; Chantra, Somrak; Peruski, Leonard F.; Sawanpanyalert, Pathom; Maloney, Susan A.; Akarasewi, Pasakorn

    2012-01-01

    Background Data on the burden of the 2009 influenza pandemic in Asia are limited. Influenza A(H1N1)pdm09 was first reported in Thailand in May 2009. We assessed incidence and epidemiology of influenza-associated hospitalizations during 2009–2010. Methods We conducted active, population-based surveillance for hospitalized cases of acute lower respiratory infection (ALRI) in all 20 hospitals in two rural provinces. ALRI patients were sampled 1∶2 for participation in an etiology study in which nasopharyngeal swabs were collected for influenza virus testing by PCR. Results Of 7,207 patients tested, 902 (12.5%) were influenza-positive, including 190 (7.8%) of 2,436 children aged incidence of hospitalized influenza cases was 136 per 100,000, highest in ages 75 years (407 per 100,000). The incidence of influenza A(H1N1)pdm09 was 62 per 100,000 (214 per 100,000 in children <5 years). Eleven influenza-infected patients required mechanical ventilation, and four patients died, all adults with influenza A(H1N1)pdm09 (1) or H3N2 (3). Conclusions Influenza-associated hospitalization rates in Thailand during 2009–10 were substantial and exceeded rates described in western countries. Influenza A(H1N1)pdm09 predominated, but H3N2 also caused notable morbidity. Expanded influenza vaccination coverage could have considerable public health impact, especially in young children. PMID:23139802

  12. Detection of distribution of avian influenza H5N1 virus by immunohistochemistry, chromogenic in situ hybridization and real-time PCR techniques in experimentally infected chickens.

    Science.gov (United States)

    Chamnanpood, Chanpen; Sanguansermsri, Donruedee; Pongcharoen, Sutatip; Sanguansermsri, Phanchana

    2011-03-01

    Ten specific pathogen free (SPF) chickens were inoculated intranasally with avian influenza virus subtype H5N1. Evaluation revealed distribution of the virus in twelve organs: liver, intestine, bursa, lung, trachea, thymus, heart, pancreas, brain, spleen, kidney, and esophagus. Immunohistochemistry (IHC), chromogenic in situ hybridization (CISH), and real-time polymerase chain reaction (PCR) were developed and compared for detection of the virus from the organs. The distribution of avian influenza H5N1 in chickens varied by animal and detecting technique. The heart, kidneys, intestines, lungs, and pancreas were positive with all three techniques, while the others varied by techique. The three techniques can be used to detect avian influenza effectively, but the pros and cons of each technique need to be determined. The decision of which technique to use depends on the objective of the examination, budget, type and quality of samples, laboratory facilities and technician skills.

  13. Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells: a polygenic trait that involves NS1 and the polymerase complex

    Science.gov (United States)

    2012-01-01

    Background Influenza A viruses are well characterized to antagonize type I IFN induction in infected mammalian cells. However, limited information is available for avian cells. It was hypothesised that avian influenza viruses (AIV) with distinct virulence may interact differently with the avian innate immune system. Therefore, the type I IFN responses induced by highly virulent and low virulent H5N1 AIV and reassortants thereof were analysed in chicken cells. Results The highly pathogenic (HP) AIV A/chicken/Yamaguchi/7/04 (H5N1) (Yama) did not induce type I IFN in infected chicken HD-11 macrophage-like cells. This contrasted with an NS1 mutant Yama virus (Yama-NS1A144V) and with the attenuated H5N1 AIV A/duck/Hokkaido/Vac-1/04 (Vac) carrying the haemagglutinin (HA) of the Yama virus (Vac-Yama/HA), that both induced type I IFN in these cells. The substitution of the NS segment from Yama with that from Vac in the Yama backbone resulted in induction of type I IFN secretion in HD-11 cells. However, vice versa, the Yama NS segment did not prevent type I IFN induction by the Vac-Yama/HA virus. This was different with the PB1/PB2/PA segment reassortant Yama and Vac-Yama/HA viruses. Whereas the Yama virus with the Vac PB1/PB2/PA segments induced type I IFN in HD-11 cells, the Vac-Yama/HA virus with the Yama PB1/PB2/PA segments did not. As reported for mammalian cells, the expression of H5N1 PB2 inhibited the activation of the IFN-β promoter in chicken DF-1 fibroblast cells. Importantly, the Yama PB2 was more potent at inhibiting the IFN-β promoter than the Vac PB2. Conclusions The present study demonstrates that the NS1 protein and the polymerase complex of the HPAIV Yama act in concert to antagonize chicken type I IFN secretion in HD-11 cells. PB2 alone can also exert a partial inhibitory effect on type I IFN induction. In conclusion, the control of type I IFN induction by H5N1 HPAIV represents a complex phenotype that involves a particular viral gene constellation

  14. Novel reassortant of swine influenza H1N2 virus in Germany.

    Science.gov (United States)

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  15. Standardization of an inactivated H17N1 avian influenza vaccine and efficacy against A/Chicken/Italy/13474/99 high-pathogenicity virus infection.

    Science.gov (United States)

    Di Trani, L; Cordioli, P; Falcone, E; Lombardi, G; Moreno, A; Sala, G; Tollis, M

    2003-01-01

    The minimum requirements for assessing the immunogenicity of an experimental avian influenza (AI) vaccine prepared from inactivated A/Turkey/Italy/2676/99 (H7N1) low-pathogenicity (LP) AI (LPAI) virus were determined in chickens of different ages. A correlation between the amount of hemagglutinin (HA) per dose of vaccine and the protection against clinical signs of disease and infection by A/Chicken/Italy/13474/99 highly pathogenic (HP) AI (HPAI) virus was established. Depending on the vaccination schedule, one or two administrations of 0.5 microg of hemagglutinin protected chickens against clinical signs and death and completely prevented virus shedding from birds challenged at different times after vaccination.

  16. Isolation of an H5N8 Highly Pathogenic Avian Influenza Virus Strain from Wild Birds in Seoul, a Highly Urbanized Area in South Korea.

    Science.gov (United States)

    Kwon, Jung-Hoon; Lee, Dong-Hun; Jeong, Jei-Hyun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Sol; Gwon, Gyeong-Bin; Lee, Sang-Won; Choi, In-Soo; Song, Chang-Seon

    2017-07-01

    Asian-lineage H5 highly pathogenic avian influenza viruses (HPAIV) have caused recurrent outbreaks in poultry and wild birds. In January 2014, H5N8 HPAIV caused outbreaks in South Korea and subsequently spread to East Asia, Europe, and North America. We report the isolation of an H5N8 HPAIV strain from wild birds in Seoul, the most-developed city in South Korea. We analyzed the complete genome sequence of this isolate and estimated its origin using a phylogenetic analysis. The Seoul H5N8 isolate clustered phylogenetically with strains isolated from migratory wild birds but was distinct from Korean poultry isolates. This H5N8 virus was likely introduced into the urbanized city by migratory wild birds. Therefore, wild bird habitats in urbanized areas should be carefully monitored for HPAIV.

  17. Avian influenza epidemic in Italy due to serovar H7N1.

    Science.gov (United States)

    Zanella, A; Dall'Ara, P; Martino, P A

    2001-01-01

    Beginning at the end of March 1999, a syndrome characterized by severe depression, anorexia, fever, and respiratory and enteric symptoms appeared in flocks of turkeys and, to a lesser extent, of chickens in the densely populated poultry-rearing regions of northeast Italy. The disease was characterized by sinusitis, tracheitis, peritonitis, and pancreatitis. The mortality varied between 5% and 90%. The disease was diagnosed as low pathogenic avian influenza, H7N1 serotype. After a summer period of declining cases, the disease reappeared in autumn exclusively in turkeys. Since the middle of December 1999, many farms of chickens, turkeys, and guinea fowl were abruptly affected by a highly pathogenic H7N1 virus, with very severe depression and mortality up to 100% in a few days. By the end of March 2000, nearly 500 farms, representing over 15 million birds, were affected or depopulated. To date, control measures have focused on improved biosecurity measures. Vaccine was not allowed, but its use was debated.

  18. Predictors of H1N1 influenza in the emergency department: proposition for a modified H1N1 case definition.

    Science.gov (United States)

    Flick, H; Drescher, M; Prattes, J; Tovilo, K; Kessler, H H; Vander, K; Seeber, K; Palfner, M; Raggam, R B; Avian, A; Krause, R; Hoenigl, M

    2014-02-01

    Reliable and rapid diagnosis of influenza A H1N1 is essential to initiate appropriate antiviral therapy and preventive measures. We analysed the differences in clinical presentation and laboratory parameters between emergency department patients with PCR-confirmed H1N1 influenza infection (n = 199) and those with PCR-negative influenza-like illness (ILI; n = 252). Cough, wheezing, leucopenia, eosinopenia and a lower C-reactive protein remained significant predictors of H1N1 influenza. Proposed combinations of clinical symptoms with simple laboratory parameters (e.g. reported or measured fever and either cough or leucocytes definitions that use clinical criteria alone. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  19. An enzyme-linked immunosorbent assay for detection of avian influenza virus subtypes H5 and H7 antibodies

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Ajjouri, Gitte; Handberg, Kurt

    2013-01-01

    subtypes H5 and H7. The ELISAs were evaluated with polyclonal chicken anti-AIV antibodies against AIV subtypes: H1N2, H5N2, H5N7, H7N1, H7N7, H9N9, H10N4 and H16N3. RESULTS: Both the H5 and H7 ELISA proved to have a high sensitivity and specificity and the ELISAs detected H5 and H7 antibodies earlier......BACKGROUND: Avian influenza virus (AIV) subtypes H5 and H7 attracts particular attention because of the risk of their potential pathogenicity in poultry. The haemagglutination inhibition (HI) test is widely used as subtype specific test for serological diagnostics despite the laborious nature...

  20. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid.

    Science.gov (United States)

    You, Huey-Ling; Huang, Chao-Chun; Chen, Chung-Jen; Chang, Cheng-Chin; Liao, Pei-Lin; Huang, Sheng-Teng

    2018-05-01

    The pandemic influenza A (H1N1) virus has spread worldwide and infected a large proportion of the human population. Discovery of new and effective drugs for the treatment of influenza is a crucial issue for the global medical community. According to our previous study, TSL-1, a fraction of the aqueous extract from the tender leaf of Toonasinensis, has demonstrated antiviral activities against pandemic influenza A (H1N1) through the down-regulation of adhesion molecules and chemokine to prevent viral attachment. The aim of the present study was to identify the active compounds in TSL-1 which exert anti-influenza A (H1N1) virus effects. XTT assay was used to detect the cell viability. Meanwhile, the inhibitory effect on the pandemic influenza A (H1N1) virus was analyzed by observing plaque formation, qRT-PCR, neuraminidase activity, and immunofluorescence staining of influenza A-specific glycoprotein. Both catechin and gallic acid were found to be potent inhibitors in terms of influenza virus mRNA replication and MDCK plaque formation. Additionally, both compounds inhibited neuraminidase activities and viral glycoprotein. The 50% effective inhibition concentration (EC 50 ) of catechin and gallic acid for the influenza A (H1N1) virus were 18.4 μg/mL and 2.6 μg/mL, respectively; whereas the 50% cytotoxic concentrations (CC 50 ) of catechin and gallic acid were >100 μg/mL and 22.1 μg/mL, respectively. Thus, the selectivity indexes (SI) of catechin and gallic acid were >5.6 and 22.1, respectively. The present study demonstrates that catechin might be a safe reagent for long-term use to prevent influenza A (H1N1) virus infection; whereas gallic acid might be a sensitive reagent to inhibit influenza virus infection. We conclude that these two phyto-chemicals in TSL-1 are responsible for exerting anti-pandemic influenza A (H1N1) virus effects. Copyright © 2017. Published by Elsevier Taiwan LLC.

  1. Potency of whole virus particle and split virion vaccines using dissolving microneedle against challenges of H1N1 and H5N1 influenza viruses in mice.

    Science.gov (United States)

    Nakatsukasa, Akihiro; Kuruma, Koji; Okamatsu, Masatoshi; Hiono, Takahiro; Suzuki, Mizuho; Matsuno, Keita; Kida, Hiroshi; Oyamada, Takayoshi; Sakoda, Yoshihiro

    2017-05-15

    Transdermal vaccination using a microneedle (MN) confers enhanced immunity compared with subcutaneous (SC) vaccination. Here we developed a novel dissolving MN patch for the influenza vaccine. The potencies of split virion and whole virus particle (WVP) vaccines prepared from A/Puerto Rico/8/1934 (H1N1) and A/duck/Hokkaido/Vac-3/2007 (H5N1), respectively, were evaluated. MN vaccination induced higher neutralizing antibody responses than SC vaccination in mice. Moreover, MN vaccination with a lower dose of antigens conferred protective immunity against lethal challenges of influenza viruses than SC vaccination in mice. These results suggest that the WVP vaccines administered using MN are an effective combination for influenza vaccine to be further validated in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Identifikasi Flu Burung H5N1 pada Unggas di Sekitar Kasus Flu Burung pada Manusia Tahun 2011 di Bekasi (AVIAN INFLUENZA H5N1 IDENTIFICATION IN AVIAN SPECIES SURROUNDING AVIAN INFLUENZA H5N1 HUMAN CASES IN BEKASI, WEST JAVA, 2011

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2014-05-01

    Full Text Available H5N1 subtype Avian Influenza (AI virus is the causal agent  of AI disease in humans. In Indonesia,the first human AI occurred in Tangerang 2005.  Human AI in Indonesia has now spread into 12 provinces,including West Java, Jakarta, Banten, North Sumatra, East Java, Central Java, Lampung, South Sulawesi,West Sumatra, South Sumatra, Riau, and Bali. Until 2011, the total human AI cases were 182 cases  with150 deaths. This study was conducted to identify of H5N1 AI virus in birds in area surrounding a humanAI human case  in Bekasi city  in March 2011 and to investigate its role in the spread of AI to humans usingmethods of Hemaglutination Inhibition (HI , and Reverse Transcriptase-Polymerase Chain Reaction(RT-PCR. The result showed that 80% of birds in the area surrounding AI  surrounding H5N1 AI humancase in Bekasi 2011 were antibody negative  against  H5N1-AI virus. Antibody against H5N1-AI viruswith the titer less than 4 log 2 was detected in 4.4%  of birds and  with antibody titer 04 4-7 log 2 in 15%of birds. By RT-PCR, H5N1 AI virus was not detected in 47.6% of bird samples. H5 positive and N1negative  AI virus was detected in  30.2% samples.  Only 11.2% samples showed positive for H5N1 AI virus.The results suggest that H5N1-AI virus affecting birds may have a positive role in transmitting to thevirus to human in Bekasi 2011.

  3. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Shufang Fan

    2009-05-01

    Full Text Available The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA and neuraminidase (NA genes of an H5N1 virus A/VN/1203/2004 (clade 1 was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05 (clade 2.3, and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca. AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2. These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials.

  4. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008

    Directory of Open Access Journals (Sweden)

    Junaidi Akhmad

    2011-09-01

    Full Text Available Abstract Background Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. Results All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1, clade 2.1.3 (80, and IDN/6/05-like viruses (3 that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA and neuraminidase (NA sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. Conclusions The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to

  5. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008.

    Science.gov (United States)

    Wibawa, Hendra; Henning, Joerg; Wong, Frank; Selleck, Paul; Junaidi, Akhmad; Bingham, John; Daniels, Peter; Meers, Joanne

    2011-09-07

    Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI) virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1), clade 2.1.3 (80), and IDN/6/05-like viruses (3) that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA) and neuraminidase (NA) sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to chickens over the study period suggests that ducks are

  6. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  7. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    Science.gov (United States)

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  8. Continued dominance of pandemic A(H1N1 2009 influenza in Victoria, Australia in 2010

    Directory of Open Access Journals (Sweden)

    James E. Fielding

    2011-08-01

    Full Text Available The 2010 Victorian influenza season was characterized by normal seasonal influenza activity and the dominance of the pandemic A(H1N1 2009 strain. General Practice Sentinel Surveillance rates peaked at 9.4 ILI cases per 1000 consultations in week 36 for metropolitan practices, and at 10.5 ILI cases per 1000 in the following week for rural practices. Of the 678 ILI cases, 23% were vaccinated, a significantly higher percentage than in previous years. A significantly higher percentage of ILI patients were swabbed in 2010 compared to 2003–2008, but similar to 2009, with a similar percentage being positive for influenza as in previous years. Vaccination rates increased with patient age. Melbourne Medical Deputising Service rates peaked in week 35 at 19.1 ILI cases per 1000 consultations. Of the 1914 cases of influenza notified to the Department of Health, Victoria, 1812 (95% were influenza A infections - 1001 (55% pandemic A(H1N1 2009, 4 (<1% A(H3N2 and 807 (45% not subtyped; 88 (5% were influenza B; and 14 (< 1% were influenza A and B co-infections. The World Health Organization Collaborating Centre for Reference and Research on Influenza tested 403 isolates of which 261 were positive for influenza, 250 of which were influenza A and 11 were influenza B. Ninety-two per cent of the influenza A viruses were pandemic A(H1N1 2009, and following antigenic analysis all of these were found to be similar to the current vaccine strain. Three viruses (0.9% were found to be oseltamivir resistant due to an H275Y mutation in the neuraminidase gene.

  9. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    Science.gov (United States)

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017.

    Science.gov (United States)

    Tsunekuni, Ryota; Yaguchi, Yuji; Kashima, Yuki; Yamashita, Kaoru; Takemae, Nobuhiro; Mine, Junki; Tanikawa, Taichiro; Uchida, Yuko; Saito, Takehiko

    2018-05-01

    From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.

  11. Current situation of H9N2 subtype avian influenza in China.

    Science.gov (United States)

    Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan

    2017-09-15

    In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.

  12. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    Science.gov (United States)

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  13. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    Science.gov (United States)

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. H9N2 influenza A virus isolated from a Greater White-fronted wild goose (Anser albifrons) in Alaska has a mutation in the PB2 gene, which is associated with pathogenicity in human pandemic 2009 H1N1

    Science.gov (United States)

    Reeves, Andrew; Ip, Hon S.

    2016-01-01

    We report here the genomic sequence of an H9N2 influenza A virus [A/greater white-fronted goose/Alaska/81081/2008 (H9N2)]. This virus shares ≥99.8% identity with a previously reported virus. Both strains contain a G590S mutation in the polymerase basic 2 (PB2) gene, which is a pathogenicity marker in the pandemic 2009 H1N1 virus when combined with R591.

  15. Dual Infection of Novel Influenza Viruses A/H1N1 and A/H3N2 in a Cluster of Cambodian Patients

    Science.gov (United States)

    2011-01-01

    influenza viruses as well as the avian influenza virus A/H5N1...on full genome sequencing. This incident confirms dual influenza virus infections and highlights the risk of zoonotic and seasonal influenza viruses ...North American swine influenza viruses , North American avian influenza viruses , human influenza viruses , and a Eurasian swine influenza virus . 18

  16. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    Science.gov (United States)

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  17. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Munir Iqbal

    2009-06-01

    Full Text Available The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked alpha2-6 to galactose. The neuraminidase (NA of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84, a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP, and matrix (M genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.

  18. Thermal inactivation of H5N2 high-pathogenicity avian influenza virus in dried egg white with 7.5% moisture.

    Science.gov (United States)

    Thomas, Colleen; Swayne, David E

    2009-09-01

    High-pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketing and trade activity. This study presents thermal inactivation data for the HPAIV strain A/chicken/PA/1370/83 (H5N2) (PA/83) in dried egg white with a moisture content (7.5%) similar to that found in commercially available spray-dried egg white products. The 95% upper confidence limits for D-values calculated from linear regression of the survival curves at 54.4, 60.0, 65.5, and 71.1 degrees C were 475.4, 192.2, 141.0, and 50.1 min, respectively. The line equation y = [0.05494 x degrees C] + 5.5693 (root mean square error = 0.0711) was obtained by linear regression of experimental D-values versus temperature. Conservative predictions based on the thermal inactivation data suggest that standard industry pasteurization protocols would be very effective for HPAIV inactivation in dried egg white. For example, these calculations predict that a 7-log reduction would take only 2.6 days at 54.4 degrees C.

  19. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice.

    Directory of Open Access Journals (Sweden)

    Wenfei Zhu

    Full Text Available Influenza A virus can infect a wide variety of animal species with illness ranging from mild to severe, and is a continual cause for concern. Genetic mutations that occur either naturally or during viral adaptation in a poorly susceptible host are key mechanisms underlying the evolution and virulence of influenza A virus. Here, the variants containing PA-A36T or PB2-H357N observed in the mouse-adapted descendants of 2009 pandemic H1N1 virus (pH1N1, A/Sichuan/1/2009 (SC, were characterized. Both mutations enhanced polymerase activity in mammalian cells. These effects were confirmed using recombinant SC virus containing polymerase genes with wild type (WT or mutant PA or PB2. The PA-A36T mutant showed enhanced growth property compared to the WT in both human A549 cells and porcine PK15 cells in vitro, without significant effect on viral propagation in murine LA-4 cells and pathogenicity in mice; however, it did enhance the lung virus titer. PB2-H357N variant demonstrated growth ability comparable to the WT in A549 cells, but replicated well in PK15, LA-4 cells and in mice with an enhanced pathogenic phenotype. Despite such mutations are rare in nature, they could be observed in avian H5 and H7 subtype viruses which were currently recognized to pose potential threat to human. Our findings indicated that pH1N1 may adapt well in mammals when acquiring these mutations. Therefore, future molecular epidemiological surveillance should include scrutiny of both markers because of their potential impact on pathogenesis.

  20. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    Science.gov (United States)

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  1. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals

    NARCIS (Netherlands)

    Lee, Laurel Yong-Hwa; Anh, Ha Do Lien; Simmons, Cameron; de Jong, Menno D.; Chau, Nguyen Van Vinh; Schumacher, Reto; Peng, Yan Chun; McMichael, Andrew J.; Farrar, Jeremy J.; Smith, Geoffrey L.; Townsend, Alain R. M.; Askonas, Brigitte A.; Rowland-Jones, Sarah; Dong, Tao

    2008-01-01

    The threat of avian influenza A (H5N1) infection in humans remains a global health concern. Current influenza vaccines stimulate antibody responses against the surface glycoproteins but are ineffective against strains that have undergone significant antigenic variation. An alternative approach is to

  2. Experimental infection with highly pathogenic H5N8 avian influenza viruses in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica).

    Science.gov (United States)

    Kwon, Jung-Hoon; Noh, Yun Kyung; Lee, Dong-Hun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Song, Chang-Seon; Nahm, Sang-Soep

    2017-05-01

    Wild birds play a major role in the evolution, maintenance, and dissemination of highly pathogenic avian influenza viruses (HPAIV). Sub-clinical infection with HPAI in resident wild birds could be a source of dissemination of HPAIV and continuous outbreaks. In this study, the pathogenicity and infectivity of two strains of H5N8 clade 2.3.4.4 virus were evaluated in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica). None of the birds experimentally infected with H5N8 viruses showed clinical signs or mortality. The H5N8 viruses efficiently replicated in the virus-inoculated Mandarin ducks and transmitted to co-housed Mandarin ducks. Although relatively high levels of viral shedding were noted in pigeons, viral shedding was not detected in some of the pigeons and the shedding period was relatively short. Furthermore, the infection was not transmitted to co-housed pigeons. Immunohistochemical examination revealed the presence of HPAIV in multiple organs of the infected birds. Histopathological evaluation showed the presence of inflammatory responses primarily in HPAIV-positive organs. Our results indicate that Mandarin ducks and pigeons can be infected with H5N8 HPAIV without exhibiting clinical signs; thus, they may be potential healthy reservoirs of the H5N8 HPAIV. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Influenza Virus and the 2009 H1N1 Outbreak

    Science.gov (United States)

    2016-04-08

    MDW/SGVU SUBJECT: Professional Presentation Approval 8 APR 2016 1. Your paper, entitled The Influenza Virus and the 2009 HlNl Outbreak presented at...L TO BE PUBLISHED OR PRESENTED The Influenza Virus and the 2009 H1N1 Outbreak 2. FUNDING RECEIVED FOR THIS STUDY? DYES [g] NO FUNDING SOURCE: I I...336:!. ~~ 2 C-; MARKE. COON. :vtajor. USAF Acting Chic!’. Civil I.aw The Influenza Virus and the 2009 H 1 N 1 Outbreak Thomas. F. Gibbons, Ph.D

  4. H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens

    Directory of Open Access Journals (Sweden)

    Sakoda Yoshihiro

    2011-02-01

    Full Text Available Abstract Background Outbreaks of avian influenza (AI caused by infection with low pathogenic H9N2 viruses have occurred in poultry, resulting in serious economic losses in Asia and the Middle East. It has been difficult to eradicate the H9N2 virus because of its low pathogenicity, frequently causing in apparent infection. It is important for the control of AI to assess whether the H9N2 virus acquires pathogenicity as H5 and H7 viruses. In the present study, we investigated whether a non-pathogenic H9N2 virus, A/chicken/Yokohama/aq-55/2001 (Y55 (H9N2, acquires pathogenicity in chickens when a pair of di-basic amino acid residues is introduced at the cleavage site of its HA molecule. Results rgY55sub (H9N2, which had four basic amino acid residues at the HA cleavage site, replicated in MDCK cells in the absence of trypsin after six consecutive passages in the air sacs of chicks, and acquired intravenous pathogenicity to chicken after four additional passages. More than 75% of chickens inoculated intravenously with the passaged virus, rgY55sub-P10 (H9N2, died, indicating that it is pathogenic comparable to that of highly pathogenic avian influenza viruses (HPAIVs defined by World Organization for Animal Health (OIE. The chickens inoculated with the virus via the intranasal route, however, survived without showing any clinical signs. On the other hand, an avirulent H5N1 strain, A/duck/Hokkaido/Vac-1/2004 (Vac1 (H5N1, acquired intranasal pathogenicity after a pair of di-basic amino acid residues was introduced into the cleavage site of the HA, followed by two passages by air sac inoculation in chicks. Conclusion The present results demonstrate that an H9N2 virus has the potential to acquire intravenous pathogenicity in chickens although the morbidity via the nasal route of infection is lower than that of H5N1 HPAIV.

  5. Genetic and pathogenic characteristics of H1 avian and swine influenza A viruses.

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Kim, Hye-Ryoung; Choi, Eun-Jin; Shin, Yeun-Kyung; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-01

    This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5-10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission. © 2014 The Authors.

  6. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    Science.gov (United States)

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed

  7. An Adjuvanted A(H5N1) Subvirion Vaccine Elicits Virus-Specific Antibody Response and Improves Protection Against Lethal Influenza Viral Challenge in Mouse Model of Protein Energy Malnutrition.

    Science.gov (United States)

    Jones, Enitra N; Amoah, Samuel; Cao, Weiping; Sambhara, Suryaprakash; Gangappa, Shivaprakash

    2017-09-15

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including influenza infection, but no studies have addressed the potential influences of PEM on the immunogenicity and protective efficacy of avian influenza A(H5N1) vaccine. We investigated the role of PEM on vaccine-mediated protection after a lethal challenge with recombinant A(H5N1) virus using isocaloric diets providing either adequate protein (AP; 18% protein) or very low protein (VLP; 2% protein) in an established murine model of influenza vaccination. We demonstrated that mice maintained on a VLP diet succumb to lethal challenge at greater rates than mice maintained on an AP diet, despite comparable immunization regimens. Importantly, there was no virus-induced mortality in both VLP and AP groups of mice when either group was immunized with adjuvanted low-dose A(H5N1) subvirion vaccine. Our results suggest that adjuvanted vaccination in populations where PEM is endemic may be one strategy to boost vaccination-promoted immunity and improve outcomes associated with highly pathogenic A(H5N1). Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Could Changes in the Agricultural Landscape of Northeastern China Have Influenced the Long-Distance Transmission of Highly Pathogenic Avian Influenza H5Nx Viruses?

    Directory of Open Access Journals (Sweden)

    Marius Gilbert

    2017-12-01

    Full Text Available In the last few years, several reassortant subtypes of highly pathogenic avian influenza viruses (HPAI H5Nx have emerged in East Asia. These new viruses, mostly of subtype H5N1, H5N2, H5N6, and H5N8 belonging to clade 2.3.4.4, have been found in several Asian countries and have caused outbreaks in poultry in China, South Korea, and Vietnam. HPAI H5Nx also have spread over considerable distances with the introduction of viruses belonging to the same 2.3.4.4 clade in the U.S. (2014–2015 and in Europe (2014–2015 and 2016–2017. In this paper, we examine the emergence and spread of these new viruses in Asia in relation to published datasets on HPAI H5Nx distribution, movement of migratory waterfowl, avian influenza risk models, and land-use change analyses. More specifically, we show that between 2000 and 2015, vast areas of northeast China have been newly planted with rice paddy fields (3.21 million ha in Heilongjiang, Jilin, and Liaoning in areas connected to other parts of Asia through migratory pathways of wild waterfowl. We hypothesize that recent land use changes in northeast China have affected the spatial distribution of wild waterfowl, their stopover areas, and the wild-domestic interface, thereby altering transmission dynamics of avian influenza viruses across flyways. Detailed studies of the habitat use by wild migratory birds, of the extent of the wild–domestic interface, and of the circulation of avian influenza viruses in those new planted areas may help to shed more light on this hypothesis, and on the possible impact of those changes on the long-distance patterns of avian influenza transmission.

  9. Conocimientos, actitudes y prácticas sobre la influenza A(H1N1 2009 y la vacunación contra influenza pandémica: resultados de una encuesta poblacional Knowledge, attitudes and practices about influenza A(H1N1 2009, and influenza vaccine in Mexico: results of a population survey

    Directory of Open Access Journals (Sweden)

    María Eugenia Jiménez-Corona

    2012-12-01

    Full Text Available OBJETIVO: Evaluar conocimientos, actitudes y prácticas respecto a la pandemia de influenza, con especial énfasis en la vacuna contra influenza estacional y pandémica. MATERIAL Y MÉTODOS: Estudio transversal con muestreo polietápico probabilístico, realizado durante diciembre de 2009 en residentes mayores de 18 años de la Ciudad de México (y área metropolitana, Monterrey, Guadalajara y Mérida. RESULTADOS: Se incluyeron 1 600 sujetos (48.9% masculino; 34% había recibido vacuna contra influenza estacional en años pasados, 90.6% estaba dispuesto a recibir la vacuna contra A(H1N1. La principal causa de rechazo a la vacunación fue no confiar en la vacuna (46.5%. Principales medidas preventivas identificadas por los encuestados: lavado de manos (47.5%, vacuna contra A(H1N1 (28% y etiqueta respiratoria (19.4%. El nivel escolar (1.7, p=0.006 y edad (1.02, pOBJECTIVE: To assess knowledge, attitudes and practices regarding influenza pandemic, with special emphasis on issues related to influenza vaccine, seasonal and pandemic. MATERIALS AND METHODS: Cross-sectional study, probabilistic multistage sampling in patients over 18 years, residents of Mexico City (and metropolitan area, Monterrey, Guadalajara and Merida in December 2009. RESULTS: A total of 1.600 subjects (48.9% male were interviewed, 34% had previously received seasonal flu vaccine, 90.6% were willing to be vaccinated against A(H1N1, 46.5% of those who would not receive the vaccine was because they did not trust A (H1N1, 68% considered influenza A (H1N1 as a risk for their family. Hand washing was the preventive measure most commonly reported (47.5%, secondly influenza vaccine (28%. Schooling (1.7, p=0.006 and age (1.02, p<0.001 influence rejection to get vaccine. 82.9% of respondents rate the federal government's management as good or very good. CONCLUSIONS: There was a high acceptance rate for the pandemic influenza vaccine in Mexico when compared to similar studies in other

  10. Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia.

    Science.gov (United States)

    Blair, Patrick J; Putnam, Shannon D; Krueger, Whitney S; Chum, Channimol; Wierzba, Thomas F; Heil, Gary L; Yasuda, Chadwick Y; Williams, Maya; Kasper, Matthew R; Friary, John A; Capuano, Ana W; Saphonn, Vonthanak; Peiris, Malik; Shao, Hongxia; Perez, Daniel R; Gray, Gregory C

    2013-04-01

    Southeast Asia remains a critical region for the emergence of novel and/or zoonotic influenza, underscoring the importance of extensive sampling in rural areas where early transmission is most likely to occur. In 2008, 800 adult participants from eight sites were enrolled in a prospective population-based study of avian influenza (AI) virus transmission where highly pathogenic avian influenza (HPAI) H5N1 virus had been reported in humans and poultry from 2006 to 2008. From their enrollment sera and questionnaires, we report risk factor findings for serologic evidence of previous infection with 18 AI virus strains. Serologic assays revealed no evidence of previous infection with 13 different low-pathogenic AI viruses or with HPAI avian-like A/Cambodia/R0404050/2007(H5N1). However, 21 participants had elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2), validated with a monoclonal antibody blocking ELISA assay specific for avian H9. Although cross-reaction from antibodies against human influenza viruses cannot be completely excluded, the study data suggest that a number of participants were previously infected with the avian-like A/Hong Kong/1073/1999(H9N2) virus, likely due to as yet unidentified environmental exposures. Prospective data from this cohort will help us better understand the serology of zoonotic influenza infection in a rural cohort in SE Asia. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. All rights reserved.

  11. Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia

    Directory of Open Access Journals (Sweden)

    Patrick J. Blair

    2013-04-01

    Full Text Available Summary: Background: Southeast Asia remains a critical region for the emergence of novel and/or zoonotic influenza, underscoring the importance of extensive sampling in rural areas where early transmission is most likely to occur. Methods: In 2008, 800 adult participants from eight sites were enrolled in a prospective population-based study of avian influenza (AI virus transmission where highly pathogenic avian influenza (HPAI H5N1 virus had been reported in humans and poultry from 2006 to 2008. From their enrollment sera and questionnaires, we report risk factor findings for serologic evidence of previous infection with 18 AI virus strains. Results: Serologic assays revealed no evidence of previous infection with 13 different low-pathogenic AI viruses or with HPAI avian-like A/Cambodia/R0404050/2007(H5N1. However, 21 participants had elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2, validated with a monoclonal antibody blocking ELISA assay specific for avian H9. Conclusions: Although cross-reaction from antibodies against human influenza viruses cannot be completely excluded, the study data suggest that a number of participants were previously infected with the avian-like A/Hong Kong/1073/1999(H9N2 virus, likely due to as yet unidentified environmental exposures. Prospective data from this cohort will help us better understand the serology of zoonotic influenza infection in a rural cohort in SE Asia. Keywords: Influenza A virus, Avian, Zoonoses, Occupational exposure, Communicable diseases, Emerging, Cohort studies

  12. Effectiveness of A(H1N1)pdm09 influenza vaccine in adults recommended for annual influenza vaccination.

    NARCIS (Netherlands)

    Gefenaite, G.; Tacken, M.; Bos, J.; Stirbu-Wagner, I.; Korevaar, J.C.; Stolk, R.P.; Wolters, B.; Bijl, M.; Postma, M.J.; Wilschut, J.; Nichol, K.L.; Hak, E.

    2013-01-01

    Introduction: Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness. Methods: VE against influenza and/or pneumonia was

  13. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    2017-03-01

    Full Text Available The cellular and molecular mechanisms underpinning the unusually high virulence of highly pathogenic avian influenza H5N1 viruses in mammalian species remains unknown. Here, we investigated if the cell tropism of H5N1 virus is a determinant of enhanced virulence in mammalian species. We engineered H5N1 viruses with restricted cell tropism through the exploitation of cell type-specific microRNA expression by incorporating microRNA target sites into the viral genome. Restriction of H5N1 replication in endothelial cells via miR-126 ameliorated disease symptoms, prevented systemic viral spread and limited mortality, despite showing similar levels of peak viral replication in the lungs as compared to control virus-infected mice. Similarly, restriction of H5N1 replication in endothelial cells resulted in ameliorated disease symptoms and decreased viral spread in ferrets. Our studies demonstrate that H5N1 infection of endothelial cells results in excessive production of cytokines and reduces endothelial barrier integrity in the lungs, which culminates in vascular leakage and viral pneumonia. Importantly, our studies suggest a need for a combinational therapy that targets viral components, suppresses host immune responses, and improves endothelial barrier integrity for the treatment of highly pathogenic H5N1 virus infections.

  14. HIV-1 and its gp120 inhibits the influenza A(H1N1)pdm09 life cycle in an IFITM3-dependent fashion.

    Science.gov (United States)

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q; Abrantes, Juliana L; Costa, Eduardo; Temerozo, Jairo R; Siqueira, Marilda M; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010.

  15. HIV-1 and its gp120 inhibits the influenza A(H1N1pdm09 life cycle in an IFITM3-dependent fashion.

    Directory of Open Access Journals (Sweden)

    Milene Mesquita

    Full Text Available HIV-1-infected patients co-infected with A(H1N1pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1pdm09 life cycle in vitro. We show here that exposure of A(H1N1pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA gene from in vitro experiments and from samples of HIV-1/A(H1N1pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1pdm09 co-infected patients during the recent influenza form 2009/2010.

  16. Characterization of a low pathogenic avian influenza H5N2 virus isolated from a turkey breeder flock in Manitoba, Canada.

    Science.gov (United States)

    Berhane, Y; Joseph, T; Kehler, H; Hisanaga, T; Embury-Hyatt, C; Diederich, S; McGreevy, K Hooper; Handel, K; Cottam-Birt, C; Pasick, J

    2014-03-01

    In November 2010, an outbreak of avian influenza (AI) due to the H5N2 subtype virus occurred in a turkey breeder farm in northern Manitoba, Canada. The only clinical signs observed were depression, decrease in food consumption, and loss of egg production. The hemagglutinin (HA) cleavage (HA(0)) site of the isolated H5N2 virus was PQRETR/GLF, consistent with low pathogenic AI viruses. The intravenous pathogenicity index of this virus was zero. Whole-genome sequencing of two isolates that originated from two different barns was performed, and both isolates had 100% identical protein sequence in PB2, HA, NP, M1, M2, NS1, and NS2. The remaining gene segments (PB1, PA, and NA) had a single amino-acid difference when compared with each other. The nucleotide and protein sequences of eight gene segments from both isolates showed 99 or greater identity with other AI viruses that have been circulating in free-living aquatic birds in Canada and the United States within the last 10 yr. Phylogenetic analysis of the HA and neuraminidase (NA) gene segments showed that these viruses are closely related to other H5 strains that have been isolated from Manitoba and other parts of Canada. Serologic testing of archived serum samples collected from these turkeys a week before the outbreak showed no evidence of AI infection. In addition, other farms that were located within 3 km radius from the infected farm and farms that had epidemiologic connection with the farm also tested negative for the presence of H5N2 AI virus or antibody. This indicates that the virus might have been introduced to the farm from wild aquatic birds only a short time before detection. Results of this study highlight the importance of early detection and the significance of ongoing Canada-wide surveillance of AI in domestic poultry as well as in wild aquatic birds/ducks.

  17. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  18. 2009 pandemic influenza A (H1N1 virus outbreak and response--Rwanda, October, 2009-May, 2010.

    Directory of Open Access Journals (Sweden)

    Justin Wane

    Full Text Available BACKGROUND: In October 2009, the first case of pandemic influenza A(H1N1pdm09 (pH1N1 was confirmed in Kigali, Rwanda and countrywide dissemination occurred within several weeks. We describe clinical and epidemiological characteristics of this epidemic. METHODS: From October 2009 through May 2010, we undertook epidemiologic investigations and response to pH1N1. Respiratory specimens were collected from all patients meeting the WHO case definition for pH1N1, which were tested using CDC's real time RT-PCR protocol at the Rwandan National Reference Laboratory (NRL. Following documented viral transmission in the community, testing focused on clinically severe and high-risk group suspect cases. RESULTS: From October 9, 2009 through May 31, 2010, NRL tested 2,045 specimens. In total, 26% (n = 532 of specimens tested influenza positive; of these 96% (n = 510 were influenza A and 4% (n = 22 were influenza B. Of cases testing influenza A positive, 96.8% (n = 494, 3% (n = 15, and 0.2% (n = 1 were A(H1N1pdm09, Seasonal A(H3 and Seasonal A(non-subtyped, respectively. Among laboratory-confirmed cases, 263 (53.2% were children <15 years and 275 (52% were female. In total, 58 (12% cases were hospitalized with mean duration of hospitalization of 5 days (Range: 2-15 days. All cases recovered and there were no deaths. Overall, 339 (68% confirmed cases received oseltamivir in any setting. Among all positive cases, 26.9% (143/532 were among groups known to be at high risk of influenza-associated complications, including age <5 years 23% (122/532, asthma 0.8% (4/532, cardiac disease 1.5% (8/532, pregnancy 0.6% (3/532, diabetes mellitus 0.4% (2/532, and chronic malnutrition 0.8% (4/532. CONCLUSIONS: Rwanda experienced a PH1N1 outbreak which was epidemiologically similar to PH1N1 outbreaks in the region. Unlike seasonal influenza, children <15 years were the most affected by pH1N1. Lessons learned from the outbreak response included the need to

  19. Novel Eurasian Highly Pathogenic Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

    Centers for Disease Control (CDC) Podcasts

    2015-03-24

    Sarah Gregory reads an abridged version of the article, Novel Eurasian Highly Pathogenic Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014.  Created: 3/24/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/13/2015.

  20. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys.

    Science.gov (United States)

    Deventhiran, Jagadeeswaran; Kumar, Sandeep R P; Raghunath, Shobana; Leroith, Tanya; Elankumaran, Subbiah

    2016-01-01

    PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is considered an important

  1. Pandemic vaccination strategies and influenza severe outcomes during the influenza A(H1N1)pdm09 pandemic and the post-pandemic influenza season

    DEFF Research Database (Denmark)

    Gil Cuesta, Julita; Aavitsland, Preben; Englund, Hélène

    2016-01-01

    During the 2009/10 influenza A(H1N1)pdm09 pandemic, the five Nordic countries adopted different approaches to pandemic vaccination. We compared pandemic vaccination strategies and severe influenza outcomes, in seasons 2009/10 and 2010/11 in these countries with similar influenza surveillance...... systems. We calculated the cumulative pandemic vaccination coverage in 2009/10 and cumulative incidence rates of laboratory confirmed A(H1N1)pdm09 infections, intensive care unit (ICU) admissions and deaths in 2009/10 and 2010/11. We estimated incidence risk ratios (IRR) in a Poisson regression model...... with the other countries. In 2010/11 Denmark had a significantly higher cumulative incidence of A(H1N1)pdm09 ICU admissions (IRR: 2.4; 95% confidence interval (CI): 1.9-3.0) and deaths (IRR: 8.3; 95% CI: 5.1-13.5). Compared with Denmark, the other countries had higher pandemic vaccination coverage...

  2. Molecular characteristic and pathogenicity of Indonesian H5N1 clade 2.3.2 viruses

    Directory of Open Access Journals (Sweden)

    Dharmayanti NLPI

    2013-06-01

    Full Text Available The outbreak of disease in late 2012 in Indonesia caused high duck mortality. The agent of the disease was identified as H5N1 clade 2.3.2. The disease caused economic loss to the Indonesian duck farmer. The clade 2.3.2 of H5N1 virus has not previously been identified, so this study was conducted to characterize 4 of H5N1 clade 2.3.2 viruses by DNA sequencing in eight genes segment virus namely HA, NA, NS, M, PB1, PB2, PA and NP. The pathogenicity test of clade 2.3.2 viruses in ducks was compared to clade 2.1.3 viruses which predominat circulating in Indonesia. Results of phylogenetic tree analysis showed that the four of clade 2.3.2 viruses isolated in 2012 was the new introduced virus from abroad. Further analysis showed eight genes were in one group with the clade 2.3.2 viruses, especially those from VietNam and did not belong to Indonesia viruses group. The pathogenicity test in ducks showed that virus H5N1 clade 2.3.2 and clade 2.1.3 have similar clinical symptoms and pathogenicity and cause death in 75% of ducks on days 3-6 after infection.

  3. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  4. Molecular diagnosis of microbial copathogens with influenza A(H1N1pdm09 in Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Ramírez-Palacios LR

    2018-04-01

    Full Text Available Luis Román Ramírez-Palacios,1 Diana Reséndez-Pérez,2 Maria Cristina Rodríguez-Padilla,2 Santiago Saavedra-Alonso,2 Olga Real-Najarro,3 Nadia A Fernández-Santos,4 Mario A Rodriguez Perez4 1Laboratorio Estatal de Salud Pública de Oaxaca, Oaxaca, 2Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico; 3Consejería de Educación, Madrid, Spain; 4Instituto Politécnico Nacional (IPN, Centro de Biotecnología Genómica, Reynosa, Mexico Background: Multiple factors have been associated with the severity of infection by influenza A(H1N1pdm09. These include H1N1 cases with proven coinfections showing clinical association with bacterial contagions. Purpose: The objective was to identify H1N1 and copathogens in the Oaxaca (Mexico population. A cross-sectional survey was conducted from 2009 to 2012. A total of 88 study patients with confirmed H1N1 by quantitative RT-PCR were recruited. Methods: Total nucleic acid from clinical samples of study patients was analyzed using a TessArray RPM-Flu microarray assay to identify other respiratory pathogens. Results: High prevalence of copathogens (77.3%; 68 patients harbored one to three pathogens, predominantly from Streptococcus, Haemophilus, Neisseria, and Pseudomonas, were detected. Three patients (3.4% had four or five respiratory copathogens, whereas others (19.3% had no copathogens. Copathogenic occurrence with Staphylococcus aureus was 5.7%, Coxsackie virus 2.3%, Moraxella catarrhalis 1.1%, Klebsiella pneumoniae 1.1%, and parainfluenza virus 3 1.1%. The number of patients with copathogens was four times higher to those with H1N1 alone (80.68% and 19.32%, respectively. Four individuals (4.5%; two males, one female, and one infant who died due to H1N1 were observed to have harbored such copathogens as Streptococcus, Staphylococcus, Haemophilus, and Neisseria. Conclusion: In summary, copathogens were found in a

  5. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    Science.gov (United States)

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Pandemic influenza A (H1N1)

    African Journals Online (AJOL)

    ... in Port Shepstone, South Africa. Introduction. Influenza A (H1N1) 2009 'swine flu' variant is currently a global pandemic.1 The infection associated with this virus is usually a mild, self-limiting illness. However, it may progress to severe pneumonia requiring intensive care unit (ICU) therapy in 31% of patients.2 This may.

  7. Safety and immunogenicity of adjuvanted inactivated split-virion and whole-virion influenza A (H5N1) vaccines in children: a phase I-II randomized trial.

    Science.gov (United States)

    Wu, Jiang; Liu, Shu-Zhen; Dong, Shan-Shan; Dong, Xiao-Ping; Zhang, Wu-Li; Lu, Min; Li, Chang-Gui; Zhou, Ji-Chen; Fang, Han-Hua; Liu, Yan; Liu, Li-Ying; Qiu, Yuan-Zheng; Gao, Qiang; Zhang, Xiao-Mei; Chen, Jiang-Ting; Zhong, Xiang; Yin, Wei-Dong; Feng, Zi-Jian

    2010-08-31

    Highly pathogenic avian influenza A virus H5N1 has the potential to cause a pandemic. Many prototype pandemic influenza A (H5N1) vaccines had been developed and well evaluated in adults in recent years. However, data in children are limited. Herein we evaluate the safety and immunogenicity of adjuvanted split-virion and whole-virion H5N1 vaccines in children. An open-labelled phase I trial was conducted in children aged 3-11 years to receive aluminum-adjuvated, split-virion H5N1 vaccine (5-30 microg) and in children aged 12-17 years to receive aluminum-adjuvated, whole-virion H5N1 vaccine (5-15 microg). Safety of the two formulations was assessed. Then a randomized phase II trial was conducted, in which 141 children aged 3-11 years received the split-virion vaccine (10 or 15 microg) and 280 children aged 12-17 years received the split-virion vaccine (10-30 microg) or the whole-virion vaccine (5 microg). Serum samples were collected for hemagglutination-inhibition (HI) assays. 5-15 microg adjuvated split-virion vaccines were well tolerated in children aged 3-11 years and 5-30 microg adjuvated split-virion vaccines and 5 microg adjuvated whole-virion vaccine were well tolerated in children aged 12-17 years. Most local and systemic reactions were mild or moderate. Before vaccination, all participants were immunologically naïve to H5N1 virus. Immune responses were induced after the first dose and significantly boosted after the second dose. In 3-11 years children, the 10 and 15 microg split-virion vaccine induced similar responses with 55% seroconversion and seroprotection (HI titer >or=1:40) rates. In 12-17 years children, the 30 microg split-virion vaccine induced the highest immune response with 71% seroconversion and seroprotection rates. The 5 microg whole-virion vaccine induced higher response than the 10 microg split-virion vaccine did. The aluminum-adjuvanted, split-virion prototype pandemic influenza A (H5N1) vaccine showed good safety and immunogenicity in

  8. Antigenic Variation in H5N1 clade 2.1 Viruses in Indonesia from 2005 to 2011

    Directory of Open Access Journals (Sweden)

    Vivi Setiawaty

    2013-01-01

    Full Text Available Influenza A (H5N1 virus, has spread to several countries in the world and has a high mortality rate. Meanwhile, the virus has evolved into several clades. The human influenza A (H5N1 virus circulating in Indonesia is a member of clade 2.1, which is different in antigenicity from other clades of influenza A (H5N1. An analysis of the antigenic variation in the H5 hemagglutinin gene (HA of the influenza A (H5N1 virus strains circulating in Indonesia has been undertaken. Several position of amino acid mutations, including mutations at positions 35, 53, 141, 145, 163, 174, 183, 184, 189, and 231, have been identified. The mutation Val-174-Iso appears to play an important role in immunogenicity and cross-reactivity with rabbit antisera. This study shows that the evolution of the H5HA antigenic variation of the influenza A (H5N1 virus circulating in Indonesia from 2005 to 2011 may affect the immunogenicity of the virus.

  9. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    Directory of Open Access Journals (Sweden)

    José Esteban Muñoz-Medina

    2015-01-01

    Full Text Available The unpredictable, evolutionary nature of the influenza A virus (IAV is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2 in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2 and in one of the main aviary subtypes responsible for zoonosis (H5N1. For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques.

  10. Centralized Consensus Hemagglutinin Genes Induce Protective Immunity against H1, H3 and H5 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Richard J Webby

    Full Text Available With the exception of the live attenuated influenza vaccine there have been no substantial changes in influenza vaccine strategies since the 1940's. Here we report an alternative vaccine approach that uses Adenovirus-vectored centralized hemagglutinin (HA genes as vaccine antigens. Consensus H1-Con, H3-Con and H5-Con HA genes were computationally derived. Mice were immunized with Ad vaccines expressing the centralized genes individually. Groups of mice were vaccinated with 1 X 1010, 5 X 107 and 1 X 107 virus particles per mouse to represent high, intermediate and low doses, respectively. 100% of the mice that were vaccinated with the high dose vaccine were protected from heterologous lethal challenges within each subtype. In addition to 100% survival, there were no signs of weight loss and disease in 7 out of 8 groups of high dose vaccinated mice. Lower doses of vaccine showed a reduction of protection in a dose-dependent manner. However, even the lowest dose of vaccine provided significant levels of protection against the divergent influenza strains, especially considering the stringency of the challenge virus. In addition, we found that all doses of H5-Con vaccine were capable of providing complete protection against mortality when challenged with lethal doses of all 3 H5N1 influenza strains. This data demonstrates that centralized H1-Con, H3-Con and H5-Con genes can be effectively used to completely protect mice against many diverse strains of influenza. Therefore, we believe that these Ad-vectored centralized genes could be easily translated into new human vaccines.

  11. Reassortant clade 2.3.4.4 Avian Influenza A(H5N6) Virus in a wild Mandarin Duck, South Korea, 2016

    Science.gov (United States)

    Highly pathogenic avian influenza viruses (HPAIV) have caused significant economic losses in the poultry industries and represents a serious threat to public health. H5N1 HPAIV was first detected in 1996 from a domestic goose in Guangdong China (Gs/GD) and has subsequently evolved into 10 geneticall...

  12. Streptococcus pneumoniae Coinfection Is Correlated with the Severity of H1N1 Pandemic Influenza

    Science.gov (United States)

    Cisterna, Daniel; Savji, Nazir; Bussetti, Ana Valeria; Kapoor, Vishal; Hui, Jeffrey; Tokarz, Rafal; Briese, Thomas; Baumeister, Elsa; Lipkin, W. Ian

    2009-01-01

    Background Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease. Methods/Principal Findings We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0

  13. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4b in Germany in 2016/2017

    Directory of Open Access Journals (Sweden)

    Anja Globig

    2018-01-01

    Full Text Available Here, we report on the occurrence of highly pathogenic avian influenza (HPAI H5Nx clade 2.3.4.4b in Germany. Between November 8, 2016, and September 30, 2017, more than 1,150 cases of HPAI H5Nx clade 2.3.4.4b in wild birds and 107 outbreaks in birds kept in captivity (92 poultry holdings and 15 zoos/animal parks were reported in Germany. This HPAI epidemic is the most severe recorded in Germany so far. The viruses were apparently introduced by migratory birds, sparking an epidemic among wild birds across Germany with occasional incursions into poultry holdings, zoos and animal parks, which were usually rapidly detected and controlled by stamping out. HPAI viruses (mainly subtype H5N8, in a few cases also H5N5 were found in dead wild birds of at least 53 species. The affected wild birds were water birds (including gulls, storks, herons, and cormorants and scavenging birds (birds of prey, owls, and crows. In a number of cases, substantial gaps in farm biosecurity may have eased virus entry into the holdings. In a second wave of the epidemic starting from February 2017, there was epidemiological and molecular evidence for virus transmission of the infections between commercial turkey holdings in an area of high poultry density, which caused approximately 25% of the total number of outbreaks in poultry. Biosecurity measures in poultry holdings should be adapted. This includes, inter alia, wearing of stable-specific protective clothing and footwear, cleaning, and disinfection of equipment that has been in contact with birds and prevention of contacts between poultry and wild water birds.

  14. [Highly pathogenic avian influenza--monitoring of migratory waterfowl].

    Science.gov (United States)

    Otsuki, Koichi; Ito, Toshihiro

    2006-10-01

    Since 1979, the group belonging to Departments of Veterinary Microbiology, Veterinary Public Health and the Avian Zoonoses Research Centre, Faculty of Agriculture, Tottori University is continuing isolation of avian influenza virus from such migratory waterfowls as whistling swan, pintail and tufted dugs flying from Siberia and/or northern China. They have already isolated many interesting influenza viruses. Serotype of the isolates is various; some H5 and H7 and human types of viruses were also isolated; and its pathogenicity for chickens is not high. It was interested that low pathogenic H5N3 virus isolated from whistling swan acquired severe pathogenicity during passage in chicks.

  15. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults.

    Directory of Open Access Journals (Sweden)

    Nelson Lee

    Full Text Available BACKGROUND: Studying cytokine/chemokine responses in severe influenza infections caused by different virus subtypes may improve understanding on pathogenesis. METHODS: Adults hospitalized for laboratory-confirmed seasonal and pandemic 2009 A/H1N1 (pH1N1 influenza were studied. Plasma concentrations of 13 cytokines/chemokines were measured at presentation and then serially, using cytometric-bead-array with flow-cytometry and ELISA. PBMCs from influenza patients were studied for cytokine/chemokine expression using ex-vivo culture (Whole Blood Assay,±PHA/LPS stimulation. Clinical variables were prospectively recorded and analyzed. RESULTS: 63 pH1N1 and 53 seasonal influenza patients were studied. pH1N1 patients were younger (mean±S.D. 42.8±19.2 vs 70.5±16.7 years, and fewer had comorbidities. Respiratory/cardiovascular complications were common in both groups (71.4% vs 81.1%, although severe pneumonia with hypoxemia (54.0% vs 28.3% and ICU admissions (25.4% vs 1.9% were more frequent with pH1N1. Hyperactivation of the proinflammatory cytokines IL-6, CXCL8/IL-8, CCL2/MCP-1 and sTNFR-1 was found in pH1N1 pneumonia (2-15 times normal and in complicated seasonal influenza, but not in milder pH1N1 infections. The adaptive-immunity (Th1/Th17-related CXCL10/IP-10, CXCL9/MIG and IL-17A however, were markedly suppressed in severe pH1N1 pneumonia (2-27 times lower than seasonal influenza; P-values<0.01. This pattern was further confirmed with serial measurements. Hypercytokinemia tended to be sustained in pH1N1 pneumonia, associated with a slower viral clearance [PCR-negativity: day 3-4, 55% vs 85%; day 6-7, 67% vs 100%]. Elevated proinflammatory cytokines, particularly IL-6, predicted ICU admission (adjusted OR 12.6, 95%CI 2.6-61.5, per log(10unit increase; P = 0.002, and correlated with fever, tachypnoea, deoxygenation, and length-of-stay (Spearman's rho, P-values<0.01 in influenza infections. PBMCs in seasonal influenza patients were activated and

  16. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities.

    Science.gov (United States)

    Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo

    2016-12-01

    SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.

  17. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016.

    Science.gov (United States)

    Lee, Dong-Hun; Torchetti, Mia Kim; Killian, Mary Lea; Swayne, David E

    2017-07-01

    In mid-January 2016, an outbreak of H7N8 high-pathogenicity avian influenza virus (HPAIV) in commercial turkeys occurred in Indiana. Surveillance within the 10km control zone identified H7N8 low-pathogenicity avian influenza virus (LPAIV) in nine surrounding turkey flocks but no other HPAIV-affected premises. We sequenced four of the H7N8 HPAIV isolated from the single farm and nine LPAIV identified during control zone surveillance. Evaluation included phylogenetic network analysis indicating close relatedness across the HPAIV and LPAIV, and that the progenitor H7N8 LPAIV spread among the affected turkey farms in Indiana, followed by spontaneous mutation to HPAIV on a single premise through acquisition of three basic amino acids at the hemagglutinin cleavage site. Deep sequencing of the available viruses failed to identify subpopulations in either the HPAIV or LPAIV suggesting mutation to HPAIV likely occurred on a single farm and the HPAIV did not spread to epidemiologically linked LPAIV-affected farms. Published by Elsevier Inc.

  18. Spatio-temporal dynamics of global H5N1 outbreaks match bird migration patterns

    Directory of Open Access Journals (Sweden)

    Yali Si

    2009-11-01

    Full Text Available The global spread of highly pathogenic avian influenza H5N1 in poultry, wild birds and humans, poses a significant pandemic threat and a serious public health risk. An efficient surveillance and disease control system relies on the understanding of the dispersion patterns and spreading mechanisms of the virus. A space-time cluster analysis of H5N1 outbreaks was used to identify spatio-temporal patterns at a global scale and over an extended period of time. Potential mechanisms explaining the spread of the H5N1 virus, and the role of wild birds, were analyzed. Between December 2003 and December 2006, three global epidemic phases of H5N1 influenza were identified. These H5N1 outbreaks showed a clear seasonal pattern, with a high density of outbreaks in winter and early spring (i.e., October to March. In phase I and II only the East Asia Australian flyway was affected. During phase III, the H5N1 viruses started to appear in four other flyways: the Central Asian flyway, the Black Sea Mediterranean flyway, the East Atlantic flyway and the East Africa West Asian flyway. Six disease cluster patterns along these flyways were found to be associated with the seasonal migration of wild birds. The spread of the H5N1 virus, as demonstrated by the space-time clusters, was associated with the patterns of migration of wild birds. Wild birds may therefore play an important role in the spread of H5N1 over long distances. Disease clusters were also detected at sites where wild birds are known to overwinter and at times when migratory birds were present. This leads to the suggestion that wild birds may also be involved in spreading the H5N1 virus over short distances.

  19. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    Science.gov (United States)

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-09

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  20. [Analysis of risk factors of fatal outcome in pregnant and puerperant patients with severe H1N1 influenza].

    Science.gov (United States)

    Zabolotskikh, I B; Penzhoian, G A; Musaeva, T S; Goncharenko, S I

    2010-01-01

    As well as previous epidemics and pandemias of influenza, the 2009 H1N1 influenza pandemia increases the risk of severe illness in pregnant. Data were reported for 28 pregnant and 2 postpartum women who have been hospitalized in ICUs of Krasnodar Region with H1N1 influenza diagnosis. The laboratory tests for H1N1 were negative in 53.3% of suspected cases of H1N1 influenza (16 of 30). The major lethal risk factor in pregnant with H1N1 influenza is a development of septic shock with low PaO2\\FiO2 ratio (less than 140) and high Murray's Acute Lung Injury Score (higher than 2.5). High Apache II, Apache III, SAPS 2, SAPS 3 and SOFA scores are the additional lethal risk factors. Lethal outcomes were more frequent in the end of the second trimester of pregnancy.

  1. First human case of avian influenza A (H5N6 in Yunnan province, China

    Directory of Open Access Journals (Sweden)

    Jibo He

    2015-08-01

    Full Text Available Objective: To report clinical, virological, and epidemiological features of the first death caused by a H5N6 avian influenza virus in Yunnan Province, China. Method: The case was described in clinical expression, chest radiography, blood test and treatment. Real-time RT-PCR was used to detect H5N6 virus RNA in clinical and environment samples. Epidemiological investigation was performed including case exposure history determinant, close contacts follow up, and environment sample collection. Results: The patient initially developed sore throat and coughs on 27 January 2015. The disease progressed to severe pneumonia, multiple organ dysfunction syndrome, and acute respiratory distress syndrome. And the patient died on 6 February. A highly pathogenic avian influenza A H5N6 virus was isolated from the tracheal aspirate specimen of the patient. The viral genome analyses revealed that the H5 hemmagglutinin gene belongs to 2.3.4.4 clade. Epidemiological investigation showed that the patient had exposure to wild bird. All close contacts of the patient did not present the same disease in seven consecutive days. A high H5 positive rate was detected in environmental samples from local live poultry markets. Conclusion: The findings suggest that studies on the source of the virus, transmission models, serologic investigations, vaccines, and enhancing surveillance in both humans and birds are necessary.

  2. Socioeconomic Factors Influencing Hospitalized Patients with Pneumonia Due to Influenza A(H1N1)pdm09 in Mexico

    Science.gov (United States)

    Manabe, Toshie; Higuera Iglesias, Anjarath Lorena; Vazquez Manriquez, Maria Eugenia; Martinez Valadez, Eduarda Leticia; Ramos, Leticia Alfaro; Izumi, Shinyu; Takasaki, Jin; Kudo, Koichiro

    2012-01-01

    Background In addition to clinical aspects and pathogen characteristics, people's health-related behavior and socioeconomic conditions can affect the occurrence and severity of diseases including influenza A(H1N1)pdm09. Methodology and Principal Findings A face-to-face interview survey was conducted in a hospital in Mexico City at the time of follow-up consultation for hospitalized patients with pneumonia due to influenza virus infection. In all, 302 subjects were enrolled and divided into two groups based on the period of hospitalization. Among them, 211 tested positive for influenza A(H1N1)pdm09 virus by real-time reverse-transcriptase-polymerase-chain-reaction during the pandemic period (Group-pdm) and 91 tested positive for influenza A virus in the post-pandemic period (Group-post). All subjects were treated with oseltamivir. Data on the demographic characteristics, socioeconomic status, living environment, and information relating to A(H1N1)pdm09, and related clinical data were compared between subjects in Group-pdm and those in Group-post. The ability of household income to pay for utilities, food, and health care services as well as housing quality in terms of construction materials and number of rooms revealed a significant difference: Group-post had lower socioeconomic status than Group-pdm. Group-post had lower availability of information regarding H1N1 influenza than Group-pdm. These results indicate that subjects in Group-post had difficulty receiving necessary information relating to influenza and were more likely to be impoverished than those in Group-pdm. Possible factors influencing time to seeking health care were number of household rooms, having received information on the necessity of quick access to health care, and house construction materials. Conclusions Health-care-seeking behavior, poverty level, and the distribution of information affect the occurrence and severity of pneumonia due to H1N1 virus from a socioeconomic point of view. These

  3. Transmission of highly pathogenic avian influenza H7 virus

    NARCIS (Netherlands)

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The

  4. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Yasuha Arai

    2016-04-01

    Full Text Available A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  5. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome.

    NARCIS (Netherlands)

    Fouchier, R.A.M.; Schneeberger, P.M.; Rozendaal, F.W.; Broekman, J.M.; Kemink, S.A.G.; Munnster, V.; Kuiken, T.; Rimmelzwaan, G.F.; Schutten, M.; Doornum, van G.J.J.; Koch, G.; Bosman, A.; Koopmans, M.; Osterhaus, A.D.M.E.

    2004-01-01

    Highly pathogenic avian influenza A viruses of subtypes H5 and H7 are the causative agents of fowl plague in poultry. Influenza A viruses of subtype H5N1 also caused severe respiratory disease in humans in Hong Kong in 1997 and 2003, including at least seven fatal cases, posing a serious human

  6. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    Science.gov (United States)

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The innate immunity of guinea pigs against highly pathogenic avian influenza virus infection.

    Science.gov (United States)

    Zhang, Kun; Xu, Wei Wei; Zhang, Zhaowei; Liu, Jing; Li, Jing; Sun, Lijuan; Sun, Weiyang; Jiao, Peirong; Sang, Xiaoyu; Ren, Zhiguang; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Tiecheng; Wang, Hualei; Yang, Songtao; Zhao, Yongkun; Zhang, Xuemei; Wilker, Peter R; Liu, WenJun; Liao, Ming; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2017-05-02

    H5N1 avian influenza viruses are a major pandemic concern. In contrast to the highly virulent phenotype of H5N1 in humans and many animal models, guinea pigs do not typically display signs of severe disease in response to H5N1 virus infection. Here, proteomic and transcriptional profiling were applied to identify host factors that account for the observed attenuation of A/Tiger/Harbin/01/2002 (H5N1) virulence in guinea pigs. RIG-I and numerous interferon stimulated genes were among host proteins with altered expression in guinea pig lungs during H5N1 infection. Overexpression of RIG-I or the RIG-I adaptor protein MAVS in guinea pig cell lines inhibited H5N1 replication. Endogenous GBP-1 expression was required for RIG-I mediated inhibition of viral replication upstream of the activity of MAVS. Furthermore, we show that guinea pig complement is involved in viral clearance, the regulation of inflammation, and cellular apoptosis during influenza virus infection of guinea pigs. This work uncovers features of the guinea pig innate immune response to influenza that may render guinea pigs resistant to highly pathogenic influenza viruses.

  8. Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7 in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Selvaraju Kanagarajan

    Full Text Available The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His tag, and an endoplasmic retention signal (SEKDEL. The construct was cloned into a Cowpea mosaic virus (CPMV-based vector (pEAQ-HT and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19 containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0, as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi. Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of

  9. Immune protection induced on day 10 following administration of the 2009 A/H1N1 pandemic influenza vaccine.

    Directory of Open Access Journals (Sweden)

    Yizhuo Sun

    Full Text Available BACKGROUND: The 2009 swine-origin influenza virus (S-OIV H1N1 pandemic has caused more than 18,000 deaths worldwide. Vaccines against the 2009 A/H1N1 influenza virus are useful for preventing infection and controlling the pandemic. The kinetics of the immune response following vaccination with the 2009 A/H1N1 influenza vaccine need further investigation. METHODOLOGY/PRINCIPAL FINDINGS: 58 volunteers were vaccinated with a 2009 A/H1N1 pandemic influenza monovalent split-virus vaccine (15 µg, single-dose. The sera were collected before Day 0 (pre-vaccination and on Days 3, 5, 10, 14, 21, 30, 45 and 60 post vaccination. Specific antibody responses induced by the vaccination were analyzed using hemagglutination inhibition (HI assay and enzyme-linked immunosorbent assay (ELISA. After administration of the 2009 A/H1N1 influenza vaccine, specific and protective antibody response with a major subtype of IgG was sufficiently developed as early as Day 10 (seroprotection rate: 93%. This specific antibody response could maintain for at least 60 days without significant reduction. Antibody response induced by the 2009 A/H1N1 influenza vaccine could not render protection against seasonal H1N1 influenza (seroconversion rate: 3% on Day 21. However, volunteers with higher pre-existing seasonal influenza antibody levels (pre-vaccination HI titer ≥1∶40, Group 1 more easily developed a strong antibody protection effect against the 2009 A/H1N1 influenza vaccine as compared with those showing lower pre-existing seasonal influenza antibody levels (pre-vaccination HI titer <1∶40, Group 2. The titer of the specific antibody against the 2009 A/H1N1 influenza was much higher in Group 1 (geometric mean titer: 146 on Day 21 than that in Group 2 (geometric mean titer: 70 on Day 21. CONCLUSIONS/SIGNIFICANCE: Recipients could gain sufficient protection as early as 10 days after vaccine administration. The protection could last at least 60 days. Individuals with a

  10. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced recep...

  11. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

    Science.gov (United States)

    Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Smith, Gavin J.D.; Fourment, Mathieu; Walker, David; McClenaghan, Laura; Alam, S.M. Rabiul; Hasan, M. Kamrul; Seiler, Patrick; Franks, John; Danner, Angie; Barman, Subrata; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.

    2013-01-01

    Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans. PMID:23968540

  12. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available BACKGROUND: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA. The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n. or subcutaneously (s.c. with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. CONCLUSION: Our results indicated that protection from high pathogenic H7N7 (NL/219/03 virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.

  13. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice

    Directory of Open Access Journals (Sweden)

    Qingtao Liu

    2016-11-01

    Full Text Available H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06 virus was highly pathogenic for mice, with a 50% mouse lethal dose of 102.83 50% egg infectious dose, whereas the A/duck/Nanjing/01/1999 (NJ01 virus was low pathogenic for mice, with a 50% mouse lethal dose of >106.81 50% egg infectious dose. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only twelve different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future.

  14. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?

    Science.gov (United States)

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I.; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R.

    2011-01-01

    Please cite this paper as: Pereda et al. (2011) Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence? Influenza and Other Respiratory Viruses 5(6), 409–412. In this report, we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and human‐like SIVs, showing the constant evolution of influenza viruses at the human–swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that because of the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever‐expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  15. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  16. Central nervous system manifestations in pediatric patients with influenza A H1N1 infection during the 2009 pandemic.

    Science.gov (United States)

    Wilking, Ashley N; Elliott, Elizabeth; Garcia, Melissa N; Murray, Kristy O; Munoz, Flor M

    2014-09-01

    A novel H1N1 influenza A virus (A(H1N1)pdm09) particularly affected individuals central nervous system complications associated with pandemic influenza in the pediatric population. Retrospective review of patients with laboratory-confirmed influenza A(H1N1)pdm09 infection and central nervous system manifestations at Texas Children's Hospital between April 2009 and June 2010. Among 365 patients with influenza A(H1N1)pdm09, 32 (8.8%) had central nervous system manifestations at a median age of 4 years. Eight (25.0%) were previously healthy, and 12 (37.5%) had neurological pre-existing conditions. Of the 32 cases of influenza with neurological complications, seizure (n = 17; 53.1%) was the most common central nervous system manifestation, followed by encephalitis (n = 4; 12.5%), meningitis (n = 4; 12.5%), encephalopathy (n = 3; 9.4%), meningismus (n = 3; 9.4%), focal hemorrhagic brain lesions (n = 2; 6.3%), brain infarction (n = 1; 3.1%), and sensorineural hearing loss (n = 1; 3.1%). Two patients demonstrated two or more types of central nervous system complications. One patient had abnormal cerebrospinal fluid with pleocytosis. Almost two thirds of the children with central nervous system manifestations required intensive care unit admission and nearly half required mechanical ventilation. There were no deaths. Patients with pre-existing neurological conditions were at greater risk for central nervous system manifestations during pandemic influenza infection. Patients with central nervous system manifestations were more likely to experience severe illness, characterized by intensive care unit admission and mechanical ventilation, although overall outcomes were good. Influenza prevention in patients with underlying medical conditions, particularly those with neurological conditions, is important. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Fulminant hemophagocytic lymphohistiocytosis induced by pandemic A (H1N1 influenza: a case report

    Directory of Open Access Journals (Sweden)

    Wacrenier Agnès

    2011-07-01

    Full Text Available Abstract Introduction Hemophagocytic lymphohistiocytosis induced by viral diseases is a well recognized entity. Severe forms of H5N1 influenza are known to be associated with symptoms very similar to a reactive hemophagocytic syndrome. We report a case of fulminant lymphohistiocytosis associated with the pandemic A (H1N1 variant. Case presentation A 42-year-old Caucasian woman developed a syndrome of fatal hemophagocytic lymphohistiocytosis shortly after H1N1 influenza. Initial symptoms of the viral disease were unusual, with acute abdominal involvement. Our patient's course was complicated by diffuse skin rash and ileal ischemia. Our patient died of refractory shock and multi-organ failure. Skin, ileum and colon histology was consistent with an acute apoptosis combined with an increased cellular regeneration. Conclusions Influenza may be complicated by severe forms of hemophagocytic lymphohistiocytosis. To ensure early recognition and treatment, physicians should be aware of the possible induction of the syndrome by the novel H1N1 variant. The rapid occurrence of a multi-organ involvement with evocative biological features of macrophage activation should alert clinicians.

  18. Detección de virus influenza A, B y subtipos A (H1N1 pdm09, A (H3N2 por múltiple RT-PCR en muestras clínicas

    Directory of Open Access Journals (Sweden)

    Pool Marcos

    Full Text Available Objetivos. Estandarizar la técnica de reacción en cadena de la polimerasa en tiempo real (RT-PCR múltiple para la detección de virus influenza A, B y tipificación de subtipos A (H1N1 pdm09, A (H3N2 en muestras clínicas. Materiales y métodos. Se analizaron 300 muestras de hisopado nasofaríngeo. Esta metodología fue estandarizada en dos pasos: la primera reacción detectó el gen de la matriz del virus de influenza A, gen de la nucleoproteína del virus influenza B y el gen GAPDH de las células huésped. La segunda reacción detectó el gen de la hemaglutinina de los subtipos A (H1N1 pandémico (pdm09 y A (H3N2. Resultados. Se identificaron 109 muestras positivas a influenza A y B, de las cuales 72 fueron positivas a influenza A (36 positivas a influenza A (H1N1 pdm09 y 36 positivos a influenza A (H3N2 y 37 muestras positivas a influenza B. 191 fueron negativas a ambos virus mediante RT-PCR en tiempo real multiplex. Se encontró una sensibilidad y especificidad del 100% al analizar los resultados de ambas reacciones. El límite de detección viral fue del rango de 7 a 9 copias/µL por virus. Los resultados no mostraron ninguna reacción cruzada con otros virus tales como adenovirus, virus sincitial respiratorio, parainfluenza (1,2 y 3, metapneumovirus, subtipos A (H1N1 estacional, A (H5N2 y VIH. Conclusiones. La RT-PCR múltiple demostró ser una prueba muy sensible y específica para la detección de virus influenza A, B y subtipos A (H1N1, H3N2 y su uso puede ser conveniente en brotes estacionales.

  19. Immune Responses of Chickens Infected with Wild Bird-Origin H5N6 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Shimin Gao

    2017-06-01

    Full Text Available Since April 2014, new infections of H5N6 avian influenza virus (AIV in humans and domestic poultry have caused considerable economic losses in the poultry industry and posed an enormous threat to human health worldwide. In previous research using gene sequence and phylogenetic analysis, we reported that H5N6 AIV isolated in February 2015 (ZH283 in Pallas’s sandgrouse was highly similar to that isolated in a human in December 2015 (A/Guangdong/ZQ874/2015, whereas a virus (i.e., SW8 isolated in oriental magpie-robin in 2014 was highly similar to that of A/chicken/Dongguan/2690/2013 (H5N6. However, the pathogenicity, transmissibility, and host immune-related response of chickens infected by those wild bird-origin H5N6 AIVs remain unknown. In response, we examined the viral distribution and mRNA expression profiles of immune-related genes in chickens infected with both viruses. Results showed that the H5N6 AIVs were highly pathogenic to chickens and caused not only systemic infection in multiple tissues, but also 100% mortality within 3–5 days post-infection. Additionally, ZH283 efficiently replicated in all tested tissues and transmitted among chickens more rapidly than SW8. Moreover, quantitative real-time polymerase chain reaction analysis showed that following infection with H5N6, AIVs immune-related genes remained active in a tissue-dependent manner, as well as that ZH283 induced mRNA expression profiles such as TLR3, TLR7, IL-6, TNF-α, IL-1β, IL-10, IL-8, and MHC-II to a greater extent than SW8 in the tested tissues of infected chickens. Altogether, our findings help to illuminate the pathogenesis and immunologic mechanisms of H5N6 AIVs in chickens.

  20. Respon Imun Itik Bali terhadap Berbagai Dosis Vaksin Avian Influenza H5N1

    Directory of Open Access Journals (Sweden)

    Ida Bagus Kade Suardana

    2009-09-01

    Full Text Available A study was carried out to investigate the immune response of Bali ducks against various doses ofAvian Influenza H5N1 vaccine. The study was carried out using a complete Random-Split in Time researchdesign as many as 40 of Bali ducks of 3 months age were kept separately in 4 groups. The ducks werevaccinated twice in two week interval with AI H5N1 vaccine of 0 (as negative control, 1/2, 1, and 2 doses.Sera were collected one day before first vaccination, then every week until three weeks after the secondvaccination. All sera were tested by hemaglutination inhibition (HI test. The result shows that antibodylevel with double dose was significantly higher than single dose, half dose, and negative control (P<0.01.However antibody level in ducks vaccinated with single and half dose did not show any significant difference(P > 0.05.

  1. The Intersection of Care Seeking and Clinical Capacity for Patients With Highly Pathogenic Avian Influenza A (H5N1) Virus in Indonesia: Knowledge and Treatment Practices of the Public and Physicians.

    Science.gov (United States)

    Kreslake, Jennifer M; Wahyuningrum, Yunita; Iuliano, Angela D; Storms, Aaron D; Lafond, Kathryn E; Mangiri, Amalya; Praptiningsih, Catharina Y; Safi, Basil; Uyeki, Timothy M; Storey, J Douglas

    2016-12-01

    Indonesia has the highest human mortality from highly pathogenic avian influenza (HPAI) A (H5N1) virus infection in the world. A survey of households (N=2520) measured treatment sources and beliefs among symptomatic household members. A survey of physicians (N=554) in various types of health care facilities measured knowledge, assessment and testing behaviors, and perceived clinical capacity. Households reported confidence in health care system capacity but infrequently sought treatment for potential HPAI H5N1 signs/symptoms. More clinicians were confident in their knowledge of diagnosis and treatment than in the adequacy of related equipment and resources at their facilities. Physicians expressed awareness of the HPAI H5N1 suspect case definition, yet expressed only moderate knowledge in questioning symptomatic patients about exposures. Self-reported likelihood of testing for HPAI H5N1 virus was high after learning of certain exposures. Knowledge of antiviral treatment was moderate, but it was higher among clinicians in puskesmas. Physicians in private outpatient clinics, the most heavily used facilities, reported the lowest confidence in their diagnostic and treatment capabilities. Educational campaigns can encourage recall of possible poultry exposure when patients are experiencing signs/symptoms and can raise awareness of the effectiveness of antivirals to drive people to seek health care. Clinicians may benefit from training regarding exposure assessment and referral procedures, particularly in private clinics. (Disaster Med Public Health Preparedness. 2016;10:838-847).

  2. Transmission of Avian Influenza Virus (H3N2) to Dogs

    OpenAIRE

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) is...

  3. Pandemic A/H1N1v influenza 2009 in hospitalized children: a multicenter Belgian survey

    Directory of Open Access Journals (Sweden)

    Blumental Sophie

    2011-11-01

    Full Text Available Abstract Background During the 2009 influenza A/H1N1v pandemic, children were identified as a specific "at risk" group. We conducted a multicentric study to describe pattern of influenza A/H1N1v infection among hospitalized children in Brussels, Belgium. Methods From July 1, 2009, to January 31, 2010, we collected epidemiological and clinical data of all proven (positive H1N1v PCR and probable (positive influenza A antigen or culture pediatric cases of influenza A/H1N1v infections, hospitalized in four tertiary centers. Results During the epidemic period, an excess of 18% of pediatric outpatients and emergency department visits was registered. 215 children were hospitalized with proven/probable influenza A/H1N1v infection. Median age was 31 months. 47% had ≥ 1 comorbid conditions. Febrile respiratory illness was the most common presentation. 36% presented with initial gastrointestinal symptoms and 10% with neurological manifestations. 34% had pneumonia. Only 24% of the patients received oseltamivir but 57% received antibiotics. 10% of children were admitted to PICU, seven of whom with ARDS. Case fatality-rate was 5/215 (2%, concerning only children suffering from chronic neurological disorders. Children over 2 years of age showed a higher propensity to be admitted to PICU (16% vs 1%, p = 0.002 and a higher mortality rate (4% vs 0%, p = 0.06. Infants less than 3 months old showed a milder course of infection, with few respiratory and neurological complications. Conclusion Although influenza A/H1N1v infections were generally self-limited, pediatric burden of disease was significant. Compared to other countries experiencing different health care systems, our Belgian cohort was younger and received less frequently antiviral therapy; disease course and mortality were however similar.

  4. Establishing a laboratory network of influenza diagnosis in Indonesia: an experience from the avian flu (H5N1 outbreak

    Directory of Open Access Journals (Sweden)

    Setiawaty V

    2012-08-01

    Full Text Available Vivi Setiawaty, Krisna NA Pangesti, Ondri D SampurnoNational Institute of Health Research and Development, Ministry of Health, the Republic of Indonesia, Jakarta, IndonesiaAbstract: Indonesia has been part of the global influenza surveillance since the establishment of a National Influenza Center (NIC at the National Institute of Health Research and Development (NIHRD by the Indonesian Ministry of Health in 1975. When the outbreak of avian influenza A (H5N1 occurred, the NIC and US Naval Medical Research Unit 2 were the only diagnostic laboratories equipped for etiology confirmation. The large geographical area of the Republic of Indonesia poses a real challenge to provide prompt and accurate diagnosis nationally. This was the main reason to establish a laboratory network for H5N1 diagnosis in Indonesia. Currently, 44 laboratories have been included in the network capable of performing polymerase chain reaction testing for influenza A. Diagnostic equipment and standard procedures of biosafety and biosecurity of handling specimens have been adopted largely from World Health Organization recommendations.Keywords: influenza, laboratory, networking

  5. From where did the 2009 'swine-origin' influenza A virus (H1N1 emerge?

    Directory of Open Access Journals (Sweden)

    Armstrong John S

    2009-11-01

    Full Text Available Abstract The swine-origin influenza A (H1N1 virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative

  6. Household transmission of 2009 H1N1 influenza virus in Yazd, Iran

    Directory of Open Access Journals (Sweden)

    F. Behnaz

    2012-08-01

    Full Text Available Summary: Objectives: The 2009 pandemic influenza A (H1N1 virus is a public health challenge. Notably, laboratory-confirmed cases do not represent the age group most susceptible to infection. To characterize the age distribution of all cases of H1N1 influenza, we studied the personal contacts of confirmed cases to identify the age group at the highest risk. Methods: We investigated the family members of 162 laboratory-confirmed cases of 2009 H1N1 in Yazd, Iran. Family members were retrospectively asked whether they had ≥2 respiratory symptoms within 7 days of the last contact with the associated index cases. The ages and symptoms of the patients as well as the interval between diagnosis and the onset of symptoms among household contacts were determined using a questionnaire. Results: We identified 596 family members of index cases, 83 (13.9% of whom developed acute respiratory illness. No acute respiratory illness was found in 104 families (64%; however, there were 2 cases in 15 families (9.3% and ≥3 cases in 4 families (24%. Household contacts from 5 to 18 years old were more susceptible to acute respiratory illness than those who were ≥51 years old (RR = 3.174, 95% CI 1.313–7.675 P-value = 0.01. Conclusion: Individuals ≤18 years old were most susceptible to infection by the H1N1 virus. Therefore, in low-income populations, prevention of the spread of H1N1 to this age group should be emphasized. Keywords: Household transmission, 2009 Influenza A (H1N1 virus

  7. Efficacy of gamma irradiation on H5N1 for the preparation of hemagglutination Inhibition test antigen

    International Nuclear Information System (INIS)

    Chaisingh, Arunee; Thammasart, Suree; Kamolsiripichaiporn, Somjai; Piadang Nattayana

    2006-09-01

    The result of the efficiencies of gamma irradiation at the dose of 10-60 kGy on highly pathogenic avian influenza virus, H5N1 (Thai isolate) revealed that gamma irradiation at the dose of 10 and 20 kGy could reduce the infectivity of Hanna but gamma irradiation at 30-60 kGy could inactivate H5N1 virus completely. All doses of gamma irradiation used in this experiment had no effect on antigenicity of hemagglutinin protein. Thus, gamma irradiation at the dose of 30- 60 kGy could be use safely for the antigen preparation to detect the antibody against H5N1 virus.

  8. Thoracic computerized tomographic (CT findings in 2009 influenza A (H1N1 virus infection in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Mojtaba Rostami

    2011-01-01

    Full Text Available Background: Pandemic 2009 H1N1 influenza A virus arrived at Isfahan in August 2009. The virus is still circulating in the world. The abnormal thoracic computerized tomographic (CT scan findings vary widely among the studies of 2009 H1N1 influenza. We evaluated the thoracic CT findings in patients with 2009 H1N1 virus infection to describe findings compared to previously reported findings, and to suggest patterns that may be suggestive for 2009 influenza A (H1N1 in an appropriate clinical setting. Methods: Retrospectively, the archive of all patients with a diagnosis of 2009 H1N1 influenza A were reviewed, in Al-Zahra Hospital in Isfahan, central Iran, between September 23 rd 2009 to February 20 th 2010. Out of 216 patients with confirmed 2009 influenza A (H1N1 virus, 26 cases with abnormal CT were enrolled in the study. Radiologic findings were characterized by the type and pattern of opacities and zonal distribution. Results: Patchy infiltration (34.6%, lobar consolidation (30.8%, and interstitial infiltration (26.9% with airbronchogram (38.5% were the predominant findings in our patients. Bilateral distribution was seen in 80.8% of the patients. Only one patient (3.8% showed ground-glass opacity, predominant radiographic finding in the previous reports and severe acute respiratory syndrome (SARS. Conclusions: The most common thoracic CT findings in pandemic H1N1 were patchy infiltration, lobar consolidation, and interstitial infiltration with airbronchogram and bilateral distribution. While these findings can be associated with other infections; they may be suggestive to 2009 influenza A (H1N1 in the appropriate clinical setting. Various radiographic patterns can be seen in thoracic CT scans of the influenza patients. Imaging findings are nonspecific.

  9. In vitro reassortment between endemic H1N2 and 2009 H1N1 pandemic swine influenza viruses generates attenuated viruses.

    Directory of Open Access Journals (Sweden)

    Ben M Hause

    Full Text Available The pandemic H1N1 (pH1N1 influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV, were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST cells with swine-derived endemic H1N2 (MN745 and pH1N1 (MN432 yielded two reassortant H1N2 viruses (R1 and R2, both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log(10 TCID(50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism.

  10. Imaging manifestation of A H1N1 influenza with pneumonia

    International Nuclear Information System (INIS)

    Yang Jun; Xu Yunliang; Lu Zhibin; Wang Xiaojie; Li Shuo; Du Lei; Guo Limin; Li Xingwang

    2010-01-01

    Objective: To evaluate the imaging features of pneumonia caused by A (H1N1) influenza virus. Methods: Imaging data of 51 patients with pneumonia caused by A H1N1 influenza were retrospectively reviewed. All patients underwent mobile chest radiographs and 44 patients underwent CT as well. On the basis of the lesion degree in the lung, the patients were classified into mild, moderate and serious types. Results: Mild type showed patchy consolidation at chest imaging in 4 patients. Moderate type demonstrated consolidation and (or) ground-glass opacities more than 2 lung fields in 33 patients, including 30 bilateral and 3 unilateral. Serious type displayed diffuse consolidation and ground-glass opacities, probably accompanying with interstitial lesions in the lungs in 14 patients, including 6 patients with ARDS, 2 with infection and 1 with cutaneous emphysema. Conclusion: The imaging features of pneumonia caused by A H1N1 influenza mainly manifest as consolidation and ground-glass opacities, probably accompanying with interstitial changes. The imaging findings show various in patients with infection. Some serious patients even develope to ARDS. (authors)

  11. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses

    OpenAIRE

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-01-01

    Background The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. Findings The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decrease...

  12. Genetic characterization of avian influenza subtype H4N6 and H4N9 from live bird market, Thailand

    Directory of Open Access Journals (Sweden)

    Kitikoon Pravina

    2011-03-01

    Full Text Available Abstract A one year active surveillance program for influenza A viruses among avian species in a live-bird market (LBM in Bangkok, Thailand was conducted in 2009. Out of 970 samples collected, influenza A virus subtypes H4N6 (n = 2 and H4N9 (n = 1 were isolated from healthy Muscovy ducks. All three viruses were characterized by whole genome sequencing with subsequent phylogenetic analysis and genetic comparison. Phylogenetic analysis of all eight viral genes showed that the viruses clustered in the Eurasian lineage of influenza A viruses. Genetic analysis showed that H4N6 and H4N9 viruses display low pathogenic avian influenza characteristics. The HA cleavage site and receptor binding sites were conserved and resembled to LPAI viruses. This study is the first to report isolation of H4N6 and H4N9 viruses from birds in LBM in Thailand and shows the genetic diversity of the viruses circulating in the LBM. In addition, co-infection of H4N6 and H4N9 in the same Muscovy duck was observed.

  13. Characterization of H5N6 highly pathogenic avian influenza viruses isolated from wild and captive birds in the winter season of 2016-2017 in Northern Japan.

    Science.gov (United States)

    Hiono, Takahiro; Okamatsu, Masatoshi; Matsuno, Keita; Haga, Atsushi; Iwata, Ritsuko; Nguyen, Lam Thanh; Suzuki, Mizuho; Kikutani, Yuto; Kida, Hiroshi; Onuma, Manabu; Sakoda, Yoshihiro

    2017-09-01

    On 15 November 2016, a black swan that had died in a zoo in Akita prefecture, northern Japan, was strongly suspected to have highly pathogenic avian influenza (HPAI); an HPAI virus (HPAIV) belonging to the H5N6 subtype was isolated from specimens taken from the bird. After the initial report, 230 cases of HPAI caused by H5N6 viruses from wild birds, captive birds, and domestic poultry farms were reported throughout the country during the winter season. In the present study, 66 H5N6 HPAIVs isolated from northern Japan were further characterized. Phylogenetic analysis of the hemagglutinin gene showed that the H5N6 viruses isolated in northern Japan clustered into Group C of Clade 2.3.4.4 together with other isolates collected in Japan, Korea and Taiwan during the winter season of 2016-2017. The antigenicity of the Japanese H5N6 isolate differed slightly from that of HPAIVs isolated previously in Japan and China. The virus exhibited high pathogenicity and a high replication capacity in chickens, whereas virus growth was slightly lower in ducks compared with that of an H5N8 HPAIV isolate collected in Japan in 2014. Comprehensive analyses of Japanese isolates, including those from central, western, and southern Japan, as well as rapid publication of this information are essential for facilitating greater control of HPAIVs. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  14. Molecular epidemiology of influenza A(H1N1pdm09 viruses from Pakistan in 2009-2010.

    Directory of Open Access Journals (Sweden)

    Uzma Bashir Aamir

    Full Text Available In early 2009, a novel influenza A(H1N1 virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.The first case of human infection with A(H1N1pdm09 in Pakistan was detected on 18(th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31(st August 2010. The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.Influenza A(H1N1pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.

  15. The epizootiology of the highly pathogenic avian influenza prior to ...

    African Journals Online (AJOL)

    The epizootiology of the highly pathogenic avian influenza prior to the anticipated pandemic of the early twenty first century. ... Transmission of highly pathogenic H5N1 from domestic fowls back to migratory waterfowl in western China has increased the geographic spread. This has grave consequences for the poultry ...

  16. Costo-efectividad en la detección de influenza H1N1: datos clínicos versus pruebas rápidas Cost-effectiveness in the detection of influenza H1N1: clinical data versus rapid tests

    Directory of Open Access Journals (Sweden)

    Jorge González-Canudas

    2011-01-01

    Full Text Available OBJETIVO: Evaluar el desempeño de los datos clínicos y la prueba rápida (PR en el diagnóstico de influenza H1N1, y analizar el costo-beneficio que representa el uso de esta herramienta diagnóstica. MÉTODOS: Se aplicó la PR a pacientes que acudieron a cuatro hospitales en la ciudad de México con sintomatología similar a influenza (SSI durante el período octubre y noviembre de 2009. Se comparó el desempeño diagnóstico de la SSI más la PR contra el de la reacción en cadena de la polimerasa en transcripción reversa en tiempo real (rRT-PCR. La rRT-PCR fue procesada en un laboratorio de referencia y cegado al resultado de la PR. Además, se llevó a cabo una evaluación económica a partir de la cual se estimó el impacto presupuestal relacionado con la utilización de la PR RESULTADOS: Se incluyó a 78 pacientes, de los cuales 39 fueron positivos para influenza H1N1 y 6 para influenza A estacional, de acuerdo al resultado de la rRT-PCR. La SSI mostró una sensibilidad de 96% y una especificidad de 21%, la PR de 76% y 82% y el conjunto de SSI más PR de 96% y 100%, respectivamente. El Cociente de Verosimilitud positivo de la SSI-cefalea fue de 31,5 y el de SSI-odinofagia fue de 330. El uso de PR mostró un ahorro de US$ 12,6 por cada caso sospechoso. CONCLUSIONES: El uso de la PR como auxiliar en el diagnóstico de influenza H1N1 incrementa la certeza y reduce el costo promedio por paciente sospechoso e infectado.OBJECTIVE: Evaluate the performance of clinical data and the rapid influenza diagnostic test (RIDT in diagnosing influenza H1N1, and analyze the cost-benefit of using this diagnostic tool. METHODS: The RIDT was used for patients who came to four hospitals in Mexico City with an influenza-like illness (ILI in October and November 2009. The diagnostic performance of the ILI clinical data and the RIDT was compared to that of the real-time reverse transcription polymerase chain reaction (rRT-PCR test. The rRT-PCR test was

  17. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    Science.gov (United States)

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  18. Towards an improved vaccination programme against highly pathogenic avian influenza in Indonesia

    NARCIS (Netherlands)

    Poetri, O.N.

    2014-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 are considered to be a major threat for both the poultry industry and public health, and Indonesia is one of the HPAI H5N1 endemic country with the highest incidence of human cases worldwide. The control measures of HPAI, like stamping-out were

  19. Risk factors associated with highly pathogenic avian influenza subtype H5N8 outbreaks on broiler duck farms in South Korea.

    Science.gov (United States)

    Kim, W-H; An, J-U; Kim, J; Moon, O-K; Bae, S H; Bender, J B; Cho, S

    2018-04-19

    Highly Pathogenic Avian Influenza (HPAI) subtype H5N8 outbreaks occurred in poultry farms in South Korea in 2014 resulting in significant damage to the poultry industry. Between 2014 and 2016, the pandemic disease caused significant economic loss and social disruption. To evaluate the risk factors for HPAI infection in broiler duck farms, we conducted a retrospective case-control study on broiler duck farms. Forty-three farms with confirmed laboratories on premises were selected as the case group, and 43 HPAI-negative farms were designated as the control group. Control farms were matched based on farm location and were within a 3-km radius from the case premises. Spatial and environmental factors were characterized by site visit and plotted through a geographic information system (GIS). Univariable and multivariable logistic regression models were developed to assess possible risk factors associated with HPAI broiler duck farm infection. Four final variables were identified as risk factors in a final multivariable logistic model: "Farms with ≥7 flocks" (odds ratio [OR] = 6.99, 95% confidence interval [CI] 1.34-37.04), "Farm owner with ≥15 years of raising poultry career" (OR = 7.91, 95% CI 1.69-37.14), "Presence of any poultry farms located within 500 m of the farm" (OR = 6.30, 95% CI 1.08-36.93) and "Not using a faecal removal service" (OR = 27.78, 95% CI 3.89-198.80). This highlights that the HPAI H5N8 outbreaks in South Korea were associated with farm owner education, number of flocks and facilities and farm biosecurity. Awareness of these factors may help to reduce the spread of HPAI H5N8 across broiler duck farms in Korea during epidemics. Greater understanding of the risk factors for H5N8 may improve farm vulnerability to HPAI and other subtypes and help to establish policies to prevent re-occurrence. These findings are relevant to global prevention recommendations and intervention protocols. © 2018 Blackwell Verlag GmbH.

  20. Socioeconomic factors influencing hospitalized patients with pneumonia due to influenza A(H1N1pdm09 in Mexico.

    Directory of Open Access Journals (Sweden)

    Toshie Manabe

    Full Text Available BACKGROUND: In addition to clinical aspects and pathogen characteristics, people's health-related behavior and socioeconomic conditions can affect the occurrence and severity of diseases including influenza A(H1N1pdm09. METHODOLOGY AND PRINCIPAL FINDINGS: A face-to-face interview survey was conducted in a hospital in Mexico City at the time of follow-up consultation for hospitalized patients with pneumonia due to influenza virus infection. In all, 302 subjects were enrolled and divided into two groups based on the period of hospitalization. Among them, 211 tested positive for influenza A(H1N1pdm09 virus by real-time reverse-transcriptase-polymerase-chain-reaction during the pandemic period (Group-pdm and 91 tested positive for influenza A virus in the post-pandemic period (Group-post. All subjects were treated with oseltamivir. Data on the demographic characteristics, socioeconomic status, living environment, and information relating to A(H1N1pdm09, and related clinical data were compared between subjects in Group-pdm and those in Group-post. The ability of household income to pay for utilities, food, and health care services as well as housing quality in terms of construction materials and number of rooms revealed a significant difference: Group-post had lower socioeconomic status than Group-pdm. Group-post had lower availability of information regarding H1N1 influenza than Group-pdm. These results indicate that subjects in Group-post had difficulty receiving necessary information relating to influenza and were more likely to be impoverished than those in Group-pdm. Possible factors influencing time to seeking health care were number of household rooms, having received information on the necessity of quick access to health care, and house construction materials. CONCLUSIONS: Health-care-seeking behavior, poverty level, and the distribution of information affect the occurrence and severity of pneumonia due to H1N1 virus from a socioeconomic